WO2019189173A1 - 半導体チップの製造方法 - Google Patents

半導体チップの製造方法 Download PDF

Info

Publication number
WO2019189173A1
WO2019189173A1 PCT/JP2019/012842 JP2019012842W WO2019189173A1 WO 2019189173 A1 WO2019189173 A1 WO 2019189173A1 JP 2019012842 W JP2019012842 W JP 2019012842W WO 2019189173 A1 WO2019189173 A1 WO 2019189173A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
protective film
thermosetting resin
resin film
film
Prior art date
Application number
PCT/JP2019/012842
Other languages
English (en)
French (fr)
Inventor
真也 田久
忠知 山田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201980010027.XA priority Critical patent/CN111656491A/zh
Priority to KR1020207016400A priority patent/KR20200138154A/ko
Priority to JP2020510907A priority patent/JP7267259B2/ja
Publication of WO2019189173A1 publication Critical patent/WO2019189173A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C

Definitions

  • the present invention relates to a method for manufacturing a semiconductor chip. More specifically, the present invention relates to a method of manufacturing a semiconductor chip with a first protective film that protects a bump forming surface.
  • a projecting electrode (hereinafter referred to as eutectic solder, high temperature solder, gold, etc.) is formed as a semiconductor chip on a connection pad portion thereof.
  • eutectic solder high temperature solder, gold, etc.
  • these are referred to as “bumps”, and the bumps are brought into contact with the corresponding terminal portions on the chip mounting substrate by a so-called face-down method so as to be melted / diffused.
  • a flip chip mounting method for bonding has been adopted.
  • the semiconductor chip used in this mounting method is obtained by grinding or dicing the back surface of a semiconductor wafer having bumps formed on the circuit surface opposite to the circuit surface (in other words, the bump forming surface). Can be obtained.
  • a curable resin film is applied to the bump forming surface, and this film is cured to be applied to the bump forming surface.
  • a protective film (hereinafter, sometimes referred to as “first protective film”) is formed.
  • the curable resin film is usually affixed to the bump forming surface of the semiconductor wafer while being softened by heating. By doing so, the curable resin film spreads between the bumps so as to cover the bumps of the semiconductor wafer, adheres closely to the bump formation surface, and covers the surface of the bump, particularly the surface near the bump formation surface. Embed bumps. Thereafter, the curable resin film is further cured to cover the bump forming surface of the semiconductor wafer and the surface of the bump in the vicinity of the bump forming surface, thereby forming a protective film for protecting these regions. Further, the semiconductor wafer is separated into semiconductor chips, and finally a semiconductor chip having a protective film on the bump forming surface (in this specification, sometimes referred to as “semiconductor chip with a first protective film”). .)
  • Such a semiconductor chip with a protective film is mounted on a substrate to form a semiconductor package, and a target semiconductor device is configured using the semiconductor package.
  • a target semiconductor device is configured using the semiconductor package.
  • the electrical connection between the bumps of the semiconductor chip with the protective film and the circuit on the substrate is not hindered.
  • the curable resin film may remain on the top of the bump.
  • the curable resin film remaining on the top of the bump is cured in the same manner as the curable resin film in other regions, and a cured product having the same composition as the protective film (in this specification, “protective film” Sometimes referred to as “residue”.
  • the top of the bump is an electrical connection region between the bump and the circuit on the substrate, when the amount of the protective film residue is large, the bump of the semiconductor chip with the protective film, the circuit on the substrate, , The electrical connection is hindered, leading to a decrease in electrical characteristics in the reliability test. That is, before the semiconductor chip with a protective film is mounted on the substrate, it is required that there is almost no protective film residue at the top of the bump of the semiconductor chip with the protective film.
  • Patent Document 1 As a method of removing the protective film on the top of the bump, a method of manufacturing a semiconductor device that performs plasma processing has been proposed (see Patent Document 1).
  • the protective film on the bump forming surface is subjected to plasma treatment to remove the resin film covering the top of the bump, and then diced with a dicing blade to obtain a semiconductor chip, with the top exposed.
  • a semiconductor device having excellent connection reliability can be efficiently manufactured.
  • the dicing method disclosed in Patent Document 1 requires a plasma processing step for removing the resin film on the top of the bump before the dicing step, which is difficult in terms of productivity. is there.
  • the dicing method disclosed in Patent Document 2 is difficult in terms of productivity because a resist film is applied, exposed, and developed separately before the dicing process.
  • an object of the present invention is to provide a method for manufacturing a semiconductor chip that can simultaneously achieve the removal of the residue of the first protective film at the top of the bump and the separation of the semiconductor wafer into individual pieces and is excellent in productivity.
  • the present invention includes the following aspects. [1] Affixing a thermosetting resin film on the first surface on the bump side of a semiconductor wafer having bumps; Thermosetting the thermosetting resin film to form a first protective film on the first surface of the semiconductor wafer; The semiconductor wafer on which the first protective film is formed is half-cut diced from the first surface side, and the bump is formed by irradiating the half-diced semiconductor wafer with the plasma on the first surface side. Removing the residue of the first protective film at the top of the head and separating the semiconductor wafer into individual pieces. [2] The bump side of the semiconductor wafer having bumps, the thermosetting resin film of the first protective film forming sheet including the first support sheet and the thermosetting resin film provided on the first sheet.
  • thermosetting resin film Affixing to the first side of Peeling the first support sheet from the thermosetting resin film; Thermosetting the thermosetting resin film to form a first protective film on the first surface of the semiconductor wafer; The first protection of the tops of the bumps by half-cut dicing the semiconductor wafer from the first surface side and irradiating the semiconductor wafer with the plasma on the half-cut first surface side of the semiconductor wafer.
  • a method for producing a semiconductor chip with a first protective film comprising: removing a residue of the film and dividing the semiconductor wafer into pieces.
  • the film etching rate b ( ⁇ m / min) and the plasma irradiation time t (min) satisfy the relationship of the following formulas (1), (2), and (3) [1] or [2]
  • thermosetting resin film on the first surface of the semiconductor wafer having bumps on the bump side [4] Affixing a thermosetting resin film on the first surface of the semiconductor wafer having bumps on the bump side; Half-cut dicing the semiconductor wafer to which the thermosetting resin film is attached from the first surface side; Irradiating the half-cut first surface of the semiconductor wafer with plasma to remove the thermosetting resin film on the top of the bumps and to separate the semiconductor wafer; and Forming a first protective film on the first surface of the semiconductor wafer by thermosetting the thermosetting resin film affixed to the singulated semiconductor wafer; Production method. [5] The bump of the semiconductor wafer having a bump as the thermosetting resin film of the first protective film forming sheet including the first support sheet and the thermosetting resin film provided on the first support sheet.
  • thermosetting resin film Affixing to the first side of the side, Peeling the first support sheet from the thermosetting resin film; Half-cut dicing the semiconductor wafer to which the thermosetting resin film is attached from the first surface side; The semiconductor wafer is separated into pieces while removing the thermosetting resin film on the top of the bumps by irradiating the half-cut side of the first surface of the semiconductor wafer with plasma. Forming a first protective film on the first surface of the semiconductor wafer by thermosetting the thermosetting resin film affixed to the singulated semiconductor wafer; Chip manufacturing method.
  • the etching rate d ( ⁇ m / min) of the curable resin film and the plasma irradiation time t (min) satisfy the following formulas (1), (4), and (5): [4] Or the manufacturing method of the semiconductor chip with a 1st protective film as described in [5].
  • the present invention by performing plasma irradiation after half-cut dicing of a semiconductor wafer, not only can the dicing by plasma irradiation be performed without coating the resist film, but also the residue of the first protective film on the top of the bumps. Removal and singulation of the semiconductor wafer can be achieved simultaneously, and the productivity is excellent. In addition, since dicing is performed by plasma irradiation after half-cut dicing, the occurrence of chipping can be reduced and the chip strength can be improved.
  • First embodiment> 1 and 2 are schematic views schematically showing a first embodiment of a method for producing a semiconductor chip with a first protective film of the present invention.
  • the drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
  • the manufacturing method of the semiconductor chip with a 1st protective film of 1st embodiment is the sheet
  • the thermosetting resin film 12 (FIG. 1A) is attached to the first surface 9a on the bump 91 side of the semiconductor wafer 9 (FIG. 1B) having the bumps 91 (FIG. 1C). )), Grinding the second surface 9b of the semiconductor wafer 9 opposite to the first surface 9a (FIG. 1 (d)); Affixing a dicing tape 14 to the ground second surface 9b of the semiconductor wafer 9 (FIG.
  • the first protective film forming sheet 1 is formed on the first surface 9 a (“bump”) of the thermosetting resin film 12 on the bump side of the semiconductor wafer 9. It may be referred to as a “formation surface”).
  • the first protective film forming sheet 1 includes a thermosetting resin film 12 on a first support sheet 101.
  • the first support sheet 101 preferably includes the buffer layer 13 on the first base material 11. That is, the 1st sheet
  • the first protective film-forming sheet according to the present invention includes a first base material, a buffer layer provided on the first base material, and a thermosetting resin provided on the buffer layer. Including film. Details of the first protective film forming sheet 1 will be described later.
  • the height of the bumps 91 of the semiconductor wafer 9 is not particularly limited, but is preferably 40 to 200 ⁇ m, more preferably 50 to 180 ⁇ m, and particularly preferably 60 to 140 ⁇ m.
  • the “bump height” means the height of the bump at the highest position from the bump formation surface (that is, the highest bump position from the bump formation surface of the semiconductor wafer). Vertical distance).
  • the width of the bump 91 is not particularly limited, but is preferably 60 to 250 ⁇ m, more preferably 80 to 220 ⁇ m, and particularly preferably 120 to 180 ⁇ m.
  • the “bump width” is obtained by connecting two different points on the bump surface with a straight line when viewed in a plan view from the direction perpendicular to the bump formation surface. It means the maximum value of the line segment.
  • the distance between adjacent bumps 91 is not particularly limited, but is preferably 100 to 350 ⁇ m, more preferably 130 to 300 ⁇ m, and particularly preferably 160 to 250 ⁇ m. In the present specification, “distance between adjacent bumps” means the minimum distance between the surfaces of adjacent bumps.
  • the thickness A 0 of the semiconductor wafer is not particularly limited, but is preferably 50 to 200 ⁇ m, more preferably 65 to 180 ⁇ m, and particularly preferably 80 to 150 ⁇ m.
  • “thickness A 0 of the semiconductor wafer” means the thickness of the semiconductor wafer, particularly, the ground semiconductor wafer.
  • the “thickness” in the present specification is an average value of values measured by a constant pressure thickness measuring instrument at 10 randomly selected locations unless otherwise specified.
  • thermosetting resin film 12 is brought into contact with the bumps 91 on the semiconductor wafer 9, and the first protective film forming sheet 1 is pressure-bonded to the semiconductor wafer 9.
  • the first surface 12 a of the thermosetting resin film 12 is sequentially crimped to the surface 91 a of the bump 91 and the first surface 9 a of the semiconductor wafer 9.
  • the thermosetting resin film 12 softens, spreads between the bumps 91 so as to cover the bumps 91, and adheres to the first surface 9a.
  • Bumps 91 are embedded to cover the surface 91a, particularly the surface 91a in the vicinity of the first surface 9a of the semiconductor wafer 9.
  • a known method in which various sheets are pressure-bonded to an object can be applied, and examples thereof include a method using a laminating roller.
  • the heating temperature of the first protective film-forming sheet 1 when it is pressure-bonded to the semiconductor wafer 9 may be a temperature at which curing of the thermosetting resin film 12 does not proceed at all or excessively, and is 80 to 100 ° C. It is preferably 85 to 95 ° C.
  • the pressure when the first protective film-forming sheet 1 is pressure-bonded to the semiconductor wafer 9 is not particularly limited, but is preferably 0.1 to 1.5 MPa, and more preferably 0.3 to 1 MPa.
  • thermosetting resin film 12 in the first protective film-forming sheet 1 is applied with pressure from the bumps 91, and initially The first surface 12a of the thermosetting resin film 12 is deformed into a concave shape.
  • the first protective film forming sheet 1 is bonded to the first surface 9a of the semiconductor wafer 9 by the thermosetting resin film 12 (FIG. 1C).
  • the dicing sheet may include, for example, a second protective film forming film that forms a second protective film for protecting the back surface of the semiconductor wafer and the semiconductor chip by curing.
  • thermosetting resin film 12 is cured to form a first protective film 12 ′ on the bump forming surface of the semiconductor wafer (FIG. 2G).
  • the semiconductor wafer 9 provided with the first protective film 12 ' is half-cut diced (FIG. 2 (h)).
  • “Half cut dicing” is a dicing method in which the semiconductor wafer 9 is cut from the side of the first protective film 12 ′ together with the first protective film 12 ′ so as not to be completely cut.
  • the half-cut dicing method may be any method that can half-cut the semiconductor wafer 9 from the first protective film 12 ′ together with the first protective film 12 ′, and may be blade dicing or laser grooving. There may be.
  • the manufacturing method of the semiconductor chip of this invention may perform each process of the manufacturing method of the semiconductor chip with a 1st protective film of 1st embodiment in said order, for example, the 1st protection of 1st embodiment.
  • the thermosetting resin film 12 of the first protective film forming sheet 1 (FIG. 1A) provided with the thermosetting resin film 12 on the first support sheet 101. Is affixed to the first surface 9a on the bump 91 side of the semiconductor wafer 9 (FIG. 1B) having the bumps 91 (FIG. 1C), Grinding the second surface 9b of the semiconductor wafer 9 opposite to the first surface 9a (FIG.
  • thermosetting resin film 12 is thermally cured to form a first protective film 12 ′ on the first surface of the semiconductor wafer 9 (FIG. 1H), and the semiconductor wafer 9 is half-cut. Plasma irradiation is performed on the first surface side to remove the residue of the first protective film 12 ′ from the top portion 910 of the bump 91 and to separate the semiconductor wafer 9 into individual pieces (FIG. 2I). ), And the method may perform the steps in this order.
  • thermosetting resin film 12 is affixed to the first surface 9 a on the bump 91 side of the semiconductor wafer 9 having the bumps 91.
  • Fig. 2 (f) Half-cut dicing the semiconductor wafer 9 from the first surface side;
  • the thermosetting resin film 12 is thermally cured to form a first protective film 12 ′ on the first surface of the semiconductor wafer 9 (FIG. 2H), and the semiconductor wafer 9 is half-cut.
  • Plasma irradiation is performed on the first surface side to remove the residue of the first protective film 12 ′ from the top portion 910 of the bump 91 and to separate the semiconductor wafer 9 into individual pieces (FIG. 2I). ), And the method may perform the steps in this order.
  • the remaining thickness A of the half-cut portion of the semiconductor wafer (that is, the thickness excluding the half-cut portion from the thickness of the semiconductor wafer) is not particularly limited, but is 1 of the thickness A 0 of the semiconductor wafer. preferably / 5 to 4/5, and particularly preferably more preferably from 1/4 ⁇ 3/4 of the thickness of a 0, a 1/3 ⁇ 2/3 of the thickness a 0.
  • the remaining thickness A of the half-cut portion of the semiconductor wafer is preferably 25 to 100 ⁇ m, more preferably 32 to 90 ⁇ m, and particularly preferably 40 to 75 ⁇ m.
  • Plasma irradiation is performed on the half-cut first surface side of the semiconductor wafer 9 to remove the residue of the first protective film 12 ′ from the top portion 910 of the bump 91, and the semiconductor wafer 9 is separated into pieces. (FIG. 2 (i)).
  • plasma irradiation is performed on the half-cut first surface side of the semiconductor wafer 9 to remove the residue of the first protective film 12 ′ from the top portion 910 of the bump 91, and the semiconductor wafer 9 is separated into pieces.
  • the residue of the first protective film 12 ′ on the top portion 910 of the bump 91 may remain so as to enter the recessed portion formed in the top portion 910 of the bump 91. Since the residue of the first protective film 12 ′ remaining in the recess of the top portion 910 of the bump 91 can also be removed by plasma irradiation, a semiconductor device having excellent connection reliability can be manufactured efficiently.
  • a plasma processing apparatus that performs plasma irradiation is not particularly limited, and a known plasma processing apparatus can be used.
  • the plasma processing conditions vary depending on the types of the first protective film 12 ′ and the semiconductor wafer 9, and are not particularly limited. For the semiconductor wafer that has been half-cut diced, a half-cut portion of the semiconductor wafer is used.
  • the thickness B ( ⁇ m) of the first protective film on the first surface on the bump side of the semiconductor wafer that is, the first protective film in the portion without the bump on the semiconductor wafer)
  • the thickness C ( ⁇ m) of the first protective film on the top of the bump the etching rate a ( ⁇ m / min) of the semiconductor wafer by plasma irradiation, and the thickness of the first protective film by plasma irradiation. It is preferable that the etching rate b ( ⁇ m / min) and the plasma irradiation time t (min) satisfy the relationship of the following formulas (1), (2), and (3).
  • etching rate means a rate of etching when each object is irradiated with plasma.
  • the maximum value A ′ of the remaining thickness of the half-cut portion may satisfy the expression (1) ′. More preferably, when the thickness of the first protective film on the first surface on the bump side varies, the minimum value B ′ of the thickness of the first protective film on the first surface on the bump side is expressed by equation (2) ′. Is more preferable, and when the thickness of the first protective film on the top of the bump varies, the maximum value C ′ of the thickness of the first protective film on the top of the bump is expressed by Equation (3). It is more preferable to satisfy '. A ' ⁇ at (1)' B ′> bt (2) ′ C ′ ⁇ bt (3) ′
  • time is satisfied by satisfying the relationship of the formula (1), the formula (2) and the formula (3), more preferably the relationship of the formula (1) ′, the formula (2) ′ and the formula (3) ′.
  • the semiconductor wafer after the plasma irradiation of t (min) is divided into pieces, and the thickness of the first protective film on the first surface on the bump side becomes B ⁇ bt> 0, so that the first surface for protecting the bump forming surface is protected.
  • a semiconductor chip with a protective film can be obtained.
  • fluorine-based stable gas (SF 6 , CF 4 , C 2 F 6 , C 2 F 4 , CHF 3 , C 4 F 8 , NF 3 , XeF 2, etc.), O 2 , Ar, etc.
  • SF 6 , CF 4 or CHF 3 is preferable from the viewpoint of excellent etching properties of the semiconductor wafer.
  • the plasma power condition is preferably 100 to 8000 W.
  • the etching rate a of the semiconductor wafer by plasma irradiation is preferably 0.3 to 30 ⁇ m / min, preferably 0.4 to 25 ⁇ m / min, and preferably 0.5 to 20 ⁇ m / min.
  • the etching rate b of the first protective film by plasma irradiation is preferably 0.1 to 2 ⁇ m / min, preferably 0.2 to 1.5 ⁇ m / min, and preferably 0.3 to 1.0 ⁇ m / min.
  • the thickness C ( ⁇ m) of the first protective film on the top of the bump is the first thickness on the first surface on the bump side of the semiconductor wafer. It becomes thinner than the thickness B ( ⁇ m) of the protective film.
  • the semiconductor wafer is easily etched by plasma irradiation, the first protective film is made of a heat-cured resin. Therefore, the etching rate a ( ⁇ m / min) of the semiconductor wafer by plasma irradiation is plasma irradiation. Is sufficiently larger than the etching rate b ( ⁇ m / min) of the first protective film due to the above. Therefore, by adjusting the plasma irradiation time t (min), it is possible to easily adjust the plasma irradiation conditions satisfying the relations of the expressions (1), (2), and (3).
  • the thickness B of the first protective film on the first surface on the bump side of the semiconductor wafer is 30 ⁇ m
  • the thickness C of the first protective film on the top of the bump is 3 ⁇ m
  • the thickness is 100 ⁇ m.
  • the thickness A of the substrate is half-cut to 50 ⁇ m, and plasma irradiation is performed under the conditions of plasma irradiation gas: SF 6 and plasma power: 2000 W, so that the etching rate a of the semiconductor wafer can be set to 15 ⁇ m / min.
  • the etching rate b of the film can be set to 1.5 ⁇ m / min, satisfying the relations of the expressions (1), (2), and (3).
  • the semiconductor device can be manufactured by the same method as the conventional method. That is, the semiconductor chip with the first protective film is picked up, the picked-up semiconductor chip is flip-chip mounted on the wiring board, and finally the semiconductor device is manufactured.
  • FIG. 3 is a schematic view schematically showing a second embodiment of the method for producing a semiconductor chip with a first protective film of the present invention.
  • the manufacturing method of the semiconductor chip with a 1st protective film of 2nd embodiment sticks the thermosetting resin film 12 on the 1st surface by the side of the bump of the semiconductor wafer 9 which has bump (FIG.3 (f)), Half-cut dicing of the semiconductor wafer 9 from the first surface side (FIG. 3 (g ′)), Plasma irradiation is performed on the half-cut side of the first surface of the semiconductor wafer 9 to remove the thermosetting resin film 12 at the top of the bumps and to separate the semiconductor wafer 9 into individual pieces (FIG. 3 (h) ')) And thermosetting the thermosetting resin film 12 to form a first protective film 12' on the first surface of the semiconductor wafer 9 (FIG. 3 (i ')).
  • This is a method for manufacturing a semiconductor chip with a pad.
  • FIG.3 (f) As a method set as the form shown in FIG.3 (f), FIG.1 (a), FIG.1 (b), FIG.1 (c), 1D and 3F can be mentioned, but the steps of FIG. 1A to FIG. 1D are not essential, and any method can be adopted.
  • Plasma irradiation is performed on the half-cut first surface side of the semiconductor wafer 9 to remove the residue of the thermosetting resin film 12 on the top portion 910 of the bump 91 and to separate the semiconductor wafer 9 into individual pieces. (FIG. 3 (h ′)).
  • plasma irradiation after half-cut dicing of the semiconductor wafer 9 not only can the dicing by plasma irradiation be performed without coating the resist film, but also removal of the residue of the thermosetting resin film 12 on the top 910 of the bump 91. And the separation of the semiconductor wafer 9 can be achieved at the same time, and the productivity is excellent.
  • the residue of the thermosetting resin film 12 on the top portion 910 of the bump 91 may remain so as to enter the recessed portion formed on the top portion 910 of the bump 91. Since the residue of the thermosetting resin film 12 remaining in the recess of the top portion 910 of the bump 91 can also be removed by plasma irradiation, a semiconductor device having excellent connection reliability can be efficiently manufactured.
  • a plasma processing apparatus that performs plasma irradiation is not particularly limited, and a known plasma processing apparatus can be used. Moreover, the conditions of the plasma treatment differ depending on the types of the thermosetting resin film 12 and the semiconductor wafer 9 and are not particularly limited, but the half-cut diced semiconductor wafer is a half-cut portion of the semiconductor wafer.
  • thermosetting resin film 12 on the first surface on the bump side of the semiconductor wafer that is, thermosetting in the non-bumped portion on the semiconductor wafer
  • the thickness E ( ⁇ m) of the thermosetting resin film 12 on the top of the bump the etching rate a ( ⁇ m / min) of the semiconductor wafer by plasma irradiation, and the plasma irradiation.
  • the etching rate d ( ⁇ m / min) of the thermosetting resin film 12 and the plasma irradiation time t (min) are the following formulas (1) and (4). And it is preferable to satisfy the relationship of (5).
  • the remaining thickness A of the half-cut portion, the thickness D of the thermosetting resin film 12 on the first surface on the bump side of the semiconductor wafer, and the thickness E of the first protective film on the top of the bump Can be acquired as an average value obtained by measuring the thickness with a scanning electron microscope at any five locations in the range of the semiconductor chip to be acquired.
  • the maximum value A ′ of the remaining thickness of the half-cut portion may satisfy the expression (1) ′. More preferably, when the thickness of the thermosetting resin film 12 on the first surface on the bump side varies, the minimum value D ′ of the thickness of the thermosetting resin film 12 on the first surface on the bump side is expressed by the formula (4) It is more preferable to satisfy ', and when the thickness of the first protective film on the top of the bump varies, the maximum value E of the thickness of the thermosetting resin film 12 on the top of the bump It is more preferable that “satisfy equation (5)”. A ' ⁇ at (1)' D ′> bt (4) ′ E ′ ⁇ bt (5) ′
  • the time The semiconductor wafer after the plasma irradiation of t (min) is divided into pieces, and the thickness of the first protective film on the first surface on the bump side becomes D ⁇ dt> 0.
  • a semiconductor chip with a protective film can be obtained.
  • the etching rate a of the semiconductor wafer by plasma irradiation is preferably 0.3 to 30 ⁇ m / min, preferably 0.4 to 25 ⁇ m / min, and preferably 0.5 to 20 ⁇ m / min.
  • the etching rate d of the thermosetting resin film 12 by plasma irradiation is preferably 0.1 to 2 ⁇ m / min, more preferably 0.2 to 1.5 ⁇ m / min, and preferably 0.3 to 1.0 ⁇ m / min.
  • the thickness E ( ⁇ m) of the thermosetting resin film 12 on the top of the bump is on the first surface on the bump side of the semiconductor wafer. It becomes thinner than the thickness D ( ⁇ m) of the thermosetting resin film 12. Since the semiconductor wafer is easily etched by plasma irradiation, the etching rate a ( ⁇ m / min) of the semiconductor wafer by plasma irradiation is sufficiently higher than the etching rate d ( ⁇ m / min) of the thermosetting resin film 12 by plasma irradiation. Big. Therefore, by adjusting the plasma irradiation time t (min), it is possible to easily adjust the plasma irradiation conditions satisfying the relations of the expressions (1), (4), and (5).
  • a semiconductor in which the thickness D of the thermosetting resin film 12 on the first surface on the bump side of the semiconductor wafer is 30 ⁇ m, the thickness E of the thermosetting resin film 12 on the top of the bump is 3 ⁇ m, and the thickness is 100 ⁇ m.
  • the remaining thickness A is half cut to 50 ⁇ m, and plasma irradiation is performed under the conditions of plasma irradiation gas: SF 6 and plasma power: 2000 W, so that the etching rate a of the semiconductor wafer can be set to 15 ⁇ m / min.
  • the etching rate d of the thermosetting resin film 12 can be 1.5 ⁇ m / min, which satisfies the relationship of the above formulas (1), (4), and (5).
  • the semiconductor device can be manufactured by the same method as the conventional method. That is, the semiconductor chip with the first protective film is picked up, the picked-up semiconductor chip is flip-chip mounted on the wiring board, and finally the semiconductor device is manufactured.
  • FIG. 1A is a cross-sectional view schematically showing an embodiment of a first protective film forming sheet 1 provided with a thermosetting resin film 12 on a first support sheet 101. It is.
  • the first protective sheet 1A includes a first support sheet 101 and a thermosetting resin film 12 provided on one surface 101a of the first support sheet 101.
  • the first substrate 11 and the buffer layer 13 constitute the first support sheet 101 including the film 12.
  • the first protective film forming sheet is not limited to that shown in FIG. 1 (a), and within the range that does not impair the effects of the present invention, the configuration shown in FIG. It may be deleted or added. Next, each layer constituting the first protective film forming sheet will be described.
  • thermosetting resin film is used to protect the first surface on the bump side of the semiconductor wafer (that is, the bump forming surface) and the bumps provided on the bump forming surface. is there.
  • thermosetting resin film of the present invention is softened by heating in the same manner as a normal resin film, but is thermoset by further heating, and is a thermosetting resin film at normal temperature (23 ° C.) before thermosetting. Rather, it has the property of becoming hard when it is returned to room temperature after thermosetting. As a result, the first protective film formed on the surface having the bumps functions as a protective film.
  • thermosetting resin film is in the form of a sheet or film, and the constituent material is not particularly limited.
  • thermosetting resin film may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other. The combination is not particularly limited.
  • the thickness of the thermosetting resin film is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • a 1st protective film with higher protective ability can be formed because the thickness of a thermosetting resin film is more than the said lower limit. Moreover, it will be suppressed that it becomes excessive thickness because the thickness of a thermosetting resin film is below the said upper limit.
  • the thickness of the thermosetting resin film means the thickness of the entire thermosetting resin film.
  • the thickness of the thermosetting resin film composed of a plurality of layers means the thermosetting resin film. Means the total thickness of all the layers that make up.
  • the first protective film is a film formed by thermosetting the first surface on the bump side of the semiconductor wafer (that is, the bump forming surface) and the bumps provided on the bump forming surface. .
  • the thickness B ( ⁇ m) of the first protective film on the first surface on the bump side of the semiconductor wafer (that is, the thickness of the first protective film in the portion without the bump on the semiconductor wafer) is the thickness of the thermosetting resin film. Similar to thickness. Since the first protective film on the top of the bump is compressed by the bump, the thickness C ( ⁇ m) of the first protective film on the top of the bump is the thickness of the thermosetting resin film, that is, the semiconductor wafer. It becomes thinner than the thickness B ( ⁇ m) of the first protective film on the first surface on the bump side.
  • the thickness B of the first protective film on the first surface on the bump side of the semiconductor wafer is preferably 1.1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 10 to 50 ⁇ m. preferable.
  • the thickness C of the first protective film on the top of the bump is preferably 0.11 to 10 ⁇ m, more preferably 0.5 to 7.5 ⁇ m, and particularly preferably 1 to 5 ⁇ m. .
  • thermosetting resin film formation The composition for thermosetting resin film formation >> A thermosetting resin film can be formed from the composition for thermosetting resin film formation containing the constituent material.
  • a thermosetting resin film can be formed in the target site
  • a more specific method for forming the thermosetting resin film will be described in detail later together with the method for forming other layers.
  • the content ratio of components that do not vaporize at normal temperature (23 ° C.) is usually the same as the content ratio of the components of the thermosetting resin film.
  • thermosetting resin film-forming composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, Examples include a method using various coaters such as a knife coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the composition for forming a thermosetting resin film are not particularly limited, but when the composition for forming a thermosetting resin film contains a solvent to be described later, it is preferable to dry by heating. For example, drying is preferably performed at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • composition for forming a thermosetting resin film for example, a composition for forming a thermosetting resin film containing a polymer component (A) and a thermosetting component (B) (in this specification, simply “resin And may be abbreviated as “layer-forming composition”).
  • the polymer component (A) is a polymer compound for imparting film forming property, flexibility, and the like to the thermosetting resin film, and is a component that can be regarded as formed by polymerization reaction of the polymerizable compound.
  • the polymerization reaction includes a polycondensation reaction. 1 type may be sufficient as the polymer component (A) which the composition for resin layer formation and a thermosetting resin film contain, and when it is 2 or more types, those combinations and ratios are arbitrary. Can be selected.
  • polymer component (A) examples include polyvinyl acetal, acrylic resin, polyester, urethane resin, acrylic urethane resin, silicone resin, rubber resin, phenoxy resin, and thermoplastic polyimide.
  • polyvinyl acetal in a polymer component (A) a well-known thing is mentioned.
  • polyvinyl formal, polyvinyl butyral, etc. are mentioned, for example, Polyvinyl butyral is more preferable.
  • polyvinyl butyral include those having structural units represented by the following formulas (i) -1, (i) -2, and (i) -3.
  • l 1 , m 1 and n 1 are the content (mol%) of each constituent unit relative to the total number of moles of all constituent units constituting the polyvinyl butyral.
  • the weight average molecular weight (Mw) of polyvinyl acetal is preferably 5000 to 200000, and more preferably 8000 to 100,000.
  • the content ratio l 1 (butyralization degree) of the structural unit having a butyral group is preferably 40 to 90 mol%, more preferably 50 to 85 mol%, based on the total number of moles of all the structural units constituting the polyvinyl butyral. ⁇ 76 mol% is particularly preferred.
  • the content ratio m 1 of the structural unit having an acetyl group is preferably 0.1 to 9 mol%, more preferably 0.5 to 8 mol%, with respect to the total number of moles of all structural units constituting the polyvinyl butyral. 7 mol% is particularly preferable.
  • the content ratio n 1 of the structural unit having a hydroxyl group is preferably 10 to 60 mol%, more preferably 10 to 50 mol%, particularly preferably 20 to 40 mol%, based on the total number of moles of all the structural units constituting the polyvinyl butyral. .
  • the glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C., and more preferably 50 to 70 ° C.
  • Tg glass transition temperature
  • For the glass transition temperature for example, use a result measured by a differential scanning calorimeter (manufactured by T.A. Instruments Japan, product name “DSC Q2000”) at a temperature rising / falling rate of 20 ° C./min. Can do.
  • the ratio of three or more monomers constituting polyvinyl acetal can be arbitrarily selected.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1500,000.
  • Mw weight average molecular weight
  • the weight average molecular weight of the acrylic resin is not less than the lower limit, the shape stability of the thermosetting resin layer (time stability during storage) is improved.
  • the weight average molecular weight of the acrylic resin is equal to or less than the upper limit value, the thermosetting resin layer easily follows the uneven surface of the adherend, and between the adherend and the thermosetting resin layer. Generation of voids and the like is further suppressed.
  • “weight average molecular weight” means a polystyrene equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 50 to 70 ° C., and more preferably ⁇ 30 to 50 ° C.
  • Tg of the acrylic resin is equal to or more than the lower limit value, the adhesive force between the first protective film and the first support sheet is suppressed, and the peelability of the first support sheet is improved.
  • the adhesive force with the adherend of a thermosetting resin film and a 1st protective film improves because Tg of acrylic resin is below the said upper limit.
  • acrylic resins include polymers of one or more (meth) acrylic acid esters; in addition to (meth) acrylic acid esters, (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, and Examples thereof include a copolymer obtained by copolymerizing one or more monomers selected from N-methylolacrylamide and the like.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (me
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept including both “acrylate” and “methacrylate”
  • (meth) acryloyl group” Is a concept including both “acryloyl group” and “methacryloyl group”.
  • Only one type of monomer constituting the acrylic resin may be used, or two or more types may be used, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic resin may have a functional group that can be bonded to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound not via the cross-linking agent (F). .
  • F cross-linking agent
  • thermoplastic resin other than polyvinyl acetal and acrylic resin
  • thermoplastic resin a thermoplastic resin other than polyvinyl acetal and acrylic resin
  • thermoplastic resin By using the thermoplastic resin, the peelability of the first protective film from the first support sheet can be improved, and the thermosetting resin film can easily follow the uneven surface of the adherend. Generation
  • the weight average molecular weight of the thermoplastic resin is preferably 1000 to 100,000, more preferably 3000 to 80,000.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150 ° C., and more preferably ⁇ 20 to 120 ° C.
  • thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, and polystyrene.
  • thermoplastic resin contained in the resin layer forming composition and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, their combination and ratio are arbitrarily selected. it can.
  • the content is preferably 5 to 85% by mass, more preferably 5 to 80% by mass, regardless of the type of the polymer component (A). It may be any of 60% by mass, 5-50% by mass, 5-40% by mass, and 5-30% by mass. However, these contents in the composition for resin layer formation are examples.
  • the polymer component (A) may also correspond to the thermosetting component (B).
  • the resin layer forming composition when the resin layer forming composition contains components corresponding to both the polymer component (A) and the thermosetting component (B), the resin layer forming composition is It is considered to contain a coalescing component (A) and a thermosetting component (B).
  • thermosetting component (B) is a component for hardening a thermosetting resin film and forming a hard 1st protective film.
  • thermosetting component (B) which the composition for resin layer formation and a thermosetting resin film contain only 1 type may be sufficient, 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios are Can be arbitrarily selected.
  • thermosetting component (B) examples include epoxy thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, and silicone resins, and epoxy thermosetting resins are preferable.
  • the epoxy thermosetting resin includes an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-based thermosetting resin contained in the resin layer forming composition and the thermosetting resin film may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • Epoxy resin (B1) examples include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
  • an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (B1).
  • An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the 1st sheet
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include compounds obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group. Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (also referred to as a vinyl group), a 2-propenyl group (also referred to as an allyl group), and a (meth) acryloyl group. , (Meth) acrylamide groups and the like, and an acryloyl group is preferred.
  • the weight average molecular weight of the epoxy resin (B1) is preferably 15000 or less, more preferably 10,000 or less, and particularly preferably 5000 or less.
  • the lower limit of the weight average molecular weight of the epoxy resin (B1) is not particularly limited. However, in terms of further improving the curability of the thermosetting resin film and the strength and heat resistance of the first protective film, the weight average molecular weight of the epoxy resin (B1) is preferably 300 or more, and 500 or more. More preferably.
  • the weight average molecular weight of the epoxy resin (B1) can be appropriately adjusted so as to be within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • the weight average molecular weight of the epoxy resin (B1) is preferably 300 to 15000, more preferably 300 to 10,000, and particularly preferably 300 to 3000.
  • the weight average molecular weight of the epoxy resin (B1) is preferably 500 to 15000, more preferably 500 to 10,000, and particularly preferably 500 to 3000.
  • the “number average molecular weight” means a number average molecular weight represented by a standard polystyrene equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, and more preferably 130 to 800 g / eq.
  • epoxy equivalent means the number of grams (g / eq) of an epoxy compound containing one equivalent of an epoxy group, and can be measured according to the method of JIS K 7236: 2001.
  • the epoxy resin (B1) is preferably in a liquid state at normal temperature (23 ° C.) (in this specification, it may be simply referred to as “liquid epoxy resin (B1)”).
  • the epoxy resin (B1) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • a thermosetting agent (B2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (B2) examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, and aralkyl type phenol resins. .
  • examples of the amine-based curing agent having an amino group include dicyandiamide (sometimes abbreviated as “DICY” in the present specification).
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • examples of the thermosetting agent (B2) having an unsaturated hydrocarbon group include compounds in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, and the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • thermosetting agent (B2) In the case of using a phenolic curing agent as the thermosetting agent (B2), the thermosetting agent (B2) has a softening point or a glass transition temperature from the viewpoint of improving the peelability of the first protective film from the first support sheet. A high one is preferred.
  • thermosetting agent (B2) for example, the number average molecular weight of the resin component such as polyfunctional phenol resin, novolac type phenol resin, dicyclopentadiene type phenol resin, aralkyl type phenol resin is preferably 300 to 30000. 400 to 10,000 is more preferable, and 500 to 3000 is particularly preferable.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, for example, any one of 1 to 150 parts by mass, 1 to 100 parts by mass, 1 to 75 parts by mass, 1 to 50 parts by mass, and 1 to 30 parts by mass. It may be.
  • the content of the thermosetting agent (B2) is equal to or more than the lower limit, curing of the thermosetting resin film is more likely to proceed.
  • the moisture absorption rate of a thermosetting resin film is reduced because the said content of a thermosetting agent (B2) is below the said upper limit, and the reliability of the package obtained using the 1st protective film is improved. More improved.
  • the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is the polymer component (
  • the content of A) is preferably 50 to 1000 parts by mass, more preferably 60 to 950 parts by mass, and particularly preferably 70 to 900 parts by mass with respect to 100 parts by mass of A.
  • the content of the thermosetting component (B) is within such a range, the adhesive force between the first protective film and the first support sheet is suppressed, and the peelability of the first support sheet is improved.
  • the resin layer forming composition and the thermosetting resin film may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the resin layer forming composition.
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (ie, at least one hydrogen atom is hydrogen Imidazoles substituted with groups other than atoms); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (ie, phosphine
  • the hardening accelerator (C) which the composition for resin layer formation and a thermosetting resin film contain only 1 type may be sufficient, and 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios are arbitrary. Can be selected.
  • the content of the curing accelerator (C) is 100 parts by mass of the thermosetting component (B).
  • the content is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the effect by using a hardening accelerator (C) is acquired more notably because the said content of a hardening accelerator (C) is more than the said lower limit.
  • the highly polar curing accelerator (C) is deposited in the thermosetting resin film under high temperature and high humidity conditions. The effect of suppressing segregation by moving toward the adhesion interface with the body is enhanced, and the reliability of the package obtained using the first protective film forming sheet is further improved.
  • the resin layer forming composition and the thermosetting resin film may contain a filler (D).
  • the thermosetting resin film contains the filler (D)
  • the first protective film obtained by curing the thermosetting resin film can easily adjust the thermal expansion coefficient.
  • seat for 1st protective film formation improves more by optimizing this thermal expansion coefficient with respect to the formation object of a 1st protective film.
  • the thermosetting resin film contains the filler (D)
  • the moisture absorption rate of the first protective film can be reduced, and the heat dissipation can be improved.
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • 1 type may be sufficient as the filler (D) which the composition for resin layer formation and a thermosetting resin film contain, and when it is 2 or more types, when they are 2 or more types, those combinations and ratios are arbitrary. You can choose.
  • the average particle size of the filler (D) is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • “average particle size” means the value of the particle size (D 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method, unless otherwise specified. .
  • the lower limit value of the average particle diameter of the filler (D) is not particularly limited.
  • the average particle diameter of the filler (D) is preferably 0.01 ⁇ m or more from the viewpoint that the filler (D) can be easily obtained.
  • the average particle size of the filler (D) is preferably 0.01 ⁇ m or more and 1 ⁇ m or less, more preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less, and 0.01 ⁇ m or more and 0.1 ⁇ m. It is particularly preferred that
  • the ratio of the content of the filler (D) to the total content (total mass) of all components other than the solvent in the resin layer forming composition (that is, the thermosetting resin film) is preferably 3 to 60% by mass, and more preferably 3 to 55% by mass.
  • the resin layer forming composition and the thermosetting resin film may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound it is possible to improve the adhesion and adhesion of the thermosetting resin film to the adherend.
  • water resistance improves the 1st protective film obtained by hardening
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (A), the thermosetting component (B), etc., and is preferably a silane coupling agent. More preferred. Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3- (phenyla
  • 1 type may be sufficient as the coupling agent (E) which the composition for resin layer formation and a thermosetting resin film contain, and when it is 2 or more types, those combinations and ratios are arbitrary. Can be selected.
  • the content of the coupling agent (E) is that of the polymer component (A) and the thermosetting component (B).
  • the total content is 100 parts by mass, it is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and particularly preferably 0.1 to 5 parts by mass. preferable.
  • the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin is improved and the adhesion of the thermosetting resin film to the adherend is improved.
  • the effect by using a coupling agent (E) etc. is acquired more notably.
  • production of an outgas is suppressed more because the said content of a coupling agent (E) is below the said upper limit.
  • Cross-linking agent (F) As the polymer component (A), those having functional groups such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group and the like that can be bonded to other compounds such as the above-mentioned acrylic resin.
  • the composition for resin layer formation and the thermosetting resin film may contain the crosslinking agent (F).
  • the cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link, and by this cross-linking, initial adhesion of the thermosetting resin film Force and cohesion can be adjusted.
  • crosslinking agent (F) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group).
  • a crosslinking agent examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group).
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”).
  • a trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc.
  • the “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
  • -Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • the crosslinking agent (F) When an organic polyvalent isocyanate compound is used as the crosslinking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • a cross-linked structure is formed on the thermosetting resin film by a reaction between the crosslinking agent (F) and the polymer component (A). Easy to introduce.
  • the crosslinking agent (F) which the composition for resin layer formation and a thermosetting resin film contain 1 type may be sufficient, and 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios are arbitrary. You can choose.
  • the content of the crosslinking agent (F) in the resin layer forming composition is 0.01 to 20 parts by mass with respect to 100 parts by mass of the polymer component (A). It is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass.
  • the effect by using a crosslinking agent (F) is acquired more notably because the said content of a crosslinking agent (F) is more than the said lower limit.
  • the excessive use of a crosslinking agent (F) is suppressed because the said content of a crosslinking agent (F) is below the said upper limit.
  • composition for resin layer formation and the thermosetting resin film are within the range not impairing the effects of the present invention, and the above-mentioned polymer component (A), thermosetting component (B), curing accelerator (C), filling
  • You may further contain other components other than a material (D), a coupling agent (E), and a crosslinking agent (F).
  • the other components include energy ray curable resins, photopolymerization initiators, colorants, and general-purpose additives.
  • the general-purpose additives are known and can be arbitrarily selected according to the purpose, and are not particularly limited. Preferred examples include plasticizers, antistatic agents, antioxidants, and colorants (dyes and pigments). ), Gettering agents and the like.
  • the said other component which the composition for resin layer formation and a thermosetting resin film contain may be only 1 type, may be 2 or more types, and when they are 2 or more types, those combinations and ratios are selected arbitrarily. it can. Content of the said other component of the composition for resin layer formation and a thermosetting resin film is not specifically limited, What is necessary is just to select suitably according to the objective.
  • the resin layer forming composition and the thermosetting resin film contain a polymer component (A) and a thermosetting component (B), contain a polyvinyl acetal as the polymer component (A), and an epoxy resin (B1). ) Is preferably contained in a liquid form, and more preferably contains a curing accelerator (C) and a filler (D) in addition to these components. And it is preferable that the filler (D) in this case has the above-mentioned average particle diameter.
  • the resin layer forming composition further contains a solvent.
  • the resin layer forming composition containing a solvent has good handleability.
  • the solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; methanol, ethanol, 2-propanol, isobutyl alcohol (also referred to as 2-methylpropan-1-ol), 1-butanol and the like. Alcohols; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (that is, compounds having an amide bond). Only 1 type may be sufficient as the solvent which the composition for resin layer formation contains, and when it is 2 or more types, when they are 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the solvent contained in the resin layer forming composition is preferably methyl ethyl ketone from the viewpoint that the components in the resin layer forming composition can be mixed more uniformly.
  • the content of the solvent in the resin layer forming composition is not particularly limited, and may be appropriately selected according to the type of components other than the solvent, for example.
  • a composition for forming a thermosetting resin film such as a composition for forming a resin layer is obtained by blending each component for constituting the composition.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the first support sheet 101 includes a first base material 11 and a buffer layer 13 formed on the first base material 11. That is, the first protective film forming sheet 1 is configured by laminating the first base material 11, the buffer layer 13, and the thermosetting resin film 12 in this order in the thickness direction.
  • the first base material is in the form of a sheet or film, and examples of the constituent material include various resins.
  • the resin include polyethylene such as low density polyethylene (may be abbreviated as LDPE), linear low density polyethylene (may be abbreviated as LLDPE), and high density polyethylene (sometimes abbreviated as HDPE); polypropylene, Polyolefins other than polyethylene such as polybutene, polybutadiene, polymethylpentene, norbornene resin; ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene- Ethylene copolymer such as norbornene copolymer (copolymer obtained using ethylene as monomer); Vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (obtained using vinyl chloride as monomer) Resin); polystyrene; polycycloolefin
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
  • the resin constituting the first base material may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the first substrate may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other, and a combination of these layers Is not particularly limited.
  • a plurality of layers may be the same or different from each other” means “all layers may be the same or all layers. May be different, and only some of the layers may be the same ”, and“ a plurality of layers are different from each other ”means that“ at least one of the constituent material and thickness of each layer is different from each other ” "Means.
  • the thickness of the first base material is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, further preferably 15 to 300 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • the “thickness of the first base material” means the thickness of the entire first base material.
  • the thickness of the first base material composed of a plurality of layers means all of the first base material. Means the total thickness of the layers.
  • the first substrate is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part.
  • materials that can be used to construct the first base material having such a high thickness precision include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymer. Examples include coalescence.
  • the first base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent materials such as the resin. You may do it.
  • the first substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
  • the first substrate preferably transmits energy rays.
  • the first substrate can be manufactured by a known method.
  • the 1st base material containing resin can be manufactured by shape
  • the release film may be a known film in this field.
  • a resin film such as polyethylene terephthalate is release-treated by silicone treatment or the like; at least one surface of the film is a release surface composed of polyolefin. And the like.
  • the thickness of the release film is preferably the same as the thickness of the first substrate.
  • Buffer layer 13 has a buffering action against the force applied to the buffer layer 13 and the layer adjacent thereto.
  • thermosetting resin film 12 is shown as “a layer adjacent to the buffer layer”.
  • the buffer layer 13 is in the form of a sheet or film and is preferably energy ray curable.
  • the buffer layer 13 that is energy ray curable is more easily peeled off from the thermosetting resin film 12 described later by being energy ray cured.
  • Examples of the constituent material of the buffer layer 13 include various adhesive resins.
  • Examples of the adhesive resin include adhesive resins such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, and polycarbonates, and acrylic resins are preferable.
  • examples of the constituent material include various components necessary for energy ray curing.
  • the “adhesive resin” is a concept including both an adhesive resin and an adhesive resin.
  • the resin itself has an adhesive property
  • resins that exhibit tackiness when used in combination with other components such as additives, and resins that exhibit adhesiveness due to the presence of a trigger such as heat or water.
  • the buffer layer 13 may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same as or different from each other. There is no particular limitation.
  • the thickness of the buffer layer 13 is preferably 30 to 500 ⁇ m.
  • the “thickness of the buffer layer 13” means the thickness of the entire buffer layer 13.
  • the thickness of the buffer layer 13 composed of a plurality of layers is the sum of all the layers constituting the buffer layer 13. Means the thickness.
  • the buffer layer 13 can be formed from an adhesive resin composition containing an adhesive resin.
  • the buffer layer 13 can be formed in the target site
  • the adhesive resin composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen.
  • a method using various coaters such as a coater, a Meyer bar coater, a kiss coater and the like.
  • the drying conditions of the adhesive resin composition are not particularly limited, the adhesive resin composition containing the solvent described later is preferably dried by heating.
  • the adhesive resin composition containing the solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the adhesive resin composition containing the energy ray curable adhesive that is, as the energy ray curable adhesive resin composition
  • the energy ray curable adhesive resin composition for example, non-energy ray curable
  • An energy ray-curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the non-energy ray-curable adhesive resin (I-1a) hereinafter referred to as “adhesive resin (I-2a)”
  • the adhesive resin composition examples include a non-energy ray curable adhesive resin composition in addition to the energy ray curable adhesive resin composition.
  • Non-energy ray-curable adhesive resin compositions include, for example, non-energy rays such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates, ester resins, etc.
  • Examples thereof include an adhesive resin composition (I-4) containing a curable adhesive resin (I-1a), and preferably contains an acrylic resin.
  • the adhesive resin compositions such as the adhesive resin compositions (I-1) to (I-4) include an adhesive resin composition such as the adhesive resin and components other than the adhesive resin as necessary. It is obtained by blending each component for constituting a product. The order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously. When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the first protective film forming sheet can be produced by sequentially laminating the above-described layers so as to have a corresponding positional relationship.
  • the method for forming each layer is as described above.
  • a first protective film-forming sheet in which a buffer layer and a thermosetting resin film are laminated in this order in the thickness direction on a first substrate can be produced by the following method. That is, a buffer layer is laminated
  • thermosetting resin film and a peeling film are laminated
  • a first protective film forming sheet is obtained. The release film may be removed when the first protective film forming sheet is used.
  • the first protective film forming sheet provided with a layer other than each of the above-described layers is formed in the above-described manufacturing method, so that the stacking position of the other layer is an appropriate position, It can manufacture by adding suitably either or both of a lamination process.
  • a first protective film-forming sheet in which an adhesion layer, a buffer layer, and a thermosetting resin film are laminated in this order in the thickness direction on the first base material can be manufactured by the following method. . That is, the cohesive layer and the buffer layer are laminated in this order on the first base material by coextrusion molding the adhesive layer forming composition and the buffer layer forming adhesive resin composition with respect to the first base material. To do. And a thermosetting resin film is laminated
  • the present invention is extremely industrially useful because it can provide a method for manufacturing a semiconductor chip that can simultaneously remove the residue of the first protective film on the top of the bump and singulate the semiconductor wafer and is excellent in productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Dicing (AREA)
  • Drying Of Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

熱硬化性樹脂フィルムを、バンプを有する半導体ウエハのこのバンプ側の第1面に貼付すること、この熱硬化性樹脂フィルムを熱硬化させることによりこの半導体ウエハのこの第1面に第1保護膜を形成すること、この半導体ウエハを前記第1保護膜が形成された第1面の側からハーフカットダイシングすること、及びこの半導体ウエハのハーフカットダイシングされたこの第1面の側にプラズマ照射することによって、このバンプの頭頂部のこの第1保護膜の残渣を除去するとともにこの半導体ウエハを個片化すること、を含む、第1保護膜付き半導体チップの製造方法。

Description

半導体チップの製造方法
 本発明は、半導体チップの製造方法に関する。より詳しくは、バンプ形成面を保護する第1保護膜付きの半導体チップの製造方法に関する。
 本願は、2018年3月30日に、日本に出願された特願2018-069682号に基づき優先権を主張し、その内容をここに援用する。
 従来、MPUやゲートアレー等に用いる多ピンのLSIパッケージをプリント配線基板に実装する場合には、半導体チップとして、その接続パッド部に共晶ハンダ、高温ハンダ、金等からなる凸状電極(以下、本明細書においては「バンプ」と称する)が形成されたものを用い、所謂フェースダウン方式により、それらのバンプをチップ搭載用基板上の相対応する端子部に対面、接触させ、溶融/拡散接合するフリップチップ実装方法が採用されてきた。
 この実装方法で用いる半導体チップは、例えば、回路面にバンプが形成された半導体ウエハの、回路面(換言するとバンプ形成面)とは反対側の裏面を研削したり、ダイシングして個片化することにより得られる。このような半導体チップを得る過程においては、通常、半導体ウエハのバンプ形成面及びバンプを保護する目的で、硬化性樹脂フィルムをバンプ形成面に貼付し、このフィルムを硬化させて、バンプ形成面に保護膜(本明細書においては、以下、「第1保護膜」と称することがある)を形成する。
 硬化性樹脂フィルムは、通常、加熱により軟化した状態で、半導体ウエハのバンプ形成面に貼付される。このようにすることにより、硬化性樹脂フィルムは、半導体ウエハのバンプを覆うようにしてバンプ間に広がり、バンプ形成面に密着するとともに、バンプの表面、特にバンプ形成面の近傍部位の表面を覆って、バンプを埋め込む。この後、硬化性樹脂フィルムは、さらに硬化によって、半導体ウエハのバンプ形成面と、バンプのバンプ形成面の近傍部位の表面と、を被覆して、これらの領域を保護する保護膜となる。さらに、半導体ウエハは、半導体チップに固片化され、最終的に、バンプ形成面に保護膜を備えた半導体チップ(本明細書においては、「第1保護膜付き半導体チップ」と称することがある。)となる。
 このような保護膜付き半導体チップは、基板上に搭載されて半導体パッケージとなり、さらにこの半導体パッケージを用いて、目的とする半導体装置が構成される。半導体パッケージ及び半導体装置が正常に機能するためには、保護膜付き半導体チップのバンプと、基板上の回路との電気的接続が阻害されないことが必要である。ところが、硬化性樹脂フィルムが、バンプの頭頂部に残存してしまう場合がある。バンプの頭頂部に残存した硬化性樹脂フィルムは、他の領域の硬化性樹脂フィルムの場合と同様に硬化して、保護膜と同様の組成を有する硬化物(本明細書においては、「保護膜残留物」と称することがある)となる。すると、バンプの頭頂部は、バンプと基板上の回路との電気的接続領域であるため、保護膜残留物の量が多い場合には、保護膜付き半導体チップのバンプと、基板上の回路と、の電気的接続が阻害され、信頼性試験における電気特性低下に繋がる。
 すなわち、保護膜付き半導体チップの基板上への搭載前の段階で、保護膜付き半導体チップのバンプの頭頂部においては、保護膜残留物が殆ど存在しないことが求められる。
 バンプの頭頂部の保護膜を除去する方法として、プラズマ処理を施す半導体装置の製造方法が提案されている(特許文献1参照)。バンプ形成面の保護膜にプラズマ処理を施すことにより、バンプの頭頂部を覆っている樹脂膜を除去したのち、ダイシングブレードによりダイシングして個片化して半導体チップを得ており、頭頂部が露出されたバンプと、基板の電極とを電気的に接続することで、接続信頼性に優れた半導体装置を効率よく製造できる。
 また、予め、半導体ウエハの切断線以外の領域をレジスト層で覆い、レジスト膜が被覆されていない切断線に対応する部分をプラズマ照射することにより半導体ウエハをエッチングして分割する方法も知られている(特許文献2等)。
国際公開第2016/194431号 特開2004-193305号公報
 しかし、特許文献1で開示されているダイシング方法では、ダイシング工程の前に、バンプの頭頂部の樹脂膜を除去するためのプラズマ処理工程が別途必要になるために、生産性の点で難がある。また、特許文献2で開示されているダイシング方法では、ダイシング工程の前に、レジスト膜の塗布、露光、現像処理が別途必要になるために、生産性の点で難がある。
 そこで、本発明は、バンプの頭頂部の第1保護膜の残渣除去と半導体ウエハの個片化を同時に達成でき、生産性に優れる半導体チップの製造方法を提供することを目的とする。
 本発明は次の態様を含む。
[1] 熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
 前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、
 前記第1保護膜が形成された半導体ウエハを前記第1面の側からハーフカットダイシングすること、及び
 ハーフカットダイシングされた前記半導体ウエハの前記第1面の側にプラズマ照射することによって、前記バンプの頭頂部の前記第1保護膜の残渣を除去するとともに前記半導体ウエハを個片化すること、を含む
 第1保護膜付き半導体チップの製造方法。
[2] 第1支持シートと前記第1シート上に備えられた熱硬化性樹脂フィルムとを含む第1保護膜形成用シートの前記熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
 前記第1支持シートを前記熱硬化性樹脂フィルムから剥離すること、
 前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、
 前記半導体ウエハを前記第1面の側からハーフカットダイシングすること、及び
 前記半導体ウエハのハーフカットされた前記第1面の側にプラズマ照射うすることによって、前記バンプの頭頂部の前記第1保護膜の残渣を除去するとともに前記半導体ウエハを個片化すること、を含む
 第1保護膜付き半導体チップの製造方法。
[3] ハーフカットダイシングされた前記半導体ウエハについて、前記半導体ウエハのハーフカットされた部分の残りの厚さA(μm)と、前記半導体ウエハの前記第1面上の第1保護膜の厚さB(μm)と、前記バンプの頭頂部上の第1保護膜の厚さC(μm)と、プラズマ照射による前記半導体ウエハのエッチング速度a(μm/min)と、プラズマ照射による前記第1保護膜のエッチング速度b(μm/min)と、プラズマ照射の時間t(min)とが、下記式(1)、式(2)及び式(3)の関係を充足する[1]又は[2]に記載の第1保護膜付き半導体チップの製造方法。
 A<at ・・・(1)
 B>bt ・・・(2)
 C<bt ・・・(3)
[4] 熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
 前記熱硬化性樹脂フィルムが貼付された半導体ウエハを前記第1面の側からハーフカットダイシングすること、
 前記半導体ウエハのハーフカットされた前記第1面の側にプラズマ照射することによって、前記バンプの頭頂部の前記熱硬化性樹脂フィルムを除去するとともに前記半導体ウエハを個片化すること、及び
 前記個片化された半導体ウエハに貼付している前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、を含む
 第1保護膜付き半導体チップの製造方法。
[5] 第1支持シートと前記第1支持シート上に備えられた熱硬化性樹脂フィルムとを含む第1保護膜形成用シートの前記熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
 前記第1支持シートを前記熱硬化性樹脂フィルムから剥離すること、
 前記熱硬化性樹脂フィルムが貼付している前記半導体ウエハを前記第1面の側からハーフカットダイシングすること、
 前記半導体ウエハのハーフカットされた前記第1面の側にプラズマ照射することによって、前記バンプの頭頂部の前記熱硬化性樹脂フィルムを除去するとともに前記半導体ウエハを個片化すること、
 前記個片化された半導体ウエハに貼付している前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、を含む第1保護膜付き半導体チップの製造方法。
[6] ハーフカットダイシングされた前記半導体ウエハについて、前記半導体ウエハのハーフカットされた部分の残りの厚さA(μm)と、前記半導体ウエハの前記第1面上の熱硬化性樹脂フィルムの厚さD(μm)と、前記バンプの頭頂部上の熱硬化性樹脂フィルムの厚さE(μm)と、プラズマ照射による前記半導体ウエハのエッチング速度a(μm/min)と、プラズマ照射による前記熱硬化性樹脂フィルムのエッチング速度d(μm/min)と、プラズマ照射の時間t(min)とが、下記式(1)、式(4)及び式(5)の関係を充足する、[4]又は[5]に記載の第1保護膜付き半導体チップの製造方法。
 A<at ・・・(1)
 D>dt ・・・(4)
 E<dt ・・・(5)
 本発明によれば、半導体ウエハをハーフカットダイシングした後プラズマ照射することにより、レジスト膜を被覆することなくプラズマ照射によるダイシングが可能となるだけでなく、バンプの頭頂部の第1保護膜の残渣除去と、半導体ウエハの個片化を、同時に達成することができ、生産性に優れる。また、ハーフカットダイシングの後にプラズマ照射してダイシングするので、チッピングの発生を低減でき、チップ強度の向上を図ることができる。
本発明の第1保護膜付き半導体チップの製造方法の第一実施形態を模式的に示す概略図である。 本発明の第1保護膜付き半導体チップの製造方法の第一実施形態を模式的に示す概略図である。 本発明の第1保護膜付き半導体チップの製造方法の第二実施形態を模式的に示す概略図である。
<<第1保護膜付き半導体チップの製造方法>>
<第一実施形態>
 図1及び図2は、本発明の第1保護膜付き半導体チップの製造方法の第一実施形態を模式的に示す概略図である。
 なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
 第一実施形態の第1保護膜付き半導体チップの製造方法は、第1支持シート101と前記第1支持シート101上に備えられた熱硬化性樹脂フィルム12を含む第1保護膜形成用シート1(図1(a))の前記熱硬化性樹脂フィルム12を、バンプ91を有する半導体ウエハ9(図1(b))の前記バンプ91側の第1面9aに貼付すること(図1(c))、
 前記半導体ウエハ9の前記第1面9aとは反対側の第2面9bを研削すること(図1(d))、
 前記半導体ウエハ9の研削された前記第2面9bにダイシングテープ14を貼付すること(図1(e))、
 前記第1支持シート101を前記熱硬化性樹脂フィルム12から剥離すること(図2(f))、
 前記熱硬化性樹脂フィルム12を熱硬化させて前記半導体ウエハ9の前記第1面に第1保護膜12’を形成すること(図2(g))、
 前記半導体ウエハ9を、前記第1面の側からハーフカットダイシングすること(図2(h))、
 前記半導体ウエハ9のハーフカットされた前記第1面の側にプラズマ照射して、前記バンプ91の頭頂部910の前記第1保護膜12’の残渣を除去するとともに、前記半導体ウエハ9を個片化すること(図2(i))、を含む。
 まず、図1(a)及び図1(b)に示すように、第1保護膜形成用シート1を、その熱硬化性樹脂フィルム12が半導体ウエハ9のバンプ側の第1面9a(「バンプ形成面」と称することがある。)に対向するように配置する。
 第1保護膜形成用シート1は、第1支持シート101上に熱硬化性樹脂フィルム12を備える。第1支持シート101は、第1基材11上に緩衝層13を備えるものが好ましい。すなわち、本発明に係る第1保護膜形成用シートは、1つの側面として、第1支持シートと、前記第1支持シート上に備えられた熱硬化性樹脂フィルムとを含む。別の側面として、本発明に係る第1保護膜形成用シートは、第1基材と、前記第1基材上に備えらえた緩衝層と、前記緩衝層上に備えられた熱硬化性樹脂フィルムとを含む。
 第1保護膜形成用シート1の詳細については後述する。
 半導体ウエハ9のバンプ91の高さは特に限定されないが、40~200μmであることが好ましく、50~180μmであることがより好ましく、60~140μmであることが特に好ましい。
 なお、本明細書において、「バンプの高さ」とは、バンプのうち、バンプ形成面から最も高い位置に存在する部位での高さ(すなわち、半導体ウエハのバンプ形成面からバンプの最も高い位置までの垂直方向の距離)を意味する。
 バンプ91の幅は特に限定されないが、60~250μmであることが好ましく、80~220μmであることがより好ましく、120~180μmであることが特に好ましい。
 なお、本明細書において、「バンプの幅」とは、バンプ形成面に対して垂直な方向からバンプを見下ろして平面視したときに、バンプ表面上の異なる2点間を直線で結んで得られる線分の最大値を意味する。
 隣り合うバンプ91間の距離は、特に限定されないが、100~350μmであることが好ましく、130~300μmであることがより好ましく、160~250μmであることが特に好ましい。
 なお、本明細書において、「隣り合うバンプ間の距離」とは、隣り合うバンプ同士の表面間の距離の最小値を意味する。
 半導体ウエハの厚さAは、特に限定されないが、50~200μmであることが好ましく、65~180μmであることがより好ましく、80~150μmであることが特に好ましい。
 なお、本明細書において、「半導体ウエハの厚さA」とは、半導体ウエハ、特に、研削後の半導体ウエハの厚さを意味する。
 本明細書における「厚さ」は、特に断りがない限り、無作為に選択した10箇所で、定圧厚さ測定器により測定した値の平均値である。
 次に、半導体ウエハ9上のバンプ91に熱硬化性樹脂フィルム12を接触させて、第1保護膜形成用シート1を半導体ウエハ9に圧着させる。これにより、熱硬化性樹脂フィルム12の第1面12aを、バンプ91の表面91a及び半導体ウエハ9の第1面9aに、順次圧着させる。このとき、熱硬化性樹脂フィルム12を加熱することで、熱硬化性樹脂フィルム12は軟化し、バンプ91を覆うようにしてバンプ91間に広がり、第1面9aに密着するとともに、バンプ91の表面91a、特に半導体ウエハ9の第1面9aの近傍部位の表面91aを覆って、バンプ91を埋め込む。
 第1保護膜形成用シート1を半導体ウエハ9に圧着させる方法としては、各種シートを対象物に圧着させて貼付する公知の方法を適用でき、例えば、ラミネートローラーを用いる方法等が挙げられる。
 半導体ウエハ9に圧着させるときの第1保護膜形成用シート1の加熱温度は、熱硬化性樹脂フィルム12の硬化が全く又は過度に進行しない程度の温度であればよく、80~100℃であることが好ましく、85~95℃であることがより好ましい。
 第1保護膜形成用シート1を半導体ウエハ9に圧着させるときの圧力は、特に限定されないが、0.1~1.5MPaであることが好ましく、0.3~1MPaであることがより好ましい。
 上記のように、第1保護膜形成用シート1を半導体ウエハ9に圧着させると、第1保護膜形成用シート1中の熱硬化性樹脂フィルム12は、バンプ91から圧力を加えられ、初期には、熱硬化性樹脂フィルム12の第1面12aが凹状に変形する。
 以上により、第1保護膜形成用シート1を、その熱硬化性樹脂フィルム12により半導体ウエハ9の第1面9aに貼り合わせる(図1(c))。
 次いで、必要により、半導体ウエハ9のバンプ形成面とは反対側の第2面9b(すなわち裏面)を研削し(図1(d))、その後、この裏面に、ダイシングシートを貼付する(図1(e))。ダイシングシートとしては、例えば、硬化によって、半導体ウエハ及び半導体チップの裏面を保護するための第2保護膜を形成する第2保護膜形成フィルムを備えたものであってもよい。
 次いで、半導体ウエハ9の第1面9aに貼り合わせた第1保護膜形成用シート1のうち、熱硬化性樹脂フィルム12のみを第1面9aに残して、第1支持シート101を熱硬化性樹脂フィルム12から剥離させる(図2(f))。ここで「第1支持シート101」とは、例えば、図1に示す第1保護膜形成用シート1の場合には、第1基材11及び緩衝層13である。
 なお、第一実施形態の第1保護膜付き半導体チップの製造方法においては、以上の様に第1支持シート101を用いた実施形態を示したが、図2(f)に示す形態とすることができれば、図1(a)~図1(d)の工程は必須ではなく、任意の方法を採用することができる。
 次いで、熱硬化性樹脂フィルム12を硬化させることにより、半導体ウエハのバンプ形成面に第1保護膜12’を形成する(図2(g))。
 第1保護膜12’を備えた状態の半導体ウエハ9をハーフカットダイシングする(図2(h))。「ハーフカットダイシング」とは、第1保護膜12’とともに、第1保護膜12’の側から半導体ウエハ9を完全に切断しないように切り込むダイシング方法である。ハーフカットダイシングの方法としては、第1保護膜12’とともに、第1保護膜12’の側から半導体ウエハ9をハーフカットダイシングできる方法であればよく、ブレードダイシングであってもよく、レーザーグルービングであってもよい。
 なお、本発明の半導体チップの製造方法は、第一実施形態の第1保護膜付き半導体チップの製造方法の各工程を上記の順番に行ってもよく、例えば、第一実施形態の第1保護膜付き半導体チップの製造方法の変形として、第1支持シート101上に熱硬化性樹脂フィルム12を備えた第1保護膜形成用シート1(図1(a))の前記熱硬化性樹脂フィルム12を、バンプ91を有する半導体ウエハ9(図1(b))の前記バンプ91側の第1面9aに貼付すること(図1(c))、
 半導体ウエハ9の前記第1面9aとは反対側の第2面9bを研削すること(図1(d))、
 半導体ウエハ9の研削された前記第2面9bにダイシングテープ14を貼付すること(図1(e))、
 前記第1支持シート101を前記熱硬化性樹脂フィルム12から剥離すること(図2(f))、
 前記半導体ウエハ9を、前記第1面の側からハーフカットダイシングすること、
 前記熱硬化性樹脂フィルム12を熱硬化させて前記半導体ウエハ9の前記第1面に第1保護膜12’を形成すること(図1(h))、及び
 前記半導体ウエハ9のハーフカットされた前記第1面の側にプラズマ照射して、前記バンプ91の頭頂部910の前記第1保護膜12’の残渣を除去するとともに、前記半導体ウエハ9を個片化すること(図2(i))、を含む方法が挙げられ、前記方法は前記各工程をこの順番に行ってもよい。
 また、第一実施形態の第1保護膜付き半導体チップの製造方法のさらなる変形として、熱硬化性樹脂フィルム12を、バンプ91を有する半導体ウエハ9の前記バンプ91側の第1面9aに貼付すること(図2(f))、
 前記半導体ウエハ9を、前記第1面の側からハーフカットダイシングすること、
 前記熱硬化性樹脂フィルム12を熱硬化させて前記半導体ウエハ9の前記第1面に第1保護膜12’を形成すること(図2(h))、及び
 前記半導体ウエハ9のハーフカットされた前記第1面の側にプラズマ照射して、前記バンプ91の頭頂部910の前記第1保護膜12’の残渣を除去するとともに、前記半導体ウエハ9を個片化すること(図2(i))を含む方法が挙げられ、前記方法は前記各工程をこの順番に行ってもよい。
 半導体ウエハのハーフカットされた部分の残りの厚さA(すなわち、半導体ウエハの厚さからハーフカットされた部分を除いた厚さ)は、特に限定されないが、半導体ウエハの厚さAの1/5~4/5であることが好ましく、厚さAの1/4~3/4であることがより好ましく、厚さAの1/3~2/3であることが特に好ましい。半導体ウエハのハーフカットされた部分の残りの厚さAは、25~100μmであることが好ましく、32~90μmであることがより好ましく、40~75μmであることが特に好ましい。
 前記半導体ウエハ9のハーフカットされた前記第1面の側にプラズマ照射して、前記バンプ91の頭頂部910の前記第1保護膜12’の残渣を除去するとともに、前記半導体ウエハ9を個片化する(図2(i))。半導体ウエハ9をハーフカットダイシングした後プラズマ照射することにより、レジスト膜を被覆することなくプラズマ照射によるダイシングが可能となるだけでなく、バンプ91の頭頂部910の第1保護膜12’の残渣除去と、半導体ウエハ9の個片化を、同時に達成できることができ、生産性に優れる。また、ハーフカットダイシングの後プラズマ照射してダイシングするので、チッピングの発生を低減でき、チップ強度の向上を図ることができる。また、バンプ91の頭頂部910の第1保護膜12’の残渣は、バンプ91の頭頂部910にできた窪み部に入り込むように残っている場合がある。このバンプ91の頭頂部910の窪み部に残る第1保護膜12’の残渣をも、プラズマ照射により取り除くことができるので、接続信頼性に優れた半導体装置を効率よく製造できる。
 プラズマ照射を行うプラズマ処理装置は、特に限定されず、公知のプラズマ処理装置を用いることができる。また、プラズマ処理の条件は、第1保護膜12’及び半導体ウエハ9の種類などに応じて異なり、特に限定されないが、ハーフカットダイシングされた前記半導体ウエハについて、前記半導体ウエハのハーフカットされた部分の残りの厚さA(μm)と、前記半導体ウエハのバンプ側の第1面上の第1保護膜の厚さB(μm)(すなわち、半導体ウエハ上のバンプのない部分における第1保護膜の厚さ)と、前記バンプの頭頂部上の第1保護膜の厚さC(μm)と、プラズマ照射による半導体ウエハのエッチング速度a(μm/min)と、プラズマ照射による第1保護膜のエッチング速度b(μm/min)と、プラズマ照射の時間t(min)とが、下記式(1)、式(2)及び式(3)の関係を充足することが好ましい。
 A<at ・・・(1)
 B>bt ・・・(2)
 C<bt ・・・(3)
 なお、ハーフカットされた部分の残りの厚さA、半導体ウエハのバンプ側の第1面上の第1保護膜の厚さB、及び、バンプの頭頂部上の第1保護膜の厚さCは、取得する半導体チップの範囲の、任意の5箇所で、走査型電子顕微鏡により、厚さを測定した平均で表される値として取得できる。
 本明細書において、「エッチング速度」とは、各対象物に対してプラズマ照射した際にエッチングされる速度を意味する。
 取得する半導体チップの範囲で、ハーフカットされた部分の残りの厚さにばらつきがあるとき、ハーフカットされた部分の残りの厚さの最大値A’が式(1)’を充足することがより好ましく、バンプ側の第1面上の第1保護膜の厚さにばらつきがあるとき、バンプ側の第1面上の第1保護膜の厚さの最小値B’が式(2)’を充足することがより好ましく、バンプの頭頂部上の第1保護膜の厚さにばらつきがあるとき、バンプの頭頂部上の第1保護膜の厚さの最大値C’が式(3)’を充足することがより好ましい。
 A’<at ・・・(1)’
 B’>bt ・・・(2)’
 C’<bt ・・・(3)’
 好ましくは、式(1)、式(2)及び式(3)の関係、より好ましくは、式(1)’、式(2)’及び式(3)’の関係を充足することで、時間t(min)のプラズマ照射後の半導体ウエハは個片化され、バンプ側の第1面上の第1保護膜の厚さがB-bt>0となって、バンプ形成面を保護する第1保護膜付き半導体チップを得ることができる。
 プラズマ照射における照射ガスとしては、フッ素系安定ガス(SF、CF、C、C、CHF、C、NF、XeF等)、O、Ar等が挙げられ、半導体ウエハのエッチング性に優れるという観点から、SF、CF又はCHFが好ましい。
 プラズマパワー条件としては、100~8000Wが好ましい。
 プラズマ照射による半導体ウエハのエッチング速度aは、0.3~30μm/minが好ましく、0.4~25μm/minが好ましく、0.5~20μm/minが好ましい。プラズマ照射による第1保護膜のエッチング速度bは、0.1~2μm/minが好ましく、0.2~1.5μm/minが好ましく、0.3~1.0μm/minが好ましい。
 バンプの頭頂部上の第1保護膜はバンプによって圧縮されるので、バンプの頭頂部上の第1保護膜の厚さC(μm)は、半導体ウエハのバンプ側の第1面上の第1保護膜の厚さB(μm)よりも薄くなる。半導体ウエハはプラズマ照射によって容易にエッチングされるのに対して、第1保護膜は熱硬化された樹脂でできているので、プラズマ照射による半導体ウエハのエッチング速度a(μm/min)は、プラズマ照射による第1保護膜のエッチング速度b(μm/min)よりも充分に大きい。よって、プラズマ照射の時間t(min)を調整することにより、前記式(1)、式(2)及び式(3)の関係を充足するプラズマ照射の条件を容易に調整することができる。
 例えば、半導体ウエハのバンプ側の第1面上の第1保護膜の厚さBが30μm、バンプの頭頂部上の第1保護膜の厚さCが3μm、厚さ100μmの半導体ウエハについて、残りの厚さAを50μmまでハーフカットし、プラズマ照射ガス:SF、プラズマパワー:2000Wの条件でプラズマ照射することにより、半導体ウエハのエッチング速度aを15μm/minとすることができ、第1保護膜のエッチング速度bを1.5μm/minとすることができ、前記式(1)、式(2)及び式(3)の関係を充足する。
 以降は、従来法と同様の方法により、半導体装置の製造までを行うことができる。すなわち、第1保護膜付き半導体チップをピックアップし、ピックアップした半導体チップを配線基板にフリップチップ実装し、最終的に半導体装置を製造する。
<第二実施形態>
 図3は、本発明の第1保護膜付き半導体チップの製造方法の第二実施形態を模式的に示す概略図である。
 第二実施形態の第1保護膜付き半導体チップの製造方法は、熱硬化性樹脂フィルム12を、バンプを有する半導体ウエハ9のバンプ側の第1面に貼付すること(図3(f))、
 半導体ウエハ9を前記第1面の側からハーフカットダイシングすること(図3(g’))、
 半導体ウエハ9のハーフカットされた前記第1面の側にプラズマ照射して、前記バンプの頭頂部の熱硬化性樹脂フィルム12を除去するとともに半導体ウエハ9を個片化すること(図3(h’))、及び
 熱硬化性樹脂フィルム12を熱硬化させて半導体ウエハ9の前記第1面に第1保護膜12’を形成すること(図3(i’))、を含む第1保護膜付き半導体チップの製造方法である。
 なお、第二実施形態の第1保護膜付き半導体チップの製造方法において、図3(f)に示す形態とする方法として、図1(a)、図1(b)、図1(c)、図1(d)及び図3(f)を経る工程が挙げられるが、図1(a)~図1(d)の工程は必須ではなく、任意の方法を採用することができる。
 前記半導体ウエハ9のハーフカットされた前記第1面の側にプラズマ照射して、前記バンプ91の頭頂部910の熱硬化性樹脂フィルム12の残渣を除去するとともに、前記半導体ウエハ9を個片化する(図3(h’))。半導体ウエハ9をハーフカットダイシングした後プラズマ照射することにより、レジスト膜を被覆することなくプラズマ照射によるダイシングが可能となるだけでなく、バンプ91の頭頂部910の熱硬化性樹脂フィルム12の残渣除去と、半導体ウエハ9の個片化を、同時に達成できることができ、生産性に優れる。また、ハーフカットダイシングの後プラズマ照射してダイシングするので、チッピングの発生を低減でき、チップ強度の向上を図ることができる。また、バンプ91の頭頂部910の熱硬化性樹脂フィルム12の残渣は、バンプ91の頭頂部910にできた窪み部に入り込むように残っている場合がある。このバンプ91の頭頂部910の窪み部に残る熱硬化性樹脂フィルム12の残渣をも、プラズマ照射により取り除くことができるので、接続信頼性に優れた半導体装置を効率よく製造できる。
 プラズマ照射を行うプラズマ処理装置は、特に限定されず、公知のプラズマ処理装置を用いることができる。また、プラズマ処理の条件は、熱硬化性樹脂フィルム12及び半導体ウエハ9の種類などに応じて異なり、特に限定されないが、ハーフカットダイシングされた前記半導体ウエハについて、前記半導体ウエハのハーフカットされた部分の残りの厚さA(μm)と、前記半導体ウエハのバンプ側の第1面上の熱硬化性樹脂フィルム12の厚さD(μm)(すなわち、半導体ウエハ上のバンプのない部分における熱硬化性樹脂フィルムの厚さ)と、前記バンプの頭頂部上の熱硬化性樹脂フィルム12の厚さE(μm)と、プラズマ照射による半導体ウエハのエッチング速度a(μm/min)と、プラズマ照射による熱硬化性樹脂フィルム12のエッチング速度d(μm/min)と、プラズマ照射の時間t(min)とが、下記式(1)、式(4)及び式(5)の関係を充足することが好ましい。
 A<at ・・・(1)
 D>dt ・・・(4)
 E<dt ・・・(5)
 ハーフカットされた部分の残りの厚さA、半導体ウエハのバンプ側の第1面上の熱硬化性樹脂フィルム12の厚さD、及び、バンプの頭頂部上の第1保護膜の厚さEは、取得する半導体チップの範囲の、任意の5箇所で、走査型電子顕微鏡により、厚さを測定した平均で表される値として取得できる。
 取得する半導体チップの範囲で、ハーフカットされた部分の残りの厚さにばらつきがあるとき、ハーフカットされた部分の残りの厚さの最大値A’が式(1)’を充足することがより好ましく、バンプ側の第1面上の熱硬化性樹脂フィルム12の厚さにばらつきがあるとき、バンプ側の第1面上の熱硬化性樹脂フィルム12の厚さの最小値D’が式(4)’を充足することがより好ましく、バンプの頭頂部上の第1保護膜の厚さにばらつきがあるとき、バンプの頭頂部上の熱硬化性樹脂フィルム12の厚さの最大値E’が式(5)’を充足することがより好ましい。
 A’<at ・・・(1)’
 D’>bt ・・・(4)’
 E’<bt ・・・(5)’
 好ましくは、式(1)、式(4)及び式(5)の関係、より好ましくは、式(1)’、式(4)’及び式(5)’の関係を充足することで、時間t(min)のプラズマ照射後の半導体ウエハは個片化され、バンプ側の第1面上の第1保護膜の厚さがD-dt>0となって、バンプ形成面を保護する第1保護膜付き半導体チップを得ることができる。
 プラズマ照射による半導体ウエハのエッチング速度aは、0.3~30μm/minが好ましく、0.4~25μm/minが好ましく、0.5~20μm/minが好ましい。プラズマ照射による熱硬化性樹脂フィルム12のエッチング速度dは、0.1~2μm/minが好ましく、0.2~1.5μm/minが好ましく、0.3~1.0μm/minが好ましい。
 バンプの頭頂部上の第1保護膜はバンプによって圧縮されるので、バンプの頭頂部上の熱硬化性樹脂フィルム12の厚さE(μm)は、半導体ウエハのバンプ側の第1面上の熱硬化性樹脂フィルム12の厚さD(μm)よりも薄くなる。半導体ウエハはプラズマ照射によって容易にエッチングされるので、プラズマ照射による半導体ウエハのエッチング速度a(μm/min)は、プラズマ照射による熱硬化性樹脂フィルム12のエッチング速度d(μm/min)よりも充分に大きい。よって、プラズマ照射の時間t(min)を調整することにより、前記式(1)、式(4)及び式(5)の関係を充足するプラズマ照射の条件を容易に調整することができる。
 例えば、半導体ウエハのバンプ側の第1面上の熱硬化性樹脂フィルム12の厚さDが30μm、バンプの頭頂部上の熱硬化性樹脂フィルム12の厚さEが3μm、厚さ100μmの半導体ウエハについて、残りの厚さAを50μmまでハーフカットし、プラズマ照射ガス:SF、プラズマパワー:2000Wの条件でプラズマ照射することにより、半導体ウエハのエッチング速度aを15μm/minとすることができ、熱硬化性樹脂フィルム12のエッチング速度dを1.5μm/minとすることができ、前記式(1)、式(4)及び式(5)の関係を充足する。
 以降は、従来法と同様の方法により、半導体装置の製造までを行うことができる。すなわち、第1保護膜付き半導体チップをピックアップし、ピックアップした半導体チップを配線基板にフリップチップ実装し、最終的に半導体装置を製造する。
◎第1保護膜形成用シート
 図1(a)は、第1支持シート101上に熱硬化性樹脂フィルム12を備えた第1保護膜形成用シート1の一実施形態を模式的に示す断面図である。
 図1(a)に示す第1保護膜形成用シート1は、第1支持シート101と、第1支持シート101の一方の表面101a上に備えらえた熱硬化性樹脂フィルム12とを含む。より具体的には、第1保護膜形成用シート1は、第1基材11と、第1基材11上に備えらえた緩衝層13と、緩衝層13上に備えられた熱硬化性樹脂フィルム12とを含み、第1基材11及び緩衝層13が第1支持シート101を構成している。
 第1保護膜形成用シートは、図1(a)に示すものに限定されず、本発明の効果を損なわない範囲内において、図1(a)に示すものにおいて、一部の構成が変更、削除又は追加されたものであってもよい。
 次に、第1保護膜形成用シートを構成する各層について説明する。
◎熱硬化性樹脂フィルム
 熱硬化性樹脂フィルムは、半導体ウエハのバンプ側の第1面(すなわち、バンプ形成面)、及びこのバンプ形成面上に設けられたバンプを保護するために用いられるものである。
 本発明の熱硬化性樹脂フィルムは、通常の樹脂フィルムと同様、加熱により軟化するが、更に加熱することにより熱硬化するものであり、熱硬化前の常温(23℃)の熱硬化性樹脂フィルムよりも、熱硬化後に常温に戻したときには硬くなる性質を有する。これにより、バンプを有する表面に形成される第1保護膜が、保護膜として機能することとなる。
 熱硬化性樹脂フィルムは、シート状又はフィルム状であり、その構成材料は、特に限定されない。
 熱硬化性樹脂フィルムは1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 熱硬化性樹脂フィルムの厚さは、1~100μmであることが好ましく、5~75μmであることがより好ましく、5~50μmであることが特に好ましい。熱硬化性樹脂フィルムの厚さが前記下限値以上であることで、保護能がより高い第1保護膜を形成できる。
 また、熱硬化性樹脂フィルムの厚さが前記上限値以下であることで、過剰な厚さとなることが抑制される。
 ここで、「熱硬化性樹脂フィルムの厚さ」とは、熱硬化性樹脂フィルム全体の厚さを意味し、例えば、複数層からなる熱硬化性樹脂フィルムの厚さとは、熱硬化性樹脂フィルムを構成するすべての層の合計の厚さを意味する。
◎第1保護膜
 第1保護膜は、半導体ウエハのバンプ側の第1面(すなわち、バンプ形成面)、及びこのバンプ形成面上に設けられたバンプ上で、熱硬化されてできる膜である。
 半導体ウエハのバンプ側の第1面上の第1保護膜の厚さB(μm)(すなわち、半導体ウエハ上のバンプのない部分における第1保護膜の厚さ)は、熱硬化性樹脂フィルムの厚さと同様である。バンプの頭頂部上の第1保護膜はバンプによって圧縮されるので、バンプの頭頂部上の第1保護膜の厚さC(μm)は、熱硬化性樹脂フィルムの厚さ、すなわち、半導体ウエハのバンプ側の第1面上の第1保護膜の厚さB(μm)よりも薄くなる。半導体ウエハのバンプ側の第1面上の第1保護膜の厚さBは、1.1~100μmであることが好ましく、5~75μmであることがより好ましく、10~50μmであることが特に好ましい。
 バンプの頭頂部上の第1保護膜の厚さCは、0.11~10μmであることが好ましく、0.5~7.5μmであることがより好ましく、1~5μmであることが特に好ましい。
<<熱硬化性樹脂フィルム形成用組成物>>
 熱硬化性樹脂フィルムは、その構成材料を含有する熱硬化性樹脂フィルム形成用組成物から形成できる。例えば、熱硬化性樹脂フィルムの形成対象面に熱硬化性樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に熱硬化性樹脂フィルムを形成できる。熱硬化性樹脂フィルムのより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。熱硬化性樹脂フィルム形成用組成物中の、常温(23℃)で気化しない成分同士の含有量の比率は、通常、熱硬化性樹脂フィルムの前記成分同士の含有量の比率と同じとなる。
 熱硬化性樹脂フィルム形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 熱硬化性樹脂フィルム形成用組成物の乾燥条件は、特に限定されないが、熱硬化性樹脂フィルム形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましく、この場合、例えば、70~130℃で10秒~5分間の条件で乾燥させることが好ましい。
<樹脂層形成用組成物>
 熱硬化性樹脂フィルム形成用組成物としては、例えば、重合体成分(A)及び熱硬化性成分(B)を含有する熱硬化性樹脂フィルム形成用組成物(本明細書においては、単に「樹脂層形成用組成物」と略記することがある)等が挙げられる。
[重合体成分(A)]
 重合体成分(A)は、熱硬化性樹脂フィルムに造膜性や可撓性等を付与するための重合体化合物であり、重合性化合物が重合反応して形成されたとみなせる成分である。なお、本明細書において重合反応には、重縮合反応も含まれる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有する重合体成分(A)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 重合体成分(A)としては、例えば、ポリビニルアセタール、アクリル系樹脂、ポリエステル、ウレタン系樹脂、アクリルウレタン樹脂、シリコーン系樹脂、ゴム系樹脂、フェノキシ樹脂、熱可塑性ポリイミド等が挙げられる。
 重合体成分(A)における前記ポリビニルアセタールとしては、公知のものが挙げられる。
 なかでも、好ましいポリビニルアセタールとしては、例えば、ポリビニルホルマール、ポリビニルブチラール等が挙げられ、ポリビニルブチラールがより好ましい。
 ポリビニルブチラールとしては、下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (式中、l、m及びnは、ポリビニルブチラールを構成する全構成単の合計モル数に対するそれぞれの構成単位の含有割合(mol%)である。)
 ポリビニルアセタールの重量平均分子量(Mw)は、5000~200000であることが好ましく、8000~100000であることがより好ましい。
 ブチラール基を有する構成単位の含有割合l(ブチラール化度)は、ポリビニルブチラールを構成する全構成単位の合計モル数に対して、40~90mol%が好ましく、50~85mol%がより好ましく、60~76mol%が特に好ましい。
 アセチル基を有する構成単位の含有割合mは、ポリビニルブチラールを構成する全構成単位の合計モル数に対して、0.1~9mol%が好ましく、0.5~8mol%がより好ましく、1~7mol%が特に好ましい。
 水酸基を有する構成単位の含有割合nは、ポリビニルブチラールを構成する全構成単位の合計モル数に対して、10~60mol%が好ましく、10~50mol%がより好ましく、20~40mol%が特に好ましい。
 ポリビニルアセタールのガラス転移温度(Tg)は、40~80℃であることが好ましく、50~70℃であることがより好ましい。
 ガラス転移温度は、例えば、示差走査熱量測定装置(ティー・エイ・インスツルメント・ジャパン社製,製品名「DSC Q2000」)によって、昇温・降温速度20℃/分で測定した結果を用いることができる。
 ポリビニルアセタールを構成する3種以上のモノマーの比率は任意に選択できる。
 重合体成分(A)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。アクリル系樹脂の重量平均分子量が前記下限値以上であることで、熱硬化性樹脂層の形状安定性(保管時の経時安定性)が向上する。また、アクリル系樹脂の重量平均分子量が前記上限値以下であることで、被着体の凹凸面へ熱硬化性樹脂層が追従し易くなり、被着体と熱硬化性樹脂層との間でボイド等の発生がより抑制される。
 なお、本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。
 アクリル系樹脂のガラス転移温度(Tg)は、-50~70℃であることが好ましく、-30~50℃であることがより好ましい。アクリル系樹脂のTgが前記下限値以上であることで、第1保護膜と第1支持シートとの接着力が抑制されて、第1支持シートの剥離性が向上する。また、アクリル系樹脂のTgが前記上限値以下であることで、熱硬化性樹脂フィルム及び第1保護膜の被着体との接着力が向上する。
 アクリル系樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;(メタ)アクリル酸エステル以外に、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーが共重合してなる共重合体等が挙げられる。
 アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリルともいう)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチルともいう)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチルともいう)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリルともいう)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。
 ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語についても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。
 アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 アクリル系樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、第1保護膜形成用シートを用いて得られたパッケージの信頼性が向上する傾向がある。
 本発明においては、例えば、重合体成分(A)として、ポリビニルアセタール及びアクリル系樹脂以外の熱可塑性樹脂(以下、単に「熱可塑性樹脂」と略記することがある)を、ポリビニルアセタール及びアクリル系樹脂を用いずに単独で用いてもよいし、ポリビニルアセタール又はアクリル系樹脂と併用してもよい。前記熱可塑性樹脂を用いることで、第1保護膜の第1支持シートからの剥離性が向上したり、被着体の凹凸面へ熱硬化性樹脂フィルムが追従し易くなり、被着体と熱硬化性樹脂フィルムとの間でボイド等の発生がより抑制されることがある。
 前記熱可塑性樹脂の重量平均分子量は1000~100000であることが好ましく、3000~80000であることがより好ましい。
 前記熱可塑性樹脂のガラス転移温度(Tg)は、-30~150℃であることが好ましく、-20~120℃であることがより好ましい。
 前記熱可塑性樹脂としては、例えば、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレン等が挙げられる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有する前記熱可塑性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性樹脂フィルムの重合体成分(A)の含有量)は、重合体成分(A)の種類によらず、5~85質量%であることが好ましく、5~80質量%であることがより好ましく、例えば、5~70質量%、5~60質量%、5~50質量%、5~40質量%、及び5~30質量%のいずれかであってもよい。ただし、樹脂層形成用組成物におけるこれら含有量は一例である。
 重合体成分(A)は、熱硬化性成分(B)にも該当する場合がある。本発明においては、樹脂層形成用組成物が、このような重合体成分(A)及び熱硬化性成分(B)の両方に該当する成分を含有する場合、樹脂層形成用組成物は、重合体成分(A)及び熱硬化性成分(B)を含有するとみなす。
[熱硬化性成分(B)]
 熱硬化性成分(B)は、熱硬化性樹脂フィルムを硬化させて、硬質の第1保護膜を形成するための成分である。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有する熱硬化性成分(B)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 熱硬化性成分(B)としては、例えば、エポキシ系熱硬化性樹脂、熱硬化性ポリイミド、ポリウレタン、不飽和ポリエステル、シリコーン樹脂等が挙げられ、エポキシ系熱硬化性樹脂が好ましい。
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
 エポキシ樹脂(B1)としては、不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、第1保護膜形成用シートを用いて得られたパッケージの信頼性が向上する。
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基ともいう)、2-プロペニル基(アリル基ともいう)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
 エポキシ樹脂(B1)の重量平均分子量は、15000以下であることが好ましく、10000以下であることがより好ましく、5000以下であることが特に好ましい。
 エポキシ樹脂(B1)の重量平均分子量の下限値は、特に限定されない。ただし、熱硬化性樹脂フィルムの硬化性、並びに第1保護膜の強度及び耐熱性がより向上する点では、エポキシ樹脂(B1)の重量平均分子量は、300以上であることが好ましく、500以上であることがより好ましい。
 エポキシ樹脂(B1)の重量平均分子量は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 例えば、エポキシ樹脂(B1)の重量平均分子量は、好ましくは300~15000、より好ましくは300~10000、特に好ましくは300~3000である。また、エポキシ樹脂(B1)の重量平均分子量は、好ましくは500~15000、より好ましくは500~10000、特に好ましくは500~3000である。ただし、これらは、エポキシ樹脂(B1)の好ましい重量平均分子量の一例である。
 本明細書において、「数平均分子量」は、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定される標準ポリスチレン換算の値で表される数平均分子量を意味する。
 エポキシ樹脂(B1)のエポキシ当量は、100~1000g/eqであることが好ましく、130~800g/eqであることがより好ましい。
 本明細書において、「エポキシ当量」とは1当量のエポキシ基を含むエポキシ化合物のグラム数(g/eq)を意味し、JIS K 7236:2001の方法に従って測定することができる。
 エポキシ樹脂(B1)は、常温(23℃)で液状であるもの(本明細書においては、単に「液状のエポキシ樹脂(B1)」と称することがある)が好ましい。
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(本明細書においては、「DICY」と略記することがある)等が挙げられる。
 熱硬化剤(B2)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
 熱硬化剤(B2)としてフェノール系硬化剤を用いる場合には、第1保護膜の第1支持シートからの剥離性が向上する点から、熱硬化剤(B2)は軟化点又はガラス転移温度が高いものが好ましい。
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムにおいて、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、1~150質量部、1~100質量部、1~75質量部、1~50質量部、及び1~30質量部のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、熱硬化性樹脂フィルムの硬化がより進行し易くなる。また、熱硬化剤(B2)の前記含有量が前記上限値以下であることで、熱硬化性樹脂フィルムの吸湿率が低減されて、第1保護膜を用いて得られたパッケージの信頼性がより向上する。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)は、重合体成分(A)の含有量100質量部に対して、50~1000質量部であることが好ましく、60~950質量部であることがより好ましく、70~900質量部であることが特に好ましい。熱硬化性成分(B)の前記含有量がこのような範囲であることで、第1保護膜と第1支持シートとの接着力が抑制されて、第1支持シートの剥離性が向上する。
[硬化促進剤(C)]
 樹脂層形成用組成物及び熱硬化性樹脂フィルムは、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、樹脂層形成用組成物の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(すなわち、少なくとも1個の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(すなわち、少なくとも1個の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有する硬化促進剤(C)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 硬化促進剤(C)を用いる場合、樹脂層形成用組成物及び熱硬化性樹脂フィルムにおいて、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。また、硬化促進剤(C)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性樹脂フィルム中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。
[充填材(D)]
 樹脂層形成用組成物及び熱硬化性樹脂フィルムは、充填材(D)を含有していてもよい。熱硬化性樹脂フィルムが充填材(D)を含有することにより、熱硬化性樹脂フィルムを硬化して得られた第1保護膜は、熱膨張係数の調整が容易となる。そして、この熱膨張係数を第1保護膜の形成対象物に対して最適化することで、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。また、熱硬化性樹脂フィルムが充填材(D)を含有することにより、第1保護膜の吸湿率を低減したり、放熱性を向上させたりすることもできる。
 充填材(D)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有する充填材(D)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 充填材(D)の平均粒子径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.1μm以下であることが特に好ましい。
 なお、本明細書において「平均粒子径」とは、特に断りのない限り、レーザー回折散乱法によって求められた粒度分布曲線における、積算値50%での粒子径(D50)の値を意味する。
 充填材(D)の平均粒子径の下限値は、特に限定されない。例えば、充填材(D)の平均粒径は、充填材(D)の入手がより容易である点では、0.01μm以上であることが好ましい。 1つの側面として、充填材(D)の平均粒子径は、0.01μm以上1μm以下であることが好ましく、0.01μm以上0.5μm以下であることがより好ましく、0.01μm以上0.1μm以下であることが特に好ましい。
 充填材(D)を用いる場合、樹脂層形成用組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する充填材(D)の含有量の割合(すなわち、熱硬化性樹脂フィルムの充填材(D)の含有量)は、3~60質量%であることが好ましく、3~55質量%であることがより好ましい。
[カップリング剤(E)]
 樹脂層形成用組成物及び熱硬化性樹脂フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性樹脂フィルムを硬化して得られた第1保護膜は、耐熱性を損なうことなく、耐水性が向上する。
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有するカップリング剤(E)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 カップリング剤(E)を用いる場合、樹脂層形成用組成物及び熱硬化性樹脂フィルムにおいて、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量を100質量部としたとき、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。
 カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂フィルムの被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。また、カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。
[架橋剤(F)]
 重合体成分(A)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、樹脂層形成用組成物及び熱硬化性樹脂フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性樹脂フィルムの初期接着力及び凝集力を調節できる。
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(すなわち、金属キレート構造を有する架橋剤)、アジリジン系架橋剤(すなわち、アジリジニル基を有する架橋剤)等が挙げられる。
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂フィルムに架橋構造を簡便に導入できる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有する架橋剤(F)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 架橋剤(F)を用いる場合、樹脂層形成用組成物において、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。また、架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。
[他の成分]
 樹脂層形成用組成物及び熱硬化性樹脂フィルムは、本発明の効果を損なわない範囲内において、上述の重合体成分(A)、熱硬化性成分(B)、硬化促進剤(C)、充填材(D)、カップリング剤(E)及び架橋剤(F)以外の、他の成分をさらに含有していてもよい。
 前記他の成分としては、例えば、エネルギー線硬化性樹脂、光重合開始剤、着色剤、汎用添加剤等が挙げられる。前記汎用添加剤は、公知のものであり、目的に応じて任意に選択でき、特に限定されないが、好ましいものとしては、例えば、可塑剤、帯電防止剤、酸化防止剤、着色剤(染料、顔料)、ゲッタリング剤等が挙げられる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムが含有する前記他の成分は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムの前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
 樹脂層形成用組成物及び熱硬化性樹脂フィルムは、重合体成分(A)及び熱硬化性成分(B)を含有し、重合体成分(A)としてポリビニルアセタールを含有し、かつエポキシ樹脂(B1)として液状のものを含有することが好ましく、これら成分以外に、さらに、硬化促進剤(C)及び充填材(D)を含有するものがより好ましい。そして、この場合の充填材(D)は、上述の平均粒径を有することが好ましい。
[溶媒]
 樹脂層形成用組成物は、さらに溶媒を含有することが好ましい。溶媒を含有する樹脂層形成用組成物は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オールともいう)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(すなわち、アミド結合を有する化合物)等が挙げられる。
 樹脂層形成用組成物が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物が含有する溶媒は、樹脂層形成用組成物中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。
 樹脂層形成用組成物の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。
<<熱硬化性樹脂フィルム形成用組成物の製造方法>>
 樹脂層形成用組成物等の熱硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
◎第1支持シート
 第1保護膜形成用シート1において、第1支持シート101としては、公知のものを用いることができる。たとえば、第1支持シート101は、第1基材11と、第1基材11上に形成された緩衝層13と、を備えて構成されている。すなわち、第1保護膜形成用シート1は、第1基材11、緩衝層13及び熱硬化性樹脂フィルム12がこの順に、これらの厚さ方向において積層されて、構成されている。
◎第1基材
 第1基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPEと略すことがある)、直鎖低密度ポリエチレン(LLDPEと略すことがある)、高密度ポリエチレン(HDPEと略すことがある)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
 第1基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1基材は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 なお、本明細書においては、第1基材の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。
 第1基材の厚さは、5~1000μmであることが好ましく、10~500μmであることがより好ましく、15~300μmであることがさらに好ましく、20~150μmであることが特に好ましい。
 ここで、「第1基材の厚さ」とは、第1基材全体の厚さを意味し、例えば、複数層からなる第1基材の厚さとは、第1基材を構成するすべての層の合計の厚さを意味する。
 第1基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い第1基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。
 第1基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。
 第1基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
 前記熱硬化性樹脂フィルムがエネルギー線硬化性である場合、第1基材はエネルギー線を透過させるものが好ましい。
 第1基材は、公知の方法で製造できる。例えば、樹脂を含有する第1基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。
◎剥離フィルム
 前記剥離フィルムは、この分野で公知のものでよい。
 好ましい前記剥離フィルムとしては、例えば、ポリエチレンテレフタレート等の樹脂製フィルムの少なくとも一方の表面が、シリコーン処理等によって剥離処理されたもの;フィルムの少なくとも一方の表面が、ポリオレフィンで構成された剥離面となっているもの等が挙げられる。
 剥離フィルムの厚さは、第1基材の厚さと同様であることが好ましい。
◎緩衝層
 緩衝層13は、緩衝層13とこれに隣接する層へ加えられる力に対して、緩衝作用を有する。ここでは、「緩衝層と隣接する層」として、熱硬化性樹脂フィルム12を示している。
 緩衝層13は、シート状又はフィルム状であり、エネルギー線硬化性であることが好ましい。エネルギー線硬化性である緩衝層13は、エネルギー線硬化させることで、後述する熱硬化性樹脂フィルム12からの剥離がより容易となる。
 緩衝層13の構成材料としては、例えば、各種粘着性樹脂が挙げられる。前記粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート等の粘着性樹脂が挙げられ、アクリル系樹脂が好ましい。緩衝層13がエネルギー線硬化性である場合には、その構成材料としては、エネルギー線硬化に必要な各種成分も挙げられる。
 なお、本発明において、「粘着性樹脂」とは、粘着性を有する樹脂と、接着性を有する樹脂と、の両方を含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。
 緩衝層13は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 緩衝層13の厚さは、30~500μmであることが好ましい。
 ここで、「緩衝層13の厚さ」とは、緩衝層13全体の厚さを意味し、例えば、複数層からなる緩衝層13の厚さとは、緩衝層13を構成するすべての層の合計の厚さを意味する。
<<粘着性樹脂組成物>>
 緩衝層13は、粘着性樹脂を含有する粘着性樹脂組成物から形成できる。例えば、緩衝層13の形成対象面に粘着性樹脂組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に緩衝層13を形成できる。
 粘着性樹脂組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 粘着性樹脂組成物の乾燥条件は、特に限定されないが、後述する溶媒を含有する粘着性樹脂組成物は、加熱乾燥させることが好ましい。溶媒を含有する粘着性樹脂組成物は、例えば、70~130℃で10秒~5分間の条件で乾燥させることが好ましい。
 緩衝層13がエネルギー線硬化性である場合、エネルギー線硬化性粘着剤を含有する粘着性樹脂組成物、すなわち、エネルギー線硬化性の粘着性樹脂組成物としては、例えば、非エネルギー線硬化性の粘着性樹脂(I-1a)(以下、「粘着性樹脂(I-1a)」と略記することがある)と、エネルギー線硬化性化合物と、を含有する粘着性樹脂組成物(I-1);非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)(以下、「粘着性樹脂(I-2a)」と略記することがある)を含有する粘着性樹脂組成物(I-2);前記粘着性樹脂(I-2a)と、エネルギー線硬化性低分子化合物と、を含有する粘着性樹脂組成物(I-3)等が挙げられる。
 粘着性樹脂組成物としては、エネルギー線硬化性の粘着性樹脂組成物以外に、非エネルギー線硬化性の粘着性樹脂組成物も挙げられる。
 非エネルギー線硬化性の粘着性樹脂組成物としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の、非エネルギー線硬化性の粘着性樹脂(I-1a)を含有する粘着性樹脂組成物(I-4)が挙げられ、アクリル系樹脂を含有するものが好ましい。
<<粘着性樹脂組成物の製造方法>>
 粘着性樹脂組成物(I-1)~(I-4)等の前記粘着性樹脂組成物は、前記粘着性樹脂と、必要に応じて前記粘着性樹脂以外の成分等の、粘着性樹脂組成物を構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
◇第1保護膜形成用シートの製造方法
 前記第1保護膜形成用シートは、上述の各層を対応する位置関係となるように順次積層することで製造できる。各層の形成方法は、先に説明したとおりである。
 例えば、第1基材上に緩衝層及び熱硬化性樹脂フィルムがこの順に、これらの厚さ方向において積層されてなる第1保護膜形成用シートは、以下に示す方法で製造できる。すなわち、第1基材に対して、緩衝層形成用の粘着性樹脂組成物を押出成形することにより、第1基材上に緩衝層を積層する。また、剥離フィルムの剥離処理面上に、上述の熱硬化性樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、熱硬化性樹脂フィルムを積層する。そして、この剥離フィルム上の熱硬化性樹脂フィルムを第1基材上の緩衝層と貼り合わせることで、第1基材上に緩衝層、熱硬化性樹脂フィルム及び剥離フィルムがこの順に積層されてなる第1保護膜形成用シートを得る。剥離フィルムは、第1保護膜形成用シートの使用時に取り除けばよい。
 上述の各層以外の他の層を備えた第1保護膜形成用シートは、上述の製造方法において、前記他の層の積層位置が適切な位置となるように、前記他の層の形成工程及び積層工程のいずれか一方又は両方を適宜追加して行うことで、製造できる。
 例えば、第1基材上に、密着層、緩衝層及び熱硬化性樹脂フィルムがこの順に、これらの厚さ方向において積層されてなる第1保護膜形成用シートは、以下に示す方法で製造できる。すなわち、第1基材に対して、密着層形成用組成物及び緩衝層形成用の粘着性樹脂組成物を共押出成形することにより、第1基材上に密着層及び緩衝層をこの順に積層する。そして、上記と同じ方法で、別途、剥離フィルム上に熱硬化性樹脂フィルムを積層する。次いで、この剥離フィルム上の熱硬化性樹脂フィルムを、第1基材及び密着層上の緩衝層と貼り合わせることで、第1基材上に、密着層、緩衝層、熱硬化性樹脂フィルム及び剥離フィルムがこの順に積層されてなる第1保護膜形成用シートを得る。熱硬化性樹脂フィルム上の剥離フィルムは、第1保護膜形成用シートの使用時に取り除けばよい。
 本発明は、バンプの頭頂部の第1保護膜の残渣除去と半導体ウエハの個片化を同時に達成でき、生産性に優れる半導体チップの製造方法を提供できるので、産業上極めて有用である。
 1・・・第1保護膜形成用シート、
11・・・第1基材、
12・・・熱硬化性樹脂フィルム、
12a・・・熱硬化性樹脂フィルムの第1面、
12’・・・第1保護膜、
13・・・緩衝層、
14・・・ダイシングシート、
101・・・第1支持シート、
9・・・半導体ウエハ、
9a・・・半導体ウエハの第1面(バンプ形成面)、
9b・・・半導体ウエハの第2面(裏面)、
91・・・バンプ、
91a・・・バンプの表面、
910・・・バンプの頭頂部

Claims (6)

  1.  熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
     前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、
     前記第1保護膜が形成された半導体ウエハを前記第1面の側からハーフカットダイシングすること、及び
     ハーフカットダイシングされた前記半導体ウエハの前記第1面の側にプラズマ照射することによって、前記バンプの頭頂部の前記第1保護膜の残渣を除去するとともに前記半導体ウエハを個片化すること、を含む、
    第1保護膜付き半導体チップの製造方法。
  2.  第1支持シートと前記第1支持シート上に備えられた熱硬化性樹脂フィルムとを含む第1保護膜形成用シートの前記熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
     前記第1支持シートを前記熱硬化性樹脂フィルムから剥離すること、
     前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、
     前記半導体ウエハを前記第1面の側からハーフカットダイシングすること、及び
     前記半導体ウエハのハーフカットされた前記第1面の側にプラズマ照射することによって、前記バンプの頭頂部の前記第1保護膜の残渣を除去するとともに前記半導体ウエハを個片化すること、を含む
     第1保護膜付き半導体チップの製造方法。
  3.  ハーフカットダイシングされた前記半導体ウエハについて、前記半導体ウエハのハーフカットされた部分の残りの厚さA(μm)と、前記半導体ウエハの前記第1面上の第1保護膜の厚さB(μm)と、前記バンプの頭頂部上の第1保護膜の厚さC(μm)と、プラズマ照射による前記半導体ウエハのエッチング速度a(μm/min)と、プラズマ照射による前記第1保護膜のエッチング速度b(μm/min)と、プラズマ照射の時間t(min)とが、下記式(1)、式(2)及び式(3)の関係を充足する、請求項1又は2に記載の第1保護膜付き半導体チップの製造方法。
     A<at ・・・(1)
     B>bt ・・・(2)
     C<bt ・・・(3)
  4.  熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
     前記熱硬化性樹脂フィルムが貼付された半導体ウエハを前記第1面の側からハーフカットダイシングすること、
     前記半導体ウエハのハーフカットされた前記第1面の側にプラズマ照射することによって、前記バンプの頭頂部の前記熱硬化性樹脂フィルムを除去するとともに前記半導体ウエハを個片化すること、及び
     前記個片化された半導体ウエハに貼付している前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、を含む、
     第1保護膜付き半導体チップの製造方法。
  5.  第1支持シートと前記第1支持シート上に備えられた熱硬化性樹脂フィルムとを含む第1保護膜形成用シートの前記熱硬化性樹脂フィルムを、バンプを有する半導体ウエハの前記バンプ側の第1面に貼付すること、
     前記第1支持シートを前記熱硬化性樹脂フィルムから剥離すること、
     前記熱硬化性樹脂フィルムが貼付している前記半導体ウエハを前記第1面の側からハーフカットダイシングすること、
     前記半導体ウエハのハーフカットされた前記第1面の側にプラズマ照射することによって、前記バンプの頭頂部の前記熱硬化性樹脂フィルムを除去するとともに前記半導体ウエハを個片化すること、及び
     前記個片化された半導体ウエハに貼付している前記熱硬化性樹脂フィルムを熱硬化させて前記半導体ウエハの前記第1面に第1保護膜を形成すること、とを含む
     第1保護膜付き半導体チップの製造方法。
  6.  ハーフカットダイシングされた前記半導体ウエハについて、前記半導体ウエハのハーフカットされた部分の残りの厚さA(μm)と、前記半導体ウエハの前記第1面上の熱硬化性樹脂フィルムの厚さD(μm)と、前記バンプの頭頂部上の熱硬化性樹脂フィルムの厚さE(μm)と、プラズマ照射による前記半導体ウエハのエッチング速度a(μm/min)と、プラズマ照射による前記熱硬化性樹脂フィルムのエッチング速度d(μm/min)と、プラズマ照射の時間t(min)とが、下記式(1)、式(4)及び式(5)の関係を充足する、請求項4又は5に記載の第1保護膜付き半導体チップの製造方法。
     A<at ・・・(1)
     D>dt ・・・(4)
     E<dt ・・・(5)
PCT/JP2019/012842 2018-03-30 2019-03-26 半導体チップの製造方法 WO2019189173A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980010027.XA CN111656491A (zh) 2018-03-30 2019-03-26 半导体芯片的制造方法
KR1020207016400A KR20200138154A (ko) 2018-03-30 2019-03-26 반도체 칩의 제조 방법
JP2020510907A JP7267259B2 (ja) 2018-03-30 2019-03-26 半導体チップの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069682 2018-03-30
JP2018-069682 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189173A1 true WO2019189173A1 (ja) 2019-10-03

Family

ID=68058966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012842 WO2019189173A1 (ja) 2018-03-30 2019-03-26 半導体チップの製造方法

Country Status (5)

Country Link
JP (1) JP7267259B2 (ja)
KR (1) KR20200138154A (ja)
CN (1) CN111656491A (ja)
TW (1) TWI825080B (ja)
WO (1) WO2019189173A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172410A1 (ja) * 2020-02-27 2021-09-02 リンテック株式会社 熱硬化性樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523110A (ja) * 2011-06-15 2014-09-08 アプライド マテリアルズ インコーポレイテッド レーザスクライビング・プラズマエッチングによるデバイスの個片化用のインサイチュー蒸着マスク層
WO2016194431A1 (ja) * 2015-05-29 2016-12-08 リンテック株式会社 半導体装置の製造方法
JP2016539497A (ja) * 2013-10-22 2016-12-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated マスクレスハイブリッドレーザスクライビング及びプラズマエッチングウエハダイシング処理
JP2017103330A (ja) * 2015-12-01 2017-06-08 株式会社ディスコ ウエーハの分割方法
JP2018006677A (ja) * 2016-07-07 2018-01-11 パナソニックIpマネジメント株式会社 素子チップの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013753B2 (ja) 2002-12-11 2007-11-28 松下電器産業株式会社 半導体ウェハの切断方法
JP2006253402A (ja) * 2005-03-10 2006-09-21 Nec Electronics Corp 半導体装置の製造方法
JP2012069747A (ja) * 2010-09-24 2012-04-05 Teramikros Inc 半導体装置およびその製造方法
JP5393902B2 (ja) * 2011-08-09 2014-01-22 三井化学東セロ株式会社 半導体装置の製造方法およびその方法に用いられる半導体ウエハ表面保護用フィルム
JP6347657B2 (ja) * 2014-04-22 2018-06-27 デクセリアルズ株式会社 保護テープ、及びこれを用いた半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523110A (ja) * 2011-06-15 2014-09-08 アプライド マテリアルズ インコーポレイテッド レーザスクライビング・プラズマエッチングによるデバイスの個片化用のインサイチュー蒸着マスク層
JP2016539497A (ja) * 2013-10-22 2016-12-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated マスクレスハイブリッドレーザスクライビング及びプラズマエッチングウエハダイシング処理
WO2016194431A1 (ja) * 2015-05-29 2016-12-08 リンテック株式会社 半導体装置の製造方法
JP2017103330A (ja) * 2015-12-01 2017-06-08 株式会社ディスコ ウエーハの分割方法
JP2018006677A (ja) * 2016-07-07 2018-01-11 パナソニックIpマネジメント株式会社 素子チップの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172410A1 (ja) * 2020-02-27 2021-09-02 リンテック株式会社 熱硬化性樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法
WO2021172426A1 (ja) * 2020-02-27 2021-09-02 リンテック株式会社 樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法
WO2021172424A1 (ja) * 2020-02-27 2021-09-02 リンテック株式会社 樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法
CN114555697A (zh) * 2020-02-27 2022-05-27 琳得科株式会社 树脂膜、复合片及带第一保护膜的半导体芯片的制造方法
CN114728508A (zh) * 2020-02-27 2022-07-08 琳得科株式会社 树脂膜、复合片、及半导体装置的制造方法

Also Published As

Publication number Publication date
KR20200138154A (ko) 2020-12-09
TW202004874A (zh) 2020-01-16
TWI825080B (zh) 2023-12-11
JPWO2019189173A1 (ja) 2021-03-25
JP7267259B2 (ja) 2023-05-01
CN111656491A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP6924243B2 (ja) 保護膜形成用複合シート
US9434865B2 (en) Adhesive composition, an adhesive sheet and a production method of a semiconductor device
WO2021172424A1 (ja) 樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法
JP7233377B2 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
JP6393449B2 (ja) 接着剤組成物、接着シートおよび半導体装置の製造方法
WO2020085220A1 (ja) 半導体装置の製造方法
JPWO2019182001A1 (ja) フィルム状接着剤及び半導体加工用シート
WO2014192745A1 (ja) 接着剤組成物、接着シートおよび半導体装置の製造方法
US7851335B2 (en) Adhesive composition, adhesive sheet and production method of semiconductor device
JP6438181B1 (ja) 半導体装置及びその製造方法
WO2019189173A1 (ja) 半導体チップの製造方法
JP2017069476A (ja) ダイシングダイボンディングシート
WO2020196138A1 (ja) フィルム状接着剤及び半導体加工用シート
JP6547220B2 (ja) ダイ接着用接着剤
JP7453208B2 (ja) 第1保護膜付きワーク加工物の製造方法
JPWO2020175423A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
JPWO2020175421A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
JP2022153305A (ja) ダイシングダイボンディングシート及び半導体装置の製造方法
JP6029536B2 (ja) 接着剤組成物、接着シートおよび半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510907

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19777421

Country of ref document: EP

Kind code of ref document: A1