WO2019184019A1 - 一种自支撑超细纳米晶金刚石厚膜 - Google Patents

一种自支撑超细纳米晶金刚石厚膜 Download PDF

Info

Publication number
WO2019184019A1
WO2019184019A1 PCT/CN2018/083523 CN2018083523W WO2019184019A1 WO 2019184019 A1 WO2019184019 A1 WO 2019184019A1 CN 2018083523 W CN2018083523 W CN 2018083523W WO 2019184019 A1 WO2019184019 A1 WO 2019184019A1
Authority
WO
WIPO (PCT)
Prior art keywords
thick film
diamond
nanocrystalline diamond
growth
preparation
Prior art date
Application number
PCT/CN2018/083523
Other languages
English (en)
French (fr)
Inventor
江南
李�赫
王博
易剑
曹阳
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to US17/043,395 priority Critical patent/US11359276B2/en
Publication of WO2019184019A1 publication Critical patent/WO2019184019A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Definitions

  • the invention relates to a self-supporting ultra-fine nanocrystalline diamond thick film, belonging to the field of diamond materials.
  • diamond Due to the special crystal structure and bonding form, diamond has many excellent properties such as high hardness, wear resistance, corrosion resistance, high melting point, wide band gap, high light transmittance, excellent physical and chemical stability, etc., in machining, marine dynamic sealing. , MEMS, field emission, optical window, electrochemistry, acoustics, biomedical and other fields have a wide range of applications.
  • Single crystal diamonds have excellent properties, but natural single crystal diamonds are rare, expensive, and small in size, and are mainly used in the jewelry industry.
  • Industrial single crystal diamonds are often prepared by high temperature and high pressure and chemical vapor deposition (CVD) methods. There is residual metal catalyst inside the high temperature and high pressure diamond, which greatly reduces its performance.
  • the performance of CVD single crystal diamond can be comparable to natural single crystal diamond, and can even surpass natural single crystal diamond in terms of mechanical properties and purity, but the preparation is difficult and the cost is high.
  • both natural and synthetic single crystal diamonds have the disadvantage of anisotropy, which is caused by the crystal structure of the diamond itself and cannot be overcome, which limits its application.
  • Polycrystalline diamonds generally exist in the form of CVD diamond films, which are classified into microcrystalline diamond, nanocrystalline diamond, and ultrafine nanocrystalline diamond.
  • Microcrystalline diamond (grain size greater than 100 nm) has good crystallinity, large grain size, no anisotropy, high hardness, but low fracture toughness, large surface roughness of the film, and laser is usually required before use. Cutting and polishing processes increase the processing steps and costs, thus limiting the large-scale industrial application of micro-diamonds.
  • the physical and chemical properties of nanocrystalline diamond (grain size less than 100 nm, greater than 20 nm) are similar to those of micron diamond, and the smaller grain size makes the surface roughness much lower than that of microcrystalline diamond, and the fracture toughness is high.
  • ultrafine nanocrystalline diamond films (grain size less than 20 nm) have a very high secondary nucleation rate during growth, and the grain size does not increase with increasing thickness.
  • the surface of the film layer is extremely smooth and can be directly used without mechanical polishing, so that the ultrafine nanocrystalline diamond has great advantages in the field of mechanical processing and dynamic sealing.
  • a self-supporting ultrafine nanocrystalline diamond thick film having a thickness of from 100 to 3000 microns, wherein 1 nanometer ⁇ diamond grain size ⁇ 20 nanometers.
  • the thick film is circular and has a diameter of 50-100 mm.
  • the thick film surface is smooth.
  • the thick film has a thickness of from 200 to 1000 microns.
  • a method for preparing a self-supporting ultrafine nanocrystalline diamond thick film according to the first aspect wherein the ultrafine nanometer is completed by two steps of direct current hot cathode glow discharge chemical vapor deposition and hot filament chemical vapor deposition. Crystalline diamond thick film deposition.
  • the preparation method of the invention comprises the following steps:
  • the silicon wafer is a silicon wafer that has been subjected to grinding by ultrafine nanocrystalline diamond powder.
  • the ultrafine nanocrystalline diamond powder has a particle diameter of 5-15 nm.
  • the preparation method further comprises the step of nucleating the silicon wafer prior to step i).
  • the nucleation treatment is carried out in hydrogen and methane, the flow rate of hydrogen is 200-800 sccm, the methane concentration is 4.0-7.0%, the working pressure is 2.5-5.0 kPa, the nucleation temperature is 700-800 ° C, and the nucleation time is 20-40 minutes.
  • the growth atmosphere is hydrogen, methane and an inert gas.
  • the inert gas is nitrogen or argon.
  • the flow rate of hydrogen gas in step i), is 200-800 sccm, the methane concentration is 1.5-4.0%, and the inert gas concentration is 10-60%. In another preferred embodiment, in step i), the flow rate of hydrogen gas is from 300 to 700 sccm, and preferably, the flow rate of hydrogen gas is from 400 to 600 sccm.
  • the growth pressure in step i) is 2-5 kPa
  • the growth temperature is 750-850 ° C
  • the anode-anode spacing is 50-75 mm
  • the growth time is 2-80 hours.
  • the growth atmosphere is hydrogen, methane and an inert gas.
  • the inert gas is nitrogen or argon.
  • the flow rate of hydrogen gas in step ii), is 200-800 sccm, the methane concentration is 2-6%, and the inert gas concentration is 10-20%. In another preferred embodiment, the flow rate of hydrogen gas is 300-700 sccm, and preferably the flow rate of hydrogen gas is 400-600 sccm.
  • the growth gas pressure is from 1.5 to 2.5 kPa, and the growth time is from 30 to 1,000 hours.
  • the hot filaments are 3-20 0.1-0.6 mm diameter filaments, the hot filaments are 13-15 mm from the sample height, and the power per filament is 0.8-1.2 kW.
  • the hot wire is a hot wire which is carbonized in a mixed gas of hydrogen and methane.
  • the carbonization gas pressure is 2-3 kPa
  • the hydrogen gas flow rate is 200-800 sccm
  • the methane concentration is 2-6%
  • the carbonization time is 10-30 minutes.
  • the flow rate of hydrogen gas is from 300 to 700 sccm, and preferably the flow rate of hydrogen gas is from 400 to 600 scc.
  • step iii) the silicon wafer is etched using a mixture of hydrofluoric acid and nitric acid, and the silicon wafer is completely dissolved to obtain a self-supporting ultrafine nanocrystalline diamond thick film.
  • Example 1 is a plan scanning electron micrograph of a thick film of ultrafine nanocrystalline diamond obtained in Example 1.
  • Example 2 is a scanning electron micrograph of a thick film of a superfine nanocrystalline diamond obtained in Example 1.
  • Example 3 is a high resolution transmission electron micrograph of a thick film cross section of the ultrafine nanocrystalline diamond obtained in Example 1.
  • FIG. 4 is an electron diffraction photograph of a cross section selection of a thick film of ultrafine nanocrystalline diamond obtained in Example 1.
  • FIG. 4 is an electron diffraction photograph of a cross section selection of a thick film of ultrafine nanocrystalline diamond obtained in Example 1.
  • Example 5 is a thick film Raman spectrum of ultrafine nanocrystalline diamond obtained in Example 1.
  • Fig. 6 is an optical photograph of a thick film of ultrafine nanocrystalline diamond obtained in Example 1.
  • Example 7 is an optical photograph of a thick film of ultrafine nanocrystalline diamond obtained after cutting in Example 1.
  • Example 8 is a plan scanning electron micrograph of a thick film of ultrafine nanocrystalline diamond obtained in Example 2.
  • Example 9 is a thick film Raman spectrum of ultrafine nanocrystalline diamond obtained in Example 2.
  • Fig. 10 is a plan scanning electron micrograph of a thick film of ultrafine nanocrystalline diamond obtained in Example 3.
  • Figure 11 is a thick film Raman spectrum of ultrafine nanocrystalline diamond obtained in Example 3.
  • the invention adopts a chemical vapor deposition method to grow ultrafine nanocrystalline diamond on a silicon substrate, and then separates the silicon substrate from the diamond to obtain a self-supporting ultrafine nanocrystalline diamond thick film.
  • the invention provides a simple and effective chemical vapor deposition method for preparing a high quality ultrafine nanocrystalline diamond thick film. On the basis of this, the present invention has been completed.
  • the diamond grown by DC hot cathode chemical vapor deposition has good quality and strong adhesion to the substrate, and it is not easy to release the film.
  • the cathode carbon deposition phenomenon occurs, and the hot wire chemical vapor deposition can carry out the diamond growth for a long time. Therefore, the chemical vapor deposition of the ultrafine nanocrystalline diamond thick film is divided into two stages.
  • the first stage is completed in a DC hot cathode glow discharge chemical vapor deposition (DCCVD) apparatus, and a layer of ultrafine nanocrystalline diamond of 5 to 200 microns thick is grown on the surface of the silicon wafer for a growth time of 2 to 80 hours.
  • DCCVD DC hot cathode glow discharge chemical vapor deposition
  • the diamond grown by DCCVD has high purity and good quality, and the stress between the grown diamond film and the silicon wafer is small, the bonding force is large, and cracking is unlikely to occur.
  • a thick silicon substrate (silicon wafer) is used, and the thickness is 500-3000 ⁇ m.
  • the silicon wafer is first ground by nano-diamond powder, washed with deionized water and then ultrasonicated in alcohol containing nano-diamond powder to increase the nucleation density of the diamond.
  • the sonicated silicon substrate was washed with deionized water and finally dried with nitrogen to initiate chemical vapor deposition.
  • the gas atmosphere in which diamond is grown is hydrogen, methane, and an inert gas (nitrogen, argon, etc.).
  • methane is a gaseous carbon source for diamond growth
  • hydrogen can etch away the graphite phase produced during diamond deposition
  • inert gas is used to reduce the grain size of diamond growth.
  • Methane ionizes carbon-containing groups under the energy generated by direct current discharge, deposits diamond on the silicon substrate, but also forms a graphite phase, which is used to etch graphite to leave diamond. While the hydrogen plasma etches the graphite phase, the diamond is also etched, but the etching rate of graphite is much higher than that of diamond ( ⁇ 50 times), so the diamond can grow in a hydrogen-rich atmosphere.
  • DCCVD uses the energy generated by DC discharge to ionize the gas into a plasma.
  • the carbon-containing groups in the plasma are deposited on the silicon substrate by diffusion adsorption.
  • sp 3 phase diamond is formed, and the deposited graphite is deposited by hydrogen plasma.
  • An inert gas such as nitrogen or argon can suppress the growth of diamond grains and promote the secondary nucleation of diamond to form an ultrafine nanocrystalline diamond film.
  • the second stage growth of the ultrafine nanocrystalline diamond thick film is accomplished in a hot wire chemical vapor deposition (HFCVD) apparatus.
  • HFCVD hot wire chemical vapor deposition
  • the DCCVD grows with less diamond impurities and high quality, the cathode will deposit carbon during long-term growth, and the glow discharge cannot be stably performed.
  • HFCVD can carry out diamond growth for a long time, the second stage growth of the ultrafine nanocrystalline diamond thick film is carried out in HFCVD.
  • the growth gas conditions and deposition principles of HFCVD are basically the same as DCCVD. However, in HFCVD, the plasma is excited by the heat generated by the hot wire, and carbon deposition does not occur, and the diamond film can be grown for a long time. After the silicon wafer is grown by DCCVD, it also needs deionized water cleaning and nitrogen drying.
  • the gas atmosphere during HFCVD growth is the same as that of DCCVD, which is a mixture of hydrogen, methane and inert gas.
  • the hot wire selected by HFCVD is a twisted wire. Before the growth, the wire is carbonized in a mixed gas of hydrogen and methane to form a layer of tantalum carbide on the surface to improve the stability and service life of the wire, and then start. Chemical vapor deposition is performed.
  • the growth time is 30-1000 hours, and the ultrafine nanocrystalline diamond film has a thickness of 100-3000 microns.
  • the ultra-fine nanocrystalline diamond thick film prepared after two-stage chemical vapor deposition needs to etch away the silicon substrate to obtain a self-supporting ultra-fine nanocrystalline diamond thick film.
  • the etching solution is a mixture of hydrofluoric acid and nitric acid.
  • the silicon wafer can chemically react with hydrofluoric acid to dissolve the wafer, but at a very slow rate. After the addition of nitric acid, the chemical reaction can be vigorously carried out to form H 2 SiF 6 , and the silicon substrate is quickly etched away. Due to the very stable chemical properties of diamond, it does not react with a mixture of hydrofluoric acid and nitric acid. Therefore, after the silicon substrate is completely etched away, a self-supporting ultrafine nanocrystalline diamond thick film is successfully obtained.
  • the invention has the advantages of providing a simple and effective two-step chemical vapor deposition method for preparing a high hardness, toughness and isotropic ultrafine nanocrystalline diamond thick film on a silicon substrate, and the surface is extremely smooth. Overcoming a series of problems such as grinding and polishing, anisotropy in the application of diamond materials.
  • Self-supporting diamond ultra-fine nanocrystalline diamond thick film not only has high hardness, but also has very good toughness. It is an ideal material for manufacturing ultra-precision machining tools. Compared with single crystal diamond, nanocrystalline diamond thick film overcomes the disadvantage of anisotropy, is more suitable for manufacturing ultra-precision machining tools, and is less prone to chipping. In addition, the surface of the self-supporting diamond ultrafine nanocrystalline diamond thick film is extremely smooth, and can be applied to mechanical processing, dynamic sealing and the like without mechanical polishing, thereby solving the problem of grinding and polishing of diamond.
  • a thin film of ultrafine nanocrystalline diamond is chemically vapor deposited using a silicon (100) surface having a diameter of 50-100 mm and a thickness of 500-3000 ⁇ m.
  • the ultrafine nanocrystalline diamond powder has a particle size of 5-15 nm and is ground by hand grinding.
  • the ground silicon wafer After the ground silicon wafer is ultrasonically cleaned by deionized water, it is ultrasonicated in an alcohol suspension containing ultrafine nanocrystalline diamond powder, and seeded on the surface of the silicon wafer for 5-30 minutes.
  • High-density ultra-fine nanocrystalline diamond powder remains on the surface of the silicon wafer that has been ultrasonically pulverized in the diamond powder suspension, and can be used as the initial nucleation point of diamond chemical vapor deposition.
  • the residual alcohol on the silicon substrate after the completion of the seeding needs to be dried with nitrogen to deposit the diamond film, otherwise the vacuum of the chemical vapor deposition equipment will be affected.
  • the first stage of diamond film growth was carried out in DCCVD with a maximum power of 45 kW.
  • the gas atmosphere in which diamond is grown is hydrogen, methane and an inert gas (nitrogen, argon, etc.).
  • the purity of hydrogen is 99.9%, the methane is 99.99%, and the inert gas is 99.9%.
  • nucleation is first performed prior to diamond growth.
  • the nucleation is carried out in a mixed gas of hydrogen and methane, the flow rate of hydrogen is 400-800 sccm, the concentration of methane is 4.0-7.0%, the working pressure is 2.5-5.0 kPa, the nucleation temperature is 700-800 ° C, and the nucleation time is 20-40 minutes. .
  • diamond growth is performed.
  • the process parameters of the growth process are different from the nucleation process, and the growth process is carried out in a mixed gas of hydrogen, methane and an inert gas.
  • the flow rate of hydrogen gas is 600 sccm (standard cubic centimeters per minute), the methane concentration is 1.5-4.0%, and the inert gas concentration is 10-60%.
  • the growth pressure is 2-5 kPa, the growth temperature is 750-850 ° C, the anode-anode spacing is 50-75 mm, the growth time is 2-80 hours, and the ultra-fine nanocrystalline diamond film is grown to a thickness of 5-200 ⁇ m.
  • the second stage of diamond film growth is carried out in HFCVD.
  • the ultrafine nanocrystalline diamond film grown in DCCVD was subjected to deionized water washing and nitrogen drying, and then placed in HFCVD for growth.
  • the HFCVD growing hot wire is 3-20, the diameter is 0.1-0.6 mm, the hot wire is 13 mm from the sample height, and the power of each wire is 0.8-1.2 kW.
  • it is first carbonized in a mixed gas of hydrogen and methane.
  • the carbonization gas pressure is 2 kPa
  • the hydrogen gas flow rate is 400 sccm
  • the methane concentration is 2%
  • the carbonization time is 10-30 minutes.
  • the growth of the diamond film is started.
  • the growth gas pressure was reduced to 1.5 kPa, and 10% inert gas was introduced, and the growth time was 30-1000 hours, and the ultrafine nanocrystalline diamond film thickness was 100-3000 ⁇ m.
  • the ultra-fine nanocrystalline diamond thick film after growth needs to be etched away to obtain a self-supporting ultra-fine nanocrystalline diamond thick film.
  • the prepared ultra-fine nanocrystalline diamond thick film was characterized by scanning electron microscopy, transmission electron microscopy and Raman.
  • Figure 1 is a planar scanning electron micrograph of a thick film of ultrafine nanocrystalline diamond. It can be seen from Fig. 1 that the diamond grains are ultrafine nanocrystals and are distributed in the form of needle-like clusters.
  • Figure 2 is a scanning electron micrograph of a thick film section of ultrafine nanocrystalline diamond. It can be seen from Fig. 2 that the diamond thick film is divided into two layers with a total thickness of 618 ⁇ m, wherein the nucleation layer has a thickness of 173 ⁇ m and the growth layer has a thickness of 445 ⁇ m.
  • Figure 3 is a high resolution transmission electron micrograph of a thick film section of ultrafine nanocrystalline diamond. It can be seen from Fig. 3 that the prepared thick diamond film is ultrafine nanocrystalline diamond, and the four crystal grains indicated in the figure are 3.5, 6.3, 7.1 and 8.6 nm, respectively.
  • Figure 4 is an electron diffraction photograph of a cross-section selection of a thick film of ultrafine nanocrystalline diamond. It can be seen from Fig. 4 that the diffraction spots on the diffraction ring of each diamond are densely arranged, which is a typical nanocrystalline diamond electron diffraction image.
  • Figure 5 is a thick film Raman spectrum of ultrafine nanocrystalline diamond. It can be seen from Fig. 5 that there are 6 Raman peaks of the diamond thick film, which are in the order of 1134, 1192, 1332, 1350, 1470, and 1550 cm -1 , which are typical nanocrystalline diamond Raman spectra.
  • Figure 6 is an optical photograph of a thick film of ultrafine nanocrystalline diamond. It can be seen from Fig. 6 that the diamond thick film has a diameter of 50 mm and a mirror surface which is extremely smooth.
  • Figure 7 is an optical photograph of a thick film of ultrafine nanocrystalline diamond after dicing. It can be seen from Fig. 7 that the cut diamond thick film is square and the slit is flat.
  • the obtained self-supporting ultra-fine nanocrystalline diamond thick film is laser-cut and welded to the cutter body, and then subjected to edge cutting, rough grinding and fine grinding to obtain ultra-fine nanocrystalline diamond precision cutters, processed cutters, each The cutting edge is flat and sharp, the rake face is very smooth and has a very low roughness.
  • the self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 14 mm from the sample, the growth pressure was 1.5 kPa, the methane concentration was 2%, the inert gas concentration was 10%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • Figure 8 is a planar scanning electron micrograph of a superfine nanocrystalline diamond thick film. It can be seen from Fig. 8 that the crystal grains of the diamond thick film are still ultrafine nanocrystals, and the acicular clusters are more remarkable than in the first embodiment.
  • Figure 9 is a thick film Raman spectrum of ultrafine nanocrystalline diamond. It can be seen from Fig. 9 that there are 6 Raman peaks of the diamond thick film, which are in the order of 1134, 1192, 1332, 1350, 1470, and 1550 cm -1 , which are typical nanocrystalline diamond Raman spectra.
  • the thickness of the thick film was measured to be 500 ⁇ m and the average size of the diamond grains was 10 nm.
  • a self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 15 mm from the sample, the growth pressure was 1.5 kPa, the methane concentration was 2%, the inert gas concentration was 10%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • Figure 10 is a planar scanning electron micrograph of a thick film of ultrafine nanocrystalline diamond. It can be seen from Fig. 10 that the crystal grains of the diamond thick film are still ultrafine nanocrystals, and the diamond grain distribution is no longer a needle-like cluster as compared with the first embodiment.
  • Figure 11 is a thick film Raman spectrum of ultrafine nanocrystalline diamond. It can be seen from Fig. 11 that there are 6 Raman peaks of the diamond thick film, which are in the order of 1134, 1192, 1332, 1350, 1470, and 1550 cm -1 , which are typical nanocrystalline diamond Raman spectra.
  • the thickness of the thick film was determined to be 450 microns and the average size of the diamond grains was 12 nanometers.
  • a self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 13 mm from the sample, the growth pressure was 2.0 kPa, the methane concentration was 2%, the inert gas concentration was 10%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • the thickness of the thick film was 550 micrometers and the average size of the diamond grains was 8 nanometers.
  • the self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 13 mm from the sample, the growth pressure was 2.5 kPa, the methane concentration was 2%, the inert gas concentration was 10%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • the thickness of the thick film was measured to be 500 microns and the average grain size of the diamond grains was 5 nanometers.
  • the self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 13 mm from the sample, the growth pressure was 1.5 kPa, the methane concentration was 4%, the inert gas concentration was 10%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • the thickness of the thick film was measured to be 400 microns and the average size of the diamond grains was 15 nanometers.
  • a self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 13 mm from the sample, the growth pressure was 1.5 kPa, the methane concentration was 6%, the inert gas concentration was 10%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • the thickness of the thick film was measured to be 400 ⁇ m and the average size of the diamond grains was 10 nm.
  • a self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 13 mm from the sample, the growth pressure was 1.5 kPa, the methane concentration was 6%, the inert gas concentration was 15%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • the thickness of the thick film was measured to be 350 microns and the average grain size of the diamond grains was 7 nanometers.
  • the self-supporting ultrafine nanocrystalline diamond thick film was prepared by the method of Example 1, except that the height of the hot wire was 13 mm from the sample, the growth pressure was 1.5 kPa, the methane concentration was 6%, the inert gas concentration was 20%, and the growth time was After 30-1000 hours, the ultra-thin nanocrystalline diamond thick film growth is completed.
  • the thickness of the thick film was measured to be 300 ⁇ m and the average size of the diamond grains was 5 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种自支撑超细纳米晶金刚石厚膜,厚度为100-3000微米,其中,1纳米≤金刚石晶粒尺寸≤20纳米。以及一种采用化学气相沉积的方法,在硅基板上生长超细纳米晶金刚石,然后将硅基板与金刚石分离,获得自支撑超细纳米晶金刚石厚膜。该化学气相沉积方法简单、有效,制备了高质量超细纳米晶金刚石厚膜。

Description

一种自支撑超细纳米晶金刚石厚膜 技术领域
本发明涉及一种自支撑超细纳米晶金刚石厚膜,属于金刚石材料领域。
背景技术
由于特殊的晶体结构和成键形式,金刚石具有高硬度、耐磨耐腐蚀、高熔点、宽带隙、高透光率、极佳的物理化学稳定性等众多优异性能,在机械加工、海洋动密封、微机电系统、场发射、光学窗口、电化学、声学、生物医学等领域具有广泛的应用。
目前,常见的金刚石有两种,分别是单晶金刚石和多晶金刚石。单晶金刚石性能优异,但天然单晶金刚石数量稀少、价格昂贵,并且尺寸较小,主要应用在珠宝行业。工业用单晶金刚石往往通过高温高压和化学气相沉积(CVD)方法制备而成。高温高压金刚石内部会有残留的金属催化剂,大大降低其使用性能。CVD单晶金刚石性能可以媲美天然单晶金刚石,在机械性能和纯度等方面甚至可以超越天然单晶金刚石,但是制备比较困难,成本很高。另外,无论是天然还是人造单晶金刚石都具有各向异性的缺点,这是由于金刚石本身的晶体结构造成的,无法克服,限制了其应用。
多晶金刚石一般都是以CVD金刚石膜的形式存在,分为微米晶金刚石、纳米晶金刚石和超细纳米晶金刚石。微米晶金刚石(晶粒尺寸大于100nm)结晶性较好,晶粒尺寸较大,无各向异性,硬度较高,但是断裂韧性较低,膜层表面粗糙度较大,使用之前通常需要进行激光切割、抛光加工,增加了加工工序与成本,从而限制了微米金刚石的大批量产业化应用。纳米晶金刚石(晶粒尺寸小于100nm,大于20nm)的各项物理化学性能与微米金刚石相似,而且较小的晶粒尺寸使其表面粗糙度比微米晶金刚石低得多,断裂韧性较高,大幅降低了表层研磨抛光工艺时间和成本。相对于纳米晶金刚石,超细纳米晶金刚石膜(晶粒尺寸小于20nm)由于生长过程中二次形核率非常高,晶粒尺寸不会随着厚度的增加而增大。薄膜中尺寸极小的晶粒、大量晶界和石墨相的存在使其拥有众多优异的性能,例 如各向同性、极低的摩擦系数、高场发射系数、高红外透过率、高断裂韧性、更易于掺杂等,大大拓宽了金刚石膜的应用领域,在动密封和超精密加工、微机电系统、电化学和生物医学等众多领域具有潜在的应用。另外,膜层表面极其光滑,无需机械抛光就可以直接使用,使得超细纳米晶金刚石在机械加工领域、动密封领域具有非常大的优势。
因此,开发一种自支撑超细纳米晶金刚石厚膜,对提高金刚石在高精尖行业的应用至关重要。
发明内容
本发明的目的在于提供一种自支撑超细纳米晶金刚石厚膜。
本发明的第一方面,提供一种自支撑超细纳米晶金刚石厚膜,所述厚膜的厚度为100-3000微米,其中1纳米≤金刚石晶粒尺寸≤20纳米。
在另一优选例中,所述厚膜为圆形,直径为50-100毫米。
在另一优选例中,所述厚膜表面光滑。
在另一优选例中,所述厚膜中,2纳米≤金刚石晶粒尺寸≤16纳米。
在另一优选例中,所述厚膜的厚度为200-1000微米。
本发明的第二方面,提供第一方面所述的自支撑超细纳米晶金刚石厚膜的制备方法,通过直流热阴极辉光放电化学气相沉积和热丝化学气相沉积两步来完成超细纳米晶金刚石厚膜沉积。
本发明的制备方法包括以下步骤:
(i)通过直流热阴极辉光放电化学气相沉积,在硅片表面生长5~200微米厚的超细纳米晶金刚石层;
(ii)通过热丝化学气相沉积,在超细纳米晶金刚石层上继续生长超细纳米晶金刚石,得到超细纳米晶金刚石厚膜;
(iii)将硅片与超细纳米晶金刚石厚膜分离得到所述自支撑超细纳米晶金刚石厚膜。
在另一优选例中,所述硅片是经过超细纳米晶金刚石粉研磨处理的硅片。在另一优选例中,所述超细纳米晶金刚石粉的粒径为5-15纳米。
在另一优选例中,所述制备方法在步骤i)之前还包括对硅片进行形核处理的步骤。
在另一优选例中,在氢气和甲烷中进行形核处理,氢气的流量为200-800sccm,甲烷浓度4.0-7.0%,工作气压2.5-5.0kPa,形核温度700-800℃,形核时间20-40分钟。
在另一优选例中,步骤i)中,生长氛围为氢气、甲烷和惰性气体。在另一优选例中,所述惰性气体为氮气或氩气。
在另一优选例中,步骤i)中,氢气的流量为200-800sccm,甲烷浓度为1.5-4.0%,惰性气体浓度为10-60%。在另一优选例中,步骤i)中,氢气的流量为300-700sccm,较佳地,氢气的流量为400-600sccm。
在另一优选例中,步骤i)中生长气压2-5kPa,生长温度750-850℃,阴阳极间距50-75毫米,生长时间2-80小时。
在另一优选例中,步骤ii)中,生长氛围为氢气、甲烷和惰性气体。在另一优选例中,所述惰性气体为氮气或氩气。
在另一优选例中,步骤ii)中,氢气的流量为200-800sccm,甲烷浓度2-6%,惰性气体浓度为10-20%。在另一优选例中,氢气的流量为300-700sccm,较佳地氢气的流量为400-600sccm。
在另一优选例中,步骤ii)中,生长气压为1.5-2.5kPa,生长时间为30-1000小时。
在另一优选例中,步骤ii)中,热丝为3-20根直径0.1-0.6毫米钽丝,热丝距离样品高度13-15毫米,每根钽丝的功率为0.8-1.2kW。
在另一优选例中,所述热丝是在氢气和甲烷的混合气体中进行碳化处理的热丝。在另一优选例中,碳化气压为2-3kPa,氢气的流量为200-800sccm,甲烷浓度2-6%,碳化时间10-30分钟。在另一优选例中,氢气的流量为300-700sccm,较佳地氢气的流量为400-600scc。
在另一优选例中,步骤iii)中,采用氢氟酸和硝酸的混合液腐蚀硅片,把硅 片完全溶解掉,获得自支撑超细纳米晶金刚石厚膜。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。说明书中所揭示的各个特征,可以被任何提供相同、均等或相似目的的替代性特征取代。限于篇幅,在此不再一一赘述。
附图说明
图1是实施例1所得超细纳米晶金刚石厚膜平面扫描电镜照片。
图2是实施例1所得超细纳米晶金刚石厚膜截面扫描电镜照片。
图3是实施例1所得超细纳米晶金刚石厚膜截面高分辨透射电镜照片。
图4是实施例1所得超细纳米晶金刚石厚膜截面选区电子衍射照片。
图5是实施例1所得超细纳米晶金刚石厚膜拉曼光谱。
图6是实施例1所得超细纳米晶金刚石厚膜光学照片。
图7是实施例1所得切割后超细纳米晶金刚石厚膜光学照片。
图8是实施例2所得超细纳米晶金刚石厚膜平面扫描电镜照片。
图9是实施例2所得超细纳米晶金刚石厚膜拉曼光谱。
图10是实施例3所得超细纳米晶金刚石厚膜平面扫描电镜照片。
图11是实施例3所得超细纳米晶金刚石厚膜拉曼光谱。
具体实施方式
本申请的发明人经过广泛而深入的研究,首次研发出一种超细纳米晶金刚石厚膜,厚度100-3000微米,1纳米≤金刚石晶粒尺寸≤20纳米。本发明采用化学气相沉积的方法,在硅基板上生长超细纳米晶金刚石,然后将硅基板与金刚石分离,获得自支撑超细纳米晶金刚石厚膜。本发明提供了一种简单、有效的化学气相沉积方法,制备了高质量超细纳米晶金刚石厚膜。在此基础上,完成了本发明。
制备方法
直流热阴极化学气相沉积生长的金刚石质量好、与基体结合力强,不容易发生脱膜,但是生长时间过长会发生阴极积碳现象,而热丝化学气相沉积可以长时间地进行金刚石生长。因此,超细纳米晶金刚石厚膜的化学气相沉积分为两个阶段。
第一阶段在直流热阴极辉光放电化学气相沉积(DCCVD)设备中完成,在硅片表面生长一层5~200微米厚的超细纳米晶金刚石,生长时间2-80小时。
DCCVD生长的金刚石纯度高、质量好,生长的金刚石膜与硅片之间的应力小、结合力大,不容易发生崩裂。
为了防止金刚石膜由于应力发生弯曲或脱落,采用较厚的硅基板(硅片),厚度为500-3000微米。硅片在生长金刚石之前,首先要经过纳米金刚石粉研磨,用去离子水洗干净以后在含有纳米金刚石粉的酒精中超声,来提高金刚石的形核密度。超声过的硅基板再用去离子水清洗,最后用氮气吹干后开始进行化学气相沉积。
金刚石生长的气体氛围为氢气、甲烷和惰性气体(氮气、氩气等)。其中,甲烷是金刚石生长的气体碳源,氢气可以刻蚀掉在金刚石沉积过程中产生的石墨相,而惰性气体用来降低金刚石生长的晶粒尺寸。甲烷在直流放电产生的能量作用下电离出含碳基团,在硅基板上沉积成金刚石,但是同时也会生成石墨相,氢等离子体用来刻蚀石墨,从而留下金刚石。氢等离子体刻蚀石墨相的同时,也会刻蚀金刚石,但是对石墨的刻蚀速度远远高于对金刚石的刻蚀速度(~50倍),因此金刚石可以在富氢氛围中生长。DCCVD利用直流放电产生的能量将气体电离为等离子体,等离子体中的含碳基团以扩散吸附的方式在硅基板上沉积,脱氢后形成sp 3相金刚石,利用氢等离子体对沉积的石墨刻蚀,形成金刚石膜。氮气、氩气等惰性气体可以抑制金刚石晶粒的长达,促进金刚石不断地二次形核,形成超细纳米晶金刚石膜。
超细纳米晶金刚石厚膜的第二阶段生长在热丝化学气相沉积(HFCVD)设备中完成。尽管DCCVD生长的金刚石杂质少、质量高,但是阴极在长时间生长过程中会发生积碳现象,不能稳定进行辉光放电。而HFCVD能够长时间的进行金刚石生长,因此超细纳米晶金刚石厚膜的第二阶段生长在HFCVD中进行。
HFCVD的生长气体条件和沉积原理与DCCVD基本相同。但是HFCVD中等离子体靠热丝产生的热量来激发,不会产生积碳现象,可以长时间生长金刚石膜。硅片经过DCCVD生长后,同样需要去离子水清洗和氮气吹干。HFCVD生长过程中的气体氛围与与DCCVD相同,都是氢气、甲烷和惰性气体的混合气体。HFCVD选用的热丝为钽丝,在生长之前,先将钽丝在氢气和甲烷的混合气体中进行碳化,在表面形成一层碳化钽,来提高钽丝的稳定性和使用寿命,然后再开始进行化学气相沉积。生长时间为30-1000小时,超细纳米晶金刚石膜厚度为100-3000微米。
经过两阶段化学气相沉积后制备的超细纳米晶金刚石厚膜需要将硅基板腐蚀掉,来获得自支撑的超细纳米晶金刚石厚膜。腐蚀液选用氢氟酸和硝酸的混合液。硅片可与氢氟酸发生化学反应来溶解硅片,但是速度非常缓慢。加入硝酸后可以使化学反应剧烈进行,生成H 2SiF 6,迅速将硅基板腐蚀掉。由于金刚石的化学性能非常稳定,不会与氢氟酸和硝酸的混合液发生反应。因此,在硅基板完全腐蚀掉以后,就成功获得了自支撑的超细纳米晶金刚石厚膜。
本发明的有益之处在于:提供一种简单、有效的两步化学气相沉积方法,在硅基板上制备高硬度、强韧性和各向同性的超细纳米晶金刚石厚膜,并且表面极其光滑。克服了金刚石材料应用过程中的研磨抛光、各向异性等一系列问题。
自支撑金刚石超细纳米晶金刚石厚膜不仅具有很高的硬度,而且其韧性也非常好,是制造超精密加工刀具的理想材料。与单晶金刚石相比,纳米晶金刚石厚膜克服了各向异性的缺点,更适于制造超精密加工刀具,并且不容易发生崩刃现象。此外,自支撑金刚石超细纳米晶金刚石厚膜的表面极其光滑,不经过机械抛光就可以应用到机械加工、动密封等领域,解决了金刚石的研磨抛光难题。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。。
实施例1
采用直径50-100毫米,厚度500-3000微米的硅(100)面进行化学气相沉积超细纳米晶金刚石厚膜。在沉积之前,为了提高金刚石的形核密度来生长超细纳米晶金刚石,需要对硅片用超细纳米晶金刚石粉进行研磨,在硅片表面形成许多纳米沟槽,促进金刚石的形核。超细纳米晶金刚石粉的粒径为5-15纳米,采用手工研磨的方式来研磨硅片。研磨后的硅片经过去离子水超声清洗后,在含有超细纳米晶金刚石粉的酒精悬浊液中超声,在硅片表面进行布种,超声时间5-30分钟。在金刚石粉悬浊液中超声过的硅片表面会残留高密度的超细纳米晶金刚石粉,可以作为金刚石化学气相沉积的初始形核点。布种完成后的硅基板上残留的酒精需要用氮气吹干才能进行金刚石膜沉积,否则会影响化学气相沉积设备的真空度。
第一阶段的金刚石膜生长在DCCVD中进行,最大功率为45kW。金刚石生长的气体氛围为氢气、甲烷和惰性气体(氮气,氩气等)。氢气纯度为99.9%,甲烷为99.99%,惰性气体为99.9%。在金刚石生长之前,首先要进行形核处理。形核是在氢气和甲烷的混合气体中进行,氢气的流量为400-800sccm,甲烷浓度4.0-7.0%,工作气压2.5-5.0kPa,形核温度700-800℃,形核时间20-40分钟。形核完成后,再进行金刚石的生长。生长过程的工艺参数与形核过程不同,生长过程在氢气、甲烷和惰性气体的混合气体中进行。氢气的流量为600sccm(标准立方厘米每分钟),甲烷浓度为1.5-4.0%,惰性气体浓度为10-60%。生长气压2-5kPa,生长温度750-850℃,阴阳极间距50-75毫米,生长时间2-80小时,生长超细纳米晶金刚石膜厚5-200微米。
第二阶段的金刚石膜生长在HFCVD中进行。在DCCVD中生长完成的超细纳米晶金刚石膜,经过去离子水清洗和氮气吹干后,放入HFCVD中长厚。HFCVD生长热丝为3-20根,直径0.1-0.6毫米钽丝,热丝距离样品高度13毫米,每根钽丝的功率为0.8-1.2kW。生长之前,为了提高钽丝的稳定性和使用寿命,首先在氢 气和甲烷的混合气体中对其碳化。碳化气压为2kPa,氢气流量为400sccm,甲烷浓度2%,碳化时间10-30分钟。碳化完成后,开始金刚石膜的生长。生长气压降至1.5kPa,并通入10%惰性气体,生长时间30-1000小时,超细纳米晶金刚石膜厚度为100-3000微米。
生长完成后的超细纳米晶金刚石厚膜需要把硅基板腐蚀掉,来获得自支撑超细纳米晶金刚石厚膜。腐蚀液为氢氟酸和硝酸的混合液,体积比为3:1,通过3Si+4HNO 3+18HF=3H 2SiF 6+4NO+8H 2O的化学反应把硅片溶解掉。反应过程中有NO气体的生成,需要在通风橱中进行腐蚀。另外,反应过程中会产生大量的反应热,必须控制反应速度,防止超细纳米晶金刚石厚膜受热破裂。因此,腐蚀过程分步进行,根据金刚石厚膜的尺寸大小,通过3~5次添加腐蚀液,来把硅片完全溶解掉。
制备完成的超细纳米晶金刚石厚膜通过扫描电镜、透射电镜、拉曼等手段进行测试表征。
图1是超细纳米晶金刚石厚膜平面扫描电镜照片。从图1中可以看出:金刚石晶粒为超细纳米晶,呈针状团簇分布。图2是超细纳米晶金刚石厚膜截面扫描电镜照片。从图2中可以看出:金刚石厚膜分为两层,总厚度为618微米,其中形核层厚度173微米,生长层厚度445微米。
图3是超细纳米晶金刚石厚膜截面高分辨透射电镜照片。从图3中可以看出:制备的金刚石厚膜为超细纳米晶金刚石,图中标出的4个晶粒的尺寸分别为3.5、6.3、7.1和8.6纳米。
图4是超细纳米晶金刚石厚膜截面选区电子衍射照片。从图4中可以看出:各级金刚石的衍射环上的衍射点密集排布,为典型的纳米晶金刚石电子衍射像。
图5是超细纳米晶金刚石厚膜拉曼光谱。从图5中可以看出:金刚石厚膜的拉曼峰共有6个,依次在1134、1192、1332、1350、1470、1550cm -1处,为典型的纳米晶金刚石拉曼光谱。
图6是超细纳米晶金刚石厚膜光学照片。从图6中可以看出:金刚石厚膜的直径为50毫米,表面呈镜面,极其光滑。
图7是切割后超细纳米晶金刚石厚膜光学照片。从图7中可以看出:切割后 的金刚石厚膜成四方形,切口平整。
将获得的自支撑超细纳米晶金刚石厚膜经激光切割,焊接至刀体上,再经开刃、粗磨、精磨,即可获得超细纳米晶金刚石精密刀具,加工完成的刀具,各切削刃平整锋利,前刀面非常光滑,具有很低的粗糙度。
实施例2
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为14毫米,生长气压1.5kPa,甲烷浓度2%,惰性气体浓度10%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
图8是超细纳米晶金刚石厚膜平面扫描电镜照片。从图8中看出:金刚石厚膜的晶粒依然为超细纳米晶,相比于实施例1,针状团簇更为明显。
图9是超细纳米晶金刚石厚膜拉曼光谱。从图9中可以看出:金刚石厚膜的拉曼峰共有6个,依次在1134、1192、1332、1350、1470、1550cm -1处,为典型的纳米晶金刚石拉曼光谱。
经检测,厚膜的厚度为500微米,金刚石晶粒平均尺寸为10纳米。
实施例3
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为15毫米,生长气压1.5kPa,甲烷浓度2%,惰性气体浓度10%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
图10是超细纳米晶金刚石厚膜平面扫描电镜照片。从图10中看出:金刚石厚膜的晶粒依然为超细纳米晶,相比于实施例1,金刚石晶粒分布不再呈针状团簇。
图11是超细纳米晶金刚石厚膜拉曼光谱。从图11中可以看出:金刚石厚膜的拉曼峰共有6个,依次在1134、1192、1332、1350、1470、1550cm -1处,为典型的纳米晶金刚石拉曼光谱。
经检测,厚膜的厚度为450微米,金刚石晶粒平均尺寸为12纳米。
实施例4
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为13毫米,生长气压2.0kPa,甲烷浓度2%,惰性气体浓度10%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
经检测,厚膜的厚度为550微米,金刚石晶粒平均尺寸为8纳米。
实施例5
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为13毫米,生长气压2.5kPa,甲烷浓度2%,惰性气体浓度10%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
经检测,厚膜的厚度为500微米,金刚石晶粒平均尺寸为5纳米。
实施例6
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为13毫米,生长气压1.5kPa,甲烷浓度4%,惰性气体浓度10%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
经检测,厚膜的厚度为400微米,金刚石晶粒平均尺寸为15纳米。
实施例7
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为13毫米,生长气压1.5kPa,甲烷浓度6%,惰性气体浓度10%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
经检测,厚膜的厚度为400微米,金刚石晶粒平均尺寸为10纳米。
实施例8
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为13毫米,生长气压1.5kPa,甲烷浓度6%,惰性气体浓度15%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
经检测,厚膜的厚度为350微米,金刚石晶粒平均尺寸为7纳米。
实施例9
采用实施例1的方法制备自支撑超细纳米晶金刚石厚膜,不同之处在于:热丝距离样品的高度为13毫米,生长气压1.5kPa,甲烷浓度6%,惰性气体浓度20%,生长时间30-1000小时,完成超细纳米晶金刚石厚膜生长。
经检测,厚膜的厚度为300微米,金刚石晶粒平均尺寸为5纳米。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种自支撑超细纳米晶金刚石厚膜,其特征在于,所述厚膜的厚度为100-3000微米,其中1纳米≤金刚石晶粒尺寸≤20纳米。
  2. 如权利要求1所述的自支撑超细纳米晶金刚石厚膜的制备方法,其特征在于,所述制备方法包括以下步骤:
    (i)通过直流热阴极辉光放电化学气相沉积,在硅片表面生长5~200微米厚的超细纳米晶金刚石层;
    (ii)通过热丝化学气相沉积,在超细纳米晶金刚石层上继续生长超细纳米晶金刚石,得到超细纳米晶金刚石厚膜;
    (iii)将硅片与超细纳米晶金刚石厚膜分离得到所述自支撑超细纳米晶金刚石厚膜。
  3. 如权利要求2所述的制备方法,其特征在于,所述制备方法在步骤i)之前还包括对硅片进行形核处理的步骤。
  4. 如权利要求2所述的制备方法,其特征在于,步骤i)和ii)中,生长氛围均为氢气、甲烷和惰性气体。
  5. 如权利要求4所述的制备方法,其特征在于,步骤i)中,氢气的流量为200-800sccm,甲烷浓度为1.5-4.0%,惰性气体浓度为10-60%。
  6. 如权利要求2所述的制备方法,其特征在于,步骤i)中生长气压2-5kPa,生长温度750-850℃,阴阳极间距50-75毫米,生长时间2-80小时。
  7. 如权利要求2所述的制备方法,其特征在于,步骤ii)中,热丝为3-20根直径0.1-0.6毫米钽丝,热丝距离样品高度13-15毫米,每根钽丝的功率为0.8-1.2kW。
  8. 如权利要求4所述的制备方法,其特征在于,步骤ii)中,氢气的流量为200-800sccm,甲烷浓度2-6%,惰性气体浓度为10-20%。
  9. 如权利要求2所述的制备方法,其特征在于,步骤ii)中,生长气压为1.5-2.5kPa,生长时间为30-1000小时。
  10. 如权利要求2所述的制备方法,其特征在于,步骤iii)中,采用氢氟酸和硝酸的混合液腐蚀硅片,把硅片完全溶解掉,获得自支撑超细纳米晶金刚石厚膜。
PCT/CN2018/083523 2018-03-29 2018-04-18 一种自支撑超细纳米晶金刚石厚膜 WO2019184019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,395 US11359276B2 (en) 2018-03-29 2018-04-18 Self-supporting ultra-fine nanocrystalline diamond thick film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810273492.XA CN110318030B (zh) 2018-03-29 2018-03-29 一种自支撑超细纳米晶金刚石厚膜
CN201810273492.X 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184019A1 true WO2019184019A1 (zh) 2019-10-03

Family

ID=68059122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083523 WO2019184019A1 (zh) 2018-03-29 2018-04-18 一种自支撑超细纳米晶金刚石厚膜

Country Status (3)

Country Link
US (1) US11359276B2 (zh)
CN (1) CN110318030B (zh)
WO (1) WO2019184019A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286718A (zh) * 2020-03-20 2020-06-16 廊坊西波尔钻石技术有限公司 一种抗冲击cvd金刚石自支撑材料及制造方法
CN113621938B (zh) * 2020-05-06 2023-06-20 宁波材料所杭州湾研究院 一种金刚石膜生长方法、具有金刚石膜的硅片与应用
CN111661843B (zh) * 2020-05-27 2022-12-13 富耐克超硬材料股份有限公司 活化的纳米石墨粉体及其制备方法
CN112760612B (zh) * 2020-12-28 2022-07-01 吉林工程技术师范学院 一种自支撑纳米针多孔金刚石的制备方法
CN113151801B (zh) * 2021-03-03 2022-12-27 电子科技大学 一种自支撑悬浮碳膜制备方法
CN113026001B8 (zh) * 2021-05-26 2021-09-14 上海征世科技股份有限公司 一种介稳态控制制备金刚石的方法
CN114231953A (zh) * 2021-11-24 2022-03-25 江苏籽硕科技有限公司 利用微波等离子体化学气相沉积法制备纳米金刚石薄膜的方法
CN114318287B (zh) * 2021-12-23 2023-11-03 深圳技术大学 金刚石自支撑膜的制备方法和金刚石自支撑膜
CN114908319B (zh) * 2022-04-22 2024-07-26 宁波杭州湾新材料研究院 一种金刚石-氧化铝复合薄膜及其制备方法
CN115652420A (zh) * 2022-09-23 2023-01-31 内蒙古唐合科技有限公司 一种硅掺杂的纳米金刚石晶粒的制备方法
CN116282002A (zh) * 2023-01-18 2023-06-23 浙江工业大学 一种常压下基于石墨制备金刚石的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1107900A (zh) * 1994-09-24 1995-09-06 吉林大学 热阴极辉光等离子体化学相沉积制备金刚石膜的工艺
US6370165B1 (en) * 1998-07-20 2002-04-09 Qqc, Inc. Diamond coatings deposited on WC-Co substrate by multiple laser
EP1662023A1 (en) * 2003-08-07 2006-05-31 Ebara Corporation Method of coating for diamond electrode
CN1844450A (zh) * 2006-03-27 2006-10-11 南京航空航天大学 一种金刚石膜生长设备的热丝及电极结构
CN104561925A (zh) * 2015-01-20 2015-04-29 太原理工大学 一种自支撑金刚石膜的制备方法
CN105506576A (zh) * 2016-02-02 2016-04-20 太原理工大学 一种高品质自支撑金刚石厚膜的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366522A (en) * 1991-11-07 1994-11-22 Sumitomo Electric Industries, Ltd. Polycrystalline diamond cutting tool and method of manufacturing the same
JP2012519774A (ja) * 2009-03-06 2012-08-30 ディアッコン ゲーエムベーハー Cvd自立ダイヤモンド膜及びその製造方法
US9758382B1 (en) * 2011-01-31 2017-09-12 Hrl Laboratories, Llc Three-dimensional ordered diamond cellular structures and method of making the same
CN102212795B (zh) * 2011-05-10 2013-04-17 天津理工大学 一种高致密纳米金刚石薄膜的生长方法
CN103787585B (zh) * 2014-02-10 2016-01-13 北京美顺达技术开发有限公司 在石英基片上沉积金刚石膜的方法
CN105755448A (zh) * 2016-03-08 2016-07-13 浙江大学 一种纳米金刚石薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1107900A (zh) * 1994-09-24 1995-09-06 吉林大学 热阴极辉光等离子体化学相沉积制备金刚石膜的工艺
US6370165B1 (en) * 1998-07-20 2002-04-09 Qqc, Inc. Diamond coatings deposited on WC-Co substrate by multiple laser
EP1662023A1 (en) * 2003-08-07 2006-05-31 Ebara Corporation Method of coating for diamond electrode
CN1844450A (zh) * 2006-03-27 2006-10-11 南京航空航天大学 一种金刚石膜生长设备的热丝及电极结构
CN104561925A (zh) * 2015-01-20 2015-04-29 太原理工大学 一种自支撑金刚石膜的制备方法
CN105506576A (zh) * 2016-02-02 2016-04-20 太原理工大学 一种高品质自支撑金刚石厚膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN RONGFA: "Research on key techniques of Application of optical grade thick diamond films in infrared windows", DOCTORAL DISSERTATION, 31 October 2008 (2008-10-31), pages 32 - 58 *

Also Published As

Publication number Publication date
CN110318030B (zh) 2021-10-22
US11359276B2 (en) 2022-06-14
US20210140038A1 (en) 2021-05-13
CN110318030A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2019184019A1 (zh) 一种自支撑超细纳米晶金刚石厚膜
JP6977013B2 (ja) 高双晶化配向多結晶ダイヤモンド膜及びその製造方法
WO2019184018A1 (zh) 一种超细纳米晶金刚石精密刀具及其制造方法
JP2023113676A (ja) 光学的に仕上げられた薄い高アスペクト比のダイヤモンド基板又は窓、及び、これらの製造方法
US5114696A (en) Diamond growth method
US20160264422A1 (en) Polycrystalline diamond and manufacturing method thereof, scribe tool, scribing wheel, dresser, rotating tool, orifice for water jet, wiredrawing die, cutting tool, and electron emission source
JPH01246116A (ja) 針状,繊維状,多孔質状ダイヤモンドまたはそれらの集合体の製造法
US5483084A (en) Diamond covered member and process for producing the same
CN107267954B (zh) 一种外延生长制备高定向金刚石纳米片阵列材料的方法
US8158011B2 (en) Method of fabrication of cubic boron nitride conical microstructures
Shen et al. The effects of deposition parameters on the grain morphology and wear mechanism of monolayer diamond grinding tools fabricated by hot filament CVD method
JP2000219597A (ja) ダイヤモンド薄膜又はcbn、bcn若しくはcn薄膜、同薄膜の改質方法、同薄膜の改質及び形成方法並びに同薄膜の加工方法
CN113089093B (zh) 金刚石半导体结构的形成方法
JP2017226593A (ja) シリコン層、及び、光学的に仕上げられた(又は密集した)シリコン‐ダイヤモンド界面を有するダイヤモンド層を含む基板
WO2004106595A1 (ja) レーザーアブレーション法による極平坦微結晶ダイヤモンド薄膜の作製方法
Ali et al. Effect of surface treatment on hot-filament chemical vapour deposition grown diamond films
CN113174582A (zh) 微波等离子体化学气相沉积法制备金刚石膜方法
CN116619246B (zh) 一种具有金刚石柱状晶簇的cmp抛光垫修整器及其制备方法
CN115181957B (zh) 一种功能性金刚石微纳米粉体及复合体的制备和应用
JPH06262520A (ja) 研削砥石及びその製造方法
WO2023136345A1 (ja) ダイヤモンドツール及びその製造方法
US20230056012A1 (en) Diamond Structures For Tooling
JPH06262406A (ja) 切削工具およびその製造法
Chen et al. Low Temperature Growth of Ditetragonal Pyramid Diamond by Plasma Enhanced Chemical Vapor Deposition
WO2024107528A1 (en) Diamond structures for tooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912631

Country of ref document: EP

Kind code of ref document: A1