WO2019188045A1 - ホイールローダ - Google Patents

ホイールローダ Download PDF

Info

Publication number
WO2019188045A1
WO2019188045A1 PCT/JP2019/008630 JP2019008630W WO2019188045A1 WO 2019188045 A1 WO2019188045 A1 WO 2019188045A1 JP 2019008630 W JP2019008630 W JP 2019008630W WO 2019188045 A1 WO2019188045 A1 WO 2019188045A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
pressure
switching valve
actuator
control valve
Prior art date
Application number
PCT/JP2019/008630
Other languages
English (en)
French (fr)
Inventor
真一郎 田中
裕康 小寺
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP19774460.0A priority Critical patent/EP3656649B1/en
Priority to CN201980004058.4A priority patent/CN111094111B/zh
Priority to US16/640,363 priority patent/US11027775B2/en
Publication of WO2019188045A1 publication Critical patent/WO2019188045A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/225Control of steering, e.g. for hydraulic motors driving the vehicle tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/07Supply of pressurised fluid for steering also supplying other consumers ; control thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0841Articulated frame, i.e. having at least one pivot point between two travelling gear units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors

Definitions

  • the present invention relates to a wheel loader.
  • a hydraulic circuit for a steering actuator and a hydraulic circuit for a work machine actuator that share a hydraulic pressure source and a hydraulic circuit for a working machine actuator are provided.
  • a wheel loader in which supply is prioritized over a hydraulic circuit for a work implement actuator (see, for example, Patent Document 1).
  • the above-described prior art is configured to give priority to the operation of the steering actuator when both the operation of the steering actuator and the operation of the work implement actuator are performed at the same time, and particularly when the engine speed is low.
  • the flow rate on the work machine actuator side is insufficient, and it is difficult to obtain the lifting speed when the work machine is raised and operated, contrary to the intention of the operator.
  • An object of the present invention is to provide a wheel loader capable of improving the operability when the working machine actuator and the steering actuator are combined and operated while maintaining the configuration in which the operation of the steering actuator is prioritized and the engine speed is low. Is to provide.
  • an aspect of a wheel loader includes a vehicle body, a steering actuator for steering the vehicle body, a work machine attached to the front side of the vehicle body, and a work for operating the work machine.
  • a hydraulic pump that supplies pressure oil to the steering actuator and the work machine actuator, an engine that drives the hydraulic pump, and the steering actuator and the hydraulic pump, and is supplied to the steering actuator
  • a steering direction switching valve that switches the direction of the pressurized oil
  • a steering control valve that is provided between the steering direction switching valve and the hydraulic pump, and controls the flow rate of the pressure oil to the steering actuator
  • the work implement actuator and the hydraulic A working machine direction switching valve for switching the direction of pressure oil supplied to the working machine actuator, and between the working machine direction switching valve and the hydraulic pump.
  • a work machine control valve that controls the flow rate of pressure oil to the machine actuator, a throttle provided downstream of the flow of pressure oil from the work machine direction switching valve, and a rotation speed sensor that detects the rotation speed of the engine
  • a wheel loader comprising: a pressure sensor that detects a pressure between the directional control valve for the work implement and the throttle; and a control device that controls the steering control valve.
  • FIG. 1st embodiment of the present invention It is a side view of the wheel loader concerning a 1st embodiment of the present invention. It is a figure which shows the hydraulic drive system of the wheel loader shown in FIG. It is a figure which shows the electric constitution of the hydraulic drive system shown in FIG. It is a flowchart which shows the procedure of the control processing of the electromagnetic switching valve shown in FIG. It is a figure which shows the hydraulic drive system of the wheel loader which concerns on 2nd Embodiment. It is a figure which shows the hydraulic drive system of the wheel loader which concerns on 3rd Embodiment. It is a figure which shows the hydraulic drive system of the wheel loader which concerns on 4th Embodiment.
  • FIG. 1 is a side view of a wheel loader 1 according to the first embodiment of the present invention.
  • a wheel loader 1 as a work vehicle includes a front frame (vehicle body) 2 having a pair of lift arms 5, a bucket 6, a front wheel 13F, and the like, and a rear frame having a cab 9, a machine room 10, a rear wheel 13R, and the like ( Body) 3.
  • An engine 14 is disposed in the machine room 10, and a cab 9 has a bucket operation lever 24 (see FIG. 2) for operating the bucket 6 and a lift arm operation lever 25 (see FIG. 2) for operating the lift arm 5.
  • An accelerator pedal 26 for adjusting the rotational speed of the engine 14 is provided.
  • the front wheel 13F and the rear wheel 13R are also collectively referred to as wheels 13.
  • the pair of lift arms 5 is turned up and down (up and down) by driving a pair of lift arm cylinders 8 (8L, 8R), and the bucket 6 is turned up and down by driving the bucket cylinder 7 (cloud or dump).
  • the pair of lift arms 5, the pair of lift arm cylinders 8, the bucket 6, and the bucket cylinder 7 constitute a front work device (work machine) 4.
  • the front frame 2 and the rear frame 3 are pivotally connected to each other by a center pin 12, and the front frame 2 is refracted right and left with respect to the rear frame 3 by expansion and contraction of a pair of left and right steering cylinders 11 (11 L and 11 R).
  • the pair of lift arm cylinders 8 and bucket cylinders 7 correspond to the “work machine actuator” of the present invention.
  • a bucket angle sensor 73 for detecting the angle of the bucket 6 and a lift arm angle sensor 74 for detecting the angle of the lift arm 5 are provided, and the detection signals of the sensors 73 and 74 are as follows. It is output to the controller 70 (see FIG. 3).
  • a torque converter and a transmission (not shown) are connected to the output shaft of the engine 14. The rotation of the engine 14 is transmitted to the transmission through a torque converter. The rotation of the output shaft of the torque converter is changed by the transmission. The rotation after the shift is transmitted to the wheel 13 through the propeller shaft and the axle, and the wheel loader 1 travels.
  • An engine speed sensor 72 for detecting the engine speed is provided near the output shaft of the engine 14 (see FIG. 2).
  • FIG. 2 is a diagram showing a hydraulic drive system of the wheel loader 1 shown in FIG.
  • the hydraulic drive system of the wheel loader 1 includes a hydraulic pump 30, a steering drive circuit 31, and a work implement drive circuit 32.
  • the hydraulic pump 30 is a so-called variable displacement hydraulic pump and is connected to the engine 14.
  • the hydraulic pump 30 is driven to rotate by the engine 14, and discharges high-pressure oil by rotating.
  • a steering drive circuit 31 and a work machine drive circuit 32 are connected in parallel to the hydraulic pump 30, and pressure oil from the hydraulic pump 30 flows in parallel to the steering drive circuit 31 and the work machine drive circuit 32. ing.
  • the steering drive circuit 31 has a meter-in passage 33 connected to the hydraulic pump 30, and pressure oil discharged from the hydraulic pump 30 flows through the meter-in passage 33.
  • a steering direction switching valve 34 is provided in the meter-in passage 33, and pressure oil discharged from the hydraulic pump 30 is guided to the steering direction switching valve 34.
  • the steering direction switching valve 34 is connected to the steering cylinders 11L and 11R, and the pressure oil guided to the meter-in passage 33 flows to the steering cylinders 11L and 11R via the steering direction switching valve 34. .
  • the steering direction switching valve 34 has a main spool 34a, and the main spool 34a moves and changes its position to switch the direction of the pressure oil flowing through the steering cylinders 11L and 11R. Further, in the steering direction switching valve 34, the opening degree of the main spool 34a is adjusted according to the position of the main spool 34a, and the pressure oil having a flow rate corresponding to the opening degree is applied to the steering cylinders 11L and 11R. It is going to flow to.
  • the main spool 34a is connected to the steering device 35.
  • the steering device 35 has a steering handle (hereinafter referred to as “handle”) that can be turned, and outputs the first pilot oil and the second pilot oil according to the turning direction of the handle. It has become.
  • the main spool 34a receives the pilot pressures P1 and P2 of the output first pilot oil and second pilot oil in a direction that opposes each other, and receives the first pilot pressure P1. Moving from the neutral position M1 to the first offset position S11 and receiving the second pilot pressure P2, it moves from the neutral position M1 to the second offset position S12.
  • the meter-in passage 33 is connected to the bottom chamber 11a of the right steering cylinder 11R and the rod chamber 11b of the left steering cylinder 11L, and the tank 36 is the rod of the right steering cylinder 11R.
  • the chamber 11c is connected to the bottom chamber 11d of the left steering cylinder 11L.
  • the meter-in passage 33 is connected to the rod chamber 11c of the right steering cylinder 11R and the bottom chamber 11d of the left steering cylinder 11L, and the tank 36 is connected to the right steering cylinder 11R.
  • the bottom chamber 11a and the rod chamber 11b of the left steering cylinder 11L As a result, the left steering cylinder 11L extends and the right steering cylinder 11R contracts, and the traveling direction is switched with respect to the rear frame 3 with the front frame 2 facing to the right.
  • the steering device 35 outputs the first pilot oil and the second pilot oil at flow rates corresponding to the rotational speed of the steering wheel, and the flow rates of the first pilot oil and the second pilot oil. Accordingly, the first pilot pressure P1 and the second pilot pressure P2 are increased. As the first pilot pressure P1 and the second pilot pressure P2 increase, the opening degree of the main spool 34a increases, and the flow rates of the pressure oil flowing to the steering cylinders 11L and 11R via the steering direction switching valve 34, respectively. Becomes larger. As a result, the steering cylinders 11L and 11R expand and contract at a speed corresponding to the turning speed of the handle, and the traveling direction is switched. Further, the steering drive circuit 31 has a meter-in compensator (steering control valve) 37 in order to adjust the flow rate of the pressure oil flowing through the steering cylinders 11L and 11R.
  • a meter-in compensator (steering control valve) 37 in order to adjust the flow rate of the pressure oil flowing through the steering cylinders 11L and
  • the meter-in compensator 37 is interposed upstream of the steering direction switching valve 34 in the meter-in passage 33, and the outlet pressure P4 of the steering direction switching valve 34 is applied to one pressure receiving portion 37a of the meter-in compensator 37 for steering.
  • the inlet pressure P3 of the direction switching valve 34 is input to the other pressure receiving portion 37b.
  • the inlet pressure P3 is input to the meter-in compensator 37 through the throttle 58.
  • the outlet pressure P4 of the steering direction switching valve 34 is a hydraulic pressure output according to the opening degree of the main spool 34a, and increases as the opening degree of the main spool 34a increases.
  • the outlet pressure P4 of the steering direction switching valve 34 is increased in accordance with the pressure increase of the pressure oil flowing through the steering cylinders 11L and 11R.
  • the meter-in compensator 37 receives such two pressures P3 and P4 in directions that oppose each other.
  • This meter-in compensator 37 is a flow control valve, and from the hydraulic pump 30 to the steering direction switching valve 34 by an opening degree corresponding to the differential pressure between the two pressures P3 and P4 (the differential pressure across the steering direction switching valve 34). The flow rate of the pressure oil flowing through the cylinder is controlled.
  • the electromagnetic switching valve 65 is held in the closed position (a) in the non-excited state.
  • the electromagnetic switching valve 65 is switched to the open position (b), so that the pressure receiving portion 37a and the tank 36 communicate with each other. To do. Therefore, when the electromagnetic switching valve 65 is in a non-excited state, the outlet pressure P4 of the steering direction switching valve 34 acts in a direction to open the meter-in compensator 37 (state in FIG. 2).
  • the pressure oil flowing through the steering direction switching valve 34 flows through the passage 67 in the order of the electromagnetic switching valve 65 and the throttle 66 and is returned to the tank 36. Therefore, the outlet pressure P4 of the steering direction switching valve 34 is lower than the pressure when the electromagnetic switching valve 65 is in the non-excited state, and the force acting in the direction to open the meter-in compensator 37 is weakened. That is, when the electromagnetic switching valve 65 is excited (ON), the meter-in compensator 37 operates in the closing direction to reduce the opening area (the opening degree is reduced). Therefore, the pressure oil from the hydraulic pump 30 is less likely to flow to the steering drive circuit 31. In other words, the pressure oil from the hydraulic pump 30 easily flows to the work machine drive circuit 32.
  • the steering drive circuit 31 is provided with three relief valves 38-40.
  • the first and second relief valves 38 and 39 are pressurized oil that flows through the passage when the hydraulic pressure in the passage connecting the steering direction switching valve 34 and the chambers 11a to 11d of the steering cylinders 11L and 11R becomes equal to or higher than a predetermined pressure. Is discharged into the tank 36.
  • the main relief valve 40 which is a third relief valve, allows pilot oil flowing from the steering direction switching valve 34 to the meter-in compensator 37 when the outlet pressure P4 of the steering direction switching valve 34 exceeds a predetermined set pressure. It is discharged to the tank 36.
  • the relief valves 38 and 39 prevent pressure oil from escaping so that the pressure in the circuit does not exceed a predetermined pressure when an abnormal pressure is generated in the circuit due to an impact or the like acting on the steering cylinders 11L and 11R due to external force.
  • the main relief valve 40 prevents the pressure in the steering circuit from exceeding a predetermined pressure during driving of the steering.
  • the work machine drive circuit 32 has a bleed-off passage 41, and the upstream side of the bleed-off passage 41 is connected to the upstream side of the meter-in compensator 37 in the meter-in passage 33.
  • the bleed-off passage 41 includes a bucket direction switching valve 43, a lift arm direction switching valve 44, and a throttle 45 in that order from the upstream side, and the downstream side of the throttle 45 is connected to the tank 36. Yes.
  • the bucket direction switching valve 43 and the lift arm direction switching valve 44 correspond to the “work machine direction switching valve” of the present invention.
  • the bucket direction switching valve 43 is connected to the bucket cylinder 7, and drives the bucket cylinder 7 by switching the flow of pressure oil in the bleed-off passage 41 toward the bucket cylinder 7. More specifically, the bucket direction switching valve 43 has a bucket spool 43a, and the bucket spool 43a is neutralized by operating the bucket operation lever 24 provided in the cab 9 in the front-rear direction. It moves from the position M2 and changes its position. Then, by changing the position of the bucket spool 43a, the bucket direction switching valve 43 switches the direction in which the pressure oil flows.
  • the bucket direction switching valve 43 configured as described above is a center open type direction switching valve.
  • the bleed-off passage 41 is opened, and the opening degree is the largest. It is getting bigger.
  • the opening degree of the bucket direction switching valve 43 that is, the bucket spool 43a according to the amount of movement of the bucket spool 43a.
  • the opening degree of the bleed-off passage 41 becomes smaller. Therefore, the flow rate of the pressure oil flowing downstream from the bucket direction switching valve 43 in the bleed-off passage 41 decreases as the operation amount of the bucket operation lever 24 increases, and the bucket operation lever 24 is returned to the original position. It increases by returning.
  • a lift arm direction switching valve 44 is interposed downstream from the bucket direction switching valve 43.
  • the lift arm direction switching valve 44 is connected to a pair of lift arm cylinders 8L and 8R, and switches the flow of pressure oil in the bleed-off passage 41 to the lift arm cylinders 8L and 8R, thereby lifting the lift arm cylinders 8L and 8R. 8R is driven. More specifically, the lift arm direction switching valve 44 has a lift arm spool 44a, and the lift arm spool 44a operates the lift arm operating lever 25 provided in the cab 9 in the front-rear direction. By doing so, it moves from the neutral position M3 and changes its position. Then, by changing the position of the lift arm spool 44a, the lift arm spool 44a switches the direction in which the pressure oil flows.
  • the lift arm spool 44a can be moved from the first offset position S31 to the third offset position S33. Yes.
  • the rod chambers 8a and bottom chambers 8b of the lift arm cylinders 8L and 8R are connected to the tank 36, the holding force of the lift arm cylinders 8L and 8R is lost, and the bucket 6 is lowered by its own weight.
  • the lift arm direction switching valve 44 configured as described above is a center open type direction switching valve, and when the lift arm spool 44a is located at the neutral position M3, the bleed-off passage 41 is opened and its opening degree is increased. Is the largest.
  • the opening degree of the bleed-off passage 41 decreases according to the amount of movement of the lift arm spool 44a. Go. Therefore, the flow rate of the pressure oil flowing downstream from the lift arm direction switching valve 44 in the bleed-off passage 41 decreases as the operation amount of the lift arm operation lever 25 increases, and the lift arm operation lever 25 is moved to the original position. It is designed to increase by returning to the direction.
  • a throttle 45 is interposed downstream from the lift arm direction switching valve 44.
  • the throttle 45 is located in the bleed-off passage 41 between the lift arm direction switching valve 44 and the tank 36, and the pressure oil passing through the bucket direction switching valve 43 and the lift arm direction switching valve 44 is throttled. It is discharged to the tank 36 through 45. Therefore, on the upstream side of the throttle 45, a pressure corresponding to the flow rate of the pressure oil that passes through the bucket direction switching valve 43 and the lift arm direction switching valve 44 and is guided to the throttle 45 is generated.
  • a negative control passage 46 is connected between the throttle 45 and the lift arm direction switching valve 44, and the pressure generated on the upstream side of the throttle 45 passes through the negative control passage 46 to the servo mechanism 47 of the hydraulic pump 30. Derived as a tilt command signal.
  • a pressure sensor 71 is provided between the lift arm direction switching valve 44 and the throttle 45 in the bleed-off passage 41.
  • the hydraulic pump 30 is a variable displacement hydraulic pump as described above and includes the swash plate 30a.
  • the capacity of the hydraulic pump 30 is changed by inclining the swash plate 30a, and the servo mechanism 47 controls the tilt angle of the swash plate 30a of the hydraulic pump 30 in accordance with the tilt command signal. ing. More specifically, the servo mechanism 47 decreases the displacement of the hydraulic pump 30 by decreasing the tilt angle of the swash plate 30a when the pressure of the tilt command signal increases. Thereby, the discharge amount of the hydraulic pump 30 decreases. On the other hand, when the pressure of the tilt command signal decreases, the servo mechanism 47 increases the tilt angle of the swash plate 30a to increase the capacity of the hydraulic pump 30. Thereby, the discharge amount of the hydraulic pump 30 increases.
  • the discharge amount of the hydraulic pump 30 is controlled according to the flow rate flowing through the throttle 45, that is, the discharge amount of the hydraulic pump 30 is controlled by negative control. Further, in the work implement drive circuit 32, the flow rate of the pressure oil that is discharged from the hydraulic pump 30 and flows to the steering drive circuit 31 is adjusted, that is, the flow rate of the pressure oil that is bleed off from the hydraulic pump 30 to the bleed off passage 41 is adjusted.
  • a bleed-off compensator (work machine control valve) 42 is provided for control.
  • the bleed-off compensator 42 is provided upstream of the bucket direction switching valve 43 in the bleed-off passage 41.
  • the inlet pressure P5 of the bleed-off compensator 42 and the outlet pressure P6 of the steering direction switching valve 34 are input as pilot pressures, and the pressure is received in a direction that opposes the outlet pressure P6 and the inlet pressure P5. is doing.
  • the bleed-off compensator 42 is a flow rate control valve having a spool 42a, and the spool 42a moves to a position corresponding to the differential pressure between the outlet pressure P6 and the inlet pressure P5. Further, the flow rate of the pressure oil that is bleed-off to the downstream side of the bleed-off compensator 42 is controlled by the opening degree corresponding to the position of the spool 42a.
  • a bypass passage 48 is formed between the steering drive circuit 31 and the work machine drive circuit 32, and the bypass passage 48 guides the outlet pressure P6 of the steering direction switching valve 34 to the bleed-off compensator 42. .
  • the work machine drive circuit 32 configured as described above includes a plurality of relief valves 52 to 55.
  • the first relief valve 52 is provided in parallel with the throttle 45 in the bleed-off passage 41, and when the upstream side of the throttle 45 reaches a predetermined pressure or higher, the pressure oil flowing therethrough is passed through the relief valve 52 via the tank 36. To be discharged.
  • the relief valves 53 to 55 are arranged between the bucket direction switching valve 43 and the rod chamber 7a of the bucket cylinder 7, between the bucket direction switching valve 43 and the bottom chamber 7b of the bucket cylinder 7, and the lift arm direction switching. These three relief valves 53 to 55 are connected to the passages between the valve 44 and the rod chambers 8a of the lift arm cylinders 8L and 8R, respectively. Pressure oil is discharged into the tank 36.
  • the work machine drive circuit 32 is provided with a main relief valve 56.
  • the main relief valve 56 is provided in parallel with the bleed-off compensator 42, and discharges the hydraulic oil from the hydraulic pump 30 to the tank 36 when the discharge pressure of the hydraulic pump 30 exceeds a predetermined specified pressure. .
  • the main relief valve 56 can keep the pressure of the pressure oil flowing from the hydraulic pump 30 to the work machine drive circuit 32 below a specified pressure.
  • the outlet pressure P6 of the steering direction switching valve 34 decreases, so that the spool 42a of the bleed-off compensator 42 moves in a direction to open the bleed-off passage 41, and the spool 42a of the bleed-off passage 41 Pressure oil flows downstream.
  • the spools 43a and 44a of the direction switching valves 43 and 44 corresponding to the operated levers 24 and 25 are moved from the neutral positions M2 and M3. It moves and pressure oil is guided to the corresponding cylinders 7 and 8. Thereby, the bucket 6 moves up and down or tilts according to the operated levers 24 and 25.
  • the spools 43a and 44a are moved from the neutral positions M2 and M3, the opening degree of the bleed-off passage 41 is reduced and the flow rate flowing through the throttle 45 is reduced. Then, the pressure of the tilt command signal decreases, and the servo mechanism 47 increases the tilt angle of the swash plate 30a of the hydraulic pump 30 based on the tilt command signal to increase the discharge amount of the hydraulic pump 30. Conversely, when the bucket operation lever 24 or the lift arm operation lever 25 is not operated and the spools 43a and 44a are returned to the neutral positions M2 and M3, the flow rate flowing through the throttle 45 increases. Then, the pressure of the tilt command signal is increased, and the servo mechanism 47 reduces the tilt angle of the swash plate 30a of the hydraulic pump 30 based on the tilt command signal and decreases the discharge amount of the hydraulic pump 30.
  • the main spool 34a of the steering direction switching valve 34 moves from the neutral position M1 in accordance with the operation amount of the handle. Then, the outlet pressure P4 of the steering direction switching valve 34 increases, and the meter-in compensator 37 moves in a direction to open the meter-in passage 33.
  • the pressure oil from the hydraulic pump 30 is guided to the steering cylinders 11L and 11R via the steering direction switching valve 34, and the steering cylinders 11L and 11R expand and contract, and the direction according to the turning direction of the steering wheel.
  • the traveling direction of the wheel loader 1 is switched.
  • the outlet pressure P6 of the steering direction switching valve 34 increases, so that the spool 42a of the bleed-off compensator 42 moves in the direction of closing the bleed-off passage 41, and the bleed-off of the bleed-off passage 41 is performed.
  • the flow rate of the pressure oil flowing downstream of the compensator 42 is limited. By limiting, the flow rate of the pressure oil that is bleed off from the meter-in passage 33 to the bleed-off passage 41 can be suppressed, that is, the pressure oil can flow preferentially to the steering drive circuit 31. Accordingly, the steering cylinders 11L and 11R can be moved with priority with respect to the bucket 6.
  • the pressure (P3) at the outlet of the meter-in compensator 37 continues to increase as the opening of the meter-in compensator 37 increases.
  • the outlet pressure P4 of the steering direction switching valve 34 exceeds the set pressure.
  • the main relief valve 40 is opened, and the outlet pressure P4 is maintained so as to be equal to or lower than the set pressure. Therefore, when the pressure at the outlet of the meter-in compensator 37 rises, the meter-in compensator 37 eventually moves in a direction to close the meter-in passage 33 and restricts the flow rate flowing through the steering cylinders 11L and 11R. Therefore, the maximum pressure of the pressure oil flowing through the steering cylinders 11L and 11R is limited to a predetermined pressure corresponding to the set pressure.
  • the circuit pressure in the bleed-off passage increases (the inlet pressure P5 of the bleed-off compensator 42 increases), and the bleed-off compensator 42 Since the spool 42a is moved in the opening direction, the flow rate of the pressure oil that is bleed off in the bleed-off passage 41 increases. As a result, the flow rate flowing from the hydraulic pump 30 toward the meter-in compensator 37 is limited to less than a predetermined flow rate.
  • the pressure oil flows preferentially to the steering drive circuit 31.
  • the steering cylinders 11L and 11R move according to the operation of the steering wheel regardless of whether the bucket 6 is operated. And by the switching control of the electromagnetic switching valve 65 described below, the pressure oil is forced to flow toward the work machine drive circuit 32 so that the unloading work can be stably performed.
  • FIG. 3 is a diagram showing an electrical configuration of the hydraulic drive system shown in FIG.
  • the controller 70 serves as a work area when the CPU 70A for performing various calculations, a storage device 70B such as a ROM or HDD for storing programs for executing calculations by the CPU 70A, and the CPU 70A executing the programs.
  • I / F communication interface
  • Each function of the controller 70 is realized by the CPU 70A loading various programs stored in the storage device 70B to the RAM 70C and executing them.
  • a pressure sensor 71 On the input side of the controller 70, a pressure sensor 71, an engine speed sensor 72, a bucket angle sensor 73, a lift arm angle sensor 74, a bucket operation lever 24, a lift arm operation lever 25, and a pedal depression amount (pedal stroke)
  • an accelerator pedal operation amount sensor 75 for detecting the pedal angle is connected, and an electromagnetic switching valve 65 is connected to the output side of the controller 70.
  • the controller 70 controls the operation of the electromagnetic switching valve 65 based on the pressure P detected by the pressure sensor 71 and the engine speed N detected by the engine speed sensor 72.
  • FIG. 4 is a flowchart showing a procedure of control processing of the electromagnetic switching valve 65.
  • the control process of the electromagnetic switching valve 65 shown in FIG. 4 is started, for example, when the key switch of the engine 14 is turned on, and is periodically repeated until the key switch of the engine 14 is turned off.
  • the controller 70 determines whether or not the engine speed N is equal to or less than the threshold value Ns (step S1).
  • the threshold value Ns can be set to an arbitrary value within a range where the engine speed can be regarded as low speed. In this embodiment, for example, the threshold value Ns is set to the low idle speed of the engine 14. It is stored in advance in the storage device 70B.
  • the controller 70 determines whether or not the pressure P is equal to or lower than the threshold value Ps (step S2).
  • the threshold value Ps can be set to an arbitrary value such that it can be determined that the cargo is being lifted by the front working device 4.
  • the pressure detected by the pressure sensor 71 when the lift arm operation lever 25 is operated about 50% from the initial position is obtained by calculation or measurement, and the obtained pressure is preset as the threshold value Ps. .
  • the threshold value Ps is stored in advance in the storage device 70B of the controller 70.
  • the controller 70 When the pressure P is less than or equal to the threshold value Ps (step S2 / Yes), the controller 70 outputs an operation command (electrical signal) to turn on (excite) the electromagnetic switching valve 65 (step S3). That is, the controller 70 turns on the electromagnetic switching valve 65 when a specific condition is established in which the engine speed N is equal to or less than the threshold value Ns and the pressure P is equal to or less than the threshold value Ps.
  • the electromagnetic switching valve 65 is energized, the meter-in compensator 37 operates in the closing direction. Therefore, the supply flow rate of pressure oil from the hydraulic pump 30 to the steering drive circuit 31 is limited, and the supply flow rate to the work implement drive circuit 32 is reduced. Can be increased.
  • the front work device 4 can be driven while performing the steering operation, thereby enabling the work to lift the cargo. That is, the bucket cylinder 7 and / or the lift arm cylinders 8L and 8R and the steering cylinder 11L, It is possible to improve the operability when the 11R is combined and operated, and to improve the work efficiency.
  • FIG. 5 is a diagram illustrating a hydraulic drive system for a wheel loader according to the second embodiment.
  • a passage 68 that connects one pressure receiving portion 37 b of the meter-in compensator 37 and a pilot pump (hydraulic pressure source) 80, and an electromagnetic switching valve 65 provided in the passage 68 are provided.
  • the electromagnetic switching valve 65 is held at the closed position (a) in the non-excited state, and the pressure oil discharged from the pilot pump 80 flows into the tank 36. Therefore, when the electromagnetic switching valve 65 is in a non-excited state, the outlet pressure P4 of the steering direction switching valve 34 acts in a direction to open the meter-in compensator 37 (state in FIG. 5).
  • the meter-in compensator 37 when the specific condition is satisfied, the meter-in compensator 37 is operated in the closing direction, and the supply flow rate of the pressure oil from the hydraulic pump 30 to the work machine drive circuit 32 is increased. be able to.
  • the bucket cylinder 7 and / or the lift arm cylinder 8L are maintained even when the engine 14 is at a low speed while maintaining the circuit configuration that gives priority to the operation of the steering cylinders 11L and 11R.
  • 8R and the steering cylinders 11L, 11R can be improved in operability, and work efficiency can be improved.
  • pilot pump 80 for example, an accumulator or other hydraulic pump may be used as the hydraulic source.
  • FIG. 6 is a diagram illustrating a hydraulic drive system for a wheel loader according to a third embodiment.
  • a passage 67 connecting one pressure receiving portion 37a of the meter-in compensator 37 and the tank 36, a hydraulic switching valve 85 provided in the passage 67, and between the hydraulic switching valve 85 and the tank 36 are provided.
  • a throttle 66 provided in the passage 67.
  • the pressure receiving portion 85a of the hydraulic pressure switching valve 85 is connected to the negative control passage 46, and pressure oil flowing through the negative control passage 46 is introduced. Therefore, the hydraulic switching valve 85 operates between the closed position (a) and the open position (b) according to the pressure between the lift arm direction switching valve 44 and the throttle 45. In other words, the hydraulic pressure switching valve 85 operates at a predetermined opening degree corresponding to the load of the lifting operation. Then, the hydraulic pressure switching valve 85 gradually operates from the closed position (a) to the open position (b), whereby the outlet pressure P4 acting on the pressure receiving portion 37a of the meter-in compensator 37 is gradually increased. The meter-in compensator 37 is moved in the closing direction. Thereby, the pressure oil discharged from the hydraulic pump 30 can be supplied to the work machine drive circuit 32.
  • the steering operation and the load are performed even if the engine speed is low. Combined operation with lifting work can be performed efficiently.
  • FIG. 7 is a diagram illustrating a hydraulic drive system for a wheel loader according to a fourth embodiment.
  • a passage 68 that connects one pressure receiving portion 37 b of the meter-in compensator 37 and a pilot pump (hydraulic power source) 80, and a hydraulic switching valve 85 provided in the passage 68 are provided.
  • the pressure receiving portion 85a of the hydraulic switching valve 85 is connected to the negative control passage 46, and pressure oil flowing through the negative control passage 46 is introduced.
  • the hydraulic switching valve 85 operates between the closed position (a) and the open position (b) according to the pressure between the lift arm direction switching valve 44 and the throttle 45. In other words, the hydraulic pressure switching valve 85 operates at a predetermined opening degree corresponding to the load of the lifting operation.
  • the hydraulic pressure switching valve 85 When the hydraulic pressure switching valve 85 is in the closed position (a), the pressure oil discharged from the pilot pump 80 flows into the tank 36.
  • the hydraulic pressure switching valve 85 gradually operates from the closed position (a) to the open position (b), whereby the pressure of the pressure oil discharged from the pilot pump 80 is applied to the pressure receiving portion 37b of the meter-in compensator 37.
  • the pressure acting on the pressure receiving portion 37b of the meter-in compensator 37 becomes larger than the outlet pressure P4 acting on the pressure receiving portion 37a, and the meter-in compensator 37 operates in the closing direction. Thereby, the supply flow rate of the pressure oil from the hydraulic pump 30 to the work machine drive circuit 32 can be increased.
  • the fourth embodiment similarly to the second embodiment, when the front work device 4 is driven to perform the load lifting operation, even if the engine speed is low, the steering operation and the load are performed. Combined operation with lifting work can be performed efficiently.
  • step S1 of FIG. 4 the detection signal of the engine speed sensor 72 is used to determine that the engine speed is low. Instead of this configuration, the detection signal of the accelerator pedal operation amount sensor 75 is used. Can also be used.
  • step S2 of FIG. 4 the detection signal of the pressure sensor 71 is used to determine whether or not the unloading operation is performed. Instead of this configuration, the detection of the bucket angle sensor 73 and the lift arm angle sensor 74 is performed. A signal may be used.
  • it is possible to determine whether or not the loading operation is performed using the operation signals (hydraulic signal or electric signal) of the bucket operation lever 24 and the lift arm operation lever 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Power Steering Mechanism (AREA)

Abstract

ステアリングアクチュエータの操作を優先させる構成は維持しつつも、エンジンの回転数が低く作業機アクチュエータとステアリングアクチュエータとが複合操作されるときの操作性を向上させる。 ホイールローダ(1)が備える制御装置(70)は、圧力センサ(71)により検出された作業機用方向切換弁(44)と絞り(45)との間の圧力に基づいて、作業機(4)が荷上げ作業中であるか否かを判断すると共に、回転数センサ(72)により検出されたエンジン(14)の回転数が所定の閾値(Ns)以下の場合であって、かつ作業機が荷上げ作業中であると判断した場合に、ステアリング制御弁(37)の開口面積を低減させる。

Description

ホイールローダ
 本発明は、ホイールローダに関する。
 本技術分野の従来技術として、「油圧源を共通にした、ステアリングアクチュエータ用の油圧回路と作業機アクチュエータ用の油圧回路とを有し、油圧源からのステアリングアクチュエータ用の油圧回路への圧油の供給を作業機アクチュエータ用の油圧回路より優先する構成としたホイールローダ」が開示されている(例えば、特許文献1参照)。
特開2008-155897号公報
 しかしながら、上述した従来技術は、ステアリングアクチュエータの操作と作業機アクチュエータの操作の両方が同時に行われた場合に、ステアリングアクチュエータの操作を優先する構成であるため、特にエンジンの回転数が低い場合には、作業機アクチュエータ側の流量が不足し、作業機を上げ操作する際の荷上げの速度がオペレータの意図に反して得られ難いという課題がある。
 本発明の目的は、ステアリングアクチュエータの操作を優先させる構成は維持しつつも、エンジンの回転数が低く作業機アクチュエータとステアリングアクチュエータとが複合操作されるときの操作性を向上させることができるホイールローダを提供することにある。
 上記目的を達成するために、本発明に係るホイールローダの一態様は、車体と、前記車体を操舵させるステアリングアクチュエータと、前記車体の前側に取り付けられた作業機と、前記作業機を動作させる作業機アクチュエータと、前記ステアリングアクチュエータおよび前記作業機アクチュエータへ圧油を供給する油圧ポンプと、前記油圧ポンプを駆動するエンジンと、前記ステアリングアクチュエータと前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータに供給される圧油の方向を切り換えるステアリング用方向切換弁と、前記ステアリング用方向切換弁と前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータへの圧油の流量を制御するステアリング制御弁と、前記作業機アクチュエータと前記油圧ポンプとの間に設けられ、前記作業機アクチュエータに供給される圧油の方向を切り換える作業機用方向切換弁と、前記作業機用方向切換弁と前記油圧ポンプとの間に設けられ、前記作業機アクチュエータへの圧油の流量を制御する作業機制御弁と、前記作業機用方向切換弁より圧油の流れの下流側に設けられた絞りと、前記エンジンの回転数を検出する回転数センサと、前記作業機用方向切換弁と前記絞りとの間の圧力を検出する圧力センサと、前記ステアリング制御弁を制御する制御装置と、を備えたホイールローダにおいて、前記制御装置は、前記回転数センサにより検出された前記エンジンの回転数が所定の閾値以下の場合であって、かつ前記圧力センサにより検出された圧力が所定圧力以上の場合に、前記ステアリング制御弁の開口面積を低減させる、ことを特徴とする。
 本発明に係るホイールローダによれば、ステアリングアクチュエータの操作を優先させる構成は維持しつつも、エンジンの回転数が低く作業機アクチュエータとステアリングアクチュエータとが複合操作されるときの操作性を向上させることができる。なお、前記以外の課題、構成および効果は、以下の実施形態の説明において明らかにされる。
本発明の第1実施形態に係るホイールローダの側面図である。 図1に示すホイールローダの油圧駆動システムを示す図である。 図2に示す油圧駆動システムの電気的構成を示す図である。 図3に示す電磁切換弁の制御処理の手順を示すフローチャートである。 第2実施形態に係るホイールローダの油圧駆動システムを示す図である。 第3実施形態に係るホイールローダの油圧駆動システムを示す図である。 第4実施形態に係るホイールローダの油圧駆動システムを示す図である。
 以下、図面を参照して、本発明に係る作業車両の一例であるホイールローダの各実施形態について説明する。なお、各実施形態において同一の構成については同一符号を付して重複する説明を省略する。
(第1実施形態)
 図1は、本発明の第1実施形態に係るホイールローダ1の側面図である。作業車両であるホイールローダ1は、一対のリフトアーム5、バケット6、および前輪13F等を有する前フレーム(車体)2と、運転室9、機械室10、および後輪13R等を有する後フレーム(車体)3とで構成される。機械室10内にはエンジン14が配設され、運転室9には、バケット6を操作するバケット操作レバー24(図2参照)、リフトアーム5を操作するリフトアーム操作レバー25(図2参照)、エンジン14の回転数を調整するアクセルペダル26等が設けられている。なお、前輪13Fおよび後輪13Rについては、総称して車輪13とも記す。
 一対のリフトアーム5は一対のリフトアームシリンダ8(8L,8R)の駆動により上下方向に回動(俯仰動)し、バケット6はバケットシリンダ7の駆動により上下方向に回動(クラウドまたはダンプ)する。一対のリフトアーム5、一対のリフトアームシリンダ8、バケット6、およびバケットシリンダ7は、フロント作業装置(作業機)4を構成している。前フレーム2と後フレーム3はセンタピン12により互いに回動自在に連結され、左右一対のステアリングシリンダ11(11L,11R)の伸縮により後フレーム3に対し前フレーム2が左右に屈折する。なお、一対のリフトアームシリンダ8およびバケットシリンダ7は本発明の「作業機アクチュエータ」に相当する。
 ここで、図1において図示しないが、バケット6の角度を検出するバケット角度センサ73およびリフトアーム5の角度を検出するリフトアーム角度センサ74が設けられており、各センサ73,74の検出信号はコントローラ70に出力されている(図3参照)。また、エンジン14の出力軸には、図示しないトルクコンバータおよびトランスミッションが接続されている。エンジン14の回転はトルクコンバータを介してトランスミッションに伝達される。トルクコンバータの出力軸の回転は、トランスミッションで変速される。変速後の回転は、プロペラシャフト、アクスルを介して車輪13に伝達され、ホイールローダ1が走行する。なお、エンジン14の出力軸の近傍には、エンジン回転数を検出するエンジン回転数センサ72が設けられている(図2参照)。
[油圧駆動システム]
 図2は、図1に示すホイールローダ1の油圧駆動システムを示す図である。図2に示すように、ホイールローダ1の油圧駆動システムは、油圧ポンプ30と、ステアリング駆動回路31と、作業機駆動回路32とを備える。油圧ポンプ30は、いわゆる可変容量型の油圧ポンプであり、エンジン14に連結されている。油圧ポンプ30は、エンジン14により駆動されて回転するようになっており、回転することで高圧の圧油を吐出するようになっている。油圧ポンプ30には、ステアリング駆動回路31および作業機駆動回路32が並列に接続されており、油圧ポンプ30からの圧油がステアリング駆動回路31および作業機駆動回路32に並行して流れるようになっている。
<ステアリング駆動回路>
 ステアリング駆動回路31は、油圧ポンプ30に繋がるメータイン通路33を有しており、メータイン通路33には、油圧ポンプ30から吐出された圧油が流れるようになっている。メータイン通路33には、ステアリング用方向切換弁34が設けられており、油圧ポンプ30から吐出された圧油がステアリング用方向切換弁34に導かれるようになっている。
 ステアリング用方向切換弁34は、ステアリングシリンダ11L,11Rに接続されており、メータイン通路33に導かれた圧油がステアリング用方向切換弁34を介してステアリングシリンダ11L,11Rに流れるようになっている。このステアリング用方向切換弁34は、メインスプール34aを有しており、メインスプール34aは、移動して位置を変えることによってステアリングシリンダ11L,11Rに流れる圧油の方向を切換えるようになっている。また、ステアリング用方向切換弁34では、メインスプール34aの位置に応じてメインスプール34aの開度が調整されるようになっており、この開度に応じた流量の圧油がステアリングシリンダ11L,11Rに流れようになっている。
 このように構成されているステアリング用方向切換弁34では、メインスプール34aがステアリング装置35と繋がっている。ステアリング装置35は、図示しないが回動操作できるステアリングハンドル(以下「ハンドル」という)を有しており、ハンドルの回動方向に応じて第1のパイロット油および第2のパイロット油を出力するようになっている。メインスプール34aは、出力された第1のパイロット油および第2のパイロット油のパイロット圧P1,P2を互いに抗する方向に受圧するようになっており、第1のパイロット圧P1を受圧することで中立位置M1から第1オフセット位置S11に移動し、第2のパイロット圧P2を受圧すること中立位置M1から第2オフセット位置S12に移動するようになっている。
 メインスプール34aが第1オフセット位置S11に移動すると、メータイン通路33が右側のステアリングシリンダ11Rのボトム室11a、および左側のステアリングシリンダ11Lのロッド室11bに繋がり、タンク36が右側のステアリングシリンダ11Rのロッド室11c、および左側のステアリングシリンダ11Lのボトム室11dに繋がる。これにより、右側のステアリングシリンダ11Rが伸長して左側のステアリングシリンダ11Lが収縮し、後フレーム3に対して前フレーム2が左側に向いて進行方向が切換わる。
 他方、メインスプール34aが第2オフセット位置S12に移動すると、メータイン通路33が右側のステアリングシリンダ11Rのロッド室11c、および左側のステアリングシリンダ11Lのボトム室11dに繋がり、タンク36が右側のステアリングシリンダ11Rのボトム室11a、および左側のステアリングシリンダ11Lのロッド室11bに繋がる。これにより、左側のステアリングシリンダ11Lが伸長して右側のステアリングシリンダ11Rが収縮し、後フレーム3に対して前フレーム2を右側に向いて進行方向が切換わる。
 また、ステアリング装置35は、ハンドルの回動速度に応じた流量の第1のパイロット油および第2のパイロット油を出力するようになっており、第1のパイロット油および第2のパイロット油の流量に応じて第1のパイロット圧P1および第2のパイロット圧P2が大きくなるようになっている。第1のパイロット圧P1および第2のパイロット圧P2が大きくなることで、メインスプール34aの開度は大きくなり、ステアリング用方向切換弁34を介してステアリングシリンダ11L,11Rにそれぞれ流れる圧油の流量が大きくなる。これにより、ハンドルの回動速度に応じた速度でステアリングシリンダ11L,11Rが伸縮して進行方向が切換わる。また、ステアリングシリンダ11L,11Rに流れる圧油の流量を調整すべく、ステアリング駆動回路31はメータインコンペンセータ(ステアリング制御弁)37を有している。
 メータインコンペンセータ37は、メータイン通路33においてステアリング用方向切換弁34より上流側に介在しており、ステアリング用方向切換弁34の出口圧P4がメータインコンペンセータ37の一方の受圧部37aに、ステアリング用方向切換弁34の入口圧P3が他方の受圧部37bにそれぞれ入力されるようになっている。なお、入口圧P3は絞り58を介してメータインコンペンセータ37に入力されている。ステアリング用方向切換弁34の出口圧P4は、メインスプール34aの開度に応じて出力される油圧であり、メインスプール34aの開度が大きくなるにつれて大きくなる。つまり、ステアリング用方向切換弁34の出口圧P4は、ステアリングシリンダ11L,11Rに流れる圧油の圧力上昇に応じて高くなるようになっている。メータインコンペンセータ37は、このような2つの圧力P3,P4を互いに抗する方向に受圧している。このメータインコンペンセータ37は、流量制御弁であり、2つの圧力P3,P4の差圧(ステアリング用方向切換弁34の前後差圧)に応じた開度により油圧ポンプ30からステアリング用方向切換弁34に流れる圧油の流量を制御するようになっている。
 さらに、本実施形態では、メータインコンペンセータ37の一方の受圧部37aとタンク36とを接続する通路67と、この通路67に設けられる電磁切換弁65と、電磁切換弁65とタンク36との間の通路67に設けられる絞り66とを備えている。電磁切換弁65は、非励磁状態において閉位置(a)に保持されており、電磁切換弁65が励磁されると開位置(b)に切り換わることで、受圧部37aとタンク36とが連通する。よって、電磁切換弁65が非励磁状態では、ステアリング用方向切換弁34の出口圧P4はメータインコンペンセータ37を開く方向に作用する(図2の状態)。一方、電磁切換弁65が励磁されると、ステアリング用方向切換弁34を流れた圧油が、通路67を電磁切換弁65および絞り66の順に流れてタンク36に戻される。そのため、ステアリング用方向切換弁34の出口圧P4は電磁切換弁65が非励磁状態における圧力より低くなり、メータインコンペンセータ37を開く方向に作用させる力が弱くなる。即ち、電磁切換弁65を励磁(ON)すると、メータインコンペンセータ37が閉じる方向に動作して開口面積が低減する(開度が絞られる)。そのため、油圧ポンプ30からの圧油がステアリング駆動回路31に流れにくくなる。別言すれば、油圧ポンプ30からの圧油は作業機駆動回路32に流れやすくなる。
 また、ステアリング駆動回路31には、3つのリリーフ弁38~40が設けられている。第1および第2のリリーフ弁38,39は、ステアリング用方向切換弁34とステアリングシリンダ11L,11Rの各室11a~11dとを繋ぐ通路の油圧が所定圧以上になると、当該通路を流れる圧油をタンク36に排出するようになっている。第3のリリーフ弁であるメインリリーフ弁40は、ステアリング用方向切換弁34の出口圧P4が予め定められた設定圧以上になると、ステアリング用方向切換弁34からメータインコンペンセータ37に流れるパイロット油をタンク36に排出するようになっている。つまりリリーフ弁38、39は、外力によりステアリングシリンダ11L,11Rに衝撃等が作用して回路中に異常な高圧が発生した時に、圧油を逃がして回路内の圧力が所定圧以上にならないようにするものであり、メインリリーフ弁40は、ステアリング駆動中にステアリング回路内の圧力が所定圧以上にならないようにするものである。
<作業機駆動回路>
 作業機駆動回路32は、ブリードオフ通路41を有しており、ブリードオフ通路41の上流側は、メータイン通路33においてメータインコンペンセータ37の上流側に接続されている。これにより、油圧ポンプ30から吐出された圧油は、メータイン通路33と共にブリードオフ通路41に導かれるようになっている。また、ブリードオフ通路41には、その途中にバケット用方向切換弁43、リフトアーム用方向切換弁44、および絞り45がその順番で上流側から介在し、絞り45の下流側がタンク36に繋がっている。なお、バケット用方向切換弁43およびリフトアーム用方向切換弁44は、本発明の「作業機用方向切換弁」に相当する。
 バケット用方向切換弁43は、バケットシリンダ7に接続されており、ブリードオフ通路41の圧油の流れをバケットシリンダ7の方へと切り換えてバケットシリンダ7を駆動するようになっている。具体的に説明すると、バケット用方向切換弁43は、バケット用スプール43aを有しており、バケット用スプール43aは、運転室9内に設けられるバケット操作レバー24を前後方向に操作することで中立位置M2から移動してその位置を変えるようになっている。そして、バケット用スプール43aの位置を変えることによって、バケット用方向切換弁43は、圧油の流れる方向を切換えるようになっている。
 さらに詳細に説明すると、バケット操作レバー24が操作されてバケット用スプール43aが中立位置M2から第1オフセット位置S21に移動すると、バケットシリンダ7のロッド室7aに圧油が導かれてバケットシリンダ7が収縮し、バケット6が下向きに傾く(ダンプ)。逆に、バケット操作レバー24が操作されてバケット用スプール43aが中立位置M2から第2オフセット位置S22に移動すると、バケットシリンダ7のボトム室7bに圧油が導かれてバケットシリンダ7が伸長し、バケット6が上向きに傾く(クラウド)。また、バケット用スプール43aを中立位置M2に戻すと、ブリードオフ通路41とバケットシリンダ7との間が遮断されるようになっている。
 このように構成されているバケット用方向切換弁43は、センターオープン型の方向切換弁であり、バケット用スプール43aが中立位置M2に位置する際にブリードオフ通路41が開き、その開度が最も大きくなっている。そして、バケット用スプール43aが中立位置M2から第1および第2オフセット位置S21,S22の方に移動することによって、バケット用スプール43aの移動量に応じてバケット用方向切換弁43の開度(即ち、ブリードオフ通路41の開度)が小さくなっていく。それ故、ブリードオフ通路41のバケット用方向切換弁43より下流側に流れる圧油の流量は、バケット操作レバー24の操作量が大きくなるにつれて減少し、バケット操作レバー24を元の位置の方に戻すことによって増加するようになっている。このようにして開閉されるブリードオフ通路41には、バケット用方向切換弁43より下流側にリフトアーム用方向切換弁44が介在している。
 リフトアーム用方向切換弁44は、一対のリフトアームシリンダ8L,8Rに接続されており、ブリードオフ通路41の圧油の流れをリフトアームシリンダ8L,8Rの方へと切り換えてリフトアームシリンダ8L,8Rを駆動するようになっている。具体的に説明すると、リフトアーム用方向切換弁44は、リフトアーム用スプール44aを有しており、リフトアーム用スプール44aは、運転室9内に設けられるリフトアーム操作レバー25を前後方向に操作することで中立位置M3から移動してその位置を変えるようになっている。そして、リフトアーム用スプール44aの位置を変えることによって、リフトアーム用スプール44aは、圧油の流れる方向を切換えるようになっている。
 さらに詳細に説明すると、リフトアーム操作レバー25が操作されてリフトアーム用スプール44aが中立位置M3から第1オフセット位置S31に移動すると、リフトアームシリンダ8L,8Rの各ロッド室8aに圧油が導かれてリフトアームシリンダ8L,8Rが収縮し、バケット6が下降する。逆に、リフトアーム操作レバー25が操作されてリフトアーム用スプール44aが中立位置M3から第2オフセット位置S32に移動すると、リフトアームシリンダ8L,8Rの各ボトム室8bに圧油が導かれてリフトアームシリンダ8L,8Rが伸長し、バケット6が上昇する。
 また、リフトアーム用方向切換弁44では、リフトアーム操作レバー25をさらに操作することによって、リフトアーム用スプール44aを第1オフセット位置S31から第3オフセット位置S33に移動させることができるようになっている。この第3オフセット位置S33では、リフトアームシリンダ8L,8Rの各ロッド室8aおよび各ボトム室8bがタンク36に繋がり、リフトアームシリンダ8L,8Rの保持力がなくなり、バケット6が自重で降下する。
 このように構成されているリフトアーム用方向切換弁44は、センターオープン型の方向切換弁であり、リフトアーム用スプール44aが中立位置M3に位置する際にブリードオフ通路41が開き、その開度が最も大きくなっている。そして、リフトアーム用スプール44aが中立位置M3から第1および第2オフセット位置S31,S32の方に移動すると、リフトアーム用スプール44aの移動量に応じてブリードオフ通路41の開度が小さくなっていく。それ故、ブリードオフ通路41のリフトアーム用方向切換弁44より下流側に流れる圧油の流量は、リフトアーム操作レバー25の操作量が大きくなるにつれて減少し、リフトアーム操作レバー25を元の位置の方に戻すことによって増加するようになっている。このように開閉されるブリードオフ通路41には、リフトアーム用方向切換弁44より下流側に絞り45が介在している。
 絞り45は、ブリードオフ通路41において、リフトアーム用方向切換弁44とタンク36との間に位置しており、バケット用方向切換弁43およびリフトアーム用方向切換弁44を通り抜けた圧油が絞り45を介してタンク36に排出されるようになっている。そのため、絞り45の上流側では、バケット用方向切換弁43およびリフトアーム用方向切換弁44を通り抜けて絞り45に導かれる圧油の流量に応じた圧力が発生するようになっている。絞り45とリフトアーム用方向切換弁44との間には、ネガコン通路46が接続されており、絞り45の上流側で発生した圧力がこのネガコン通路46を介して油圧ポンプ30のサーボ機構47に傾転指令信号として導かれる。なお、ブリードオフ通路41のリフトアーム用方向切換弁44と絞り45との間には圧力センサ71が設けられている。
 油圧ポンプ30は、前述の通り可変容量型の油圧ポンプであり、斜板30aを有している。油圧ポンプ30は、斜板30aを傾けることによって容量が変わるようになっており、サーボ機構47は、傾転指令信号に応じて油圧ポンプ30の斜板30aの傾転角を制御するようになっている。具体的に説明すると、サーボ機構47は、傾転指令信号の圧力が高くなると斜板30aの傾転角を小さくして油圧ポンプ30の容量を小さくする。これにより、油圧ポンプ30の吐出量が減少する。他方、サーボ機構47は、傾転指令信号の圧力が低くなると斜板30aの傾転角を大きくして油圧ポンプ30の容量を大きくする。これにより、油圧ポンプ30の吐出量が増加する。
 このように作業機駆動回路32では、絞り45に流れる流量に応じて油圧ポンプ30の吐出量が制御されている、即ちネガティブコントロールによって油圧ポンプ30の吐出量が制御されている。また、作業機駆動回路32では、油圧ポンプ30から吐出されてステアリング駆動回路31に流れる圧油の流量を調整すべく、つまり油圧ポンプ30からブリードオフ通路41にブリードオフされる圧油の流量を制御すべくブリードオフコンペンセータ(作業機制御弁)42を備えている。
 ブリードオフコンペンセータ42は、ブリードオフ通路41においてバケット用方向切換弁43の上流側に設けられている。ブリードオフコンペンセータ42は、ブリードオフコンペンセータ42の入口圧P5とステアリング用方向切換弁34の出口圧P6とがパイロット圧として入力されており、出口圧P6と入口圧P5とを互いに抗する方向に受圧している。ブリードオフコンペンセータ42は、スプール42aを有する流量制御弁であり、スプール42aが出口圧P6と入口圧P5との差圧に応じた位置に移動するようになっている。また、スプール42aの位置に応じた開度によりブリードオフコンペンセータ42の下流側にブリードオフされる圧油の流量が制御されるようになっている。
 ステアリング駆動回路31と作業機駆動回路32との間には、バイパス通路48が形成されており、このバイパス通路48によってステアリング用方向切換弁34の出口圧P6がブリードオフコンペンセータ42に導かれている。
 このように構成されている作業機駆動回路32には、複数のリリーフ弁52~55が備わっている。1つ目のリリーフ弁52は、ブリードオフ通路41において絞り45に並列するように設けられており、絞り45の上流側が所定圧以上になるとそこを流れる圧油をリリーフ弁52を介してタンク36に排出するようになっている。また、リリーフ弁53~55は、バケット用方向切換弁43とバケットシリンダ7のロッド室7aの間、バケット用方向切換弁43とバケットシリンダ7のボトム室7bとの間、およびリフトアーム用方向切換弁44とリフトアームシリンダ8L,8Rの各ロッド室8aとの間の通路にそれぞれ接続されており、これら3つのリリーフ弁53~55は、各通路の油圧がそれぞれにおいて定められた圧力以上になると圧油をタンク36に排出するようになっている。
 さらに、作業機駆動回路32には、メインリリーフ弁56を備えている。メインリリーフ弁56は、ブリードオフコンペンセータ42と並列に設けられ、油圧ポンプ30の吐出圧が予め定められた規定圧以上になると油圧ポンプ30からの圧油をタンク36に排出するようになっている。このメインリリーフ弁56により、油圧ポンプ30から作業機駆動回路32に流れる圧油の圧力を規定圧以下に保つことができる。
[油圧駆動システムの動作]
 このように構成されている油圧駆動システムでは、エンジン14が油圧ポンプ30を回転駆動することによって油圧ポンプ30から圧油が吐出され、圧油がステアリング駆動回路31および作業機駆動回路32に並列的に流れる。ステアリング装置35のハンドルが操作されていない状況では、ステアリング用方向切換弁34によってメータイン通路33とステアリングシリンダ11L,11Rとの間が閉じられており、ステアリング用方向切換弁34の出口圧P4が小さくなっている。これにより、メータインコンペンセータ37がメータイン通路33を閉じるように動作し、ステアリング用方向切換弁34に流れる圧油が制限される。
 他方、作業機駆動回路32では、ステアリング用方向切換弁34の出口圧P6が小さくなることでブリードオフコンペンセータ42のスプール42aがブリードオフ通路41を開く方向に移動し、ブリードオフ通路41のスプール42aの下流側に圧油が流れる。このような状況において、バケット操作レバー24またはリフトアーム操作レバー25が操作されると、操作されたレバー24,25に対応する方向切換弁43,44のスプール43a,44aが中立位置M2,M3から移動し、圧油が対応するシリンダ7,8に導かれる。これにより、操作されたレバー24,25に応じてバケット6が昇降したり傾動したりする。また、スプール43a,44aが中立位置M2,M3から移動することによって、ブリードオフ通路41の開度が小さくなって絞り45に流れる流量が少なくなる。そうすると、傾転指令信号の圧力が小さくなり、サーボ機構47は、この傾転指令信号に基づいて油圧ポンプ30の斜板30aの傾転角を大きくして油圧ポンプ30の吐出量を増加させる。逆に、バケット操作レバー24またはリフトアーム操作レバー25が操作されなくなり、スプール43a,44aが中立位置M2,M3へと戻されると、絞り45に流れる流量が増加する。そうすると、傾転指令信号の圧力が大きくなり、サーボ機構47は、この傾転指令信号に基づいて油圧ポンプ30の斜板30aの傾転角を小さくして油圧ポンプ30の吐出量を減少させる。
 また、ステアリング装置35のハンドルが操作されると、ハンドルの操作量に応じてステアリング用方向切換弁34のメインスプール34aが中立位置M1から移動する。そうすると、ステアリング用方向切換弁34の出口圧P4が大きくなり、メータインコンペンセータ37がメータイン通路33を開く方向に動く。これにより、油圧ポンプ30からの圧油がステアリング用方向切換弁34を介してステアリングシリンダ11L,11Rに圧油が導かれてステアリングシリンダ11L,11Rが伸縮し、ハンドルの回動方向に応じた方向にホイールローダ1の進行方向が切り換えられる。
 他方、作業機駆動回路32では、ステアリング用方向切換弁34の出口圧P6が大きくなることでブリードオフコンペンセータ42のスプール42aがブリードオフ通路41を閉じる方向に移動し、ブリードオフ通路41のブリードオフコンペンセータ42の下流側に流れる圧油の流量が制限される。制限することによって、メータイン通路33からブリードオフ通路41へとブリードオフされる圧油の流量を抑えることができる、即ち圧油をステアリング駆動回路31に優先的に流すことができる。これにより、バケット6に対してステアリングシリンダ11L,11Rを優先的に動かすことができる。
 また、ブリードオフコンペンセータ42の下流側に流れる圧油の流量が制限されることで、絞り45の上流側に流れる流量が少なくなって絞り45の上流側で発生する圧力が下がる。つまり、傾転指令信号の圧力が小さくなり、油圧ポンプ30の吐出量が増加する。これにより、ステアリング用方向切換弁34が必要とする流量よりも若干多い流量の圧油がポンプから吐出されることになり、安定してステアリングシリンダ11L,11Rに圧油が供給される。
 その後、メータインコンペンセータ37の出口の圧力(P3)は、メータインコンペンセータ37の開度の増加に伴って上昇し続けるが、ステアリング用方向切換弁34の出口圧P4は、それが設定圧以上になるとメインリリーフ弁40が開くようになっており、出口圧P4が設定圧以下になるように維持されている。そのため、メータインコンペンセータ37の出口の圧力が上昇すると、やがてメータインコンペンセータ37がメータイン通路33を閉じる方向に移動し、ステアリングシリンダ11L,11Rに流れる流量を制限する。そのため、ステアリングシリンダ11L,11Rに流れる圧油の最高圧は、前記設定圧に応じた所定圧に制限される。また、メータイン通路33への流量が減り、ブリードオフ通路41への流量が増加するため、ブリードオフ通路の回路圧が上昇し(ブリードオフコンペンセータ42の入口圧P5が上昇)、ブリードオフコンペンセータ42のスプール42aを開く方向に移動させるため、ブリードオフ通路41にブリードオフされる圧油の流量が増加する。これにより、油圧ポンプ30からメータインコンペンセータ37の方に流れる流量が所定流量未満に制限される。
 このように構成されている油圧駆動システムでは、電磁切換弁65が非励磁の状態においてステアリング装置35のハンドルが操作されると、圧油がステアリング駆動回路31に優先的に流れるようになっており、バケット6の動作の有無に関係なくステアリングシリンダ11L,11Rがハンドルの操作に応じて動くようになっている。そして、以下に述べる電磁切換弁65の切換制御によって、圧油が作業機駆動回路32の方にも強制的に流れて荷上げ作業を安定して行える構成となっている。
[油圧駆動システムの電気的構成]
 図3は、図2に示す油圧駆動システムの電気的構成を示す図である。図3に示すように、コントローラ70は、各種演算を行うCPU70A、CPU70Aによる演算を実行するためのプログラムを格納するROMやHDD等の記憶装置70B、CPU70Aがプログラムを実行する際の作業領域となるRAM70C、および他の機器とデータを送受信する際のインタフェースである通信インタフェース(I/F)70Dを含むハードウェアと、記憶装置70Bに記憶され、CPU70Aにより実行されるソフトウェアとから構成される。コントローラ70の各機能は、CPU70Aが、記憶装置70Bに格納された各種プログラムをRAM70Cにロードして実行することにより、実現される。
 コントローラ70の入力側には、圧力センサ71、エンジン回転数センサ72、バケット角度センサ73、リフトアーム角度センサ74、バケット操作レバー24、リフトアーム操作レバー25、アクセルペダル26のペダル踏込量(ペダルストロークまたはペダル角度)を検出するアクセルペダル操作量センサ75が接続され、コントローラ70の出力側には電磁切換弁65が接続されている。本実施形態では、コントローラ70は、圧力センサ71で検出された圧力Pおよびエンジン回転数センサ72で検出されたエンジン回転数Nに基づいて、電磁切換弁65の作動を制御している。
 以下、電磁切換弁65の制御手順について説明する。図4は、電磁切換弁65の制御処理の手順を示すフローチャートである。図4に示す電磁切換弁65の制御処理は、例えばエンジン14のキースイッチがONになると開始され、エンジン14のキースイッチがOFFになるまで周期的に繰り返される。処理が開始されると、コントローラ70は、エンジン回転数Nが閾値Ns以下であるか否かを判定する(ステップS1)。ここで、閾値Nsはエンジン回転数が低速であるとみなせる範囲内において任意の値に設定でき、本実施形態では例えばエンジン14のローアイドル回転数に設定されており、その閾値Nsはコントローラ70の記憶装置70Bに予め記憶されている。
 エンジン回転数Nが閾値Ns以下であると判定した場合(ステップS1/Yes)、コントローラ70は圧力Pが閾値Ps以下であるか否かを判定する(ステップS2)。ここで、閾値Psは、フロント作業装置4による荷上げ作業中であることが判断できる程度の任意の値に設定できる。本実施形態では、例えばリフトアーム操作レバー25を初期位置から50%程度操作したときに圧力センサ71で検出される圧力を演算や測定により求め、その求めた圧力を閾値Psとして予め設定している。なお、閾値Psはコントローラ70の記憶装置70Bに予め記憶されている。
 圧力Pが閾値Ps以下である場合(ステップS2/Yes)、コントローラ70は電磁切換弁65をON(励磁)するよう作動指令(電気信号)を出力する(ステップS3)。即ち、コントローラ70は、エンジン回転数Nが閾値Ns以下かつ圧力Pが閾値Ps以下である特定条件が成立した場合に、電磁切換弁65をONする。電磁切換弁65が励磁されると、メータインコンペンセータ37が閉じる方向に動作するため、油圧ポンプ30からステアリング駆動回路31への圧油の供給流量を制限し、作業機駆動回路32へ供給流量を増加させることができる。よって、エンジン回転数が低速の状態であっても、ステアリング操作を行いつつ、フロント作業装置4を駆動して荷上げ作業が可能となる。即ち、ステアリングシリンダ11L,11Rの操作を優先させる回路構成は維持しつつ、エンジン14の回転数が低い状態であっても、バケットシリンダ7および/またはリフトアームシリンダ8L,8Rと、ステアリングシリンダ11L,11Rとが複合操作されるときの操作性を向上させることができ、また、作業効率を向上させることができる。
(第2実施形態)
 次に、本発明の第2実施形態に係る油圧駆動システムについて説明する。図5は、第2実施形態に係るホイールローダの油圧駆動システムを示す図である。第2実施形態では、メータインコンペンセータ37の一方の受圧部37bとパイロットポンプ(油圧源)80とを接続する通路68と、この通路68に設けられる電磁切換弁65と、を備えている。電磁切換弁65は、非励磁状態において閉位置(a)に保持されており、パイロットポンプ80から吐出される圧油はタンク36に流れる。そのため、電磁切換弁65が非励磁状態では、ステアリング用方向切換弁34の出口圧P4がメータインコンペンセータ37を開く方向に作用する(図5の状態)。
 一方、第1実施形態と同様の特定条件(エンジン回転数N≦閾値Ns、かつ、圧力P≦閾値Ps:図4参照)が成立して電磁切換弁65が励磁されると、電磁切換弁65が閉位置(a)から開位置(b)に切り換わり、受圧部37bとパイロットポンプ80とが連通する。すると、パイロットポンプ80から吐出される圧油が、通路68を流れて受圧部37bに導入され、受圧部37bに作用する圧力が加圧される。受圧部37bに作用する圧力が受圧部37aに作用する出口圧P4より大きくなると、メータインコンペンセータ37が閉じる方向に動作するため、開口面積が低減する(開度が絞られる)。
 このように、第2実施形態においても、特定条件が成立することにより、メータインコンペンセータ37を閉じる方向に動作させて、油圧ポンプ30から作業機駆動回路32への圧油の供給流量を増加させることができる。その結果、第1実施形態と同様にステアリングシリンダ11L,11Rの操作を優先させる回路構成は維持しつつ、エンジン14の回転数が低い状態であっても、バケットシリンダ7および/またはリフトアームシリンダ8L,8Rと、ステアリングシリンダ11L,11Rとが複合操作されるときの操作性を向上させることができ、また、作業効率を向上させることができる。
 なお、パイロットポンプ80の代わりに、例えば、アキュムレータやその他の油圧ポンプを油圧源として用いても良い。
(第3実施形態)
 次に、本発明の第3実施形態に係る油圧駆動システムについて説明する。図6は、第3実施形態に係るホイールローダの油圧駆動システムを示す図である。第3実施形態では、メータインコンペンセータ37の一方の受圧部37aとタンク36とを接続する通路67と、この通路67に設けられる油圧切換弁85と、油圧切換弁85とタンク36との間の通路67に設けられる絞り66とを備えている。
 油圧切換弁85の受圧部85aは、ネガコン通路46と接続されて、ネガコン通路46を流れる圧油が導入されている。よって、油圧切換弁85は、リフトアーム用方向切換弁44と絞り45との間の圧力に応じて、閉位置(a)と開位置(b)との間で作動する。別言すれば、油圧切換弁85は、荷上げ作業の負荷に応じた所定の開度で作動する。そして、油圧切換弁85が閉位置(a)から開位置(b)へと徐々に動作することにより、メータインコンペンセータ37の受圧部37aに作用している出口圧P4が徐々にタンク36の圧力に近づいていき、メータインコンペンセータ37が閉じる方向に動作する。これにより、油圧ポンプ30から吐出される圧油を作業機駆動回路32に供給することができる。
 以上のように第3実施形態によれば、第1実施形態と同様に、フロント作業装置4を駆動して荷上げ作業を行う際に、エンジン回転数が低速であっても、ステアリング操作と荷上げ作業との複合操作を効率良く行うことができる。
(第4実施形態)
 次に、本発明の第4実施形態に係る油圧駆動システムについて説明する。図7は、第4実施形態に係るホイールローダの油圧駆動システムを示す図である。第4実施形態では、メータインコンペンセータ37の一方の受圧部37bとパイロットポンプ(油圧源)80とを接続する通路68と、この通路68に設けられる油圧切換弁85と、を備えている。油圧切換弁85の受圧部85aは、ネガコン通路46と接続されて、ネガコン通路46を流れる圧油が導入されている。
 よって、油圧切換弁85は、リフトアーム用方向切換弁44と絞り45との間の圧力に応じて、閉位置(a)と開位置(b)との間で作動する。別言すれば、油圧切換弁85は、荷上げ作業の負荷に応じた所定の開度で作動する。油圧切換弁85が閉位置(a)にあるときは、パイロットポンプ80から吐出される圧油はタンク36に流れる。そして、油圧切換弁85が閉位置(a)から開位置(b)へと徐々に動作することにより、パイロットポンプ80から吐出される圧油の圧力がメータインコンペンセータ37の受圧部37bに加圧され、メータインコンペンセータ37の受圧部37bに作用する圧力が受圧部37aに作用する出口圧P4より大きくなり、メータインコンペンセータ37が閉じる方向に動作する。これにより、油圧ポンプ30から作業機駆動回路32への圧油の供給流量を増加させることができる。
 以上のように第4実施形態によれば、第2実施形態と同様に、フロント作業装置4を駆動して荷上げ作業を行う際に、エンジン回転数が低速であっても、ステアリング操作と荷上げ作業との複合操作を効率良く行うことができる。
 なお、本発明は前述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能であり、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。前記実施形態は、好適な例を示したものであるが、当業者ならば、本明細書に開示の内容から、各種の代替例、修正例、変形例あるいは改良例を実現することができ、これらは添付の特許請求の範囲に記載された技術的範囲に含まれる。
 例えば、図4のステップS1において、エンジン回転数が低速であることを判断するためにエンジン回転数センサ72の検出信号を用いたが、この構成に代えて、アクセルペダル操作量センサ75の検出信号を用いることもできる。また、図4のステップS2において、荷上げ作業を行っているか否かの判断に圧力センサ71の検出信号を用いたが、この構成に代えて、バケット角度センサ73およびリフトアーム角度センサ74の検出信号を用いても良い。また、バケット操作レバー24およびリフトアーム操作レバー25の操作信号(油圧信号または電気信号)を用いて荷上げ作業を行っているか否かを判断することもできる。
 1 ホイールローダ
 2 前フレーム(車体)
 3 後フレーム(車体)
 4 フロント作業装置(作業機)
 5 リフトアーム
 6 バケット
 7 バケットシリンダ(作業機アクチュエータ)
 8L,8R リフトアームシリンダ(作業機アクチュエータ)
 11L,11R ステアリングシリンダ
 14 エンジン
 30 油圧ポンプ
 34 ステアリング用方向切換弁
 36 タンク
 37 メータインコンペンセータ(ステアリング制御弁)
 37a,37b 受圧部
 42 ブリードオフコンペンセータ(作業機制御弁)
 43 バケット用方向切換弁(作業機用方向切換弁)
 44 リフトアーム用方向切換弁(作業機用方向切換弁)
 45 絞り
 65 電磁切換弁
 67 通路
 68 通路
 70 コントローラ
 71 圧力センサ
 72 エンジン回転数センサ(回転数センサ)
 80 パイロットポンプ(油圧源)
 85 油圧切換弁
 85a 受圧部

Claims (5)

  1.  車体と、
     前記車体を操舵させるステアリングアクチュエータと、
     前記車体の前側に取り付けられた作業機と、
     前記作業機を動作させる作業機アクチュエータと、
     前記ステアリングアクチュエータおよび前記作業機アクチュエータへ圧油を供給する油圧ポンプと、
     前記油圧ポンプを駆動するエンジンと、
     前記ステアリングアクチュエータと前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータに供給される圧油の方向を切り換えるステアリング用方向切換弁と、
     前記ステアリング用方向切換弁と前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータへの圧油の流量を制御するステアリング制御弁と、
     前記作業機アクチュエータと前記油圧ポンプとの間に設けられ、前記作業機アクチュエータに供給される圧油の方向を切り換える作業機用方向切換弁と、
     前記作業機用方向切換弁と前記油圧ポンプとの間に設けられ、前記作業機アクチュエータへの圧油の流量を制御する作業機制御弁と、
     前記作業機用方向切換弁より圧油の流れの下流側に設けられた絞りと、
     前記エンジンの回転数を検出する回転数センサと、
     前記作業機用方向切換弁と前記絞りとの間の圧力を検出する圧力センサと、
     前記ステアリング制御弁を制御する制御装置と、を備えたホイールローダにおいて、
     前記制御装置は、
     前記回転数センサにより検出された前記エンジンの回転数が所定の閾値以下の場合であって、かつ前記圧力センサにより検出された圧力が所定圧力以上の場合に、前記ステアリング制御弁の開口面積を低減させる、ことを特徴とするホイールローダ。
  2.  請求項1に記載のホイールローダにおいて、
     前記ステアリング制御弁の両方の受圧部のうち一方とタンクとを接続する通路と、
     前記通路に設けられる電磁切換弁と、をさらに備え、
     前記ステアリング制御弁の一方の受圧部に前記ステアリング用方向切換弁の出口側の圧油が導入されると共に、前記ステアリング制御弁の他方の受圧部に前記ステアリング用方向切換弁の入口側の圧油が導入されることで、前記ステアリング制御弁は、前記ステアリング用方向切換弁の前後差圧により作動するよう構成され、
     前記制御装置は、前記回転数センサにより検出された前記エンジンの回転数が所定の閾値以下の場合であって、かつ前記圧力センサにより検出された圧力が所定圧力以上の場合に、前記電磁切換弁を開けて前記一方の受圧部と前記タンクとを連通させ、前記一方の受圧部に作用する圧油を前記通路を介して前記タンクに戻すことで、前記ステアリング制御弁の開口面積を低減させる、ことを特徴とするホイールローダ。
  3.  請求項1に記載のホイールローダにおいて、
     前記ステアリング制御弁の両方の受圧部のうち一方と油圧源とを接続する通路と、
     前記通路に設けられる電磁切換弁と、をさらに備え、
     前記ステアリング制御弁の一方の受圧部に前記ステアリング用方向切換弁の入口側の圧油が導入されると共に、前記ステアリング制御弁の他方の受圧部に前記ステアリング用方向切換弁の出口側の圧油が導入されることで、前記ステアリング制御弁は、前記ステアリング用方向切換弁の前後差圧により作動するよう構成され、
     前記制御装置は、前記回転数センサにより検出された前記エンジンの回転数が所定の閾値以下の場合であって、かつ前記圧力センサにより検出された圧力が所定圧力以上の場合に、前記電磁切換弁を開けて前記一方の受圧部と前記油圧源とを連通させ、前記一方の受圧部に前記油圧源からの圧油を前記通路を介して導入することで、前記ステアリング制御弁の開口面積を低減させる、ことを特徴とするホイールローダ。
  4.  車体と、
     前記車体を操舵させるステアリングアクチュエータと、
     前記車体の前側に取り付けられた作業機と、
     前記作業機を動作させる作業機アクチュエータと、
     前記ステアリングアクチュエータおよび前記作業機アクチュエータへ圧油を供給する油圧ポンプと、
     前記油圧ポンプを駆動するエンジンと、
     前記ステアリングアクチュエータと前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータに供給される圧油の方向を切り換えるステアリング用方向切換弁と、
     前記ステアリング用方向切換弁と前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータへの圧油の流量を制御するステアリング制御弁と、
     前記作業機アクチュエータと前記油圧ポンプとの間に設けられ、前記作業機アクチュエータに供給される圧油の方向を切り換える作業機用方向切換弁と、
     前記作業機用方向切換弁と前記油圧ポンプとの間に設けられ、前記作業機アクチュエータへの圧油の流量を制御する作業機制御弁と、
     前記作業機用方向切換弁より圧油の流れの下流側に設けられた絞りと、を備えたホイールローダにおいて、
     前記ステアリング制御弁の両方の受圧部のうち一方とタンクとを接続する通路と、
     前記通路に設けられ、前記作業機用方向切換弁と前記絞りとの間の圧力を受圧部に作用させることで動作する油圧切換弁と、をさらに備え、
     前記ステアリング制御弁の一方の受圧部に前記ステアリング用方向切換弁の出口側の圧油が導入されると共に、前記ステアリング制御弁の他方の受圧部に前記ステアリング用方向切換弁の入口側の圧油が導入されることで、前記ステアリング制御弁は、前記ステアリング用方向切換弁の前後差圧により作動するよう構成され、
     前記油圧切換弁の動作により前記一方の受圧部と前記タンクとを連通させ、前記一方の受圧部に作用する圧油を前記通路を介して前記タンクに戻すことで、前記ステアリング制御弁の開口面積を低減させる、ことを特徴とするホイールローダ。
  5.  車体と、
     前記車体を操舵させるステアリングアクチュエータと、
     前記車体の前側に取り付けられた作業機と、
     前記作業機を動作させる作業機アクチュエータと、
     前記ステアリングアクチュエータおよび前記作業機アクチュエータへ圧油を供給する油圧ポンプと、
     前記油圧ポンプを駆動するエンジンと、
     前記ステアリングアクチュエータと前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータに供給される圧油の方向を切り換えるステアリング用方向切換弁と、
     前記ステアリング用方向切換弁と前記油圧ポンプとの間に設けられ、前記ステアリングアクチュエータへの圧油の流量を制御するステアリング制御弁と、
     前記作業機アクチュエータと前記油圧ポンプとの間に設けられ、前記作業機アクチュエータに供給される圧油の方向を切り換える作業機用方向切換弁と、
     前記作業機用方向切換弁と前記油圧ポンプとの間に設けられ、前記作業機アクチュエータへの圧油の流量を制御する作業機制御弁と、
     前記作業機用方向切換弁より圧油の流れの下流側に設けられた絞りと、を備えたホイールローダにおいて、
     前記ステアリング制御弁の両方の受圧部のうち一方と油圧源とを接続する通路と、
     前記通路に設けられ、前記作業機用方向切換弁と前記絞りとの間の圧力を受圧部に作用させることで動作する油圧切換弁と、をさらに備え、
     前記ステアリング制御弁の一方の受圧部に前記ステアリング用方向切換弁の入口側の圧油が導入されると共に、前記ステアリング制御弁の他方の受圧部に前記ステアリング用方向切換弁の出口側の圧油が導入されることで、前記ステアリング制御弁は、前記ステアリング用方向切換弁の前後差圧により作動するよう構成され、
     前記油圧切換弁の動作により前記一方の受圧部と前記油圧源とを連通させ、前記一方の受圧部に前記油圧源からの圧油を前記通路を介して導入することで、前記ステアリング制御弁の開口面積を低減させる、ことを特徴とするホイールローダ。
PCT/JP2019/008630 2018-03-28 2019-03-05 ホイールローダ WO2019188045A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19774460.0A EP3656649B1 (en) 2018-03-28 2019-03-05 Wheel loader
CN201980004058.4A CN111094111B (zh) 2018-03-28 2019-03-05 轮式装载机
US16/640,363 US11027775B2 (en) 2018-03-28 2019-03-05 Wheel loader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062921A JP6858723B2 (ja) 2018-03-28 2018-03-28 ホイールローダ
JP2018-062921 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188045A1 true WO2019188045A1 (ja) 2019-10-03

Family

ID=68061552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008630 WO2019188045A1 (ja) 2018-03-28 2019-03-05 ホイールローダ

Country Status (5)

Country Link
US (1) US11027775B2 (ja)
EP (1) EP3656649B1 (ja)
JP (1) JP6858723B2 (ja)
CN (1) CN111094111B (ja)
WO (1) WO2019188045A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753799B2 (en) 2020-03-23 2023-09-12 Hitachi Construction Machinery Co., Ltd. Work vehicle
JP7490478B2 (ja) * 2020-07-10 2024-05-27 株式会社小松製作所 作業機械、および作業機械の制御方法
JP7417485B2 (ja) * 2020-07-10 2024-01-18 株式会社小松製作所 作業機械、および作業機械を制御するための方法
CN113184762B (zh) * 2021-05-27 2023-02-24 三一海洋重工有限公司 堆高机举升的控制方法、装置、堆高机以及存储介质
WO2024202495A1 (ja) * 2023-03-28 2024-10-03 日立建機株式会社 運搬車両

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181823A (ja) * 1997-12-19 1999-07-06 Komatsu Ltd 建設機械の制御方法および制御装置
JP2000027765A (ja) * 1998-07-13 2000-01-25 Komatsu Ltd 作業車両用ポンプの容量制御装置
JP2008155897A (ja) 2006-12-26 2008-07-10 Hitachi Constr Mach Co Ltd 作業車両のステアリングシステム
JP2009184618A (ja) * 2008-02-08 2009-08-20 Kubota Corp 作業車の油圧制御構造
JP2013119358A (ja) * 2011-12-08 2013-06-17 Kawasaki Heavy Ind Ltd 油圧制御装置、及びそれを備える建設機械
JP2015127164A (ja) * 2013-12-27 2015-07-09 株式会社Kcm 油圧駆動システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663936A (en) * 1984-06-07 1987-05-12 Eaton Corporation Load sensing priority system with bypass control
JP4632771B2 (ja) * 2004-02-25 2011-02-16 株式会社小松製作所 油圧操向方式の作業車両
JP4941928B2 (ja) * 2006-12-26 2012-05-30 日立建機株式会社 作業車両のステアリングシステム
EP2845954A4 (en) * 2012-05-01 2016-04-06 Hitachi Construction Machinery HYBRID CONSTRUCTION EQUIPMENT
JP6005176B2 (ja) * 2012-11-27 2016-10-12 日立建機株式会社 電動式油圧作業機械の油圧駆動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181823A (ja) * 1997-12-19 1999-07-06 Komatsu Ltd 建設機械の制御方法および制御装置
JP2000027765A (ja) * 1998-07-13 2000-01-25 Komatsu Ltd 作業車両用ポンプの容量制御装置
JP2008155897A (ja) 2006-12-26 2008-07-10 Hitachi Constr Mach Co Ltd 作業車両のステアリングシステム
JP2009184618A (ja) * 2008-02-08 2009-08-20 Kubota Corp 作業車の油圧制御構造
JP2013119358A (ja) * 2011-12-08 2013-06-17 Kawasaki Heavy Ind Ltd 油圧制御装置、及びそれを備える建設機械
JP2015127164A (ja) * 2013-12-27 2015-07-09 株式会社Kcm 油圧駆動システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656649A4

Also Published As

Publication number Publication date
CN111094111B (zh) 2022-05-10
JP6858723B2 (ja) 2021-04-14
CN111094111A (zh) 2020-05-01
JP2019173395A (ja) 2019-10-10
US11027775B2 (en) 2021-06-08
EP3656649B1 (en) 2023-07-05
EP3656649A4 (en) 2021-04-21
EP3656649A1 (en) 2020-05-27
US20200172158A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2019188045A1 (ja) ホイールローダ
JP6134263B2 (ja) 油圧駆動システム
WO2017221758A1 (ja) 液圧駆動システム
US10480158B2 (en) Working machine
EP3505688B1 (en) System for controlling construction machinery and method for controlling construction machinery
EP3647500B1 (en) Travel control system for construction machinery and travel control method for construction machinery
JP2017226492A5 (ja)
JP4247986B2 (ja) 車両のステアリング制御装置
JP7071979B2 (ja) ショベル
WO2019054366A1 (ja) 建設機械の油圧駆動システム
JP4993575B2 (ja) 作業車両のステアリングシステム
WO2018021288A1 (ja) ショベル、ショベル用コントロールバルブ
JP7090567B2 (ja) 建設機械
WO2019116486A1 (ja) ショベル
JP2020026819A (ja) 作業機の油圧システム及び作業機の油圧制御方法
CA3066125C (en) Hydraulic drive device for industrial vehicle
CN111356844B (zh) 油压驱动系统
JP3594637B2 (ja) 油圧作業機の油圧駆動装置
JP6581061B2 (ja) ホイール式作業機械の油圧制御装置
WO2019022001A1 (ja) ショベル
JP7474626B2 (ja) ショベル
WO2023080108A1 (ja) 産業車両の油圧システム
WO2023095739A1 (ja) 産業車両の油圧システム
JP7375513B2 (ja) 走行式作業機械の油圧駆動装置
JPH04171301A (ja) 油圧作業回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019774460

Country of ref document: EP

Effective date: 20200221

NENP Non-entry into the national phase

Ref country code: DE