WO2019187183A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2019187183A1
WO2019187183A1 PCT/JP2018/026364 JP2018026364W WO2019187183A1 WO 2019187183 A1 WO2019187183 A1 WO 2019187183A1 JP 2018026364 W JP2018026364 W JP 2018026364W WO 2019187183 A1 WO2019187183 A1 WO 2019187183A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
connection
semiconductor device
semiconductor
opposing
Prior art date
Application number
PCT/JP2018/026364
Other languages
English (en)
French (fr)
Inventor
勝大 高尾
Original Assignee
アオイ電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アオイ電子株式会社 filed Critical アオイ電子株式会社
Priority to US17/042,264 priority Critical patent/US20210050285A1/en
Priority to CN201880091951.0A priority patent/CN111937142A/zh
Priority to TW108102493A priority patent/TW201943045A/zh
Publication of WO2019187183A1 publication Critical patent/WO2019187183A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4825Connection or disconnection of other leads to or from flat leads, e.g. wires, bumps, other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4839Assembly of a flat lead with an insulating support, e.g. for TAB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance

Definitions

  • the present invention relates to a semiconductor device.
  • a semiconductor device in which a first conductor on which a semiconductor chip is mounted and a second conductor connected to the semiconductor chip by bonding wires are spaced apart and the whole is sealed with a sealing resin.
  • the first conductor and the second conductor have a rectangular shape in plan view, and one side surface facing each other is disposed at an equidistant position from the other conductor over the entire length of the opposite side. (See Patent Document 1).
  • the opposing side surfaces of the first conductor and the second conductor are arranged at positions closest to the other conductor over the entire length of the opposing surfaces.
  • the parasitic capacitance between the conductor and the second conductor is increased. For this reason, for example, when applied to a high-frequency circuit such as high-speed data communication, deterioration and loss of circuit characteristics such as impedance deviation and response speed delay occur.
  • a semiconductor device includes a semiconductor element, an element conductor having an element mounting surface on which the semiconductor element is mounted, and an element conductor disposed apart from the element conductor and connected to the upper part.
  • a connection conductor having a surface, a connection line connecting the semiconductor element and the connection surface of the connection conductor, the semiconductor element, the element conductor, the connection conductor, and the connection line.
  • a parasitic capacitance reducing structure is provided on at least one of the opposing side surfaces of the element conductor and the connection conductor, which are arranged to face each other, with a sealing resin for sealing.
  • the parasitic capacitance reducing structure is provided on an upper side of at least one of the element conductor and the connection conductor.
  • the parasitic capacitance reducing structure is provided in a column shape from the upper side to the lower surface of at least one of the element conductor and the connection conductor. It is preferable.
  • the parasitic capacitance reducing structure has a minimum distance between the opposing surfaces determined at the closest first position closest to the other conductor side.
  • the distance between the opposing surfaces at the second position different from the first position is preferably an opposing surface having a larger dimension than that.
  • the opposing surface having the parasitic capacitance reducing structure is preferably a flat surface or a curved surface.
  • the parasitic capacitance reducing structure is a structure in which at least one of the element conductor and the connection conductor has a polygonal shape in plan view,
  • the conductor having the polygonal shape has a first opposing surface closest to the other conductor side and the other second opposing surface, and the distance between the opposing surfaces determined by the second opposing surface is the first opposing surface. It is preferable that the dimension is larger than the distance between the opposing surfaces determined by the opposing surfaces.
  • the parasitic capacitance reducing structure is a structure in which at least one of the element conductor and the connection conductor has an arc shape in plan view,
  • the conductor having the arc shape has a first opposing surface closest to the other conductor side and having a minimum distance between the opposing surfaces, and a second opposing surface other than the first opposing surface, and the second opposing surface. It is preferable that the distance between the opposed surfaces be larger than the minimum distance between the opposed surfaces.
  • the parasitic capacitance reducing structure has concavities and convexities formed continuously on the first opposing surface and the second opposing surface.
  • a semiconductor device in the semiconductor device according to any one of the first to eighth aspects, the area of the element mounting surface of the element conductor is formed smaller than the area of the semiconductor element in plan view, It is preferable that the outer peripheral side surface of the semiconductor element is disposed outside the outer peripheral side surface of the element mounting surface.
  • a semiconductor device includes a semiconductor element, an element conductor having an element mounting surface on which the semiconductor element is mounted on the upper part, and a space apart from the element conductor, and connected to the upper part.
  • connection conductor having a surface, a connection line connecting the semiconductor element and the connection surface of the connection conductor, the semiconductor element, the element conductor, the connection conductor, and the connection line.
  • a semiconductor device in the semiconductor device according to the tenth aspect, includes a semiconductor element, an element conductor having an element mounting surface on which the semiconductor element is mounted, and an element conductor disposed apart from the element conductor and connected to the upper part.
  • a connection conductor having a surface, a connection line connecting the semiconductor element and the connection surface of the connection conductor, the semiconductor element, the element conductor, the connection conductor, and the connection line.
  • the element conductor and the connection conductor are formed on the sealing resin interposed between the opposing side surfaces. It is preferable to further have a groove.
  • the parasitic capacitance between the element conductor and the connection conductor can be reduced.
  • FIG. 1A and 1B show a first embodiment of a semiconductor device of the present invention
  • FIG. 1A is a sectional view of the semiconductor device
  • FIG. 1B is a bottom view of FIG. 1A viewed from below.
  • FIG. FIG. 2 is a view for explaining a method of manufacturing the semiconductor device shown in FIG. 1, and FIGS. 2 (a) to 2 (e) are cross-sectional views of members in the respective steps.
  • FIG. 3 shows a second embodiment of the semiconductor device of the present invention
  • FIG. 3A is a sectional view of the semiconductor device
  • FIG. 3B is a bottom view of FIG. 3A viewed from below.
  • FIG. FIG. 4 is a view for explaining a method of manufacturing the semiconductor device shown in FIG. 3, and FIGS.
  • FIG. 4 (a) to 4 (c) are cross-sectional views of the respective members in the respective steps.
  • FIG. 4D is an enlarged view of the region A in FIG.
  • FIG. 5 shows a third embodiment of the semiconductor device of the present invention
  • FIG. 5 (a) is a cross-sectional view of the semiconductor device
  • FIG. 5 (b) is a view of FIG. 5 (a) viewed from below.
  • FIG. 5C is a second bottom view of FIG. 5A viewed from below.
  • FIG. 6 is a cross-sectional view showing a fourth embodiment of the semiconductor device of the present invention.
  • FIG. 7 is a sectional view showing a fifth embodiment of the semiconductor device of the present invention.
  • FIG. 8 is a bottom view of the semiconductor device according to the sixth embodiment of the present invention as seen from the bottom surface side.
  • FIG. 9 is a bottom view of the semiconductor device according to the seventh embodiment of the present invention as seen from below.
  • FIG. 10 is a bottom view of the semiconductor device according to the eighth embodiment of the present invention as seen from below.
  • FIG. 11 shows a ninth embodiment of the semiconductor device of the present invention, and is a bottom view of the semiconductor device as viewed from below.
  • 12 shows a semiconductor device according to a tenth embodiment of the present invention, FIG. 12A is a sectional view of the semiconductor device, and FIG. 12B is a bottom view of FIG. 12A viewed from below. It is.
  • FIGS. 1A and 1B show a first embodiment of a semiconductor device of the present invention
  • FIG. 1A is a sectional view of the semiconductor device
  • FIG. 1B is a bottom view of FIG. 1A viewed from below.
  • the semiconductor device 10 includes a semiconductor element 11, an element conductor 30 on which the semiconductor element 11 is mounted, a connection conductor 40, a bonding wire 12 that connects the electrode pad 11 a of the semiconductor element 11 and the connection conductor 40, and the entirety. And a sealing resin 14 for sealing.
  • the semiconductor element 11 has an electrode pad 11a on the upper surface and has a substantially rectangular parallelepiped shape.
  • the element conductor 30 is made of, for example, a conductive metal such as copper, and includes a column portion 31 and an element flange 32.
  • the element flange 32 has a shape that is slightly larger than the column portion 31, and the outer peripheral side surface thereof protrudes from the outer peripheral side surface of the column portion 31.
  • the column portion 31 and the element collar portion 32 have a hexagonal similar shape in plan view.
  • the connection conductor 40 is made of, for example, a conductive metal such as copper, and includes a column portion 41 and a connection flange portion 42 that is slightly larger than the column portion 41.
  • the element conductor 30 and the connection conductor 40 are formed of a plating layer formed by electroforming plating or the like, or a lead frame.
  • an element mounting surface 32a on which the semiconductor element 11 is mounted is provided on the upper surface of the element flange 32 of the element conductor 30 opposite to the column part 31 side. Yes.
  • the element mounting surface 32 a is the entire area of the upper surface of the element flange 32.
  • the periphery of the element collar 32 is formed in an arc shape.
  • the thickness (height) of the element flange 32 is formed to be thinner than the thickness (height) of the column portion 31.
  • the upper surface of the connection flange portion 42 of the connection conductor 40 on the side opposite to the column portion 41 side is a bonding surface 42a to which the bonding wire 12 is connected.
  • the bonding surface 42 a is the entire area of the upper surface of the connecting collar 42.
  • the periphery of the element collar 32 is formed in an arc shape.
  • the thickness (height) of the connecting collar portion 42 is formed to be thinner than the thickness (height) of the column portion 41.
  • the thickness of the column portion 31 of the element conductor 30 and the thickness of the column portion 41 of the connection conductor 40 are substantially the same. Further, the thickness of the element collar 32 of the element conductor 30 and the thickness of the connection collar 42 of the connection conductor 40 are substantially the same. Therefore, the total thickness of the element conductor 30 and the total thickness of the connection conductor 40 are substantially the same. The total thickness of each of the element conductor 30 and the connection conductor 40 is about 20 ⁇ m to 80 ⁇ m.
  • One end of the bonding wire 12 is bonded to the electrode pad 11 a of the semiconductor element 11, and the other end of the bonding wire 12 is bonded to substantially the center of the bonding surface 42 a of the connection conductor 40.
  • the bottom surface of the semiconductor element 11 mounted on the element mounting surface 32a of the element flange 32 of the element conductor 30 has an area larger than the area of the element mounting surface 32a.
  • the semiconductor element 11 is disposed so as to protrude from the outer periphery of the element mounting surface 32 a of the element flange 32.
  • the area of the element mounting surface 32a of the element conductor 30 is formed smaller than the area of the bottom surface of the semiconductor element 11, and the outer peripheral side surface of the semiconductor element 11 is disposed outside the outer peripheral side surface of the element mounting surface 32a.
  • the size of the element mounting surface 32 a of the element conductor 30 may be the same as the bottom area of the semiconductor element 11 or larger than the area of the semiconductor element 11. That is, the outer peripheral side surface of the semiconductor element 11 may be flush with the outer peripheral side surface of the element mounting surface 32 a of the element conductor 30. The outer peripheral side surface of the semiconductor element 11 may be disposed inside the outer peripheral side surface of the element mounting surface 32 a of the element conductor 30.
  • the sealing resin 14 seals the element conductor 30, the connection conductor 40, the semiconductor element 11, and the bonding wire 12.
  • the lower surface 31a of the column portion 31 of the element conductor 30 opposite to the element flange 32 and the surface of the column portion 41 of the connection conductor 40 opposite to the connection flange 42 are provided.
  • the lower surface 41 a is substantially flush with the lower surface 14 a of the sealing resin 14 and is exposed from the lower surface 14 a of the sealing resin 14.
  • an epoxy resin can be used as the sealing resin 14.
  • a low dielectric constant such as an epoxy resin having a relative dielectric constant (Dk) of 3.5 or less for a frequency of 1 to 10 GHz and a dielectric loss tangent (Df) of 0.01 or less for a frequency of 1 to 10 GHz. It is preferable to use the rate material Low k.
  • the element flange 32 of the element conductor 30 has a tapered polygonal side surface facing the connecting conductor 40 in a top view, and the distal end surface 32b. And inclined surfaces 32c disposed on both sides of the tip surface 32b.
  • the inclined surfaces 32c adjacent to the front end surface 32b of the element flange 32 are inclined in a direction away from the opposing connection conductor 40 from the front end surface 32b to the side surface 32d.
  • the connecting collar portion 42 of the connecting conductor 40 has a tip surface 42b and inclined surfaces 42c arranged on both sides of the tip surface 42b.
  • the inclined surfaces 42c adjacent to the front end surface 42b of the connecting collar 42 are each in a direction away from the opposing element conductor 30 in proportion to the distance from the front end surface 42b from the front end surface 42b to the side surface 42d. Inclined.
  • the distal end surface 32b of the element flange 32 of the element conductor 30 and the distal end surface 42b of the connection flange 42 of the connection conductor 40 are arranged in parallel.
  • the distance between the terminals of the tip end surface 32 b of the element flange 32 of the element conductor 30 and the tip end face 42 b of the connection flange 42 of the connection conductor 40 is the minimum terminal distance between the element conductor 30 and the connection conductor 40.
  • Distance Lmin In other words, the distal end surface 32b of the element collar 32 of the element conductor 30 and the distal end surface 42b of the connection collar 42 of the connection conductor 40 are the closest surfaces to the other conductor. Yes.
  • the inter-terminal distance between the inclined surface 32c of the element flange 32 of the element conductor 30 and the inclined surface 42c of the connection flange 42 of the connection conductor 40 is equal to or greater than the minimum inter-terminal distance Lmin, and the element conductor 30.
  • the inclined surface 32c of the element flange 32 and the inclined surface 42c of the connection flange 42 of the connecting conductor 40 are arranged non-parallel. Further, the distance between the terminals of the column portion 31 of the element conductor 30 and the column portion 41 of the connection conductor 40 is larger than the minimum inter-terminal distance Lmin.
  • the area of each of the tip surface 32b of the device collar 32 and the tip surface 42b of the connection collar 42 is small, and inclined surfaces 32c and 42c are formed on both sides of the tip surface 32b and the tip surface 42, respectively. ing. Therefore, the parasitic capacitance between the element conductor 30 and the connection conductor 40 in the semiconductor device 10 of the above embodiment has a structure in which an inclined surface is not provided on the side surface where the element conductor 30 and the connection conductor 40 face each other, that is, the element The distance between the surfaces where the connecting conductor 30 and the connecting conductor 40 face each other is smaller than the fixed structure at the minimum inter-terminal distance Lmin.
  • the tip surface 32b of the element flange 32 and the inclined surface disposed on both sides of the tip surface 32b, which are opposite side surfaces of the element conductor 30 facing the connection conductor 40. 32c constitutes a parasitic capacitance reduction structure Rpc.
  • the leading end surface 42b of the connecting collar 42 which is the opposite side surface of the connecting conductor 40 facing the element conductor 30, and the inclined surface 42c arranged on both sides of the leading end surface 42b are parasitic capacitance reducing structures Rpc. Is configured.
  • the area of the tip surface 32b of the element conductor 30 positioned at the minimum inter-terminal distance Lmin is smaller than the total area of the adjacent inclined surfaces 32c.
  • the area of the tip end surface 32b of the element conductor 30 only needs to be smaller than the entire area of the side surface facing the connecting conductor 40, that is, the tip end face 32b and the entire inclined surfaces 32c on both sides.
  • the area of the tip end surface 42b of the connecting conductor 40 located at the minimum inter-terminal distance Lmin is preferably smaller than the total area of the adjacent inclined surfaces 42c.
  • the area of the front end surface 42b of the connecting conductor 40 only needs to be smaller than the entire area of the side surface facing the element conductor 30, that is, the entire front end surface 42b and the adjacent inclined surfaces 42c.
  • the element flange 32 of the element conductor 30 protrudes from the column part 31. Further, the connecting collar portion 42 of the connecting conductor 40 protrudes from the column portion 41. For this reason, the element conductor 30 and the connection conductor 40 have a structure that is difficult to be pulled out of the sealing resin 14 due to the anchor effect.
  • the inter-terminal distance which is the distance between the opposing side surfaces of the column portion 31 of the element conductor 30 and the column portion 41 of the connection conductor 40, is the same as the tip end surface 32 b of the element flange portion 32 of the element conductor 30. It is larger than the minimum inter-terminal distance Lmin between the front end surface 42 b of the connecting collar portion 42 of the connecting conductor 40.
  • the amount of the sealing resin 14 filled between the terminals of the column part 31 of the element conductor 30 and the column part 41 of the connecting conductor 40 increases, and cracks in the sealing resin 14 during this period are suppressed. Can do.
  • the lower surface 31a of the column portion 31 of the element conductor 30 and the lower surface 41a of the column portion 41 of the connection conductor 40 are mounted by being soldered to connection pads on the circuit board.
  • FIG. 2 is a view for explaining a method of manufacturing the semiconductor device shown in FIG. 1, and FIGS. 2 (a) to 2 (e) are cross-sectional views of members in the respective steps.
  • a substrate 61 such as a stainless steel plate or a copper plate having a size capable of arranging the semiconductor devices 10 in a lattice shape is prepared.
  • the thickness of the substrate 61 is, for example, about 0.1 mm to 0.5 mm.
  • Photoresist films 62 a and 62 b are formed on the front and back surfaces of the substrate 61.
  • the photoresist film 62 a has a thickness corresponding to the thickness of the column portion 31 of the element conductor 30 and the thickness of the column portion 41 of the connection conductor 40.
  • the thickness of the photoresist film 62b is not particularly limited, and may be the same as the thickness of the photoresist film 62a or a thickness different from the thickness of the photoresist film 62a.
  • the photoresist films 62a and 62b may be positive type or negative type.
  • the photoresist film 62a on the upper surface side of the substrate 61 is exposed and developed using a mask (not shown), and the photoresist film 62a is patterned. That is, the opening 63a is formed in the region of the photoresist film 62a where the element conductor 30 is formed, and the opening 63b is formed in the region where the connection conductor 40 is formed. Thereafter, a surface treatment such as oxide film removal is performed on the region of the substrate 61 exposed from the photoresist film 62a.
  • the element conductor 30 and the connection conductor 40 are formed by electroforming plating.
  • the plating layer formed by electroforming exceeds the thickness of the photoresist film 62 a, and the thickness from the surface of the photoresist film 62 a is the thickness of the element flange 32 of the element conductor 30 and the connection flange of the connection conductor 40. It is formed to be the same as the thickness of the portion 42.
  • the growth of the plating layer formed on the surface of the photoresist film 62a is isotropic.
  • the plating layer formed above the photoresist film 62a protrudes to the outer peripheral side of the plating layer formed in the region of the thickness of the photoresist film 62a, and the outer peripheral edge on the upper surface side has a cross section. It is formed in an arc shape.
  • the element conductor 30 having the column portion 31 and the element flange 32 and the connection conductor 40 having the column portion 41 and the connection flange 42 are formed.
  • the photoresist films 62a and 62b are removed.
  • the semiconductor element 11 is die-bonded to the element mounting surface 32 a of the element flange 32 of the element conductor 30.
  • the bonding wire 12 is bonded to the electrode pad 11 a of the semiconductor element 11 and the bonding surface 42 a of the connecting collar 42 of the connecting conductor 40.
  • the sealing resin 14 is molded on the element conductor 30 and the connecting conductor 40 side of the substrate 61, and the whole is sealed. Sealing with the sealing resin 14 is performed so as to cover the entire one surface side of the substrate 61 including the semiconductor element 11, the bonding wire 12, the element conductor 30 and the connection conductor 40. Then, the substrate 61 is peeled off or removed from the element conductor 30 on which the semiconductor element 11 is mounted and the connection conductor 40 to which the bonding wire 12 is bonded. Thereafter, the sealing resin 14 is cut along the dicing line Dcl to obtain the individual semiconductor devices 10 shown in FIG.
  • the semiconductor device 10 is illustrated in which the parasitic capacitance reducing structure Rpc is formed on the side surface of the element conductor 30 and the connection conductor 40 facing the other conductor.
  • the semiconductor device 10 in which the parasitic capacitance reduction structure Rpc is formed only in one of the element conductor 30 and the connection conductor 40 may be used.
  • the top view shape of the element collar portion 32 and the cross-sectional shape of the column portion 31 are hexagons, they may be polygons other than hexagons.
  • the connection conductor 40, and the top view shape of the connection collar 42 and the cross-sectional shape of the column portion 41 are hexagons, but may be polygons other than hexagons.
  • top view shape of the element collar 32 and the cross-sectional shape of the column portion 31 may be different polygons.
  • connection conductor 40 and the top view shape of the connection collar portion 42 and the cross-sectional shape of the column portion 41 may be different polygons.
  • inclined surfaces 32c and 42c which comprise the parasitic capacitance reduction structure Rpc were illustrated as a structure inclined linearly, you may make it curved or stepped.
  • the semiconductor device 10 includes an element conductor 30 on which the semiconductor element 11 is mounted and a connection conductor 40 having a bonding wire 12 connected to the semiconductor element 11, and the element conductor 30 and the connection conductor facing each other.
  • a parasitic capacitance reduction structure Rpc is provided on at least one of the 40 opposing surfaces 32b and 42b.
  • the parasitic capacitance reducing structure Rpc is formed by the tip surface 32b of the element flange 32 of the element conductor 30 and the inclined surfaces 32c adjacent to the tip surface 32b.
  • the parasitic capacitance reducing structure Rpc is formed by the tip surface 42b of the element flange 42 of the connection conductor 40 and the inclined surfaces 42c adjacent to the tip surface 42b.
  • the areas of the tip surface 32b of the element collar 32 and the tip surface 42b of the connection collar 42 are small, and inclined surfaces 32c and 42c are formed on both sides of the tip surfaces 32b and 42b.
  • the inter-terminal distance between the column portion 31 of the element conductor 30 and the column portion 41 of the connection conductor 40 is such that the tip end face 32b of the element flange 32 of the element conductor 30 and the connection flange 42 of the connection conductor 40 are connected. It is larger than the minimum distance Lmin between the tip surfaces 42b of the terminals. For this reason, the parasitic capacitance between the element conductor 30 and the connection conductor 40 can be reduced.
  • the parasitic capacitance reducing structure Rpc of each of the element conductor 30 and the connection conductor 40 is configured by the element flange 32 or the connection flange 42 protruding from the upper part of each of the column portions 31 and 41.
  • the entire thickness of the element conductor 30 including the column portion 31 or the entire thickness of the connecting conductor 40 including the column portion 41 is thicker than the structure constituting the parasitic capacitance reducing structure Rpc. Is thin. For this reason, the parasitic capacitance can be further reduced.
  • the inter-terminal distance between the column portion 31 of the element conductor 30 and the column portion 41 of the connection conductor 40 is such that the tip end surface 32b of the element flange 32 of the element conductor 30 and the connection flange of the connection conductor 40 are connected. It is larger than the minimum distance Lmin between the terminals 42 and the tip surface 42b. For this reason, the structure is difficult to pull out from the sealing resin 14 due to the anchor effect. Further, the amount of the sealing resin 14 filled between the terminals of the column portion 31 of the element conductor 30 and the column portion 41 of the connecting conductor 40 increases, and cracks of the sealing resin 14 during this period can be suppressed. it can.
  • the area of the element mounting surface 32a of the element conductor 30 is formed smaller than the area (bottom area) of the semiconductor element 11, and the outer peripheral side surface of the semiconductor element 11 is the outer peripheral side surface of the element mounting surface 32a. Arranged outside. As described above, the size of the semiconductor device 10 can be reduced by setting the size of the element mounting surface 32 a of the element conductor 30 to be smaller than that of the semiconductor element 11.
  • FIG. 3 shows a second embodiment of the semiconductor device of the present invention
  • FIG. 3A is a sectional view of the semiconductor device
  • FIG. 3B is a bottom view of FIG. 3A viewed from below.
  • FIG. In FIG. 3B illustration of the semiconductor element 11 and the bonding wire 12 is omitted.
  • the second embodiment has a parasitic capacitance reduction structure Rpc different from that of the first embodiment, but the other configurations are the same as those of the first embodiment. Accordingly, the parasitic capacitance reduction structure Rpc of the second embodiment will be mainly described below.
  • the element conductor 130 includes the column portion 131 and the element flange 132 provided in a shape protruding from the column portion 131
  • the connection conductor 140 includes the column portion 141 and the column conductor 141.
  • a connecting collar 142 provided in a shape protruding from above the column part 141.
  • the semiconductor element 11 is mounted on the element mounting surface 132a of the element collar 132 of the element conductor 130, and bonded to the bonding surface 142a of the connection collar 142 of the connection conductor 140.
  • the wire 12 is bonded.
  • the lower surface 131a of the column portion 131 of the element conductor 130 and the lower surface 141a of the column portion 141 of the connecting conductor 140 are substantially flush with the lower surface 14a of the sealing resin 14, and are exposed from the lower surface 14a of the sealing resin 14. is doing.
  • the column portions 131 and 141 of the element conductors 130 and 140 have outer peripheral edges 131 b and 141 b exposed from the sealing resin 14 that are edged in a circular arc shape in cross section. .
  • the side surface of the element conductor 130 facing the connection conductor 140 of the element collar 132 is formed as a curved surface 132c that is curved in an arc shape in plan view.
  • the curved surface 132 c is disposed at a position where the substantially central portion 132 c 1 of the pair of side surfaces 132 d of the element conductor 130 is closest to the connection conductor 140.
  • the side surface of the connecting conductor 140 facing the element conductor 130 of the connecting collar 142 is formed as a curved surface 142c that is curved in an arc shape in plan view.
  • the curved surface 142 c is disposed at a position where the substantially center part 142 c 1 of the pair of side surfaces 142 d of the connecting conductor 140 is closest to the connecting conductor 140. Therefore, the inter-terminal distance between the center portion 132c1 of the curved surface 132c and the central portion 142c1 of the curved surface 142c is the smallest minimum inter-terminal distance Lmin among the inter-terminal distances between the element conductor 130 and the connecting conductor 140. .
  • the curved surfaces 132c and 142c are arcuate in plan view, the arcuate shape includes arcuate shapes such as an ellipse, a parabola, and an exponential curve in addition to a perfect circle.
  • the distance between the terminals of the element conductor 130 and the connection conductor 140 is away from the center portion 132c1 of the curved surface 132c and the center portion 142c1 of the curved surface 142c in the vertical direction of FIG. It increases gradually according to. Accordingly, the parasitic capacitance between the element conductor 130 and the connection conductor 140 in the semiconductor device 10 of the second embodiment is the same distance (minimum terminal) over the entire width of the side surface where the element conductor 130 and the connection conductor 140 face each other. The distance is smaller than the structure of the comparative example extended by the distance Lmin).
  • the curved surface 132c of the element flange 32 which is the side surface of the element conductor 130 facing the connection conductor 40, constitutes a parasitic capacitance reduction structure Rpc.
  • the curved surface 142c which is the side surface of the connection conductor 140 facing the element conductor 130, constitutes a parasitic capacitance reduction structure Rpc.
  • the method of manufacturing the semiconductor device 10 of the second embodiment is a method other than the method of forming the outer peripheral edges 131b and 141b in which the lower end sides of the column portion 131 of the element conductor 130 and the column portion 141 of the connecting conductor 140 are edged. This is the same as the method for manufacturing the semiconductor device 10 of the first embodiment. Therefore, hereinafter, a method of forming the outer peripheral edge 131b of the element conductor 130 and the outer peripheral edge 141b of the connecting conductor 140 will be described.
  • FIG. 4 is a view for explaining a method of manufacturing the semiconductor device shown in FIG. 3, and FIGS. 4 (a) to 4 (c) are cross-sectional views of members in the respective steps.
  • FIG. 4D is an enlarged view of the region A in FIG.
  • a substrate 61 is prepared, and photoresist films 62 a and 62 b are formed on both the front and back surfaces of the substrate 61.
  • the photoresist films 62a and 62b may be either a positive type or a negative type, but the following description will be made assuming that the negative type is used.
  • a glass substrate 71 serving as a mask is disposed on the photoresist film 62a.
  • a light shielding region 72 having the same shape as the column portion 131 of the element conductor 130 and a light shielding region 73 having the same shape as the column portion 41 of the connecting conductor 40 are formed on the glass substrate 71.
  • the formation method of the element conductor 130 and the connection conductor 140 is the same.
  • a method for forming the element conductor 130 will be described as a representative.
  • FIG. 4D is an enlarged view of the region A in FIG.
  • the light shielding region 72 having the same shape as the column portion 131 of the element conductor 130 of the glass substrate 71 is a region that shields 100%.
  • the light transmission region between the element flange 132 of the element conductor 130 and the connection flange 142 of the connection conductor 140 is approximately 100% light transmittance, in other words, a light shielding ratio approximately 0%.
  • An intermediate light shielding region 75 is provided between the light shielding region 72 and the light transmitting region 74.
  • the intermediate light-shielding region 75 is formed by arranging the light-shielding films in the form of dots and spaced apart from each other, or by making the density and thickness of the light-shielding film smaller than the light-shielding region 72.
  • the change rate of the light blocking rate in the intermediate light blocking region 75 is set so that the change in the light blocking rate in the vicinity of the light transmitting region 74 is larger than the change rate of the light blocking rate in the vicinity of the light blocking region 72.
  • the light shielding rate at the boundary portion of the intermediate light shielding region 75 in contact with the light shielding region 72 is the largest.
  • the photoresist film 62a when the photoresist film 62a is developed, as shown in FIG. 4B, the photoresist film 62a is connected to the lower surface 131a side of the column portion 131 of the element conductor 130 (see FIG. 4C) and connected. On the lower surface 141a side (see FIG. 4C) of the column portion 141 of the conductor 140, openings 63a and 63b that gently descend toward the inner side are formed.
  • the element conductor 130 and the connection conductor 140 each have a parasitic capacitance reduction structure Rpc.
  • the parasitic capacitance reducing structures Rpc of the element conductor 130 and the connection conductor 140 are provided in the element flange 132 and the connection flange 142 having outer peripheral surfaces larger than the outer peripheral surfaces of the column portions 131 and 141.
  • the area of the element mounting surface 132a of the element conductor 130 is formed smaller than the area of the semiconductor element 11, and the outer peripheral side surface of the semiconductor element 11 is disposed outside the outer peripheral side surface of the element mounting surface 132a. ing.
  • the outer peripheral side surface of the semiconductor element 11 may be flush with the outer peripheral side surface of the element mounting surface 132a of the element conductor 130. Further, the outer peripheral side surface of the semiconductor element 11 may be arranged inside the outer peripheral side surface of the element mounting surface 132a of the element conductor 130. Therefore, the second embodiment also has the same effects as the effects (1) to (3) of the first embodiment.
  • FIG. 5 shows a third embodiment of the semiconductor device of the present invention
  • FIG. 5 (a) is a cross-sectional view of the semiconductor device
  • FIG. 5 (b) is a view of FIG. 5 (a) viewed from below
  • FIG. 5C is a second bottom view of FIG. 5A viewed from below.
  • each of the element conductor 230 and the connection conductor 240 does not have a flange portion, and has a columnar structure as a whole. Have.
  • FIG. 5A is a cross-sectional view of the semiconductor device
  • FIG. 5 (b) is a view of FIG. 5 (a) viewed from below
  • FIG. 5C is a second bottom view of FIG. 5A viewed from below.
  • each of the element conductor 230 and the connection conductor 240 does not have a flange portion, and has a columnar structure as a whole. Have.
  • FIG. 5A shows a cross-sectional view of the semiconductor device
  • FIG. 5 (b) is
  • each of the element conductor 230 and the connection conductor 240 has a lower surface having tip surfaces 230a and 240a and a pair of inclined surfaces 230b and 240b, as in the first embodiment. It has a polygonal shape. Inclined surfaces 230b on both sides of the tip surface 230a of the element conductor 230 constitute a parasitic capacitance reducing structure Rpc. Further, the inclined surfaces 240b on both sides of the front end surface 240a in the connecting conductor 240 constitute a parasitic capacitance reducing structure Rpc.
  • the element conductor 230 and the connection conductor 240 have arc-shaped side surfaces facing each other, like the element flange 132 and the connection flange 142 of the second embodiment. It is good also as a structure which has the curved surfaces 230c and 240c which curve in the direction. In this structure, each of the curved surface 230c of the element conductor 230 and the curved surface 240c of the connecting conductor 240 constitutes a parasitic capacitance reducing structure Rpc.
  • Other configurations of the third embodiment are the same as those of the first embodiment, and the corresponding members are denoted by the same reference numerals and description thereof is omitted.
  • the element conductor 230 and the connection conductor 240 each have a parasitic capacitance reduction structure Rpc.
  • the area of the element conductor 230 is smaller than the area of the semiconductor element 11 in a top view, and the outer peripheral side surface of the semiconductor element 11 is disposed outside the outer peripheral side surface of the element conductor 230.
  • the outer peripheral side surface of the semiconductor element 11 may be flush with the outer peripheral side surface of the element mounting surface 232a of the element conductor 230.
  • the outer peripheral side surface of the semiconductor element 11 may be disposed inside the outer peripheral side surface of the element mounting surface 232a of the element conductor 230. Therefore, the third embodiment has the same effects as the effects (1) and (3) of the first embodiment.
  • FIG. 6 is a cross-sectional view showing a fourth embodiment of the semiconductor device of the present invention.
  • the element conductor 330 and the connection conductor 340 each have no flange portion and have a columnar structure as a whole.
  • the semiconductor device 10 of the fourth embodiment is different from the third embodiment in that the element conductor 330 and the connection conductor 340 have outer peripheral edges 330b and 340b edged on the lower surface 330a side and 340a side, respectively. Is to have.
  • the element conductor 330 and the connection conductor 340 each have a parasitic capacitance reduction structure Rpc.
  • the area of the element conductor 330 is smaller than the area of the semiconductor element 11, and the outer peripheral side surface of the semiconductor element 11 is disposed outside the outer peripheral side surface of the element conductor 330.
  • the outer peripheral side surface of the semiconductor element 11 may be flush with the outer peripheral side surface of the element mounting surface 332a of the element conductor 330.
  • the outer peripheral side surface of the semiconductor element 11 may be arranged inside the outer peripheral side surface of the element mounting surface 332 a of the element conductor 330. Accordingly, the same effects as the effects (1) and (3) of the first embodiment are obtained.
  • FIG. 7 is a sectional view showing a fifth embodiment of the semiconductor device of the present invention.
  • the element conductor 430 and the connection conductor 440 do not have a flange portion, respectively, and the element conductor 430 and the connection conductor 430 are connected.
  • Each of the conductors 440 has an inverted trapezoidal cross section. That is, the element conductor 430 has a tapered surface 430b that gradually rises from the lower surface 430a toward the connection conductor 440, and a tapered surface that gradually rises in the opposite direction from the lower surface 430a to the connection conductor 440 side. 430c.
  • the element conductor 430 has a tapered surface 430 b that increases in distance from the connection conductor 440 in the direction away from the semiconductor element 11.
  • the connecting conductor 440 has a tapered surface 440b that gradually rises from the lower surface 440a toward the element conductor 430, and a tapered surface that gradually rises in the opposite direction from the lower surface 430a to the element conductor 430 side. 440c.
  • the connection conductor 440 has a tapered surface 440b whose distance from the element conductor 430 side increases in the direction away from the bonding surface.
  • the element conductor 430 and the connection conductor 440 have inclined surfaces 430b and 440b facing each other.
  • the inclined surfaces 430 b and 440 b are slopes that spread from the conductor lower surfaces 430 a and 440 a to the upper side of the drawing, that is, toward the semiconductor mounting surface (element mounting surface 432 a) and the bonding surface.
  • the distance between a pair of opposing sides (sides extending in the direction of the depth of the paper in FIG. 7) where the semiconductor mounting surface and the bonding surface oppose each other is the same as the minimum inter-terminal distance Lmin of the comparative structure, between the inclined surfaces 430b and 440b.
  • the distance gradually increases (increases gradually) along the direction from the semiconductor mounting surface and the bonding surface toward the lower surfaces 430a and 440a. Therefore, the parasitic capacitance between the element conductor 430 and the connection conductor 440 is smaller than that of the comparative structure.
  • the element conductor 430 and the connection conductor 440 having the inclined surfaces 430b and 440b constituting the parasitic capacitance reduction structure Rpc in the fifth embodiment are tapered polygonal shapes shown in FIG. Alternatively, the curved surface shown in FIG.
  • the taper angle ⁇ of the taper surfaces 430b and 430c and the taper surfaces 440b and 440c is preferably about 30 ° to 60 ° with respect to the lower surface 14a of the sealing resin 14. When the taper angle ⁇ is larger than about 60 °, the pulling force from the sealing resin 14 becomes small.
  • the sealing resin material is used for the taper surfaces 430b and 430c of the element conductor 430 and the taper surfaces 440b and 440c of the connection conductor 440. It becomes difficult to flow into the lower surface side, and cracks are likely to occur in the sealing resin 14.
  • the manufacturing method of the element conductor 430 having the tapered surfaces 430b and 430c and the connecting conductor 440 having the tapered surfaces 440b and 440c can use the method according to the second embodiment.
  • the intermediate light shielding region 75 of the glass substrate 71 is formed. It is formed so that the change rate of the light shielding rate is uniform from the intermediate light shielding region 75 side to the light transmitting region 74 side.
  • the fifth embodiment has the same effects as the effects (1) and (3) of the first embodiment.
  • the first conductor there exists an effect similar to the effect (2) of embodiment.
  • the outer peripheral side surface of the semiconductor element 11 may be flush with the outer peripheral side surface of the element mounting surface 432a of the element conductor 430. Further, the outer peripheral side surface of the semiconductor element 11 may be disposed inside the outer peripheral side surface of the element mounting surface 432a of the element conductor 430.
  • FIG. 8 shows a sixth embodiment of the semiconductor device of the present invention, and is a first bottom view of the semiconductor device as seen from the bottom surface side.
  • the element conductor 530 and the connection conductor 540 shown in FIG. 8 have a plurality of fine irregularities 531a and 541a formed continuously on the outer peripheral side surfaces 531 and 541, respectively.
  • the element conductor 530 and the connection conductor 540 are each provided with fine irregularities 531a on the outer peripheral side surface including the outer peripheral side surface of the tapered portion or the curved surface as shown in FIG. 5 (b) or FIG. 5 (c).
  • 541a have a continuous structure.
  • the regions where the outer peripheral side surface 531 of the element conductor 530 in which the fine irregularities 531a and 541a are formed and the outer peripheral side surface 541 of the connecting conductor 540 face each other constitute a parasitic capacitance reducing structure Rpc.
  • each of the fine irregularities 531a and 541a is illustrated as a relatively large size in order to make the shape easy to understand, but in practice, it is preferable to make the size smaller than this.
  • corrugations 531a and 541a are illustrated as the shape where the front-end
  • the element conductor 530 and the connection conductor 540 are obtained by forming the mask patterns of the element conductor 530 and the connection conductor 540 into shapes in which fine irregularities 531a and 541a are formed on the outer peripheral side surfaces 531 and 541, respectively. It can be manufactured by a method similar to that of the first embodiment.
  • Each of the element conductor 530 and the connection conductor 540 has a columnar structure as a whole, or is composed of a flange portion having fine irregularities 531a and 541a and a column portion provided below the flange portion. Or can be structured. Other configurations of the sixth embodiment are the same as those of the first embodiment.
  • the element conductor 530 and the connection conductor 540 each have a parasitic capacitance reducing structure Rpc. Further, in the top view, the area of the element conductor 530 is formed smaller than the area of the semiconductor element 11, and the outer peripheral side surface of the semiconductor element 11 is disposed outside the outer peripheral side surface 531 of the element conductor 530. Accordingly, the sixth embodiment has the same effects as the effects (1) and (3) of the first embodiment.
  • the element conductor 530 and the connection conductor 540 are each composed of a flange portion having fine irregularities 531a and 541a and a column portion provided below the flange portion. With this structure, the same effect as the effect (2) of the first embodiment can be obtained.
  • the side (line) corresponding to the outer peripheral side surface of the semiconductor element 11 is unevenness 531a formed on the outer peripheral side surface of the element mounting surface (not shown) of the element conductor 530. It may coincide with the line connecting the tips of the protrusions.
  • a side (line) corresponding to the outer peripheral side surface of the semiconductor element 11 is a line that connects the tip of the protrusion of the unevenness 531a formed on the outer peripheral side surface of the element mounting surface (not shown) of the element conductor 530. You may make it arrange
  • FIG. 9 is a bottom view of the semiconductor device according to the seventh embodiment of the present invention as seen from below.
  • the element conductor 630 and the connection conductor 640 include a center line xx passing through the center between the pair of long side surfaces 14b and 14c of the sealing resin 14 and the sealing resin 14. Are arranged symmetrically with respect to the intersection O of the center line yy passing through the center between the pair of short side surfaces 14d and 14e.
  • the element conductor 630 includes an inclined surface 630a provided on the connecting conductor 640 side, a vertical end side surface 630b, and a pair of side surfaces 630c and 630d.
  • the connection conductor 640 includes an inclined surface 640a facing the element conductor 630, a vertical end side surface 640b, and a pair of side surfaces 640c and 640d.
  • the inclined surface 630a of the element conductor 630 and the inclined surface 640a of the connecting conductor 640 are parallel to each other. Accordingly, the inter-terminal distances between the inclined surface 630a of the element conductor 630 and the inclined surface 640a of the connecting conductor 640 are all the minimum inter-terminal distance Lmin in the surface region.
  • the inclined surface 630a of the element conductor 630 and the inclined surface 640a of the connecting conductor 640 extend over almost the entire length in the width direction (vertical direction in FIG. 9). However, the inclined surface 630a of the element conductor 630 and the inclined surface 640a of the connection conductor 640 are inclined with respect to the center line yy, respectively.
  • the parasitic capacitance between the element conductor 630 and the connecting conductor 640 is that of the comparative structure formed between the conductors (parallel flat plates) that are parallel to the center line yy and separated by the minimum inter-terminal distance Lmin. It becomes smaller than the parasitic capacitance. That is, the inclined surface 630a of the element conductor 630 and the inclined surface 640a of the connection conductor 640 each constitute a parasitic capacitance reducing structure Rpc.
  • the end side surface 630b of the element conductor 630 and the end side surface 640b of the connecting conductor 640 are for suppressing electric field concentration. That is, when the intersection of the inclined surface 630a and the side surface 630d of the element conductor 630 is sharpened, electric field concentration occurs at this intersection. Further, when the intersection between the inclined surface 640a and the side surface 640d of the connecting conductor 640 is sharpened, electric field concentration occurs at this intersection. The end side surface 630b of the element conductor 630 and the end side surface 640b of the connection conductor 640 suppress such electric field concentration.
  • each of the element conductor 630 and the connection conductor 640 has a columnar structure as a whole, or a flange portion having inclined surfaces 630a and 640a and a column provided below the flange portion. Or a structure composed of parts.
  • Other configurations of the seventh embodiment are the same as those of the first embodiment.
  • the element conductor 630 and the connection conductor 640 each have a parasitic capacitance reduction structure Rpc.
  • the outer peripheral side surface of the semiconductor element 11 is disposed outside the outer peripheral surface of the element conductor 630 when viewed from above. Accordingly, the seventh embodiment has the same effects as the effects (1) and (3) of the first embodiment.
  • the element conductor 630 and the connection conductor 640 are each configured by a flange portion having inclined surfaces 630a and 640a and a column portion provided below the flange portion. If it does, there exists an effect similar to the effect (2) of 1st Embodiment.
  • the outer peripheral side surface of the semiconductor element 11 may be arranged inside the outer peripheral surface of the element conductor 630 when viewed from above.
  • FIG. 10 is a bottom view of the semiconductor device according to the eighth embodiment of the present invention as seen from below.
  • the element conductor 730 and the connection conductor 740 are formed in a fan shape in plan view.
  • the element conductor 730 has an arcuate outer peripheral side surface 731 that is a part of a circle centering on the intersection of one long side surface 14 c and one short side surface 14 d of the sealing resin 14.
  • the connecting conductor 740 has an arcuate outer peripheral side surface 741 that is a part of a circle centering on the intersection of the other long side surface 14b and the other short side surface 14e.
  • the element conductor 730 and the connection conductor 740 include a center line xx passing through the center between the pair of long side surfaces 14b and 14c in the width direction of the sealing resin 14, and a pair of short side surfaces 14d and 14e of the sealing resin 14. They are arranged symmetrically with respect to the intersection O of the center line yy passing through the center between them.
  • the distance between the point 731a on the outer peripheral side surface 731 of the element conductor 730 and the point 741a on the outer peripheral side surface 741 of the connecting conductor 740 is the minimum inter-terminal distance Lmin.
  • the inter-terminal distance between the outer peripheral side surface 731 of the element conductor 730 and the outer peripheral side surface 741 of the connecting conductor 740 increases according to the distance from the point 731a or the point 741a. Therefore, the outer peripheral side surface 731 of the element conductor 730 and the outer peripheral side surface 741 of the connection conductor 740 respectively constitute a parasitic capacitance reducing structure Rpc.
  • each of the element conductor 730 and the connection conductor 740 has a columnar structure as a whole, or a flange portion having arcuate outer peripheral side surfaces 731 and 741 and a lower portion of the flange portion. Or a structure composed of a column portion formed.
  • Other configurations in the eighth embodiment are the same as those in the first embodiment.
  • the element conductor 730 and the connection conductor 740 each have a parasitic capacitance reduction structure Rpc.
  • the outer peripheral side surface of the semiconductor element 11 is disposed outside the outer peripheral surface of the element conductor 730 in a top view. It is preferable that the entire surface of the semiconductor element 11 (not shown) is also covered with the sealing resin 14. Accordingly, the eighth embodiment has the same effects as the effects (1) and (3) of the first embodiment.
  • each of the element conductor 730 and the connection conductor 740 includes a flange portion having arcuate outer peripheral side surfaces 731 and 741 and a column portion provided below the flange portion. With this structure, the same effect as the effect (2) of the first embodiment can be obtained.
  • the outer peripheral side surface of the semiconductor element 11 may be disposed inside the outer peripheral surface of the element conductor 730 when viewed from above.
  • FIG. 11 shows a ninth embodiment of the semiconductor device of the present invention, and is a bottom view of the semiconductor device as viewed from below.
  • the semiconductor device 10 of the ninth embodiment has a plurality of sets of element conductors 30 and connection conductors 40 shown in the first embodiment (illustrated as two sets in FIG. 11).
  • a package in which a plurality of sets of element conductors 30 and connection conductors 40 are sealed with the sealing resin 14 can be obtained.
  • the steps shown in FIGS. 2A to 2D are performed in the same manner as in the first embodiment.
  • the sealing resin 14 in FIG. 2E the sealing resin 14 may be cut so that the plurality of sets of element conductors 30 and connection conductors 40 form one package.
  • FIG. 11 illustrates the semiconductor device 10 having the element conductor 30 and the connection conductor 40 shown in the first embodiment.
  • the semiconductor device 10 having a plurality of sets of element conductors 130 to 730 and connection conductors 140 to 740 shown in the second to eighth embodiments may be used.
  • the semiconductor device 10 of the ninth embodiment is configured to include a plurality of sets of the element conductors 30 to 730 and the connection conductors 40 to 740 shown in the first to eighth embodiments, naturally, the first embodiment.
  • the same effects as the effects (1) to (3) of the form are obtained.
  • the sealing resin 14 has a groove portion 14 f formed between the element conductor 30 and the connection conductor 40.
  • the groove 14f extends over the entire length of the sealing resin 14 in the width direction (vertical direction in FIG. 12B). In other words, the groove 14f is formed through the sealing resin 14 in the width direction from one long side surface 14b to the other long side surface 14c of the sealing resin 14.
  • the depth of the groove 14 f is substantially the same as the thickness of the element conductor 30 and the connection conductor 40. If the strength of the sealing resin 14 can be ensured, the depth of the groove 14 f may be larger than the thickness of the element conductor 30 and the connection conductor 40.
  • the groove 14 f is preferably the center between the element conductor 30 and the connection conductor 40 in order to make the strength of the sealing resin 14 uniform. However, the position of the groove 14f is not specified at the center between the element conductor 30 and the connection conductor 40, and may be anywhere as long as it is a position between the element conductor 30 and the connection conductor 40. .
  • the semiconductor element 11 mounted on the element conductor 30 is smaller in size than the element conductor 30 and is illustrated as a structure disposed inside the outer peripheral side surface of the element conductor 30.
  • the parasitic capacitance of the element conductor 30 and the connection conductor 40 can be reduced.
  • FIG. 12 the semiconductor device 10A having the element conductor 30 and the connection conductor 40 shown in the first embodiment is illustrated.
  • the semiconductor device 10A may include any of the element conductors 130 to 730 and any of the connection conductors 140 to 740 shown in the second to eighth embodiments.
  • the thickness of the element conductor 30 and the thickness of the connection conductor 40 are exemplified as the same.
  • the element conductor 30 and the connection conductor 40 may have different thicknesses.
  • the semiconductor element 11 is exemplified as a structure having one electrode pad 11a and connected to one connection conductor 40 to 740 by one bonding wire 12.
  • the semiconductor element 11 has a plurality of electrode pads 11a, and the number of connection conductors 40 to 740 corresponding to the number of the electrode pads 11a and the number of electrode pads 11a are bonded wires (connection lines). 12 can be applied to the semiconductor device connected by 12.
  • the element conductors 30 to 730 and the connection conductors 40 to 740 have been described as plated layers by electroforming. Forming a conductor with a plating layer is desirable because the conductor thickness can be reduced to about half that of the lead frame, and it can contribute to a reduction in parasitic capacitance due to a reduced cross-sectional area.
  • the element conductors 30 to 730 and the connection conductors 40 to 740 may be formed of a lead frame.
  • the plate-like frame can be formed by etching or punching.
  • the element flange 32, the connection flange 42, and the outer peripheral edges 131b, 141b, 330b, and 340b can be formed by crushing the lead frame after punching.
  • the structures shown in the first to tenth embodiments may be combined with each other.
  • the element conductors 30 to 730 of any of the first to tenth embodiments may be combined with other connection conductors 40 to 740.
  • Semiconductor device in which parasitic capacitance reduction structure is provided only on one of element conductors 30 to 730 or connection conductors 40 to 740 in the first to tenth embodiments, and no parasitic capacitance reduction structure is provided on the other conductor 10, 10A may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

半導体装置は、半導体素子と、上部に前記半導体素子を搭載する素子搭載面を有する素子用導体と、前記素子用導体と離間して配置され、上部に接続面を有する接続用導体と、前記半導体素子と前記接続用導体の前記接続面とを接続する接続線と、前記半導体素子と、前記素子用導体と、前記接続用導体と、前記接続線とを封止する封止樹脂とを備え、対向して配置された前記素子用導体と前記接続用導体の少なくとも一方の対向側面に寄生容量低減構造が設けられている。

Description

半導体装置
 本発明は、半導体装置に関する。
 半導体チップが搭載される第1の導体と、ボンディングワイヤにより半導体チップに接続される第2の導体とを離間して配置し、全体を封止樹脂により封止する半導体装置が知られている。第1の導体および第2の導体は、平面視で矩形形状を有し、相互に対向する一側面が、その対向する辺の全長に亘り、他方の導体から等距離の位置に配置されている(特許文献1参照)。
日本国特開2006-287263号公報
 特許文献1の半導体装置では、第1の導体と第2の導体の相対向する側面が、その対向する面の全長に亘り、他方の導体に最接近する位置に配置されており、第1の導体と第2の導体間の寄生容量が大きくなる。このため、例えば、高速データ通信等の高周波回路に適用すると、インピーダンスのズレや応答速度の遅延など回路特性の劣化・損失が生じる。
 本発明の第1の態様によると、半導体装置は、半導体素子と、上部に前記半導体素子を搭載する素子搭載面を有する素子用導体と、前記素子用導体と離間して配置され、上部に接続面を有する接続用導体と、前記半導体素子と前記接続用導体の前記接続面とを接続する接続線と、前記半導体素子と、前記素子用導体と、前記接続用導体と、前記接続線とを封止する封止樹脂とを備え、対向して配置された前記素子用導体と前記接続用導体の少なくとも一方の対向側面に寄生容量低減構造が設けられている。
 本発明の第2の態様によると、第1の態様による半導体装置において、前記寄生容量低減構造は、前記素子用導体と前記接続用導体の少なくとも一方の上部側に設けられていることが好ましい。
 本発明の第3の態様によると、第2の態様による半導体装置において、前記寄生容量低減構造は、前記上部側から前記素子用導体と前記接続用導体の少なくとも一方の下面までコラム状に設けられていることが好ましい。
 本発明の第4の態様によると、第1の態様による半導体装置において、前記寄生容量低減構造は、他方の導体側に最も近い最接近の第1位置で定まる対向面間距離が最小であり、第1位置とは異なる第2位置の対向面間距離はそれよりも大きな寸法とされる対向面であることが好ましい。
 本発明の第5の態様によると、第4の態様による半導体装置において、前記寄生容量低減構造を有する対向面は、平面または曲面であることが好ましい。
 本発明の第6の態様によると、第1の態様による半導体装置において、前記寄生容量低減構造は、前記素子用導体と前記接続用導体の少なくとも一方が平面視で多角形状である構造であり、前記多角形状を有する導体は、他方の導体側に最も近い最接近の第1対向面とそれ以外の第2対向面を有し、前記第2対向面で定まる対向面間距離は、前記第1対向面で定まる対向面間距離よりも大きな寸法とされることが好ましい。
 本発明の第7の態様によると、第1の態様による半導体装置において、前記寄生容量低減構造は、前記素子用導体と前記接続用導体の少なくとも一方が平面視で円弧形状を有する構造であり、前記円弧形状を有する導体は、他方の導体側に最も近く最小対向面間距離が定まる最接近の第1対向面と、前記第1対向面以外の第2対向面とを有し、前記第2対向面の対向面間距離が前記最小対向面間距離よりも大きな寸法とされることが好ましい。
 本発明の第8の態様によると、第6または第7の態様による半導体装置において、前記寄生容量低減構造は、前記第1対向面と前記第2対向面には連続状に形成された凹凸を含むことが好ましい。
 本発明の第9の態様によると、第1から第8までのいずれかによる半導体装置において、前記素子用導体の前記素子搭載面の面積は、平面視で前記半導体素子の面積より小さく形成され、前記半導体素子の外周側面は、前記素子搭載面の外周側面の外方に配置されていることが好ましい。
 本発明の第10の態様によると、半導体装置は、半導体素子と、上部に前記半導体素子を搭載する素子搭載面を有する素子用導体と、前記素子用導体と離間して配置され、上部に接続面を有する接続用導体と、前記半導体素子と前記接続用導体の前記接続面とを接続する接続線と、前記半導体素子と、前記素子用導体と、前記接続用導体と、前記接続線とを封止する封止樹脂と、対向して配置された前記素子用導体と前記接続用導体の少なくとも一方の導体の、他方の導体に対向する対向側面に設けられた寄生容量低減構造とを備え、前記寄生容量低減構造は、前記一方の導体の対向側面と前記他方の導体の対向側面との対向面間距離が最も小さい第1位置における面積が、前記一方の導体の前記対向側面の面積全体よりも小さく形成されている。
 本発明の第11の態様によると、第10の態様による半導体装置において、前記一方の導体の前記第1位置における面積は、前記第1位置と異なる第2位置における対向側面全体の面積よりも小さく形成されていることが好ましい。
 本発明の第12の態様によると、半導体装置は、半導体素子と、上部に前記半導体素子を搭載する素子搭載面を有する素子用導体と、前記素子用導体と離間して配置され、上部に接続面を有する接続用導体と、前記半導体素子と前記接続用導体の前記接続面とを接続する接続線と、前記半導体素子と、前記素子用導体と、前記接続用導体と、前記接続線とを封止する封止樹脂と、素子用導体と前記接続用導体とが対向する側面の間に介在する前記封止樹脂に形成された溝部とを備える。
 本発明の第13の態様によると、第1から第9までの態様による半導体装置において、前記素子用導体と前記接続用導体とが対向する側面の間に介在する前記封止樹脂に形成された溝部をさらに有することが好ましい。
 本発明によれば、素子用導体と接続用導体間の寄生容量を小さくすることができる。
図1は、本発明の半導体装置の第1の実施形態を示し、図1(a)は、半導体装置の断面図であり、図1(b)は、図1(a)を下方からみた下面図である。 図2は、図1に示された半導体装置の製造方法を説明するための図であり、図2(a)~図2(e)は、それぞれ、各工程における各部材の断面図である。 図3は、本発明の半導体装置の第2の実施形態を示し、図3(a)は、半導体装置の断面図であり、図3(b)は、図3(a)を下方からみた下面図である。 図4は、図3に示された半導体装置の製造方法を説明するための図であり、図4(a)~図4(c)は、それぞれ、各工程における各部材の断面図であり、図4(d)は、図4(a)の領域Aの拡大図である。 図5は、本発明の半導体装置の第3の実施形態を示し、図5(a)は、半導体装置の断面図であり、図5(b)は、図5(a)を下方からみた第1の下面図であり、図5(c)は、図5(a)を下方からみた第2の下面図である。 図6は、本発明の半導体装置の第4の実施形態を示す断面図である。 図7は、本発明の半導体装置の第5の実施形態を示す断面図である。 図8は、本発明の半導体装置の第6の実施形態を示し、半導体装置を下面側からみた下面図である。 図9は、本発明の半導体装置の第7の実施形態を示し、半導体装置を下方からみた下面図である。 図10は、本発明の半導体装置の第8の実施形態を示し、半導体装置を下方からみた下面図である。 図11は、本発明の半導体装置の第9の実施形態を示し、半導体装置を、下方からみた下面図である。 図12は、本発明の半導体装置の第10の実施形態を示し、図12(a)は半導体装置の断面図であり、図12(b)は、図12(a)を下方からみた下面図である。
-第1の実施形態-
 図1~図2を参照して、本発明の半導体装置10の第1の実施形態を説明する。
 図1は、本発明の半導体装置の第1の実施形態を示し、図1(a)は、半導体装置の断面図であり、図1(b)は、図1(a)を下方からみた下面図である。
 半導体装置10は、半導体素子11と、半導体素子11を搭載する素子用導体30と、接続用導体40と、半導体素子11の電極パッド11aと接続用導体40を接続するボンディングワイヤ12と、全体を封止する封止樹脂14とを有する。
 半導体素子11は、上面に電極パッド11aを有し、ほぼ、直方体形状を有する。
 素子用導体30は、例えば、銅等の導電性金属で形成されており、コラム部31と、素子用鍔部32とを有する。素子用鍔部32は、コラム部31より一回り大きい形状を有しており、その外周側面は、コラム部31の外周側面より突き出している。図1(b)に示されるように、コラム部31および素子用鍔部32は、平面視で六角形の相似形を有している。
 接続用導体40は、素子用導体30と同様に、例えば、銅等の導電性金属で形成されており、コラム部41と、コラム部41より一回り大きい接続用鍔部42とを有する。また、接続用鍔部42の外周側面は、コラム部41の外周側面より突き出し、コラム部41および接続用鍔部42は、平面視で六角形の相似形を有している。
 素子用導体30および接続用導体40は、電鋳めっき等により形成されるめっき層、またはリードフレームにより形成されている。
 図1(a)に示されるように、素子用導体30の素子用鍔部32の、コラム部31側と反対側の上面には、半導体素子11が搭載される素子搭載面32aが設けられている。素子搭載面32aは素子用鍔部32の上面の全領域である。図1(a)に示される縦断面において、素子用鍔部32の周縁は、円弧状に形成されている。素子用鍔部32の厚さ(高さ)は、コラム部31の厚さ(高さ)より薄く形成されている。
 接続用導体40の接続用鍔部42の、コラム部41側と反対側の上面は、ボンディングワイヤ12が接続されるボンディング面42aとなっている。ボンディング面42aは接続用鍔部42の上面の全領域である。図1(a)に示される縦断面において、素子用鍔部32の周縁は、円弧状に形成されている。接続用鍔部42の厚さ(高さ)は、コラム部41の厚さ(高さ)より薄く形成されている。
 素子用導体30のコラム部31の厚さと接続用導体40のコラム部41の厚さは、ほぼ同一である。また、素子用導体30の素子用鍔部32の厚さと接続用導体40の接続用鍔部42の厚さは、ほぼ同一である。従って、素子用導体30の全体の厚さと接続用導体40の全体の厚さは、ほぼ同一である。素子用導体30および接続用導体40それぞれの全体の厚さは20μm~80μm程度である。
 半導体素子11の電極パッド11aに、ボンディングワイヤ12の一端がボンディングされ、接続用導体40のボンディング面42aのほぼ中央部に、ボンディングワイヤ12の他端がボンディングされる。
 上述したように、素子用導体30の素子用鍔部32の素子搭載面32a上に搭載される半導体素子11の底面は、素子搭載面32aの面積より大きい面積を有する。半導体素子11は、素子用鍔部32の素子搭載面32aの外周から突出して配置されている。換言すれば、素子用導体30の素子搭載面32aの面積は、半導体素子11の底面の面積より小さく形成され、半導体素子11の外周側面は、素子搭載面32aの外周側面の外方に配置されている。このように、素子用導体30の素子搭載面32aのサイズを半導体素子11の底面積よりも小さいサイズに設定することにより、半導体装置10のサイズを小さくすることが可能となる。但し、素子用導体30の素子搭載面32aのサイズを半導体素子11の底面積と同一もしくは半導体素子11の面積よりも大きい構造とすることもできる。つまり、半導体素子11の外周側面は、素子用導体30の素子搭載面32aの外周側面と面一であってもよい。また、半導体素子11の外周側面は、素子用導体30の素子搭載面32aの外周側面の内側に配置されてもよい。
 封止樹脂14は、素子用導体30と、接続用導体40と、半導体素子11と、ボンディングワイヤ12とを封止する。但し、素子用導体30のコラム部31の、素子用鍔部32と反対側の面である下面31a、および接続用導体40のコラム部41の、接続用鍔部42と反対側の面である下面41aは、封止樹脂14の下面14aとほぼ面一となっており、封止樹脂14の下面14aから露出している。
 封止樹脂14は、例えば、エポキシ樹脂等を用いることができる。なお、封止樹脂として、例えば、周波数1~10GHzに対して比誘電率(Dk)3.5以下、周波数1~10GHzに対して誘電正接(Df)0.01以下のエポキシ樹脂等の低誘電率素材Low kを用いることが好ましい。
 図1(b)に示すように、素子用導体30の素子用鍔部32は、上面視において、接続用導体40に対向する側面が、先細形状の多角形状を有しており、先端面32bと、先端面32bの両隣に配置された傾斜面32cとを有する。素子用鍔部32の先端面32bの両隣の傾斜面32cは、それぞれ、先端面32bから側面32dに向けて、対向する接続用導体40から離れる方向に傾斜している。同様に、接続用導体40の接続用鍔部42は、先端面42bと、先端面42bの両隣に配置された傾斜面42cとを有する。接続用鍔部42の先端面42bの両隣の傾斜面42cは、それぞれ、先端面42bから側面42dに向けて、先端面42bから離れる距離に比例して、対向する素子用導体30から離れる方向に傾斜している。
 素子用導体30の素子用鍔部32の先端面32bと接続用導体40の接続用鍔部42の先端面42bとは、平行に配置されている。素子用導体30の素子用鍔部32の先端面32bと接続用導体40の接続用鍔部42の先端面42bとの端子間距離が、素子用導体30と接続用導体40との最小端子間距離Lminとなる。換言すれば、素子用導体30の素子用鍔部32の先端面32bおよび接続用導体40の接続用鍔部42の先端面42bは、相互に、相手方の導体に最も近い最接近面となっている。
 素子用導体30の素子用鍔部32の傾斜面32cと接続用導体40の接続用鍔部42の傾斜面42cとの端子間距離は、最小端子間距離Lmin以上で、かつ、素子用導体30の素子用鍔部32の傾斜面32cと接続用導体40の接続用鍔部42の傾斜面42cとは、非平行に配置されている。また、素子用導体30のコラム部31と接続用導体40のコラム部41の端子間距離は、最小端子間距離Lminよりも大きい。
このように、素子用鍔部32の先端面32bおよび接続用鍔部42の先端面42bそれぞれの面積は、小さく、先端面32b、先端面42それぞれの両隣には傾斜面32c、42cが形成されている。
 従って、上記実施形態の半導体装置10における素子用導体30と接続用導体40間の寄生容量は、素子用導体30と接続用導体40とが相対向する側面に傾斜面を設けない構造、すなわち素子用導体30と接続用導体40が対向する面間の距離が最小端子間距離Lminで一定の構造よりも小さくなる。以下では、この素子用導体30と接続用導体40が対向する面間の距離がどこでも最小端子間距離Lminである構造を比較例と呼ぶ。
 第1の実施形態の半導体装置10では、素子用導体30の接続用導体40に対向する対向側面である、素子用鍔部32の先端面32bおよび該先端面32bの両隣に配置された傾斜面32cが、寄生容量低減構造Rpcを構成している。同様に、接続用導体40の素子用導体30に対向する対向側面である、接続用鍔部42の先端面42bおよび該先端面42bの両隣に配置された傾斜面42cが、寄生容量低減構造Rpcを構成している。
 最小端子間距離Lminに位置する素子用導体30の先端面32bの面積は、両隣の傾斜面32cの合計の面積よりも小さいことが好ましい。但し、素子用導体30の先端面32bの面積は、接続用導体40に対向する側面全体、すなわち、先端面32bおよび両隣の傾斜面32c全体の面積よりも小さく形成されていればよい。同様に、最小端子間距離Lminに位置する接続用導体40の先端面42bの面積は、両隣の傾斜面42cの合計の面積よりも小さいことが好ましい。但し、接続用導体40の先端面42bの面積は、素子用導体30に対向する側面全体、すなわち、先端面42bおよび両隣の傾斜面42c全体の面積よりも小さく形成されていればよい。
 図1(a)に示されるように、素子用導体30の素子用鍔部32はコラム部31に対して張り出している。また、接続用導体40の接続用鍔部42は、コラム部41に対して張り出している。このため、素子用導体30および接続用導体40は、アンカー効果により封止樹脂14から引き抜かれ難い構造となっている。また、素子用導体30のコラム部31と接続用導体40のコラム部41との相対向する側面間の距離である端子間距離は、素子用導体30の素子用鍔部32の先端面32bと接続用導体40の接続用鍔部42の先端面42bとの最小端子間距離Lminよりも大きい。このため、素子用導体30のコラム部31と接続用導体40のコラム部41との端子間に充填される封止樹脂14の量が多くなり、この間における封止樹脂14のクラックを抑制することができる。
 なお、図示はしないが、素子用導体30のコラム部31の下面31aおよび接続用導体40のコラム部41の下面41aは、回路基板の接続パッドにはんだ付けされることにより実装される。
 次に、図1に示す半導体装置10を電鋳めっき法により製造する方法の一例を示す。
 図2は、図1に示された半導体装置の製造方法を説明するための図であり、図2(a)~図2(e)は、それぞれ、各工程における各部材の断面図である。
 図2(a)に示されるように、半導体装置10を格子状に配列することができるサイズを有するステンレス板や銅板等の基板61を用意する。以下の説明は、半導体装置10を2個形成する場合について説明するが、以下に示す製造方法は、格子状に配列される多数の半導体装置10を得る場合にも適用することが可能である。
 基板61の厚さは、例えば、0.1mm~0.5mm程度である。基板61の表裏両面にフォトレジスト膜62a、62bを形成する。フォトレジスト膜62aは、素子用導体30のコラム部31の厚さおよび接続用導体40のコラム部41の厚さに相当する厚さにする。フォトレジスト膜62bの厚さは、特に制限は無く、フォトレジスト膜62aの厚さと同一であっても、フォトレジスト膜62aの厚さと異なる厚さであってもよい。フォトレジスト膜62a、62bは、ポジ型でもネガ型でもよい。
 次に、図2(b)に示すように、不図示のマスクを用いて基板61の上面側のフォトレジスト膜62aを露光し、現像して、フォトレジスト膜62aをパターニングする。つまり、フォトレジスト膜62aの素子用導体30が形成される領域に開口63aを、また接続用導体40が形成される領域に開口63bを形成する。この後、フォトレジスト膜62aから露出した基板61の領域に、酸化膜除去等の表面処理を施す。
 次に、図2(c)に示すように、電鋳めっき法により、素子用導体30および接続用導体40を形成する。電鋳により形成するめっき層は、フォトレジスト膜62aの厚さを越えて、フォトレジスト膜62aの表面からの厚さが素子用導体30の素子用鍔部32および接続用導体40の接続用鍔部42の厚さと同一になるように形成する。フォトレジスト膜62aの表面上に形成されるめっき層の成長は等方性を有する。このため、フォトレジスト膜62aの上方に形成されるめっき層は、フォトレジスト膜62aの厚さの領域内に形成されるめっき層の外周側に張り出し、かつ、その上面側の外周縁は、断面円弧状に形成される。これにより、コラム部31と素子用鍔部32を有する素子用導体30およびコラム部41と接続用鍔部42を有する接続用導体40が形成される。
 素子用導体30および接続用導体40を形成した後、フォトレジスト膜62a、62bを除去する。
 次に、図2(d)に示すように、素子用導体30の素子用鍔部32の素子搭載面32aに半導体素子11をダイボンディングする。そして、ボンディングワイヤ12を半導体素子11の電極パッド11aおよび接続用導体40の接続用鍔部42のボンディング面42aにボンディングする。
 次に、図2(e)に示すように、基板61の素子用導体30および接続用導体40側に封止樹脂14をモールドし、全体を封止する。封止樹脂14による封止は、半導体素子11、ボンディングワイヤ12、素子用導体30および接続用導体40を含み基板61の一面側全面を覆うように行う。そして、半導体素子11が搭載された素子用導体30およびボンディングワイヤ12がボンディングされた接続用導体40から基板61を剥離または除去する。この後、ダイシングラインDclで、封止樹脂14を切断し、図1に図示された個々の半導体装置10を得る。
 なお、上記では、素子用導体30および接続用導体40それぞれの他方の導体に対向する側面に寄生容量低減構造Rpcを形成した半導体装置10として例示した。しかし、素子用導体30と接続用導体40との一方の導体にのみ寄生容量低減構造Rpcを形成した半導体装置10としてもよい。
 また、素子用鍔部32の上面視形状とコラム部31の横断面形状を六角形としたが、六角形以外の多角形としてもよい。接続用導体40についても同様であり、接続用鍔部42の上面視形状とコラム部41の横断面形状を六角形としたが、六角形以外の多角形としてもよい。
 さらに、素子用鍔部32の上面視形状とコラム部31の横断面形状は異なる多角形としてもよい。接続用導体40についても同様であり、接続用鍔部42の上面視形状とコラム部41の横断面形状を異なる多角形としてもよい。
 また、寄生容量低減構造Rpcを構成する傾斜面32c、42cは、直線状に傾斜する構造として例示したが、湾曲状また段状にしてもよい。
 本発明の第1の実施形態によれば下記の効果を奏する。
(1)半導体装置10は、半導体素子11を搭載する素子用導体30と、半導体素子11に接続されるボンディングワイヤ12を有する接続用導体40とを備え、対向する素子用導体30と接続用導体40の対向面32bおよび42bの少なくとも一方に寄生容量低減構造Rpcが設けられている。第1の実施形態では、寄生容量低減構造Rpcは、素子用導体30の素子用鍔部32の先端面32b、および該先端面32bの両隣の傾斜面32cにより形成される。また、寄生容量低減構造Rpcは、接続用導体40の素子用鍔部42の先端面42b、および該先端面42bの両隣の傾斜面42cにより形成される。素子用鍔部32の先端面32bおよび接続用鍔部42の先端面42bそれぞれの面積は、小さく、先端面32b、42bそれぞれの両隣には傾斜面32c、42cが形成されている。素子用導体30のコラム部31および接続用導体40のコラム部41との端子間距離は、素子用導体30の素子用鍔部32の先端面32bと、接続用導体40の接続用鍔部42の先端面42bとの最小端子間距離Lminよりも大きい。このため、素子用導体30と接続用導体40間の寄生容量を小さくすることができる。
(2)素子用導体30および接続用導体40それぞれの寄生容量低減構造Rpcは、コラム部31、41それぞれの上部から張り出す素子用鍔部32、または接続用鍔部42により構成される。この構造の寄生容量低減構造Rpcは、コラム部31を含む素子用導体30の厚さ全体またはコラム部41を含む接続用導体40の厚さ全体が寄生容量低減構造Rpcを構成する構造より厚さが薄い。このため、一層、寄生容量を低減することができる。また、素子用導体30のコラム部31および接続用導体40のコラム部41との端子間距離は、素子用導体30の素子用鍔部32の先端面32bと、接続用導体40の接続用鍔部42の先端面42bとの最小端子間距離Lminよりも大きい。このため、アンカー効果により、封止樹脂14から引き抜かれ難い構造となっている。また、素子用導体30のコラム部31と接続用導体40のコラム部41との端子間に充填される封止樹脂14の量が多くなり、この間における封止樹脂14のクラックを抑制することができる。
(3)上面視において、素子用導体30の素子搭載面32aの面積は、半導体素子11の面積(底面積)より小さく形成され、半導体素子11の外周側面は、素子搭載面32aの外周側面の外方に配置されている。このように、素子用導体30の素子搭載面32aのサイズを半導体素子11よりも小さいサイズに設定することにより、半導体装置10のサイズを小さくすることが可能となる。
-第2の実施形態-
 図3は、本発明の半導体装置の第2の実施形態を示し、図3(a)は、半導体装置の断面図であり、図3(b)は、図3(a)を下方からみた下面図である。なお、図3(b)では、半導体素子11およびボンディングワイヤ12の図示を省略している。
 第2の実施形態は、第1の実施形態とは異なる寄生容量低減構造Rpcを有しているが、その他の構成は、第1の実施形態と同様である。従って、以下では、主として第2の実施形態の寄生容量低減構造Rpcについて説明する。
 第2の実施形態においても、素子用導体130はコラム部131と、該コラム部131上から張り出す形状に設けられた素子用鍔部132を有し、接続用導体140は、コラム部141と、該コラム部141上から張り出す形状に設けられた接続用鍔部142とを有する。また、第1の実施形態と同様に、素子用導体130の素子用鍔部132の素子搭載面132aに半導体素子11が搭載され、接続用導体140の接続用鍔部142のボンディング面142aにボンディングワイヤ12がボンディングされる。
 素子用導体130のコラム部131の下面131aおよび接続用導体140のコラム部141の下面141aは、封止樹脂14の下面14aとほぼ面一となっており、封止樹脂14の下面14aから露出している。
 図3(a)に示されるように、素子用導体130、140それぞれのコラム部131、141は、封止樹脂14から露出する下面側の外周縁131b、141bが断面円弧状に縁取りされている。
 また、図3(b)に示されるように、素子用導体130の素子用鍔部132の接続用導体140に対向する側面は、平面視で円弧状に湾曲する湾曲面132cに形成されている。湾曲面132cは、素子用導体130の一対の側面132dのほぼ中心部132c1が、接続用導体140に最も近い位置に配置されている。同様に、接続用導体140の接続用鍔部142の素子用導体130に対向する側面は、平面視で円弧状に湾曲する湾曲面142cに形成されている。湾曲面142cは、接続用導体140の一対の側面142dのほぼ中心部142c1が、接続用導体140に最も近い位置に配置されている。従って、湾曲面132cの中心部132c1と湾曲面142cの中心部142c1との端子間距離が、素子用導体130と接続用導体140との端子間距離のうち、最も小さい最小端子間距離Lminとなる。
 なお、湾曲面132c、142cを平面視で円弧状としたが、円弧状とは、真円の他、楕円、放物線、指数曲線等の円弧形状を含むものである。
 図3(b)に示されるように、素子用導体130と接続用導体140との端子間距離は、湾曲面132cの中心部132c1および湾曲面142cの中心部142c1から図3の上下方向に離れるにしたがって漸増する。従って、第2の実施形態の半導体装置10における素子用導体130と接続用導体140間の寄生容量は、素子用導体130と接続用導体140が対向する側面の全幅に亘って同じ距離(最小端子間距離Lmin)で延在される上記比較例の構造よりも小さくなる。第2の実施形態では、素子用導体130の接続用導体40に対向する側面である、素子用鍔部32の湾曲面132cは、寄生容量低減構造Rpcを構成している。同様に、接続用導体140の素子用導体130に対向する側面である、湾曲面142cは、寄生容量低減構造Rpcを構成している。
 第2の実施形態の半導体装置10を製造する方法は、素子用導体130のコラム部131および接続用導体140のコラム部141の下端側が縁取りされた外周縁131b,141bを形成する方法以外は、第1の実施形態の半導体装置10を製造する方法と同様である。
 従って、以下では、素子用導体130の外周縁131bおよび接続用導体140の外周縁141bを形成する方法について説明する。
 図4は、図3に示された半導体装置の製造方法を説明するための図であり、図4(a)~図4(c)は、それぞれ、各工程における各部材の断面図である。図4(d)は、図4(a)の領域Aの拡大図である。
 図4(a)に示すように、基板61を準備し、該基板61の表裏両面にフォトレジスト膜62a、62bを形成する。フォトレジスト膜62a、62bは、ポジ型でもネガ型でもよいが、以下では、ネガ型を用いた場合として説明する。
 フォトレジスト膜62a上に、マスクとなるガラス基板71を配置する。ガラス基板71には、素子用導体130のコラム部131と同形状の遮光領域72および接続用導体40のコラム部41と同形状の遮光領域73が形成されている。
 素子用導体130および接続用導体140の形成方法は同一である。以下では、代表として、素子用導体130を形成する方法を説明する。
 図4(d)は、図4(a)の領域Aの拡大図である。
 ガラス基板71の素子用導体130のコラム部131と同形状の遮光領域72は、100%遮光する領域である。ガラス基板71における、素子用導体130の素子用鍔部132と接続用導体140の接続用鍔部142の間は、透光率ほぼ100%、換言すれば、遮光率ほぼ0%の透光領域74である。遮光領域72と透光領域74との間には、中間遮光領域75が設けられている。中間遮光領域75は、遮光膜をドット状にして相互に離間させて配置したり、遮光膜の濃度や厚さを遮光領域72より小さくしたりすることにより形成する。但し、中間遮光領域75における遮光率の変化率は、遮光領域72付近における遮光率の変化率よりも透光領域74付近における遮光率の変化が大きくなるようにする。遮光領域72と接する中間遮光領域75の境界部の遮光率が最も大きい。
 このようなガラス基板71をマスクとして露光すると、中間遮光領域75に対応するフォトレジスト膜62aは、遮光領域72から透光領域74との間では、硬化する部分が遮光領域72から透光領域74に向かうに伴って、漸次、増大する。
 このため、フォトレジスト膜62aを現像すると、図4(b)に示されるように、フォトレジスト膜62aに、素子用導体130のコラム部131の下面131a側(図4(c)参照)および接続用導体140のコラム部141の下面141a側(図4(c)参照)に、それぞれ、内方側に向けて、なだらかに降下する開口63a、63bが形成される。
 従って、次に、電鋳めっき法等により、フォトレジスト膜62aの厚さよりも厚くめっき層を形成すると、図4(c)に示すように、コラム部131、141の下面側に、それぞれ、縁取りを有する外周縁131b、141bを有する素子用導体130、接続用導体140が形成される。
 以降は、第1の実施形態の図2(d)、図2(e)に示す方法に準じることにより、図3に示す半導体装置10を得ることができる。
 第2の実施形態においても、素子用導体130および接続用導体140は、それぞれ、寄生容量低減構造Rpcを有する。また、素子用導体130および接続用導体140それぞれの寄生容量低減構造Rpcは、コラム部131、141の外周面よりも大きい外周面を有する素子用鍔部132、接続用鍔部142に設けられる。さらに、上面視において、素子用導体130の素子搭載面132aの面積は、半導体素子11の面積より小さく形成され、半導体素子11の外周側面は、素子搭載面132aの外周側面の外方に配置されている。なお、半導体素子11の外周側面は、素子用導体130の素子搭載面132aの外周側面と面一であってもよい。また、半導体素子11の外周側面が、素子用導体130の素子搭載面132aの外周側面の内側に配置されるようにしてもよい。
 従って、第2の実施形態においても、第1の実施形態の効果(1)~(3)と同様な効果を奏する。
-第3の実施形態-
 図5は、本発明の半導体装置の第3の実施形態を示し、図5(a)は、半導体装置の断面図であり、図5(b)は、図5(a)を下方からみた第1の下面図であり、図5(c)は、図5(a)を下方からみた第2の下面図である。
 第3の実施形態の半導体装置10では、図5(a)に示すように、素子用導体230および接続用導体240は、それぞれ、鍔部を有しておらず、全体がコラム状の構造を有する。
 素子用導体230および接続用導体240は、それぞれ、図5(b)に示すように、それぞれの下面が、第1の実施形態と同様、先端面230a、240aおよび一対の傾斜面230b、240bを有する多角形状を有している。
 素子用導体230における先端面230aの両隣の傾斜面230bは、寄生容量低減構造Rpcを構成している。また、接続用導体240における先端面240aの両隣の傾斜面240bは、寄生容量低減構造Rpcを構成している。
 素子用導体230および接続用導体240は、図5(c)に示すように、第2の実施形態の素子用鍔部132、接続用鍔部142と同様、互いに対向する側面が、それぞれ円弧状に湾曲する湾曲面230c、240cを有する構造としてもよい。この構造では、素子用導体230の湾曲面230cおよび接続用導体240の湾曲面240cそれぞれが寄生容量低減構造Rpcを構成している。
 第3の実施形態の他の構成は、第1の実施形態と同様であり、対応する部材に同一の符号を付して説明を省略する。
 第3の実施形態においても、素子用導体230および接続用導体240は、それぞれ、寄生容量低減構造Rpcを有する。また、素子用導体230の面積は、上面視において、半導体素子11の面積より小さく形成され、半導体素子11の外周側面は、素子用導体230の外周側面の外方に配置されている。なお、半導体素子11の外周側面は、素子用導体230の素子搭載面232aの外周側面と面一であってもよい。また、半導体素子11の外周側面が、素子用導体230の素子搭載面232aの外周側面の内側に配置されるようにしてもよい。
 従って、第3の実施形態は、第1の実施形態の効果(1)、(3)と同様な効果を奏する。
-第4の実施形態-
 図6は、本発明の半導体装置の第4の実施形態を示す断面図である。
 第4の実施形態の半導体装置10は、第3の実施形態と同様、素子用導体330および接続用導体340は、それぞれ、鍔部を有しておらず、全体がコラム状の構造を有する。第4の実施形態の半導体装置10が、第3の実施形態と異なる点は、素子用導体330および接続用導体340は、それぞれ、下面330a側、340a側に縁取りされた外周縁330b、340bを有することである。
 第4の実施形態の半導体装置10においても、素子用導体330および接続用導体340は、それぞれ、寄生容量低減構造Rpcを有する。また、上面視において、素子用導体330の面積は、半導体素子11の面積より小さく形成され、半導体素子11の外周側面は、素子用導体330の外周側面の外方に配置されている。なお、半導体素子11の外周側面は、素子用導体330の素子搭載面332aの外周側面と面一であってもよい。また、半導体素子11の外周側面が、素子用導体330の素子搭載面332aの外周側面の内側に配置されるようにしてもよい。
 従って、第1の実施形態の効果(1)、(3)と同様な効果を奏する。
-第5の実施形態-
 図7は、本発明の半導体装置の第5の実施形態を示す断面図である。
 第5の実施形態の半導体装置10は、第3、第4の実施形態と同様、素子用導体430および接続用導体440は、それぞれ、鍔部を有しておらず、素子用導体430および接続用導体440は、それぞれ、断面が逆台形形状に形成されている。
 すなわち、素子用導体430は、下面430aから接続用導体440側に向けて、徐々に上昇するテーパ面430b、および下面430aから接続用導体440側とは逆方向に向けて徐々に上昇するテーパ面430cを有する。換言すれば、素子用導体430は、半導体素子11から離れる方向に向かって、接続用導体440側からの距離が大きくなるテーパ面430bを有する。同様に、接続用導体440は、下面440aから素子用導体430側に向けて徐々に上昇するテーパ面440b、および下面430aから素子用導体430側とは逆方向に向けて徐々に上昇するテーパ面440cを有する。換言すれば、接続用導体440は、ボンディング面から離れる方向に向かって、素子用導体430側からの距離が大きくなるテーパ面440bを有する。
 つまり、素子用導体430と接続用導体440とは、互いに対向する傾斜面430b、440bを有する。傾斜面430b、440bは、図7において、導体下面430a、440aから図面上方の方向に、すなわち半導体搭載面(素子搭載面432a)やボンディング面に向かう方向に末広がりの斜面である。半導体搭載面およびボンディング面が互いに対向する一対の対向辺(図7の紙面奥方向に延びる辺)の間隔を比較構造の最小端子間距離Lminと同様の寸法とすると、傾斜面430b、440b間の距離が、半導体搭載面およびボンディング面からそれぞれの下面430a、440aに向かう方向に沿って徐々に大きくなっている(漸増している)。そのため、素子用導体430と接続用導体440との間の寄生容量は、比較構造に比べて小さくなる。
 第5の実施形態における寄生容量低減構造Rpcを構成する傾斜面430b、440bを有する素子用導体430と接続用導体440は、上面視で図5(b)に示す先細状の多角形状であってもよいし、図5(c)に示す湾曲面であってもよい。
 テーパ面430b、430cおよびテーパ面440b、440cのテーパ角θは、封止樹脂14の下面14aに対して、30°~60°程度とするのが好ましい。テーパ角θが60°程度より大きくなると、封止樹脂14からの引き抜き力が小さくなってしまう。テーパ角θが30°程度より小さくなると、モールドにより封止樹脂14を形成する際、封止樹脂材が、素子用導体430のテーパ面430b、430cおよび接続用導体440のテーパ面440b、440cの下面側に流入し難くなり、封止樹脂14にクラックが生じ易い。
 テーパ面430b、430cを有する素子用導体430、およびテーパ面440b、440cを有する接続用導体440の製造方法は、第2の実施形態に準ずる方法を用いることができる。但し、直線的に傾斜するテーパ面430b、430cを有する素子用導体430または直線的に傾斜するテーパ面440b、440cを有する接続用導体440を形成するには、ガラス基板71の中間遮光領域75の遮光率の変化率が、中間遮光領域75側から透光領域74側まで均一となるように形成する。
 なお、第5の実施形態において、素子用導体430のテーパ面430cおよび接続用導体440のテーパ面440cは、テーパ角θ=90°、換言すればテーパ面を有さない構造としてもよい。
 また、素子用導体430および接続用導体440を、それぞれ、テーパ面430b、440bを有する鍔部と、該鍔部の下方に設けられたコラム部とを有する構成としてもよい。すなわち、素子用導体430の上面432aから厚さの中間位置までをテーパ面430bとし、該中間位置から下面430aまでをテーパ角θ=90°の面とする。また、接続用導体440の上面から厚さの中間位置までをテーパ面440bとし、該中間位置から下面440aまでをテーパ角θ=90°の面とする。
 第5の実施形態の他の構成は、第1の実施形態と同様であり、対応する部材に同一の符号を付して説明を省略する。
 第5の実施形態においても、素子用導体430および接続用導体440は、それぞれ寄生容量低減構造Rpcを有する。また、上面視において、素子用導体430の面積は、半導体素子11の面積より小さく形成され、半導体素子11の外周側面は、素子用導体430の外周面の外方に配置されている。
 従って、第5の実施形態は、第1の実施形態の効果(1)、(3)と同様な効果を奏する。
 また、第5の実施形態において、素子用導体430および接続用導体440を、それぞれ、鍔部と、該鍔部の下方に設けられたコラム部とから構成される構造にすれば、第1の実施形態の効果(2)と同様な効果を奏する。
 なお、第5の実施形態において、半導体素子11の外周側面は、素子用導体430の素子搭載面432aの外周側面と面一であってもよい。また、半導体素子11の外周側面が、素子用導体430の素子搭載面432aの外周側面の内側に配置されるようにしてもよい。
-第6の実施形態-
 図8は、本発明の半導体装置の第6の実施形態を示し、半導体装置を下面側からみた第下面図である。
 図8に示された素子用導体530および接続用導体540は、それぞれ、外周側面531、541に連続状に形成された複数の微細な凹凸531a、541aを有する。素子用導体530および接続用導体540は、それぞれ、図5(b)または図5(c)に示される、上面視で先細形状部の外周側面または湾曲面を含む外周側面に、微細な凹凸531a、541aが連続状に形成された構造を有する。微細な凹凸531a、541aが形成された素子用導体530の外周側面531と接続用導体540の外周側面541とが対向する領域は、それぞれ、寄生容量低減構造Rpcを構成する。
 素子用導体530の外周側面531に微細な凹凸531aを設け、また接続用導体540の外周側面541に微細な凹凸541aを設けると、外周側面531、541の面積が大きくなる。これにより、封止樹脂14と、素子用導体530および接続用導体540との密着力(接合強度)が増大する。
 なお、図8では、各微細な凹凸531a、541aを、形状を判り易くするために比較的大きめなサイズとして例示されているが、実際には、これよりも小さいサイズとすることが好ましい。また、微細な凹凸531a、541aは、先端部が先鋭な形状として例示されているが、先端部に円みをつけて、先端部への電解集中を抑制するようにしてもよい。
 素子用導体530および接続用導体540は、素子用導体530および接続用導体540のマスクパターンを、外周側面531、541のそれぞれに微細な凹凸531a、541aが形成された形状とすることにより、第1の実施形態と同様な方法で作製することができる。
 素子用導体530および接続用導体540は、それぞれ、全体をコラム状の構造としたり、微細な凹凸531a、541aを有する鍔部と、該鍔部の下方に設けられたコラム部とから構成される構造にしたりすることができる。
 第6の実施形態の他の構成は、第1の実施形態と同様である。
 第6の実施形態においても、素子用導体530および接続用導体540は、それぞれ、寄生容量低減構造Rpcを有する。また、上面視において、素子用導体530の面積は、半導体素子11の面積より小さく形成され、半導体素子11の外周側面は、素子用導体530の外周側面531の外方に配置されている。
 従って、第6の実施形態は、第1の実施形態の効果(1)、(3)と同様な効果を奏する。
 また、第6の実施形態において、素子用導体530および接続用導体540を、それぞれ、微細な凹凸531a、541aを有する鍔部と、該鍔部の下方に設けられたコラム部とから構成される構造にすれば、第1の実施形態の効果(2)と同様な効果を奏する。
 なお、第6の実施形態において、上面視において、半導体素子11の外周側面に対応する辺(線)は、素子用導体530の素子搭載面(不図示)の外周側面に形成されている凹凸531aの突部先端を結ぶ線と一致してもよい。また、上面視において、半導体素子11の外周側面に対応する辺(線)が、素子用導体530の素子搭載面(不図示)の外周側面に形成されている凹凸531aの突部先端を結ぶ線の内側に配置されるようにしてもよい。
-第7の実施形態-
 図9は、本発明の半導体装置の第7の実施形態を示し、半導体装置を下方からみた下面図である。
 第7の実施形態における半導体装置10では、素子用導体630と接続用導体640は、封止樹脂14の一対の長側面14b、14c間の中心を通る中心線x-xと、封止樹脂14の一対の短側面14d、14e間の中心を通る中心線y-yの交点Oに対して点対称に配置されている。
 素子用導体630は、接続用導体640側に設けられた傾斜面630aと、垂直な端部側面630bと、一対の側面630c、630dとを有する。接続用導体640は、素子用導体630に対向する傾斜面640aと、垂直な端部側面640bと一対の側面640c、640dとを有する。
 素子用導体630の傾斜面630aと接続用導体640の傾斜面640aとは平行である。従って、素子用導体630の傾斜面630aと接続用導体640の傾斜面640aとの端子間距離は、すべて面領域において最小端子間距離Lminである。
 素子用導体630の傾斜面630aと接続用導体640の傾斜面640aとは、幅方向(図9の上下方向)のほぼ全長に亘って延在されている。しかし、素子用導体630の傾斜面630aおよび接続用導体640の傾斜面640aは、それぞれ、中心線y-yに対して傾斜している。このため、素子用導体630と接続用導体640間の寄生容量は、中心線y-yに平行であって最小端子間距離Lminで離間する導体(平行平板)間に形成される上記比較構造の寄生容量よりも小さくなる。つまり、素子用導体630の傾斜面630aおよび接続用導体640の傾斜面640aは、それぞれ、寄生容量低減構造Rpcを構成する。
 なお、素子用導体630の端部側面630bおよび接続用導体640の端部側面640bは、電界集中を抑制するためのものである。すなわち、素子用導体630の傾斜面630aと側面630dとの交点を先鋭にすると、この交点に電界集中が生じる。また、接続用導体640の傾斜面640aと側面640dとの交点を先鋭にすると、この交点に電界集中が生じる。素子用導体630の端部側面630bおよび接続用導体640の端部側面640bは、このような電界集中を抑制する。
 第7の実施形態において、素子用導体630および接続用導体640は、それぞれ、全体をコラム状の構造としたり、傾斜面630a、640aを有する鍔部と、該鍔部の下方に設けられたコラム部とから構成される構造にしたりすることができる。
 第7の実施形態の他の構成は、第1の実施形態と同様である。
 第7の実施形態においても、素子用導体630および接続用導体640は、それぞれ、寄生容量低減構造Rpcを有する。図示はしないが、上面視において、半導体素子11の外周側面は、素子用導体630の外周面の外方に配置されている。
 従って、第7の実施形態は、第1の実施形態の効果(1)、(3)と同様な効果を奏する。
 また、第7の実施形態において、素子用導体630および接続用導体640を、それぞれ、傾斜面630a、640aを有する鍔部と、該鍔部の下方に設けられたコラム部とから構成される構造にすれば、第1の実施形態の効果(2)と同様な効果を奏する。
 なお、第7の実施形態において、上面視において、半導体素子11の外周側面が、素子用導体630の外周面の内側に配置されるようにしてもよい。
-第8の実施形態-
 図10は、本発明の半導体装置の第8の実施形態を示し、半導体装置を下方からみた下面図である。
 第8の実施形態における半導体装置10では、素子用導体730と接続用導体740は平面視で扇形状に形成されている。
 素子用導体730は、封止樹脂14の一方の長側面14cと一方の短側面14dとの交差部を中心とする円の一部である円弧状の外周側面731を有する。接続用導体740は、他方の長側面14bと他方の短側面14eとの交差部を中心とする円の一部である円弧状の外周側面741を有する。素子用導体730と接続用導体740は、封止樹脂14の幅方向の一対の長側面14b、14c間の中心を通る中心線x-xと、封止樹脂14の一対の短側面14d、14e間の中心を通る中心線y-yの交点Oに対して点対称に配置されている。
 図10において、素子用導体730の外周側面731の点731aと、接続用導体740の外周側面741の点741a間の距離が、最小端子間距離Lminである。素子用導体730の外周側面731と接続用導体740の外周側面741との端子間距離は、点731aまたは点741aから離間する長さに応じて大きくなる。従って、素子用導体730の外周側面731および接続用導体740の外周側面741は、それぞれ、寄生容量低減構造Rpcを構成する。
 第8の実施形態において、素子用導体730および接続用導体740は、それぞれ、全体をコラム状の構造としたり、円弧状の外周側面731、741を有する鍔部と、該鍔部の下方に設けられたコラム部とから構成される構造にしたりすることができる。
 第8の実施形態における他の構成は、第1の実施形態と同様である。
 第8の実施形態においても、素子用導体730および接続用導体740は、それぞれ、寄生容量低減構造Rpcを有する。図示はしないが、上面視において、半導体素子11の外周側面は、素子用導体730の外周面の外方に配置されている。不図示の半導体素子11も、封止樹脂14により全面が覆われるようにすることが好ましい。
 従って、第8の実施形態は、第1の実施形態の効果(1)、(3)と同様な効果を奏する。
 また、第8の実施形態において、素子用導体730および接続用導体740を、それぞれ、円弧状の外周側面731、741を有する鍔部と、該鍔部に下方に設けられたコラム部とから構成される構造にすれば、第1の実施形態の効果(2)と同様な効果を奏する。
 なお、第8の実施形態において、上面視において、半導体素子11の外周側面が、素子用導体730の外周面の内側に配置されるようにしてもよい。
-第9の実施形態-
 図11は、本発明の半導体装置の第9の実施形態を示し、半導体装置を、下方からみた下面図である。
 第9の実施形態の半導体装置10は、第1の実施形態に示す素子用導体30と接続用導体40とを複数組(図11では2組として例示)有している。このように、複数組の素子用導体30と接続用導体40とを封止樹脂14により封止したパッケージとすることができる。
 複数組の素子用導体30と接続用導体40とを有する半導体装置10を製造するには、第1の実施形態と同様な方法で図2(a)~図2(d)の各工程を行い、図2(e)の封止樹脂14を切断する工程で、複数組の素子用導体30と接続用導体40が1つのパッケージとなるように封止樹脂14を切断すればよい。
 図11では、第1の実施形態に示す素子用導体30と接続用導体40とを有する半導体装置10として例示した。しかし、第2~第8の実施形態に示す素子用導体130~730と接続用導体140~740とを複数組有する半導体装置10とすることもできる。
 第9の実施形態の半導体装置10は、第1~第8の実施形態に示す素子用導体30~730と接続用導体40~740とを複数組有する構成であるから、当然、第1の実施形態の効果(1)~(3)と同様な効果を奏する。
-第10の実施形態-
 図12は、本発明の半導体装置の第10の実施形態を示し、図12(a)は半導体装置の断面図であり、図12(b)は、図12(a)を下方からみた下面図である。
 第10の実施形態の半導体装置10Aでは、封止樹脂14は、素子用導体30と接続用導体40との間に形成された溝部14fを有する。溝部14fは、封止樹脂14の幅方向(図12(b)の上下方向)全長に亘り延在されている。換言すれば、溝部14fは、封止樹脂14の一方の長側面14bから他方の長側面14cまで封止樹脂14を幅方向に貫通して形成されている。
 溝部14fの深さは、素子用導体30および接続用導体40の厚さとほぼ同程度である。封止樹脂14の強度を確保することができれば、溝部14fの深さを、素子用導体30および接続用導体40の厚さより大きくしてもよい。溝部14fは、封止樹脂14の強度を均一化するため、素子用導体30と接続用導体40との間の中心とすることが好ましい。しかし、溝部14fの位置は、素子用導体30と接続用導体40との間の中心に特定されるものではなく、素子用導体30と接続用導体40との間の位置であれば、どこでもよい。
 なお、図12では、素子用導体30上に搭載される半導体素子11は、素子用導体30より小さいサイズであり、素子用導体30の外周側面の内側に配置される構造として例示されている。
 封止樹脂14の素子用導体30と接続用導体40との間に溝部14fを形成することにより、素子用導体30と接続用導体40の寄生容量を低減することができる。
 半導体装置10Aの他の構成は第1の実施形態と同様であり、対応する部材に同一の符号を付して説明を省略する。
 なお、図12では、第1の実施形態に示す素子用導体30と接続用導体40とを有する半導体装置10Aとして例示した。しかし、第2~第8の実施形態に示す素子用導体130~730のいずれかと、接続用導体140~740のいずれかとを有する半導体装置10Aとすることもできる。
 なお、上記各実施形態では、素子用導体30の厚さと接続用導体40との厚さを同一として例示した。しかし、素子用導体30と接続用導体40とを異なる厚さとしてもよい。
 上記各実施形態では、半導体素子11が1つの電極パッド11aを有し、1つの接続用導体40~740に1本のボンディングワイヤ12により接続された構造として例示した。しかし、本発明は、半導体素子11が複数の電極パッド11aを有し、該電極パッド11aと電極パッド11aの数に対応する数の接続用導体40~740が、それぞれ、ボンディングワイヤ(接続線)12により接続されている半導体装置に適用することができる。
 上記各実施形態では、素子用導体30~730および接続用導体40~740を電鋳によるめっき層として説明した。めっき層により導体を形成すれば、リードフレームに比べて導体厚みを半分程度まで抑えることができ、断面積が小さくなることによる寄生容量低下に貢献できる為望ましい。しかし、素子用導体30~730および接続用導体40~740をリードフレームにより形成してもよい。リードフレームにより形成する場合は、板状フレームをエッチングしたり打抜き加工したりして形成することができる。打抜き加工により形成する場合、素子用鍔部32、接続用鍔部42や外周縁131b、141b、330b、340bは、打抜き後、リードフレームを押し潰すことにより形成することができる。
 上記第1~第10の実施形態に示された構造を、相互に、組み合わせてもよい。例えば、第1~第10の実施形態のいずれかの素子用導体30~730と、他の接続用導体40~740を組み合わせてもよい。第1~第10の実施形態における素子用導体30~730または接続用導体40~740の一方の導体のみに寄生容量低減構造を設け、他方の導体には、寄生容量低減構造を設けない半導体装置10、10Aとしてもよい。
 上記では、種々の実施の形態を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018年第064569号(2018年3月29日出願)
 10、10A   半導体装置
 11   半導体素子
 12   ボンディングワイヤ(接続線)
 14   封止樹脂
 14f  溝部
 30、130、230、330、430、530、630、730  素子用導体
 31、131   コラム部
 32、132   素子用鍔部
 32a、132a  素子搭載面
 32b  先端面(側面)
 40、140、240、340、440、540、640、740  接続用導体
 41、141   コラム部
 42、142   接続用鍔部
 42a,142a  ボンディング面(接続面)
 42b  先端面(側面)
132c、142c  湾曲面(側面)
230a、240a  先端面(側面)
230c、240c  湾曲面(側面)
430b、440b  テーパ面
531、541   外周側面(側面)
531a、541a  凹凸
630a、640a  傾斜面(側面)
731、741   外周側面(側)
 Lmin  最小端子間距離
 Rpc  寄生容量低減構造

Claims (13)

  1.  半導体素子と、
     上部に前記半導体素子を搭載する素子搭載面を有する素子用導体と、
     前記素子用導体と離間して配置され、上部に接続面を有する接続用導体と、
     前記半導体素子と前記接続用導体の前記接続面とを接続する接続線と、
     前記半導体素子と、前記素子用導体と、前記接続用導体と、前記接続線とを封止する封止樹脂とを備え、
     対向して配置された前記素子用導体と前記接続用導体の少なくとも一方の対向側面に寄生容量低減構造が設けられている半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記寄生容量低減構造は、前記素子用導体と前記接続用導体の少なくとも一方の上部側に設けられている半導体装置。
  3.  請求項2に記載の半導体装置において、
     前記寄生容量低減構造は、前記上部側から前記素子用導体と前記接続用導体の少なくとも一方の下面までコラム状に設けられている半導体装置。
  4.  請求項1に記載の半導体装置において、
     前記寄生容量低減構造は、他方の導体側に最も近い最接近の第1位置で定まる対向面間距離が最小であり、第1位置とは異なる第2位置の対向面間距離はそれよりも大きな寸法とされる対向面である半導体装置。
  5.  請求項4項に記載の半導体装置において、
     前記寄生容量低減構造を有する対向面は、平面または曲面である半導体装置。
  6.  請求項1に記載の半導体装置において、
     前記寄生容量低減構造は、前記素子用導体と前記接続用導体の少なくとも一方が平面視で多角形状である構造であり、
     前記多角形状を有する導体は、他方の導体側に最も近い最接近の第1対向面とそれ以外の第2対向面を有し、前記第2対向面で定まる対向面間距離は、前記第1対向面で定まる対向面間距離よりも大きな寸法とされる半導体装置。
  7.  請求項1に記載の半導体装置において、
     前記寄生容量低減構造は、前記素子用導体と前記接続用導体の少なくとも一方が平面視で円弧形状を有する構造であり、
     前記円弧形状を有する導体は、他方の導体側に最も近く最小対向面間距離が定まる最接近の第1対向面と、前記第1対向面以外の第2対向面とを有し、前記第2対向面の対向面間距離が前記最小対向面間距離よりも大きな寸法とされる半導体装置。
  8.  請求項6または7に記載の半導体装置において、
     前記寄生容量低減構造は、前記第1対向面と前記第2対向面には連続状に形成された凹凸を含む半導体装置。
  9.  請求項1から請求項8までのいずれか一項に記載の半導体装置において、
     前記素子用導体の前記素子搭載面の面積は、平面視で前記半導体素子の面積より小さく形成され、前記半導体素子の外周側面は、前記素子搭載面の外周側面の外方に配置されている半導体装置。
  10.  半導体素子と、
     上部に前記半導体素子を搭載する素子搭載面を有する素子用導体と、
     前記素子用導体と離間して配置され、上部に接続面を有する接続用導体と、
     前記半導体素子と前記接続用導体の前記接続面とを接続する接続線と、
     前記半導体素子と、前記素子用導体と、前記接続用導体と、前記接続線とを封止する封止樹脂と、
     対向して配置された前記素子用導体と前記接続用導体の少なくとも一方の導体の、他方の導体に対向する対向側面に設けられた寄生容量低減構造とを備え、
     前記寄生容量低減構造は、前記一方の導体の対向側面と前記他方の導体の対向側面との対向面間距離が最も小さい第1位置における面積が、前記一方の導体の前記対向側面の面積全体よりも小さく形成されている半導体装置。
  11.  請求項10に記載の半導体装置において、
     前記一方の導体の前記第1位置における面積は、前記第1位置と異なる第2位置における対向側面全体の面積よりも小さく形成されている半導体装置。
  12.  半導体素子と、
     上部に前記半導体素子を搭載する素子搭載面を有する素子用導体と、
     前記素子用導体と離間して配置され、上部に接続面を有する接続用導体と、
     前記半導体素子と前記接続用導体の前記接続面とを接続する接続線と、
     前記半導体素子と、前記素子用導体と、前記接続用導体と、前記接続線とを封止する封止樹脂と、
     素子用導体と前記接続用導体とが対向する側面の間に介在する前記封止樹脂に形成された溝部とを備える、半導体装置。
  13.  請求項1から請求項9までのいずれか1項に記載の半導体装置において、
     前記素子用導体と前記接続用導体とが対向する側面の間に介在する前記封止樹脂に形成された溝部をさらに有する半導体装置。
PCT/JP2018/026364 2018-03-29 2018-07-12 半導体装置 WO2019187183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/042,264 US20210050285A1 (en) 2018-03-29 2018-07-12 Semiconductor Device
CN201880091951.0A CN111937142A (zh) 2018-03-29 2018-07-12 半导体装置
TW108102493A TW201943045A (zh) 2018-03-29 2019-01-23 半導體裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064569 2018-03-29
JP2018064569A JP6630390B2 (ja) 2018-03-29 2018-03-29 半導体装置

Publications (1)

Publication Number Publication Date
WO2019187183A1 true WO2019187183A1 (ja) 2019-10-03

Family

ID=68057976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026364 WO2019187183A1 (ja) 2018-03-29 2018-07-12 半導体装置

Country Status (5)

Country Link
US (1) US20210050285A1 (ja)
JP (1) JP6630390B2 (ja)
CN (1) CN111937142A (ja)
TW (1) TW201943045A (ja)
WO (1) WO2019187183A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580722B1 (en) * 2018-09-18 2020-03-03 Texas Instruments Incoporated High voltage flip-chip on lead (FOL) package
US20220362397A1 (en) 2019-09-26 2022-11-17 Nof Corporation Heterobifunctional monodispersed polyethylene glycol having peptide linker
TWI753317B (zh) * 2019-10-31 2022-01-21 錼創顯示科技股份有限公司 電極結構、微型發光元件以及顯示面板
US11562947B2 (en) 2020-07-06 2023-01-24 Panjit International Inc. Semiconductor package having a conductive pad with an anchor flange

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497549A (ja) * 1990-08-16 1992-03-30 Nec Yamagata Ltd 樹脂封止型半導体装置
JPH11330313A (ja) * 1998-05-12 1999-11-30 Mitsubishi Electric Corp 半導体装置の製造方法及びその構造、該方法に用いるリードフレーム
JP2005217452A (ja) * 2002-04-01 2005-08-11 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2007074066A (ja) * 2005-09-05 2007-03-22 Seiko Epson Corp 圧電デバイス
JP2008103550A (ja) * 2006-10-19 2008-05-01 Aoi Electronics Co Ltd 半導体装置
JP2012235172A (ja) * 2012-09-04 2012-11-29 Sumitomo Metal Mining Co Ltd 半導体装置用基板及び半導体装置
JP2013183055A (ja) * 2012-03-02 2013-09-12 Renesas Electronics Corp 半導体装置の製造方法および半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207554A4 (en) * 1999-07-02 2008-07-02 Rohm Co Ltd ELECTRONIC COMPONENT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497549A (ja) * 1990-08-16 1992-03-30 Nec Yamagata Ltd 樹脂封止型半導体装置
JPH11330313A (ja) * 1998-05-12 1999-11-30 Mitsubishi Electric Corp 半導体装置の製造方法及びその構造、該方法に用いるリードフレーム
JP2005217452A (ja) * 2002-04-01 2005-08-11 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2007074066A (ja) * 2005-09-05 2007-03-22 Seiko Epson Corp 圧電デバイス
JP2008103550A (ja) * 2006-10-19 2008-05-01 Aoi Electronics Co Ltd 半導体装置
JP2013183055A (ja) * 2012-03-02 2013-09-12 Renesas Electronics Corp 半導体装置の製造方法および半導体装置
JP2012235172A (ja) * 2012-09-04 2012-11-29 Sumitomo Metal Mining Co Ltd 半導体装置用基板及び半導体装置

Also Published As

Publication number Publication date
US20210050285A1 (en) 2021-02-18
JP2019176066A (ja) 2019-10-10
CN111937142A (zh) 2020-11-13
TW201943045A (zh) 2019-11-01
JP6630390B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2019187183A1 (ja) 半導体装置
KR100486400B1 (ko) 고주파 모듈 및 그 제조 방법
JP5108496B2 (ja) 回路基板およびその製造方法、回路装置およびその製造方法
JP5951863B2 (ja) 電子部品モジュール及びその製造方法
US20150296667A1 (en) Method of manufacturing electronic component
CN113179623B (zh) 显示模组
US20150235937A1 (en) Method For Manufacturing Semiconductor Device Using Mold Having Resin Dam And Semiconductor Device
JP2021176166A (ja) インダクタ部品及びインダクタ構造体
US10985030B2 (en) Method for manufacturing semiconductor device
US10707154B2 (en) Semiconductor device and method for manufacturing the same
JP4904623B2 (ja) 光半導体素子
JP2009147094A (ja) 半導体装置
JPWO2020085380A1 (ja) 電子部品モジュール及び電子部品モジュールの製造方法
KR102552992B1 (ko) 디스플레이 디바이스
US10681831B2 (en) Electronic component mounting board, electronic device, and electronic module
CN107425104B (zh) 发光元件载置用基体的制造方法及发光元件载置用基体
US20220336345A1 (en) Semiconductor device and module
TW202022897A (zh) 電阻元件
US20240063108A1 (en) Semiconductor package and semiconductor electronic device
JP5574848B2 (ja) 多数個取り配線基板
US20240162167A1 (en) Substrate and semiconductor module
EP4191689A1 (en) Semiconductor light emitting device
JP6916453B2 (ja) 光源装置
WO2022181684A1 (ja) 電子素子実装用基板、電子部品、電子機器
JP2023105426A (ja) 積層コイル部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911383

Country of ref document: EP

Kind code of ref document: A1