WO2019186987A1 - 複合粒子 - Google Patents

複合粒子 Download PDF

Info

Publication number
WO2019186987A1
WO2019186987A1 PCT/JP2018/013524 JP2018013524W WO2019186987A1 WO 2019186987 A1 WO2019186987 A1 WO 2019186987A1 JP 2018013524 W JP2018013524 W JP 2018013524W WO 2019186987 A1 WO2019186987 A1 WO 2019186987A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cyclic ether
coating layer
compound
ether group
Prior art date
Application number
PCT/JP2018/013524
Other languages
English (en)
French (fr)
Inventor
咲奈 宮内
尚 丸澤
亘人 濱田
英夫 澤田
Original Assignee
互応化学工業株式会社
国立大学法人弘前大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 互応化学工業株式会社, 国立大学法人弘前大学 filed Critical 互応化学工業株式会社
Priority to JP2020508783A priority Critical patent/JP7216375B2/ja
Priority to PCT/JP2018/013524 priority patent/WO2019186987A1/ja
Priority to TW108110658A priority patent/TWI816770B/zh
Publication of WO2019186987A1 publication Critical patent/WO2019186987A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/149Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to composite particles, and more particularly to composite particles comprising inorganic particles and a coating layer.
  • Patent Document 1 discloses that the dispersibility of inorganic particles in a hydrophilic solvent such as water or alcohol is improved by bonding a fluorine oligomer having a specific structure to the inorganic particles.
  • inorganic particles are imparted with excellent dispersibility in water, alcohol and the like, but dispersibility in various polar solvents may not be so high.
  • An object of the present invention is to provide composite particles having improved dispersibility in a polar solvent.
  • the composite particles according to one embodiment of the present invention include inorganic particles and a coating layer that covers the inorganic particles.
  • the coating layer is a component (B) composed of at least one compound selected from the group consisting of a cyclic ether group-containing compound (A), a polyvalent carboxylic acid (b1), and a polyvalent carboxylic acid anhydride (b2). Is a cured product of the composition containing
  • composite particles with improved dispersibility in a polar solvent can be provided.
  • FIG. 1A is a transmission electron microscope (TEM) photograph of the composite particles of Example 2.
  • FIG. 1B is a graph showing the result of energy dispersive X-ray analysis (EDX) of the portion enclosed by a square in FIG. 1A.
  • FIG. 2 is a graph showing spectra obtained by Fourier transform infrared spectroscopy for the composite particles of Example 1, the composite particles of Example 2, dimethylacrylamide (DMAA), and silica particles (SiO 2 ). .
  • DMAA dimethylacrylamide
  • SiO 2 silica particles
  • the composite particles according to the present embodiment include inorganic particles and a coating layer that covers the inorganic particles.
  • the coating layer includes a cyclic ether group-containing compound (A), a component (B) made of at least one compound selected from the group consisting of a polyvalent carboxylic acid (b1) and a polyvalent carboxylic acid anhydride (b2), It is the hardened
  • the coating layer should just cover at least one part of the surface of an inorganic particle. That is, the coating layer may cover the entire surface of the inorganic particles, or may cover only a part of the surface of the inorganic particles.
  • the composite particles can have higher dispersibility in a polar solvent than inorganic particles that do not include a coating layer.
  • the composite particles may not have improved dispersibility in all polar solvents, as long as the dispersibility in at least one kind of polar solvent is improved.
  • the composite particles have high dispersibility in a polar solvent, they can have high dispersibility in a resin composition containing components such as a resin having polarity. Therefore, the composite particles can be favorably dispersed in the resin composition by blending the composite particles into the resin composition as an inorganic filler or the like.
  • the composite particles can be suitably used in various applications.
  • the material of the inorganic particles is appropriately selected according to the use of the composite particles.
  • the inorganic particles are selected from the group consisting of, for example, silicon dioxide, titanium oxide, zirconium oxide, magnesium oxide, aluminum oxide, iron oxide, zinc oxide, tin oxide, cobalt oxide, nickel oxide, cerium oxide, aluminum nitride, and boron nitride. Contains at least one substance.
  • the composite particles can be used as an inorganic filler or the like.
  • the inorganic particles include zirconium oxide, for example, the refractive index of the optical material can be increased by blending the composite particles with a resin composition for producing the optical material.
  • the inorganic particles include magnesium oxide, boron nitride or the like, the heat dissipation of the material can be improved by blending the composite particles with the resin composition for producing a member that requires heat dissipation.
  • the particle size of the inorganic particles can be set according to the use of the composite particles.
  • the average particle diameter of the inorganic particles is, for example, 1 nm or more and 10 ⁇ m or less. In this case, the dispersibility of the composite particles can be improved satisfactorily.
  • the average particle size of the inorganic particles is preferably 10 nm to 500 nm, more preferably 10 nm to 200 nm.
  • the average particle size of the inorganic particles is a value measured by a dynamic light scattering method.
  • the ratio of the coating layer to the composite particles that is, the thickness of the coating layer can be controlled.
  • the coating layer when producing composite particles, when the composition concentration in the mixture of the composition that is the raw material of the composite particles and the inorganic particles is constant, the smaller the particle size of the inorganic particles used, the larger the surface area, so the coating layer It is presumed that the coating layer can be thickened because the surface area becomes smaller as the particle size of the inorganic particles becomes larger.
  • the composition is used for producing a coating layer covering the inorganic particles as described above.
  • the composition contains a cyclic ether group-containing compound (A) and a component (B).
  • the cyclic ether group-containing compound (A) is, for example, a polymer, that is, a cyclic ether group-containing polymer.
  • the cyclic ether group-containing compound (A) is preferably a polymer of a polymerizable monomer component (a) containing an ethylenically unsaturated monomer (a11) having a cyclic ether group, and two or more in one molecule. It preferably has a cyclic ether group.
  • Component (B) consists of at least one compound selected from the group consisting of polyvalent carboxylic acid (b1) and polyvalent carboxylic acid anhydride (b2).
  • the composition can be cured by reacting the cyclic ether group-containing compound (A) and the component (B) in the composition. Thereby, a coating layer can be produced from the composition.
  • the coating layer has a hydroxyl group generated by a reaction between a cyclic ether group and a carboxyl group or an anhydrous carboxyl group. Furthermore, the coating layer can have an unreacted carboxyl group derived from the carboxyl group or the anhydrous carboxyl group of the component (B).
  • the component (B) is considered to easily move in the composition as compared with the cyclic ether group-containing compound (A), and therefore, it is considered that carboxyl groups are easily arranged on the surface of the coating layer.
  • the coating layer can have good affinity with polar solvents. Thereby, it is thought that the coating layer can achieve high dispersibility of the composite particles in the polar solvent. Furthermore, the coating layer can have high adhesion with inorganic particles. This is because when the composition is cured on the inorganic particles, the hydroxyl groups on the surface of the inorganic particles are the cyclic ether group in the cyclic ether group-containing compound (A) in the composition and the carboxyl group or anhydrous carboxyl group of the component (B). It is presumed that this is because a bond is likely to react with.
  • the cyclic ether group-containing compound (A) is preferably a polymer of a polymerizable monomer component (a) including an ethylenically unsaturated monomer (a11) having a cyclic ether group.
  • the polymerizable monomer component (a) may contain only the ethylenically unsaturated monomer (a11).
  • the polymerizable monomer component (a) may contain an ethylenically unsaturated monomer (a11) and an ethylenically unsaturated monomer (a12) having no cyclic ether group.
  • the cyclic ether group of the cyclic ether group-containing compound (A) includes, for example, at least one of an epoxy group and an oxetane group. That is, the cyclic ether group that the ethylenically unsaturated monomer (a11) has includes, for example, at least one of an epoxy group and an oxetane group.
  • the amount of the ethylenically unsaturated monomer (a11) with respect to 100 parts by mass of the polymerizable monomer component (a) can be set according to the use of the composite particles.
  • the coating layer has many hydroxyl groups generated by the reaction of a cyclic ether group and a carboxyl group or an anhydrous carboxyl group.
  • the composite particles can have high dispersion stability with respect to a polar solvent.
  • the amount of the ethylenically unsaturated monomer (a11) is 40 parts by mass or more, the adhesiveness of the coating layer to the inorganic particles is good because the crosslinking density in the coating layer is sufficiently increased, and Since the coating layer has many hydroxyl groups, the dispersion stability of the composite particles in the polar solvent can be improved.
  • the amount of the ethylenically unsaturated monomer (a11) is 40 parts by mass or more and 80 parts by mass or less.
  • the amount of the ethylenically unsaturated monomer (a11) is 80 parts by mass or less, the amount of hydroxyl groups in the coating layer is sufficiently suppressed, and when it is 40 parts by mass or more, the crosslinking density in the coating layer is sufficiently increased.
  • an appropriate balance between the degree of hydrophilicity of the coating layer and the crosslinking density can be achieved.
  • the adhesion between the coating film and the substrate can be improved by hydrogen bonding between the hydroxyl group of the coating layer of the composite particle and the substrate. it can.
  • the coating film can have good alkali resistance and acid resistance. This is because the composite particles are well dispersed in the coating film, so that a high filling rate of the composite particles in the coating film can be achieved, and the function caused by the inorganic particles is more expressed. Inferred.
  • the cyclic ether group-containing compound (A) does not contain an aromatic ring. It is also preferred that the cyclic ether group-containing compound (A) does not contain a nitrogen atom. It is particularly preferred that the cyclic ether group-containing compound (A) contains neither an aromatic ring nor a nitrogen atom. In these cases, yellowing of the coating layer when the coating layer is irradiated with light is suppressed. That is, the coating layer can have high transparency and yellowing resistance. Furthermore, by dispersing the composite particles in the coating film, for example, yellowing of the coating layer when the coating film is irradiated with light is suppressed, and the coating film has high light resistance and yellowing resistance. it can. In this case, the polymerizable monomer component (a) preferably has no aromatic ring.
  • the polymerizable monomer component (a) can include an ethylenically unsaturated monomer (a11) having a cyclic ether group and an ethylenically unsaturated monomer (a12) having no cyclic ether group.
  • the monomer contained in the polymerizable monomer component (a) is compatible with the inorganic particles coated with the coating layer, dispersibility in the polar solvent when the composite particles are dispersed in the polar solvent, and the composite particles in the resin composition. From the viewpoint of affinity with the resin composition when blended as an inorganic filler or the like, it can be appropriately selected.
  • Examples of monomers contained in monomer (a11) are glycidyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3-ethyl-3-methacryloxymethyloxetane, 4-hydroxybutyl acrylate glycidyl ether, and 3,4-epoxycyclohexyl. Contains methyl methacrylate.
  • the ethylenically unsaturated monomer (a12) having no cyclic ether group may be a compound copolymerizable with the ethylenically unsaturated monomer (a11) having a cyclic ether group.
  • a cyclic ether group-containing compound (A) can be synthesized by polymerizing the polymerizable monomer component (a).
  • the polymerization method may be a known method.
  • the cyclic ether group-containing compound (A) is synthesized by a solution polymerization method, for example, a reactive solution containing a polymerizable monomer component (a), a polymerization initiator, and a solvent is heated in an inert atmosphere.
  • the polymerizable monomer component (a) can be polymerized to synthesize the cyclic ether group-containing compound (A).
  • solvents used in the solution polymerization method include water, methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, hexanol, ethylene glycol and other linear, branched, secondary or polyhydric alcohols; acetone, methyl ethyl ketone, Ketones such as cyclohexanone; Aromatic hydrocarbons such as toluene and xylene; Petroleum aromatic mixed solvents such as Swazol series (manufactured by Maruzen Petrochemical), Solvesso series (manufactured by Exxon Chemical); Cellosolve, Cellosolves such as butyl cellosolve; Carbitols such as carbitol, butyl carbitol and diethylene glycol monoethyl ether acetate; Propylene glycol alkyl ethers such as propylene glycol methyl ether; Dipropylene glycol methyl ether Polypropylene glycol alkyl ethers such as such as
  • polymerization initiators are peroxides such as ammonium peroxodisulfate, benzoyl peroxide, lauroyl peroxide; and 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methylbutyronitrile 2,2′-azobis-2,4-dimethylvaleronitrile, 1,1′-azobis-1-cyclohexanecarbonitrile, 4,4′-azobis-4-cyanovaleric acid, 2,2′-azobis- ( Azo compounds such as 2-amidinopropane) -dihydrochloride.
  • peroxides such as ammonium peroxodisulfate, benzoyl peroxide, lauroyl peroxide
  • 2,2′-azobisisobutyronitrile 2,2′-azobis-2-methylbutyronitrile 2,2′-azobis-2,4-dimethylvaleronitrile
  • 1,1′-azobis-1-cyclohexanecarbonitrile 1,1′
  • a chain transfer agent may be added as necessary to adjust the molecular weight of the cyclic ether group-containing compound (A).
  • chain transfer agents include compounds having a mercaptan group such as lauryl mercaptan, dodecyl mercaptan, thioglycerol; ⁇ -methylstyrene dimers such as 2,4-diphenyl-4-methyl-1-pentene, and sodium hypophosphite Inorganic salts such as sodium bisulfite are included.
  • the amount of the chain transfer agent used is appropriately determined so that the weight average molecular weight of the cyclic ether group-containing compound (A) falls within a desired range.
  • the cyclic ether group-containing compound (A) When the cyclic ether group-containing compound (A) is a polymer (cyclic ether group-containing polymer), the cyclic ether group-containing compound (A) has a weight average molecular weight of 100,000 or less, that is, a cyclic ether group-containing compound ( A) is preferably a cyclic ether group-containing polymer having a weight average molecular weight of 100,000 or less.
  • the coating layer can have particularly high adhesion to the inorganic particles, and can particularly improve the dispersibility of the composite particles in various polar solvents.
  • the weight average molecular weight is a value in terms of polystyrene measured by gel permeation chromatography.
  • the weight average molecular weight of the cyclic ether group-containing compound (A) is more preferably 1000 or more and 100,000 or less.
  • the cyclic ether group equivalent of the cyclic ether group-containing compound (A) is preferably 140 or more and 700 or less. More preferably, the cyclic ether group equivalent is 400 or less.
  • the cyclic ether group-containing compound (A) has good reactivity, a coating layer covering the inorganic particles is easily formed, and the coating layer can particularly improve the dispersibility of the composite particles.
  • the coating layer can have a high crosslinking density, and thus the coating layer can have particularly good adhesion.
  • component (B) will be described. As described above, the component (B) consists only of at least one compound selected from the group consisting of a polyvalent carboxylic acid (b1) and a polyvalent carboxylic acid anhydride (b2).
  • Component (B) is preferably liquid at 25 ° C.
  • the coating layer can have a high homogeneity and can have a particularly high hydrophilicity. This is because when the component (B) is liquid, the component (B) is well dispersed in the composition, so that the hydroxyl group generated by the reaction between the cyclic ether group-containing compound (A) and the component (B) is reduced. It is inferred that it is well dispersed in the coating layer.
  • the structure of the component (B) can be set according to the use of the composite particles and the like.
  • the coating layer can have high transparency.
  • yellowing of the coating layer when the coating layer is irradiated with light is suppressed. That is, the coating layer can have high weather resistance and yellowing resistance.
  • polyvalent carboxylic acid (b1) preferably contains at least one of 4-methylhexahydrophthalic acid and hexahydrophthalic acid.
  • polyvalent carboxylic acid anhydride (b2) the polyvalent carboxylic acid (b2) is particularly at least one of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride. It is preferable to contain.
  • the coating layer can have particularly high homogeneity and can impart particularly good dispersibility to the composite particles.
  • the amount of the cyclic ether group of the cyclic ether group-containing compound (A) relative to 1 equivalent of the carboxyl group of the component (B) is preferably from 0.1 equivalents to 16 equivalents.
  • the cyclic ether group-containing compound (A) and the component (B) have good reactivity, and the coating layer can have good crosslink density.
  • the coating layer can have particularly high adhesion to the inorganic particles, and the coating layer can particularly improve the dispersibility of the composite particles.
  • the amount of the cyclic ether group is 0.1 equivalent or more, it is possible to suppress the presence of an unreacted carboxyl group derived from the component (B) in an excessive amount. Can be maintained.
  • the amount of the cyclic ether group is 16 equivalents or less, it is possible to suppress an excessive amount of unreacted cyclic ether groups derived from the cyclic ether group-containing compound (A). For this reason, a high crosslinking density in the coating layer can be achieved. Can be maintained. For this reason, the coating layer can have particularly high adhesion to the inorganic particles, and the coating layer can particularly improve the dispersibility of the composite particles.
  • the composition may contain a curing catalyst (also referred to as a curing accelerator).
  • a curing catalyst is a compound that promotes the reaction between a compound having a cyclic ether group and a compound having a carboxyl group. Curing catalysts are known and examples of curing catalysts include imidazole compounds, organophosphorus compounds, tertiary amines and quaternary ammonium salts.
  • the composition preferably does not contain a curing catalyst. Even if the composition does not contain a curing catalyst, the reaction between the cyclic ether group-containing compound (A) and the component (B) in the composition can proceed well. Furthermore, when the composition does not contain a curing catalyst, the use of the coating layer is not hindered by the curing catalyst, and for example, the coating layer can be applied to food hygiene applications.
  • the composition may further contain another component as a component constituting the coating layer, in addition to the cyclic ether group-containing compound (A) and the component (B).
  • another component as a component constituting the coating layer, in addition to the cyclic ether group-containing compound (A) and the component (B).
  • various functions can be imparted to the coating layer depending on the components added to the composition.
  • the composition comprises a fluoroalkyl group-containing compound (C1) represented by the following formula (1) (hereinafter also referred to as compound (C1)) and a fluoroalkyl group-containing compound (C2) represented by the following formula (2) (
  • C1) a fluoroalkyl group-containing compound represented by the following formula (1)
  • C2 a fluoroalkyl group-containing compound represented by the following formula (2)
  • at least one of the compounds (also referred to as compound (C2)) may be further contained. Since the compound (C1) and the compound (C2) have a fluoroalkyl group, the dispersibility of the composite particles in a solvent containing fluorine can be improved.
  • R F is each independently a perfluoroalkyl group or a perfluorooxaalkyl group, R is an organic group, and n is a natural number.
  • R F is C a F 2a + 1 , and a is a number from 1 to 15.
  • x and y are natural numbers, and x and y are in the range of x: y from 1:99 to 60:40.
  • the compound (C1) According to the structure of the compound (C1), it is presumed that it does not react with the cyclic ether group-containing compound (A) and the component (B). However, the compound (C1) is retained in a three-dimensional network structure composed of a polymer of the cyclic ether group-containing compound (A) and the component (B) in the coating layer, so that Then, it is guessed.
  • R F in the formula (1) is C a F 2a + 1 O b , a is 1 or more and 15 or less, and b is a number of 0 or more and 10 or less.
  • Examples of the organic group in the formula (1) are a linear group such as a hydroxyl group, methyl ether, ethyl ether, propyl ether, isopropyl ether, branched alkyl ether group, morpholino group, dimethylamine, (1,1-dimethyl-3 Secondary amino groups such as -oxoisobutyl) amine, and tertiary amino groups.
  • N in the formula (1) is a number from 1 to 450.
  • the compound (C1) is preferably an oligomer, and the number average molecular weight of the compound (C1) is particularly preferably 500 or more and 30000 or less.
  • the compound (C1) can particularly improve the dispersibility of the composite particles in the solvent containing fluorine. This is because the compound (C1) is easily held in the three-dimensional network structure composed of the polymer of the cyclic ether group-containing compound (A) and the component (B), and is not easily dropped from this three-dimensional network structure. It is assumed that there is.
  • the number average molecular weight is more preferably 1000 or more and 15000 or less, and further preferably 2000 or more and 8000 or less. This number average molecular weight is a value measured by gel permeation chromatography.
  • Formula (2) is a composition formula showing the structure of the structural unit constituting the compound (C2) and the ratio of each structural unit in the compound (C2). That is, the compound (C2) is a structural unit shown on the left side in the formula (2) (that is, a residue of an acrylate monomer having a fluoroalkyl group) and a structural unit shown on the right side (that is, an acrylic acid residue). Is a copolymer having a molar ratio of x: y. It can be said that the compound (C2) is a copolymer obtained by copolymerizing an acrylate monomer having a fluoroalkyl group and acrylic acid at a molar ratio of x: y.
  • the compound (C2) is a polymer of the cyclic ether group-containing compound (A) and the component (B) by reacting with the cyclic ether group in the cyclic ether group-containing compound (A) or the carboxyl group in the component (B). It is inferred that it becomes a component of the coating layer.
  • the composition contains the compound (C2), the dispersibility of the composite particles in the polar solvent may be particularly high.
  • Acrylate monomer having a fluoroalkyl group has a structure of, for example, CH 2 CHCOOCH 2 CH 2 R F .
  • the acrylate monomer having a fluoroalkyl group contains, for example, fluoroalkylethyl acrylate.
  • the acrylate monomer having a fluoroalkyl group is at least one selected from the group consisting of 2- (perfluorobutyl) ethyl acrylate, 2- (perfluorohexyl) ethyl acrylate, and 2- (perfluorooctyl) ethyl acrylate. It is preferable to contain.
  • R F of formula (2) a is particularly preferably 4 or more and 8 or less.
  • x: y is particularly preferably in the range from 3:97 to 40:60.
  • the number average molecular weight of the compound (C2) is preferably 500 or more and 10,000 or less, more preferably 1500 or more and 5000 or less. This number average molecular weight is a value measured by gel permeation chromatography.
  • Compound (C2) can be synthesized, for example, by copolymerizing acrylic acid and an acrylate monomer having a fluoroalkyl group by an appropriate polymerization method.
  • the polymerization method include known polymerization methods such as a usual solution polymerization method using a solvent.
  • the total amount of the compound (C1) and the compound (C2) in the composition is relative to the total amount of the composition. It is preferable that they are 5 mass% or more and 60 mass% or less.
  • the coating layer can particularly improve the dispersion stability of the composite particles with respect to the solvent containing fluorine. Furthermore, for example, by dispersing the composite particles in the coating film, the coating film can exhibit water repellency, oil repellency, or both water repellency and oil repellency.
  • the coating film exhibits water repellency, oil repellency, or water repellency. Both oil repellency can be expressed.
  • the total amount of the compound (C1) and the compound (C2) is 60% by mass or less, the amount of hydroxyl group, carboxyl group, and fluoroalkyl group in the coating layer can achieve an appropriate balance. Accordingly, the composite particles are particularly difficult to aggregate in a solvent containing a polar solvent and fluorine, that is, the composite particles can have particularly good dispersion stability.
  • the total amount of the compound (C1) and the compound (C2) is more preferably 10% by mass or more, and further preferably 40% by mass or less.
  • the composition may contain a solvent as necessary.
  • a solvent is the same as the example of the solvent in the case of synthesize
  • the composition After mixing the composition and inorganic particles, the composition can be cured by heating to react the cyclic ether group-containing compound (A) with the component (B). Thereby, a coating layer can be produced from the composition. As described above, the coating layer can improve the dispersibility of the inorganic particles and can have high adhesion to the inorganic particles.
  • the ratio of the coating layer to the composite particles is preferably 15% by mass or more and 90% by mass or less.
  • the coating layer can easily cover the surface of the inorganic particles evenly, so that the coating layer easily prevents contact between the composite particles, and thus the dispersion stability of the composite particles is improved. Can be improved. This is presumed to be because the aggregation of the composite particles is suppressed in the polar solvent by covering the whole or most of the surface of the inorganic particles with the coating layer. Further, when the ratio of the coating layer is 90% by mass or less, the function due to the inorganic particles themselves is easily developed.
  • the composite particles are blended, for example, as an inorganic filler in the resin composition, the composite particles are favorably dispersed in the resin composition, and the filling rate of the composite particles is easily improved. Therefore, the composite particles are inorganic in the resin composition. It is inferred that the function of the particles can be expressed more. More preferably, the ratio of the coating layer is 25% by mass or more and 60% by mass or less.
  • the mass of the fully dried composite particle is measured first. Subsequently, the composite particles are heated from room temperature to 800 ° C. to decompose the coating layer and leave inorganic particles. The mass of the inorganic particles is measured. In this case, the difference between the mass of the composite particles and the mass of the inorganic particles, that is, the mass reduction amount is regarded as the amount of the coating layer.
  • the amount of the coating layer can be measured using, for example, a thermogravimetric measuring device.
  • tetrahydrofuran was added to the solution containing the polymer so that the solid content concentration was 0.1% by mass to prepare a sample solution, and 20 ⁇ l of this sample solution was injected into the GPC measurement apparatus.
  • the conditions for gel permeation chromatography are as follows.
  • -GPC measuring device Showa Denko Co., Ltd., SHODEX GPC SYSTEM 11.
  • -Moving bed THF.
  • -Flow rate 1 ml / min.
  • -Detector A differential refractive index detector.
  • ⁇ Conversion Polystyrene.
  • component (B) As component (B), product name Rikacid MH-70 (mixture of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride in a mass ratio of 70:40) manufactured by Shin Nippon Rika Co., Ltd. Got ready.
  • Fluoro compound 1 having a structure represented by formula (1), wherein (CH 2 CH (C ( ⁇ O) R)) in formula (1) is a residue of dimethylacrylamide, and R F is CF (CF 3 )
  • R F is CF (CF 3 )
  • a fluoroalkyl group-containing dimethylacrylamide oligomer which is OC 3 F 7 and has a number average molecular weight of 1700.
  • Fluoro compound 2 having a structure represented by formula (1), wherein (CH 2 CH (C ( ⁇ O) R)) in formula (1) is N- (1,1-dimethyl-3-oxobutyl) acrylamide A fluoroalkyl group-containing N- (1,1-dimethyl-3-oxobutyl) acrylamide oligomer, wherein R F is CF (CF 3 ) OC 3 F 7 and the number average molecular weight is 10100.
  • Fluoro compound 3 having a structure represented by formula (1), wherein (CH 2 CH (C ( ⁇ O) R)) in formula (1) is a residue of acryloylmorpholine, and R F is CF ( A fluoroalkyl group-containing acryloyl morpholine oligomer which is CF 3 ) OC 3 F 7 and has a number average molecular weight of 8,300.
  • Fluoro compound 4 a fluoro compound having a structure represented by formula (2), wherein R F in formula (2) is C 4 F 9 , x: y is 37:63, and the number average molecular weight is 2800 Alkyl group-containing oligomer.
  • Fluoro compound 5 a fluoro compound having a structure represented by formula (2), wherein R F in formula (2) is C 8 F 17 , x: y is 6:94, and the number average molecular weight is 1500 Alkyl group-containing oligomer.
  • the fluoro compound 4 and the fluoro compound 5 were synthesized by the following method.
  • Fluoro Compound 4 95 parts by mass of acrylic acid, 2- (perfluorobutyl) ethyl acrylate (manufactured by Unimattex, CHEMINOX FAAC-4) 3.07 parts by mass, 2,4-diphenyl-4-methyl- 1 part of 1-pentene (manufactured by NOF Corporation, trade name: NOFMER MSD) was mixed to prepare a mixed solution.
  • composition was prepared using a polymer and a fluoro compound. Specifically, a composition was prepared by mixing the components shown in the table.
  • “4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride (70/40)” is the product name Rikacid MH-70 manufactured by Shin Nippon Rika Co., Ltd.
  • silica sol manufactured by Nissan Chemical Industries, Ltd.
  • silica particles having an average particle diameter of 11 nm were obtained as inorganic particles.
  • FIG. 1A A transmission electron microscope (TEM) photograph of the composite particles of Example 2 is shown in FIG. 1A, and an energy dispersive X-ray analysis (EDX) of a portion surrounded by a square in FIG. 1A. The results are shown in FIG. 1B.
  • the composite particles are agglomerated as a result of drying.
  • the composite particles contain fluorine atoms. Furthermore, according to the element mapping based on the result of EDX, it was confirmed that fluorine atoms were distributed throughout the composite particles. It is presumed that the fluorine atoms in the composite particles are derived from the fluoro compound 1 (fluoroalkyl group-containing dimethylacrylamide oligomer) used when producing the composite particles. For this reason, it can confirm that a composite particle is provided with a coating layer.
  • Example 1 FT-IR
  • Example 2 FT-IR
  • DMAA dimethylacrylamide
  • silica particles used as raw materials for composite particles to obtain spectra. The result is shown in FIG.
  • Example 2 in addition to the same peak as in Example 1, a peak derived from C ⁇ O stretching of the amide group is confirmed in the vicinity of 1600 cm ⁇ 1 . From this, it can confirm that the composite particle of Example 2 is provided with the coating layer containing the fluoro compound 1 (fluoroalkyl group containing dimethylacrylamide oligomer) which has an amide group.
  • fluoro compound 1 fluoroalkyl group containing dimethylacrylamide oligomer
  • the composite particle according to the first aspect includes inorganic particles and a coating layer covering the inorganic particles, and the coating layer includes the cyclic ether group-containing compound (A), A cured product of a composition containing a component (B) comprising at least one compound selected from the group consisting of a polyvalent carboxylic acid (b1) and a polyvalent carboxylic acid anhydride (b2).
  • composite particles having improved dispersibility in a polar solvent can be provided.
  • the inorganic particles have a hydroxyl group on the surface.
  • the cyclic ether group-containing compound (A) is a cyclic ether group-containing polymer having a weight average molecular weight of 1,000 to 100,000.
  • the inorganic particles include silicon dioxide, titanium oxide, zirconium oxide, magnesium oxide, aluminum oxide, iron oxide, zinc oxide, tin oxide. And at least one substance selected from the group consisting of boron nitride.
  • the cyclic ether group-containing compound (A) is polymerizable including an ethylenically unsaturated monomer (a11) having a cyclic ether group. It is a polymer of the monomer component (a) and has at least two cyclic ether groups in one molecule.
  • the average particle diameter of the inorganic particles is 1 nm or more and 10 ⁇ m or less.
  • the composition includes a compound represented by the following general formula (1), a compound represented by the following general formula (2), and Of which at least one is further contained, R F — (CH 2 CH (C ( ⁇ O) R)) n —R F (1)
  • R F is each independently C a F 2a + 1 O b , a is a number from 1 to 15, and b is a number from 0 to 10.
  • a perfluoroalkyl group or a perfluorooxaalkyl group R is an organic group, n is a natural number, and in Formula (2), R F is C n F 2n + 1 , n is a number from 1 to 15, x and y Is a natural number, x and y are natural numbers, and x: y is in the range from 1:99 to 60:40.
  • the component (B) is liquid at 25 ° C.
  • the component (B) contains at least one of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride.
  • the ratio of the coating layer is 15% by mass or more and 90% by mass or less.

Abstract

極性溶媒に対する分散性が向上された複合粒子を提供する。複合粒子は、無機粒子と、前記無機粒子を覆う被覆層とを備える。前記被覆層は、環状エーテル基含有化合物(A)と、多価カルボン酸(b1)と多価カルボン酸無水物(b2)とからなる群から選択される少なくとも一種の化合物からなる成分(B)とを含有する組成物の硬化物である。

Description

複合粒子
 本発明は、複合粒子に関し、詳しくは無機粒子と被覆層とを備える複合粒子に関する。
 特許文献1には、特定の構造を有するフッ素オリゴマーを無機質粒子に結合させることで、無機質粒子の、水、アルコールなどの親水性溶媒への分散性を向上することが開示されている。
 特許文献1に開示されている技術では、無機質粒子は、水、アルコール等に対する優れた分散性が付与されるが、種々の極性溶媒に対する分散性はそれほど高くない場合がある。
特開2012-144621号公報
 本発明の課題は、極性溶媒に対する分散性が向上された複合粒子を提供することである。
 本発明の一態様に係る複合粒子は、無機粒子と、前記無機粒子を覆う被覆層とを備える。前記被覆層は、環状エーテル基含有化合物(A)と、多価カルボン酸(b1)と多価カルボン酸無水物(b2)とからなる群から選択される少なくとも一種の化合物からなる成分(B)とを含有する組成物の硬化物である。
 本発明の一態様によれば、極性溶媒に対する分散性が向上された複合粒子を提供できる。
図1Aは実施例2の複合粒子の透過型電子顕微鏡(TEM)写真である。 図1Bは図1A中で四角で囲った部分のエネルギー分散型X線分析(EDX)を行った結果を示すグラフである。 図2は、実施例1の複合粒子、実施例2の複合粒子、ジメチルアクリルアミド(DMAA)及びシリカ粒子(SiO2)についての、フーリエ変換赤外分光分析法で得られたスペクトルを示すグラフである。
 本発明の一実施形態について説明する。
 本実施形態に係る複合粒子は、無機粒子と、無機粒子を覆う被覆層とを備える。被覆層は、環状エーテル基含有化合物(A)と、多価カルボン酸(b1)と多価カルボン酸無水物(b2)とからなる群から選択される少なくとも一種の化合物からなる成分(B)とを含有する組成物の硬化物である。
 なお、被覆層は、無機粒子の表面の少なくとも一部を覆っていればよい。すなわち、被覆層は、無機粒子の表面の全体を覆っていてもよく、無機粒子の表面の一部のみを覆っていてもよい。
 本実施形態では、複合粒子は、被覆層を備えない無機粒子と比べて、極性溶媒に対する高い分散性を有することができる。なお、複合粒子は、あらゆる極性溶媒に対する分散性が向上していなくてもよく、少なくとも一種の極性溶媒に対する分散性が向上していればよい。ただし、本実施形態では、被覆層の具体的な構成に応じた種々の極性溶媒に対する分散性の向上が達成可能である。
 また、複合粒子は、極性溶媒に対する高い分散性を有することから、極性を有する樹脂などの成分を含む樹脂組成物に対しても高い分散性を有することができる。そのため、樹脂組成物に複合粒子を無機フィラー等として配合することで、樹脂組成物中に複合粒子を良好に分散させることができる。
 このため、複合粒子を、種々の用途において好適に使用することができる。
 無機粒子の材質は、複合粒子の用途などに応じて適宜選択される。無機粒子は、例えば二酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化アルミニウム、酸化鉄、酸化亜鉛、酸化スズ、酸化コバルト、酸化ニッケル、酸化セリウム、窒化アルミ及び窒化ホウ素からなる群から選択される少なくとも一種の物質を含む。この場合、複合粒子を無機フィラー等として使用することができる。特に無機粒子が酸化ジルコニウムを含む場合は、例えば光学材料を作製するための樹脂組成物に複合粒子を配合することで、光学材料の高屈折率化を達成できる。また、無機粒子が酸化マグネシウム、窒化ホウ素等を含む場合は、放熱性が要求される部材を作製するための樹脂組成物に複合粒子を配合することで、材料の放熱性向上を達成できる。
 無機粒子の粒径は、複合粒子の用途などに応じて設定されうる。無機粒子の平均粒径は、例えば1nm以上10μm以下である。この場合、複合粒子の分散性を良好に向上できる。無機粒子の平均粒径は、10nm以上500nm以下であることが好ましく、10nm以上200nm以下であれば更に好ましい。なお、無機粒子の平均粒径は、動的光散乱法により測定される値である。
 また、無機粒子の粒径を選択することにより、複合粒子に対する被覆層の割合、つまり、被覆層の厚みをコントロールすることができる。例えば、複合粒子の製造時、複合粒子の原料である組成物と無機粒子との混合物中の組成物濃度が一定の場合に、使用する無機粒子の粒径が小さいほど表面積が大きくなるため被覆層を薄くでき、無機粒子の粒径が大きいほど表面積が小さくなるため被覆層を厚くできる、と推察される。
 組成物は、上述のとおり、無機粒子を覆う被覆層を作製するために用いられる。組成物は、環状エーテル基含有化合物(A)と、成分(B)とを含有する。環状エーテル基含有化合物(A)は、例えば重合体、すなわち環状エーテル基含有重合体である。環状エーテル基含有化合物(A)は、環状エーテル基を有するエチレン性不飽和モノマー(a11)を含む重合性モノマー成分(a)の重合体であることが好ましく、かつ一分子中に二個以上の環状エーテル基を有することが好ましい。成分(B)は、多価カルボン酸(b1)と多価カルボン酸無水物(b2)とからなる群から選択される少なくとも一種の化合物からなる。
 組成物中の環状エーテル基含有化合物(A)と成分(B)とを反応させることで、組成物を硬化させることができる。これより、組成物から被覆層を作製できる。被覆層は、環状エーテル基とカルボキシル基又は無水カルボキシル基との反応で生じる水酸基を有する。さらに、被覆層は、成分(B)のカルボキシル基又は無水カルボキシル基に由来する未反応のカルボキシル基を有することができる。成分(B)は環状エーテル基含有化合物(A)と比べて組成物中で運動しやすいと考えられ、そのため被覆層の表面にカルボキシル基が配列しやすいと考えられる。これらの理由によって、被覆層は極性溶媒との良好な親和性を有することができると考えられる。これにより、被覆層は、複合粒子の極性溶媒に対する高い分散性を達成できると考えられる。さらに、被覆層は、無機粒子との高い密着性を有することができる。これは、無機粒子上で組成物を硬化させると、無機粒子の表面の水酸基が、組成物中の環状エーテル基含有化合物(A)における環状エーテル基及び成分(B)のカルボキシル基又は無水カルボキシル基と反応して結合を生じ易いからであると、推察される。
 組成物の成分について、更に詳しく説明する。
 上記のとおり、環状エーテル基含有化合物(A)は、環状エーテル基を有するエチレン性不飽和モノマー(a11)を含む重合性モノマー成分(a)の重合体であることが好ましい。重合性モノマー成分(a)は、エチレン性不飽和モノマー(a11)のみを含有してよい。重合性モノマー成分(a)は、エチレン性不飽和モノマー(a11)と、環状エーテル基を有さないエチレン性不飽和モノマー(a12)とを、含有してもよい。
 環状エーテル基含有化合物(A)の有する環状エーテル基は、例えばエポキシ基とオキセタン基とのうち、少なくとも一方を含む。すなわち、エチレン性不飽和モノマー(a11)の有する環状エーテル基は、例えばエポキシ基とオキセタン基とのうち、少なくとも一方を含む。
 重合性モノマー成分(a)の100質量部に対するエチレン性不飽和モノマー(a11)の量は、複合粒子の用途などに応じて設定されうる。例えば、エチレン性不飽和モノマー(a11)の量が40質量部以上100質量部以下であると、被覆層が、環状エーテル基とカルボキシル基又は無水カルボキシル基との反応で生じる水酸基を多く有するため、複合粒子は極性溶媒に対して高い分散安定性を有することができる。詳しくは、エチレン性不飽和モノマー(a11)の量が40質量部以上であると、被覆層中の架橋密度が十分に高められることで無機粒子に対する被覆層の密着性が良好であり、尚且つ被覆層は水酸基を多く有するため、複合粒子の極性溶媒における分散安定性を向上できる。
 エチレン性不飽和モノマー(a11)の量が40質量部以上80質量部以下であれば特に好ましい。エチレン性不飽和モノマー(a11)の量が80質量部以下であると被覆層中の水酸基の量が十分に抑制され、かつ40質量部以上であると被覆層中の架橋密度が十分に高められることで、被覆層の親水性の程度と架橋密度との適度なバランスが達成できるからであると、推察される。この場合、適宜の基材を覆う塗膜に複合粒子を含有させると、複合粒子の被覆層が有する水酸基と基材との水素結合により、塗膜と基材との密着性を向上させることができる。さらに、複合粒子を塗膜に含有させると、塗膜は良好な耐アルカリ性及び耐酸性を有することができる。これは、複合粒子が塗膜中に良好に分散することで塗膜中の複合粒子の高い充填率が達成可能となることで、無機粒子に起因する機能がより発現されるからである、と推察される。
 また、環状エーテル基含有化合物(A)が芳香環を含まないことが好ましい。環状エーテル基含有化合物(A)が窒素原子を含まないことも好ましい。環状エーテル基含有化合物(A)が芳香環と窒素原子のいずれも含まないことが特に好ましい。これらの場合、被覆層に光が照射された場合の被覆層の黄変が抑制される。すなわち、被覆層は高い透明性及び耐黄変性を有することができる。さらに、複合粒子を、例えば、塗膜中に分散させることにより、塗膜に光が照射された場合の被覆層の黄変が抑制され、塗膜は高い耐光性及び耐黄変性を有することができる。この場合、重合性モノマー成分(a)は、芳香環を有さないことが好ましい。
 重合性モノマー成分(a)は、環状エーテル基を有するエチレン性不飽和モノマー(a11)と環状エーテル基を有さないエチレン性不飽和モノマー(a12)とを含むことができる。重合性モノマー成分(a)に含まれるモノマーは、被覆層で被覆される無機粒子との親和性、複合粒子を極性溶媒に分散させる場合の極性溶媒への分散性、複合粒子を樹脂組成物に無機フィラー等として配合させる時の樹脂組成物との親和性などの観点から、適宜選択されうる。
 モノマー(a11)に含まれるモノマーの例は、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルアクリレート、3-エチル-3-メタクリロキシメチルオキセタン、4-ヒドロキシブチルアクリレートグリシジルエーテル、及び3,4-エポキシシクロヘキシルメチルメタアクリレートを含む。
 環状エーテル基を有さないエチレン性不飽和モノマー(a12)は、環状エーテル基を有するエチレン性不飽和モノマー(a11)と共重合可能な化合物であればよい。環状エーテル基を有さないエチレン性不飽和モノマー(a12)は、例えば2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレート、2-(メタ)アクリロイロキシプロピルフタレート、ベンジル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート(重合度n=2~17)、ECH変性フェノキシ(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ) アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、トリメチロールプロパンベンゾエート(メタ)アクリレート、EO変性フタル酸(メタ)アクリレート、EO,PO変性フタル酸(メタ)アクリレート、ビニルカルバゾール、スチレン、N-フェニルマレイミド、N-ベンジルマレイミド、3-マレイミド安息香酸N-スクシンイミジル、直鎖状或いは分岐を有する脂肪族又は脂環族(但し、環中に一部不飽和結合を有してもよい)の(メタ)アクリル酸エステル、ヒドロキシアルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、及びN-置換マレイミド類(例えばN-シクロヘキシルマレイミド) からなる群から選択される一種以上の化合物を含有することができる。
 環状エーテル基含有化合物(A)の合成について説明する。重合性モノマー成分(a)を重合させることで、環状エーテル基含有化合物(A)を合成できる。重合の方法は、公知の方法でよい。例えば溶液重合法で環状エーテル基含有化合物(A)を合成する場合、例えば重合性モノマー成分(a)と、重合開始剤と、溶媒とを含有する反応性溶液を、不活性雰囲気下、加熱することで、重合性モノマー成分(a)を重合させて、環状エーテル基含有化合物(A)を合成できる。
 溶液重合法で使用される溶媒の例は、水、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、ヘキサノール、エチレングリコール等の直鎖、分岐、2級或いは多価のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;スワゾールシリーズ(丸善石油化学社製)、ソルベッソシリーズ(エクソン・ケミカル社製)等の石油系芳香族系混合溶剤;セロソルブ、ブチルセロソルブ等のセロソルブ類;カルビトール、ブチルカルビトール、ジエチレングリコールモノエチルエーテルアセテート等のカルビトール類;プロピレングリコールメチルエーテル等のプロピレングリコールアルキルエーテル類;ジプロピレングリコールメチルエーテル等のポリプロピレングリコールアルキルエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート等の酢酸エステル類;ジオキサン、ジメチルホルムアミド、及びジアルキルグリコールエーテル類を含む。これらの溶媒は一種単独で使用され、或いは複数種が併用される。
 重合開始剤の例は、ペルオキソ二硫酸アンモニウム、過酸化ベンゾイル、過酸化ラウロイル等の過酸化物;及び2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス-2-メチルブチロニトリル、2,2'-アゾビス-2,4-ジメチルバレロニトリル、1,1'-アゾビス-1-シクロヘキサンカルボニトリル、4,4'-アゾビス-4-シアノ吉草酸、2,2'-アゾビス-(2-アミジノプロパン)-ジヒドロクロリド等のアゾ系化合物を含む。
 反応性溶液中には、環状エーテル基含有化合物(A)の分子量調節等のため、必要に応じて連鎖移動剤が添加されてもよい。連鎖移動剤の例は、ラウリルメルカプタン、ドデシルメルカプタン、チオグリセロール等のメルカプタン基を有する化合物;2,4-ジフェニル-4-メチル-1-ペンテン等のαメチルスチレンダイマー類、及び次亜リン酸ナトリウム、亜硫酸水素ナトリウム等の無機塩を含む。連鎖移動剤の使用量は、環状エーテル基含有化合物(A)の重量平均分子量が所望の範囲となるように適宜決定される。
 環状エーテル基含有化合物(A)が重合体(環状エーテル基含有重合体)である場合、環状エーテル基含有化合物(A)の重量平均分子量は、100000以下であること、すなわち環状エーテル基含有化合物(A)が重量平均分子量100000以下の環状エーテル基含有重合体であることが好ましい。この場合、被覆層は無機粒子に対して特に高い密着性を有することができ、かつ種々の極性溶媒に対する複合粒子の分散性を特に向上できる。なお、重量平均分子量は、ゲル浸透クロマトグラフィーで測定された、ポリスチレン換算の値である。環状エーテル基含有化合物(A)の重量平均分子量は、1000以上100000以下であればより好ましい。
 環状エーテル基含有化合物(A)の環状エーテル基当量は、140以上700以下であることが好ましい。より好ましくは、環状エーテル基当量は400以下である。この場合、環状エーテル基含有化合物(A)は良好な反応性を有し、無機粒子を覆う被覆層が形成されやすく、かつ被覆層は複合粒子の分散性を特に向上できる。詳しくは、環状エーテル基当量が700以下であれば、被覆層は高い架橋密度を有することができ、このため被覆層は特に良好な密着性を有することができる。
 成分(B)について説明する。成分(B)は、上記のとおり、多価カルボン酸(b1)と多価カルボン酸無水物(b2)とからなる群から選択される少なくとも一種の化合物のみからなる。
 成分(B)は、25℃で液状であることが好ましい。この場合、被覆層は高い均質性を有することができ、かつ特に高い親水性を有することができる。これは、成分(B)が液体であると、組成物中で成分(B)が良好に分散することで、環状エーテル基含有化合物(A)と成分(B)との反応で生じた水酸基が被覆層に良好に分散するからであると、推察される。
 成分(B)の構造は、複合粒子の用途などに応じて設定されうるが、例えば、耐黄変性が必要とされる場合では、芳香環を有さないことが好ましい。この場合、被覆層は高い透明性を有することができる。さらに、被覆層に光が照射された場合の被覆層の黄変が抑制される。すなわち、被覆層は、高い耐候性及び耐黄変性を有することができる。
 成分(B)が多価カルボン酸(b1)を含む場合、多価カルボン酸(b1)は、特に4-メチルヘキサヒドロフタル酸と、ヘキサヒドロフタル酸とのうち、少なくとも一方を含むことが好ましい。また、成分(B)が多価カルボン酸無水物(b2)を含む場合、多価カルボン酸(b2)は、特に4-メチルヘキサヒドロ無水フタル酸と、ヘキサヒドロ無水フタル酸とのうち、少なくとも一方を含むことが好ましい。これらの場合、被覆層は特に高い均質性を有することができ、かつ複合粒子に特に良好な分散性を付与できる。
 組成物中において、成分(B)のカルボキシル基1当量に対する、環状エーテル基含有化合物(A)の環状エーテル基の量は、0.1当量以上16当量以下であることが好ましい。この場合、環状エーテル基含有化合物(A)と成分(B)は良好な反応性を有し、被覆層は良好な架橋密度を有することができる。このため、被覆層は無機粒子に対して特に高い密着性を有することができ、かつ被覆層は複合粒子の分散性を特に向上できる。また、環状エーテル基の量が0.1当量以上であると、成分(B)に由来する未反応のカルボキシル基が過剰に存在することを抑制でき、このため、被覆層の良好な架橋状態を維持できる。環状エーテル基の量が16当量以下であると、環状エーテル基含有化合物(A)に由来する未反応の環状エーテル基が過剰に存在することを抑制でき、このため、被覆層における高い架橋密度を維持できる。このため、被覆層は無機粒子に対して特に高い密着性を有することができ、かつ被覆層は複合粒子の分散性を特に向上できる。
 組成物は、硬化触媒(硬化促進剤ともいう)を含有してよい。硬化触媒とは、環状エーテル基を有する化合物とカルボキシル基を有する化合物との反応を促進する化合物である。硬化触媒は公知であり、硬化触媒の例は、イミダゾール系化合物、有機リン系化合物、第3級アミン及び第4級アンモニウム塩を含む。ただし、組成物は、硬化触媒を含有しないことが好ましい。組成物が硬化触媒を含有しなくても、組成物中の環状エーテル基含有化合物(A)と成分(B)との反応は良好に進行しうる。さらに、組成物が硬化触媒を含有しない場合には、被覆層の用途が硬化触媒によって阻害されることがなく、例えば被覆層を食品衛生用途に適用することも可能になる。
 組成物は、被覆層を構成する成分として、環状エーテル基含有化合物(A)及び成分(B)に加えて、更に別の成分を含有してもよい。この場合、組成物に加えられる成分に応じて、被覆層に種々の機能を付与できる。
 例えば組成物は、下記式(1)で示されるフルオロアルキル基含有化合物(C1)(以下、化合物(C1)ともいう)と、下記式(2)で示されるフルオロアルキル基含有化合物(C2)(以下、化合物(C2)ともいう)とのうち、少なくとも一方を、更に含有してもよい。化合物(C1)及び化合物(C2)は、フルオロアルキル基を有することから、フッ素を含む溶媒に対する複合粒子の分散性を向上できる。
 式(1)中、RFは各々独立にパーフルオロアルキル基又はパーフルオロオキサアルキル基、Rは有機基、nは自然数である。式(2)中、RFはCa2a+1、aは1以上15以下の数である。式(2)中、x及びyは自然数であり、x及びyは、x:yが1:99から60:40までの範囲内である。
F-(CH2CH(C(=O)R))n-RF …(1)
Figure JPOXMLDOC01-appb-C000002
 化合物(C1)について更に説明する。
 化合物(C1)は、その構造によれば、環状エーテル基含有化合物(A)及び成分(B)とは反応しないと推察される。しかし、化合物(C1)は、被覆層において、環状エーテル基含有化合物(A)と成分(B)との重合体で構成される三次元ネットワーク構造に保持されることで、被覆層の構成要素となると、推察される。
 式(1)中のRFは、Ca2a+1b、aは1以上15以下、bは0以上10以下の数である。
 式(1)中の有機基の例は、ヒドロキシル基、メチルエーテル、エチルエーテル、プロピルエーテル、イソプロピルエーテル等の直鎖、分岐アルキルエーテル基、モルホリノ基、ジメチルアミン、(1,1-ジメチル-3-オキソイソブチル)アミン等の2級アミノ基、及び3級アミノ基を含む。
 式(1)中のnは、1以上450以下の数である。
 化合物(C1)はオリゴマーであることが好ましく、特に化合物(C1)の数平均分子量が、500以上30000以下であることが好ましい。この場合、化合物(C1)は、フッ素を含む溶媒に対する複合粒子の分散性を特に向上できる。これは、化合物(C1)が環状エーテル基含有化合物(A)と成分(B)との重合体で構成される三次元ネットワーク構造に保持されやすく、かつこの三次元ネットワーク構造から脱落しにくいからであると推察される。この数平均分子量は、1000以上15000以下であることが更に好ましく、2000以上8000以下であることも更に好ましい。この数平均分子量は、ゲル浸透クロマトグラフィーにより測定される値である。
 化合物(C1)は、例えば(CH2CH(C(=O)R))としてジメチルアクリルアミドの残基を有するフルオロアルキル基含有ジメチルアクリルアミドオリゴマー、(CH2CH(C(=O)R))としてN-(1,1-ジメチル-3-オキソブチル)アクリルアミドの残基を有するフルオロアルキル基含有N-(1,1-ジメチル-3-オキソブチル)アクリルアミドオリゴマー、及び(CH2CH(C(=O)R))としてアクリロイルモルフォリンの残基を有するフルオロアルキル基含有アクリロイルモルフォリンオリゴマーからなる群から選択される、少なくとも一種の化合物を含有する。
 化合物(C2)について説明する。
 式(2)は、化合物(C2)を構成する構造単位の構造、及び化合物(C2)中の各構造単位の比を示す組成式である。つまり、化合物(C2)とは、式(2)中の左側に示される構造単位(すなわちフルオロアルキル基を有するアクリレートモノマーの残基)と、右側に示される構造単位(すなわちアクリル酸残基)とを、x:yのモル比で有する共重合体である。化合物(C2)は、フルオロアルキル基を有するアクリレートモノマーとアクリル酸とを、x:yのモル比で共重合させた共重合体であるともいえる。
 化合物(C2)は、環状エーテル基含有化合物(A)における環状エーテル基又は成分(B)におけるカルボキシル基等と反応することで、環状エーテル基含有化合物(A)と成分(B)との重合体に結合し、これにより被覆層の構成要素となると、推察される。組成物が化合物(C2)を含有すると、複合粒子の極性溶媒に対する分散性が特に高くなりうる。
 フルオロアルキル基を有するアクリレートモノマーは、例えばCH2CHCOOCH2CH2Fという構造を有する。フルオロアルキル基を有するアクリレートモノマーは、例えばフルオロアルキルエチルアクリレートを含有する。特にフルオロアルキル基を有するアクリレートモノマーが、2-(パーフルオロブチル)エチルアクリレート、2-(パーフルオロヘキシル)エチルアクリレート、及び2-(パーフルオロオクチル)エチルアクリレートからなる群から選択される少なくとも一種を含有することが好ましい。
 式(2)のRFにおいて、aは特に4以上8以下であることが好ましい。また、式(2)において、特にx:yが3:97から40:60までの範囲内であることが好ましい。
 化合物(C2)の数平均分子量は、500以上10000以下であることが好ましく、1500以上5000以下であれば更に好ましい。この数平均分子量は、ゲル浸透クロマトグラフィーにより測定される値である。
 化合物(C2)は、例えばアクリル酸とフルオロアルキル基を有するアクリレートモノマーとを、適宜の重合方法で共重合させることで合成できる。重合方法の例として、溶媒が使用される通常の溶液重合法等の公知の重合方法が挙げられる。
 組成物が化合物(C1)と化合物(C2)とのうち、少なくとも一方を含有する場合、組成物中の化合物(C1)と化合物(C2)との合計量は、組成物の合計量に対して5質量%以上60質量%以下であることが好ましい。化合物(C1)と化合物(C2)との合計量が5質量%以上であることで、被覆層は特にフッ素を含む溶媒に対する複合粒子の分散安定性を向上させることができる。さらに、例えば複合粒子を塗膜中に分散させることにより、塗膜は撥水性を発現し、撥油性を発現し、又は撥水性と撥油性の両方を発現することができる。例えば複合粒子をフッ素を含まない樹脂組成物に配合し、この樹脂組成物を硬化させて塗膜を作製することで、塗膜は撥水性を発現し、撥油性を発現し、又は撥水性と撥油性の両方を発現することができる。また、化合物(C1)と化合物(C2)との合計量が60質量%以下であることで、被覆層中の水酸基、カルボキシル基、及びフルオロアルキル基の量が適度のバランスを達成できる。これにより、複合粒子は極性溶媒およびフッ素を含む溶媒中で特に凝集しにくく、すなわち複合粒子は特に良好な分散安定性を有することができる。化合物(C1)と化合物(C2)との合計量が10質量%以上であれば更に好ましく、40質量%以下であることも更に好ましい。
 組成物は、必要に応じて溶剤を含有してよい。溶剤の例は、上述の環状エーテル基含有化合物(A)を溶液重合法で合成する場合の溶剤の例と、同じである。
 組成物と無機粒子とを混合してから、加熱して環状エーテル基含有化合物(A)と成分(B)を反応させることで、組成物を硬化させることができる。これにより、組成物から被覆層を作製できる。この被覆層は、上述のとおり、無機粒子の分散性を向上でき、かつ無機粒子との間で高い密着性を有することができる。
 複合粒子に対する被覆層の割合は、15質量%以上90質量%以下であることが好ましい。被覆層の割合が15質量%以上であると、無機粒子の表面を被覆層がまんべんなく覆いやすくなることで、被覆層が複合粒子同士の接触を妨げやすくなり、このため複合粒子の分散安定性を向上することができる。これは、無機粒子の表面の全部又は大部分を被覆層が覆うことで、複合粒子の凝集が極性溶媒中で抑制されるからであると、推察される。また被覆層の割合が90質量%以下であることで無機粒子自体に起因した機能が発現しやすくなる。また、複合粒子を、例えば、樹脂組成物中に無機フィラーとして配合すると、複合粒子は樹脂組成物中で良好に分散して、複合粒子の充填率を向上しやすく、そのため樹脂組成物中で無機粒子が有する機能をより発現させることができると、推察される。被覆層の割合が25質量%以上60質量%以下であればより好ましい。
 なお、複合粒子中の被覆層の量を測定する場合は、まず十分に乾燥した複合粒子の質量を測定する。続いて複合粒子を室温から800℃まで加熱することで被覆層を分解させ、無機粒子を残存させる。この無機粒子の質量を測定する。この場合の複合粒子の質量と無機粒子の質量との差、すなわち質量減少量を、被覆層の量とみなす。被覆層の量は、例えば熱重量測定装置を用いて測定できる。
 1.重合体の準備
 1-1.合成
 還流冷却器、温度計、窒素導入管、及び撹拌機を取り付けた四ツ口フラスコに、表1に示す成分を入れて、反応性溶液を調製した。この反応性溶液を、窒素雰囲気下、95℃で6.5時間加熱して重合反応を進行させることで、重合体を含有する溶液を得た。この溶液をエバポレーションすることで、合成例1~4の重合体を得た。
 1-2.重量平均分子量の測定
 重合体の重量平均分子量を、ゲル浸透クロマトグラフィーで測定した。
 測定に当たり、重合体を含有する溶液にテトラヒドロフランを固形分濃度が0.1質量%になるように加えて、試料溶液を調製し、この試料溶液20μlをGPC測定装置に注入した。なお、ゲル浸透クロマトグラフィーの条件は次のとおりである。
・GPC測定装置:昭和電工社製、SHODEX GPC SYSTEM 11。
・カラム:GPC KF-800P、GPC KF-805、GPC KF-803、GPC KF-801(昭和電工株式会社製)の4本直列。
・移動層:THF。
・流量:1ml/分。
・カラム温度:40℃。
・検出器:示差屈折率検出器。
・換算:ポリスチレン。
 1-3.環状エーテル基当量の算出
 重合体の環状エーテル基当量を、原料の組成に基づいて算出した。
Figure JPOXMLDOC01-appb-T000003
 2.成分(B)の準備
 成分(B)として、新日本理化株式会社製の品名リカシッドMH-70(4-メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸との、質量比70:40の混合物)を準備した。
 3.フルオロ化合物の準備
 下記のフルオロ化合物1~5を準備した。
・フルオロ化合物1:式(1)に示す構造を有し、式(1)中の(CH2CH(C(=O)R))がジメチルアクリルアミドの残基であり、RFがCF(CF3)OC37であり、数平均分子量が1700であるフルオロアルキル基含有ジメチルアクリルアミドオリゴマー。
・フルオロ化合物2:式(1)に示す構造を有し、式(1)中の(CH2CH(C(=O)R))がN-(1,1-ジメチル-3-オキソブチル)アクリルアミドの残基であり、RFがCF(CF3)OC37であり、数平均分子量が10100であるフルオロアルキル基含有N-(1,1-ジメチル-3-オキソブチル)アクリルアミドオリゴマー。
・フルオロ化合物3:式(1)に示す構造を有し、式(1)中の(CH2CH(C(=O)R))がアクリロイルモルフォリンの残基であり、RFがCF(CF3)OC37であり、数平均分子量が8300であるフルオロアルキル基含有アクリロイルモルフォリンオリゴマー。
・フルオロ化合物4:式(2)に示す構造を有し、式(2)中のRFがC49であり、x:yが37:63であり、数平均分子量が2800であるフルオロアルキル基含有オリゴマー。
・フルオロ化合物5:式(2)に示す構造を有し、式(2)中のRFがC817であり、x:yが6:94であり、数平均分子量が1500であるフルオロアルキル基含有オリゴマー。
 なお、フルオロ化合物4及びフルオロ化合物5は、次の方法で合成した。
 (1)フルオロ化合物4の合成
 アクリル酸95質量部、2-(パーフルオロブチル)エチルアクリレート(ユニマッテクス株式会社製、CHEMINOX FAAC-4)3.07質量部、2,4-ジフェニル-4-メチル-1-ペンテン(日本油脂株式会社製、商品名:ノフマーMSD)1質量部を混合して、混合液を調製した。
 還流冷却器、滴下漏斗、温度計、窒素導入管および攪拌機が取り付けられたフラスコに、イソプロパノールを290質量部仕込んだ。このイソプロパノールを、窒素雰囲気下、80℃まで昇温し、続いてこのフラスコ中に上記混合液を滴下漏斗から1時間かけて滴下した。この混合液の滴下開始と同時に2,2’-アゾビスイソブチロニトリル6質量部もイソプロパノール10質量部とともに、フラスコ内に投入した。これにより、アクリル酸と2-(パーフルオロブチル)エチルアクリレートとの共重合反応を進行させた。重合反応時間の合計は6時間とした。
 これにより、フルオロ化合物4のイソプロパノール溶液(濃度25質量%)を得た。
 (2)フルオロ化合物5の合成
 アクリル酸95質量部、2-(パーフルオロオクチル)エチルアクリレート(共栄社化学株式会社製、ライトアクリレートFA-108)5質量部、2,4-ジフェニル-4-メチル-1-ペンテン1質量部を混合して、混合液を調製した。還流冷却器、滴下漏斗、温度計、窒素導入管および攪拌機がり付けられたフラスコに、イソプロパノールを290質量部仕込んだ。このイソプロパノールを、窒素雰囲気下、80℃まで昇温し、続いてこのフラスコ中に上記混合液を滴下漏斗から1時間かけて滴下した。この混合液の滴下開始と同時に2,2’-アゾビスイソブチロニトリル6質量部もイソプロパノール10質量部とともに、フラスコ内に投入した。これにより、アクリル酸と2-(パーフルオロブチル)エチルアクリレートとの共重合反応を進行させた。重合反応時間の合計は6時間とした。
 これにより、フルオロ化合物5のイソプロパノール溶液(濃度25質量%)を得た。
 3.組成物の調製及び評価
 重合体及びフルオロ化合物を用いて組成物を調製した。具体的には、表に示す成分を混合することで、組成物を調製した。なお、表中の「4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸(70/40)」は、新日本理化株式会社製の品名リカシッドMH-70である。
 4.無機粒子の準備
 メタノール分散媒のシリカゾル(日産化学工業株式会社製)をエバポレーションすることで、無機粒子として平均粒径11nmのシリカ粒子を得た。
 5.複合粒子の製造
 表2~4に示す原料のうち、まず合成例の重合体と、成分(B)と、シリカ粒子とを、テトラヒドロフラン(THF)と混合し、続いて表2~4に示す原料のうちフルオロ化合物を加えて、混合液を調製した。なお、テトラヒドロフランの量は、合成例の重合体と成分(B)の合計量1gに対して、約11.6mlである。混合液を5時間撹拌してフルオロ化合物を十分に分散させた。続いて、混合液からエバポレーションにより溶媒を除去することで、残留物を得た。残留物を150℃で20分加熱して反応させた後、メタノールを加えることで、第二混合液を得た。第二混合液を遠心分離してからメタノールでリンスすることで、白色沈殿を得た。白色沈殿を乾燥させることで、複合粒子を得た。
 6.複合粒子の評価
 複合粒子の性能を下記の試験方法で評価した。その結果を表2~4に示す。
 (1)平均粒径
 複合粒子をメタノール中に分散させた状態で、動的光錯乱法(DLS)により、複合粒子の平均粒径を測定した。
 (2)被覆層割合
 熱重量測定装置を用いて、十分に乾燥した複合粒子を室温から800℃まで加熱した場合の質量減少量を測定した。この質量減少量を複合粒子の被覆層の質量とみなして、複合粒子の質量に対する被覆層の質量の割合を算出した。
 (3)分散性
 複合粒子の各種溶剤への分散性を調査した。具体的には、100mlの量の溶剤に10mgの量の複合粒子を加え、この混合液を入れた容器に超音波洗浄機で超音波振動を5分間与えることで複合粒子を十分に分散させた。続いて、容器を水平な台上に静置した状態で混合液を観察することで分散性を確認した。その結果を下記の基準で評価した。
A:混合液を1時間静置しても複合粒子の沈降は認められない。
B:混合液を0.5時間静置しても複合粒子の沈降は認められないが、1時間静置すると僅かに沈降が認められる。
C:混合液を0.5時間静置すると複合粒子の沈降が認められ、又は混合液を静置すると直ちに沈降が認められる。
 (4)TEM及びTEM-EDXの結果
 実施例2の複合粒子の透過型電子顕微鏡(TEM)写真を図1Aに、図1A中で四角で囲った部分のエネルギー分散型X線分析(EDX)を行った結果を図1Bに、それぞれ示す。なお、この複合粒子は、乾燥の結果、凝集している。
 この結果によると、複合粒子がフッ素原子を含むことが確認できる。さらに、EDXの結果に基づく元素マッピングによると、複合粒子の全体にわたってフッ素原子が分布していることが確認できた。複合粒子におけるフッ素原子は複合粒子を作製する際に使用したフルオロ化合物1(フルオロアルキル基含有ジメチルアクリルアミドオリゴマー)に由来すると推察される。このため、複合粒子が被覆層を備えることが確認できる。
 (5)FT-IR
 実施例1及び実施例2の複合粒子の、フーリエ変換赤外分光分析法による測定を実施して、スペクトルを得た。参考のために、ジメチルアクリルアミド(DMAA)及び複合粒子の原料として使用したシリカ粒子に対しても、同じ測定を行って、スペクトルを得た。その結果を図2に示す。
 この結果によると、実施例1のスペクトルには、2950cm-1付近に飽和炭化水素基のC-H伸縮に由来するピークが確認され、1740cm-1付近にエステル結合のC=O伸縮に由来するピークが確認される。このことから、実施例1の複合粒子は、有機化合物を含む被覆層を備えることが確認できる。
 また、実施例2のスペクトルには、実施例1の場合と同様のピークに加えて、1600cm-1付近にアミド基のC=O伸縮に由来するピークが確認される。このことから、実施例2の複合粒子は、アミド基を有するフルオロ化合物1(フルオロアルキル基含有ジメチルアクリルアミドオリゴマー)を含む被覆層を備えることが確認できる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上述べた実施形態から明らかなように、第1の態様に係る複合粒子は、無機粒子と、前記無機粒子を覆う被覆層とを備え、被覆層は、環状エーテル基含有化合物(A)と、多価カルボン酸(b1)と多価カルボン酸無水物(b2)とからなる群から選択される少なくとも一種の化合物からなる成分(B)とを含有する組成物の硬化物である。
 第1の態様によれば、極性溶媒に対する分散性が向上された複合粒子を提供できる。
 第2の態様に係る複合粒子では、第1の態様において、無機粒子は、表面に水酸基を有する。
 第3の態様に係る複合粒子では、第1又は第2の態様において、環状エーテル基含有化合物(A)は、重量平均分子量が、1000以上100000以下の環状エーテル基含有重合体である。
 第4の態様に係る複合粒子では、第1から第3のいずれか一の態様において、無機粒子は、二酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化アルミニウム、酸化鉄、酸化亜鉛、酸化スズ及び窒化ホウ素からなる群から選択される少なくとも一種の物質を含む。
 第5の態様に係る複合粒子では、第1から第4のいずれか一の態様において、環状エーテル基含有化合物(A)は、環状エーテル基を有するエチレン性不飽和モノマー(a11)を含む重合性モノマー成分(a)の重合体であり、一分子中に少なくとも二つの環状エーテル基を有する。
 第6の態様に係る複合粒子では第1から第5のいずれか一の態様において、無機粒子の平均粒径は1nm以上10μm以下である。
 第7の態様に係る複合粒子では、第1から第6のいずれか一の態様において、組成物は、下記一般式(1)で示される化合物と、下記一般式(2)で示される化合物とのうち、少なくとも一方を、更に含有し、
F-(CH2CH(C(=O)R))n-RF …(1)
Figure JPOXMLDOC01-appb-C000007
式(1)中、RFは各々独立にCa2a+1b、aは1以上15以下の数、bは0以上10以下の数、である。パーフルオロアルキル基又はパーフルオロオキサアルキル基、Rは有機基、nは自然数であり、式(2)中、RFはCn2n+1、nは1以上15以下の数、x及びyは自然数、x及びyは自然数であり、x:yは1:99から60:40までの範囲内である。
 第8の態様に係る複合粒子では、第1から第7のいずれか一の態様において、成分(B)は、25℃で液状である。
 第9の態様に係る複合粒子では、第1から第8のいずれか一の態様において、成分(B)は、4-メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸とのうち少なくとも一方を含有する。
 第10の態様に係る複合粒子では、第1から第9のいずれか一の態様において、被覆層の割合が15質量%以上90質量%以下である。

Claims (10)

  1. 無機粒子と、前記無機粒子を覆う被覆層とを備え、
    前記被覆層は、環状エーテル基含有化合物(A)と、多価カルボン酸(b1)と多価カルボン酸無水物(b2)とからなる群から選択される少なくとも一種の化合物からなる成分(B)とを含有する組成物の硬化物である、
    複合粒子。
  2. 前記無機粒子は、表面に水酸基を有する、
    請求項1に記載の複合粒子。
  3. 前記環状エーテル基含有化合物(A)は、重量平均分子量が、1000以上100000以下の環状エーテル基含有重合体である、
    請求項1又は2に記載の複合粒子。
  4. 前記無機粒子は、二酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化アルミニウム、酸化鉄、酸化亜鉛、酸化スズ及び窒化ホウ素からなる群から選択される少なくとも一種の物質を含む、
    請求項1から3のいずれか一項に記載の複合粒子。
  5. 前記環状エーテル基含有化合物(A)は、環状エーテル基を有するエチレン性不飽和モノマー(a11)を含む重合性モノマー成分(a)の重合体であり、一分子中に少なくとも二つの環状エーテル基を有する、
    請求項1から4のいずれか一項に記載の複合粒子。
  6. 前記無機粒子の平均粒径は1nm以上10μm以下である、
    請求項1から5のいずれか一項に記載の複合粒子。
  7. 前記組成物は、下記一般式(1)で示される化合物と、下記一般式(2)で示される化合物とのうち、少なくとも一方を、更に含有し、
    F-(CH2CH(C(=O)R))n-RF …(1)
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、RFは各々独立にCa2a+1b、aは1以上15以下の数、bは0以上10以下の数、である。パーフルオロアルキル基又はパーフルオロオキサアルキル基、Rは有機基、nは自然数であり、
    式(2)中、RFはCn2n+1、nは1以上15以下の数、x及びyは自然数、x及びyは自然数であり、x:yは1:99から60:40までの範囲内である、
    請求項1から6のいずれか一項に記載の複合粒子。
  8. 前記成分(B)は、25℃で液状である、
    請求項1から7のいずれか一項に記載の複合粒子。
  9. 前記成分(B)は、4-メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸とのうち少なくとも一方を含有する、
    請求項1から8のいずれか一項に記載の複合粒子。
  10. 前記被覆層の割合が15質量%以上90質量%以下である、
    請求項1から9のいずれか一項に記載の複合粒子。
PCT/JP2018/013524 2018-03-30 2018-03-30 複合粒子 WO2019186987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020508783A JP7216375B2 (ja) 2018-03-30 2018-03-30 複合粒子
PCT/JP2018/013524 WO2019186987A1 (ja) 2018-03-30 2018-03-30 複合粒子
TW108110658A TWI816770B (zh) 2018-03-30 2019-03-27 複合粒子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013524 WO2019186987A1 (ja) 2018-03-30 2018-03-30 複合粒子

Publications (1)

Publication Number Publication Date
WO2019186987A1 true WO2019186987A1 (ja) 2019-10-03

Family

ID=68059551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013524 WO2019186987A1 (ja) 2018-03-30 2018-03-30 複合粒子

Country Status (3)

Country Link
JP (1) JP7216375B2 (ja)
TW (1) TWI816770B (ja)
WO (1) WO2019186987A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052087A (ja) * 2010-08-05 2012-03-15 Sumitomo Bakelite Co Ltd 機能性粒子群、充填剤、電子部品用樹脂組成物、電子部品および半導体装置
JP2012144621A (ja) * 2011-01-11 2012-08-02 Goo Chemical Co Ltd オリゴマー、無機質粒子、及び無機質粒子の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605194B2 (en) * 2003-06-24 2009-10-20 Ppg Industries Ohio, Inc. Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates
ES2533543T3 (es) * 2003-06-24 2015-04-10 Ppg Industries Ohio, Inc. Dispersiones acuosas de micropartículas que tienen una fase formada por nanopartículas y composiciones de revestimiento que contienen las mismas
DE102005000918A1 (de) * 2005-01-06 2006-07-20 Basf Ag Verfahren zur Herstellung wässriger Kompositpartikel-Dispersionen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052087A (ja) * 2010-08-05 2012-03-15 Sumitomo Bakelite Co Ltd 機能性粒子群、充填剤、電子部品用樹脂組成物、電子部品および半導体装置
JP2012144621A (ja) * 2011-01-11 2012-08-02 Goo Chemical Co Ltd オリゴマー、無機質粒子、及び無機質粒子の製造方法

Also Published As

Publication number Publication date
JPWO2019186987A1 (ja) 2021-04-01
JP7216375B2 (ja) 2023-02-01
TWI816770B (zh) 2023-10-01
TW201942232A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
KR20000065082A (ko) 수용성코팅조성물의조성성분으로오르가노폴리머쉘을가진사전가교시킨실리콘엘라스토머입자
JP2018530007A (ja) 反射防止フィルム
JP5841835B2 (ja) 硬化性樹脂組成物、硬化物および光学物品
Debnath et al. Chemical surface treatment of ultrahigh molecular weight polyethylene for improved adhesion to methacrylate resins
CN107438778B (zh) 低折射率层和包含该低折射率层的减反射膜
KR20190039427A (ko) 중공 입자 및 그 용도
Wu et al. Preparation, characterization, and properties of environmentally friendly waterborne poly (urethane acrylate)/silica hybrids
CA2078949A1 (en) Composite composition having high transparency and process for producing same
WO2016111314A9 (ja) 中空粒子、その製造方法、その用途及びマイクロカプセル粒子の製造方法
Islam et al. Synthesis and characterization of poly (HEMA‐co‐MMA)‐g‐POSS nanocomposites by combination of reversible addition fragmentation chain transfer polymerization and click chemistry
WO2005092991A1 (ja) 活性エネルギ線硬化性被覆用組成物及び成形品
CN111465665A (zh) 可固化的氟化倍半硅氧烷组合物
JP2010539259A (ja) 粉末塗装レベリング剤としてのポリプロピレンオキシド含有ポリエーテルおよびそれらのポリ(メタ)アクリル酸エステルとの混合物
Zucchi et al. Surface energies of linear and cross-linked polymers based on isobornyl methacrylate and methacryl-heptaisobutyl POSS
Chen et al. Preparation and characterization of self-crosslinking acrylate emulsion modified by divinyl silane
WO2019186987A1 (ja) 複合粒子
JPH0625369A (ja) 水性シリコーン変性樹脂
JP3053353B2 (ja) ラジカル重合性樹脂組成物
JP6994562B2 (ja) コーティング用樹脂組成物及びその硬化物をコーティング層として含むコーティングフィルム
Tan et al. Waterborne UV-curable comb-shaped (meth) acrylate graft copolymer containing long fluorinated and/or polysiloxane side chains
Tang et al. Synthesis and characterization of poly (fluorinated styrene-acrylate)/silica nanocomposites
KR20130061683A (ko) 고 굴절률 조성물
Tan et al. A novel mono‐methacryloyloxy terminated fluorinated macromonomer used for the modification of UV curable acrylic copolymers
JPH04254406A (ja) 重合性シリカゾル、これに用いるアダマンタン誘導体およびこれを用いた硬化樹脂
US20130134368A1 (en) Organic-inorganic composite material and production process thereof, and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508783

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18911477

Country of ref document: EP

Kind code of ref document: A1