WO2019189300A1 - 高充填繊維強化樹脂組成物からなる射出成形体の製造方法 - Google Patents

高充填繊維強化樹脂組成物からなる射出成形体の製造方法 Download PDF

Info

Publication number
WO2019189300A1
WO2019189300A1 PCT/JP2019/013082 JP2019013082W WO2019189300A1 WO 2019189300 A1 WO2019189300 A1 WO 2019189300A1 JP 2019013082 W JP2019013082 W JP 2019013082W WO 2019189300 A1 WO2019189300 A1 WO 2019189300A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
charging
raw material
injection
Prior art date
Application number
PCT/JP2019/013082
Other languages
English (en)
French (fr)
Inventor
利生 岩田
翼 鳥越
藤田 大祐
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2020510988A priority Critical patent/JPWO2019189300A1/ja
Priority to US16/982,225 priority patent/US20210031418A1/en
Priority to CN201980021360.0A priority patent/CN111954592A/zh
Priority to EP19778187.5A priority patent/EP3778180A4/en
Publication of WO2019189300A1 publication Critical patent/WO2019189300A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76829Feeding
    • B29C2945/76832Feeding raw materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/62Barrels or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a method for producing an injection-molded body comprising a fiber reinforced resin composition.
  • Injection molded products made of fiber reinforced resin compositions containing fibers such as glass fibers and carbon fibers and thermoplastic polymers are used in various applications such as automobile parts and aircraft parts because of their excellent mechanical properties. .
  • the mechanical properties such as strength of the obtained injection-molded product
  • the fiber content in the resin composition is too high, the dispersibility of the fibers in the resin composition is deteriorated, and the mechanical properties may be impaired due to this.
  • injection molding may be adversely affected due to deterioration of fluidity of the melt of the resin composition, increase in viscosity, and the like.
  • the fiber content is too low, the effect of improving the mechanical properties due to the fiber content may not be sufficiently obtained.
  • the present inventors firstly put “a first resin material containing at least one thermoplastic polymer (A) selected from polyolefin (A1) and polyamide (A2) into an injection molding machine from a first inlet.
  • Step (I) in which the long fiber (D) is impregnated with a resin mixture containing at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C)
  • Step (II) in which the second resin raw material containing the master batch is put into the injection molding machine through the second charging port provided downstream from the first charging port, and the first resin raw material and the second resin raw material are injected.
  • a fiber-reinforced resin assembly comprising a step (III) in which a fiber-reinforced resin composition melt is produced by melt-kneading in a molding machine, and a step (IV) in which the fiber-reinforced resin composition melt is injection-molded into a mold
  • the method (L) for producing an injection-molded article made of a product has been found to produce an injection-molded article made of a fiber-reinforced resin composition having improved mechanical properties such as mechanical strength while maintaining a good appearance. It was.
  • the present invention is an injection-molded article comprising a fiber-reinforced resin composition having a high fiber content and excellent mechanical properties, particularly impact resistance, and preferably has a high fiber content and excellent mechanical properties, particularly impact resistance. Furthermore, it aims at providing the method of manufacturing the injection molded object which consists of a fiber reinforced resin composition excellent also in the external appearance.
  • the present inventors have found that in the method (L), when the fiber content in the fiber-reinforced resin composition is increased, the first resin raw material is necessary as compared with the second resin raw material. Since the amount is relatively decreased, the first resin raw material is more likely to be charged in a shorter time, and the second resin is not charged all at once.
  • the content of the long fiber (D) in the fiber reinforced resin composition is increased and the impact resistance of the fiber reinforced resin composition is increased.
  • the present invention has been completed.
  • the gist of the present invention is as follows.
  • the long fiber (D) includes a masterbatch impregnated with a resin mixture containing at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C).
  • the master batch contained in the second resin raw material A resin mixture containing at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C) is impregnated into fiber (D ′) to obtain resin-impregnated fiber.
  • the injection molding machine includes means for controlling the first resin material to be intermittently or continuously charged from the start to the end of the second resin material.
  • Said means is A material input hopper provided on the first input port; An apparatus for monitoring the charging speed of the first resin raw material at the first charging port; A device for monitoring the charging speed of the second resin raw material at the second charging port; A unit comprising a device (1) and / or a device (2),
  • the device (1) is a device for opening and closing a raw material shutter provided at a lower portion of a material charging hopper based on the charging speed, or adjusting a degree of opening of the raw material shutter, [5]
  • an injection molded article comprising a fiber reinforced resin composition having a high fiber content and excellent mechanical properties, particularly impact resistance, preferably high fiber content and excellent mechanical properties, particularly impact resistance.
  • an injection-molded body made of a fiber-reinforced resin composition having an excellent appearance can be produced.
  • FIG. 1 is a photograph of the surface of an injection-molded body produced in Example 1.
  • FIG. 2 is a photograph of the surface of the injection-molded body produced in Comparative Example 1.
  • FIG. 3 is a photograph of the surface of the injection-molded body produced in Comparative Example 3.
  • the first resin raw material used in the method for producing an injection-molded article of the present invention includes at least one thermoplastic polymer (A) selected from polyolefin (A1) and polyamide (A2).
  • polystyrene resin examples include propylene homopolymer, propylene / ethylene block copolymer, propylene / ethylene random copolymer, and propylene / ⁇ -olefin ( ⁇ -olefin having 4 or more carbon atoms) copolymer.
  • propylene homopolymer Based polymers; 4-methyl-1-pentene homopolymer, 4-methyl-1-pentene / ethylene copolymer, 4-methyl-1-pentene / ⁇ -olefin (excluding 4-methyl-1-pentene) copolymer And 4-methyl-1-pentene polymer.
  • a propylene polymer is a preferred embodiment.
  • polyolefins (A1) may be used alone or in combination of two or more.
  • the MFR of the polyolefin (A1) measured at 230 ° C. and a load of 2.16 kg measured according to ASTM D1238 is not particularly limited as long as an injection-molded article can be produced.
  • the polyolefin (A1) is a propylene polymer. In this case, it is preferably 1 to 500 g / 10 minutes, more preferably 5 to 400 g / 10 minutes, and still more preferably 10 to 300 g / 10 minutes.
  • polyamide (A2) for example, an amino acid lactam or a melt-moldable polymer obtained by a melt polycondensation reaction between a diamine and a dicarboxylic acid can be used.
  • Specific examples include the following polyamides.
  • a polycondensate of an organic dicarboxylic acid having 4 to 12 carbon atoms and an organic diamine having 2 to 13 carbon atoms for example, polyhexamethylene adipamide which is a polycondensate of hexamethylenediamine and adipic acid [6,6 nylon], polyhexamethylene azelamide [6,9 nylon] which is a polycondensate of hexamethylene diamine and azelaic acid, polyhexamethylene sebaca which is a polycondensate of hexamethylene diamine and sebacic acid [6,10 nylon], polyhexamethylene dodecanoamide [6,12 nylon] which is a polycondensate of hexamethylenediamine and dodecanedioic acid, polycondensate of aromatic dicarboxylic acid and aliphatic diamine Semi-aromatic polyamide (PA6T, PA9T, PA10T, PA11T), bis-p-aminocyclohexylme
  • organic dicarboxylic acids include adipic acid, pimelic acid, suberic acid, phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, phenylenedioxydiacetic acid, oxydibenzoic acid, diphenylmethanedicarboxylic acid, diphenylsulfonedicarboxylic acid, Biphenyl dicarboxylic acid, sebacic acid, dodecanedioic acid may be mentioned.
  • organic diamine examples include hexamethylene diamine, octamethylene diamine, nonane diamine, octane diamine, decane diamine, undecane diamine, undecane diamine, and dodecane diamine.
  • polycondensate of ⁇ -amino acid for example, polyundecanamide [11 nylon] which is a polycondensate of ⁇ -aminoundecanoic acid.
  • Ring-opening polymer of lactam for example, polycapramide [6 nylon] which is a ring-opening polymer of ⁇ -aminocaprolactam, and polylauric lactam [12 nylon] which is a ring-opening polymer of ⁇ -aminolaurolactam.
  • polyamides (A2) may be used alone or in combination of two or more.
  • the melt flow rate (MFR) of 1 kg load at a melting point of polyamide (A2) + 10 ° C. according to ASTM D1238 of polyamide (A2) is not particularly limited as long as an injection molded article can be produced, but preferably 5 g. / 10 minutes or more, more preferably 10 g / 10 minutes or more, and particularly preferably 12 g / 10 minutes or more.
  • the thermoplastic polymer (A) contained in the first resin raw material may be a mixture of polyolefin (A1) and polyamide (A2).
  • the first resin material may further contain an additive.
  • Additives that can be included in the first resin material include, for example, dispersants, lubricants, plasticizers, flame retardants, antioxidants (phenolic antioxidants, phosphoric antioxidants, sulfur antioxidants, etc.), charging Modification agents such as inhibitors, light stabilizers, ultraviolet absorbers, crystallization accelerators (nucleating agents, etc.), foaming agents, crosslinking agents, antibacterial agents, etc .; coloring agents such as pigments and dyes; carbon black, oxidation Titanium, bengara, azo pigment, anthraquinone pigment, phthalocyanine, particulate filler (talc, calcium carbonate, mica, clay, etc.); other short fiber fillers such as wollastonite; whiskers such as potassium titanate It is done.
  • the master resin is included in the second resin material used in the method for producing the injection-molded article of the present invention.
  • long fibers (D) are impregnated with a resin mixture containing at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C). It is a thing.
  • the long fiber (D) is a fiber piece having a long average fiber length obtained by cutting the fiber (D ′), the average fiber length is usually 1 to 20 mm, and the average fiber diameter is usually 3 to 30 ⁇ m. is there.
  • Examples of the fibers (D ′) to be the long fibers (D) include glass fibers (D′ 1), carbon fibers (D′ 2), and cellulose fibers (D′ 3).
  • the glass fiber (D′ 1) is, for example, a filamentary fiber produced by melt spinning glass.
  • the glass include E glass (Electrical glass), C glass (Chemical glass), and A glass. (Alkali glass), S glass (High strength glass), and alkali-resistant glass.
  • the average fiber diameter of the glass fiber (D′ 1) is preferably 3 to 30 ⁇ m, more preferably 12 to 20 ⁇ m, still more preferably 13 to 18 ⁇ m.
  • a continuous glass fiber bundle may be used as the glass fiber (D′ 1).
  • a commercially available glass roving may be used as the continuous glass fiber bundle.
  • the filament bundle number of the continuous glass fiber bundle (glass roving) is preferably 400 to 10,000, more preferably 1,000 to 6,000, and still more preferably 2,000 to 5,000.
  • Carbon fiber (D′ 2) is a fiber obtained by fiberizing and firing (carbonizing) raw materials such as polyacrylonitrile, rayon, pitch, polyvinyl alcohol, regenerated cellulose, mesophase pitch, and the average fiber diameter is The thickness is preferably 3 to 30 ⁇ m, more preferably 4 to 10 ⁇ m.
  • a continuous carbon fiber bundle may be used as the carbon fiber (D′ 2).
  • a commercially available tow may be used as the continuous carbon fiber bundle.
  • the number of filaments of the continuous carbon fiber bundle (tow) is preferably 500 to 80,000, more preferably 10,000 to 60,000.
  • Such a carbon fiber bundle is usually bundled by a bundling agent (size agent) such as an epoxy emulsion.
  • the surface of the carbon fiber (D′ 2) may be subjected to surface treatment by oxidation etching or coating.
  • oxidation etching treatment include air oxidation treatment, oxygen treatment, treatment with oxidizing gas, treatment with ozone, corona treatment, flame treatment, (atmospheric pressure) plasma treatment, oxidizing liquid (nitric acid, alkali metal hypochlorite) Treatment with an aqueous salt solution, potassium dichromate-sulfuric acid, potassium permanganate-sulfuric acid).
  • the substance that covers the carbon fiber include carbon, silicon carbide, silicon dioxide, silicon, plasma monomer, ferrocene, and iron trichloride.
  • the cellulose fiber (D′ 3) is preferably a fiber having high purity, and for example, a cellulose fiber having an ⁇ -cellulose content of 80% by weight or more is preferable.
  • the average fiber diameter of the cellulose fibers is preferably 0.1 to 1000 ⁇ m.
  • the fibers (D ′) at least one selected from glass fibers (D′ 1) and carbon fibers (D′ 2) is preferable. Therefore, it is preferable that the said long fiber (D) consists of at least 1 sort (s) chosen from glass fiber (D'1) and carbon fiber (D'2).
  • the long fibers (D) are impregnated with a resin mixture containing at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C). It is a thing.
  • polyolefin (B1) that can be used as the thermoplastic polymer (B) are the same as those of the polyolefin (A1) that can be contained in the first resin raw material.
  • polyamide (B2) which can be used as a thermoplastic polymer (B) are the same as that of the polyamide (A2) which can be contained in the 1st resin raw material.
  • the acid-modified polyolefin (C) is a polyolefin modified with an acid such as an unsaturated carboxylic acid or a derivative thereof.
  • Examples of the acid used for modification include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, and angelic acid. Also, derivatives of these unsaturated carboxylic acids can be used. Examples of the derivatives include acid anhydrides, esters, amides, imides, and metal salts. Specific examples include maleic anhydride, itaconic anhydride, methyl acrylate, methyl methacrylate, ethyl acrylate, acrylic acid. Examples include propyl, butyl acrylate, ethyl maleate, acrylamide, maleic amide, sodium acrylate, and sodium methacrylate.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid,
  • unsaturated dicarboxylic acids or derivatives thereof are preferable, and maleic acid and maleic anhydride are more preferable.
  • Unsaturated carboxylic acid or its derivative (s) may be used alone or in combination of two or more. There is no restriction
  • the acid content in the acid-modified polyolefin (C) is preferably 0.1 to 10% by mass, more preferably 0.8 to 8% by mass. Acid content, and IR spectrum of the resin, as determined from the calibration curve prepared separately based on the peak area of 1670cm -1 ⁇ 1810cm -1.
  • At least one resin selected from an acid-modified propylene polymer and an acid-modified ethylene polymer as the acid-modified polyolefin (C), and the maleic anhydride-modified propylene polymer (C1) and anhydride
  • the acid-modified polyolefin (C) and the maleic anhydride-modified propylene polymer (C1) and anhydride
  • the MFR at 230 ° C. and 2.16 kg load according to ASTM D1238 of the acid-modified polyolefin (C) is not particularly limited as long as an injection-molded article can be produced, but the acid-modified polyolefin (C) is a maleic anhydride-modified propylene-based polymer.
  • the combination (C1) it preferably exceeds 150 g / 10 minutes, more preferably 200 g / 10 minutes or more, further preferably 300 g / 10 minutes or more, particularly preferably 500 g / 10 minutes or more, most preferably 600 g. / 10 minutes or more, and the upper limit may be, for example, 20,000 g / 10 minutes.
  • the content of the long fiber (D) in the masterbatch is preferably 30 to 80% by weight, preferably 100 to 80% by weight, in the total 100% by weight of the thermoplastic polymer (B), the acid-modified polyolefin (C) and the long fiber (D).
  • the amount is preferably 40 to 75% by weight, more preferably 45 to 70% by weight, particularly preferably 50 to 65% by weight.
  • the productivity may decrease, and when the content of the long fiber (D) exceeds the upper limit, the amount of the fiber is excessively increased with respect to the fiber.
  • the resin may not be sufficiently impregnated and the effects of the present invention may be impaired.
  • the masterbatch or the second resin material may further contain an additive.
  • additives are the same as the additives that can be included in the first resin raw material.
  • the masterbatch impregnates fibers (D ′) with a resin mixture containing at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C). It is preferable that the resin-impregnated fiber is manufactured through a step of producing the resin-impregnated fiber and a step of cutting the resin-impregnated fiber.
  • a resin mixture containing at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C). It is preferable that the resin-impregnated fiber is manufactured through a step of producing the resin-impregnated fiber and a step of cutting the resin-impregnated fiber.
  • the step (I ′) of producing a resin mixture of at least one thermoplastic polymer (B) selected from polyolefin (B1) and polyamide (B2) and acid-modified polyolefin (C) with an extruder is obtained.
  • an injection molded body made of a highly filled fiber reinforced resin composition is produced by injection molding with an injection molding machine using the first resin raw material and the second resin raw material.
  • the first resin raw material containing the thermoplastic polymer (A) is first introduced into an injection molding machine from the upstream first inlet (step (I)).
  • throwing-in method For example, the 1st resin raw material should just be injected
  • a second resin raw material containing a master batch in which a long fiber (D) is impregnated with a resin mixture containing a thermoplastic polymer (B) and an acid-modified polyolefin (C) is present downstream from the first input port.
  • the second charging port is inserted (step (II)).
  • the resin raw material is charged separately in the first step and the second step, and further, the thermoplastic polymer (B) is impregnated from the second charging port located downstream from the first charging port.
  • the charging method is not particularly limited as long as it does not adversely affect the long fibers (D) contained in the master batch.
  • the second resin material is charged through a hopper, or a vent that is usually present downstream from the first charging port.
  • the mouth may be a second charging port, and a separate feed device may be provided at the vent port, and the second tree seed material may be charged through the feed device.
  • the diameter of the screw in the cylinder of the injection molding machine (hereinafter also referred to as “D”) is preferably 70 to 150 mm, more preferably 90 to 135 mm, and more preferably 100 to 110 mm.
  • the ratio (L / D) of the screw length (hereinafter also referred to as “L”) to the screw diameter (D) is preferably 10 to 40, more preferably 20 to 35.
  • the distance between the first inlet and the second inlet in the injection molding machine produces an injection molded body made of a fiber reinforced resin composition with improved mechanical properties such as mechanical strength while maintaining a good appearance. From the viewpoint, it is preferably 5D to 25D, more preferably 10D to 20D.
  • the distance from the second inlet to the nozzle for injecting the fiber reinforced resin composition is preferably 5D or more, more preferably 10D or more, from the viewpoint of sufficiently melting and kneading each component.
  • the first resin raw material is controlled to be intermittently or continuously input from the start of the second resin raw material to the end of the input.
  • the required amount of the first resin raw material is relatively reduced compared to the second resin raw material.
  • the entire amount of the first resin raw material is charged in a short time.
  • the fiber reinforced resin composition having a high fiber content can be made more uniform, and the fiber reinforced resin The mechanical properties of the composition, in particular the impact resistance, can be increased.
  • the first resin raw material When the first resin raw material is intermittently charged, the first resin raw material is repeatedly charged and the charging is interrupted. The greater the number of repetitions, the more uniform the fiber-reinforced resin composition obtained. Is increased.
  • the second resin raw material is continuously and intermittently supplied, but is usually supplied continuously.
  • the injection molding machine used in the production method of the present invention preferably controls the first resin raw material to be intermittently or continuously charged from the start of the second resin raw material to the end of charging. Means.
  • a material input hopper provided on the first input port;
  • Device (1) (1) Device provided at the lower part of the material charging hopper based on these charging speeds.
  • (1) and (2) by repeating or by adjusting the degree of opening of the raw material shutter, or (2) measuring and supplying the required amount of the first resin raw material. By performing both, until the turned ends from the start of feeding of the second resin material, it is possible to intermittently or continuously introducing a first resin material.
  • the first resin material and the second resin material that have been charged are melt-kneaded in an injection molding machine to produce a fiber-reinforced resin composition melt (step (III)).
  • Melt-kneading conditions such as temperature setting in the injection molding machine can be appropriately set according to the types of the first resin raw material and the second resin raw material used.
  • step (IV) By injecting the fiber-reinforced resin composition melt produced in step (III) into a mold, an injection-molded body made of a highly filled fiber-reinforced resin composition is obtained (step (IV)).
  • the injection conditions can be appropriately set according to the mold, the shape of the injection molded body, and the like.
  • the content of the long fiber (D) in the fiber reinforced resin composition is, for example, 20% by weight or more in a total of 100% by weight of the first resin raw material and the second resin raw material.
  • the content of the long fiber (D) in this range is excellent in impact resistance.
  • the content of the long fiber (D) in the fiber reinforced resin composition is preferably 30% by weight or more, more preferably 40% by weight or more, in a total of 100% by weight of the first resin raw material and the second resin raw material. It is.
  • the content of the long fiber (D) is not less than the lower limit, the molded article is further excellent in impact resistance.
  • the fiber reinforced resin composition with much content of a long fiber (D) can be manufactured easily.
  • the upper limit value of the long fiber (D) content is preferably 60% by weight because the appearance of the molded article is excellent.
  • the content of the acid-modified polyolefin (C) is preferably 0.5 to 10% by weight, more preferably 1 to 7% by weight, out of a total of 100% by weight of the first resin raw material and the second resin raw material.
  • content of acid-modified polyolefin (C) is less than the said lower limit, the interfacial adhesiveness of a fiber and a resin finger may fall, and intensity
  • content of the acid-modified polyolefin (C) exceeds the upper limit, mechanical properties such as strength may be deteriorated.
  • the molded product obtained by the production method of the present invention is lightweight and has excellent surface appearance and mechanical strength, it is suitable as a part or member of various articles such as automobiles, motorcycles, bicycles, strollers, wheelchairs, aircrafts, and sports equipment. Among them, it can be particularly preferably used as an automobile part or member.
  • Such automobile parts or members include a wide range of parts or members.
  • interior parts or members such as door trims, door modules, instrument panels, center panels, roof panels, back door panels, accelerators and brake pedals.
  • Vertical outer plates such as doors, fenders and back doors; horizontal outer plates such as bonnets and roofs; engine room members such as air intakes, front end modules and fan shrouds;
  • Glass fiber (D'1) The following glass roving manufactured by Central Glass Fiber Co., Ltd. was used.
  • MFR Conforms to ASTM D1238 (230 ° C, 2.16 kg) [Acid-modified polyolefin resin (C)]
  • the strand obtained by melt-kneading at 200 rpm was cooled in a water bath to obtain a maleic anhydride-modified polypropylene, and this maleic anhydride-modified polypropylene was removed at 40 ° C. at 2 ° C. to remove unmodified residual maleic anhydride.
  • the resulting maleic anhydride-modified polypropylene (m1-2) had a maleic acid content of 2.5% by mass and MFR. (230 ° C., 2.16 Kg) was 800 g / 10 min.
  • Example 1 [Preparation of Glass Fiber Reinforced MB (1)]
  • a propylene polymer (B1) 90 parts by weight of h-PP (1) and 10 parts by weight of an acid-modified polyolefin resin (C) were previously mixed uniformly, and a single screw extruder equipped with an impregnation die (screw diameter: 50 mm, L / D: 28) into a hopper, while continuously extruding the glass fiber (D′ 1) into the impregnation die while extruding the resin at a cylinder temperature of 180 ° C. and a screw speed of 50 rpm.
  • an impregnation die screw diameter: 50 mm, L / D: 28
  • fiber reinforced strands containing glass fiber and resin and having a glass fiber content of 50% by weight are discharged from a nozzle, cooled in a cold water tank, and then taken up by a take-up machine and a length of 9 mm with a pelletizer And a master batch (hereinafter referred to as “glass fiber reinforced MB (1)”) in which the resin mixture was impregnated between the long glass fibers was obtained.
  • Injection molding (manufacture of test pieces for physical property evaluation) and physical property evaluation] Injection molding is provided with a clamping force of 450 ton, a screw diameter of 72 mm, a length of 2060 mm from the center of the injection unit to the nozzle tip, and a vent port centered at a position of 1030 mm from the hopper center to the nozzle tip direction.
  • a quantitative feeder was installed so that the resin-based material could be quantitatively fed from the vent port, and an injection molding machine equipped with a piston-type shutter for preventing the backflow of the molten resin during injection was used.
  • the temperature setting from the material input hopper of the injection unit to the vent port was 190 ° C, and the temperature setting from the vent port to the cylinder tip was 240 ° C.
  • a center gate mold having a flat plate shape of 200 mm square and a thickness of 2.5 mm was used, and the mold temperature was set to 60 ° C.
  • the propylene-based polymer (A1) h-PP (2) is charged as a first raw material resin into a material charging hopper installed on the first charging port of the injection molding machine via a mass metering type raw material supply device.
  • plasticization back pressure is set to 2.5 MPa
  • injection time 1 second pressure holding time 3 seconds
  • Injection molding was performed at a pressure of 20 MPa and a cooling time of 60 seconds.
  • the ratios (input ratios) of the first raw material resin and the second raw material resin to the total amount of the raw material were 40% by weight and 60% by weight, respectively, so that the ratio of the glass fiber to the total amount of the raw material was 30% by weight.
  • a test piece is produced by cutting out from the same position of the obtained molded product (that is, the same position among a plurality of obtained molded products), and a tensile test is performed according to ISO 527-1. Bending test is conducted according to ISO178, Izod impact test (notched, 23 ° C.) is conducted according to ISO180, tensile strength: 71.0 MPa, tensile elastic modulus: 3.5 GPa, bending strength: The results of 114.7 MPa, flexural modulus: 4.7 GPa, and Izod impact strength: 18.1 kJ / m 2 were obtained.
  • the obtained molded product was irradiated with light from the bottom using a light box, and the appearance was observed in a field of view of 100 mm ⁇ 100 mm, that is, the number of unopened fibers was visually measured and photographed.
  • Example 2 The ratio (input ratio) of the first raw resin and the second raw resin to the total amount of raw materials was changed to 20 wt% and 80 wt%, respectively, so that the ratio of glass fibers to the total amount of raw materials was 40 wt%. Except for the above, injection molding was carried out in the same manner as in Example 1, and the physical properties were measured and the appearance was evaluated. The results are shown in Table 1.
  • Example 1 Example 1 except that the second raw material resin was charged together with the first raw material resin into the material charging hopper installed on the first charging port of the injection molding machine, and the input amount of the first raw material resin was not adjusted. In the same manner, injection molding was performed, and physical properties were measured and appearance was evaluated. The results are shown in Table 1. Moreover, the photograph of the obtained molded object is shown in FIG.
  • Example 2 except that the second raw material resin was charged together with the first raw material resin into the material charging hopper installed on the first charging port of the injection molding machine, and the input amount of the first raw material resin was not adjusted. In the same manner, injection molding was performed, and physical properties were measured and appearance was evaluated. The results are shown in Table 1.
  • Comparative Example 4 Perform injection molding in the same manner as in Comparative Example 3 except that the ratio of the first raw resin and the chopped glass fiber to the total amount of the raw material was changed so that the ratio of the glass fiber to the total amount of the raw material was 40% by weight. The physical properties were measured and the appearance was evaluated. The results are shown in Table 1. The appearance was poor as in Comparative Example 3.
  • Example 3 The ratio (input ratio) of the first raw resin and the second raw resin to the total amount of raw materials was changed to 60 wt% and 40 wt%, respectively, so that the ratio of glass fibers to the total amount of raw materials was 20 wt%. Except for the above, injection molding was carried out in the same manner as in Example 1, and the physical properties were measured and the appearance was evaluated. The results are shown in Table 1.
  • the first resin raw material and the second resin raw material are charged from the first charging port and the second charging port, respectively, and from the start of charging the second resin material to the end of charging, 1.
  • a fiber reinforced resin composition having a resin content intermittently charged, a fiber content of 20 to 40%, particularly excellent in impact resistance (Izod impact strength), and excellent in tensile strength and bending strength. manufactured. Among these, it can be seen that the higher the fiber content, the better the physical properties.
  • the fiber reinforced resin compositions obtained in Comparative Examples 1 and 2 in which both the first resin raw material and the second resin raw material were supplied from the first charging port had a fiber content of 30 to 40%, but had high impact resistance. It was inferior. This is considered to be because the remaining fiber length of the molded product is shortened.
  • Comparative Examples 3 to 5 using chopped glass fiber without using glass fiber reinforced MB (1) all had poor appearance.
  • the comparative example 5 which supplied the chopped glass fiber from the 2nd inlet has improved physical property compared with the comparative example 3 which supplied the chopped glass fiber from the 1st inlet, the external appearance is inferior.
  • Example 1 not only has an excellent appearance, but also has better physical properties than Comparative Example 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[課題]繊維含有率が高く、機械特性、特に耐衝撃性に優れた繊維強化樹脂組成物からなる射出成形体を製造する方法を提供すること。 [解決手段]熱可塑性重合体(A)を含む第1樹脂原料を第1投入口より射出成形機に投入する工程、長繊維(D)が熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物により含浸されたマスターバッチを含む第2樹脂原料を、第1投入口より下流に設けられた第2投入口より射出成形機に投入する工程、第1樹脂原料および第2樹脂原料を射出成形機内で溶融混練し繊維強化樹脂組成物溶融体を作製する工程、および繊維強化樹脂組成物溶融体を金型に射出成形する工程を含み、第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料が断続的または連続的に投入される、高充填繊維強化樹脂組成物からなる射出成形体の製造方法。

Description

高充填繊維強化樹脂組成物からなる射出成形体の製造方法
 本発明は、繊維強化樹脂組成物からなる射出成形体の製造方法に関する。
 ガラス繊維、炭素繊維等の繊維と、熱可塑性重合体を含む繊維強化樹脂組成物からなる射出成形品は、その優れた機械特性から種々の用途、例えば自動車部品、航空機部品などで用いられている。得られる射出成形品の強度等の機械特性を向上させるには、樹脂組成物中の繊維の含有量を高めること、また樹脂組成物中に含まれる繊維の長さを長くすることが一般的には有効と考えられる。しかしながら、樹脂組成物中の繊維含有量が高過ぎる場合は、樹脂組成物中の繊維の分散性が悪化し、そのことに由来して機械特性が損なわれる場合がある。また樹脂組成物中の繊維含有量が高すぎる場合は、樹脂組成物の溶融体の流動性の悪化、粘度の上昇などにより、射出成形に悪影響が与えられる場合がある。一方、繊維含有量を低くし過ぎた場合には、繊維含有による機械特性改善の効果が十分に得られない場合がある。
 これらのことなどから、繊維強化樹脂組成物については、種々の改良が検討されてきている。例えば、炭素繊維を多量に用いなくとも強度等の特性に優れた繊維強化樹脂組成物が検討されている(例えば、特許文献1)。
 また一方で、射出成形における成形用原料として繊維強化樹脂ペレットを用いることが通常であるが、成形機内で繊維が破断することにより得られた成形体の物性はそれほど優れていないという問題があった。そこで繊維の破断の抑制を目的として、射出成型機のベント口など、樹脂原料投入口よりも下流側から、連続繊維またはチョップド繊維を繊維強化樹脂ペレットの形態でではなくそのまま投入する方法が知られている(例えば、特許文献2~4)。
国際公開第2016/076411号 特開平3-76614号公報 特開2014-166712号公報 国際公開第2014/155409号
 しかしながら、従来の繊維強化樹脂組成物からなる射出成形体においては、得られる射出成形体の外観を良好な状態に保ちつつ、力学強度等の機械特性を向上させることは困難である場合があった。
 本発明者らは、まず、「ポリオレフィン(A1)およびポリアミド(A2)から選ばれる少なくとも1種の熱可塑性重合体(A)を含む第1樹脂原料が第1投入口より射出成形機に投入される工程(I)、長繊維(D)が、ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物により含浸されたマスターバッチを含む第2樹脂原料が、第1投入口より下流に設けられた第2投入口より射出成形機に投入される工程(II)、第1樹脂原料および第2樹脂原料が射出成形機内で溶融混練され繊維強化樹脂組成物溶融体が作製される工程(III)、および繊維強化樹脂組成物溶融体を金型に射出成形する工程(IV)を含む繊維強化樹脂組成物からなる射出成形体を製造する方法(L)」によって、外観を良好な状態に保ちつつ、力学強度等の機械特性を向上させた繊維強化樹脂組成物からなる射出成形体を製造できることを見い出した。
 しかしながら、この方法(L)には、繊維強化樹脂組成物中の長繊維(D)の含有率を容易に高めるという観点から、および繊維強化樹脂組成物の耐衝撃性を高めるという観点から、さらなる改善の余地があった。
 したがって本発明は、繊維含有率が高く、機械特性、特に耐衝撃性に優れた繊維強化樹脂組成物からなる射出成形体、好ましくは繊維含有率が高く、機械特性、特に耐衝撃性に優れ、さらに外観にも優れた繊維強化樹脂組成物からなる射出成形体を製造する方法を提供することを目的としている。
 本発明者らは、鋭意研究した結果、前記方法(L)においては、繊維強化樹脂組成物中の繊維の含有率を高めようとすると、第2樹脂原料と比べて、第1樹脂原料の必要量が相対的に減少するため、第1樹脂原料の方がより短い時間で全量が投入されてしまいがちであること、および第1樹脂原料を、一度に全量投入するのではなく、第2樹脂原料の投入開始から投入終了までの間、断続的または連続的に投入することにより、繊維強化樹脂組成物中の長繊維(D)の含有率を高め、かつ繊維強化樹脂組成物の耐衝撃性を高められることを見い出し、本発明を完成させた。
 本発明の要旨は以下のとおりである。
 [1]
 ポリオレフィン(A1)およびポリアミド(A2)から選ばれる少なくとも1種の熱可塑性重合体(A)を含む第1樹脂原料を第1投入口より射出成形機に投入する工程(I)、
 長繊維(D)が、ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物により含浸されたマスターバッチを含む第2樹脂原料を、第1投入口より下流に設けられた第2投入口より射出成形機に投入する工程(II)、
 第1樹脂原料および第2樹脂原料を射出成形機内で溶融混練し繊維強化樹脂組成物溶融体を作製する工程(III)、および
 繊維強化樹脂組成物溶融体を金型に射出成形する工程(IV)を含み、
 第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料が断続的または連続的に投入される
高充填繊維強化樹脂組成物からなる射出成形体の製造方法。
 [2]
 前記長繊維(D)が、ガラス繊維(D'1)および炭素繊維(D'2)から選ばれる少なくとも1種からなる前記[1]の製造方法。
 [3]
 前記高充填繊維強化樹脂組成物の前記長繊維(D)の含有率が30重量%以上である前記[1]または[2]の射出成形体の製造方法。
 [4]
 第2樹脂原料に含まれるマスターバッチが、
 ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物を、繊維(D')に含浸して樹脂含浸繊維を作製する工程、および
 樹脂含浸繊維を切断する工程
を経て製造されたものである、前記[1]~[3]のいずれかの射出成形体の製造方法。
 [5]
 前記射出成形機が、第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料の投入が断続的または連続的に行われるように制御する手段を備える前記[1]~[4]のいずれかの射出成形体の製造方法。
 [6]
 前記手段が、
 第1投入口上に設けられた材料投入ホッパーと、
 第1投入口における第1樹脂原料の投入速度を監視する装置と、
 第2投入口における第2樹脂原料の投入速度を監視する装置と、
 装置(1)および/または装置(2)と
を備えるユニットであり、
 前記装置(1)は、前記投入速度に基づいて材料投入ホッパーの下部に設けられた原料用シャッターを開閉、または原料用シャッターの開放の程度を調節する装置であり、
 前記装置(2)は、第1投入口と材料投入ホッパーとの間に設置された、質量計量式の原料供給装置である
前記[5]の射出成形体の製造方法。
 本発明によれば、繊維含有率が高く、機械特性、特に耐衝撃性に優れた繊維強化樹脂組成物からなる射出成形体、好ましくは繊維含有率が高く、機械特性、特に耐衝撃性に優れ、さらに外観にも優れた繊維強化樹脂組成物からなる射出成形体を製造することができる。
図1は、実施例1で製造された射出成型体の表面の写真である。 図2は、比較例1で製造された射出成型体の表面の写真である。 図3は、比較例3で製造された射出成型体の表面の写真である。
 本発明の射出成形体を製造する方法に用いられる第1樹脂原料には、ポリオレフィン(A1)およびポリアミド(A2)から選ばれる少なくとも1種の熱可塑性重合体(A)が含まれる。
 前記ポリオレフィン(A1)としては、プロピレン単独重合体、プロピレン・エチレンブロック共重合体、プロピレン・エチレンランダム共重合体、プロピレン・α-オレフィン(炭素数4以上のα-オレフィン)共重合体などのプロピレン系重合体;
4-メチル-1-ペンテン単独重合体、4-メチル-1-ペンテン・エチレン共重合体、4-メチル-1-ペンテン・α-オレフィン(ただし4-メチル-1-ペンテンを除く)共重合体などの4-メチル-1-ペンテン系重合体などが挙げられる。これらポリオレフィン(A1)の中でも、プロピレン系重合体が好ましい一態様である。
 これらポリオレフィン(A1)は1種単独で用いてもよいし、2種以上混合して用いてもよい。
 前記ポリオレフィン(A1)のASTM D1238に準拠して測定した230℃、2.16kg荷重におけるMFRは、射出成形体を作製できる限り特に制限はないが、例えば、前記ポリオレフィン(A1)がプロピレン系重合体である場合には、好ましくは1~500g/10分、より好ましくは5~400g/10分、さらに好ましくは10~300g/10分である。
 前記ポリアミド(A2)として、例えば、アミノ酸ラクタム、あるいはジアミンとジカルボン酸との溶融重縮合反応により得られる溶融成形可能な重合体を使用できる。具体的には、以下のポリアミドが挙げられる。
 (1)炭素原子数4~12の有機ジカルボン酸と炭素原子数2~13の有機ジアミンとの重縮合物、例えば、ヘキサメチレンジアミンとアジピン酸との重縮合物であるポリヘキサメチレンアジパミド[6,6ナイロン]、ヘキサメチレンジアミンとアゼライン酸との重縮合物であるポリヘキサメチレンアゼラミド[6,9ナイロン]、ヘキサメチレンジアミンとセバシン酸との重縮合物であるポリヘキサメチレンセバカミド[6,10ナイロン]、ヘキサメチレンジアミンとドデカンジオン酸との重縮合物であるポリヘキサメチレンドデカノアミド[6,12ナイロン]、芳香族ジカルボン酸と脂肪族ジアミンとの重縮合物である半芳香族ポリアミド(PA6T、PA9T、PA10T、PA11T)、ビス-p-アミノシクロヘキシルメタンとドデカンジオン酸との重縮合物であるポリビス(4-アミノシクロヘキシル)メタンドデカン。有機ジカルボン酸の具体例としては、アジピン酸、ピメリン酸、スベリン酸、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、フェニレンジオキシジ酢酸、オキシジ安息香酸、ジフェニルメタンジカルボン酸、ジフェニルスルホンジカルボン酸、ビフェニルジカルボン酸、セバシン酸、ドデカン二酸が挙げられる。有機ジアミンの具体例としては、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナンジアミン、オクタンジアミン、デカンジアミン、ウンデカジアミン、ウンデカンジアミン、ドデカンジアミンが挙げられる。
 (2)ω-アミノ酸の重縮合物、例えばω-アミノウンデカン酸の重縮合物であるポリウンデカンアミド[11ナイロン]。
 (3)ラクタムの開環重合物、例えばε-アミノカプロラクタムの開環重合物であるポリカプラミド[6ナイロン]、ε-アミノラウロラクタムの開環重合物ポリラウリックラクタム[12ナイロン]。
 (4)アジピン酸とイソフタル酸とヘキサメチレンジアミンとから製造されるポリアミド。
 これらポリアミド(A2)は1種単独で用いてもよいし、また2種以上混合して用いてもよい。
 ポリアミド(A2)のASTM D1238に準拠した、ポリアミド(A2)の融点+10℃の温度における、1kg荷重のメルトフローレート(MFR)は、射出成形体を作製できる限り特に制限はないが、好ましくは5g/10分以上、より好ましくは10g/10分以上、特に好ましくは12g/10分以上である。
 前記第1樹脂原料に含まれる熱可塑性重合体(A)は、ポリオレフィン(A1)とポリアミド(A2)の混合物であってもよい。また、前記第1樹脂原料には、さらに添加剤が含まれていてもよい。第1樹脂原料に含まれ得る添加剤としては、例えば、分散剤、滑剤、可塑剤、難燃剤、酸化防止剤(フェノール系酸化防止剤、リン酸化防止剤、イオウ系酸化防止剤等)、帯電防止剤、光安定剤、紫外線吸収剤、結晶化促進剤(増核剤等)、発泡剤、架橋剤、抗菌剤等の改質用添加剤;顔料、染料等の着色剤;カーボンブラック、酸化チタン、ベンガラ、アゾ顔料、アントラキノン顔料、フタロシアニン、粒子状充填剤(タルク、炭酸カルシウム、マイカ、クレー等);ワラストナイト等の他の短繊維状充填剤;チタン酸カリウム等のウィスカーなどが挙げられる。
 本発明の射出成形体を製造する方法に用いられる第2樹脂原料には、マスターバッチが含まれる。このマスターバッチは、長繊維(D)が、ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物により含浸されたものである。
 長繊維(D)は、繊維(D')を切断して得られた平均繊維長が長い繊維片であり、その平均繊維長は通常1~20mmであり、平均繊維径は通常3~30μmである。
 前記長繊維(D)となる繊維(D')としては、ガラス繊維(D'1)、炭素繊維(D'2)、セルロース繊維(D'3)などが挙げられる。
 ガラス繊維(D'1)は、例えば、ガラスを溶融紡糸することにより製造されるフィラメント状の繊維であり、ガラスとしては、例えば、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)および耐アルカリガラスなどが挙げられる。ガラス繊維(D'1)の平均繊維径は、好ましくは3~30μm、より好ましくは12~20μm、さらに好ましくは13~18μmである。
 前記ガラス繊維(D'1)としては、連続状ガラス繊維束を用いてもよい。連続状ガラス繊維束としては、市販されているガラスロービングを用いてもよい。連続状ガラス繊維束(ガラスロービング)のフィラメント集束本数は、好ましくは400~10,000本、より好ましくは1,000~6,000本、さらに好ましくは2,000~5,000本である。
 炭素繊維(D'2)は、ポリアクリルニトリル、レーヨン、ピッチ、ポリビニルアルコール、再生セルロース、メゾフェーズピッチなどの原料を繊維化、焼成(炭化)して得られる繊維であり、その平均繊維径は、好ましくは3~30μm、より好ましくは4~10μmである。
 炭素繊維(D'2)としては、連続状炭素繊維束を用いてもよい。連続状炭素繊維束としては、市販されているトウを用いてもよい。連続状炭素繊維束(トウ)のフィラメント集束本数は、好ましくは500~80,000本、より好ましくは10,000~60,000本である。かかる炭素繊維束は、通常エポキシ系エマルジョンなどの集束剤(サイズ剤)により束ねられたものである。
 炭素繊維(D'2)の表面は、酸化エッチングや被覆等で表面処理を行っていてもよい。酸化エッチング処理としては、例えば、空気酸化処理、酸素処理、酸化性ガスによる処理、オゾンによる処理、コロナ処理、火炎処理、(大気圧)プラズマ処理、酸化性液体(硝酸、次亜塩素酸アルカリ金属塩の水溶液、重クロム酸カリウム-硫酸、過マンガン酸カリウム-硫酸)による処理が挙げられる。炭素繊維を被覆する物質としては、例えば、炭素、炭化珪素、二酸化珪素、珪素、プラズマモノマー、フェロセン、三塩化鉄等が挙げられる。
 前記セルロース繊維(D'3)としては、純度が高い繊維であることが好ましく、例えば、α-セルロース含有量が80重量%以上のセルロース繊維が好ましい。セルロース繊維の平均繊維径は好ましくは0.1~1000μmである。
 前記繊維(D')の中でも、ガラス繊維(D'1)および炭素繊維(D'2)から選ばれ
る少なくとも1種であることが好ましい。したがって、前記長繊維(D)は、ガラス繊維(D'1)および炭素繊維(D'2)から選ばれる少なくとも1種からなることが好ましい。
 前記マスターバッチは、長繊維(D)が、ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物により含浸されたものである。
 熱可塑性重合体(B)として用いられ得るポリオレフィン(B1)の具体例および好適態様は、第1樹脂原料に含まれ得るポリオレフィン(A1)と同様である。また、熱可塑性重合体(B)として用いられ得るポリアミド(B2)の具体例および好適態様は、第1樹脂原料に含まれ得るポリアミド(A2)と同様である。
 酸変性ポリオレフィン(C)は、不飽和カルボン酸またはその誘導体等の酸で変性されたポリオレフィンである。
 変性に用いる酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸等の不飽和カルボン酸が挙げられる。また、これら不飽和カルボン酸の誘導体も使用できる。その誘導体としては、例えば、酸無水物、エステル、アミド、イミド、金属塩が挙げられ、具体例としては、無水マレイン酸、無水イタコン酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、マレイン酸エチル、アクリルアミド、マレイン酸アミド、アクリル酸ナトリウム、メタクリル酸ナトリウムが挙げられる。
 中でも、不飽和ジカルボン酸またはその誘導体が好ましく、マレイン酸、無水マレイン酸がより好ましい。不飽和カルボン酸またはその誘導体は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。変性の方法も特に制限は無く、公知の方法を用いればよい。例えば、ポリオレフィンを溶媒に溶解し、不飽和カルボン酸またはその誘導体およびラジカル発生剤を添加して加熱、撹拌する方法、前記各成分を押出機に供給してグラフト共重合させる方法がある。
 酸変性ポリオレフィン(C)中の酸含量は、好ましくは0.1~10質量%、より好ましくは0.8~8質量%である。酸含量は、樹脂のIRスペクトルを測定し、1670cm-1~1810cm-1のピーク面積に基づき別途作成した検量線から決定される。
 特に、酸変性ポリオレフィン(C)として、酸変性プロピレン系重合体および酸変性エチレン系重合体から選ばれる1種以上の樹脂を用いることが好ましく、無水マレイン酸変性プロピレン系重合体(C1)および無水マレイン酸変性エチレン系重合体(C2)から選ばれる1種以上の重合体を用いることがより好ましく、無水マレイン酸変性プロピレン系重合体(C1)を用いることがさらに好ましい。
 酸変性ポリオレフィン(C)のASTM D1238に準拠した230℃、2.16kg荷重におけるMFRは、射出成形体を作製できる限り特に制限はないが、酸変性ポリオレフィン(C)が無水マレイン酸変性プロピレン系重合体(C1)である場合には、好ましくは150g/10分を超え、より好ましくは200g/10分以上、さらに好ましくは300g/10分以上、特に好ましくは500g/10分以上、最も好ましくは600g/10分以上であり、その上限はたとえば20,000g/10分であってもよい。
 マスターバッチ中の長繊維(D)の含有量は、熱可塑性重合体(B)、酸変性ポリオレフィン(C)および長繊維(D)の合計100重量%中、好ましくは30~80重量%、より好ましくは40~75重量%、さらに好ましくは45~70重量%、特に好ましくは50~65重量%である。長繊維(D)の含有量が前記下限値未満であると生産性が低下する場合があり、長繊維(D)の含有量が前記上限値を超えると、繊維量が多くなりすぎ、繊維に対する樹脂の含浸が十分に行われず本発明の効果が損なわれる場合がある。
 前記マスターバッチまたは第2樹脂原料には、さらに添加剤が含まれていてもよい。かかる添加剤の具体例は、第1樹脂原料に含まれ得る添加剤と同様である。
 前記マスターバッチは、ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物を、繊維(D')に含浸して樹脂含浸繊維を作製する工程、および樹脂含浸繊維を切断する工程を経て製造されていることが好ましい。
 例えば、ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)との樹脂混合物を押出機で作製する工程(I')、得られた樹脂混合物を他の押出機に投入して樹脂混合物の溶融物とし、この溶融物を含浸ダイへ挿入された繊維(D')に含浸して樹脂含浸繊維を作製する工程(II')、および樹脂含浸繊維をペレタイザーなどにより所望の大きさに切断する工程(III')を含む工程により、熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物が長繊維(D)に含浸されたマスターバッチは作製される。
 本発明では、前記第1樹脂原料、および第2樹脂原料を用いて、射出成形機で射出成形をすることにより、高充填繊維強化樹脂組成物からなる射出成形体を作製する。
 本発明の製造方法では、まず上流の第1投入口より、熱可塑性重合体(A)を含む前記第1樹脂原料が射出成形機に投入される(工程(I))。投入方法については、特に制限はなく、例えば、射出成形機に設けられたホッパーから第1樹脂原料を投入すればよい。
 続いて熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物が長繊維(D)に含浸されたマスターバッチを含む第2樹脂原料を、前記第1投入口より下流に存在する第2投入口より投入する(工程(II))。このように、第1工程、および第2工程に分けて樹脂原料を投入すること、さらに第1投入口より下流に存在する第2投入口より、熱可塑性重合体(B)が含浸された長繊維(D)のマスターバッチを投入することにより、外観を良好な状態に保ちつつ、力学強度等の機械特性を向上させた繊維強化樹脂組成物からなる射出成形体を製造することが可能になる。投入方法については、マスターバッチに含まれる長繊維(D)に悪影響を与えない限り特に制限はなく、例えばホッパーを通じて第2樹脂原料を投入したり、あるいは第1投入口より下流に通常存在するベント口を第2投入口とし、このベント口に別途フィード装置を設け、このフィード装置を通じて第2樹種原料を投入してもよい。
 射出成形機のシリンダー内のスクリューの径(以下「D」とも記載する。)は、好ましくは70~150mmであり、より好ましくは90~135mm、より好ましくは100~110mmである。スクリューの径(D)に対するスクリューの長さ(以下「L」とも記載する。)の比(L/D)は、好ましくは10~40、より好ましくは20~35である。
 射出成形機における第1投入口と第2投入口との距離は、外観を良好な状態に保ちつつ、力学強度等の機械特性を向上させた繊維強化樹脂組成物からなる射出成形体を製造する観点から、好ましくは5D~25D、より好ましくは10D~20Dである。
 また、第2投入口から繊維強化樹脂組成物を射出するノズルまでの距離は、各成分を十分に溶融混練する観点から、好ましくは5D以上、より好ましくは10D以上である。
 本発明の製造方法においては、第1樹脂原料の投入を、第2樹脂原料の投入開始から投入終了までの間、断続的または連続的に行われるように制御する。
 繊維強化樹脂組成物中の繊維の含有率を高めようとすると、第2樹脂原料と比べて、第1樹脂原料の必要量が相対的に減少するため、このような制御を行わないと、第2樹脂原料の投入が終了する前に、短時間で第1樹脂原料の全量が投入されてしまう。
 一方、本発明では、投入される第1樹脂原料の総量は変えずにこのような制御が行われるため、繊維含有率の高い繊維強化樹脂組成物をより均一にすることができ、繊維強化樹脂組成物の機械特性、とりわけ耐衝撃性を高めることができる。
 第1樹脂原料の投入を断続的に行う場合には、第1樹脂原料の投入と、投入の中断とが繰り返されるが、この繰り返しの回数が多いほど、得られる繊維強化樹脂組成物の均一性が高められる。
 なお、第2樹脂原料の投入終了時点の直前に第1樹脂原料の投入をやめても、射出成形機内の第1投入口と第2投入口との間に第1樹脂原料が残存していれば、この残存する第1樹脂原料を第2樹脂原料と溶融混練することができる。したがって、本発明において「第2樹脂原料の投入終了まで」は、「第2樹脂原料の投入終了時点まで」の意味のみならず、この残存する第1樹脂原料を第2樹脂原料と溶融混練することができる限りにおいて「第2樹脂原料の投入終了時点の直前まで」の意味をも含むものとする。
 本発明の製造方法において、第2樹脂原料は、連続的、断続的に行われるが、通常は連続的に供給される。
 本発明の製造方法に使用される射出成形機は、好ましくは、第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料の投入が断続的または連続的に行われるように制御する手段を備えている。
 このような手段しては、たとえば、
 第1投入口上に設けられた材料投入ホッパーと、
 第1投入口における第1樹脂原料の投入速度を監視する装置と、
 第2投入口における第2樹脂原料の投入速度を監視する装置と、
 以下の装置(1)および/または装置(2)(好ましくは装置(1)および装置(2))とを備えるユニットが挙げられる。
 装置(1):これらの投入速度に基づいて前記材料投入ホッパーの下部に設けられた(1)原料用シャッターを開閉ないし原料用シャッターの開放の程度を調節する装置
 装置(2):第1投入口と材料投入ホッパーとの間に設置された、質量計量式の原料供給装置
 このユニットを使用し、第1投入口における第1樹脂原料の投入速度と、第2投入口における第2樹脂原料の投入速度とを監視しながら、これらの投入速度に基づいて、第1樹脂原料の投入が第2樹脂原料の投入終了時まで続くように、(1)材料投入ホッパー下部の原料用シャッターの開閉を繰り返すことにより、または原料用シャッターの開放の程度を調節することにより、あるいは(2)第1樹脂原料の必要量を計量し供給することにより、好ましくは(1)および(2)の両方を行うことにより、第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料を断続的または連続的に投入することができる。
 投入された第1樹脂原料および第2樹脂原料は射出成形機内で溶融混練され、繊維強化樹脂組成物溶融体が作製される(工程(III))。射出成形機内の温度設定などの溶融混練条件は、使用する第1樹脂原料および第2樹脂原料の種類等に応じて適宜設定できる。
 工程(III)で作製された繊維強化樹脂組成物溶融体を金型に射出することにより、高充填繊維強化樹脂組成物からなる射出成形体が得られる(工程(IV))。射出条件は、金型、射出成形体の形状等に応じて適宜設定できる。
 前記繊維強化樹脂組成物中の長繊維(D)の含有量は、第1樹脂原料および第2樹脂原料の合計100重量%中、例えば20重量%以上である。長繊維(D)の含有量がこの範囲にあると、成形体は耐衝撃性に優れる。さらに、前記繊維強化樹脂組成物中の長繊維(D)の含有量は、第1樹脂原料および第2樹脂原料の合計100重量%中、好ましくは30重量%以上、より好ましくは40重量%以上である。長繊維(D)の含有量が前記下限値以上であると、成形体はさらに耐衝撃性に優れる。また、本発明によれば、このように長繊維(D)の含有量が多い繊維強化樹脂組成物を容易に製造することができる。一方、長繊維(D)の含有量の上限値は、成形体の外観が優れることから好ましくは60重量%である。
 酸変性ポリオレフィン(C)の含有量は、第1樹脂原料および第2樹脂原料の合計100重量%中、好ましくは0.5~10重量%、より好ましくは1~7重量%である。酸変性ポリオレフィン(C)の含有量が前記下限値未満の場合、繊維と樹指との界面接着性が低下し、強度が低下する場合がある。一方、酸変性ポリオレフィン(C)の含有量が前記上限値を超えた場合、強度等の機械特性が低下する場合がある。
 本発明の製造方法により得られる成形体は、軽量で優れた表面外観と力学強度を有するため、自動車、オートバイ、自転車、ベビーカー、車いす、航空機、スポーツ用品などの種々の物品の部品または部材として好適に用いることができ、中でも自動車用部品または部材として特に好適に用いることができる。
 かかる自動車用部品または部材としては、幅広い部品または部材があるが、例えば、ドアトリム、ドアモジュール、インストゥルメントパネル、センターパネル、ルーフパネル、バックドアパネル、アクセルやブレーキのペダルなどの内装用部品または部材;ドア、フェンダー、バックドアなどの垂直外板;ボンネット、ルーフなどの水平外板;エアインテーク、フロントエンドモジュール、ファンシュラウドなどのエンジンルーム部材;などが挙げられる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 まず、以下に実施例および比較例で用いた原材料を示す。
 [ガラス繊維(D'1)]
セントラルグラスファイバー社製の下記ガラスロービングを用いた。
・ERS1150-820;繊維系=16μm、目付け=1150g/1000m
 [プロピレン系重合体(A1)および(B1)]
 プライムポリマー社製の下記物性を有する2種類のプロピレン単独重合体(h-PP(1)~h-PP(2))
・「h-PP(1)」:MFR=220g/10分、重量平均分子量4.60×104
・「h-PP(2)」:MFR= 30g/10分、重量平均分子量3.00×105
    MFR:ASTM D1238に準拠(230℃、2.16kg)
 [酸変性ポリオレフィン樹脂(C)]
 下記方法で調製した無水マレイン酸変性ポリプロピレン(C1)
・ポリプロピレン(プライムポリマー社製、プロピレン単独重合体(MFR(230℃、2.16kg)=15g/10分)100質量部に対して、ジアルキルパーオキサイド(日油社製、パーヘキサ(登録商標)25B)1質量部、粉末化した無水マレイン酸(日油社製、CRYSTAL MAN(登録商標))3質量部を予備混合した。この混合物を190℃に温度調節した30mmφの二軸押出機に供給して、200rpmにて溶融混練して得たストランドを水槽で冷却して無水マレイン酸変性ポリプロピレン得た。未変性の残留無水マレイン酸を除去するために、この無水マレイン酸変性ポリプロピレンを40℃で2時間真空乾燥した。得られた無水マレイン酸変性ポリプロピレン(m1-2)のマレイン酸含量は2.5質量%、MFR(230℃、2.16Kg)は800g/10分であった。
 [実施例1]
 [ガラス繊維強化MB(1)の調製]
 プロピレン系重合体(B1)として h-PP(1)90重量部と酸変性ポリオレフィン樹脂(C)10重量部とを事前に均一に混合し、含浸ダイを装備した単軸押出機(スクリュー径:50mm、L/D:28)のホッパーに投入し、シリンダー温度180℃、スクリュー回転数50rpmで樹脂を押出しながら、ガラス繊維(D'1)を含浸ダイへ連続的に挿入し、ダイ先端のノズル径を調整し、ガラス繊維と樹脂とを含みガラス繊維含有量が50重量%となる繊維強化ストランドをノズルから吐出させ、冷水槽で冷却したのち、引取り機で引取りながらペレタイザーで長さ9mmに切断し、樹脂混合物がガラス長繊維間へ含浸したマスターバッチ(以下「ガラス繊維強化MB(1)」と記載する。)を得た。
 [射出成形(物性評価用試験片の作製)および物性評価]
 射出成形は、型締め力450ton、スクリュー径72mm、射出ユニットの材料投入ホッパーの中心からノズル先端までの長さ2060mm、ホッパー中心からノズル先端方向の1030mmの位置を中心とするベント口が設けられており、当該ベント口から樹脂系材料を定量フィードできるよう定量式フィーダーが設置され、射出時に溶融樹脂の逆流を防ぐためのピストン式シャッターが設置された射出成形機を用いて行った。
 射出ユニットの材料投入ホッパーからベント口までの温度設定を190℃とし、ベント口からシリンダー先端までの温度設定を240℃とした。また、200mm四方、厚さ2.5mmの平板形状である、センターゲートの金型を用い、金型温度は60℃に設定した。
 射出成形機の第1投入口上に質量計量式の原料供給装置を介して設置した材料投入ホッパーに、第1原料樹脂として、プロピレン系重合体(A1)であるh-PP(2)を投入し、ベント口(第2投入口)から第2原料樹脂として、ガラス繊維強化MB(1)を投入し、可塑化背圧が2.5MPaに設定し、射出時間1秒、保圧時間3秒、圧力20MPa、冷却時間60秒にて射出成形を行った。原料の全量に対するガラス繊維の割合が30重量%となるように、原料の全量に対する第1原料樹脂および第2原料樹脂の割合(投入比率)を、それぞれ40重量%および60重量%とした。
 原料投入の際、第1投入口における第1樹脂原料の投入速度と、第2投入口における第2樹脂原料の投入速度とを監視しながら、これらの投入速度に基づいて、第1樹脂原料の投入が第2樹脂原料の投入終了時まで続くように、材料投入ホッパー下部の原料用シャッターの開閉を繰り返し、かつ質量計量式の原料供給装置を使用して、第1投入口への第1樹脂原料の投入量を調節した。
 得られた成形品の同一位置(すなわち、得られた複数個の成形品の間で同一の位置)より試験片を削り出しにて作製し、ISO527-1に準拠して引張試験を実施し、ISO178に準拠して曲げ試験を実施し、ISO180に準拠してアイゾッド衝撃試験(ノッチ有り、23℃)を実施し、引張強さ:71.0MPa、引張弾性率:3.5GPa、曲げ強さ:114.7MPa、曲げ弾性率:4.7GPa、アイゾッド衝撃強さ:18.1kJ/m2の結果を得た。
 [射出成形(外観評価用試験片の作製)および外観評価]
 200mm四方、厚さ1.5mmの平板形状であり、30mmピッチでグリッド状の刻みが設けられてある、センターゲートの金型を用い、金型温度を200℃に設定したこと以外は物性試験評価用試験片の作製と同様にして、外観評価用試験片を成形した。
 得られた成形品について、ライトボックスを用いて底面より光を当てて、100mm×100mmの視野において外観を観察、すなわち、未開繊の数を目視で計測するとともに写真撮影した。
 ガラス繊維の未開繊は認められず、すなわち良好な外観であった。評価結果を表1および図1に示す。
 [実施例2]
 原料の全量に対するガラス繊維の割合が40重量%となるように、原料の全量に対する第1原料樹脂および第2原料樹脂の割合(投入比率)を、それぞれ20重量%および80重量%に変更したこと以外は実施例1と同様にして射出成形を行い、各物性の測定および外観の評価を行った。結果を表1に示す。
 [比較例1]
 第2原料樹脂を第1原料樹脂と共に射出成形機の第1投入口上に設置した材料投入ホッパーに投入したこと、および第1原料樹脂の投入量の調節を行わなかったこと以外は実施例1と同様にして射出成形を行い、各物性の測定および外観の評価を行った。結果を表1に示す。また、得られた成形体の写真を図2に示す。
 [比較例2]
 第2原料樹脂を第1原料樹脂と共に射出成形機の第1投入口上に設置した材料投入ホッパーに投入したこと、および第1原料樹脂の投入量の調節を行わなかったこと以外は実施例2と同様にして射出成形を行い、各物性の測定および外観の評価を行った。結果を表1に示す。
 [比較例3]
 ガラス繊維強化MB(1)に替えて、チョップドガラス繊維(ガラス繊維(D'1)を長さ9mmに切断したもの)を、第1原料と共に射出成形機の第1投入口上に設置した材料投入ホッパーに投入したこと、投入量を、原料の全量に対するガラス繊維が30重量%となるようにした以外は、実施例1と同様にして射出成形を行い、各物性の測定および外観の評価を行った。
 また、得られた成形体の写真を図3に示す。未開繊で分散不良のガラス繊維が多く認められた。
 [比較例4]
 原料の全量に対するガラス繊維の割合が40重量%となるように、原料の全量に対する第1原料樹脂およびチョップドガラス繊維の割合を変更したこと以外は比較例3と同様にして射出成形を行い、各物性の測定および外観の評価を行った。結果を表1に示す。外観は比較例3と同様に不良であった。
 [比較例5]
 チョップドガラス繊維を、ベント口(第2投入口)から投入した以外は、比較例3と同様にして射出成形を行い、各物性の測定および外観の評価を行った。結果を表1に示す。外観は比較例3と同様に不良であった。
 [実施例3]
 原料の全量に対するガラス繊維の割合が20重量%となるように、原料の全量に対する第1原料樹脂および第2原料樹脂の割合(投入比率)を、それぞれ60重量%および40重量%に変更したこと以外は実施例1と同様にして射出成形を行い、各物性の測定および外観の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1、2および3では、第1投入口および第2投入口から、それぞれ第1樹脂原料および第2樹脂原料が投入され、かつ第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料が断続的に投入され、繊維含有率が20~40%であり耐衝撃性(アイゾッド衝撃強さ)に特に優れ、引張強さ、曲げ強さにも優れた繊維強化樹脂組成物が製造された。これらの中でも繊維含有率が高いものほど、物性が優れていることがわかる。
 一方、第1樹脂原料および第2樹脂原料を共に第1投入口から供給した比較例1、2で得られた繊維強化樹脂組成物は繊維含有率が30~40%であるが耐衝撃性に劣っていた。これは成形品の残存繊維長が短くなっているためであると考えられる。
 また、ガラス繊維強化MB(1)を用いず、チョップドガラス繊維を用いた比較例3~5はいずれも外観が劣っていた。チョップドガラス繊維を第2投入口より供給した比較例5は、チョップドガラス繊維を第1投入口より供給した比較例3に比べると物性は改善がみられるが外観が劣っている。また、実施例1は外観が優れるのみでなく、比較例5よりもさらに物性が優れていることがわかる。

Claims (6)

  1.  ポリオレフィン(A1)およびポリアミド(A2)から選ばれる少なくとも1種の熱可塑性重合体(A)を含む第1樹脂原料を第1投入口より射出成形機に投入する工程(I)、
     長繊維(D)が、ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物により含浸されたマスターバッチを含む第2樹脂原料を、第1投入口より下流に設けられた第2投入口より射出成形機に投入する工程(II)、
     第1樹脂原料および第2樹脂原料を射出成形機内で溶融混練し繊維強化樹脂組成物溶融体を作製する工程(III)、および
     繊維強化樹脂組成物溶融体を金型に射出成形する工程(IV)を含み、
     第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料が断続的または連続的に投入される
    高充填繊維強化樹脂組成物からなる射出成形体の製造方法。
  2.  前記長繊維(D)が、ガラス繊維(D'1)および炭素繊維(D'2)から選ばれる少なくとも1種からなる請求項1に記載の射出成形体の製造方法。
  3.  前記高充填繊維強化樹脂組成物の前記長繊維(D)の含有率が30重量%以上である請求項1または2に記載の射出成形体の製造方法。
  4.  第2樹脂原料に含まれるマスターバッチが、
     ポリオレフィン(B1)およびポリアミド(B2)から選ばれる少なくとも1種の熱可塑性重合体(B)と酸変性ポリオレフィン(C)とを含む樹脂混合物を、繊維(D')に
    含浸して樹脂含浸繊維を作製する工程、および
     樹脂含浸繊維を切断する工程
    を経て製造されたものである、請求項1~3のいずれか一項に記載の射出成形体の製造方法。
  5.  前記射出成形機が、第2樹脂原料の投入開始から投入終了までの間、第1樹脂原料の投入が断続的または連続的に行われるように制御する手段を備える請求項1~4のいずれか一項に記載の射出成形体の製造方法。
  6.  前記手段が、
     第1投入口上に設けられた材料投入ホッパーと、
     第1投入口における第1樹脂原料の投入速度を監視する装置と、
     第2投入口における第2樹脂原料の投入速度を監視する装置と、
     装置(1)および/または装置(2)と
    を備えるユニットであり、
     前記装置(1)は、前記投入速度に基づいて材料投入ホッパーの下部に設けられた原料用シャッターを開閉、または原料用シャッターの開放の程度を調節する装置であり、
     前記装置(2)は、前記第1投入口と材料投入ホッパーとの間に設置された、質量計量式の原料供給装置である
    請求項5に記載の射出成形体の製造方法。
PCT/JP2019/013082 2018-03-28 2019-03-27 高充填繊維強化樹脂組成物からなる射出成形体の製造方法 WO2019189300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020510988A JPWO2019189300A1 (ja) 2018-03-28 2019-03-27 高充填繊維強化樹脂組成物からなる射出成形体の製造方法
US16/982,225 US20210031418A1 (en) 2018-03-28 2019-03-27 Method for producing injection molded articles from highly-filled fiber-reinforced resin composition
CN201980021360.0A CN111954592A (zh) 2018-03-28 2019-03-27 包含高填充纤维强化树脂组合物的注射成型体的制造方法
EP19778187.5A EP3778180A4 (en) 2019-03-27 Production method for injection molded body comprising densely filled fiber-reinforced resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061987 2018-03-28
JP2018-061987 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189300A1 true WO2019189300A1 (ja) 2019-10-03

Family

ID=68060096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013082 WO2019189300A1 (ja) 2018-03-28 2019-03-27 高充填繊維強化樹脂組成物からなる射出成形体の製造方法

Country Status (4)

Country Link
US (1) US20210031418A1 (ja)
JP (1) JPWO2019189300A1 (ja)
CN (1) CN111954592A (ja)
WO (1) WO2019189300A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939992A (zh) * 2021-12-21 2022-08-26 江苏集萃先进高分子材料研究所有限公司 一种长纤维增强热塑性塑料挤出模压制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376614A (ja) 1989-08-21 1991-04-02 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品の製造方法
JPH09150436A (ja) * 1994-10-12 1997-06-10 Sumitomo Chem Co Ltd 射出方法及びこの方法を実施する射出装置
US6444153B1 (en) * 1999-12-28 2002-09-03 Delphi Technologies, Inc. In-line compounding/extrusion deposition and molding apparatus and method of using the same
JP2012176599A (ja) * 2011-02-04 2012-09-13 Kawata Mfg Co Ltd 供給装置
JP2014166712A (ja) 2013-02-28 2014-09-11 Nihon Yuki Co Ltd ベント式射出成形機のベント口より長繊維及び/又は各種添加物を直接投入する樹脂成形品の製造方法
WO2014155409A1 (ja) 2013-03-25 2014-10-02 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、射出成形装置
JP2016064607A (ja) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 繊維強化樹脂成形体の製造方法
WO2016076411A1 (ja) 2014-11-13 2016-05-19 三井化学株式会社 炭素繊維強化樹脂組成物及びそれから得られる成形品
WO2016084271A1 (ja) * 2014-11-25 2016-06-02 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、射出成形機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530020A1 (de) * 1995-08-16 1997-02-20 Menzolit Fibron Gmbh Verfahren zum Herstellen eines Compounds aus einem Kunststoff mit fester Fasereinlage
DE19848124A1 (de) * 1998-10-19 2000-04-20 Krupp Werner & Pfleiderer Gmbh Verfahren zur Herstellung von gefüllten, modifizierten und mit Fasern verstärkten Thermoplasten und Doppel-Schnecken-Extruder zur Durchführung des Verfahrens
CN101180348A (zh) * 2005-05-17 2008-05-14 埃克森美孚研究工程公司 纤维增强的聚丙烯复合材料车身板
JP5914935B2 (ja) * 2012-03-21 2016-05-11 住友化学株式会社 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体
JP6797707B2 (ja) * 2017-02-10 2020-12-09 三井化学株式会社 繊維強化樹脂組成物からなる射出成形体の製造方法
CN206623367U (zh) * 2017-02-24 2017-11-10 东莞市思卡阻燃材料有限公司 一种可自动调节转速的挤出机喂料装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376614A (ja) 1989-08-21 1991-04-02 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品の製造方法
JPH09150436A (ja) * 1994-10-12 1997-06-10 Sumitomo Chem Co Ltd 射出方法及びこの方法を実施する射出装置
US6444153B1 (en) * 1999-12-28 2002-09-03 Delphi Technologies, Inc. In-line compounding/extrusion deposition and molding apparatus and method of using the same
JP2012176599A (ja) * 2011-02-04 2012-09-13 Kawata Mfg Co Ltd 供給装置
JP2014166712A (ja) 2013-02-28 2014-09-11 Nihon Yuki Co Ltd ベント式射出成形機のベント口より長繊維及び/又は各種添加物を直接投入する樹脂成形品の製造方法
WO2014155409A1 (ja) 2013-03-25 2014-10-02 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、射出成形装置
JP2016064607A (ja) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 繊維強化樹脂成形体の製造方法
WO2016076411A1 (ja) 2014-11-13 2016-05-19 三井化学株式会社 炭素繊維強化樹脂組成物及びそれから得られる成形品
JP2017008332A (ja) * 2014-11-13 2017-01-12 三井化学株式会社 炭素繊維強化樹脂組成物及びそれから得られる成形品
WO2016084271A1 (ja) * 2014-11-25 2016-06-02 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、射出成形機

Also Published As

Publication number Publication date
EP3778180A1 (en) 2021-02-17
US20210031418A1 (en) 2021-02-04
JPWO2019189300A1 (ja) 2021-03-11
CN111954592A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
JP6012914B1 (ja) 炭素繊維強化樹脂組成物及びそれから得られる成形品
EP0605657B1 (en) Polyamide/polyolefin blends
US4990550A (en) Fiber-reinforced polymer composition and method of producing same
JP2872466B2 (ja) 複合強化ポリプロピレン樹脂組成物の製造方法
US20060261509A1 (en) Method for making fiber reinforced polypropylene composites
US20060264557A1 (en) In-line compounding and molding process for making fiber reinforced polypropylene composites
WO2014171363A1 (ja) ガラス繊維強化ポリアミド樹脂組成物
US20060264544A1 (en) Cloth-like fiber reinforced polypropylene compositions and method of making thereof
EP3484957B1 (de) Leitfähige thermoplastische polyamidformmasse
KR20180037010A (ko) 착색 마스터배치 유리-충전 나일론 복합물
JP6797707B2 (ja) 繊維強化樹脂組成物からなる射出成形体の製造方法
WO2019189300A1 (ja) 高充填繊維強化樹脂組成物からなる射出成形体の製造方法
JP2005089706A (ja) 黒系着色した繊維強化樹脂組成物
CN112888739B (zh) 长纤维强化丙烯系树脂组合物和长纤维强化成型体
US20080214703A1 (en) Pellet and fiber length for polyester fiber reinforced polypropylene composites
KR100730421B1 (ko) 폴리올레핀 수지조성물 및 그 제조 방법
JP6879763B2 (ja) 繊維強化樹脂組成物からなる射出成形体の製造方法
CN115785493A (zh) 长纤维增强无卤阻燃生物基聚酰胺复合材料及其制备方法
JP2018154795A (ja) 炭素繊維強化樹脂組成物及び成形体
WO2022181010A1 (ja) ガラス繊維強化プロピレン系樹脂組成物
KR102625001B1 (ko) 유리 섬유 강화 폴리아미드 수지 조성물, 및 이로 이루어지는 차량 내장용 또는 차량 외장용 성형품
JP2003291177A (ja) 繊維強化熱可塑性樹脂の可塑化方法および成形方法
JP2005060547A (ja) 長繊維強化ポリマーアロイ樹脂構造体及び成形品
JPH04504139A (ja) 耐衝撃性のポリアミド組成物
CN113439104A (zh) 玻璃纤维增强型聚酰胺树脂组合物的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019778187

Country of ref document: EP

Effective date: 20201028