WO2010100719A1 - 車両の操舵制御装置 - Google Patents

車両の操舵制御装置 Download PDF

Info

Publication number
WO2010100719A1
WO2010100719A1 PCT/JP2009/053926 JP2009053926W WO2010100719A1 WO 2010100719 A1 WO2010100719 A1 WO 2010100719A1 JP 2009053926 W JP2009053926 W JP 2009053926W WO 2010100719 A1 WO2010100719 A1 WO 2010100719A1
Authority
WO
WIPO (PCT)
Prior art keywords
yaw rate
lateral acceleration
vehicle
steering control
predetermined position
Prior art date
Application number
PCT/JP2009/053926
Other languages
English (en)
French (fr)
Inventor
智久 西川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112009001475T priority Critical patent/DE112009001475T5/de
Priority to CN2009801233862A priority patent/CN102066183B/zh
Priority to JP2011502526A priority patent/JP5146593B2/ja
Priority to US12/996,586 priority patent/US20110077823A1/en
Priority to PCT/JP2009/053926 priority patent/WO2010100719A1/ja
Publication of WO2010100719A1 publication Critical patent/WO2010100719A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Definitions

  • the present invention relates to a vehicle steering control device that independently controls a steering angle of a front wheel and a steering angle of a rear wheel.
  • Patent Documents 1 to 3 This type of technology is proposed in Patent Documents 1 to 3, for example.
  • Patent Document 1 proposes that a vehicle equipped with a four-wheel steering control device controls the lateral acceleration by feeding back the detected yaw rate and correcting the rear wheel steering angle.
  • Patent Document 2 proposes that a four-wheel steering control device detects a yaw rate and a lateral acceleration and controls a rear wheel steering angle in accordance with the magnitude of the lateral acceleration.
  • Patent Document 3 proposes a technology that allows a driver to freely select which control is to be given priority to lateral G-sensitive control or yaw rate-sensitive control based on rear wheel control in a four-wheel steering control device.
  • Patent Documents 1 to 5 described above do not describe performing steering control in consideration of the phase difference between the yaw rate and the lateral acceleration appropriately. Further, the phase difference between the yaw rate and the lateral acceleration tends to be different between the driver seat (driver's seat) and the rear seat, but correspondence to this is not considered.
  • the present invention has been made to solve the above-described problems, and ensures passenger comfort by appropriately controlling the phase difference between the yaw rate and the lateral acceleration at a predetermined position in the vehicle interior.
  • An object of the present invention is to provide a vehicle steering control device that can perform the above-described operation.
  • a vehicle steering control device includes a steering control unit that performs steering control of front wheels and rear wheels independently, and controls the steering control unit so that a yaw rate and a lateral position at a predetermined position in a vehicle interior are controlled.
  • Phase control means for controlling the phase difference from acceleration, and setting means for setting the predetermined position based on the boarding position state of the occupant in the passenger compartment.
  • the above-described vehicle steering control device independently controls the front wheels and the rear wheels by the steering control means.
  • the phase control means controls the steering control means to control the phase difference between the yaw rate and the lateral acceleration at a predetermined position in the vehicle interior.
  • the setting means sets the predetermined position based on the boarding position state of the occupant in the passenger compartment. According to the vehicle steering control apparatus described above, the phase difference between the yaw rate and the lateral acceleration can be appropriately controlled at a predetermined position in the vehicle interior. Therefore, it is possible to appropriately ensure the comfort (riding comfort) of the occupant at the predetermined position.
  • the phase control unit controls the phase of the lateral acceleration to precede the phase of the yaw rate at the predetermined position.
  • the setting means acquires the presence or absence of a rear seat occupant as the boarding position state, and when the rear seat occupant is present, A predetermined position is set, and when the rear seat occupant is not present, the predetermined position is set on the front seat side.
  • the predetermined position that prioritizes the relationship (phase difference) between the lateral acceleration and the yaw rate in accordance with the presence or absence of the rear seat occupant, and to appropriately improve the passenger comfort at the predetermined position.
  • the setting means sets the predetermined position based on a setting state of a switch in a vehicle interior by a driver's operation.
  • the phase control means can control the phase difference when the vehicle speed is equal to or lower than a predetermined speed.
  • FIG. 1 is a diagram illustrating a schematic configuration of a vehicle to which a vehicle steering control device according to an embodiment is applied. It is a figure which shows the specific example of the phase difference of a lateral acceleration and a yaw rate. It is a flowchart which shows the control processing in 1st Example. It is a flowchart which shows the control processing in 2nd Example. It is a flowchart which shows the control processing in 3rd Example.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle.
  • FIG. 1 is a view of the vehicle observed from above, with the left showing the front of the vehicle and the right showing the rear of the vehicle. Also, broken line arrows indicate signal input / output.
  • the vehicle mainly includes an engine 1, front wheels 2fR, 2fL, rear wheels 2rR, 2rL, a front wheel steering shaft 3f, a rear wheel steering shaft 3r, a steering wheel (steering wheel) 4, and a steering wheel angle sensor 5.
  • L and R are added to the reference signs when left and right distinction is necessary, and “L” when right and left distinction is not necessary. , “R” is omitted.
  • Engine 1 is an internal combustion engine that generates power by exploding an air-fuel mixture in a combustion chamber.
  • the power generated by the engine 1 is transmitted to at least one of the front wheels 2f and the rear wheels 2r via a torque converter, a transmission, a drive shaft, and the like (not shown).
  • the steering angle of the front wheel 2f is controlled by the front wheel actuator 7f via the front wheel steering shaft 3f.
  • the steering angle of the rear wheel 2r is controlled by the rear wheel actuator 7r via the rear wheel steering shaft 3r. That is, the steering angles of the front wheels 2f and the rear wheels 2r are independently controlled (in other words, individually steered).
  • the vehicle is configured to be capable of four-wheel steering.
  • the handle 4 is operated by the driver to turn the vehicle, and the steering force by the driver is transmitted to the front wheel actuator 7f via the steering shaft.
  • the angle at which the handle 4 is rotated by the driver (handle angle) is detected by the handle angle sensor 5.
  • the handle angle sensor 5 supplies a detection signal S1 corresponding to the detected handle angle to the system controller 10.
  • the vehicle speed sensor 6 detects the speed of the vehicle (vehicle speed) and supplies a detection signal S2 corresponding to the detected vehicle speed to the system controller 10.
  • the front wheel actuator 7f and the rear wheel actuator 7r correspond to the steering control means in the present invention, and are configured to be able to control the steering angles of the front wheel 2f and the rear wheel 2r, respectively.
  • the front wheel actuator 7f and the rear wheel actuator 7r are respectively connected to the front wheel steering shaft 3f and the rear wheel steering shaft 3r in accordance with the control signal S3f and the control signal S3r supplied from the system controller 10, respectively.
  • the steering angle of the front wheel 2f and the rear wheel 2r is controlled via Specifically, the front wheel actuator 7f and the rear wheel actuator 7r are configured so that the front wheel 2f and the rear wheel 2r are steered at the steering angle corresponding to the control signal S3f and the control signal S3r supplied from the system controller 10, respectively. Take control.
  • the system controller 10 is configured by a so-called ECU (Electric Control Unit) or the like, and includes a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like.
  • the system controller 10 is based on the handle angle (corresponding to the detection signal S1) acquired from the handle angle sensor 5 and the vehicle speed (corresponding to the detection signal S2) acquired from the vehicle speed sensor 6. Then, steering control for the front wheel 2f and the rear wheel 2r is performed via the front wheel actuator 7f and the rear wheel actuator 7r.
  • the system controller 10 functions as a phase control unit and a setting unit in the present invention.
  • the system controller 10 controls the phase difference between the yaw rate and the lateral acceleration at a predetermined position in the vehicle interior by controlling the front wheel actuator 7f and the rear wheel actuator 7r. Specifically, the system controller 10 performs steering control so that the phase difference between the yaw rate and the lateral acceleration becomes a desired phase difference at a predetermined position in the vehicle interior. For example, the system controller 10 performs the steering control so that the phase of the lateral acceleration precedes the phase of the yaw rate at the predetermined position. As an example, the system controller 10 selects a control map or control law for performing steering control prepared in advance so that the phase of the lateral acceleration precedes the phase of the yaw rate at the predetermined position, and performs the steering control. Execute.
  • the system controller 10 sets the predetermined position as described above based on the passenger's boarding position state in the passenger compartment. For example, the system controller 10 uses the presence / absence of a rear seat occupant as the boarding position state, sets the predetermined position on the rear seat side when there is a rear seat occupant, and when there is no rear seat occupant. Sets the predetermined position on the front seat side (that is, on the driver seat side). The presence / absence of the presence of the rear seat occupant is used as the boarding position state because the driver is basically in the driver's seat. This is because it can be said that it is sufficient to determine whether or not there is any.
  • FIGS. 2A to 2C show an example of the phase difference between the lateral acceleration generated in the vehicle and the yaw rate when steering control is performed when a predetermined steering wheel operation is performed.
  • the phase difference between the lateral acceleration and the yaw rate can be set freely as shown in FIGS. 2 (a) to 2 (c), for example.
  • the lateral acceleration is expressed as “LA”
  • the yaw rate is expressed as “YR”.
  • FIG. 2A shows a graph when the phase of lateral acceleration precedes the phase of yaw rate.
  • FIG. 2B shows a graph when there is almost no phase difference between the lateral acceleration and the yaw rate.
  • FIG. 2C shows a graph when the phase of the yaw rate precedes the phase of the lateral acceleration.
  • the steering control is performed in consideration of the fact that the phase difference between the yaw rate and the lateral acceleration is different between the driver seat and the rear seat as described above.
  • the system controller 10 determines the lateral acceleration and yaw rate at any position in the vehicle interior (specifically, the driver seat or the rear seat) depending on, for example, the driver's intention, the driving mode, and the presence / absence of the rear seat occupant.
  • the steering control is performed so that the occupant at the selected position does not feel uncomfortable. More specifically, the system controller 10 makes the phase of the lateral acceleration precede the phase of the yaw rate so that the phase difference between the yaw rate and the lateral acceleration becomes a desirable phase difference at the position thus selected.
  • the steering control is performed (that is, the relationship shown in FIG. 2A).
  • the system controller 10 performs the steering control as described above at a low speed (for example, 40 km / h or less) when the vehicle speed is a predetermined speed or less. This is because the influence of the phase difference between the yaw rate and the lateral acceleration on the occupant tends to increase at low speeds.
  • the steering control method in this embodiment it is possible to appropriately ensure the comfort (riding comfort) of the driver and / or the rear seat occupant.
  • the system controller 10 selects the position (the driver seat or the rear seat) at which position (the driver's seat or the rear seat) prioritizes the relationship (phase difference) between the lateral acceleration and the yaw rate. Steering control is performed so that the passenger at the position does not feel uncomfortable. Specifically, the system controller 10 performs steering control so that the phase of the lateral acceleration precedes the phase of the yaw rate at the selected position.
  • the system controller 10 determines a position in the passenger compartment that prioritizes the relationship between the lateral acceleration and the yaw rate, depending on the presence or absence of a rear seat occupant.
  • the system controller 10 determines the driver seat as a position that prioritizes the relationship between the lateral acceleration and the yaw rate when there is no rear seat occupant, and the lateral acceleration and yaw rate when there is a rear seat occupant.
  • the rear seat is determined as a position where the relationship is prioritized.
  • the system controller 10 performs steering control so that the passenger
  • the system controller 10 obtains detection signals from a rear seat seat belt sensor and a rear seat pressure sensor provided in the vehicle, and determines the presence or absence of a rear seat occupant based on these detection signals. To do.
  • FIG. 3 is a flowchart showing a control process in the first embodiment. This process is executed by the system controller 10.
  • the lateral acceleration is expressed as “LA”
  • the yaw rate is expressed as “YR”.
  • step S101 the system controller 10 determines a position in the vehicle compartment that prioritizes the relationship (phase difference) between the lateral acceleration and the yaw rate at low speeds. Specifically, the system controller 10 selects either the driver seat or the rear seat depending on the presence or absence of a rear seat passenger. Specifically, the system controller 10 determines the presence or absence of a rear seat occupant based on detection signals acquired from the rear seat seat belt sensor and the rear seat pressure sensor, and if there is no rear seat occupant, the driver A seat is selected, and if there is a rear seat occupant, the rear seat is selected. Then, the process proceeds to step S102.
  • step S102 the system controller 10 determines whether or not the driver seat has been selected as a position that prioritizes the relationship between the lateral acceleration and the yaw rate.
  • step S102 the process proceeds to step S103.
  • step S103 the system controller 10 controls the control map or control law so that the driver does not feel uncomfortable because the phase of the lateral acceleration precedes the phase of the yaw rate due to the relationship between the lateral acceleration and the yaw rate at a low speed at the driver's seat. Select. That is, the steering control is performed at the driver's seat so that the relationship between the lateral acceleration and the yaw rate as shown in step S103 of FIG. 3 is obtained. Then, the process ends.
  • step S104 the system controller 10 controls the control map such that the phase of the lateral acceleration precedes the phase of the yaw rate due to the relationship between the lateral acceleration at the low speed at the rear seat and the yaw rate, and the rear seat passenger does not feel uncomfortable.
  • step S104 the system controller 10 controls the control map such that the phase of the lateral acceleration precedes the phase of the yaw rate due to the relationship between the lateral acceleration at the low speed at the rear seat and the yaw rate, and the rear seat passenger does not feel uncomfortable.
  • Select a control law That is, steering control is performed at the rear seat so that the relationship between the lateral acceleration and the yaw rate as shown in step S104 of FIG. 3 is obtained. Then, the process ends.
  • the position of the vehicle interior is switched to give priority to the relationship between the lateral acceleration and the yaw rate as described above. It is desirable not to do it immediately. For example, the switching is performed after a predetermined time has elapsed since the detection signals acquired from the rear seat belt sensor and the rear seat pressure sensor are switched, or when the vehicle speed is substantially “0”. Is preferable. This is to prevent misjudgment about the presence or absence of a rear seat occupant due to temporary removal of the seat belt during traveling or jumping on the traveling seat.
  • the second embodiment is different from the first embodiment in that the position of the passenger compartment where priority is given to the relationship between the lateral acceleration and the yaw rate is determined by the driver's intention (that is, the predetermined position described above is determined by the travel mode). . That is, in the second embodiment, as described above, after determining the position in the passenger compartment that prioritizes the relationship between the lateral acceleration and the yaw rate based on the presence or absence of the rear seat occupant, the position is changed according to the driver's intention. To do.
  • the driver selects a position where priority is given to the relationship between the lateral acceleration and the yaw rate, and the steering control is performed so that the passenger at the position selected by the driver does not feel uncomfortable.
  • the driver switches to either the driver seat or the rear seat as a position that prioritizes the relationship between the lateral acceleration and the yaw rate.
  • FIG. 4 is a flowchart showing a control process in the second embodiment. This process is executed by the system controller 10.
  • the lateral acceleration is expressed as “LA”
  • the yaw rate is expressed as “YR”.
  • the processing in step S201 and the processing in steps S203 to S205 are the same as the processing in step S101 and the processing in steps S102 to S104 described above (see FIG. 3), and thus description thereof is omitted.
  • step S202 will be described.
  • step S202 the system controller 10 determines a position in the vehicle compartment that prioritizes the relationship (phase difference) between the lateral acceleration and the yaw rate at low speeds.
  • the system controller 10 changes the position (either the driver seat or the rear seat) determined based on the presence or absence of the rear seat occupant in step S201 according to the driver's intention.
  • the system controller 10 selects either the driver seat or the rear seat according to the setting state of the manual switch by the driver's operation. Then, the process proceeds to step S203.
  • the embodiment has been described in which the position of the vehicle interior in which the relationship (phase difference) between the lateral acceleration and the yaw rate is prioritized is determined based on both the presence / absence of the rear passenger and the driver's intention.
  • a position where priority is given to the relationship between the lateral acceleration and the yaw rate can be determined based only on the driver's intention.
  • the first and second embodiments are different in that the position of the passenger compartment in which the relationship between the lateral acceleration and the yaw rate is prioritized is determined by the traveling mode (that is, the predetermined position is determined by the traveling mode). And different. That is, in the third embodiment, as described above, after the position of the passenger compartment that prioritizes the relationship between the lateral acceleration and the yaw rate is determined based on the presence or absence of the rear seat occupant, the position is changed according to the travel mode. . Specifically, in the third embodiment, the system controller 10 determines a position where priority is given to the relationship between the lateral acceleration and the yaw rate according to the driving mode set by the driver, etc. Steering control is performed so as not to feel it.
  • the system controller 10 determines the driver seat as a position that prioritizes the relationship between the lateral acceleration and the yaw rate, and the travel mode is set to “NORMAL”. If there is, the rear seat is determined as a position giving priority to the relationship between the lateral acceleration and the yaw rate.
  • AVS Adaptive Variable Suspension System
  • FIG. 5 is a flowchart showing a control process in the third embodiment. This process is executed by the system controller 10.
  • the lateral acceleration is expressed as “LA”
  • the yaw rate is expressed as “YR”.
  • the processing in step S301 and the processing in steps S303 to S305 are the same as the processing in step S101 and the processing in steps S102 to S104 described above (see FIG. 3), and thus description thereof is omitted.
  • step S302 will be described.
  • step S302 the system controller 10 determines a position in the vehicle compartment that prioritizes the relationship (phase difference) between the lateral acceleration and the yaw rate at a low speed.
  • the system controller 10 changes the position (either the driver seat or the rear seat) determined based on the presence or absence of the rear seat occupant in step S301 according to the travel mode.
  • the system controller 10 selects either the driver seat or the rear seat according to the set travel mode (in other words, according to the set state of the travel mode switching switch by the driver's operation).
  • the system controller 10 selects the driver's seat when the traveling mode is set to “SPORT”, and selects the rear seat when the traveling mode is set to “NORMAL”. Then, the process proceeds to step S303.
  • the embodiment has been described in which the position of the passenger compartment in which the relationship between the lateral acceleration and the yaw rate (phase difference) is prioritized is determined based on both the presence / absence of the rear passenger and the intention of the driving mode. It is not limited to. In another example, a position where priority is given to the relationship between the lateral acceleration and the yaw rate can be determined based only on the running mode. In yet another example, a position where priority is given to the relationship between the lateral acceleration and the yaw rate can be determined based on the driving mode and the driver's intention as shown in the first embodiment.
  • the present invention can be used for a vehicle capable of independently controlling the steering angle of the front wheels and the steering angle of the rear wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

 車両の操舵制御装置は、前輪及び後輪を独立に操舵制御する。位相制御手段は、操舵制御手段に対する制御を行うことで、車室内の所定位置におけるヨーレートと横加速度との位相差を制御する。また、設定手段は、車室内における乗員の搭乗位置状態に基づいて所定位置を設定する。これにより、車室内の所定位置においてヨーレートと横加速度との位相差を適切に制御することができる。よって、当該所定位置における乗員の快適性(乗り心地)を適切に確保することが可能となる。

Description

車両の操舵制御装置
 本発明は、前輪の操舵角と後輪の操舵角とを独立に制御する車両の操舵制御装置に関する。
 この種の技術が、例えば特許文献1乃至3に提案されている。特許文献1には、4輪操舵制御装置を搭載した車両において、検出されたヨーレートをフィードバックして後輪舵角を補正して、横加速度を制御することが提案されている。特許文献2には、4輪操舵制御装置において、ヨーレートと横加速度とを検出し、横加速度の大きさに応じて後輪舵角を制御することが提案されている。特許文献3には、4輪操舵制御装置において、後輪制御による横G感応制御とヨーレート感応制御とのいずれの制御を優先させるかを、ドライバが自由に選択できる技術が提案されている。
 その他にも、本発明に関連する技術が、特許文献4及び5に記載されている。
特開平5-85383号公報 特開平5-105101号公報 特開平6-99831号公報 特開2004-243813号公報 特開2008-129948号公報
 しかしながら、上記した特許文献1乃至5には、ヨーレートと横加速度との位相差を適切に考慮して、操舵制御を行うことについては記載されていない。また、ドライバ席(運転席)と後席とにおいてはヨーレートと横加速度との位相差が異なる傾向にあるが、これへの対応についても考慮されていない。
 本発明は、上記のような課題を解決するためになされたものであり、車室内の所定位置におけるヨーレートと横加速度との位相差を適切に制御することで、乗員の快適性を確保することが可能な車両の操舵制御装置を提供することを目的とする。
 本発明の1つの観点では、車両の操舵制御装置は、前輪及び後輪を独立に操舵制御する操舵制御手段と、前記操舵制御手段に対する制御を行うことで、車室内の所定位置におけるヨーレートと横加速度との位相差を制御する位相制御手段と、前記車室内における乗員の搭乗位置状態に基づいて、前記所定位置を設定する設定手段と、を備える。
 上記の車両の操舵制御装置は、操舵制御手段により、前輪及び後輪を独立に操舵制御する。位相制御手段は、操舵制御手段に対する制御を行うことで、車室内の所定位置におけるヨーレートと横加速度との位相差を制御する。また、設定手段は、車室内における乗員の搭乗位置状態に基づいて所定位置を設定する。上記の車両の操舵制御装置によれば、車室内の所定位置においてヨーレートと横加速度との位相差を適切に制御することができる。よって、当該所定位置における乗員の快適性(乗り心地)を適切に確保することが可能となる。
 上記の車両の操舵制御装置の一態様では、前記位相制御手段は、前記所定位置において、前記横加速度の位相が前記ヨーレートの位相よりも先行するように制御する。
 この態様によれば、所定位置における乗員の快適性を、効果的に確保することが可能となる。
 上記の車両の操舵制御装置の他の一態様では、前記設定手段は、後席乗員の存在の有無を前記搭乗位置状態として取得し、前記後席乗員が存在する場合には後席側に前記所定位置を設定し、前記後席乗員が存在しない場合には前席側に前記所定位置を設定する。
 この態様によれば、後席乗員の有無に応じて、横加速度とヨーレートとの関係(位相差)を優先させる所定位置を適切に決定することができ、当該所定位置における乗員の快適性を適切に確保することが可能となる。よって、例えば後席乗員の存在する場合には、後席乗員の快適性を適切に確保することが可能となる。
 上記の車両の操舵制御装置の他の一態様では、前記設定手段は、ドライバの操作による、車室内のスイッチにおける設定状態に基づいて、前記所定位置を設定する。
 この態様によれば、ドライバによる設定に応じて、横加速度とヨーレートとの関係(位相差)を優先させる所定位置を適切に決定することができ、当該所定位置における乗員の快適性を適切に確保することが可能となる。
 上記の車両の操舵制御装置において好適には、前記位相制御手段は、車速が所定速度以下であるときに前記位相差を制御することができる。
本実施形態における車両の操舵制御装置が適用された車両の概略構成を示す図である。 横加速度とヨーレートとの位相差の具体例を示す図である。 第1実施例における制御処理を示すフローチャートである。 第2実施例における制御処理を示すフローチャートである。 第3実施例における制御処理を示すフローチャートである。
符号の説明
 1 エンジン
 2f 前輪
 2r 後輪
 4 ハンドル
 5 ハンドル角センサ
 6 車速センサ
 7f 前輪用アクチュエータ
 7r 後輪用アクチュエータ
 10 システムコントローラ
 以下、図面を参照して本発明の好適な実施の形態について説明する。
 [車両の構成]
 まず、本実施形態における車両の操舵制御装置が適用された車両の全体構成について、図1を用いて説明する。
 図1は、車両の概略構成を示す模式図である。なお、図1は、上方から車両を観察した図であり、左が車両の前で、右が車両の後ろを示している。また、破線矢印は、信号の入出力を示している。
 車両は、主に、エンジン1と、前輪2fR、2fLと、後輪2rR、2rLと、前輪用操舵シャフト3fと、後輪用操舵シャフト3rと、ハンドル(ステアリングホイール)4と、ハンドル角センサ5と、車速センサ6と、前輪用アクチュエータ7fと、後輪用アクチュエータ7rと、システムコントローラ10と、を備える。なお、以下の説明では、左右対称に配置された構成要素については、左右の区別が必要な場合は符号に「L」、「R」を付し、左右の区別が不要な場合は「L」、「R」を省略する。
 エンジン1は、燃焼室内の混合気を爆発させて、動力を発生する内燃機関である。エンジン1によって発生した動力は、図示しないトルクコンバータやトランスミッションやドライブシャフトなどを介して、前輪2f及び後輪2rの少なくともいずれかに伝達される。
 前輪2fは、前輪用操舵シャフト3fを介して前輪用アクチュエータ7fによって操舵角が制御される。後輪2rは、後輪用操舵シャフト3rを介して後輪用アクチュエータ7rによって操舵角が制御される。即ち、前輪2f及び後輪2rは、各々独立に操舵角が制御される(言い換えると、個別に転舵される)。このように、車両は4輪操舵が可能に構成されている。
 ハンドル4は、ドライバによって車両を旋回させるためなどに操作され、ドライバによる操舵力はステアリングシャフトを介して前輪用アクチュエータ7fに伝達される。ドライバによってハンドル4を回転させた角度(ハンドル角)は、ハンドル角センサ5によって検出される。ハンドル角センサ5は、検出したハンドル角に対応する検出信号S1をシステムコントローラ10に供給する。また、車速センサ6は、車両の速度(車速)を検出し、検出した車速に対応する検出信号S2をシステムコントローラ10に供給する。
 前輪用アクチュエータ7f及び後輪用アクチュエータ7rは、本発明における操舵制御手段に相当し、それぞれ前輪2f及び後輪2rの操舵角を制御可能に構成されている。具体的には、前輪用アクチュエータ7f及び後輪用アクチュエータ7rは、それぞれ、システムコントローラ10から供給される制御信号S3f及び制御信号S3rに応じて、前輪用操舵シャフト3f及び後輪用操舵シャフト3rを介して前輪2f及び後輪2rの操舵角を制御する。詳しくは、前輪用アクチュエータ7f及び後輪用アクチュエータ7rは、それぞれ、システムコントローラ10から供給される制御信号S3f及び制御信号S3rに対応する操舵角にて前輪2f及び後輪2rが操舵されるように制御を行う。
 システムコントローラ10は、所謂ECU(Electric Control Unit)などによって構成され、CPU、ROM、RAM、A/D変換器及び入出力インタフェイスなどを有している。本実施形態では、システムコントローラ10は、ハンドル角センサ5から取得されるハンドル角(検出信号S1に対応する)と、車速センサ6から取得される車速(検出信号S2に対応する)とに基づいて、前輪用アクチュエータ7f及び後輪用アクチュエータ7rを介して前輪2f及び後輪2rに対する操舵制御を行う。詳細は後述するが、システムコントローラ10は、本発明における位相制御手段及び設定手段として機能する。
 [操舵制御方法]
 次に、本実施形態においてシステムコントローラ10が行う操舵制御方法について説明する。本実施形態では、システムコントローラ10は、前輪用アクチュエータ7f及び後輪用アクチュエータ7rに対する制御を行うことで、車室内の所定位置におけるヨーレートと横加速度との位相差を制御する。具体的には、システムコントローラ10は、車室内の所定位置において、ヨーレートと横加速度との位相差が所望の位相差となるように操舵制御を行う。例えば、システムコントローラ10は、当該所定位置において、横加速度の位相がヨーレートの位相よりも先行するように操舵制御を行う。一例としては、システムコントローラ10は、当該所定位置において横加速度の位相がヨーレートの位相よりも先行するように、予め用意された操舵制御を行うための制御マップ又は制御則を選択して操舵制御を実行する。
 更に、システムコントローラ10は、上記したような所定位置を、車室内における乗員の搭乗位置状態に基づいて設定する。例えば、システムコントローラ10は、後席乗員の存在の有無を搭乗位置状態として用いて、後席乗員が存在する場合には後席側に当該所定位置を設定し、後席乗員が存在しない場合には前席側(つまりドライバ席側)に当該所定位置を設定する。このように後席乗員の存在の有無を搭乗位置状態として用いるのは、基本的にはドライバ席にドライバが搭乗しているため、車室内における乗員の搭乗位置状態としては、後席乗員の存在の有無を判定すれば足りると言えるからである。
 ここで、図2を参照して、上記のように操舵制御を行う理由について説明する。図2(a)~(c)は、所定のハンドル操作を行った際に操舵制御を行った場合において、車両に発生する横加速度とヨーレートとの位相差の一例を示している。基本的には、操舵制御(4輪操舵)を行った場合には、例えば図2(a)~(c)に示すように、横加速度とヨーレートとの位相差を自由に設定することができる。なお、図2においては、横加速度を「LA」と表記しており、ヨーレートを「YR」と表記している。
 具体的には、図2(a)は、横加速度の位相がヨーレートの位相よりも先行する場合のグラフを示している。図2(b)は、横加速度とヨーレートとの位相差がほとんど無い場合のグラフを示している。図2(c)は、ヨーレートの位相が横加速度の位相よりも先行する場合のグラフを示している。
 低速時、ドライバ席において横加速度とヨーレートとの関係が図2(b)又は図2(c)に示すようなものになると、ドライバは“こま”若しくは“Cofee Cup”のように不快を感じる傾向にある。そのため、一般的には、低速時、ドライバ席において横加速度とヨーレートとの関係が図2(a)に示すようなものになるように操舵制御が行われている(つまりチューニングが行われている)。しかしながら、ドライバ席において図2(a)に示すような関係になっていても、通常の乗用車の後席では、横加速度とヨーレートとの関係が図2(b)又は図2(c)に示すようなものになる傾向にある。こうなるのは、車両において過渡的に発生する横加速度が、車両の前後方向位置によって異なる傾向にあるからである。そのため、このような場合には、ドライバ席に座るドライバが不快に感じなくても、後席に座る後席乗員が不快に感じる場合がある。また、その逆の場合もある。
 したがって、本実施形態では、上記したような、ドライバ席と後席とにおいてヨーレートと横加速度との位相差が異なるといった事実を考慮に入れて操舵制御を行う。具体的には、システムコントローラ10は、例えばドライバの意思や走行モードや後席乗員の有無などによって、車室内のどこの位置(具体的にはドライバ席若しくは後席)での横加速度とヨーレートとの関係(位相差)を重視するかを選択して、選択された位置における乗員が不快を感じないように操舵制御を行う。詳しくは、システムコントローラ10は、このように選択された位置において、ヨーレートと横加速度との位相差が望ましい位相差となるように、より詳しくは横加速度の位相がヨーレートの位相よりも先行するように(つまり図2(a)に示すような関係になるように)、操舵制御を行う。
 また、システムコントローラ10は、車速が所定速度以下である低速時に(例えば40km/h以下であるときに)、上記したような操舵制御を行う。こうするのは、低速時において、ヨーレートと横加速度との位相差が乗員に与える影響が大きくなる傾向にあるからである。
 このような本実施形態における操舵制御方法によれば、ドライバ及び/又は後席乗員の快適性(乗り心地)を、適切に確保することが可能となる。
 以下では、システムコントローラ10が行う操舵制御方法の実施例について具体的に説明する。
 (第1実施例)
 第1実施例では、システムコントローラ10は、低速時において、どこの位置(ドライバ席若しくは後席)での横加速度とヨーレートとの関係(位相差)を優先するかを選択して、選択された位置における乗員が不快を感じないように操舵制御を行う。具体的には、システムコントローラ10は、選択された位置において、横加速度の位相がヨーレートの位相よりも先行するように操舵制御を行う。
 詳しくは、第1実施例では、システムコントローラ10は、後席乗員の有無によって、横加速度とヨーレートとの関係を優先する車室内の位置を決定する。この場合、システムコントローラ10は、後席乗員が存在しない場合には横加速度とヨーレートとの関係を優先する位置としてドライバ席を決定し、後席乗員が存在する場合には横加速度とヨーレートとの関係を優先する位置として後席を決定する。そして、システムコントローラ10は、このように決定された位置における乗員が不快を感じないように操舵制御を行う。一例としては、システムコントローラ10は、車両に設けられた後席シートベルトセンサと後席シート圧センサとから検出信号を取得して、これらの検出信号に基づいて後席乗員の存在の有無を判定する。
 図3は、第1実施例における制御処理を示すフローチャートである。この処理は、システムコントローラ10によって実行される。なお、図3においては、横加速度を「LA」と表記しており、ヨーレートを「YR」と表記している。
 ステップS101では、システムコントローラ10は、低速時において、横加速度とヨーレートとの関係(位相差)を優先する車室内の位置を決定する。具体的には、システムコントローラ10は、後席乗員の有無によって、ドライバ席及び後席のいずれかを選択する。詳しくは、システムコントローラ10は、後席シートベルトセンサと後席シート圧センサとから取得される検出信号に基づいて後席乗員の存在の有無を判定し、後席乗員が存在しない場合にはドライバ席を選択し、後席乗員が存在する場合には後席を選択する。そして、処理はステップS102に進む。
 ステップS102では、システムコントローラ10は、横加速度とヨーレートとの関係を優先する位置としてドライバ席が選択されたか否かを判定する。ドライバ席が選択された場合(ステップS102;Yes)、処理はステップS103に進む。ステップS103では、システムコントローラ10は、ドライバ席での低速における横加速度とヨーレートとの関係で、横加速度の位相がヨーレートの位相よりも先行し、ドライバが不快を感じないような制御マップ又は制御則を選択する。つまり、ドライバ席において、図3のステップS103において図示しているような横加速度とヨーレートとの関係になるように、操舵制御を行う。そして、処理は終了する。
 これに対して、ドライバ席が選択されなかった場合(ステップS102;No)、即ち横加速度とヨーレートとの関係を優先する位置として後席が選択された場合、処理はステップS104に進む。ステップS104では、システムコントローラ10は、後席での低速における横加速度とヨーレートとの関係で、横加速度の位相がヨーレートの位相よりも先行し、後席乗員が不快を感じないような制御マップ又は制御則を選択する。つまり、後席において、図3のステップS104において図示しているような横加速度とヨーレートとの関係になるように、操舵制御を行う。そして、処理は終了する。
 以上説明した処理によれば、後席乗員の有無に応じて、横加速度とヨーレートとの関係を優先させる位置を適切に決定して、当該位置における乗員の快適性を適切に確保することが可能となる。
 なお、走行中において、後席シートベルトセンサと後席シート圧センサとから取得される検出信号が切り替わっても、上記したような横加速度とヨーレートとの関係を優先させる車室内の位置の切り替えを、即座に行わないことが望ましい。例えば、後席シートベルトセンサと後席シート圧センサとから取得される検出信号が切り替わってから所定時間経過した後に当該切り替えを行ったり、車速が概ね「0」になった際に当該切り替えを行ったりすることが好適である。こうするのは、走行中の一時的なシートベルト外しや走行中のシート上でのジャンプなどによる、後席乗員の有無についての誤判定を防止するためである。
 (第2実施例)
 次に、第2実施例について説明する。第2実施例では、ドライバの意思によって、横加速度とヨーレートとの関係を優先する車室内の位置を決定する(つまり走行モードによって前述した所定位置を決定する)点で、第1実施例と異なる。即ち、第2実施例では、前述したようにして、後席乗員の有無に基づいて横加速度とヨーレートとの関係を優先する車室内の位置が決定された後に、ドライバの意思によって当該位置を変更する。
 具体的には、第2実施例では、ドライバが横加速度とヨーレートとの関係を優先する位置を選択し、ドライバが選択した位置における乗員が不快を感じないように操舵制御を行う。この場合、ドライバは、例えば車室内に設けられたマニュアルスイッチを操作することで、横加速度とヨーレートとの関係を優先する位置として、ドライバ席及び後席のいずれかに切り替える。
 図4は、第2実施例における制御処理を示すフローチャートである。この処理は、システムコントローラ10によって実行される。なお、図4においては、横加速度を「LA」と表記しており、ヨーレートを「YR」と表記している。また、ステップS201の処理、及びステップS203~S205の処理は、前述したステップS101の処理、及びステップS102~S104の処理と同様であるため(図3参照)、その説明を省略する。ここでは、ステップS202の処理のみを説明する。
 ステップS202では、システムコントローラ10は、低速時において、横加速度とヨーレートとの関係(位相差)を優先する車室内の位置を決定する。ここでは、システムコントローラ10は、ステップS201において後席乗員の有無に基づいて決定された位置(ドライバ席及び後席のいずれか)を、ドライバの意思に応じて変更する。具体的には、システムコントローラ10は、ドライバの操作によるマニュアルスイッチの設定状態に応じて、ドライバ席及び後席のいずれかを選択する。そして、処理はステップS203に進む。
 以上説明した処理によれば、ドライバの意思によって選択された位置における乗員の快適性を、適切に確保することが可能となる。
 なお、上記では、後席乗員の有無及びドライバの意思の両方に基づいて、横加速度とヨーレートとの関係(位相差)を優先する車室内の位置を決定する実施例を示したが、これに限定はされない。他の例では、ドライバの意思のみに基づいて、横加速度とヨーレートとの関係を優先する位置を決定することができる。
 (第3実施例)
 次に、第3実施例について説明する。第3実施例では、走行モードによって、横加速度とヨーレートとの関係を優先する車室内の位置を決定する(つまり走行モードによって前述した所定位置を決定する)点で、第1及び第2実施例と異なる。即ち、第3実施例では、前述したようにして、後席乗員の有無に基づいて横加速度とヨーレートとの関係を優先する車室内の位置が決定された後に、走行モードによって当該位置を変更する。具体的には、第3実施例では、システムコントローラ10は、ドライバなどによって設定された走行モードに応じて、横加速度とヨーレートとの関係を優先する位置を決定し、当該位置における乗員が不快を感じないように操舵制御を行う。
 例えば、システムコントローラ10は、走行モードが「SPORT」に設定されている場合には、横加速度とヨーレートとの関係を優先する位置としてドライバ席を決定し、走行モードが「NORMAL」に設定されている場合には、横加速度とヨーレートとの関係を優先する位置として後席を決定する。なお、例えばAVS(Adaptive Variable Suspension System )のスイッチ(以下、「走行モード切り替えスイッチ」と呼ぶ。)が操作されることで、走行モードにおける「SPORT」と「NORMAL」との切り替えが行われる。
 図5は、第3実施例における制御処理を示すフローチャートである。この処理は、システムコントローラ10によって実行される。なお、図5においては、横加速度を「LA」と表記しており、ヨーレートを「YR」と表記している。また、ステップS301の処理、及びステップS303~S305の処理は、前述したステップS101の処理、及びステップS102~S104の処理と同様であるため(図3参照)、その説明を省略する。ここでは、ステップS302の処理のみを説明する。
 ステップS302では、システムコントローラ10は、低速時において、横加速度とヨーレートとの関係(位相差)を優先する車室内の位置を決定する。ここでは、システムコントローラ10は、ステップS301において後席乗員の有無に基づいて決定された位置(ドライバ席及び後席のいずれか)を、走行モードに応じて変更する。具体的には、システムコントローラ10は、設定されている走行モードに応じて(言い換えると、ドライバの操作による走行モード切り替えスイッチの設定状態に応じて)、ドライバ席及び後席のいずれかを選択する。詳しくは、システムコントローラ10は、走行モードが「SPORT」に設定されている場合にはドライバ席を選択し、走行モードが「NORMAL」に設定されている場合には後席を選択する。そして、処理はステップS303に進む。
 以上説明した処理によれば、走行モードに応じて、横加速度とヨーレートとの関係を優先させる位置を適切に決定して、当該位置における乗員の快適性を適切に確保することが可能となる。
 なお、上記では、後席乗員の有無及び走行モードの意思の両方に基づいて、横加速度とヨーレートとの関係(位相差)を優先する車室内の位置を決定する実施例を示したが、これに限定はされない。他の例では、走行モードのみに基づいて、横加速度とヨーレートとの関係を優先する位置を決定することができる。更に他の例では、走行モードと、第1実施例で示したようなドライバの意思とに基づいて、横加速度とヨーレートとの関係を優先する位置を決定することができる。
 本発明は、前輪の操舵角と後輪の操舵角とを独立に制御可能な車両に対して利用することができる。

Claims (5)

  1.  前輪及び後輪を独立に操舵制御する操舵制御手段と、
     前記操舵制御手段に対する制御を行うことで、車室内の所定位置におけるヨーレートと横加速度との位相差を制御する位相制御手段と、
     前記車室内における乗員の搭乗位置状態に基づいて、前記所定位置を設定する設定手段と、を備えることを特徴とする車両の操舵制御装置。
  2.  前記位相制御手段は、前記所定位置において、前記横加速度の位相が前記ヨーレートの位相よりも先行するように制御する請求項1に記載の車両の操舵制御装置。
  3.  前記設定手段は、後席乗員の存在の有無を前記搭乗位置状態として取得し、前記後席乗員が存在する場合には後席側に前記所定位置を設定し、前記後席乗員が存在しない場合には前席側に前記所定位置を設定する請求項1又は2に記載の車両の操舵制御装置。
  4.  前記設定手段は、ドライバの操作による、車室内のスイッチにおける設定状態に基づいて、前記所定位置を設定する請求項1乃至3のいずれか一項に記載の車両の操舵制御装置。
  5.  前記位相制御手段は、車速が所定速度以下であるときに前記位相差を制御する請求項1乃至4のいずれか一項に記載の車両の操舵制御装置。
PCT/JP2009/053926 2009-03-03 2009-03-03 車両の操舵制御装置 WO2010100719A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112009001475T DE112009001475T5 (de) 2009-03-03 2009-03-03 Lenksteuervorrichtung für ein Fahrzeug
CN2009801233862A CN102066183B (zh) 2009-03-03 2009-03-03 车辆的转向控制装置
JP2011502526A JP5146593B2 (ja) 2009-03-03 2009-03-03 車両の操舵制御装置
US12/996,586 US20110077823A1 (en) 2009-03-03 2009-03-03 Steering control device for a vehicle
PCT/JP2009/053926 WO2010100719A1 (ja) 2009-03-03 2009-03-03 車両の操舵制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053926 WO2010100719A1 (ja) 2009-03-03 2009-03-03 車両の操舵制御装置

Publications (1)

Publication Number Publication Date
WO2010100719A1 true WO2010100719A1 (ja) 2010-09-10

Family

ID=42709297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053926 WO2010100719A1 (ja) 2009-03-03 2009-03-03 車両の操舵制御装置

Country Status (5)

Country Link
US (1) US20110077823A1 (ja)
JP (1) JP5146593B2 (ja)
CN (1) CN102066183B (ja)
DE (1) DE112009001475T5 (ja)
WO (1) WO2010100719A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214587A1 (zh) * 2017-05-22 2018-11-29 中兴通讯股份有限公司 车内定位方法和装置
WO2024116390A1 (ja) * 2022-12-01 2024-06-06 日産自動車株式会社 車両制御方法及び車両制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011016633A1 (de) * 2011-04-09 2012-10-11 Audi Ag Verfahren zum Betreiben eines mit einer Hinterachslenkung ausgestatteten Kraftfahrzeugs
US10597076B2 (en) * 2013-03-27 2020-03-24 Toyota Jidosha Kabushiki Kaisha Vehicle steering control device
US9604609B2 (en) * 2014-05-12 2017-03-28 Ford Global Technologies, Llc Emergency in-lane steering assist with braking
DE102017207119A1 (de) * 2017-04-27 2018-10-31 Zf Friedrichshafen Ag Verfahren zum Wenden eines Fahrzeugs
DE102022208118A1 (de) 2022-08-04 2024-02-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Beeinflussung einer Fahrzeugbewegung eines Fahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127458A (ja) * 1987-11-12 1989-05-19 Nissan Motor Co Ltd 車両の操舵方法
JPH05201342A (ja) * 1992-01-24 1993-08-10 Mazda Motor Corp 車両の後輪操舵装置
JPH09123935A (ja) * 1995-10-27 1997-05-13 Toyota Motor Corp 後輪操舵制御装置
JP2003118618A (ja) * 2001-10-16 2003-04-23 Koyo Seiko Co Ltd 車両の操舵装置
JP2006143011A (ja) * 2004-11-19 2006-06-08 Toyota Motor Corp 車両挙動制御装置
JP2007076399A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 車両用操舵装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663502B2 (en) * 1992-05-05 2010-02-16 Intelligent Technologies International, Inc. Asset system control arrangement and method
DE3872798T2 (de) * 1987-09-04 1993-03-04 Toyoda Chuo Kenkyusho Kk Elektronisch geregeltes fluidumaufhaengungssystem.
DE3915448A1 (de) * 1988-05-16 1989-11-23 Fuji Heavy Ind Ltd Verfahren zum regeln der hinterrad-lenkeinstellung bei einem kraftfahrzeug mit vierrad-lenkung
DE4028320A1 (de) * 1990-09-06 1992-03-12 Deutsche Forsch Luft Raumfahrt Verfahren zum lenken von strassenfahrzeugen mit vorder- und hinterradlenkung
JPH0585383A (ja) 1991-09-25 1993-04-06 Toyota Motor Corp 四輪操舵車の後輪操舵制御装置
JP2871230B2 (ja) 1991-10-11 1999-03-17 日産自動車株式会社 前後輪操舵制御装置
JPH0699831A (ja) 1992-09-21 1994-04-12 Nippondenso Co Ltd 自動車の後輪操舵装置
JP2864962B2 (ja) * 1993-08-10 1999-03-08 三菱自動車工業株式会社 後輪操舵装置
JP3574518B2 (ja) * 1995-10-04 2004-10-06 本田技研工業株式会社 車両の前後輪操舵装置
US6233513B1 (en) * 1997-11-27 2001-05-15 Masato Abe Method and system for computing a vehicle body slip angle in a vehicle movement control
JP3525429B2 (ja) * 1998-12-25 2004-05-10 トヨタ自動車株式会社 操舵制御装置
JP4331953B2 (ja) 2003-02-12 2009-09-16 本田技研工業株式会社 車両用操舵制御装置
JP4349309B2 (ja) * 2004-09-27 2009-10-21 日産自動車株式会社 車両用操舵制御装置
JP4069921B2 (ja) * 2004-10-25 2008-04-02 三菱自動車工業株式会社 車両の旋回挙動制御装置
US7561951B2 (en) * 2005-05-06 2009-07-14 Ford Global Technologies Llc Occupant control system integrated with vehicle dynamics controls
US7590481B2 (en) * 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions
EP1954546B1 (en) * 2005-12-01 2013-10-02 Toyota Jidosha Kabushiki Kaisha Driving assistance system and driving assistance method
US8200392B2 (en) * 2006-05-10 2012-06-12 Toyota Jidosha Kabushiki Kaisha Vehicular steering control device
JP2008129948A (ja) 2006-11-22 2008-06-05 Takata Corp 乗員検出装置、作動装置制御システム、シートベルトシステム、車両
JP5261962B2 (ja) * 2007-04-06 2013-08-14 日産自動車株式会社 旋回挙動制御装置、自動車、及び旋回挙動制御方法
JP4997478B2 (ja) * 2007-07-24 2012-08-08 株式会社ジェイテクト 車両用操舵装置
JP4977152B2 (ja) * 2009-02-10 2012-07-18 本田技研工業株式会社 後輪操舵制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127458A (ja) * 1987-11-12 1989-05-19 Nissan Motor Co Ltd 車両の操舵方法
JPH05201342A (ja) * 1992-01-24 1993-08-10 Mazda Motor Corp 車両の後輪操舵装置
JPH09123935A (ja) * 1995-10-27 1997-05-13 Toyota Motor Corp 後輪操舵制御装置
JP2003118618A (ja) * 2001-10-16 2003-04-23 Koyo Seiko Co Ltd 車両の操舵装置
JP2006143011A (ja) * 2004-11-19 2006-06-08 Toyota Motor Corp 車両挙動制御装置
JP2007076399A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 車両用操舵装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214587A1 (zh) * 2017-05-22 2018-11-29 中兴通讯股份有限公司 车内定位方法和装置
WO2024116390A1 (ja) * 2022-12-01 2024-06-06 日産自動車株式会社 車両制御方法及び車両制御装置

Also Published As

Publication number Publication date
JPWO2010100719A1 (ja) 2012-09-06
US20110077823A1 (en) 2011-03-31
CN102066183B (zh) 2013-04-24
DE112009001475T5 (de) 2011-06-22
CN102066183A (zh) 2011-05-18
JP5146593B2 (ja) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5146593B2 (ja) 車両の操舵制御装置
JP4333729B2 (ja) 車両挙動制御装置
JP5093295B2 (ja) 操舵装置及び操舵制御装置
JP2009077585A (ja) モータトルク制御装置
US8751120B2 (en) Driving control system for vehicle
JP2014094688A (ja) 車両挙動安定化制御装置
JP2007038941A (ja) 車両用パワーステアリング装置
WO2013005271A1 (ja) 車両の駆動制御装置
JP2010052525A (ja) 車両用電動パワーステアリング装置
JP4687471B2 (ja) 電動車両の駆動力制御装置、自動車及び電動車両の駆動力制御方法
JP2009057011A (ja) 操舵制御装置
JP2006151020A (ja) 加減速度制御装置
JP4742504B2 (ja) 駆動制御装置
KR20120063301A (ko) MDPS의 자동 Full-Turn 작동 제어방법
JP4623162B2 (ja) 車輌の走行制御装置
JP4254695B2 (ja) 車両挙動制御装置
JP5125328B2 (ja) 操舵制御装置
JP4576881B2 (ja) 車両用自動操舵装置
JP2006076386A (ja) 車輌用操舵制御装置
JPH10278818A (ja) 車両用パワーステアリング装置
JP5515252B2 (ja) パワーステアリング装置
JP2009225538A (ja) 駆動力制御装置
JP5271640B2 (ja) 電動パワーステアリングの制御装置
JP2007203983A (ja) 操舵輪の振動に基づきパワーステアリング装置が制御される車輌
JPH04191172A (ja) 電動式パワーステアリング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123386.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011502526

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12996586

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09841084

Country of ref document: EP

Kind code of ref document: A1