WO2019188048A1 - 鉄心製品の製造方法 - Google Patents

鉄心製品の製造方法 Download PDF

Info

Publication number
WO2019188048A1
WO2019188048A1 PCT/JP2019/008662 JP2019008662W WO2019188048A1 WO 2019188048 A1 WO2019188048 A1 WO 2019188048A1 JP 2019008662 W JP2019008662 W JP 2019008662W WO 2019188048 A1 WO2019188048 A1 WO 2019188048A1
Authority
WO
WIPO (PCT)
Prior art keywords
jig
iron core
core body
temperature
core
Prior art date
Application number
PCT/JP2019/008662
Other languages
English (en)
French (fr)
Inventor
茂 永杉
崇 福本
小田 仁
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to CN201980016321.1A priority Critical patent/CN111801879B/zh
Priority to DE112019001623.7T priority patent/DE112019001623T5/de
Priority to US16/970,535 priority patent/US11258339B2/en
Publication of WO2019188048A1 publication Critical patent/WO2019188048A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/0063Connecting non-slidable parts of machine tools to each other
    • B23Q1/0072Connecting non-slidable parts of machine tools to each other using a clamping opening for receiving an insertion bolt or nipple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • This disclosure relates to a method for manufacturing an iron core product.
  • Patent Document 1 discloses a method for manufacturing a rotor core. Specifically, the method includes preheating the core body that is the rotor core, fitting the shaft hole of the preheated core body into the guide member of the transport tray, and attaching the core body to the transport tray. Inserting a permanent magnet into the magnet insertion hole of the iron core body placed on the transport tray; injecting molten resin into the magnet insertion hole containing the permanent magnet after heating the iron core body; Separating the core body from the transport tray after cooling the core body together with the transport tray.
  • This disclosure describes a method of manufacturing a core product that can manufacture the core product extremely efficiently.
  • a method for manufacturing an iron core product includes: heating an iron core product attached to a jig together with the jig; and when the jig and the iron core product are heated to indicate a first temperature. After removing the iron core product from the jig and removing the iron core product from the jig, a third temperature at which the iron core product becomes a second temperature lower than the first temperature and the jig is lower than the first temperature. And separately cooling the iron core product and the jig so that the temperature of
  • the iron core product manufacturing method according to the present disclosure makes it possible to manufacture iron core products extremely efficiently.
  • FIG. 1 is a perspective view showing a rotor laminated core that is an example of a core product.
  • FIG. 2 is a schematic diagram illustrating an example of an iron core product manufacturing apparatus.
  • FIG. 3 is a top view schematically showing the downstream side of the punching device in FIG.
  • FIG. 4 is a perspective view for explaining how the laminated body is attached to the jig and how the permanent magnet is attached to the magnet insertion hole of the laminated body.
  • FIG. 5 is a schematic cross-sectional view for explaining a state in which the molten resin is filled into the magnet insertion hole of the laminate by the resin injection device.
  • FIG. 6 is a cross-sectional view schematically showing an example of a jig cooling device.
  • FIG. 1 is a perspective view showing a rotor laminated core that is an example of a core product.
  • FIG. 2 is a schematic diagram illustrating an example of an iron core product manufacturing apparatus.
  • FIG. 3 is a top view schematically showing the downstream
  • FIG. 7 is a perspective view showing a stator laminated core that is another example of the core product.
  • 8A is an enlarged perspective view showing a portion VIII in FIG. 7
  • FIG. 8B is an enlarged top view showing the vicinity of the tooth portion in FIG. 8A. is there.
  • FIG. 9 is a schematic cross-sectional view for explaining how the molten resin is filled into the injection space between the core member and the slot by the resin injection device.
  • the rotor laminated core 1 is a part of a rotor (rotor).
  • the rotor is configured by attaching an end face plate and a shaft (not shown) to the rotor laminated core 1.
  • An electric motor (motor) is configured by combining the rotor with the stator (stator).
  • the rotor laminated core 1 in this embodiment is used for an interior magnet type (IPM) motor.
  • the rotor laminated iron core 1 includes a laminated body 10 (iron core body), a plurality of permanent magnets 12, and a plurality of solidified resins 14 as shown in FIG.
  • the laminate 10 has a cylindrical shape as shown in FIG.
  • a shaft hole 10a (through hole) penetrating the stacked body 10 is provided at the center of the stacked body 10 so as to extend along the central axis Ax. That is, the shaft hole 10 a extends in the stacking direction of the stacked body 10.
  • the stacking direction is also the height direction of the stacked body 10 (hereinafter simply referred to as “height direction”).
  • the laminated body 10 rotates around the central axis Ax, so the central axis Ax is also a rotational axis.
  • a shaft (not shown) is inserted into the shaft hole 10a.
  • the laminated body 10 is formed with a plurality of magnet insertion holes 16.
  • the magnet insertion holes 16 are arranged at predetermined intervals along the outer peripheral edge of the multilayer body 10.
  • the magnet insertion hole 16 penetrates the stacked body 10 so as to extend along the central axis Ax. That is, the magnet insertion hole 16 extends in the height direction.
  • the shape of the magnet insertion hole 16 is a long hole extending along the outer peripheral edge of the laminate 10 as viewed from above.
  • the number of magnet insertion holes 16 is six in this embodiment.
  • the magnet insertion holes 16 are arranged on the same circumference when viewed from above. The position, shape, and number of the magnet insertion holes 16 may be changed according to the use of the motor, required performance, and the like.
  • the laminated body 10 is configured by stacking a plurality of punching members W.
  • the punching member W is a plate-like body in which a later-described electromagnetic steel plate ES is punched into a predetermined shape, and has a shape corresponding to the laminated body 10.
  • the laminated body 10 may be configured by so-called inversion. “Rolling” refers to stacking a plurality of punching members W while relatively shifting the angle between the punching members W. Rolling is performed mainly for the purpose of offsetting the thickness deviation of the punching member W. You may set the angle of inversion to arbitrary magnitude
  • the punching members W adjacent in the height direction may be fastened by the crimping portion 18. These punching members W may be fastened by various known methods in place of the caulking portion 18. For example, the plurality of punching members W may be joined together using an adhesive or a resin material, or may be joined together by welding. Alternatively, provisional caulking may be provided on the punching member W, and the plurality of punching members W may be fastened via the temporary caulking to obtain the laminate 10, and then the temporary caulking may be removed from the laminate 10.
  • the “temporary caulking” means caulking that is used to temporarily integrate a plurality of punching members W and is removed in the process of manufacturing a product (rotor laminated core 1).
  • the permanent magnet 12 is inserted into each magnet insertion hole 16 one by one as shown in FIG.
  • the shape of the permanent magnet 12 is not particularly limited, but has a rectangular parallelepiped shape in the present embodiment.
  • the type of the permanent magnet 12 may be determined according to the use of the motor, required performance, and the like.
  • the permanent magnet 12 may be a sintered magnet or a bonded magnet.
  • the solidified resin 14 is obtained by solidifying a molten resin material (molten resin) filled in the magnet insertion hole 16. The filling of the molten resin is performed, for example, after the permanent magnet 12 is inserted into the magnet insertion hole 16.
  • the solidified resin 14 has a function of fixing the permanent magnet 12 in the magnet insertion hole 16 and a function of joining the punching members W adjacent in the height direction.
  • the resin material constituting the solidified resin 14 include a thermosetting resin and a thermoplastic resin.
  • Specific examples of the thermosetting resin include a resin composition including an epoxy resin, a curing initiator, and an additive.
  • the additive include a filler, a flame retardant, and a stress reducing agent.
  • the manufacturing apparatus 100 is an apparatus for manufacturing the rotor laminated core 1 from an electromagnetic steel plate ES (processed plate) that is a strip-shaped metal plate.
  • the manufacturing apparatus 100 includes an uncoiler 110, a delivery device 120, a punching device 130, a jig mounting device 140, a resin injection device 150, a separation device 160, cooling devices 170 and 180, and a stack thickness measuring device 190. And a controller Ctr (control unit).
  • the uncoiler 110 holds the coil material 111 rotatably with the coil material 111 attached.
  • the coil material 111 is obtained by winding a strip-shaped electromagnetic steel sheet ES in a coil shape.
  • the feeding device 120 includes a pair of rollers 121 and 122 that sandwich the electromagnetic steel plate ES from above and below. The pair of rollers 121 and 122 rotate and stop based on an instruction signal from the controller Ctr, and intermittently sequentially feed the electromagnetic steel sheet ES toward the punching device 130.
  • the punching device 130 operates based on an instruction signal from the controller Ctr.
  • the punching device 130 sequentially stacks and stacks the punching member W obtained by the punching process and the function of forming the punching member W by sequentially punching the electromagnetic steel plates ES sent intermittently by the feeding device 120. And a function of manufacturing the body 10.
  • the laminate 10 When the laminate 10 is discharged from the punching device 130, it is placed on a conveyor Cv1 provided so as to extend between the punching device 130 and the jig mounting device 140.
  • the conveyor Cv1 operates based on an instruction signal from the controller Ctr, and sends the laminated body 10 to the jig mounting device 140.
  • the jig mounting device 140 operates based on an instruction signal from the controller Ctr.
  • the jig attaching device 140 has a function of attaching the laminated body 10 to a jig J described later.
  • the jig attachment device 140 includes a mounting table 141 and an attachment mechanism 142.
  • the mounting table 141 is located on the downstream end side of the conveyor Cv1 and on the downstream end side of the later-described conveyor Cv2. On the mounting table 141, the jig J conveyed by the conveyor Cv2 is mounted.
  • the attachment mechanism 142 may be a robot hand, for example.
  • the attachment mechanism 142 is configured to hold the stacked body 10 conveyed to the downstream end of the conveyor Cv1 and attach it to the jig J on the mounting table 141.
  • the jig J includes a base Ja and an insertion post Jb (post) as shown in FIG.
  • the base Ja is a metal plate-like body, and is configured so that the stacked body 10 can be placed thereon.
  • the insertion post Jb is a metal columnar body, and extends substantially vertically upward from the upper surface of the base Ja.
  • the insertion post Jb is fixed with respect to the base Ja.
  • the outer diameter of the insertion post Jb may be approximately the same as that of the shaft hole 10a.
  • the resin injection device 150 operates based on an instruction signal from the controller Ctr.
  • the resin injection device 150 has a function of inserting the permanent magnet 12 into each magnet insertion hole 16 and a function of filling the molten resin in the magnet insertion hole 16 through which the permanent magnet 12 is inserted.
  • the resin injection device 150 includes an upper mold 151, a built-in heat source 152 (heating source), and a plurality of plungers 153.
  • the upper mold 151 is configured to be able to sandwich the laminated body 10 in the height direction together with the base Ja of the jig J. When the upper mold 151 sandwiches the stacked body 10 together with the base Ja, a predetermined load is applied to the stacked body 10 from the stacking direction.
  • the upper mold 151 is a plate-like member having a rectangular shape.
  • the upper mold 151 is provided with one through hole 151a and a plurality of accommodation holes 151b.
  • the through hole 151 a is located at a substantially central portion of the upper mold 151.
  • the through hole 151a has a shape (substantially circular shape) corresponding to the insertion post Jb, and the insertion post Jb can be inserted therethrough.
  • the plurality of receiving holes 151b penetrate the upper mold 151 and are arranged at predetermined intervals along the periphery of the through hole 151a.
  • Each accommodation hole 151b is located at a position corresponding to the magnet insertion hole 16 of the laminate 10 when the base Ja and the upper mold 151 sandwich the laminate 10.
  • Each accommodation hole 151b has a cylindrical shape and has a function of accommodating at least one resin pellet P.
  • the built-in heat source 152 is, for example, a heater built in the upper mold 151.
  • the built-in heat source 152 operates, the laminate 10 and the jig J are heated through the upper mold 151, and the resin pellets P accommodated in the respective accommodation holes 151b are heated. Thereby, the resin pellet P melts and changes to a molten resin.
  • the plurality of plungers 153 are located above the upper mold 151. Each plunger 153 is configured to be able to be inserted into and removed from the corresponding accommodation hole 151b by a driving source (not shown).
  • the separation device 160 operates based on an instruction signal from the controller Ctr.
  • the separating device 160 has a function of removing the rotor laminated core 1 attached to the jig J from the jig J.
  • the separation device 160 includes a mounting table 161 and a removal mechanism 162.
  • the removal mechanism 162 may be a robot hand, for example.
  • the removal mechanism 162 holds the laminated body 10 on the mounting table 161, removes the rotor laminated core 1 from the jig J, and removes the separated jig J and the rotor laminated core 1 from the conveyors Cv2 and Cv3, respectively. It is configured to transfer to the upstream end side.
  • the cooling device 170 (second cooling device) operates based on an instruction signal from the controller Ctr.
  • the cooling device 170 has a function of cooling the jig J.
  • the cooling device 170 includes a conveyor Cv2 and a cooling chamber 171 as shown in FIG.
  • the conveyor Cv2 is configured to convey the jig J from the separation device 160 to the jig mounting device 140. Therefore, the upstream end side of the conveyor Cv2 extends toward the separating device 160, and the downstream end side of the conveyor Cv2 extends toward the jig mounting device 140.
  • the cooling chamber 171 is disposed in the middle part of the conveyor Cv2. As shown in detail in FIG. 6, a cooling plate 172 is disposed in the cooling chamber 171.
  • the cooling plate 172 is configured to be movable in the vertical direction, and is configured to allow the refrigerant to flow therethrough.
  • the conveyor Cv2 is also configured to allow the refrigerant to flow therethrough. Therefore, by repeatedly moving the jig J by the conveyor Cv2 and repeatedly holding the jig J between the conveyor Cv2 and the cooling plate 172 in the cooling chamber 171 when the conveyor Cv2 is stopped, Heat is exchanged between J, the conveyor Cv2, and the cooling plate 172, and the jig J is cooled.
  • the temperature of the refrigerant flowing in the conveyor Cv2 and the cooling plate 172 may be lower than room temperature or about 10 ° C. or less, for example.
  • room temperature means a temperature in the range of 15 ° C. to 35 ° C.
  • the cooling device 180 (first cooling device) operates based on an instruction signal from the controller Ctr.
  • the cooling device 180 has a function of cooling the rotor laminated core 1. As illustrated in FIG. 3, the cooling device 180 includes a conveyor Cv ⁇ b> 3, a cooling chamber 181, and a blower 182.
  • the conveyor Cv3 is configured to convey the rotor laminated core 1 from the separating device 160 to the stack thickness measuring device 190. Therefore, the upstream end side of the conveyor Cv3 extends toward the separation device 160, and the downstream end side of the conveyor Cv3 extends toward the stack thickness measuring device 190.
  • the cooling chamber 181 is disposed in the middle part of the conveyor Cv3.
  • the blower 182 is connected to the cooling chamber 181 and is configured to send room temperature air into the cooling chamber 181. Therefore, the rotor laminated core 1 conveyed in the cooling chamber 181 by the conveyor Cv3 is cooled by heat exchange with room temperature air. Therefore, in this embodiment, the cooling rate of the jig
  • the stack thickness measuring device 190 operates based on an instruction signal from the controller Ctr.
  • the stack thickness measuring device 190 has a function of measuring the stack thickness of the stacked body 10 (the height of the rotor stacked core 1).
  • the stack thickness measuring device 190 is configured to measure the stack thickness of the stacked body 10 in a state where a predetermined load is applied to the stacked body 10 from the stacking direction, and to transmit the measurement result to the controller Ctr.
  • the controller Ctr is, for example, based on a program recorded on a recording medium (not shown) or an operation input from an operator, etc., a feeding device 120, a punching device 130, a jig mounting device 140, a resin injecting device 150, Instruction signals for operating the separation device 160, the cooling devices 170 and 180, and the stack thickness measuring device 190 are generated, and the instruction signals are transmitted to these devices.
  • the controller Ctr has a function of determining whether or not the data of the thickness measured by the thickness measuring device 190 is within the standard.
  • the controller Ctr determines that the rotor laminated core 1 is a non-defective product. Thereby, the rotor lamination
  • the controller Ctr determines that the rotor laminated core 1 is defective. The rotor laminated core 1 determined to be defective is excluded from the production line.
  • the controller Ctr instructs the conveyor Cv1 to convey the laminate 10 toward the jig mounting device 140.
  • the controller Ctr instructs the attachment mechanism 142 to attach the stacked body 10 positioned on the downstream end side of the conveyor Cv1 to the jig J.
  • the insertion post Jb is fitted into the shaft hole 10a, and the stacked body 10 is placed on the base Ja.
  • the laminate 10 attached to the jig J is conveyed to the resin injection device 150, and the permanent magnets 12 are inserted into the respective magnet insertion holes 16 as shown in FIG.
  • the permanent magnets 12 may be inserted into the respective magnet insertion holes 16 manually or by a robot hand (not shown) provided in the resin injection device 150 based on an instruction signal from the controller Ctr. May be.
  • the upper mold 151 is placed on the laminate 10. Thereafter, the laminate 10 is sandwiched from the height direction by the base Ja and the upper mold 151, and the laminate 10 is pressurized with a predetermined load. Next, the resin pellet P is put into each accommodation hole 151b. When the built-in heat source 152 is activated and the resin pellet P is in a molten state, the molten resin is injected into each magnet insertion hole 16 by the plunger 153. At this time, the laminate 10 is heated to, for example, about 60 ° C. to 220 ° C. by the built-in heat source 152. Thereafter, when the molten resin is solidified, a solidified resin 14 is formed in the magnet insertion hole 16. In this way, the permanent magnet 12 is attached to the laminate 10 together with the solidified resin 14. When the upper mold 151 is removed from the laminated body 10, the rotor laminated core 1 is completed.
  • the rotor laminated core 1 attached to the jig J is transported to the separation device 160 and placed on the mounting table 161.
  • the controller Ctr instructs the removal mechanism 162 to remove the rotor laminated core 1 from the jig J.
  • the removal mechanism 162 holds the rotor laminated core 1, and the rotor laminated iron core in the height direction (substantially vertical direction) of the insertion post Jb.
  • the temperature T1 (first temperature) of the rotor laminated iron core 1 and the jig J at the time of separation is, for example, 60 ° C. to 200 ° C. It may be about ° C.
  • the removal mechanism 162 places the rotor laminated core 1 on the upstream end side of the conveyor Cv3 when the rotor laminated iron core 1 is pulled out from the insertion post Jb.
  • the jig J after the rotor laminated core 1 is pulled out is placed on the upstream end side of the conveyor Cv2.
  • the jig J is conveyed by the conveyor Cv2 and put into the cooling device 170.
  • the jig J is cooled by the conveyor Cv2 and the cooling plate 172.
  • the temperature T2 (third temperature) of the jig J after coming out of the cooling device 170 is lower than the temperature T1, and may be, for example, room temperature or lower.
  • the cooled jig J is conveyed to the jig mounting apparatus 140 by the conveyor Cv2. That is, the jig J circulates in the order of the jig mounting device 140, the resin injection device 150, the separation device 160, and the cooling device 170.
  • the rotor laminated core 1 is conveyed by the conveyor Cv3 and put into the cooling device 180.
  • the rotor laminated core 1 is cooled by the air blown from the blower 182.
  • the temperature T3 (second temperature) of the rotor laminated core 1 after coming out of the cooling device 180 is lower than the temperature T1, and may be, for example, room temperature or lower.
  • the cooled rotor laminated iron core 1 is conveyed to the stack thickness measuring device 190 by the conveyor Cv3.
  • the controller Ctr instructs the stack thickness measuring device 190 to measure the stack thickness of the laminate 10 (the height of the rotor laminate core 1).
  • the stack thickness measuring device 190 transmits the measured data to the controller Ctr.
  • the controller Ctr determines whether or not the data transmitted from the stack thickness measuring device 190 is within a predetermined standard. When the controller Ctr determines that it is out of the standard, the rotor laminated core 1 is excluded from the production line as a defective product. On the other hand, when the controller Ctr determines that it is within the reference, the rotor laminated core 1 that meets the reference is obtained.
  • the rotor laminated iron core 1 (laminated body 10) and the jig J are separated at a high temperature T1 before the rotor laminated iron core 1 (laminated body 10) and the jig J are cooled. After that, they are cooled separately. Therefore, as compared with the assembly in which the rotor laminated core 1 is attached to the jig J, each heat capacity is reduced and the surface area exposed to the outside is increased.
  • the rotor laminated core 1 and the jig J are cooled more efficiently, the rotor laminated iron core 1 is suppressed while suppressing the influence on the dimensions and the generation of rust in the rotor laminated iron core 1 even if it is not rapidly cooled. And the cooling of the jig J is completed in a short time. Therefore, it becomes possible to manufacture the rotor laminated iron core 1 very efficiently.
  • the cooling rate when the jig J is cooled from the temperature T1 to the temperature T2 is larger than the cooling rate when the rotor laminated core 1 is cooled from the temperature T1 to the temperature T3.
  • the jig J does not need to take into account the influence on dimensions and the occurrence of rust, so that the cooling of the jig J is completed in a shorter time. Therefore, the rotor laminated core 1 can be manufactured with a smaller number of jigs J. As a result, the manufacturing cost of the rotor laminated core 1 can be reduced.
  • the molten resin is injected into the magnet insertion hole 16 in the state where the permanent magnet 12 is inserted while the laminate 10 is heated together with the jig J by the built-in heat source 152 of the resin injection device 150. Therefore, heat applied to the core body in the process of injecting molten resin into the magnet insertion hole 16 is used for heating the laminate 10. Therefore, it is not necessary to separately prepare a heat source for heating the rotor laminated core 1. As a result, the manufacturing cost of the rotor laminated core 1 can be reduced.
  • the laminated body 10 formed by laminating a plurality of punching members W functions as an iron core main body, but the iron core main body may be configured other than the laminated body 10.
  • the iron core main body may be, for example, one obtained by compression-molding a ferromagnetic powder or one obtained by injection-molding a resin material containing a ferromagnetic powder.
  • the laminate 10 is configured by stacking a plurality of punching members W, but is configured by stacking a plurality of block bodies in which a plurality of punching members W are stacked. May be. Also at this time, a plurality of block bodies may be stacked by inversion.
  • One set of magnets in which two or more permanent magnets 12 are combined may be inserted into one magnet insertion hole 16, respectively.
  • a plurality of permanent magnets 12 may be arranged in the longitudinal direction of the magnet insertion hole 16 in one magnet insertion hole 16.
  • a plurality of permanent magnets 12 may be arranged in the extending direction of the magnet insertion hole 16.
  • a plurality of permanent magnets 12 may be arranged in the longitudinal direction and a plurality of permanent magnets 12 may be arranged in the extending direction.
  • the resin pellet P accommodated in the accommodation hole 151b of the upper mold 151 is melted by the built-in heat source 152, and the molten resin is introduced into the magnet insertion hole 16 in which the permanent magnet 12 is inserted.
  • the permanent magnet 12 may be held in the magnet insertion hole 16 by various other methods.
  • the magnet insertion hole 16 may be filled with resin by heating the laminated body 10 in a state where the permanent magnet 12 and the resin pellet P are put into the magnet insertion hole 16 and melting the resin pellet P. .
  • the magnet insertion hole 16 may be filled with resin.
  • the assembly of the jig J and the laminated body 10 from the jig attaching device 140 to the resin injecting device 150 may be carried out manually or based on an instruction signal from the controller Ctr. 142 may be performed by another transport mechanism (for example, a robot hand) included in the manufacturing apparatus 100 based on an instruction signal from the controller Ctr.
  • the laminated body 10 and the jig J are heated by the built-in heat source 152 of the resin injecting device 150.
  • the laminated body 10 (rotor laminated core 1) is heated using another heating source.
  • the jig J may be heated.
  • the laminated body 10 (rotor laminated core 1) is heated by another heating source.
  • the jig J may be reheated.
  • the rotor laminated core 1 and the jig J are at the temperature T1
  • the inner diameter of the shaft hole 10a of the rotor laminated core 1 is larger than the outer diameter of the insertion post Jb, and the insertion post Jb is separated from the shaft hole 10a. You may do it.
  • the insertion post Jb is fitted to the shaft hole 10a with cooling, and at the temperature T1 before it becomes difficult to extract the rotor laminated core 1 from the insertion post Jb, the rotor laminated core 1 and the jig J Separation takes place. Therefore, the rotor laminated core 1 can be removed from the jig more easily.
  • the thermal expansion coefficient of the rotor laminated core 1 may be larger than the thermal expansion coefficient of the jig J.
  • a gap is likely to be generated between the insertion post Jb and the rotor laminated core 1. Therefore, it becomes possible to easily separate the rotor laminated iron core 1 and the jig J in the heated state.
  • the rotor laminated core 1 has been described.
  • the claims and the gist thereof may be applied to a stator laminated core (iron core product).
  • a split-type stator laminated core formed by combining a plurality of core pieces may be used, or a non-split-type stator laminated core may be used.
  • the stator laminated core 2 is a part of a stator (stator).
  • the stator is one in which windings are attached to the stator laminated iron core 2.
  • An electric motor (motor) is comprised by combining a stator with a rotor (rotor).
  • the stator laminated iron core 2 includes a laminated body 20 (iron core main body) and a plurality of resin portions 21.
  • the laminate 20 has a cylindrical shape. That is, a through hole 20 a extending along the central axis Ax is provided in the central portion of the stacked body 20. A rotor can be disposed in the through hole 20a.
  • the laminate 20 is configured by stacking a plurality of punching members W.
  • the stacked body 20 includes a yoke portion 22 and a plurality of tooth portions 23.
  • the yoke portion 22 has an annular shape and extends so as to surround the central axis Ax.
  • the width, the inner diameter, the outer diameter, and the thickness of the yoke portion 22 in the radial direction (hereinafter simply referred to as “radial direction”) can be set to various sizes according to the application and performance of the motor.
  • Each tooth part 23 extends along the radial direction (direction intersecting with the yoke part 22) from the inner edge of the yoke part 22 toward the central axis Ax side. That is, each tooth portion 23 protrudes from the inner edge of the yoke portion 22 toward the central axis Ax side.
  • the teeth portions 23 are arranged at substantially equal intervals in the circumferential direction. Between adjacent tooth portions 23, a slot 24, which is a space for arranging windings (not shown), is defined.
  • a slit-like opening (slot opening) 25 extending in the height direction is defined between the tip portions of the tooth portions 23 adjacent in the circumferential direction. The opening 25 communicates with the slot 24.
  • each of the plurality of resin portions 21 is provided in the slot 24 one by one.
  • the resin portion 21 includes a main portion 21a and an end portion 21b as shown in FIG.
  • the main portion 21 a is disposed so as to cover the inner wall surface of the slot 24 located on the inner side (yoke portion 22 side) than the tip end portion of the slot 24.
  • the end portion 21 b is integrally provided at the upper end and the lower end of the main portion 21 a in the height direction, and extends from the inner wall surface of the slot 24 to the upper end surface and the lower end surface of the stacked body 20.
  • the end portion 21b protrudes outward from the upper end surface and the lower end surface of the stacked body 20 in the height direction, and partially covers each end surface.
  • the manufacturing apparatus 100 of the stator laminated core 2 is demonstrated. Since the manufacturing apparatus 100 of the stator laminated core 2 is the same as the manufacturing apparatus 100 of the rotor laminated core 1 except for the jig J and the resin injection apparatus 150, the following mainly describes the jig J and the resin injection apparatus 150. explain.
  • the jig J includes a base Ja, an insertion post Jb, and a plurality of cores 30 as shown in FIG.
  • the plurality of cores 30 have an outer shape corresponding to the slot 24.
  • the outer shape of the core 30 is slightly smaller than the slot 24.
  • the plurality of cores 30 are detachably attached to the base Ja.
  • the plurality of cores 30 are arranged in a circle at substantially equal intervals so as to surround the insertion post Jb, and are positioned so as to overlap with the corresponding slots 24 when the stacked body 20 is attached to the jig J. .
  • the resin injection device 150 has a function of filling the filling space V with a molten resin and connecting the punching members W constituting the laminate 20. As shown in FIG. 9, the resin injection device 150 includes a pair of overflow plates 40 and an upper mold 151.
  • the overflow plate 40 (hereinafter simply referred to as “plate 40”) is a thin plate having an annular shape.
  • the plate 40 is provided with one through hole having an outer diameter corresponding to the insertion post Jb of the jig J and a plurality of through holes having outer diameters corresponding to the cores 30.
  • the controller Ctr instructs the punching device 130 to form the stacked body 20.
  • the controller Ctr instructs the conveyor Cv1 to convey the laminate 20 toward the jig mounting device 140.
  • the controller Ctr instructs the mounting mechanism 142 to cause the pair of plates 40 and the stacked body 20 positioned on the downstream end side of the conveyor Cv1.
  • Attach to jig J Specifically, the plate 40, the laminated body 20, and the plate 40 are attached to the jig J in this order.
  • the stacked body 20 is attached to the jig J, the plurality of cores 30 are fitted into the through holes 20a while the plurality of cores 30 are attached to the base Ja, and the slots 24 corresponding to the plurality of cores 30 are fitted. And the stacked body 20 is placed on the base Ja.
  • the laminate 20 attached to the jig J is conveyed to the resin injection device 150, and the upper mold 151 is placed on the laminate 20 as shown in FIG. Thereafter, the stacked body 20 is sandwiched between the base Ja and the upper mold 151 from the height direction, and the stacked body 20 is pressurized with a predetermined load.
  • the resin pellet P is put into each accommodation hole 151b.
  • the built-in heat source 152 is activated and the resin pellet P is in a molten state
  • the molten resin is injected into the filling space V by the plunger 153.
  • the resin portion 21 is formed in the filling space V.
  • the resin part 21 is provided in the laminate 20.
  • stator laminated iron core 2 is completed. Thereafter, similar to the manufacturing apparatus 100 of the rotor laminated core 1, the stator laminated core 2 and the jig J including the core 30 are separately cooled, and the thickness of the cooled stator laminated core 2 is increased. Is obtained, the stator laminated core 2 conforming to the standard is obtained.
  • heat applied to the laminate 20 in the process of providing the resin portion 21 on the inner peripheral surface of the slot 24 is used for heating the laminate 20. Therefore, it is not necessary to separately prepare a heat source for heating the stacked body 20. Therefore, the manufacturing cost of the stator laminated core 2 can be reduced.
  • Example 1 The manufacturing method of the iron core product (1, 2) according to an example of the present disclosure includes heating the iron core body (10, 20) attached to the jig (J) together with the jig (J), and heating.
  • the iron core body (10, 20) shows the first temperature (T1)
  • the iron core body (10, 20) is removed from the jig (J)
  • the iron core body (10, 20) 20) After removing the jig (J) from the jig (J), the core body (10, 20) has a second temperature (T3) lower than the first temperature (T1) and the jig (J) Separately cooling the core body (10, 20) and the jig (J) so that the third temperature (T2) is lower than the temperature (T1).
  • Patent Document 1 After cooling the core body together with the transport tray, the core body is separated from the transport tray. Therefore, the heat capacity of the iron core main body and the transfer tray as a whole is increased, and cooling takes time. It is also conceivable to shorten the cooling time by rapidly cooling the core body and the transfer tray. However, there is a concern that the core body is distorted with rapid cooling and affects the dimensions of the core body. In addition, there is a concern that condensation occurs on the surface of the iron core body due to rapid cooling, leading to the generation of rust. It was difficult to shorten the cooling time by rapid cooling.
  • Example 2 In the method of Example 1, when the jig (J) is cooled from the first temperature (T1) to the third temperature (T2), the cooling rate of the iron core body (10, 20) is the first temperature ( It may be larger than the cooling rate when cooling from T1) to the second temperature (T3). Compared with the core body (10, 20), the jig (J) does not require much consideration of the influence on dimensions and the occurrence of rust. Therefore, according to the method of Example 2, the cooling of the jig (J) is completed in a shorter time. Therefore, the iron core product (1, 2) can be manufactured with a smaller number of jigs (J). As a result, the manufacturing cost of the iron core product (1, 2) can be reduced.
  • Example 3 In the method of Example 1 or Example 2, the first temperature (T1) may be 60 ° C. to 200 ° C., and the second and third temperatures (T2, T3) may be room temperature or lower.
  • Example 4 In any of the methods of Examples 1 to 3, the core body (10, 20) is provided with through holes (10a, 20a) penetrating in the height direction, and the jig (J) is made of a base (Ja ) And a post (Jb) extending upward from the base (Ja), and heating the core body (10, 20) together with the jig (J), the post (Jb) has a through hole (10a, It may include that the core body (10, 20) is placed on the base (Ja) in a state of being inserted through 20a).
  • Example 5 In the method of Example 4, when the core body (10, 20) and the jig (J) are at the first temperature (T1), the post (Jb) located in the through hole (10a, 20a) is the core. When the core body (10, 20) and the jig (J) are at the second temperature (T3) and the third temperature (T2), respectively, the post (Jb) May be larger than the space in the through holes (10a, 20a). In this case, the first temperature (T1) before the post (Jb) is fitted into the through hole (10a, 20a) with cooling and it becomes difficult to extract the core body (10, 20) from the post (Jb). ), The core body (10, 20) and the jig (J) are separated. Therefore, it becomes possible to remove the iron core body (10, 20) from the jig (J) more easily.
  • Example 6 the core body (10) is provided with a magnet insertion hole (16) penetrating the core body (10) in the height direction.
  • Heating with the jig (J) means that a magnet insertion hole (16) in a state where the permanent magnet (12) is inserted while the iron core body (10) is heated with the jig (J) by the heating source (152). Injecting a molten resin into the substrate.
  • heat applied to the core body (10) in the process of injecting molten resin into the magnet insertion hole (16) is used for heating the core body (10). Therefore, it is not necessary to separately prepare a heat source for heating the iron core body (10). Therefore, the manufacturing cost of the iron core product (rotor iron core) (1) can be reduced.
  • the iron core body (20) includes an annular yoke portion (22) and a plurality of teeth portions (22) extending from the yoke portion (22) so as to intersect the yoke portion (22). 23) and a slot (24) is provided between two teeth portions (23) adjacent in the circumferential direction of the yoke portion (22), and the jig (J) corresponds to the slot (24). Heating the iron core body (20) together with the jig (J) in a state where the core (30) is inserted into the slot (24). Injecting molten resin into the injection space (V) between the slot (24) and the core (30) while heating the core body (20) together with the jig (J) by (152).
  • Example 8 the thermal expansion coefficient of the iron core body (10, 20) may be larger than the thermal expansion coefficient of the jig (J).
  • the thermal expansion coefficient of the iron core body (10, 20) may be larger than the thermal expansion coefficient of the jig (J).
  • T1 first temperature
  • a gap is likely to be generated between the post (Jb) and the core body (10, 20). Therefore, it becomes possible to easily separate the core body (10, 20) and the jig (J) in a heated state.
  • the iron core product manufacturing method according to the present disclosure makes it possible to manufacture iron core products extremely efficiently.
  • SYMBOLS 1 Rotor laminated iron core (iron core product), 10 ... Laminated body (iron core main body), 10a ... Shaft hole (through hole), 12 ... Permanent magnet, 14 ... Solidified resin, 2 ... Stator laminated iron core (iron core product), DESCRIPTION OF SYMBOLS 20 ... Laminated body (iron core main body), 20a ... Through-hole, 21 ... Resin part, 22 ... Yoke part, 23 ... Teeth part, 24 ... Slot, 30 ... Core, 100 ... Manufacturing apparatus, 130 ... Punching apparatus, 140 DESCRIPTION OF SYMBOLS ... Jig attachment apparatus, 150 ... Resin injection apparatus, 152 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本開示の課題は、鉄心製品を極めて効率的に製造することが可能な鉄心製品の製造方法を提供することにある。 鉄心製品(1,2)の製造方法は、治具(J)に取り付けられている鉄心本体(10,20)を治具(J)と共に加熱することと、治具(J)及び鉄心本体(10,20)が加熱されて第1の温度(T1)を示すときに、鉄心本体(10,20)を治具(J)から取り外すことと、鉄心本体(10,20)を治具(J)から取り外すことの後に、鉄心本体(10,20)が第1の温度(T1)よりも低い第2の温度(T3)となり且つ治具(J)が第1の温度(T1)よりも低い第3の温度(T2)となるように、鉄心本体(10,20)と治具(J)とを別々に冷却することとを含む。

Description

鉄心製品の製造方法
 本開示は、鉄心製品の製造方法に関する。
 特許文献1は、回転子鉄心の製造方法を開示している。具体的には、当該方法は、回転子鉄心となる鉄心本体を予熱することと、予熱された鉄心本体の軸孔を搬送トレイのガイド部材に嵌入して、鉄心本体を搬送トレイに取り付けることと、搬送トレイに載置されている鉄心本体の磁石挿入孔に永久磁石を挿入することと、鉄心本体を加熱した後に、永久磁石が収容された磁石挿入孔内に溶融樹脂を注入することと、鉄心本体を搬送トレイと共に冷却した後に、鉄心本体を搬送トレイから分離することとを含む。
日本国特開2014-138448号公報
 本開示は、鉄心製品を極めて効率的に製造することが可能な鉄心製品の製造方法を説明する。
 本開示の一つの観点に係る鉄心製品の製造方法は、治具に取り付けられている鉄心製品を治具と共に加熱することと、治具及び鉄心製品が加熱されて第1の温度を示すときに、鉄心製品を治具から取り外すことと、鉄心製品を治具から取り外すことの後に、鉄心製品が第1の温度よりも低い第2の温度となり且つ治具が第1の温度よりも低い第3の温度となるように、鉄心製品と治具とを別々に冷却することとを含む。
 本開示に係る鉄心製品の製造方法によれば、鉄心製品を極めて効率的に製造することが可能となる。
図1は、鉄心製品の一例である回転子積層鉄心を示す斜視図である。 図2は、鉄心製品の製造装置の一例を示す概略図である。 図3は、図2において打抜装置よりも下流側を概略的に示す上面図である。 図4は、積層体を治具に取り付ける様子と、永久磁石を積層体の磁石挿入孔に取り付ける様子とを説明するための斜視図である。 図5は、樹脂注入装置により積層体の磁石挿入孔に溶融樹脂を充填する様子を説明するための概略断面図である。 図6は、治具の冷却装置の一例を概略的に示す断面図である。 図7は、鉄心製品の他の例である固定子積層鉄心を示す斜視図である。 図8の(a)は、図7のVIII部分を拡大して示す斜視図であり、図8の(b)は、図8の(a)のティース部の近傍を拡大して示す上面図である。 図9は、樹脂注入装置により、中子部材とスロットとの間の注入空間に溶融樹脂を充填する様子を説明するための概略断面図である。
 以下に、本開示に係る実施形態の一例について、図面を参照しつつより詳細に説明する。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
 [回転子積層鉄心の構成]
 まず、図1を参照して、回転子積層鉄心1(鉄心製品)の構成について説明する。回転子積層鉄心1は、回転子(ロータ)の一部である。回転子は、図示しない端面板及びシャフトが回転子積層鉄心1に取り付けられることにより構成される。回転子が固定子(ステータ)と組み合わせられることにより、電動機(モータ)が構成される。本実施形態における回転子積層鉄心1は、埋込磁石型(IPM)モータに用いられる。
 回転子積層鉄心1は、図1に示されるように、積層体10(鉄心本体)と、複数の永久磁石12と、複数の固化樹脂14とを備える。
 積層体10は、図1に示されるように、円筒状を呈している。積層体10の中央部には、中心軸Axに沿って延びるように積層体10を貫通する軸孔10a(貫通孔)が設けられている。すなわち、軸孔10aは、積層体10の積層方向に延びている。積層方向は、積層体10の高さ方向(以下、単に「高さ方向」という。)でもある。本実施形態において積層体10は中心軸Ax周りに回転するので、中心軸Axは回転軸でもある。軸孔10a内には、シャフト(図示せず)が挿通される。
 積層体10には、複数の磁石挿入孔16が形成されている。磁石挿入孔16は、積層体10の外周縁に沿って所定間隔で並んでいる。磁石挿入孔16は、中心軸Axに沿って延びるように積層体10を貫通している。すなわち、磁石挿入孔16は高さ方向に延びている。
 磁石挿入孔16の形状は、本実施形態では、上方から見て積層体10の外周縁に沿って延びる長孔である。磁石挿入孔16の数は、本実施形態では6個である。各磁石挿入孔16は、上方から見て同一円周上に並んでいる。磁石挿入孔16の位置、形状及び数は、モータの用途、要求される性能などに応じて変更してもよい。
 積層体10は、複数の打抜部材Wが積み重ねられて構成されている。打抜部材Wは、後述する電磁鋼板ESが所定形状に打ち抜かれた板状体であり、積層体10に対応する形状を呈している。積層体10は、いわゆる転積によって構成されていてもよい。「転積」とは、打抜部材W同士の角度を相対的にずらしつつ、複数の打抜部材Wを積層することをいう。転積は、主に打抜部材Wの板厚偏差を相殺することを目的に実施される。転積の角度は、任意の大きさに設定してもよい。
 高さ方向において隣り合う打抜部材W同士は、カシメ部18によって締結されていてもよい。これらの打抜部材W同士は、カシメ部18に代えて、種々の公知の方法にて締結されてもよい。例えば、複数の打抜部材W同士は、接着剤又は樹脂材料を用いて互いに接合されてもよいし、溶接によって互いに接合されてもよい。あるいは、打抜部材Wに仮カシメを設け、仮カシメを介して複数の打抜部材W同士を締結して積層体10を得た後、仮カシメを当該積層体10から除去してもよい。なお、「仮カシメ」とは、複数の打抜部材Wを一時的に一体化させるのに使用され且つ製品(回転子積層鉄心1)を製造する過程において取り除かれるカシメを意味する。
 永久磁石12は、図1に示されるように、各磁石挿入孔16内に一つずつ挿入されている。永久磁石12の形状は、特に限定されないが、本実施形態では直方体形状を呈している。永久磁石12の種類は、モータの用途、要求される性能などに応じて決定すればよく、例えば、焼結磁石であってもよいし、ボンド磁石であってもよい。
 固化樹脂14は、磁石挿入孔16内に充填された溶融状態の樹脂材料(溶融樹脂)が固化したものである。溶融樹脂の充填は、例えば、磁石挿入孔16内に永久磁石12が挿入された後に行われる。固化樹脂14は、永久磁石12を磁石挿入孔16内に固定する機能と、高さ方向で隣り合う打抜部材W同士を接合する機能とを有する。固化樹脂14を構成する樹脂材料としては、例えば、熱硬化性樹脂、熱可塑性樹脂などが挙げられる。熱硬化性樹脂の具体例としては、例えば、エポキシ樹脂と、硬化開始剤と、添加剤とを含む樹脂組成物が挙げられる。添加剤としては、フィラー、難燃剤、応力低下剤などが挙げられる。
 [回転子積層鉄心の製造装置]
 続いて、図2~図6を参照して、回転子積層鉄心1の製造装置100について説明する。
 図2に示されるように、製造装置100は、帯状の金属板である電磁鋼板ES(被加工板)から回転子積層鉄心1を製造するための装置である。製造装置100は、アンコイラー110と、送出装置120と、打抜装置130と、治具取付装置140と、樹脂注入装置150と、分離装置160と、冷却装置170,180と、積厚測定装置190と、コントローラCtr(制御部)とを備える。
 アンコイラー110は、コイル材111が装着された状態で、コイル材111を回転自在に保持する。コイル材111は、帯状の電磁鋼板ESがコイル状に巻回されたものである。送出装置120は、電磁鋼板ESを上下から挟み込む一対のローラ121,122を有する。一対のローラ121,122は、コントローラCtrからの指示信号に基づいて回転及び停止し、電磁鋼板ESを打抜装置130に向けて間欠的に順次送り出す。
 打抜装置130は、コントローラCtrからの指示信号に基づいて動作する。打抜装置130は、送出装置120によって間欠的に送り出される電磁鋼板ESを順次打ち抜き加工して打抜部材Wを形成する機能と、打ち抜き加工によって得られた打抜部材Wを順次積層して積層体10を製造する機能とを有する。
 積層体10は、打抜装置130から排出されると、打抜装置130と治具取付装置140との間を延びるように設けられたコンベアCv1に載置される。コンベアCv1は、コントローラCtrからの指示信号に基づいて動作し、積層体10を治具取付装置140に送り出す。
 治具取付装置140は、コントローラCtrからの指示信号に基づいて動作する。治具取付装置140は、積層体10を後述する治具Jに取り付ける機能を有する。治具取付装置140は、図3に示されるように、載置台141と、取付機構142とを含む。
 載置台141は、コンベアCv1の下流端側で且つ後述のコンベアCv2の下流端側に位置している。載置台141には、コンベアCv2によって搬送された治具Jが載置される。取付機構142は、例えばロボットハンドであってもよい。取付機構142は、コンベアCv1の下流端まで搬送された積層体10を把持し、載置台141上の治具Jに取り付けるように構成されている。
 ここで、治具Jは、図4に示されるように、ベースJaと、挿通ポストJb(ポスト)とを含む。ベースJaは、金属製の板状体であり、積層体10を載置可能に構成されている。挿通ポストJbは、金属製の円柱状体であり、ベースJaの上面から上方に向けて略鉛直に延びている。挿通ポストJbは、ベースJaに対して固定されている。挿通ポストJbの外径は軸孔10aと同程度であってもよい。
 樹脂注入装置150は、コントローラCtrからの指示信号に基づいて動作する。樹脂注入装置150は、各磁石挿入孔16に永久磁石12を挿通する機能と、永久磁石12が挿通された磁石挿入孔16内に溶融樹脂を充填する機能とを有する。樹脂注入装置150は、図5に詳しく示されるように、上型151と、内蔵熱源152(加熱源)と、複数のプランジャ153とを含む。
 上型151は、治具JのベースJaと共に積層体10を高さ方向において挟持可能に構成されている。上型151がベースJaと共に積層体10を挟持する際、積層体10には積層方向から所定の荷重が付与される。
 上型151は、矩形状を呈する板状部材である。上型151には、一つの貫通孔151aと、複数の収容孔151bとが設けられている。貫通孔151aは、上型151の略中央部に位置している。貫通孔151aは、挿通ポストJbに対応する形状(略円形状)を呈しており、挿通ポストJbが挿通可能である。
 複数の収容孔151bは、上型151を貫通しており、貫通孔151aの周囲に沿って所定間隔で並んでいる。各収容孔151bは、ベースJa及び上型151が積層体10を挟持した際に、積層体10の磁石挿入孔16に対応する箇所にそれぞれ位置している。各収容孔151bは、円柱形状を呈しており、少なくとも一つの樹脂ペレットPを収容する機能を有する。
 内蔵熱源152は、例えば、上型151に内蔵されたヒータである。内蔵熱源152が動作すると、上型151を介して積層体10及び治具Jが加熱されると共に、各収容孔151bに収容された樹脂ペレットPが加熱される。これにより、樹脂ペレットPが溶融して溶融樹脂に変化する。
 複数のプランジャ153は、上型151の上方に位置している。各プランジャ153は、図示しない駆動源によって、対応する収容孔151bに対して挿抜可能となるように構成されている。
 分離装置160は、コントローラCtrからの指示信号に基づいて動作する。分離装置160は、治具Jに取り付けられている回転子積層鉄心1を治具Jから取り外す機能を有する。分離装置160は、図3に示されるように、載置台161と、取外機構162とを含む。
 載置台161には、治具Jに取り付けられている回転子積層鉄心1が樹脂注入装置150から搬送されて載置される。取外機構162は、例えばロボットハンドであってもよい。取外機構162は、載置台161上の積層体10を把持し、回転子積層鉄心1を治具Jから取り外すと共に、分離された治具J及び回転子積層鉄心1をそれぞれコンベアCv2,Cv3の上流端側に移載するように構成されている。
 冷却装置170(第2の冷却装置)は、コントローラCtrからの指示信号に基づいて動作する。冷却装置170は、治具Jを冷却する機能を有する。冷却装置170は、図3に示されるように、コンベアCv2と、冷却室171とを含む。
 コンベアCv2は、治具Jを分離装置160から治具取付装置140に搬送するように構成されている。そのため、コンベアCv2の上流端側は分離装置160に向けて延びており、コンベアCv2の下流端側は治具取付装置140に向けて延びている。
 冷却室171は、コンベアCv2の中間部分に配置されている。冷却室171内には、図6に詳しく示されるように、冷却板172が配置されている。冷却板172は、上下方向に移動可能に構成されていると共に、内部を冷媒が流通可能に構成されている。一方、冷却室171内においては、コンベアCv2も、内部を冷媒が流通可能に構成されている。そのため、コンベアCv2により治具Jを間欠的に移動しつつ、コンベアCv2の停止時に、冷却室171内において、治具JをコンベアCv2と冷却板172とで挟持することを繰り返すことにより、治具JとコンベアCv2及び冷却板172との間で熱交換が行われ、治具Jが冷却される。
 コンベアCv2内及び冷却板172内を流れる冷媒の温度は、例えば、室温よりも低くてもよいし、10℃程度以下であってもよい。なお、本明細書において、「室温」とは、15℃~35℃の範囲の温度をいうものとする。
 冷却装置180(第1の冷却装置)は、コントローラCtrからの指示信号に基づいて動作する。冷却装置180は、回転子積層鉄心1を冷却する機能を有する。冷却装置180は、図3に示されるように、コンベアCv3と、冷却室181と、ブロア182とを含む。
 コンベアCv3は、回転子積層鉄心1を分離装置160から積厚測定装置190に搬送するように構成されている。そのため、コンベアCv3の上流端側は分離装置160に向けて延びており、コンベアCv3の下流端側は積厚測定装置190に向けて延びている。
 冷却室181は、コンベアCv3の中間部分に配置されている。ブロア182は、冷却室181に接続されており、冷却室181内に室温の空気を送り込むように構成されている。そのため、コンベアCv3によって冷却室181内を搬送される回転子積層鉄心1は、室温の空気との間で熱交換が行われ、冷却される。そのため、本実施形態では、冷却室171による治具Jの冷却速度が、冷却室181による回転子積層鉄心1の冷却速度よりも大きく設定されている。
 積厚測定装置190は、コントローラCtrからの指示信号に基づいて動作する。積厚測定装置190は、積層体10の積厚(回転子積層鉄心1の高さ)を測定する機能を有する。積厚測定装置190は、積層方向から所定の荷重を積層体10に付与した状態で積層体10の積厚を測定し、その測定結果をコントローラCtrに送信するように構成されている。
 コントローラCtrは、例えば、記録媒体(図示せず)に記録されているプログラム又はオペレータからの操作入力等に基づいて、送出装置120、打抜装置130、治具取付装置140、樹脂注入装置150、分離装置160、冷却装置170,180及び積厚測定装置190をそれぞれ動作させるための指示信号を生成し、これらの装置に当該指示信号をそれぞれ送信する。
 コントローラCtrは、積厚測定装置190によって測定された積厚のデータが基準内であるか否かを判断する機能を有する。積厚が基準内にある場合、コントローラCtrは当該回転子積層鉄心1が良品であると判断する。これにより、所定の基準に適合した回転子積層鉄心1が得られる。一方、積厚が基準外にある場合、コントローラCtrは当該回転子積層鉄心1が不良品であると判断する。不良品と判断された回転子積層鉄心1は製造ラインから除外される。
 [回転子積層鉄心の製造方法]
 続いて、図2~図6を参照して、回転子積層鉄心1の製造方法について説明する。まず、コントローラCtrが打抜装置130に指示して、電磁鋼板ESを順次打ち抜きつつ、得られた打抜部材Wを積層して、積層体10を形成する。
 次に、コントローラCtrがコンベアCv1に指示して、積層体10を治具取付装置140に向けて搬送する。次に、治具Jが載置台141に載置されている状態において、コントローラCtrが取付機構142に指示して、コンベアCv1の下流端側に位置する積層体10を治具Jに取り付ける。具体的には、挿通ポストJbを軸孔10aに嵌入して、積層体10をベースJaに載置する。積層体10の治具Jへの取付に際して、積層体10及び治具Jは、予熱されていなくてもよいし、予熱されていてもよい。
 次に、治具Jに取り付けられている積層体10を樹脂注入装置150に搬送して、図4に示されるように、各磁石挿入孔16内に永久磁石12を挿入する。各磁石挿入孔16内への永久磁石12の挿入は、人手で行われてもよいし、コントローラCtrの指示信号に基づいて、樹脂注入装置150が備えるロボットハンド(図示せず)等により行われてもよい。
 次に、図5に示されるように、上型151を積層体10上に載置する。その後、積層体10は、ベースJaと上型151とで高さ方向から挟持され、積層体10が所定の荷重にて加圧される。次に、各収容孔151bに樹脂ペレットPを投入する。内蔵熱源152が作動して樹脂ペレットPが溶融状態となると、溶融樹脂をプランジャ153によって各磁石挿入孔16内に注入する。このとき、積層体10は、内蔵熱源152により、例えば60℃~220℃程度に加熱される。その後、溶融樹脂が固化すると、磁石挿入孔16内に固化樹脂14が形成される。こうして、積層体10に永久磁石12が固化樹脂14と共に取り付けられる。上型151が積層体10から取り外されると、回転子積層鉄心1が完成する。
 次に、治具Jに取り付けられている回転子積層鉄心1を分離装置160に搬送して、載置台161に載置する。次に、コントローラCtrが取外機構162に指示して、治具Jから回転子積層鉄心1を取り外す。具体的には、治具Jが載置台161に固定された状態で、取外機構162が回転子積層鉄心1を把持し、挿通ポストJbの高さ方向(略鉛直方向)に回転子積層鉄心1を引き上げる。前の工程で内蔵熱源152により積層体10及び治具Jが加熱されているので、分離時の回転子積層鉄心1及び治具Jの温度T1(第1の温度)は、例えば60℃~200℃程度であってもよい。
 取外機構162は、挿通ポストJbから回転子積層鉄心1を引き抜くと、回転子積層鉄心1をコンベアCv3の上流端側に載置する。一方、回転子積層鉄心1が引き抜かれた後の治具Jは、コンベアCv2の上流端側に載置される。
 次に、治具Jは、コンベアCv2により搬送されて、冷却装置170に投入される。冷却装置170内では、治具JがコンベアCv2及び冷却板172によって冷却される。冷却装置170から出た後の治具Jの温度T2(第3の温度)は、温度T1よりも低く、例えば室温以下であってもよい。冷却された治具Jは、コンベアCv2により治具取付装置140へと搬送される。すなわち、治具Jは、治具取付装置140、樹脂注入装置150、分離装置160及び冷却装置170の順に循環している。
 一方、回転子積層鉄心1は、コンベアCv3により搬送されて、冷却装置180に投入される。冷却装置180内では、ブロア182からの送風により回転子積層鉄心1が冷却される。冷却装置180から出た後の回転子積層鉄心1の温度T3(第2の温度)は、温度T1よりも低く、例えば室温以下であってもよい。冷却された回転子積層鉄心1は、コンベアCv3により積厚測定装置190へと搬送される。
 次に、コントローラCtrが積厚測定装置190に指示して、積層体10の積厚(回転子積層鉄心1の高さ)を測定する。積厚測定装置190は、測定されたデータをコントローラCtrに送信する。コントローラCtrは、積厚測定装置190から送信されたデータが所定の基準内であるか否かを判断する。基準外であるとコントローラCtrが判断すると、不良品として、当該回転子積層鉄心1を製造ラインから除外する。一方、基準内であるとコントローラCtrが判断すると、基準に適合した回転子積層鉄心1が得られる。
 [作用]
 以上の実施形態では、回転子積層鉄心1(積層体10)及び治具Jが冷却される前の高い温度T1の状態で回転子積層鉄心1(積層体10)と治具Jとを分離し、その後、これらをそれぞれ別々に冷却している。そのため、回転子積層鉄心1が治具Jに取り付けられている状態の組物と比較して、それぞれの熱容量が小さくなると共に、外部に露出する表面積が増加する。従って、回転子積層鉄心1及び治具Jがより効率的に冷却されるので、急冷でなくとも、回転子積層鉄心1における寸法への影響や錆の発生を抑制しつつ、回転子積層鉄心1及び治具Jの冷却が短時間で完了する。従って、回転子積層鉄心1を極めて効率的に製造することが可能となる。
 以上の実施形態では、治具Jが温度T1から温度T2に冷却される際の冷却速度は、回転子積層鉄心1が温度T1から温度T3に冷却される際の冷却速度よりも大きい。治具Jについては、回転子積層鉄心1と比較して、寸法への影響や錆の発生をあまり考慮しなくてもよいので、治具Jの冷却がより短時間で完了する。そのため、より少ない数の治具Jで回転子積層鉄心1を製造することができる。その結果、回転子積層鉄心1の製造コストを低減することが可能となる。
 以上の実施形態では、樹脂注入装置150の内蔵熱源152により積層体10を治具Jと共に加熱しつつ、永久磁石12が挿入された状態の磁石挿入孔16に溶融樹脂を注入している。そのため、磁石挿入孔16に溶融樹脂を注入する過程で鉄心本体に付与される熱が、積層体10の加熱に利用される。従って、回転子積層鉄心1を加熱するための熱源を別個用意する必要がなくなる。その結果、回転子積層鉄心1の製造コストを低減することが可能となる。
 [変形例]
 以上、本開示に係る実施形態について詳細に説明したが、請求の範囲及びその要旨を逸脱しない範囲で種々の変形を上記の実施形態に加えてもよい。
 (1)例えば、上記の実施形態では、複数の打抜部材Wが積層されてなる積層体10が鉄心本体として機能していたが、鉄心本体が積層体10以外で構成されていてもよい。具体的には、鉄心本体は、例えば、強磁性体粉末が圧縮成形されたものであってもよいし、強磁性体粉末を含有する樹脂材料が射出成形されたものであってもよい。
 (2)上記の実施形態では、積層体10は、複数の打抜部材Wが積層されて構成されていたが、複数の打抜部材Wが積層されたブロック体が複数積み重ねられて構成されていてもよい。このときも、複数のブロック体が転積によって積層されてもよい。
 (3)2つ以上の永久磁石12が組み合わされた一組の磁石組が、一つの磁石挿入孔16内にそれぞれ挿入されていてもよい。この場合、一つの磁石挿入孔16内において、複数の永久磁石12が磁石挿入孔16の長手方向において並んでいてもよい。一つの磁石挿入孔16内において、複数の永久磁石12が磁石挿入孔16の延在方向において並んでいてもよい。一つの磁石挿入孔16内において、複数の永久磁石12が当該長手方向に並ぶと共に複数の永久磁石12が当該延在方向において並んでいてもよい。
 (4)上記の実施形態では、上型151の収容孔151b内に収容されている樹脂ペレットPを内蔵熱源152により溶融し、永久磁石12が挿入されている磁石挿入孔16内に溶融樹脂を注入していたが、他の種々の方法によって永久磁石12を磁石挿入孔16内に保持させてもよい。例えば、磁石挿入孔16内に永久磁石12及び樹脂ペレットPが投入された状態で積層体10を加熱し、樹脂ペレットPを溶融させることにより、磁石挿入孔16内に樹脂を充填してもよい。また例えば、磁石挿入孔16内に樹脂ペレットPが投入された状態で、加熱された永久磁石12を磁石挿入孔16に挿入して、永久磁石12の熱で樹脂ペレットPを溶融させることにより、磁石挿入孔16内に樹脂を充填してもよい。
 (5)治具取付装置140から樹脂注入装置150への、治具J及び積層体10の組物の搬送は、人手で行われてもよいし、コントローラCtrからの指示信号に基づいて取付機構142により行われてもよいし、コントローラCtrからの指示信号に基づいて、製造装置100が備える他の搬送機構(例えば、ロボットハンド)により行われてもよい。コンベアCv1から治具取付装置140への積層体10の搬送、樹脂注入装置150から分離装置160への、治具J及び回転子積層鉄心1の組物の搬送、分離装置160からコンベアCv2への治具Jの搬送、分離装置160からコンベアCv3への回転子積層鉄心1の搬送、及び、コンベアCv3から積厚測定装置190への回転子積層鉄心1の搬送についても、同様に、人手で行われてもよいし、製造装置100が備える搬送機構により行われてもよい。
 (6)上記の実施形態では、樹脂注入装置150の内蔵熱源152により積層体10及び治具Jを加熱していたが、他の加熱源を用いて、積層体10(回転子積層鉄心1)及び治具Jを加熱してもよい。例えば、樹脂注入装置150の内蔵熱源152による加熱後、一定期間が経過して、積層体10及び治具Jの温度が低下した場合、他の加熱源により積層体10(回転子積層鉄心1)及び治具Jを再加熱してもよい。
 (7)回転子積層鉄心1及び治具Jが温度T1であるときには、回転子積層鉄心1の軸孔10aの内径が挿通ポストJbの外径よりも大きく、挿通ポストJbが軸孔10aから離間していてもよい。この場合、冷却に伴い挿通ポストJbが軸孔10aと嵌合し、挿通ポストJbから回転子積層鉄心1を抜き出すことが困難となる前の温度T1において、回転子積層鉄心1及び治具Jの分離が行われる。そのため、回転子積層鉄心1をより容易に治具から取り外すことが可能となる。
 (8)回転子積層鉄心1の熱膨張率は治具Jの熱膨張率よりも大きくてもよい。この場合、温度T1にある回転子積層鉄心1及び治具Jにおいて、挿通ポストJbと回転子積層鉄心1との間に隙間が生じやすくなる。そのため、加熱状態での回転子積層鉄心1と治具Jとの分離を容易に行うことが可能となる。
 (9)上記の実施形態では、回転子積層鉄心1について説明したが、特許請求の範囲及びその要旨を固定子積層鉄心(鉄心製品)に適用してもよい。この場合、複数の鉄心片が組み合わされてなる分割型の固定子積層鉄心であってもよいし、非分割型の固定子積層鉄心であってもよい。
 ここで、図7及び図8を参照して、固定子積層鉄心2の一例を説明する。固定子積層鉄心2は、固定子(ステータ)の一部である。固定子は、固定子積層鉄心2に巻線が取り付けられたものである。固定子が回転子(ロータ)と組み合わせられることにより、電動機(モータ)が構成される。
 固定子積層鉄心2は、積層体20(鉄心本体)と、複数の樹脂部21とを備える。積層体20は、円筒形状を呈している。すなわち、積層体20の中央部分には、中心軸Axに沿って延びる貫通孔20aが設けられている。貫通孔20a内には、回転子が配置可能である。
 積層体20は、複数の打抜部材Wが積み重ねられて構成されている。積層体20は、ヨーク部22と、複数のティース部23とを有する。ヨーク部22は、円環状を呈しており、中心軸Axを囲むように延びている。ヨーク部22の径方向(以下、単に「径方向」という。)における幅、内径、外径及び厚さはそれぞれ、モータの用途及び性能に応じて種々の大きさに設定しうる。
 各ティース部23は、ヨーク部22の内縁から中心軸Ax側に向かうように径方向(ヨーク部22に対して交差する方向)に沿って延びている。すなわち、各ティース部23は、ヨーク部22の内縁から中心軸Ax側に向けて突出している。各ティース部23は、周方向において、略等間隔で並んでいる。隣り合うティース部23の間には、巻線(図示せず)を配置するための空間であるスロット24が画定されている。周方向において隣り合うティース部23の先端部同士の間には、高さ方向に延びるスリット状の開口(スロット開口)25が画定されている。開口25は、スロット24と連通している。
 複数の樹脂部21はそれぞれ、スロット24内に一つずつ設けられている。具体的には、樹脂部21は、図8に示されるように、主部21aと、端部21bとを含む。主部21aは、スロット24の先端部よりも内側(ヨーク部22側)に位置するスロット24の内壁面を覆うように配置されている。
 端部21bは、高さ方向において主部21aの上端及び下端にそれぞれ一体的に設けられており、スロット24の内壁面から積層体20の上端面及び下端面に回り込んでいる。端部21bは、高さ方向において積層体20の上端面及び下端面よりも外方に突出していると共に、各端面を部分的に覆っている。
 続いて、固定子積層鉄心2の製造装置100について説明する。固定子積層鉄心2の製造装置100は、治具J及び樹脂注入装置150を除いて回転子積層鉄心1の製造装置100と同等であるので、以下では、主として治具J及び樹脂注入装置150について説明する。
 治具Jは、図9に示されるように、ベースJaと、挿通ポストJbと、複数の中子30とを含む。複数の中子30は、スロット24に対応する外形を有している。中子30の外形は、スロット24よりも一回り小さい。複数の中子30は、ベースJaに対して着脱自在に取り付けられている。複数の中子30は、挿通ポストJbを囲むように略等間隔で円状に並んでおり、積層体20が治具Jに取り付けられる際に、対応するスロット24と重なり合うように位置している。
 樹脂注入装置150は、充填空間Vに溶融状態の樹脂を充填し、積層体20を構成する打抜部材W同士を接続する機能を有する。樹脂注入装置150は、図9に示されるように、一対のオーバーフロープレート40と、上型151とを備える。
 オーバーフロープレート40(以下では、単に「プレート40」と表記する。)は、円環状を呈する薄板である。プレート40には、治具Jの挿通ポストJbに対応する外径を有する一つの貫通孔と、各中子30に対応する外径を有する複数の貫通孔とが設けられている。
 続いて、図9を参照して、固定子積層鉄心2の製造方法について説明する。まず、コントローラCtrが打抜装置130に指示して、積層体20を形成する。
 次に、コントローラCtrがコンベアCv1に指示して、積層体20を治具取付装置140に向けて搬送する。次に、治具Jが載置台141に載置されている状態において、コントローラCtrが取付機構142に指示して、一対のプレート40と、コンベアCv1の下流端側に位置する積層体20とを、治具Jに取り付ける。具体的には、プレート40と、積層体20と、プレート40とをこの順に、治具Jに取り付ける。積層体20を治具Jに取り付ける際には、ベースJaに複数の中子30が取り付けられた状態で、挿通ポストJbを貫通孔20aに嵌入しつつ、複数の中子30を対応するスロット24に挿入して、積層体20をベースJaに載置する。
 次に、治具Jに取り付けられている積層体20を樹脂注入装置150に搬送して、図9に示されるように、上型151を積層体20上に載置する。その後、積層体20は、ベースJaと上型151とで高さ方向から挟持され、積層体20が所定の荷重にて加圧される。次に、各収容孔151bに樹脂ペレットPを投入する。内蔵熱源152が作動して樹脂ペレットPが溶融状態となると、溶融樹脂をプランジャ153によって充填空間V内に注入する。その後、溶融樹脂が固化すると、充填空間V内に樹脂部21が形成される。こうして、積層体20に樹脂部21が設けられる。上型151及び一対のプレート40が積層体20から取り外されると、固定子積層鉄心2が完成する。その後は、回転子積層鉄心1の製造装置100と同様に、固定子積層鉄心2と、中子30を含む治具Jとをそれぞれ別々に冷却し、冷却後の固定子積層鉄心2の積厚を測定することにより、基準に適合した固定子積層鉄心2が得られる。
 このように、積層体20の加熱に、スロット24の内周面に樹脂部21を設ける過程で積層体20に付与される熱が利用される。そのため、積層体20を加熱するための熱源を別個用意する必要がなくなる。従って、固定子積層鉄心2の製造コストを低減することが可能となる。
 [例示]
 例1.本開示の一つの例に係る鉄心製品(1,2)の製造方法は、治具(J)に取り付けられている鉄心本体(10,20)を治具(J)と共に加熱することと、加熱により治具(J)及び鉄心本体(10,20)が第1の温度(T1)を示すときに、鉄心本体(10,20)を治具(J)から取り外すことと、鉄心本体(10,20)を治具(J)から取り外すことの後に、鉄心本体(10,20)が第1の温度(T1)よりも低い第2の温度(T3)となり且つ治具(J)が第1の温度(T1)よりも低い第3の温度(T2)となるように、鉄心本体(10,20)と治具(J)とを別々に冷却することとを含む。
 ところで、特許文献1によれば、鉄心本体を搬送トレイと共に冷却した後に、鉄心本体を搬送トレイから分離している。そのため、鉄心本体及び搬送トレイの全体としての熱容量が大きくなり、冷却に時間を要していた。鉄心本体及び搬送トレイを急冷して冷却時間の短縮を図ることも考えられる。しかしながら、急冷に伴い鉄心本体に歪みが発生し、鉄心本体の寸法に影響を与える懸念がある。加えて、急冷に伴い鉄心本体の表面に結露が生じ、錆の発生に繋がる懸念もある。急冷による冷却時間の短縮化が困難であった。
 これに対し、例1の方法によれば、鉄心本体(10,20)及び治具(J)が冷却される前の高い温度(第1の温度)(T1)の状態で鉄心本体(10,20)と治具(J)とを分離し、その後、これらをそれぞれ別々に冷却している。そのため、鉄心本体(10,20)が治具(J)に取り付けられている状態の組物と比較して、それぞれの熱容量が小さくなると共に、外部に露出する表面積が増加する。従って、鉄心本体(10,20)及び治具(J)がより効率的に冷却されるので、急冷でなくとも、鉄心製品(1)における寸法への影響や錆の発生を抑制しつつ、鉄心本体(10,20)及び治具(J)の冷却が短時間で完了する。その結果、鉄心製品(1,2)を極めて効率的に製造することが可能となる。
 例2.例1の方法において、治具(J)が第1の温度(T1)から第3の温度(T2)に冷却される際の冷却速度は、鉄心本体(10,20)が第1の温度(T1)から第2の温度(T3)に冷却される際の冷却速度よりも大きくてもよい。鉄心本体(10,20)と比較して、治具(J)については、寸法への影響や錆の発生をあまり考慮しなくてもよい。そのため、例2の方法によれば、治具(J)の冷却がより短時間で完了する。従って、より少ない数の治具(J)で鉄心製品(1,2)を製造することができる。その結果、鉄心製品(1,2)の製造コストを低減することが可能となる。
 例3.例1又は例2の方法において、第1の温度(T1)は60℃~200℃であり、第2及び第3の温度(T2,T3)は室温以下であってもよい。
 例4.例1~例3のいずれかの方法において、鉄心本体(10,20)には高さ方向に貫通する貫通孔(10a,20a)が設けられており、治具(J)は、ベース(Ja)と、ベース(Ja)から上方に向けて延びるポスト(Jb)とを含み、鉄心本体(10,20)を治具(J)と共に加熱することは、ポスト(Jb)が貫通孔(10a,20a)に挿通された状態で鉄心本体(10,20)がベース(Ja)に載置されていることを含んでいてもよい。
 例5.例4の方法において、鉄心本体(10,20)及び治具(J)が第1の温度(T1)にあるとき、貫通孔(10a,20a)内に位置しているポスト(Jb)は鉄心本体(10,20)から離間しており、鉄心本体(10,20)及び治具(J)がそれぞれ第2の温度(T3)及び第3の温度(T2)にあるとき、ポスト(Jb)の外形が貫通孔(10a,20a)内の空間よりも大きくてもよい。この場合、冷却に伴いポスト(Jb)が貫通孔(10a,20a)と嵌合し、ポスト(Jb)から鉄心本体(10,20)を抜き出すことが困難となる前の第1の温度(T1)において、鉄心本体(10,20)及び治具(J)の分離が行われる。そのため、鉄心本体(10,20)をより容易に治具(J)から取り外すことが可能となる。
 例6.例1~例5のいずれかの方法において、鉄心本体(10)には、鉄心本体(10)を高さ方向に貫通する磁石挿入孔(16)が設けられており、鉄心本体(10)を治具(J)と共に加熱することは、加熱源(152)により鉄心本体(10)を治具(J)と共に加熱しつつ、永久磁石(12)が挿入された状態の磁石挿入孔(16)に溶融樹脂を注入することを含んでいてもよい。この場合、磁石挿入孔(16)に溶融樹脂を注入する過程で鉄心本体(10)に付与される熱が、鉄心本体(10)の加熱に利用される。そのため、鉄心本体(10)を加熱するための熱源を別個用意する必要がなくなる。従って、鉄心製品(回転子鉄心)(1)の製造コストを低減することが可能となる。
 例7.例1~例5のいずれかの方法において、鉄心本体(20)は、環状のヨーク部(22)と、ヨーク部(22)に交差するようにヨーク部(22)から延びる複数のティース部(23)とを含み、ヨーク部(22)の周方向において隣り合う2つのティース部(23)の間にスロット(24)が設けられており、治具(J)は、スロット(24)に対応する外形を有する中子(30)を有し、鉄心本体(20)を治具(J)と共に加熱することは、スロット(24)内に中子(30)が挿通された状態で、加熱源(152)により鉄心本体(20)を治具(J)と共に加熱しつつ、スロット(24)と中子(30)との間の注入空間(V)に溶融状態の樹脂を注入することを含んでもよい。この場合、スロット(24)の内周面に樹脂を設ける過程で鉄心本体(20)に付与される熱が、鉄心本体(20)の加熱に利用される。そのため、鉄心本体(20)を加熱するための熱源を別個用意する必要がなくなる。従って、鉄心製品(固定子鉄心)(2)の製造コストを低減することが可能となる。
 例8.例1~例7のいずれかの方法において、鉄心本体(10,20)の熱膨張率は治具(J)の熱膨張率よりも大きくてもよい。この場合、第1の温度(T1)にある鉄心本体(10,20)及び治具(J)において、ポスト(Jb)と鉄心本体(10,20)との間に隙間が生じやすくなる。そのため、加熱状態での鉄心本体(10,20)と治具(J)との分離を容易に行うことが可能となる。
 本出願は、2018年3月28日出願の日本特許出願(特願2018-062388)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示に係る鉄心製品の製造方法によれば、鉄心製品を極めて効率的に製造することが可能となる。
 1…回転子積層鉄心(鉄心製品)、10…積層体(鉄心本体)、10a…軸孔(貫通孔)、12…永久磁石、14…固化樹脂、2…固定子積層鉄心(鉄心製品)、20…積層体(鉄心本体)、20a…貫通孔、21…樹脂部、22…ヨーク部、23…ティース部、24…スロット、30…中子、100…製造装置、130…打抜装置、140…治具取付装置、150…樹脂注入装置、152…内蔵熱源(加熱源)、160…分離装置、170…冷却装置(第2の冷却装置)、180…冷却装置(第1の冷却装置)、Ctr…コントローラ(制御部)、J…治具、Ja…ベース、Jb…挿通ポスト(ポスト)。

Claims (8)

  1.  治具に取り付けられている鉄心本体を前記治具と共に加熱することと、
     加熱により前記治具及び前記鉄心本体が第1の温度を示すときに、前記鉄心本体を前記治具から取り外すことと、
     前記鉄心本体を前記治具から取り外すことの後に、前記鉄心本体が前記第1の温度よりも低い第2の温度となり且つ前記治具が前記第1の温度よりも低い第3の温度となるように、前記鉄心本体と前記治具とを別々に冷却することとを含む、鉄心製品の製造方法。
  2.  前記治具が前記第1の温度から前記第3の温度に冷却される際の冷却速度は、前記鉄心本体が前記第1の温度から前記第2の温度に冷却される際の冷却速度よりも大きい、請求項1に記載の製造方法。
  3.  前記第1の温度は60℃~200℃であり、前記第2及び第3の温度は室温以下である、請求項1又は2に記載の製造方法。
  4.  前記鉄心本体には、前記鉄心本体を高さ方向に貫通する貫通孔が設けられており、
     前記治具は、ベースと、前記ベースから上方に向けて延びるポストとを含み、
     前記鉄心本体を前記治具と共に加熱することは、前記ポストが前記貫通孔に挿通された状態で前記鉄心本体が前記ベースに載置されていることを含む、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記鉄心本体及び前記治具が前記第1の温度にあるとき、前記貫通孔内に位置している前記ポストは前記鉄心本体から離間しており、前記鉄心本体及び前記治具がそれぞれ前記第2の温度及び前記第3の温度にあるとき、前記ポストの外形が前記貫通孔内の空間よりも大きい、請求項4に記載の製造方法。
  6.  前記鉄心本体には、前記鉄心本体を高さ方向に貫通する磁石挿入孔が設けられており、
     前記鉄心本体を前記治具と共に加熱することは、加熱源により前記鉄心本体を前記治具と共に加熱しつつ、永久磁石が挿入された状態の前記磁石挿入孔に溶融樹脂を注入することを含む、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記鉄心本体は、環状のヨーク部と、前記ヨーク部に交差するように前記ヨーク部から延びる複数のティース部とを含み、
     前記ヨーク部の周方向において隣り合う2つの前記ティース部の間にスロットが設けられており、
     前記治具は、前記スロットに対応する外形を有する中子を有し、
     前記鉄心本体を前記治具と共に加熱することは、前記スロット内に前記中子が挿通された状態で、加熱源により前記鉄心本体を前記治具と共に加熱しつつ、前記スロットと前記中子との間の注入空間に溶融状態の樹脂を注入することを含む、請求項1~5のいずれか一項に記載の製造方法。
  8.  前記鉄心本体の熱膨張率は前記治具の熱膨張率よりも大きい、請求項1~7のいずれか一項に記載の製造方法。
PCT/JP2019/008662 2018-03-28 2019-03-05 鉄心製品の製造方法 WO2019188048A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980016321.1A CN111801879B (zh) 2018-03-28 2019-03-05 铁芯制品的制造方法
DE112019001623.7T DE112019001623T5 (de) 2018-03-28 2019-03-05 Herstellverfahren eines eisenkernprodukts
US16/970,535 US11258339B2 (en) 2018-03-28 2019-03-05 Manufacturing method of iron core product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-062388 2018-03-28
JP2018062388A JP7042666B2 (ja) 2018-03-28 2018-03-28 鉄心製品の製造方法

Publications (1)

Publication Number Publication Date
WO2019188048A1 true WO2019188048A1 (ja) 2019-10-03

Family

ID=68061480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008662 WO2019188048A1 (ja) 2018-03-28 2019-03-05 鉄心製品の製造方法

Country Status (5)

Country Link
US (1) US11258339B2 (ja)
JP (1) JP7042666B2 (ja)
CN (1) CN111801879B (ja)
DE (1) DE112019001623T5 (ja)
WO (1) WO2019188048A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375475B2 (ja) * 2019-10-31 2023-11-08 株式会社アイシン ロータの製造方法
US20230053482A1 (en) * 2021-08-23 2023-02-23 GM Global Technology Operations LLC Composite inserts for a rotor lamination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055687A (ja) * 2009-09-04 2011-03-17 Mitsui High Tec Inc 回転子積層鉄心の製造方法
JP2015006119A (ja) * 2013-06-24 2015-01-08 株式会社三井ハイテック 積層鉄心の製造方法
JP2015139248A (ja) * 2014-01-21 2015-07-30 株式会社ジェイテクト コアの製造装置及びコアの製造方法
JP2017038505A (ja) * 2015-08-11 2017-02-16 株式会社三井ハイテック 積層鉄心の樹脂封止方法
JP2017163703A (ja) * 2016-03-09 2017-09-14 株式会社三井ハイテック 積層鉄心の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225212B2 (en) * 2011-03-30 2015-12-29 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing bonded-magnet rotor
JP6449530B2 (ja) 2013-01-15 2019-01-09 株式会社三井ハイテック 回転子積層鉄心の製造方法
JP6153826B2 (ja) * 2013-09-05 2017-06-28 株式会社三井ハイテック 永久磁石付き回転子及びその製造方法
JP6180607B2 (ja) * 2016-10-20 2017-08-16 アピックヤマダ株式会社 樹脂モールド装置及びモータコアの樹脂モールド方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055687A (ja) * 2009-09-04 2011-03-17 Mitsui High Tec Inc 回転子積層鉄心の製造方法
JP2015006119A (ja) * 2013-06-24 2015-01-08 株式会社三井ハイテック 積層鉄心の製造方法
JP2015139248A (ja) * 2014-01-21 2015-07-30 株式会社ジェイテクト コアの製造装置及びコアの製造方法
JP2017038505A (ja) * 2015-08-11 2017-02-16 株式会社三井ハイテック 積層鉄心の樹脂封止方法
JP2017163703A (ja) * 2016-03-09 2017-09-14 株式会社三井ハイテック 積層鉄心の製造方法

Also Published As

Publication number Publication date
JP2019176622A (ja) 2019-10-10
CN111801879B (zh) 2023-02-17
US20210091645A1 (en) 2021-03-25
DE112019001623T5 (de) 2020-12-17
CN111801879A (zh) 2020-10-20
JP7042666B2 (ja) 2022-03-28
US11258339B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
JP6430058B1 (ja) 回転体の製造方法
JP5880709B2 (ja) 界磁極用磁石体の製造装置
JP6933624B2 (ja) 回転子の製造方法
WO2019188048A1 (ja) 鉄心製品の製造方法
JP7113694B2 (ja) 鉄心製品の製造方法及び鉄心製品の製造装置
JP6401605B2 (ja) ダミーカシメを有する積層体及びその製造方法、並びに積層鉄心の製造方法
JP7187287B2 (ja) 積層鉄心製品の製造方法
JP6382465B1 (ja) 回転体の製造方法
US11469653B2 (en) Method of manufacturing rotating body
US20220399789A1 (en) Method of producing iron core product and apparatus for producing iron core product
CN112519064B (zh) 铁芯制品的制造方法以及铁芯制品的制造装置
JP6899782B2 (ja) 固定子積層鉄心の製造方法
JP6626934B1 (ja) 鉄心製品の製造方法及び鉄心製品
JP2018098904A (ja) 積層鉄心の製造方法及び積層鉄心の製造装置
JP2020054148A (ja) 鉄心製品の製造方法
JP2024060137A (ja) 積層鉄心の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774588

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19774588

Country of ref document: EP

Kind code of ref document: A1