WO2019187260A1 - 車両制御装置及び車両 - Google Patents

車両制御装置及び車両 Download PDF

Info

Publication number
WO2019187260A1
WO2019187260A1 PCT/JP2018/037785 JP2018037785W WO2019187260A1 WO 2019187260 A1 WO2019187260 A1 WO 2019187260A1 JP 2018037785 W JP2018037785 W JP 2018037785W WO 2019187260 A1 WO2019187260 A1 WO 2019187260A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pitch angle
control device
brake
mode
Prior art date
Application number
PCT/JP2018/037785
Other languages
English (en)
French (fr)
Inventor
貴廣 伊藤
松原 謙一郎
渉 横山
貴哉 塚越
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018007118.9T priority Critical patent/DE112018007118T5/de
Priority to KR1020207026463A priority patent/KR102378786B1/ko
Priority to US16/979,765 priority patent/US11491971B2/en
Priority to CN201880090766.XA priority patent/CN111867900B/zh
Publication of WO2019187260A1 publication Critical patent/WO2019187260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0013Planning or execution of driving tasks specially adapted for occupant comfort
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/28Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels responsive to deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/30Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels responsive to load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0051Handover processes from occupants to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0061Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/04Jerk, soft-stop; Anti-jerk, reduction of pitch or nose-dive when braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • B60W2030/041Control of vehicle driving stability related to roll-over prevention about the pitch axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/049Number of occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/182Selecting between different operative modes, e.g. comfort and performance modes

Definitions

  • the present invention relates to a vehicle control device and a vehicle, and more particularly to a vehicle control device and a vehicle in an automatic / manual operation mode vehicle having both a manual operation mode and an automatic operation mode.
  • Patent Document 1 The technology described in Patent Document 1 is known as a vehicle equipped with a brake capable of controlling the braking force of four wheels. According to Patent Document 1, this apparatus is applied to a vehicle having front and rear wheel suspensions having an anti-dive geometry and an anti-lift geometry.
  • the braking force distribution of the front and rear wheels is adjusted to the basic distribution during braking, whereas when a sudden braking operation is started, the front / rear wheel is distributed only in a predetermined short period from the start of braking.
  • the wheel braking force distribution is adjusted to a first distribution in which the rear wheel braking force distribution is larger than the basic distribution, whereby the amount of increase in the anti-lift effect is increased.
  • the anti-pitting moment increases as the vehicle as a whole becomes larger than the amount of decrease.
  • the pitching during braking can be effectively suppressed.
  • the pitching during braking can be effectively suppressed.
  • the present invention provides a vehicle control device and a vehicle that can improve the ride comfort of the occupant and the driving sensation of the driver even if the vehicle has a plurality of driving modes such as an automatic driving mode and a manual driving mode. Aimed to do.
  • the pitch angle that is the inclination of the vehicle generated in the vehicle during braking of the vehicle or the pitch angle adjustment unit that adjusts the amount of change in the pitch angle is included.
  • the vehicle control device adjusts the pitch angle in accordance with the travel mode of the vehicle instructed from the host control unit provided in the vehicle.
  • a vehicle control device in a vehicle operated in both a manual operation mode in which a driver operates by operating a steering wheel or a brake of the vehicle and an automatic operation mode in which an automatic operation control device automatically operates the vehicle A selection signal input means for inputting a selection signal for the manual operation mode and the automatic operation mode, a brake control signal output means for outputting a brake control signal for the front wheels of the vehicle and a brake control signal for the rear wheels of the vehicle, The brake control signal for the front wheels of the vehicle and the brake control signal for the rear wheels of the vehicle are changed between the manual operation mode and the automatic operation mode, the braking timing is changed between the rear wheels and the front wheels to change the pitch angle, or the rear
  • the vehicle control device is provided with a calculation unit that changes and gives the braking force distribution between the wheels and the front wheels.
  • a vehicle equipped with the above vehicle control device is used.
  • a vehicle control device and a vehicle that can improve the ride comfort of the occupant and the driving sensation of the driver even if the vehicle has a plurality of driving modes such as an automatic driving mode and a manual driving mode. it can.
  • FIG. 9 is a flowchart illustrating processing contents in the control device 4 according to the second embodiment.
  • FIG. 1 is a diagram showing an overall configuration example of an automatic / manual operation mode vehicle having both an automatic operation mode and a manual operation mode.
  • reference numeral 1 denotes an automatic / manual operation mode vehicle having both an automatic operation mode and a manual operation mode.
  • a vehicle is simply abbreviated unless otherwise required.
  • the vehicle 1 includes at least four wheels 2 on the front, rear, left and right sides and a brake 5 for each wheel.
  • subscripts 2 and 5 are attached to the wheel 2 and the brake 5, and the left and right subscripts F and R distinguish front and rear, and the right subscripts L and R distinguish left and right. Unless otherwise necessary, the subscripts are omitted.
  • the vehicle 1 is equipped with a control device 4 in order to operate in the automatic operation mode and the manual operation mode.
  • a control device 4 As a configuration example of the control device 4, only the automatic operation control device 42 and the brake control device 41 are described in FIG. 1, but an appropriate configuration example including other control units can be used.
  • the control device 4 handles a plurality of inputs and a plurality of outputs in order to enable operation in the automatic operation mode and the manual operation mode, but only the inputs and outputs related to the present invention are described here.
  • the automatic operation mode is an operation mode that includes a vehicle operation that does not depend on the steering wheel and automatically travels toward the destination by recognizing a white line on a public road, for example.
  • the manual operation mode is an operation mode by operating the driver's steering wheel.
  • the input for realizing the present invention is a mode selection signal 31 provided by the automatic / manual operation mode selection switch 3.
  • the brake signal 61 indicates the amount of depression of the brake pedal 6.
  • the automatic / manual operation mode selection switch 3 may be installed at an arbitrary location near the driver's seat and can be selected by the driver, or in conjunction with the brake pedal 6, the automatic operation mode and the manual operation mode. May be determined.
  • the outputs for realizing the present invention are the brake signal 7F for the brakes 5FL and 5FR of the front wheels 2FL and 2FR, and the brake signal 7R for the brakes 5RL and 5RR of the rear wheels 2RL and 2RR.
  • the brake signals 7F and 7R define the braking force for the wheel 2.
  • brake signals 7F and 7R are individually given to the front and rear wheels 2F and 2R, but this may be given individually to four wheels.
  • the control device 4 is realized by a computer and includes a memory, a calculation unit, a signal bus, an input unit, an output unit, and the like.
  • the selection signal input means for inputting the selection signal 31 for the manual operation mode and the automatic operation mode the brake signal input means for inputting the brake signal 61, the brake control signal 7F for the front wheels of the vehicle and the vehicle Brake control signal output means for providing a brake control signal 7R for the rear wheels is provided.
  • the calculation unit gives a brake control signal for the vehicle front wheels and a brake control signal for the vehicle rear wheels that are distributed differently in the manual operation mode and the automatic operation mode.
  • the arithmetic unit has a function as a pitch angle adjusting unit.
  • the automatic operation processing function (not shown) handles and accelerators.
  • the vehicle 1 is automatically driven by giving an automatic operation control signal 81 to the brake and other operation ends in the vehicle at an appropriate timing.
  • the automatic driving brake signal 71 is given to the brake control device 41.
  • the brake control device 41 inputs the brake signal 61 and the automatic driving brake signal 71, and performs one brake processing of the vehicle corresponding to each brake signal.
  • FIG. 2 is a flowchart showing the processing contents in the control device 4. Note that FIG. 2 only describes processing at the time of brake operation according to the present invention, and the operation processing in the normal manual operation mode or automatic operation mode operation is omitted as appropriate.
  • the flow of FIG. 2 is always performed at a predetermined control cycle after the engine of the vehicle 1 is started, and it is determined whether or not there is a brake request in the first processing step S1.
  • the presence or absence of a brake request is determined by the brake signal 61 indicating the amount of depression of the brake pedal 5 in the manual operation mode, and is determined by the automatic operation brake signal 71 provided by the automatic operation control device 41 in the automatic operation mode.
  • the automatic / manual operation mode is determined, and in the case of the automatic operation mode, the process proceeds to the processing step S3, and in the case of the manual operation mode, the process proceeds to the processing step S4.
  • the automatic / manual operation mode is determined by the mode selection signal 31 provided by the automatic / manual operation mode selection switch 3.
  • Processing steps S3 and S4 are both determined as to whether or not emergency braking processing is performed. Whether or not emergency braking is possible is determined based on, for example, that the brake request value is equal to or greater than a threshold value or the wheel slip amount is equal to or greater than a predetermined value, and the emergency brake process in process step S5 is executed. At this time, the comfort control (control pursuing stability in the automatic operation mode and control in which a feeling of deceleration is felt in the manual operation mode) is not executed.
  • the stability pursuit control in the automatic operation mode is executed in the process step S7. More specifically, the rear wheel brake control is executed independently in the processing step S71, and after the elapse of the predetermined time ⁇ 2 is confirmed in the processing step S72, the front / rear wheel brake combined control is executed in the processing step S73.
  • Such sequence control reduces the pitch angle during braking, and the rider can feel stability because the italic shaking during braking is reduced.
  • the deceleration feeling pursuit control in the manual operation mode is executed in the process step S6. More specifically, front wheel brake control is executed independently in processing step S61. After confirming the elapse of the predetermined time ⁇ 1 in processing step S62, front / rear wheel brake combined control is executed in processing step S63. By such control, the pitch angle at the time of braking increases, and the passenger can feel a strong feeling of deceleration during braking.
  • control in FIG. 2 is continuously executed until the vehicle is stopped or re-accelerated, and thereafter, confirmation and a standby process are entered until a brake request is issued again.
  • FIGS. 3a and 3b are diagrams showing temporal changes in braking force applied to the front / rear wheels during manual operation and automatic operation, respectively.
  • FIG. 3a shows an example in which braking force is extremely generated during manual operation.
  • FIG. 3b illustrates a case where the final distribution is not changed between manual operation and automatic operation. Comparing these figures for FIGS. 3a and 3b, the following is clear.
  • FIG. 3a is a diagram showing the time change of the braking force applied to the front / rear wheels when the braking force is excessively applied during manual operation.
  • FIG. 6 is a diagram showing a change over time of the braking force applied to the front / rear wheels in the basic control during manual operation. According to the basic control of FIG. 6, the front wheel is controlled so as to apply the braking force almost simultaneously, rather than applying the braking ahead of the rear wheel during the braking force change period.
  • FIGS. 3a and 6 are one in which two operation modes are set for manual operation, FIG. 6 can be said to be a basic control mode, and FIG. 3a is a sport mode, for example. In Example 3 to be described later, it is described that the control in FIGS. 3a and 6 is used in combination.
  • the total braking force B applied to the vehicle is the sum of the front wheel braking force BF and the rear wheel braking force BR, and the braking period is changed from the initial braking force change period to the constant braking force period thereafter. Transition.
  • the braking force B applied to the vehicle during this period is such that the front wheel braking force BF is greater than the rear wheel braking force BR during manual operation.
  • the front wheel braking force BF is smaller than the rear wheel braking force BR in a relative comparison with the manual operation.
  • FIG. 6 exemplifies a case where the final distribution is changed between manual operation and automatic operation.
  • the pitch angle change amount can be moderated, and the manual operation and the automatic operation can be performed as shown in FIG.
  • the pitch angle can be reduced.
  • the pitch angle means a final inclination (pitch angle)
  • the pitch angle change amount means a change amount as an inclination (pitch angle) from the start to the end of braking. In the present specification, when it is not necessary to distinguish between them, they are simply referred to as pitch angles.
  • Example 1 the pitch angle or the amount of change in the pitch angle is adjusted by changing the order or timing of applying braking force to the front and rear wheels.
  • the manual operation is more effective than the automatic operation.
  • Example 1 the order and timing of applying braking force to the front and rear wheels are changed between automatic operation and manual operation.
  • the control is based on the order and timing of applying the braking force.
  • the vehicle pitch angle and / or the pitch angle change amount is positively controlled to the target value as a feedback signal.
  • FIG. 4 is a diagram illustrating an overall configuration example of an automatic / manual operation mode vehicle having both an automatic operation mode and a manual operation mode according to the second embodiment.
  • the difference from FIG. 1 is that the vehicle pitch angle signal from the sensor 9 for detecting the vehicle pitch angle and / or the pitch angle change amount is taken into the control device 4.
  • the vehicle pitch angle and / or the pitch angle change amount can be measured directly or indirectly from an appropriate acceleration sensor or the like installed in the vehicle.
  • 41 'and 42' are the brake control device 41 and the automatic operation control device 42, respectively.
  • the functions should be considered as the host control unit and the pitch angle adjustment unit, respectively. In the following, this will be referred to as such.
  • FIG. 5 is a flowchart illustrating processing contents in the control device 4 according to the second embodiment.
  • FIG. 2 only the process at the time of the brake operation related to the present invention is described, and the process in the normal driving operation is omitted as being appropriately performed. Further, the flow of FIG. 2 is basically different from the flow of FIG. 2 in the process step S7.
  • the flow in FIG. 5 is always performed at a predetermined control cycle after the engine of the vehicle 1 is started, and it is determined whether or not there is a brake request in the first processing step S1.
  • the presence or absence of a brake request is determined by the brake signal 61 indicating the amount of depression of the brake pedal 5 in the manual operation mode, and is determined by the automatic operation brake signal 71 provided by the automatic operation control device 41 in the automatic operation mode.
  • the automatic / manual operation mode is determined, and in the case of the automatic operation mode, the process proceeds to the processing step S3. In the case of the manual operation mode, the process proceeds to the processing step S4.
  • the automatic / manual operation mode is determined by the mode selection signal 31 provided by the automatic / manual operation mode selection switch 3.
  • Processing steps S3 and S4 are both determined as to whether or not emergency braking processing is performed. Whether or not emergency braking is possible is determined based on, for example, that the brake request value is equal to or greater than a threshold value or the wheel slip amount is equal to or greater than a predetermined value, and the emergency brake process in process step S5 is executed. At this time, the comfort control (control pursuing stability in the automatic operation mode and control in which a feeling of deceleration is felt in the manual operation mode) is not executed.
  • the deceleration feeling pursuit control in the manual operation mode is executed in the process step S6. More specifically, front wheel brake control is executed independently in processing step S61. After confirming the elapse of the predetermined time ⁇ 1 in processing step S62, front / rear wheel brake combined control is executed in processing step S63. By such control, the pitch angle at the time of braking increases, and the passenger can feel a strong feeling of deceleration during braking.
  • the brake control in the processing step S6 is not necessarily the above.
  • a braking force corresponding to the amount of depression of the brake may be applied.
  • the stability pursuit control in the automatic operation mode is executed in the processing step S9. More specifically, a vehicle pitch angle signal from the sensor 9 that detects the vehicle pitch angle and / or pitch angle change amount in processing step S91 is acquired, and the vehicle pitch angle and / or pitch angle change detected in processing step S92. The control amount of the front and rear wheels is calculated according to the difference between the amount and the target vehicle pitch angle and / or the change amount of the pitch angle, and brake control is performed to give the calculated suppression amount to the front and rear wheels in processing step S93. .
  • the vehicle pitch angle and / or the pitch angle change amount is controlled so that the front and rear wheel restraining amount is matched with the target value, the pitch angle at the time of braking is reduced, and the occupant reduces the vehicle shake at the time of braking. So you can feel stability.
  • the pitch angle adjusting unit 41 ′ adjusts the pitch angle according to the traveling mode of the vehicle instructed from the host control unit 42 ′ provided in the vehicle. Also, the pitch angle and / or the change amount of the pitch angle are controlled to be larger in the manual operation mode than in the automatic operation mode.
  • the pitch angle adjusting unit 41 ′ adjusts the pitch angle and / or the change amount of the pitch angle by adjusting the braking force of the front wheel brake and the rear wheel brake, respectively.
  • Example 1 the order and timing for applying braking force to the front and rear wheels were changed between automatic operation and manual operation.
  • the vehicle pitch angle and / or the pitch angle change amount is positively controlled to the target value as a feedback signal.
  • Example 3 a sense of stability and a feeling of deceleration are taken into consideration from a viewpoint different from those in Examples 1 and 2.
  • the manual operation mode will be divided into the gentle manual operation mode and the manual operation mode that positively gives a feeling of deceleration.
  • the manual operation mode that positively gives a feeling of deceleration is, for example, a sports mode.Here, this mode is referred to as a vehicle body rocking brake mode, Alternatively, the automatic operation mode is referred to as a vehicle body swing suppression braking mode.
  • the vehicle body swing braking mode and the vehicle body swing suppression braking mode are set as at least two operation modes. Then, the control of FIG. 6 can be adopted, and the control of FIG. 3b can be adopted in the vehicle body swing suppression braking mode.
  • the vehicle body rocking braking mode is controlled to be larger than the vehicle body rocking suppression braking mode, and the pitch angle adjusting unit adjusts the pitch angle to adjust the vehicle body rocking braking mode.
  • the vehicle body swing suppression braking mode it is needless to say that the automatic / manual operation mode selection switch 3 includes a vehicle body swing braking mode, and preferably includes a switch for switching between the vehicle body swing braking mode and other operation modes.
  • the time ⁇ 1 which is the preceding control period of the front wheels, in the first embodiment.
  • the braking force generated by the rear wheel brake required by the vehicle control device is larger than the braking force upper limit value, it is preferable to control in the vehicle body swing control mode.
  • the braking force upper limit value is preferably set to a value smaller than the braking force with which the wheel locks.
  • Example 4 describes consideration of a sense of stability and a feeling of deceleration from a different viewpoint from Example 1, Example 2, and Example 3. This executes control for identifying whether the occupant is singular or plural.
  • the pitch angle adjustment unit is the one in the single boarding mode.
  • the pitch angle or the change amount of the pitch angle is controlled to be larger than that in the multiple boarding state mode.
  • the distinction between the single boarding mode and the multiple boarding mode may be determined by the load or may be selected by the passenger.
  • the control is preferably performed as follows through the first embodiment, the second embodiment, and the third embodiment.
  • the pitch angle change amount by providing an area in which the change amount of the pitch angle when the braking force of the vehicle is decreased is set so that the braking force by the front wheel brake is smaller than the braking force by the rear wheel brake. Good. It is preferable that the amount of change in the pitch angle when the braking force of the vehicle is decreased is set so that the timing at which the braking force generated by the front wheel brake becomes zero is later than the timing at which the braking force generated by the rear wheel brake becomes zero.
  • the pitch angle or the change amount of the pitch angle is preferably controlled to be larger in the single riding mode than in the multiple boarding state mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Regulating Braking Force (AREA)

Abstract

4輪の制動力を制御可能なブレーキを採用する自動/手動運転モード車両に適した車両制御装置、車両制御方法、及び車両を得る。車両の制動時に車両に発生する車両の傾きであるピッチ角、またはピッチ角の変化量を調節するピッチ角調節部を有し、ピッチ角調節部は、車両に設けられた上位制御部から指示される車両の走行モードに応じてピッチ角を調節する車両制御装置。

Description

車両制御装置及び車両
 本発明は、車両制御装置、及び車両に係り、特に手動運転モードと自動運転モードの両方を有する自動/手動運転モード車両における車両制御装置及び車両に関する。
 4輪の制動力を制御可能なブレーキを搭載する車両として、特許文献1に記載の技術が知られている。特許文献1によれば、この装置は、「アンチダイブジオメトリ及びアンチリフトジオメトリを有する前後輪サスペンションを備えた車両に適用される。アンチリフトジオメトリによるアンチリフト効果の大きさはアンチダイブジオメトリによるアンチダイブ効果の大きさよりも大きい。通常、制動中において前後輪の制動力配分が基本配分に調整される。一方、急激な制動操作が開始された場合、制動開始からの所定の短期間においてのみ、前後輪の制動力配分が基本配分に代えて基本配分よりも後輪の制動力配分が大きい第1配分に調整される。これにより、アンチリフト効果の大きさの増大量がアンチダイブ効果の大きさの減少量よりも大きくなって車両全体としてみればアンチピッチングモーメントが増大する。」としている。
特開2008-201291号公報
 特許文献1に開示のピッチング制御を組み込むことで制動時のピッチングを効果的に抑制することができる。特に、自動運転モードを有する車両では乗員が感じる揺れを抑えることができるため乗り心地がよい車両を実現することができる。
 ところで今後、自動運転モード、手動運転モードのように複数の走行モードを有する車両の開発、増加が考えられる。このような車両において、本ピッチング制御を自走運転モードと同じように手動運転モードにて用いた場合、ノーズダイブが減少することにより、運転手が感じる制動感が減少する。このため、場合によってはブレーキの踏込に対する制動感が足りず、運転手が違和感を覚える場合が想定される。
 本発明では、例えば自動運転モード、手動運転モードのように複数の走行モードを有する車両であっても、乗員の乗り心地、運転手の運転感覚を向上することができる車両制御装置及び車両を提供することを目的とした。
 以上のことから本発明においては、「車両の制動時に車両に発生する車両の傾きであるピッチ角、またはピッチ角の変化量を調節するピッチ角調節部を有し、ピッチ角調節部は、車両に設けられた上位制御部から指示される車両の走行モードに応じてピッチ角を調節する車両制御装置」としたものである。
 また本発明においては、「ドライバが車両のハンドルやブレーキなどを操作して運行する手動運転モードと、自動運転制御装置が車両を自動運転する自動運転モードの両方により運行される車両における車両制御装置であって、手動運転モードと自動運転モードの選択信号を入力する選択信号入力手段、車両の前輪に対するブレーキの制御信号と車両の後輪に対するブレーキの制御信号とを出力するブレーキ制御信号出力手段、車両の前輪に対するブレーキの制御信号と車両の後輪に対するブレーキの制御信号を、手動運転モードと自動運転モードとで、ピッチ角を変えるために後輪と前輪で制動のタイミングを変更し、または後輪と前輪で制動力配分を変更して与える演算部を備えることを特徴とする車両制御装置」としたものである。
 また本発明においては、「上記の車両制御装置を搭載している車両」としたものである。
 本発明により、例えば自動運転モード、手動運転モードのように複数の走行モードを有する車両であっても、乗員の乗り心地、運転手の運転感覚を向上することができる車両制御装置及び車両を提供できる。
自動運転モードと手動運転モードの両方を有する自動/手動運転モード車両の全体構成例を示す図。 制御装置4における処理内容を示したフロー図。 手動運転時に、極端に制動力を出すときに前/後輪に加えられる制動力の時間変化を示した図。 自動運転時に、前/後輪に加えられる制動力の時間変化を示した図。 実施例2に係る自動運転モードと手動運転モードの両方を有する自動/手動運転モード車両の全体構成例を示す図。 実施例2に係る制御装置4における処理内容を示したフロー図。 手動運転時の基本制御における前/後輪に加えられる制動力の時間変化を示した図。 手動運転時と自動運転時とで、最終配分を変えた場合における、前/後輪に加えられる制動力の時間変化を示した図。
 以下、本発明の実施例について図面を用いて説明する。
 図1は、自動運転モードと手動運転モードの両方を有する自動/手動運転モード車両の全体構成例を示す図である。
 図1において1は、自動運転モードと手動運転モードの両方を有する自動/手動運転モード車両である。なお以下においては特に必要のない限り単に車両と略称することにする。
 車両1は、少なくとも前後左右に4個の車輪2と、車輪ごとのブレーキ5を備えている。なお、ここでは車輪2とブレーキ5について記号2、5に添え字を付しており、左側の添え字F、Rにより前後を区別し、右側の添え字L、Rにより左右を区別しているが、特に必要がない場合には、添え字を省略して記載するものとする。
 また車両1は、自動運転モードと手動運転モードによる運転を行うために、制御装置4を搭載している。制御装置4の構成例として、図1では自動運転制御装置42と、ブレーキ制御装置41のみを記述しているが、その他の制御部を含めて、適宜の構成例とすることができる。なお制御装置4は、自動運転モードと手動運転モードによる運転を可能とすべく、複数の入力と複数の出力を取り扱っているが、ここでは本発明に関する入力と出力のみを記述している。ここで、自動運転モードは、ハンドルによらない車両操作を含み例えば公道の白線等を認識して自動で目的地に向かって走行する運転モードである。手動運転モードは運転手のハンドル操作による運転モードである。
 本発明を実現するうえでの入力は、自動/手動運転モード選択スイッチ3が与えるモード選択信号31である。さらにはブレーキペダル6の踏み量を示すブレーキ信号61である。なお自動/手動運転モード選択スイッチ3は、運転席近傍の任意の箇所に設置されてドライバが選択可能とするものであってもよく、あるいはブレーキペダル6に連動して自動運転モードと手動運転モードを判別するものであってもよい。
 本発明を実現するうえでの出力は、前輪2FL、2FRのブレーキ5FL、5FRに対するブレーキ信号7Fと、後輪2RL、2RRのブレーキ5RL、5RRに対するブレーキ信号7Rである。ブレーキ信号7F、7Rは、車輪2に対する制動力を定めたものである。なお、以下の実施例では、前後の車輪2F、2Rに対して、個別にブレーキ信号7F、7Rを与える事例を例示しているが、これは4輪に個別に与えるものであってもよい。
 制御装置4は、計算機により実現されており、メモリ、演算部、信号バス、入力部、出力部などにより構成されている。図1には図示していないが、手動運転モードと自動運転モードの選択信号31を入力する選択信号入力手段、ブレーキ信号61を入力するブレーキ信号入力手段、車両前輪に対するブレーキの制御信号7Fと車両後輪に対するブレーキの制御信号7Rとを与えるブレーキ制御信号出力手段などを備えている。また演算部は、後述するように、手動運転モードと自動運転モードとで、異なる配分の車両前輪に対するブレーキの制御信号と車両後輪に対するブレーキの制御信号とを与える。この点から言うと、演算部はピッチ角調節部としての機能を有するものということができる。
 図1の装置構成例によれば、自動運転制御装置42は自動/手動運転モード選択スイッチ3が与えるモード選択信号31により自動運転が指示された時に、図示せぬ自動運転処理機能によりハンドル、アクセル、ブレーキその他の車両内操作端に適宜のタイミングで自動運転制御信号81を与え車両1を自動運転している。説明を割愛しているが、自動運転処理機能によりブレーキ操作を行う場合には、自動運転ブレーキ信号71をブレーキ制御装置41に与えている。
 なお手動運転モードの場合、ドライバが行ったハンドル、アクセル、ブレーキその他の車両内操作端に対する操作は、図示せぬ手動運転用の制御装置を介して実行されることになるが、この部分の説明は割愛している。本図では、ドライバが行ったブレーキ操作のときのブレーキペダル5の踏み量を示すブレーキ信号61がブレーキ制御装置41に与えられている。
 ブレーキ制御装置41は、ブレーキ信号61と自動運転ブレーキ信号71を入力して、各ブレーキ信号に対応した車両の1ブレーキ処理を行っている。
 図2は、制御装置4における処理内容を示したフロー図である。なお図2では本発明に関わるブレーキ操作時の処理のみを記述しており、通常の手動運転モードあるいは自動運転モード運転における操作処理は適宜実行されているものとして割愛している。
 図2のフローは、車両1のエンジン起動後に所定制御周期で常時実施されており、最初の処理ステップS1ではブレーキ要求の有無を判断する。ブレーキ要求の有無は、手動運転モードではブレーキペダル5の踏み量を示すブレーキ信号61で判断し、自動運転モードでは自動運転制御装置41が与える自動運転ブレーキ信号71で判断する。
 次の処理ステップS2では自動/手動運転モードを判断し、自動運転モードの場合処理ステップS3の処理に移行し、手動運転モードの場合処理ステップS4の処理に移行する。自動/手動運転モードの判断は、自動/手動運転モード選択スイッチ3が与えるモード選択信号31により行う。
 処理ステップS3とS4は、いずれも緊急ブレーキ処理か否かを判断したものである。
緊急ブレーキの可否は、例えばブレーキ要求値が閾値以上または車輪スリップ量が所定値以上であることをもって判断し、処理ステップS5における緊急ブレーキ処理を実行する。この時には、本発明が志向する快適制御(自動運転モードでは安定性を追求した制御、手動運転モードでは減速感を感じられる制御)は実行されない。
 処理ステップS3の判断において緊急ブレーキ処理ではないとされた場合、処理ステップS7において自動運転モードにおける安定性追求制御を実行する。より具体的には処理ステップS71において後輪ブレーキ制御を単独にて実行し、処理ステップS72において一定時間τ2の経過を確認したのちに処理ステップS73において前/後輪ブレーキ併用制御を実行する。係る順序制御により制動時のピッチ角が小さくなり、搭乗者は制動時の斜体揺れが低減するため安定性を感じることができる。
 処理ステップS4の判断において緊急ブレーキ処理ではないとされた場合、処理ステップS6において手動運転モードにおける減速感追求制御を実行する。より具体的には処理ステップS61において前輪ブレーキ制御を単独にて実行し、処理ステップS62において一定時間τ1の経過を確認したのちに処理ステップS63において前/後輪ブレーキ併用制御を実行する。係る制御により制動時のピッチ角が大きくなり、搭乗者は制動時の減速感を強く感じることができる。
 なお図2の制御は、車両停止まで、あるいは再加速まで継続して実行され、その後は再度ブレーキ要求があるまで確認、待機処理に入る。
 図3a、図3bは、それぞれ手動運転時と自動運転時に、前/後輪に加えられる制動力の時間変化を示した図である。なお図3aは、手動運転時に極端に制動力を出す事例を示している。また図3bは、手動運転時と自動運転時とで、最終配分を変えない場合を例示している。図3a、図3bについて、これらの図示を比較すると以下のことが明らかである。
 まず図3a、図3bにおいて、前/後輪に加えられる制動力の時間変化に着目する。これによれば、手動運転時に極端に制動力を出す事例では、前輪制動が先行し、その後に一定時間τ1の経過を確認してから後輪制動との併用となるのに対し、自動運転時は後輪制動が先行し、その後に一定時間τ2の経過を確認してから前輪制動との併用となる。このため、手動運転時においては自動運転時より後輪制動力が小さい期間が存在し、自動運転時においては手動運転時より後輪制動力が大きい期間が存在することになる。別な言い方をすると、手動運転時においては前輪制動力を大きくする期間を設け、自動運転時においては後輪制動力を大きくする期間を設けたものということができる。
 なお図3aは、手動運転時に極端に制動力を出すときに前/後輪に加えられる制動力の時間変化を示した図であるが、基本的な通常の手動運転時の場合には、極端な制動力を出す必要がないので、図6のような制御を行うのがよい。図6は手動運転時の基本制御における前/後輪に加えられる制動力の時間変化を示した図である。図6の基本制御によれば、制動力変化期間において前輪が後輪に先行して制動を与えるのではなく、ほぼ同時に制動力を与えるように制御される。
 図3aと図6の制御は、手動運転について2つの運転モードを設定したものであり、図6は基本制御モード、図3aは例えばスポーツモードであるということができる。後述する実施例3では、図3aと図6の制御を併用して採用することについて記載している。
 次に図3a、図3bにおいて、前/後輪に加えられる制動力の大きさに着目する。この図に示すように、車両に加えられる合計の制動力Bは、前輪制動力BFと後輪制動力BRの和であり、ブレーキ期間は初期の制動力変化期間からその後に制動力一定期間に移行する。
 これらの図によれば、ブレーキ期間として初期の制動力変化期間に着目すると、この期間での車両に加えられる制動力Bは、手動運転時では前輪制動力BFが後輪制動力BRよりも大きくされ、自動運転時では手動運転時との相対比較では、前輪制動力BFが後輪制動力BRよりも小さくされている。
 また制動力一定期間についてみると、ここでは図3aと図3bにおける最終配分を同じにした事例を示している。つまり手動運転時の場合の、制動力一定期間における前輪制動力BFに対する後輪制動力BRの比率α(=BR/BF)は3/7程度であるに対し、自動運転時の場合の、制動力一定期間における前輪制動力BFと後輪制動力BRの比率α(=BR/BF)も前輪と同じ3/7程度になるように制御した事例を示している。
 これに対し、制動力一定期間における最終配分を変更するものであってもよい。図6は、手動運転時と自動運転時とで、最終配分を変えた場合を例示しており、例えば手動運転時の場合の、制動力一定期間における前輪制動力BFに対する後輪制動力BRの比率α(=BR/BF)は3/7程度であるに対し、自動運転時の場合の、制動力一定期間における前輪制動力BFと後輪制動力BRの比率α(=BR/BF)は4/6程度としたことを表している。
 図3bのように手動運転時と自動運転時とで、最終配分を変えない場合には、ピッチ角変化量を緩やかにすることができ、図6のように手動運転時と自動運転時とで、最終配分を変えた場合には、ピッチ角を小さくすることができるという効果がある。なおピッチ角とは最終的な傾き(ピッチ角)を意味しており、ピッチ角変化量はブレーキ開始から終わりにかけての傾き(ピッチ角)としての変化量を意味している。本明細書では、これらを格別に区別する必要がない場合には単にピッチ角ということにする。
 さらに図3a、図3bにおいて、上記制御の結果として、車両のピッチ角、および/またはピッチ角変化量に着目すると、自動運転時の車両のピッチ角、および/またはピッチ角変化量PAは小さいのに対し、手動運転時の車両のピッチ角、および/またはピッチ角変化量PMは大きいものであることがわかる。実施例1では、前後輪に制動力を与える順序またはタイミングを変えることでピッチ角、または前記ピッチ角の変化量を調節しております。
 以上の説明から明らかなように、乗り心地を重視するユーザと減速感を楽しみたいユーザのいずれに対しても満足を与えることができるためには、この解決手段として、手動運転時には自動運転時よりも車両ピッチ角、および/またはピッチ角変化量が大きくなるように前後輪制動力を制御するように切り替えるのがよい。また自動運転時には手動運転時よりも後輪制動力が大きくなる期間(時間)を有するのがよい。
 上記の結果として、車両の走行モードによって前後輪制動力の発生タイミングを変更し、モードに応じた乗り心地を実現することができる。つまり、ドライバが運転する場合は制動時にピッチングが大きくなるように制御して減速感をだすとともに、ドライバがいない自動運転時にはピッチングが小さくなるように制御して車体揺れを低減することができる。
 実施例1では、前後輪に制動力を与える順序並びにタイミングを自動運転時と手動運転時で変更させたものである。実施例1は、制動力投入順序とタイミングによる制御であるが、実施例2では車両ピッチ角、および/またはピッチ角変化量を帰還信号としてその目標値に積極的に制御するものである。
 図4は、実施例2に係る自動運転モードと手動運転モードの両方を有する自動/手動運転モード車両の全体構成例を示す図である。図1との相違点は、制御装置4内に車両ピッチ角、および/またはピッチ角変化量を検知するセンサ9からの車両ピッチ角信号を取り込んだことである。なお車両ピッチ角、および/またはピッチ角変化量は、車両内に設置した適宜の加速度センサなどから直接的にあるいは間接的に計測可能である。
 またこの図において、41´、42´はそれぞれブレーキ制御装置41、自動運転制御装置42であるが、実施例2の説明ではその機能はそれぞれ上位制御部、ピッチ角調節部と考えるのがよいので、以下においてはこのように称することにする。
 図5は、実施例2に係る制御装置4における処理内容を示したフロー図である。なお図2では本発明に関わるブレーキ操作時の処理のみを記述しており、通常の運転操作における処理は適宜実行されているものとして割愛している。また図2のフローは、基本的に図2のフローとは、処理ステップS7の部分で相違している。
 図5のフローは、車両1のエンジン起動後に所定制御周期で常時実施されており、最初の処理ステップS1ではブレーキ要求の有無を判断する。ブレーキ要求の有無は、手動運転モードではブレーキペダル5の踏み量を示すブレーキ信号61で判断し、自動運転モードでは自動運転制御装置41が与える自動運転ブレーキ信号71で判断する。
 次の処理ステップS2では自動/手動運転モードを判断し、自動運転モードの場合処理ステップS3の処理に移行し、手動運転モードの場合処理ステップS4の処理に移行する。自動/手動運転モードの判断は、自動/手動運転モード選択スイッチ3が与えるモード選択信号31により行う。
 処理ステップS3とS4は、いずれも緊急ブレーキ処理か否かを判断したものである。
緊急ブレーキの可否は、例えばブレーキ要求値が閾値以上または車輪スリップ量が所定値以上であることをもって判断し、処理ステップS5における緊急ブレーキ処理を実行する。この時には、本発明が志向する快適制御(自動運転モードでは安定性を追求した制御、手動運転モードでは減速感を感じられる制御)は実行されない。
 処理ステップS4の判断において緊急ブレーキ処理ではないとされた場合、処理ステップS6において手動運転モードにおける減速感追求制御を実行する。より具体的には処理ステップS61において前輪ブレーキ制御を単独にて実行し、処理ステップS62において一定時間τ1の経過を確認したのちに処理ステップS63において前/後輪ブレーキ併用制御を実行する。係る制御により制動時のピッチ角が大きくなり、搭乗者は制動時の減速感を強く感じることができる。
 なお処理ステップS6におけるブレーキ制御は、必ずしも上記のものでなくてもよい。
ブレーキの踏み量に応じた制動力を与えるものであってもよい。
 処理ステップS3の判断において緊急ブレーキ処理ではないとされた場合、処理ステップS9において自動運転モードにおける安定性追求制御を実行する。より具体的には処理ステップS91において車両ピッチ角、および/またはピッチ角変化量を検知するセンサ9からの車両ピッチ角信号を取り込み、処理ステップS92において検知した車両ピッチ角、および/またはピッチ角変化量と、目標とする車両ピッチ角、および/またはピッチ角変化量の差に応じて、前後輪の抑制量を算出し、処理ステップS93において前後輪に算出した抑制量を与えるブレーキ制御を実行する。かくして車両ピッチ角、および/またはピッチ角変化量は、その目標値に合致すべく前後輪の抑制量が制御され、制動時のピッチ角が小さくなり、搭乗者は制動時の車両揺れが低減するため安定性を感じることができる。
 なお車両において、ブレーキ操作時にピッチ角が変動するメカニズムは既に良く知られたものであり、逆にピッチ角側から制動力を算出することは当業者が容易に行いうることであるので、詳細な演算手法についてはその説明を割愛する。
 実施例2のフロー図によれば、ピッチ角調節部41´は、車両に設けられた上位制御部42´から指示される車両の走行モードに応じてピッチ角を調節している。また手動運転モード時の方が、自動運転モード時の時よりもピッチ角、および/またはピッチ角の変化量が大きくなるように制御されている。ピッチ角調節部41´は、前輪ブレーキと、後輪ブレーキの制動力をそれぞれ調節することでピッチ角、および/またはピッチ角の変化量を調節している。
 実施例1では、前後輪に制動力を与える順序並びにタイミングを自動運転時と手動運転時で変更させた。実施例2では車両ピッチ角、および/またはピッチ角変化量を帰還信号としてその目標値に積極的に制御した。
 これに対し、実施例3では、実施例1、実施例2とは別の観点から安定感並びに減速感を考慮する。
 具体的には手動運転モードについて、おとなしめの手動運転モードと、積極的に減速感を与える手動運転モードについて分けて考える。積極的に減速感を与える手動運転モードとは、例えばスポーツモードなどであり、ここではこのモードを車体揺動制動モードと称することにし、車体揺動制動モードに対しておとなしめの手動運転モード、あるいは自動運転モードのことを車体揺動抑制制動モードということにする。
 このように実施例3では、手動運転モードについて、少なくとも2つの運転モードとして車体揺動制動モードと車体揺動抑制制動モードを設定するが、これを実現する制御手法としては、車体揺動制動モードでは図6の制御を採用することができ、車体揺動抑制制動モードでは図3bの制御を採用することができる。
 実施例3においては、車体揺動制動モードの方が車体揺動抑制制動モードよりもピッチ角が大きくなるように制御され、ピッチ角調節部は、ピッチ角を調節することで車体揺動制動モードと、車体揺動抑制制動モードを切り替えるように構成する。なおこの場合に、自動/手動運転モード選択スイッチ3には、車体揺動制動モードを含むことは言うまでもなく、車体揺動制動モードとその他の運転モードの切り替えスイッチを備えるのがよい。
 さらに車体揺動制動モードと、おとなしめの手動運転モードとを区別して実現するための手法として、実施例1において前輪の先行制御期間である時間τ1を調整することが有効である。例えば、車体揺動制動モードの時の前輪先行制御期間τ1を、おとなしめの手動運転モードの時の前輪先行制御期間τ1よりも長く設定しておくことで、ピッチ角をさらに大きくすることが可能であり、より減速感のある運転を実現することができる。
 また車両制御装置から要求される後輪ブレーキで発生させる制動力が制動力上限値よりも大きい場合には車体揺動制御モードで制御するのがよい。さらに制動力上限値は車輪がロックする制動力よりも小さい値とするのがよい。
 実施例4では、実施例1、実施例2、実施例3とは別の観点から安定感並びに減速感を考慮することについて述べる。これは、搭乗者が単数か、複数かを識別した制御を実行するものである。
 例えば実施例4では、走行モードとして、車両が運転手のみ搭乗した単独乗車モードと、運転手以外の搭乗者も乗車した複数搭乗モードを有し、ピッチ角調節部は、単独乗車モード時の方が、複数搭乗状態モード時よりもピッチ角またはピッチ角の変化量が大きくなるように制御するものである。
 なお単独乗車モードと複数搭乗モードの区別は荷重で判断してもよく、あるいは搭乗者による選択とするものであってもよい。
 本発明では、実施例1、実施例2、実施例3を通じて、以下のように制御が行われるのがよい。まず、車両の制動力増加時のピッチ角を、前輪ブレーキの増加開始のタイミングが後輪ブレーキの作動増加のタイミングよりも早くなるようにすることで大きくするのがよい。また車両の制動力増加時のピッチ角を、前輪ブレーキの作動開始のタイミングが後輪ブレーキの作動開始のタイミングよりも早くなるようにすることで大きくするのがよい。車両の制動力増加時のピッチ角を、前輪ブレーキによる制動力が後輪ブレーキによる制動力よりも大きくなるように作動させる領域を設けることにより大きくするのがよい。車両の制動力減少時のピッチ角の変化量を、前輪ブレーキによる制動力が後輪ブレーキによる制動力よりも小さくなるように作動させる領域を設けることにより前記ピッチ角の変化量を大きくするのがよい。車両の制動力減少時のピッチ角の変化量を、前輪ブレーキで発生する制動力がゼロになるタイミングが後輪ブレーキで発生する制動力がゼロになるタイミングより遅くするのがよい。
 なお、本発明の採用に当たり、単独乗車モード時の方が、複数搭乗状態モード時よりもピッチ角またはピッチ角の変化量が大きくなるよう制御するのがよい。
1:車両、2:車輪、3:自動/手動運転モード選択スイッチ、4:制御装置、5:ブレーキ、6:ブレーキペダル、7:ブレーキ信号、31:モード選択信号、41:ブレーキ制御装置、42:自動運転制御装置、61:ブレーキ信号、71:自動運転ブレーキ信号、81:自動運転制御信号

Claims (20)

  1.  車両の制動時に車両に発生する車両の傾きであるピッチ角、または前記ピッチ角の変化量を調節するピッチ角調節部を有し、
     前記ピッチ角調節部は、前記車両の走行モードに応じてピッチ角を調節する車両制御装置。
  2.  請求項1に記載の車両制御装置であって、
     前記車両は、前記走行モードとして、ハンドルにより車両を操作する手動運転モードと、前記ハンドルによらない車両操作を有する自動運転モードの運転モードと、を有し、
     前記ピッチ角調節部は、前記走行モードとして、前記自動運転モードと前記運転モードの切り替えに応じてピッチ角または前記ピッチ角の変化量を調節し、前記手動運転モード時の方が、前記自動運転モード時の時よりも前記ピッチ角または前記ピッチ角の変化量が大きくなるよう制御する車両制御装置。
  3.  請求項1に記載の車両制御装置であって、
     前記車両は、前記走行モードとして、前記車両が運転手のみ搭乗した単独乗車モードと、前記運転手以外の搭乗者も乗車した複数搭乗モードを有し、
     前記ピッチ角調節部は、前記単独乗車モード時の方が、前記複数搭乗モード時よりも前記ピッチ角または前記ピッチ角の変化量が大きくなるよう制御する車両制御装置。
  4.  請求項1から請求項3のいずれか1項に記載の車両制御装置であって、
     前記ピッチ角調節部は、前記車両の前輪のブレーキと、前記車両の後輪のブレーキの制動力をそれぞれ調節することでピッチ角、および/または前記ピッチ角の変化量を調節することを特徴とする車両制御装置。
  5.  請求項1から請求項3のいずれか1項に記載の車両制御装置であって、
     前記車両の制動力増加時のピッチ角を、前記車両の前輪のブレーキの増加開始のタイミングが前記車両の後輪のブレーキの作動増加のタイミングよりも早くなるようにすることで大きくすることを特徴とする車両制御装置。
  6.  請求項5に記載の車両制御装置であって、
     前記車両の制動力増加時のピッチ角を、前輪ブレーキの作動開始のタイミングが後輪ブレーキの作動開始のタイミングよりも早くなるようにすることで大きくすることを特徴とする車両制御装置。
  7.  請求項5、または請求項6に記載の車両制御装置であって、
     前記車両の制動力増加時のピッチ角を、前輪ブレーキによる制動力が後輪ブレーキによる制動力よりも大きくなるように作動させる領域を設けることにより大きくすることを特徴とする車両制御装置。
  8.  請求項1から請求項3のいずれか1項に記載の車両制御装置であって、
     前記車両の制動力減少時のピッチ角の変化量を、前輪ブレーキによる制動力が後輪ブレーキによる制動力よりも小さくなるように作動させる領域を設けることにより前記ピッチ角の変化量を大きくすることを特徴とする車両制御装置。
  9.  請求項8に記載の車両制御装置あって、
     前記車両の制動力減少時のピッチ角の変化量を、前輪ブレーキで発生する制動力がゼロになるタイミングが後輪ブレーキで発生する制動力がゼロになるタイミングより遅くなるようにすることを特徴とする車両制御装置。
  10.  請求項2に記載の車両制御装置であって、
     前記手動運転モードについて、車体揺動制動モードと車体揺動抑制制動モードを設定し、
     前記車体揺動制動モードの方が前記車体揺動抑制制動モードよりもピッチ角が大きくなるように制御され、ピッチ角を調節することで前記車体揺動制動モードと、前記車体揺動抑制制動モードを切り替えることを特徴とする車両制御装置。
  11.  請求項10に記載の車両制御装置であって、
     要求される後輪ブレーキで発生させる制動力が、制動力上限値よりも大きい場合には前記車体揺動制動モードで制御することを特徴とする車両制御装置。
  12.  請求項11に記載の車両制御装置であって、
     前記制動力上限値は、車輪がロックする制動力よりも小さい値であることを特徴とする車両制御装置。
  13.  請求項10から請求項12のいずれか1項に記載の車両制御装置であって、
     前記車体揺動制動モードと前記車体揺動抑制制動モードを切り替える切替えスイッチを備えることを特徴とする車両制御装置。
     前記車両の制動力増加時のピッチ角を、前輪ブレーキの作動開始のタイミングが後輪ブレーキの作動開始のタイミングよりも早くなるようにすることで大きくすることを特徴とする車両制御装置。
  14.  請求項1から請求項13のいずれか1項に記載の車両制御装置であって、
     ペダル操作による制動指令がある場合は、ペダル操作によらない制動指令がある場合に比して車両のピッチ角またはピッチ角変化量を大きくすることを特徴とする車両制御装置。
  15.  ドライバが車両のハンドルやブレーキなどを操作して運行する手動運転モードと、自動運転制御装置が車両を自動運転する自動運転モードの両方により運行される車両における車両制御装置であって、
     前記手動運転モードと前記自動運転モードの選択信号を入力する選択信号入力手段、前記車両の前輪に対するブレーキの制御信号と前記車両の後輪に対するブレーキの制御信号とを出力するブレーキ制御信号出力手段、前記車両の前輪に対するブレーキの制御信号と前記車両の後輪に対するブレーキの制御信号を、前記手動運転モードと前記自動運転モードとで、ピッチ角を変えるために後輪と前輪で制動のタイミングを変更し、または後輪と前輪で制動力配分を変更して与える演算部を備えることを特徴とする車両制御装置。
  16.  請求項15に記載の車両制御装置であって、
     前記手動運転モードでは、前記車両の後輪に対するブレーキの制御信号に先行して前記車両の前輪に対するブレーキの制御信号が与えられ、
     前記自動運転モードでは、前記車両の前輪に対するブレーキの制御信号に先行して前記車両の後輪に対するブレーキの制御信号が与えられることを特徴とする車両制御装置。
  17.  請求項15または請求項16に記載の車両制御装置であって、
     前記車両のピッチ角、および/またはピッチ角変化量を入力し、前記自動運転モードでのブレーキ制御時に、目標とする車両のピッチ角、および/またはピッチ角変化量との差分に応じて前記車両の前輪に対するブレーキの制御信号と前記車両の後輪に対するブレーキの制御信号とを定めることを特徴とする車両制御装置。
  18.  請求項15に記載の車両制御装置であって、
     前記手動運転モードでのブレーキの制御信号は、前記自動運転モードより前記車両の後輪に対するブレーキの制御信号が小さい期間があり、
     前記自動運転モードでのブレーキの制御信号は、前記手動運転モードより前記車両の前輪に対するブレーキの制御信号が大きい期間があることを特徴とする車両制御装置。
  19.  請求項15に記載の車両制御装置であって、
     前記演算部からのブレーキの制御信号により、前記車両の前輪及び前記車両の後輪に作用する制動力が変化する期間から、一定となる期間に移行するとともに、移行後に前記車両の前輪に作用する制動力に対する前記車両の後輪に作用する制動力の比率は、前記自動運転モードでの前記比率の方が前記手動運転モードでの前記比率よりも大きいことを特徴とする車両制御装置。
  20.  請求項1から請求項19のいずれか1項に記載の車両制御装置を搭載している車両。
PCT/JP2018/037785 2018-03-27 2018-10-10 車両制御装置及び車両 WO2019187260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018007118.9T DE112018007118T5 (de) 2018-03-27 2018-10-10 Fahrzeugsteuervorrichtung und Fahrzeug
KR1020207026463A KR102378786B1 (ko) 2018-03-27 2018-10-10 차량 제어 장치 및 차량
US16/979,765 US11491971B2 (en) 2018-03-27 2018-10-10 Vehicle control device and vehicle
CN201880090766.XA CN111867900B (zh) 2018-03-27 2018-10-10 车辆控制装置以及车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059368A JP7107716B2 (ja) 2018-03-27 2018-03-27 車両制御装置及び車両
JP2018-059368 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187260A1 true WO2019187260A1 (ja) 2019-10-03

Family

ID=68061024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037785 WO2019187260A1 (ja) 2018-03-27 2018-10-10 車両制御装置及び車両

Country Status (6)

Country Link
US (1) US11491971B2 (ja)
JP (1) JP7107716B2 (ja)
KR (1) KR102378786B1 (ja)
CN (1) CN111867900B (ja)
DE (1) DE112018007118T5 (ja)
WO (1) WO2019187260A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7331654B2 (ja) * 2019-11-21 2023-08-23 トヨタ自動車株式会社 制動力制御装置
JP7318541B2 (ja) * 2020-01-17 2023-08-01 株式会社アドヴィックス 制動制御装置
CN114559938A (zh) * 2022-03-17 2022-05-31 江苏大学 一种协同控制模块、自适应巡航系统及其控制方法、交通工具
US12005886B2 (en) * 2022-04-22 2024-06-11 Ford Global Technologies, Llc Methods and apparatus to control stability of a vehicle and trailer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264799A (ja) * 1997-01-23 1998-10-06 Denso Corp 車両用ブレーキ装置
JP2000135973A (ja) * 1998-10-30 2000-05-16 Toyota Motor Corp ブレーキ制御装置
JP2006240584A (ja) * 2005-03-07 2006-09-14 Honda Motor Co Ltd 電動ブレーキ装置
JP2013189153A (ja) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd 車両の制御装置
JP2017105224A (ja) * 2015-12-07 2017-06-15 三菱自動車工業株式会社 車両制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19653230B4 (de) * 1996-12-20 2012-03-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeugs
JP4499691B2 (ja) * 2006-06-06 2010-07-07 富士重工業株式会社 制動制御装置
JP5007576B2 (ja) 2007-02-21 2012-08-22 株式会社アドヴィックス 車両挙動制御装置
JP5262811B2 (ja) * 2008-10-31 2013-08-14 トヨタ自動車株式会社 車両のバネ上制振制御装置
JP5316211B2 (ja) * 2009-05-12 2013-10-16 トヨタ自動車株式会社 車両用ステアリングシステム
JP5700190B2 (ja) * 2009-08-04 2015-04-15 日立オートモティブシステムズ株式会社 サスペンション制御装置
DE102011076633A1 (de) * 2010-09-14 2012-03-15 Robert Bosch Gmbh Schräglagenabhängige Anpassung einer Bremskraftregelung bei einspurigen Fahrzeugen
JP5749074B2 (ja) * 2011-05-18 2015-07-15 株式会社小糸製作所 車両用灯具の制御装置、および車両用灯具システム
US9452653B2 (en) * 2012-03-15 2016-09-27 Nissan Motor Co., Ltd. Vehicle controlling apparatus and method
US20140095027A1 (en) * 2012-10-02 2014-04-03 Toyota Jidosha Kabushiki Kaisha Driving assistance apparatus and driving assistance method
JP6067939B2 (ja) * 2014-05-22 2017-01-25 ヤマハ発動機株式会社 ピッチ角制御システム、ピッチ角制御方法および車両
JP6672769B2 (ja) * 2015-12-18 2020-03-25 三菱自動車工業株式会社 制動力制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264799A (ja) * 1997-01-23 1998-10-06 Denso Corp 車両用ブレーキ装置
JP2000135973A (ja) * 1998-10-30 2000-05-16 Toyota Motor Corp ブレーキ制御装置
JP2006240584A (ja) * 2005-03-07 2006-09-14 Honda Motor Co Ltd 電動ブレーキ装置
JP2013189153A (ja) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd 車両の制御装置
JP2017105224A (ja) * 2015-12-07 2017-06-15 三菱自動車工業株式会社 車両制御装置

Also Published As

Publication number Publication date
JP2019171926A (ja) 2019-10-10
US20210039631A1 (en) 2021-02-11
KR20200119319A (ko) 2020-10-19
CN111867900B (zh) 2022-11-08
CN111867900A (zh) 2020-10-30
JP7107716B2 (ja) 2022-07-27
DE112018007118T5 (de) 2020-11-19
US11491971B2 (en) 2022-11-08
KR102378786B1 (ko) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2019187260A1 (ja) 車両制御装置及び車両
WO2010013381A1 (ja) 同軸二輪車及びその制御方法
JP5732499B2 (ja) 運転支援を行う方法および装置
US11654893B2 (en) Controller and control method
CN112566827A (zh) 控制装置及控制方法
JP2021011190A (ja) 車両の操舵支援装置
WO2010100719A1 (ja) 車両の操舵制御装置
JP4692170B2 (ja) 車両用操舵装置
JP2008247067A (ja) 車両の運動制御装置
JP7480856B2 (ja) 車両運動制御方法及び車両運動制御装置
TWI568633B (zh) 電動車輛
US20220203979A1 (en) Controller and control method
JP2004209998A (ja) 車両の統合制御装置
JP2012224232A (ja) 車両の走行支援装置及び車両の走行支援方法
JP6810274B2 (ja) 車両制御装置
JP5185792B2 (ja) ヨーレート制御装置
JP2020163966A (ja) 車両制御装置
JP5157722B2 (ja) 同軸二輪車及びその制御方法
JP2010030440A (ja) 同軸二輪車及びその制御方法
US20240326771A1 (en) Driving Force Control Method and Driving Force Control Device
JP2007176425A (ja) 車両制御装置
KR20120083146A (ko) 차량의 협조 제어 시스템 및 그의 협조 제어 방법
JP2008254640A (ja) 電動ゴルフカーのブレーキ力補正方法及びこれに用いる電動ゴルフカー
KR101903968B1 (ko) 전동식 동력 조향장치의 조향감 변경 제어방법
KR20230160998A (ko) 자율주행 차량의 조향 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207026463

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18912702

Country of ref document: EP

Kind code of ref document: A1