WO2019182149A1 - 方向性電磁鋼板及び方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板及び方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2019182149A1
WO2019182149A1 PCT/JP2019/012252 JP2019012252W WO2019182149A1 WO 2019182149 A1 WO2019182149 A1 WO 2019182149A1 JP 2019012252 W JP2019012252 W JP 2019012252W WO 2019182149 A1 WO2019182149 A1 WO 2019182149A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
annealing
less
grain
oriented electrical
Prior art date
Application number
PCT/JP2019/012252
Other languages
English (en)
French (fr)
Inventor
田中 一郎
隆史 片岡
典禎 久保田
竹田 和年
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980019589.0A priority Critical patent/CN111902555A/zh
Priority to US16/981,585 priority patent/US11441215B2/en
Priority to KR1020207026998A priority patent/KR102464102B1/ko
Priority to JP2020507955A priority patent/JP7052864B2/ja
Priority to BR112020017924-8A priority patent/BR112020017924B1/pt
Priority to RU2020131077A priority patent/RU2759812C1/ru
Priority to EP19770854.8A priority patent/EP3770290B1/en
Publication of WO2019182149A1 publication Critical patent/WO2019182149A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • B24C7/0015Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • B24C7/0038Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier the blasting medium being a gaseous stream
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • B24C3/322Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for electrical components
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet.
  • This application claims priority on March 22, 2018 based on Japanese Patent Application No. 2018-054675 for which it applied to Japan, and uses the content here.
  • a grain-oriented electrical steel sheet contains about 0.5 to 7% by mass of silicon (Si), and utilizes a phenomenon called secondary recrystallization to accumulate crystal orientation in the ⁇ 110 ⁇ ⁇ 001> orientation (Goss orientation).
  • Steel plate which is mainly used for iron cores such as transformers as a soft magnetic material. Since the characteristics of grain-oriented electrical steel sheets have a great influence on the performance of the transformer, diligent studies have been made on grain-oriented electrical steel sheets in order to achieve good excitation characteristics and low iron loss characteristics.
  • the general manufacturing method of a grain-oriented electrical steel sheet is as follows. First, a steel piece having a predetermined chemical composition is heated and hot-rolled to produce a hot-rolled steel sheet. The obtained hot-rolled steel sheet is subjected to hot-rolled sheet annealing as necessary, and then the hot-rolled steel sheet is pickled. The hot-rolled steel sheet after pickling is cold-rolled to produce a cold-rolled steel sheet. The obtained cold-rolled steel sheet is decarburized and annealed to cause primary recrystallization. Thereafter, an aqueous slurry containing an annealing separator mainly composed of MgO is applied to the surface of the cold-rolled steel sheet after decarburization annealing and dried.
  • a steel plate is wound around a coil and finish annealing is performed to develop secondary recrystallization.
  • finish annealing simultaneously with the occurrence of secondary recrystallization in the steel sheet, MgO in the annealing separator reacts with SiO 2 in the internal oxide layer formed on the surface of the cold-rolled steel sheet during decarburization annealing.
  • a primary coating also referred to as “glass coating” mainly composed of forsterite (Mg 2 SiO 4 ) is formed on the steel plate surface.
  • the upper layer is further coated with a solution containing, for example, colloidal silica and phosphate as the main component, and baked, thereby providing a tension-imparting insulating coating (also called “secondary coating”). Is formed.
  • a tension-imparting insulating coating also called “secondary coating”.
  • Such a glass film functions as an insulating film, and also has a function of improving the adhesion of the tension-imparting insulating film formed in the upper layer of the glass film.
  • the iron loss is reduced by the tension caused by.
  • the glass coating is a nonmagnetic phase and is not preferable from the viewpoint of magnetic properties.
  • the interface between the steel plate and the glass coating has a fitting structure in which the roots of the glass coating are intricate, and may cause an increase in iron loss through inhibition of domain wall movement.
  • the adhesiveness between the glass coating and the steel plate is deteriorated, and as a result, the adhesiveness of the tension-imparting insulating coating is also inferior. Therefore, when the steel plate surface is smoothed by removing the glass coating or suppressing the formation of the glass coating, excellent magnetic properties can be obtained, but the adhesion of the tension-imparting insulating coating is further inferior. Become.
  • Patent Document 1 discloses a technique for forming a tension-providing insulating film after pretreating the surface of a steel sheet using an oxidizing acid when a tension-providing insulating film is applied.
  • Patent Document 3 discloses a grain-oriented silicon steel sheet having an external oxide type oxide film mainly composed of silica and containing metal iron having a cross-sectional area ratio of 30% or less in the external oxide type oxide film.
  • Patent Document 4 discloses a grain-oriented electrical steel sheet having fine streak-like grooves having a depth of 0.05 ⁇ m or more and 2 ⁇ m or less directly applied to the surface of the ground iron of the grain-oriented electrical steel sheet at intervals of 0.05 ⁇ m or more and 2 ⁇ m or less. Is disclosed.
  • the tension-imparting insulating coating formed on the surface of the grain-oriented electrical steel sheet not having the glass coating is inferior in adhesion, it may be peeled off during standing. From the viewpoint of industrially producing a grain-oriented electrical steel sheet, it is extremely important to improve the adhesion of the tension-imparting insulating coating.
  • the techniques disclosed in Patent Documents 1 to 4 are all disclosed in Patent Documents 1 to 4, although they are intended to improve the adhesion of the tension-imparting insulating coating. Whether or not a stable iron loss reduction effect can be obtained by the technology is not always clear, and there is still room for examination.
  • the present invention has been made in view of the above problems. It is an object of the present invention to provide a grain-oriented electrical steel sheet having no glass coating, having excellent adhesion of a tension-imparting insulating coating, and having excellent magnetic properties, and industrializing the grain-oriented electrical steel sheet. And a method of manufacturing a grain-oriented electrical steel sheet that can be stably manufactured.
  • a method for obtaining a grain-oriented electrical steel sheet having no glass coating As a method for obtaining a grain-oriented electrical steel sheet having no glass coating, a method of removing the generated glass coating by chemical polishing or electrolytic polishing is known. However, from the viewpoint of productivity, it is preferable to obtain a grain-oriented electrical steel sheet having no glass coating by suppressing the generation of the glass coating at the time of finish annealing, rather than removing the generated glass coating.
  • the magnetic properties of grain-oriented electrical steel sheets are greatly influenced by strain, and the formation of mechanical irregularities has been thought to cause deterioration of magnetic properties due to strain. Therefore, when suppressing the production
  • the present inventors have conceived of giving moderate mechanical irregularities to the steel sheet surface rather than maintaining the surface state as a smooth surface in the directional electrical steel sheet having no glass coating as in the prior art.
  • the mechanical unevenness improves the adhesion of the tension-imparting coating, and the tension imparted by the tension-providing insulating coating is estimated to increase the magnetic properties. It was investigated.
  • a wet blast method in which a surface is processed by spraying a slurry in which particles and a liquid are mixed using compressed air has attracted attention.
  • Such a technique can use a finer abrasive as compared with the dry shot blasting method, and is being applied to, for example, control of the surface properties of glass and lenses.
  • the present inventors paid attention to the wet blasting method as a method for imparting mechanical unevenness to a smooth surface, and intensively studied application to a grain-oriented electrical steel sheet having no glass coating.
  • the present invention has been completed with the knowledge that the control of the rate of temperature increase during decarburization annealing and the inclusion of an inhibitor strengthening element in the steel slab are effective in further improving the magnetic properties.
  • the gist of the present invention completed based on the above findings is as follows.
  • the grain-oriented electrical steel sheet according to one aspect of the present invention is, in mass%, C: 0.010% or less, Si: 2.50 to 4.00%, Mn: 0.050 to 1.000%, S + Se: 0.005% or less in total, Sol.
  • the concave portion having a depth of 0.1 ⁇ m or more and 2.0 ⁇ m or less is 1.0 / 100 ⁇ m or more and 6.0 / 100 ⁇ m or less on the surface of the base steel plate.
  • the base steel sheet may include Bi + Te + Pb: 0.0005 to 0.0300% in total as the chemical composition.
  • a method for producing a grain-oriented electrical steel sheet according to another aspect of the present invention is, in mass%, C: 0.020 to 0.100%, Si: 2.50 to 4.00%, Mn: 0.00. 050 to 1.000%, S + Se: 0.005 to 0.080% in total, Sol.
  • MgO is the mass ratio of the Al 2 O 3 and the MgO: Al 2 O 3 is 3: It is within the range of 7 to 7: 3, and 0.5 to 15% by mass of bismuth chloride is contained.
  • the temperature increase rate S2 may satisfy the following expressions (ii) to (iv). 300 ⁇ S1 ⁇ 1000 (formula (ii)) 1000 ⁇ S2 ⁇ 3000 Formula (iii) 1.0 ⁇ S2 / S1 ⁇ 10.0 Formula (iv)
  • the steel slab may contain Bi + Te + Pb: 0.0005 to 0.0300% in total as the chemical composition. .
  • the grain-oriented electrical steel sheet having no glass coating, having excellent adhesion of the tension-imparting insulating coating, and having excellent magnetic properties, Industrially stable production is possible.
  • FIGS. 1A and 1B are diagrams schematically showing the structure of a grain-oriented electrical steel sheet according to the present embodiment.
  • the directional electrical steel sheet 10 includes a base material steel plate 11 and a tension-imparting insulating film as an example of an insulating film formed on the surface of the base material steel plate 11 as schematically shown in FIG. 1A. 13, and no glass coating is present between the base steel plate 11 and the tension-imparting insulating coating 13.
  • the tension-imparting insulating coating 13 may be formed on at least one surface of the base material steel sheet 11, but normally, as schematically shown in FIG. 1B. It is formed on both surfaces of the base material steel plate 11.
  • the base material steel plate 11 has a predetermined chemical composition by being manufactured from a steel piece containing a chemical composition as described in detail below. Moreover, the fine recessed part which is explained in full detail below is provided in the surface of the base material steel plate 11 which concerns on this embodiment. Due to the presence of such recesses, the grain-oriented electrical steel sheet 10 according to the present embodiment has excellent adhesion of the tension-imparting insulating coating 13 and exhibits excellent magnetic properties. The chemical composition of the base steel plate 11 will be described in detail later.
  • the tension-imparting insulating coating 13 is located on the surface of the base steel plate 11, reduces electrical eddy current loss by imparting electrical insulation to the grain-oriented electrical steel sheet 10, and reduces the iron loss of the grain-oriented electrical steel sheet 10. To improve. Moreover, the tension
  • the tension imparting insulating coating 13 has a function of imparting tension to the grain-oriented electrical steel sheet 10.
  • the surface of the tension-imparting insulating coating 13 may be subjected to a known magnetic domain refinement process using a continuous wave laser beam or an electron beam.
  • the tension-imparting insulating coating 13 is formed, for example, by applying a coating liquid mainly composed of metal phosphate and silica to the surface of the base steel plate 11 and baking it.
  • the product plate thickness (thickness t in FIGS. 1A and 1B) of the grain-oriented electrical steel sheet 10 according to the present embodiment is not particularly limited, and may be, for example, 0.17 mm or more and 0.35 mm or less. In the present embodiment, the effect becomes remarkable when the plate thickness after cold rolling is less than 0.22 mm (ie, a thin material), and the adhesion of the tension-imparting insulating coating 13 is further improved. It will be.
  • the plate thickness after cold rolling is, for example, preferably from 0.17 mm to 0.22 mm, and more preferably from 0.17 mm to 0.20 mm.
  • the base steel plate 11 is, in mass%, C: 0.010% or less, Si: 2.50 to 4.00%, Mn: 0.050 to 1.000%, S + Se: 0.005. % Or less, Sol. Al: 0.005% or less, N: 0.005% or less, and optionally, Bi + Te + Pb: 0.03% or less, Sb: 0.50% or less, Sn: 0.50% or less, Cr: 0.00. It contains 50% or less, Cu: 1.0% or less, and the balance has a chemical composition composed of Fe and impurities.
  • C is an element effective for controlling the structure until the completion of the decarburization annealing process in the manufacturing process.
  • the C content is 0.010% or less.
  • the C content is preferably 0.005% or less. The lower the C content, the better.
  • the C content is preferably 0.0001% or more.
  • Si silicon
  • Si is an element that increases the electrical resistance of steel and reduces eddy current loss.
  • the Si content is set to 2.50% or more.
  • the Si content is preferably 2.70% or more, and more preferably 2.80% or more.
  • the Si content exceeds 4.00%, the cold workability of the steel decreases. Therefore, in the base material steel plate 11 of the grain-oriented electrical steel sheet 10 according to the present embodiment, the Si content is 4.00% or less.
  • the Si content is preferably 3.90% or less, and more preferably 3.80% or less.
  • Mn manganese
  • MnS and MnSe combines with S and Se described later during the manufacturing process to form MnS and MnSe. These precipitates function as inhibitors (inhibitors of normal grain growth) and cause secondary recrystallization in steel.
  • Mn is an element that further improves the hot workability of steel.
  • the Mn content is preferably 0.060% or more.
  • the Mn content is 1.000% or less.
  • the Mn content is preferably 0.500% or less.
  • the total content of S and Se is set to 0.005% or less.
  • the total content of S and Se in the grain-oriented electrical steel sheet is preferably as low as possible. However, even if the total content of S and Se in the grain-oriented electrical steel sheet is reduced to less than 0.0001%, the manufacturing cost only increases. Therefore, the total content of S and Se in the grain-oriented electrical steel sheet is preferably 0.0001% or more.
  • Acid-soluble Al 0.005% or less
  • Acid-soluble aluminum (sol. Al) combines with N during the manufacturing process of grain-oriented electrical steel sheets to form AlN that functions as an inhibitor.
  • the acid-soluble Al content of the base steel plate 11 exceeds 0.005%, the inhibitor remains excessively in the base steel plate 11 and the magnetic properties are deteriorated. Therefore, in the base material steel plate 11 according to the present embodiment, the acid-soluble Al content is set to 0.005% or less.
  • the acid-soluble Al content is preferably 0.004% or less.
  • the lower limit of the acid-soluble Al content is not particularly specified, but even if it is reduced to less than 0.0001%, only the production cost increases. Therefore, the acid-soluble Al content is preferably 0.0001% or more.
  • N nitrogen
  • nitrogen combines with Al in the manufacturing process to form AlN that functions as an inhibitor.
  • the N content is set to 0.005% or less.
  • the N content is preferably 0.004% or less.
  • the lower limit of the N content is not particularly specified, but even if it is reduced to less than 0.0001%, only the production cost increases. Therefore, the N content is preferably 0.0001% or more.
  • the chemical composition of the base material steel plate 11 according to the present embodiment basically includes the above-described elements, and the balance is iron (Fe) and impurities.
  • Fe iron
  • impurities for the purpose of enhancing the magnetic properties, Bi, Te, Pb, Sb, Sn, Cr, and Cu may be further contained in the following ranges.
  • the impurities are mixed from ore, scrap, or production environment as a raw material when the base steel plate 11 is industrially manufactured, and the action of the grain-oriented electrical steel plate according to the present embodiment. It means an element that is allowed to be contained in a content that does not adversely affect
  • the base steel plate 11 may contain at least one of Bi (bismuth), Te (tellurium), or Pb (lead) instead of a part of the remaining Fe as the optional element. Good. By containing one or more of these elements, the magnetic properties of the grain-oriented electrical steel sheet can be further enhanced. In the case of obtaining this effect, the total content of at least one of Bi, Te, or Pb (one or more selected from Bi, Te, and Pb) is preferably 0.0005% or more, more preferably 0.8. 0010% or more.
  • the total content of these elements exceeds 0.0300%, hot embrittlement is caused. Therefore, the total content of at least one of Bi, Te, or Pb is preferably 0.0300% or less. Bi, Te, and Pb are not necessarily contained, so the lower limit of the total content is 0%.
  • the base material steel plate 11 has Sb (antimony), Sn (tin), Cr (chromium), or Cu (effective for improving the magnetic properties of the grain-oriented electrical steel sheet, in addition to the above-mentioned optional elements. Copper) may be contained as an optional element.
  • the content of each element is Sb: 0% to 0.50%, Sn: 0% to 0.50%, Cr: 0% to 0.50%, Cu: It is preferably 0% or more and 1.0% or less. Each content is more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the surface serving as the interface with the tension-imparting insulating coating 13 has a predetermined arithmetic average roughness Ra, as briefly mentioned earlier, and Concave portions having a depth are present at a predetermined ratio.
  • FIG. 2 is a diagram schematically showing the grain-oriented electrical steel sheet according to the present embodiment.
  • FIG. 3 is a diagram schematically showing the surface of the base steel sheet of the grain-oriented electrical steel sheet according to the present embodiment.
  • FIG. 4 is a diagram for explaining the depth of the recesses on the surface of the base steel plate according to the present embodiment.
  • the domain wall in the magnetic section in which the magnetization is oriented in the rolling direction as schematically shown in FIG. 2 moves.
  • the moving direction of the domain wall in such a case is a direction perpendicular to the rolling direction (corresponding to the plate width direction in FIG. 2).
  • the direction perpendicular to the rolling direction is referred to as “rolling 90 ° direction”. Since the moving direction of the domain wall is the 90 ° direction of rolling, the influence of the surface shape on the magnetic properties is indicated by the 90 ° direction of rolling.
  • the grain-oriented electrical steel sheet 10 exhibiting excellent adhesiveness of the tension-imparting insulating film despite having no glass film and exhibiting excellent magnetic properties is the surface of the base steel sheet 11 along the rolling 90 ° direction. Has a characteristic surface shape.
  • the surface of the base steel plate 11 according to the present embodiment is obtained by cutting the grain-oriented electrical steel plate 10 (base steel plate 11) along the AA cutting line shown in FIG. 2 (that is, parallel to the rolling 90 ° direction).
  • the surface of the base steel plate 11 has an arithmetic average roughness Ra defined by JIS B0601 (2013) of 0.60 ⁇ m or less.
  • the arithmetic average roughness Ra of the surface of the base steel plate 11 along the rolling 90 ° direction exceeds 0.60 ⁇ m, the movement of the domain wall as described above is affected, and excellent magnetic properties are realized. I can't.
  • the arithmetic average roughness Ra of the surface of the base steel plate 11 along the rolling 90 ° direction is preferably 0.30 ⁇ m or more and 0.50 ⁇ m or less.
  • Such arithmetic average roughness Ra can be measured using a known surface roughness meter according to JIS B0601 (2013).
  • the grain-oriented electrical steel sheet after the formation of the tension-imparting insulating coating is immersed in an aqueous solution having a liquid temperature of 60 to 80 ° C. and a NaOH concentration of 30 to 40%, and the surface after removing the tension-imparting insulating coating is JIS B
  • the arithmetic average roughness Ra of the surface of the base steel sheet can be measured.
  • the surface of the base steel plate 11 according to this embodiment is schematically shown in FIG. 3 when the grain-oriented electrical steel plate 10 (base steel plate 11) is cut along the AA cutting line shown in FIG.
  • the concave portions 101 having a predetermined depth are present on the surface of the base steel plate 11 at a predetermined ratio. More specifically, the number of recesses 101 having a depth of 0.1 ⁇ m or more and 2.0 ⁇ m or less is 1.0 / 100 ⁇ m or more on the surface of the base steel plate 11 when cut in the 90 ° direction of rolling. 0/100 ⁇ m or less.
  • the number of the recesses 101 having a depth of 0.1 ⁇ m or more and 2.0 ⁇ m or less is 1.0 or more within a range of the cross-sectional length of 100 ⁇ m. 6.0 or less.
  • the number of the concave portions 101 is less than 1.0 / 100 ⁇ m, the number of the concave portions 101 formed is too small, and the excellent adhesion of the tension-imparting insulating coating 13 and the excellent magnetic characteristics are obtained. It cannot be realized.
  • the number of the concave portions 101 exceeds 6.0 / 100 ⁇ m, the adhesion of the tension-imparting insulating coating 13 is improved, but excellent magnetic properties cannot be realized.
  • the number of the recesses 101 is preferably 1.0 / 100 ⁇ m or more and 5.0 / 100 ⁇ m or less.
  • the concave portion 101 as described above can be observed by using a general scanning electron microscope (SEM) in a cross section in the rolling 90 ° direction. More specifically, a cross section at an arbitrary position in the rolling 90 ° direction of the base steel plate 11 is observed at a magnification of 1000 times, and first, a portion where the surface of the base steel plate 11 is flat is specified. Such a flat portion is set as a “depth reference point” when measuring the depth as shown in FIG.
  • SEM general scanning electron microscope
  • the depth of the recess 101 is defined as a separation distance between the “depth reference line” specified as described above and the deepest position of the recess, as schematically shown in FIG. Is done.
  • Such observation may be carried out at the same magnification (1000 times) with arbitrary three fields of view, and evaluation may be performed with an average value of the obtained numbers.
  • the surface shape characteristic of the base steel plate 11 according to the present embodiment as shown in FIGS. 3 and 4 can be formed by using a wet blast method described later.
  • the wet blast method is realized by projecting a slurry mixed with an abrasive onto the surface of the base steel plate 11, and the mechanical unevenness formed on the surface of the base steel plate 11 on which the slurry is projected is uniform. Therefore, the flat surface has such a flat portion as described above.
  • the concave portion 101 having a depth exceeding 2.0 ⁇ m does not exist on the surface of the base steel plate 11 according to the present embodiment.
  • the grain-oriented electrical steel sheet does not exhibit excellent magnetic properties, and therefore the presence of a recess exceeding a depth of 2.0 ⁇ m may not be considered.
  • the concave portion 101 having a depth of less than 0.1 ⁇ m and the convex portion having a height of less than 0.1 ⁇ m do not affect the adhesion and magnetic properties of the tension-imparting insulating coating 13. . Therefore, it is not necessary to consider in the case of the observation as described above, and the depth of the concave portion 101 of interest is 0.1 ⁇ m or more.
  • the technical meaning of the number of recesses having a depth of 0.1 ⁇ m or more and 2.0 ⁇ m or less is different from the arithmetic mean roughness Ra. That is, the number of recesses having a depth of 0.1 ⁇ m or more and 2.0 ⁇ m or less is mechanical unevenness that contributes to improving the adhesion of the tension-imparting insulating coating, and also contributes to improvement of magnetic properties through improvement of coating tension.
  • the arithmetic average roughness Ra represents the average value of the uneven state at the reference length, and does not necessarily match the form of the mechanical unevenness that contributes to the improvement of adhesion. Even if Ra is high, the number of recesses having a depth of 0.1 ⁇ m or more and 2.0 ⁇ m or less does not necessarily increase.
  • the specific surface shape as described above is subjected to finish annealing using an annealing separator that does not form a glass film, and then subjected to wet blasting under appropriate conditions. This is realized only when surface processing is performed.
  • the final annealing is performed using a general annealing separating agent that generates a glass coating, and the generated glass coating is removed by chemical polishing or electrolytic polishing, the surface roughness of the base steel plate 11 is appropriately set. Therefore, the surface becomes too rough and the concave portion 101 having the depth as described above cannot be realized.
  • the grain-oriented electrical steel sheet 10 according to the present embodiment has been described in detail.
  • Various magnetic properties of the grain-oriented electrical steel sheet according to the present embodiment are the Epstein method defined in JIS C2550-1 (2011) and the single plate magnetic property measurement method (Single Sheet) defined in JIS C2556 (2015). Measurement can be performed according to (Tester: SST).
  • FIG. 5 is a flowchart showing an example of the flow of the manufacturing method of the grain-oriented electrical steel sheet according to the present embodiment.
  • the overall flow of the method for manufacturing a grain-oriented electrical steel sheet according to this embodiment is as follows. First, a hot-rolled steel sheet is obtained by hot-rolling a steel piece (slab) having a chemical component described later. Thereafter, the hot rolled steel sheet is annealed to obtain a hot rolled annealed steel sheet. Next, the obtained hot-rolled annealed steel sheet is pickled and then cold-rolled to a thickness after a predetermined cold-rolling by performing cold rolling once or sandwiching intermediate annealing twice. Cold rolled steel sheet is obtained.
  • decarburization and primary recrystallization are performed by annealing (decarburization annealing) in a wet hydrogen atmosphere to obtain a decarburized annealed steel plate.
  • decarburization annealing a predetermined oxide film is formed on the surface of the steel sheet.
  • an annealing separator mainly composed of MgO and Al 2 O 3 is applied to the surface of the decarburized and annealed steel sheet and then dried to perform finish annealing.
  • finish annealing secondary recrystallization occurs, and the grain structure of the steel sheet accumulates in the ⁇ 110 ⁇ ⁇ 001> orientation.
  • a specific annealing separator that does not generate a glass film is used, a glass film is not formed on the surface of the steel sheet after finish annealing, and the surface is flat. become. Thereafter, surface processing using wet blasting is performed on the surface of the steel sheet after finish annealing. By this surface processing, a concave portion as described above is formed on the surface of the steel plate. After finishing the surface-finished finish annealed plate by washing with water or pickling, a coating liquid mainly composed of phosphate is applied and baked to form a tension-imparting insulating coating.
  • a steel piece having the above chemical components is hot-rolled at a predetermined temperature to obtain a hot-rolled steel sheet.
  • Hot rolling step (step S101) hot rolled sheet annealing step (step S103) to obtain a hot rolled annealed steel sheet by arbitrarily annealing the obtained hot rolled steel sheet, and the obtained hot rolled steel sheet or hot rolled annealed steel sheet
  • step S105 a single cold rolling or a plurality of cold rolling sandwiching intermediate annealing is performed to obtain a cold rolled steel sheet (step S105), and the obtained cold rolled steel sheet is removed.
  • Carburization annealing is performed to obtain a decarburized and annealed steel sheet (step S107), and after the decarburized and annealed steel sheet obtained is applied with an annealing separator, a finish annealing process is performed to perform final annealing (step S109). ) And the width direction of the steel sheet surface after finish annealing Surface processing step (step S111) in which surface processing is performed on the body by wet blasting under predetermined conditions, and insulation that forms an insulating coating (more specifically, a tension-imparting insulating coating) on the surface of the steel sheet after the surface processing A film forming step (step S113).
  • each step can be performed by appropriately applying known conditions.
  • the hot rolling step (step S101) is a step of hot rolling a steel slab having a predetermined chemical component (for example, a steel ingot such as a slab) to form a hot rolled steel plate.
  • a steel piece of silicon steel having a chemical composition as briefly described below is first heat-treated.
  • the heating temperature is preferably in the range of 1200 to 1400 ° C.
  • the heating temperature is more preferably 1250 ° C. or higher and 1380 ° C. or lower.
  • the steel slab heated to the above temperature is processed into a hot-rolled steel sheet by subsequent hot rolling. It is preferable that the plate
  • C is an element effective for improving magnetic properties through structure control until the completion of the decarburization annealing process in the manufacturing process.
  • the C content in the steel slab is less than 0.020%, or when the C content in the steel slab exceeds 0.100%, the above-described effect of improving magnetic properties cannot be obtained. Therefore, the C content in the steel slab is 0.020 to 0.100%.
  • the C content in the steel slab is preferably 0.030 to 0.090%.
  • Si is an element that increases the electrical resistance of steel and reduces eddy current loss.
  • the Si content in the steel slab is preferably 2.70% or more, more preferably 2.80% or more.
  • the Si content in the steel slab exceeds 4.00%, the cold workability of the steel decreases. Therefore, the Si content in the steel slab is 4.00% or less.
  • the Si content in the steel slab is preferably 3.90% or less, more preferably 3.80% or less.
  • Mn combines with S and Se during the manufacturing process to form MnS and MnSe. These precipitates function as inhibitors and cause secondary recrystallization in the steel. Mn is also an element that improves the hot workability of steel. When the Mn content in the steel slab is less than 0.050%, these effects cannot be sufficiently obtained. Therefore, the Mn content in the steel slab is 0.050% or more. The Mn content is preferably 0.060% or more. On the other hand, when the Mn content in the steel slab exceeds 1.000%, secondary recrystallization does not occur and the magnetic properties of the steel deteriorate. Therefore, the Mn content in the steel slab is 0.050 to 1.000%. The Mn content is preferably 0.500% or less.
  • S and Se combine with Mn in the manufacturing process to form MnS and MnSe that function as inhibitors.
  • the total content of S and Se is set to 0.005% or more.
  • the total content of S and Se in the steel slab is preferably 0.006% or more.
  • the total content of S and Se is set to 0.080% or less. Preferably it is 0.070% or less.
  • Acid-soluble Al 0.010 to 0.070%
  • Acid-soluble Al (sol. Al) combines with N during the manufacturing process of grain-oriented electrical steel sheet to form AlN that functions as an inhibitor.
  • the acid-soluble Al content is less than 0.010%, AlN is not sufficiently generated and the magnetic properties are deteriorated. Further, when the acid-soluble Al content exceeds 0.070%, not only the magnetic properties deteriorate, but also causes cracking during cold rolling. Therefore, the content of acid-soluble Al in the steel slab is 0.010 to 0.070%.
  • the acid-soluble Al content is preferably 0.020% to 0.050%.
  • N combines with Al during the manufacturing process to form AlN that functions as an inhibitor.
  • the N content in the steel slab is 0.005% or more.
  • the N content exceeds 0.020%, AlN becomes difficult to function as an inhibitor, secondary recrystallization may not occur, and it causes cracking during cold rolling. Therefore, in the steel slab, the N content is 0.020% or less.
  • the N content is preferably 0.012% or less, more preferably 0.010% or less.
  • the chemical composition of the billet is basically based on the above-mentioned elements and the balance being Fe and impurities.
  • Bi, Te, Pb, Sb, Sn, Cr, and Cu may be further contained in the following ranges. Since these elements are not necessarily contained, the lower limit is 0%.
  • the impurities are mixed from ore as a raw material, scrap, or production environment when industrially producing a steel piece (for example, a steel slab), and the direction according to the present embodiment. It means that it is allowed as long as it does not adversely affect the action of the electrical steel sheet.
  • the steel piece may contain 0.0300% or less in total of at least one of Bi, Te, or Pb as an optional element instead of a part of the remaining Fe.
  • the total content of at least one of Bi, Te or Pb is preferably 0.0005% or more, and more preferably 0.0010% or more. However, if the total content of these elements exceeds 0.0300%, it becomes a cause of hot embrittlement. Therefore, in the steel slab, the total content of at least one of Bi, Te or Pb is preferably 0 to 0.0300%.
  • the steel slab may further contain at least one of Sb, Sn, Cr, or Cu, which is effective for improving the magnetic properties of the grain-oriented electrical steel sheet.
  • the content of each element is Sb: 0% to 0.50%, Sn: 0% to 0.50%, Cr: 0% to 0.50%, Cu: It is preferably 0% or more and 1.0% or less. Each content is more preferably 0.005% or more, and still more preferably 0.010% or more.
  • a hot-rolled sheet annealing process (step S103) is a process which anneals the hot-rolled steel plate manufactured through the hot rolling process, and makes it a hot-rolled annealed steel sheet. By performing such annealing treatment, recrystallization occurs in the steel sheet structure, and it becomes possible to realize good magnetic properties.
  • the hot-rolled steel sheet manufactured through the hot rolling process may be annealed to obtain a hot-rolled annealed steel sheet according to a known method.
  • the means for heating the hot-rolled steel sheet during annealing is not particularly limited, and a known heating method can be employed.
  • the annealing conditions are not particularly limited.
  • the hot-rolled steel sheet can be annealed in a temperature range of 900 to 1200 ° C. for 10 seconds to 5 minutes.
  • Such a hot-rolled sheet annealing step can be omitted as necessary. Moreover, you may perform pickling with respect to the surface of a hot-rolled steel plate after the hot-rolled-sheet annealing process and before the cold rolling process explained in full detail below.
  • step S105 the hot rolled steel sheet after the hot rolling process or the hot rolled annealed steel sheet after the hot rolled sheet annealing is performed once or twice or more cold rolling sandwiching the intermediate annealing.
  • This is a process for forming a cold-rolled steel sheet.
  • the steel plate shape becomes favorable when the above hot-rolled sheet annealing is performed, the possibility of the steel plate breakage in the first rolling can be reduced.
  • cold rolling may be implemented in 3 times or more, since manufacturing cost increases, it is preferable to carry out once or twice.
  • a hot-rolled steel sheet or a hot-rolled annealed steel sheet may be cold-rolled into a cold-rolled steel sheet according to a known method.
  • the final rolling reduction can be in the range of 80% to 95%. If the final rolling reduction is less than 80%, it is likely that the ⁇ 110 ⁇ ⁇ 001> orientation cannot obtain Goss nuclei having a high degree of accumulation in the rolling direction, which is not preferable. On the other hand, if the final rolling reduction exceeds 95%, it is not preferable because secondary recrystallization is likely to be unstable in the subsequent final annealing step.
  • the final rolling reduction is the cumulative rolling reduction of cold rolling, and when performing intermediate annealing, is the cumulative rolling reduction of cold rolling after the intermediate annealing.
  • the first cold rolling is performed at a rolling reduction of about 5 to 50% and a temperature of 950 ° C. to 1200 ° C. for about 30 seconds to 30 minutes. It is preferable to perform the intermediate annealing.
  • the thickness of the cold-rolled cold-rolled steel sheet is usually the thickness of the directional electrical steel sheet finally produced (the thickness of the tension-imparting insulating coating). It is different from the product thickness.
  • the product thickness of the grain-oriented electrical steel sheet is as described above.
  • an aging treatment can be applied in order to further improve the magnetic properties.
  • the cold rolling is performed by a plurality of passes, it is preferable to give a thermal effect of holding the steel sheet at a temperature range of 100 ° C. or higher for a time of 1 minute or longer in any intermediate stage before the final pass. .
  • This thermal effect makes it possible to form a more excellent primary recrystallization texture in the subsequent decarburization annealing process, and in the subsequent final annealing process, the ⁇ 110 ⁇ ⁇ 001> orientation is aligned in the rolling direction. It is possible to sufficiently develop a good secondary recrystallized structure.
  • a decarburization annealing process (step S107) is a process of performing a decarburization annealing with respect to the obtained cold-rolled steel plate, and making it a decarburization annealing steel plate.
  • the secondary recrystallized grain structure is controlled by performing an annealing treatment in accordance with predetermined heat treatment conditions in the decarburization annealing step.
  • the decarburization annealing process according to the present embodiment includes two processes, a temperature raising process and a soaking process, in order to obtain a desired secondary recrystallized grain structure.
  • the rate of temperature rise until reaching the decarburization annealing temperature affects the Goss orientation accumulation degree after the secondary recrystallization through the primary recrystallization texture change.
  • the base material that affects the magnetic properties after the formation of the tension-imparting insulating coating and after the magnetic domain fragmentation treatment It is preferable to appropriately control the rate of temperature increase during decarburization annealing because the influence of the degree of Goss orientation accumulation is large.
  • the rate of temperature increase in the temperature range from 500 ° C. to 700 ° C. is 300 ° C./second or more.
  • the heating rate S1 in the heating process of 500 ° C. or more and less than 600 ° C. and the heating rate S2 in the heating process of 600 ° C. or more and 700 ° C. or less are the influence on the primary recrystallization texture and decarburization annealing.
  • the preferred ranges are different.
  • the temperature range of 500 ° C. or higher and lower than 600 ° C. has an influence on the formation of Mn-based oxides as well as the primary recrystallization texture.
  • the temperature range of 600 ° C. or higher and 700 ° C. or lower is only the primary recrystallization texture. It has an influence on SiO 2 formation.
  • the temperature range from 600 ° C. to 700 ° C. at which SiO 2 that affects the glass coating formation reaction is formed shortens the residence time.
  • the temperature rising rate S2 in the temperature rising process of 600 ° C. or higher and 700 ° C. or lower is set to 1000 ° C./second or higher and 3000 ° C./second or higher, and is higher than the temperature rising rate S1 in the temperature rising process of 500 ° C. or higher and lower than 600 ° C. It is preferable.
  • the heating rates S1 and S2 are expressed by the following formulas (101) to (103). It is preferable to satisfy the relationship.
  • the magnetic properties (iron loss) of the grain-oriented electrical steel sheet can be further improved.
  • the temperature rising rate S1 when the temperature rising rate S1 is less than 300 ° C./second, the magnetic properties may be deteriorated due to the change in the primary recrystallization texture, which is not preferable.
  • the temperature rising rate S1 exceeds 1000 ° C./second, the adhesion between the base steel plate 11 and the tension-imparting insulating coating 13 may not be sufficient, which is not preferable.
  • the temperature increase rate S1 in the temperature range of 500 ° C. or higher and lower than 600 ° C. is more preferably 350 ° C./second or higher and 900 ° C./second or lower.
  • the temperature rising rate S2 when the temperature rising rate S2 is less than 1000 ° C./second, formation of SiO 2 that affects the glass film formation reaction may not be sufficiently suppressed, which is not preferable.
  • the temperature rising rate S2 exceeds 3000 ° C./second, there is a possibility that an overshoot of the decarburization annealing temperature may occur, which is not preferable.
  • the temperature increase rate S2 in the temperature range of 600 ° C. to 700 ° C. is more preferably 1200 ° C./second to 2500 ° C./second.
  • the ratio S2 / S1 of the heating rate is 1.0 or less, the magnetic characteristics may be deteriorated, which is not preferable.
  • the ratio S2 / S1 of the heating rate exceeds 10.0, temperature control may become difficult, which is not preferable.
  • the ratio S2 / S1 of the heating rate is more preferably 1.2 or more and 9.0 or less.
  • temperature raising atmosphere for example, the temperature raising atmosphere
  • the temperature of the cold-rolled steel sheet may be raised in a well-known hydrogen-nitrogen-containing wet atmosphere according to a conventional method.
  • a soaking step for maintaining the decarburization annealing temperature is performed.
  • the soaking step is not particularly limited.
  • the temperature within the range of 750 ° C. to 950 ° C. is set to 1 minute or more and 5 minutes or less. What is necessary is just to set it as the process of hold
  • the soaking atmosphere is not particularly limited, and the soaking process may be performed in a well-known wet atmosphere containing hydrogen and nitrogen according to a conventional method.
  • the finish annealing step is a step of performing the finish annealing after applying a predetermined annealing separating agent to the decarburized and annealed steel sheet obtained in the decarburization annealing step.
  • the finish annealing is generally performed for a long time in a state where the steel sheet is wound in a coil shape. Therefore, prior to finish annealing, an annealing separator is applied to the decarburized and annealed steel sheet for the purpose of preventing seizure between the inside and outside of the coil winding, and is dried.
  • an annealing separator that does not form a glass film is used.
  • MgO and Al 2 O 3 are the main components (for example, MgO and Al 2 O 3 contain 85% or more), and the mass ratio (MgO: Al 2 O 3 ) Is within the range of 3: 7 to 7: 3, and an annealing separator containing 0.5 to 15% by mass of bismuth chloride is used.
  • an annealing separator having such a mass ratio and bismuth chloride content it is possible to obtain a base steel plate with good smoothness that does not have a glass coating.
  • the mass ratio of MgO to Al 2 O 3 is preferably in the range of 3.5: 6.5 to 6.5: 3.5.
  • bismuth chloride has an effect of easily peeling the formed glass film, when the content of bismuth chloride is less than 0.5% by mass, the glass film remains. . On the other hand, when the content of bismuth chloride exceeds 15% by mass, the function of preventing seizure between the steel sheet and the steel sheet as an annealing separator is impaired.
  • the content of bismuth chloride is preferably 3 to 7% by mass.
  • examples of the bismuth chloride include bismuth oxychloride (BiOCl), bismuth trichloride (BiCl 3 ), etc., and bismuth oxychloride is obtained from the reaction in the annealing separator during the final annealing step.
  • Compound species that can be formed may be used. Examples of such compound species capable of forming bismuth oxychloride include a mixture of a bismuth compound and a metal chlorine compound.
  • bismuth compound examples include bismuth oxide, bismuth hydroxide, bismuth sulfide, bismuth sulfate, bismuth phosphate, bismuth carbonate, bismuth nitrate, organic acid bismuth, and halogenated bismuth.
  • bismuth oxide examples include bismuth oxide, bismuth hydroxide, bismuth sulfide, bismuth sulfate, bismuth phosphate, bismuth carbonate, bismuth nitrate, organic acid bismuth, and halogenated bismuth.
  • examples thereof include iron chloride, cobalt chloride, and nickel chloride.
  • finish annealing is performed.
  • the heat treatment conditions of the finish annealing step according to the present embodiment are not particularly limited, and may be maintained, for example, in a temperature range of 1100 ° C. to 1300 ° C. for 10 hours to 30 hours.
  • the furnace atmosphere may be a well-known nitrogen atmosphere or nitrogen hydrogen atmosphere.
  • the surface processing step (step S111) is a step of performing surface processing by wet blasting on the entire sheet width direction of the steel sheet surface after finish annealing under the condition satisfying the following formula (104). Thereby, the recessed part 101 which shows the characteristic distribution which was demonstrated previously is formed in the surface of the steel plate after finish annealing.
  • S Flow rate of slurry used for wet blasting (L / min)
  • c Concentration (% by volume) of abrasive used for wet blasting
  • Density of abrasive used for wet blasting (kg / m 3 )
  • v Relative speed (mm / sec) between the nozzle from which the slurry is discharged and the steel plate
  • W width of the nozzle from which the slurry is discharged (width of the slurry projection port) (mm) It is.
  • the wet blasting apparatus is installed on the surface processing line in accordance with the usual method of the wet blasting method.
  • a wet blasting process may be applied to the steel sheet after finish annealing.
  • the installation conditions of the wet blasting apparatus are not particularly limited, and the number of nozzles from which the slurry is discharged may be one or plural. .
  • the value represented by the middle term of the above formula (104) corresponds to the amount of abrasive material projected per unit area.
  • the value represented by the central term exceeds 3.00, excessive concave portions 101 are formed on the steel sheet surface (the number of the concave portions 101 having a depth of 0.1 ⁇ m or more and 2.0 ⁇ m or less is present).
  • Exceeding 6.0 pieces / 100 ⁇ m the magnetic properties of the grain-oriented electrical steel sheet deteriorate.
  • arithmetic mean roughness Ra exceeds 0.60 micrometer, and magnetic special zone property deteriorates.
  • the value represented by the central term is less than 0.15, the adhesion of the tension-imparting insulating coating and the iron loss reduction effect due to the provision of tension become insufficient.
  • variable v corresponds to the moving speed of the nozzle when the slurry is projected onto the steel plate that is stopped while the nozzle is moving. Further, in the case of a type in which slurry is projected from a fixedly arranged nozzle on a steel plate conveyed on a continuous line, the variable v corresponds to the line speed.
  • the solvent constituting the slurry is not particularly limited, but for example, water can be used from the viewpoint of cost.
  • the type of abrasive used for wet blasting is not particularly limited, but the cost From the viewpoint of the obtained effect, for example, it is preferable to use alumina having a center particle diameter of 40 to 60 ⁇ m.
  • the insulating coating forming step is a step of forming a tension-imparting insulating coating on one side or both sides of the cold-rolled steel sheet after surface processing.
  • the insulating film forming step is not particularly limited, and the treatment liquid may be applied and dried by a known method using the following known insulating film treatment liquid.
  • the surface of the steel sheet on which the insulating film is formed is a surface that has been subjected to any pretreatment such as degreasing treatment with alkali or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid, etc. before applying the treatment liquid.
  • it may be a surface as it is after finish annealing that is not subjected to these pretreatments.
  • the insulating film formed on the surface of the steel sheet is not particularly limited as long as it is used as the insulating film of the grain-oriented electrical steel sheet, and a known insulating film can be used.
  • a composite insulating film mainly containing an inorganic substance and further containing an organic substance can be exemplified.
  • the composite insulating film is mainly composed of at least one of inorganic substances such as metal chromate, metal phosphate or colloidal silica, Zr compound, Ti compound, and fine organic resin particles are dispersed. It is an insulating coating.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • insulating films using these carbonates or ammonium salts as starting materials are available.
  • insulating films using these carbonates or ammonium salts as starting materials are available.
  • flattening annealing for shape correction may be performed following the insulating film forming step as described above. It is possible to further reduce iron loss by performing flattening annealing on the steel sheet.
  • the magnetic domain subdivision process may be performed after the finish annealing process or the insulating film forming process.
  • the magnetic domain refinement process is a process of irradiating the surface of the grain-oriented electrical steel sheet with laser light having a magnetic domain refinement effect or forming grooves on the surface. With such a magnetic domain refinement process, a grain-oriented electrical steel sheet having even more excellent magnetic properties can be produced.
  • the grain-oriented electrical steel sheet according to this embodiment can be manufactured.
  • Example 1 C: 0.082 mass%, Si: 3.30 mass%, Mn: 0.082 mass%, S: 0.023 mass%, acid-soluble Al: 0.025 mass%, N: 0.008 mass% Steel slab A containing Fe and impurities in the balance, C: 0.081 mass%, Si: 3.30 mass%, Mn: 0.083 mass%, S: 0.022 mass%, acid-soluble Al : Steel slab B containing 0.025% by mass, N: 0.008% by mass, Bi: 0.0025% by mass, the balance being Fe and impurities, each heated to 1350 ° C. and hot rolled Thus, a hot-rolled steel sheet having a thickness of 2.3 mm was obtained.
  • each of the obtained hot-rolled steel sheets was annealed at 1100 ° C. for 120 seconds, and then pickled.
  • the hot-rolled steel sheet after pickling was finished to 0.23 mm by cold rolling to obtain a cold-rolled steel sheet.
  • decarburization annealing was implemented with respect to the obtained cold-rolled steel plate.
  • each of the cold-rolled steel sheets has a temperature increase rate S1 in the temperature increase process of 500 ° C. or higher and lower than 600 ° C. of 400 ° C./second, and a temperature increase rate S2 in the temperature increase process of 600 ° C. or higher and 700 ° C. or lower.
  • test piece was cut out from the steel sheet from which the excess annealing separator was removed by water washing, and after strain relief annealing, alumina abrasive grains having a center particle diameter of 50 ⁇ m using water as a solvent were used as a slurry, and a nozzle moving speed v: 200 mm. / Sec and nozzle width w: 250 mm were fixed, the slurry flow rate and the abrasive concentration were changed, and the slurry was projected onto both surfaces of the steel sheet by wet blasting.
  • test numbers 1-10 to 1-13, 1-22 to 1-25, 1-28, and 1-29 shown below the slurry projection amount was changed by performing the projection a plurality of times. In Test Nos. 1-26 and 1-27, wet blasting was not performed and the surface properties were smooth.
  • the aqueous solution which has aluminum phosphate and colloidal silica as a main component is apply
  • a conductive insulating film was formed.
  • the obtained test piece was irradiated with a laser beam and subjected to magnetic domain fragmentation treatment.
  • Adhesion of tension-providing insulating coating The adhesion of the tension-imparting insulating coating was evaluated by a bending test at a bending diameter of ⁇ 10 and a bending diameter of ⁇ 20 with a cylindrical mandrel bending tester using a test piece taken with the rolling direction as the longitudinal direction. The evaluation was made based on the ratio of the coating film remaining ratio (coating residual ratio) remaining on the surface of the test piece after the bending test without being peeled with respect to the area of the bent portion. . Judgment criteria are as follows, and the grades A and B were accepted.
  • test numbers 1-1 to 1-7 and 1-14 to 1-20 are compared, test numbers 1-14 to 1-20, in which the steel slab has a preferred chemical composition, have superior magnetic properties.
  • the wet blasting conditions are outside the scope of the present invention, and the base material
  • the surface shape of the steel sheet was also out of the scope of the present invention and was particularly inferior in magnetic properties.
  • Test Nos. 1-26 and 1-27 since wet blasting was not performed, the adhesion of the tension-imparting insulating coating was inferior, and the film was baked not only at the bent portion but also at a flat portion other than the bent portion. Immediately after that, film peeling had already occurred.
  • Example 2 The steel slab shown in Table 2 below was heated to 1380 ° C. and hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.3 mm. Some steels cracked and could not proceed to the next process.
  • the hot-rolled steel sheet that was able to proceed to the next process was subjected to pickling after annealing at 1120 ° C. for 20 seconds. However, for test number 2-2, pickling was performed without annealing the hot-rolled steel sheet.
  • the steel plate after pickling was finished to 0.23 mm by cold rolling to obtain a cold-rolled steel plate. Some steels could not proceed to the next process because of cracking during cold rolling. Decarburization annealing was performed on the cold-rolled steel sheet that could be advanced to the next process.
  • each of the cold-rolled steel sheets has a temperature increase rate S1 in the temperature increase process of 500 ° C. or higher and lower than 600 ° C. set to 900 ° C./second, and a temperature increase rate S2 in the temperature increase process of 600 ° C. or higher and 700 ° C. or lower.
  • Heated at 1600 ° C./second (S2 / S1 1.78) and held at 850 ° C. for 150 seconds. Thereafter, it is composed of MgO, Al 2 O 3 and chloride, and the mixing ratio of MgO and Al 2 O 3 is 50%: 50% (mass ratio 1: 1) by mass, and contains 6% by mass of BiOCl.
  • An annealing separator of composition was applied and dried. Thereafter, the decarburized and annealed steel sheet was subjected to finish annealing for 20 hours at 1200 ° C.
  • the magnetic properties, the surface shape of the base steel plate, and the adhesion of the tension-imparting insulating coating were evaluated.
  • the surface shape of the base material steel plate and the method for evaluating the adhesion of the tension-imparting insulating coating were the same as in Experimental Example 1. Further, the magnetic characteristics were evaluated as follows. The results obtained are summarized in Table 3 below.
  • Magnetic properties The magnetic properties in the rolling direction were evaluated by the method for measuring magnetic properties using a single plate tester specified in JIS C 2556 (2015).
  • the magnetic flux density B8 (magnetic flux density at 800 A / m) was measured, and it was judged that good secondary recrystallization was manifested under the condition that a value exceeding 1.90 T was obtained.
  • Test No. 2-12 broke during cold rolling because the Si content exceeded the upper limit of the present invention.
  • Test No. 2-13 was inferior in magnetic properties because the Si content was below the lower limit of the present invention.
  • the C content was below the lower limit of the present invention, and in Test No. 2-15, the C content exceeded the upper limit of the present invention, both of which were inferior in magnetic properties.
  • the acid-soluble Al content was lower than the lower limit of the present invention, and the magnetic properties were inferior.
  • Test No. 2-17 the acid-soluble Al content exceeded the upper limit of the present invention, and fracture occurred during cold rolling.
  • Test No. 2-18 the Mn content was below the lower limit of the present invention, and in Test No.
  • test numbers 2-1 to 2-11 and 2-25 to 2-29 whose chemical compositions are within the scope of the present invention, the surface shape of the base steel sheet is within the scope of the present invention, and magnetic properties and Both the film adhesion showed good results.
  • test numbers 2-3 to 2-11 and 2-25 to 2-29, in which the steel slab has a preferable chemical composition had superior magnetic properties compared to the test numbers 2-1. .
  • Example 3 The steel slab shown in Table 4 below was heated to 1380 ° C. and hot-rolled to obtain a hot-rolled steel plate having a thickness of 2.3 mm. Thereafter, the hot-rolled steel sheet was annealed at 1120 ° C. for 120 seconds, and then pickled. The steel plate after pickling was finished to 0.23 mm by cold rolling to obtain a cold-rolled steel plate. Then, decarburization annealing was implemented with respect to the obtained cold-rolled steel plate. At that time, heating is performed by changing the temperature rising rate S1 (° C./second) in the temperature rising process of 500 ° C. or higher and lower than 600 ° C.
  • the annealing separator was applied and dried, and subjected to finish annealing that was held at 1200 ° C. for 20 hours.
  • the annealing separator was five types shown below.
  • a test piece was cut out from the steel sheet from which the excess annealing separator was removed by water washing, and after strain relief annealing, alumina abrasive grains having a center particle diameter of 50 ⁇ m using water as a solvent were used as a slurry, and a nozzle moving speed v: 200 mm. / Sec, nozzle width w: 250 mm was fixed, slurry flow rate S and abrasive concentration c were changed, and slurry was projected onto both surfaces of the steel sheet by wet blasting. In Test No. 3-17 shown below, wet blasting was not performed, and the surface properties were smooth.
  • an aqueous solution mainly composed of aluminum phosphate and colloidal silica is applied and baked at 850 ° C. for 1 minute to form a tension-imparting insulating coating having a basis weight of 4.5 g / m 2 on the surface of the test piece. It was.
  • the obtained test piece was irradiated with a laser beam and subjected to magnetic domain fragmentation treatment.
  • test pieces were evaluated from the viewpoint of magnetic properties, the surface shape of the base steel sheet, and the adhesion of the tension-imparting insulating coating.
  • the evaluation method was the same as in Experimental Example 1. The results obtained are summarized in Table 5 below.
  • Test Nos. 3-13 to 3-16 in which the annealing separator is outside the scope of the present invention, have a smooth surface due to the glass coating formed on the surface or the alumina burned on the surface. There wasn't. In order to remove the glass coating or alumina, it was necessary to increase the amount of projection by wet blasting. However, since the wet blasting conditions are outside the scope of the present invention, the surface shape of the base steel plate is the same as that of the present invention. It was out of range and was inferior in magnetic properties. In Test Nos. 3-17 and 3-18, the annealing separator was within the scope of the present invention, and the glass coating was not formed on the surface after the water washing, and the surface had a smooth surface. In Test No.
  • test numbers 3-1 to 3-12 in which the annealing separator was within the scope of the present invention the glass film was not formed on the surface after the water washing, and the surface had a smooth surface. Furthermore, since the wet blasting conditions were within the scope of the present invention, the surface shape of the base steel sheet was within the scope of the present invention, and excellent magnetic properties and coating adhesion were exhibited.
  • test numbers 3-1 to 3-3, 3-4 to 3-7, and 3-8 to 3-12 are compared, test numbers 3-4 to 3-12, in which the steel slab has a preferable chemical composition, It has excellent magnetic properties and has a temperature rising rate S1 (° C./second) in a temperature rising process of 500 ° C. or more and less than 600 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この方向性電磁鋼板は、質量%で、C:0.010%以下、Si:2.50~4.00%、Mn:0.050~1.000%、S+Se:合計で0.005%以下、Sol.Al:0.005%以下、N:0.005%以下、Bi+Te+Pb:合計で0~0.0300%、Sb:0~0.50%、Sn:0~0.50%、Cr:0~0.50%、Cu:0~1.0%を含有し、残部がFe及び不純物からなる化学組成を有する母材鋼板と、前記母材鋼板の表面上に設けられた張力付与性絶縁被膜と、を備え、前記母材鋼板の前記表面において、圧延方向に対して直角な方向である圧延90°方向に沿った算術平均粗さRaが、0.60μm以下であり、前記圧延90°方向に沿って前記母材鋼板の断面を観察したときに、前記母材鋼板の前記表面に深さ0.1μm以上2.0μm以下の凹部が、1.0個/100μm以上、6.0個/100μm以下存在する。

Description

方向性電磁鋼板及び方向性電磁鋼板の製造方法
 本発明は、方向性電磁鋼板及び方向性電磁鋼板の製造方法に関する。
 本願は、2018年03月22日に、日本に出願された特願2018-054675号に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は、ケイ素(Si)を0.5~7質量%程度含有し、二次再結晶と呼ばれる現象を活用して結晶方位を{110}<001>方位(Goss方位)に集積させた鋼板であり、軟磁性材料として主にトランスなどの鉄心に用いられている。方向性電磁鋼板の特性は、トランスの性能に大きな影響を及ぼすので、方向性電磁鋼板については良好な励磁特性及び低い鉄損特性を達成するために鋭意検討が進められてきた。
 方向性電磁鋼板の一般的な製造方法は、次の通りである。
 まず、所定の化学組成を有する鋼片を加熱して熱間圧延を行い、熱延鋼板を製造する。得られた熱延鋼板に対して、必要に応じて熱延板焼鈍を実施した後、熱延鋼板を酸洗する。酸洗後の熱延鋼板に冷間圧延を行って、冷延鋼板を製造する。得られた冷延鋼板に対して脱炭焼鈍を行って、一次再結晶を発現させる。
 その後、脱炭焼鈍後の冷延鋼板の表面に対して、MgOを主成分とする焼鈍分離剤を含有する水性スラリーを塗布し、乾燥させる。その後、鋼板をコイルに巻取り、仕上げ焼鈍を行って、二次再結晶を発現させる。仕上げ焼鈍時においては、鋼板中における二次再結晶の発現と同時に、焼鈍分離剤中のMgOと、脱炭焼鈍時に冷延鋼板の表面に形成された内部酸化層中のSiOと、が反応し、フォルステライト(MgSiO)を主成分とする一次被膜(「グラス被膜」とも称される。)が鋼板表面に形成される。
 仕上げ焼鈍後(グラス被膜を形成後)、更に上層に、例えばコロイダルシリカ及びリン酸塩を主成分とする溶液を塗布して焼き付けることにより、張力付与性絶縁被膜(「二次被膜」とも称される。)が形成される。
 かかるグラス被膜は、絶縁被膜として機能するほか、グラス被膜の更に上層に形成される張力付与性絶縁被膜の密着性を向上させるという機能を有しており、グラス被膜及び張力付与性絶縁被膜の双方による張力によって、鉄損が低減する。しかしながら、グラス被膜は非磁性相であり、磁気特性の観点からは好ましくない。また、鋼板とグラス被膜との界面は、グラス被膜の根が入り組んだ嵌入構造を有しており、磁壁移動の阻害を通じて鉄損の増加を引き起こす場合もある。このような嵌入構造を減じた場合、グラス被膜と鋼板との密着性が劣化し、結果として、張力付与性絶縁被膜の密着性にも劣ったものとなる。従って、グラス被膜を除去したりグラス被膜の形成を抑制したりすることで鋼板表面を平滑化した場合、優れた磁気特性が得られるものの、張力付与性絶縁被膜の密着性は更に劣ったものとなる。
 このようなグラス被膜を有していない方向性電磁鋼板において、張力付与性絶縁被膜の密着性を向上する手段として、例えば特許文献1には、張力付与性絶縁被膜を施す前に、鋼板を、硫酸或いは硫酸塩を硫酸濃度として2~30%含有する水溶液に浸漬して洗浄する技術が開示されている。また、特許文献2には、張力付与性絶縁被膜を施す際に、酸化性酸を用いて鋼板表面を前処理した後、張力付与性絶縁被膜を形成する技術が開示されている。また、特許文献3には、シリカ主体の外部酸化型酸化膜を有し、かつ、外部酸化型酸化膜中に、断面面積率で30%以下の金属鉄を含有させた方向性ケイ素鋼板が開示されている。また、特許文献4には、方向性電磁鋼板の地鉄表面に直接施された深さ0.05μm以上2μm以下の微細筋状溝を、0.05μm以上2μm以下の間隔で有する方向性電磁鋼板が開示されている。
 グラス被膜を有していない方向性電磁鋼板の表面に形成された張力付与性絶縁被膜は、密着性に劣る場合には、放置する間に剥離してしまうことがある。方向性電磁鋼板を工業的に安定製造するという観点から、張力付与性絶縁被膜の密着性向上は、極めて重要である。この点に関し、上記特許文献1~特許文献4に開示されている技術は、いずれも張力付与性絶縁被膜の密着性向上を意図しているものの、特許文献1~特許文献4に開示されている技術によって安定した鉄損低減効果が得られるか否かは必ずしも明らかでなく、未だ検討の余地があった。
日本国特開平5-311453号公報 日本国特開2002-249880号公報 日本国特開2003-313644号公報 日本国特開2001-303215号公報
 本発明は、上記問題に鑑みてなされたものである。本発明の目的は、グラス被膜を有しない方向性電磁鋼板において、張力付与性絶縁被膜の優れた密着性を有し、磁気特性に優れた方向性電磁鋼板と、かかる方向性電磁鋼板を工業的に安定製造することが可能な方向性電磁鋼板の製造方法と、を提供することにある。
 グラス被膜を有しない方向性電磁鋼板を得るための方法として、生成したグラス被膜を化学研磨又は電解研磨により除去する方法等が知られている。しかしながら、生産性の観点から考えると、生成したグラス被膜を除去するよりも、仕上げ焼鈍時のグラス被膜の生成を抑制することでグラス被膜を有していない方向性電磁鋼板を得ることが好ましい。
 従来、方向性電磁鋼板の磁気特性は歪に大きく影響され、機械的凹凸の形成は歪起因による磁気特性の劣化を招くと考えられていた。そのため、グラス被膜の生成を抑制する場合には、鋼板の表面状態は平滑面とされていた。しかしながら、本発明者らは、従来のようにグラス被膜を有しない方向性電磁鋼板において表面状態を平滑面として保持するよりも、敢えて鋼板表面に対し適度な機械的凹凸を付与することに着想した。また、機械的凹凸により、張力付与性被膜の密着性が向上し、かつ、張力付与性絶縁被膜により付与される張力が高まることで、磁気特性が向上するものと推定し、かかる知見の可能性を検討した。
 近年、粒子と液体とを混合したスラリーを、圧縮空気を使って噴射することで表面を加工するウェットブラスト法が注目されている。かかる技術は、乾式のショットブラスト法と比較して細かな研磨材を使用することができ、例えばガラスやレンズの表面性状の制御に適用されつつある。
 本発明者らは、平滑面への機械的凹凸付与の方法としてウェットブラスト法に着目し、グラス被膜を有していない方向性電磁鋼板への適用を鋭意検討した。
 上述の通り従来、方向性電磁鋼板の磁気特性は歪に大きく影響され、機械的凹凸の形成は歪起因による磁気特性の劣化を招くと考えられていた。しかしながら、本発明者らの検討の結果、ウェットブラストにより張力付与性絶縁被膜の密着性が著しく向上するばかりか、方向性電磁鋼板の磁気特性が一層向上するとの知見を得た。この理由は明らかでないが、ウェットブラスト法により適切なサイズ、個数密度で面内に均一に形成された機械的凹凸であれば、形成されても歪起因による磁気特性の劣化が小さく、むしろアンカー効果が発現し、密着性のみならず被膜張力が向上した結果、磁気特性向上につながったと推定している。
 このような機械的凹凸を有することを前提としたグラス被膜を有していない方向性電磁鋼板においては、張力付与性絶縁被膜形成後、及び、磁区細分化処理後の磁気特性に及ぼす母材の方位集積度の影響が予想よりも大きいことも明らかとなった。そのため、脱炭焼鈍時の昇温速度の制御及び鋼片へのインヒビター強化元素の含有が、更なる磁気特性の向上に有効であるとの知見をも得て、本発明を完成させた。
 上記の知見に基づき完成された本発明の要旨は、以下の通りである。
[1]本発明の一態様に係る方向性電磁鋼板は、質量%で、C:0.010%以下、Si:2.50~4.00%、Mn:0.050~1.000%、S+Se:合計で0.005%以下、Sol.Al:0.005%以下、N:0.005%以下、Bi+Te+Pb:合計で0~0.0300%、Sb:0~0.50%、Sn:0~0.50%、Cr:0~0.50%、Cu:0~1.0%を含有し、残部がFe及び不純物からなる化学組成を有する母材鋼板と、前記母材鋼板の表面上に設けられた張力付与性絶縁被膜と、を備え、前記母材鋼板の前記表面において、圧延方向に対して直角な方向である圧延90°方向に沿った算術平均粗さRaが、0.60μm以下であり、前記圧延90°方向に沿って前記母材鋼板の断面を観察したときに、前記母材鋼板の前記表面に深さ0.1μm以上2.0μm以下の凹部が、1.0個/100μm以上、6.0個/100μm以下存在する。
[2]上記[1]に記載の方向性電磁鋼板は、前記母材鋼板が、前記化学組成として、Bi+Te+Pb:合計で0.0005~0.0300%、を含有してもよい。
[3]本発明の別の態様に係る方向性電磁鋼板の製造方法は、質量%で、C:0.020~0.100%、Si:2.50~4.00%、Mn:0.050~1.000%、S+Se:合計で0.005~0.080%、Sol.Al:0.010~0.070%、N:0.005~0.020%、Bi+Te+Pb:合計で0~0.0300%、Sb:0~0.50%、Sn:0~0.50%、Cr:0~0.50%、Cu:0~1.0%を含有し、残部がFe及び不純物からなる鋼片を加熱した後に熱間圧延し、熱延鋼板を得る熱間圧延工程と、任意に、前記熱延鋼板を焼鈍して、熱延焼鈍鋼板を得る熱延板焼鈍工程と、前記熱延鋼板または前記熱延焼鈍鋼板に対し、一回の冷間圧延、又は、中間焼鈍をはさむ複数の冷間圧延を施して、冷延鋼板を得る冷間圧延工程と、前記冷延鋼板に対して脱炭焼鈍を施して、脱炭焼鈍鋼板を得る脱炭焼鈍工程と、前記脱炭焼鈍鋼板に対して焼鈍分離剤を塗布した後に、仕上げ焼鈍を施す仕上げ焼鈍工程と、前記仕上げ焼鈍工程後の鋼板表面の板幅方向全体に対して、下記式(i)を満たす条件でウェットブラストにより表面加工を施す表面加工工程と、前記表面加工工程後の前記鋼板表面に張力付与性絶縁被膜を形成する絶縁被膜形成工程と、を含み、前記焼鈍分離剤は、MgOとAlとを主成分とし、前記MgOと前記Alとの質量比であるMgO:Alが3:7~7:3の範囲内であり、かつ、ビスマス塩化物を0.5~15質量%含有する。
  0.15 ≦ (S×c×ρ)/(6×v×W) ≦ 3.00 ・・・式(i)
 ここで、上記式(i)において、
  S:前記ウェットブラストに用いるスラリーの流量(L/分)
  c:前記ウェットブラストに用いる研磨剤の濃度(体積%)
  ρ:前記ウェットブラストに用いる前記研磨剤の密度(kg/m
  v:前記スラリーが吐出されるノズルと鋼板との相対速度(mm/秒)
  W:前記スラリーが吐出される前記ノズルの幅(mm)
である。
[4]上記[3]の方向性電磁鋼板の製造方法は、前記脱炭焼鈍工程では、500℃以上600℃未満の温度域における昇温速度S1と、600℃以上700℃以下の温度域における昇温速度S2と、が、以下の式(ii)~式(iv)をそれぞれ満足してもよい。
   300 ≦ S1 ≦ 1000   ・・・式(ii)
  1000 ≦ S2 ≦ 3000   ・・・式(iii)
  1.0 < S2/S1 ≦ 10.0 ・・・式(iv)
[5]上記[3]または[4]の方向性電磁鋼板の製造方法は、前記鋼片が、前記化学組成として、Bi+Te+Pb:合計で0.0005~0.0300%、を含有してもよい。
 以上説明したように本発明の上記態様によれば、グラス被膜を有しておらず、張力付与性絶縁被膜の優れた密着性を有し、かつ、磁気特性に優れた方向性電磁鋼板を、工業的に安定製造することが可能となる。
本実施形態に係る方向性電磁鋼板の構造を模式的に示した図である。 同実施形態に係る方向性電磁鋼板の構造を模式的に示した図である。 同実施形態に係る方向性電磁鋼板を模式的に示した図である。 同実施形態に係る方向性電磁鋼板の母材鋼板の表面について模式的に示した図である。 同実施形態に係る母材鋼板の表面における凹部の深さについて説明するための図である。 同実施形態に係る方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(方向性電磁鋼板について)
 以下に、本発明の一実施形態に係る方向性電磁鋼板(本実施形態に係る方向性電磁鋼板)について、詳細に説明する。
<方向性電磁鋼板の主要な構成について>
 まず、図1A及び図1Bを参照しながら、本実施形態に係る方向性電磁鋼板の主要な構成について説明する。図1A及び図1Bは、本実施形態に係る方向性電磁鋼板の構造を模式的に示した図である。
 本実施形態に係る方向性電磁鋼板10は、図1Aに模式的に示したように、母材鋼板11と、母材鋼板11の表面に形成された絶縁被膜の一例である張力付与性絶縁被膜13と、を有しており、母材鋼板11と張力付与性絶縁被膜13との間には、グラス被膜が存在していない。本実施形態に係る方向性電磁鋼板10において、張力付与性絶縁被膜13は、母材鋼板11の少なくとも一方の面に形成されていればよいが、通常、図1Bに模式的に示したように、母材鋼板11の両面に形成される。
 以下では、本実施形態に係る方向性電磁鋼板10について、特徴的な構成を中心に説明する。以下の説明において、公知の構成や、当業者が実施可能な一部の構成については、詳細な説明を省略しているところがある。
[母材鋼板11について]
 母材鋼板11は、以下で詳述するような化学組成を含有する鋼片から製造されることで、所定の化学組成を有する。また、本実施形態に係る母材鋼板11の表面には、以下で詳述するような微細な凹部が設けられている。かかる凹部の存在により、本実施形態に係る方向性電磁鋼板10は、張力付与性絶縁被膜13の優れた密着性を有し、かつ、優れた磁気特性を示す。かかる母材鋼板11の化学組成については、以下で改めて詳述する。
[張力付与性絶縁被膜13について]
 張力付与性絶縁被膜13は、母材鋼板11の表面に位置しており、方向性電磁鋼板10に電気絶縁性を付与することで渦電流損を低減して、方向性電磁鋼板10の鉄損を向上させる。また、張力付与性絶縁被膜13は、上記のような電気絶縁性以外にも、耐蝕性、耐熱性、すべり性といった種々の特性を実現する。
 更に、張力付与性絶縁被膜13は、方向性電磁鋼板10に張力を付与するという機能を有する。方向性電磁鋼板10に張力を付与して、方向性電磁鋼板10における磁壁移動を容易にすることで、方向性電磁鋼板10の鉄損を向上させることができる。
 かかる張力付与性絶縁被膜13の表面には、連続波レーザビーム又は電子ビームを用いて、公知の磁区細分化処理が施されていてもよい。
 かかる張力付与性絶縁被膜13は、例えば、金属リン酸塩とシリカを主成分とするコーティング液を母材鋼板11の表面に塗布し、焼き付けることによって形成される。
<方向性電磁鋼板10の板厚について>
 本実施形態に係る方向性電磁鋼板10の製品板厚(図1A及び図1Bにおける厚みt)は、特に限定されるものではなく、例えば0.17mm以上0.35mm以下とすることができる。また、本実施形態においては、冷延後の板厚が0.22mm未満と薄い材料(すなわち、薄手材)である場合に効果が顕著となり、張力付与性絶縁被膜13の密着性がより一層優れたものとなる。冷延後の板厚は、例えば、0.17mm以上0.22mm以下が好ましく、0.17mm以上0.20mm以下であることがより好ましい。
<母材鋼板11の化学成分について>
 続いて、本実施形態に係る方向性電磁鋼板10の母材鋼板11の化学成分について、詳細に説明する。以下では、特に断りのない限り、「%」との表記は「質量%」を表す。
 本実施形態に係る母材鋼板11は、質量%で、C:0.010%以下、Si:2.50~4.00%、Mn:0.050~1.000%、S+Se:0.005%以下、Sol.Al:0.005%以下、N:0.005%以下を含有し、任意に、Bi+Te+Pb:0.03%以下、Sb:0.50%以下、Sn:0.50%以下、Cr:0.50%以下、Cu:1.0%以下を含有し、残部がFe及び不純物からなる化学組成を有している。
[C:0.010%以下]
 C(炭素)は、製造工程における脱炭焼鈍工程の完了までの組織制御に有効な元素である。しかしながら、C含有量が0.010%を超えると、製品板である方向性電磁鋼板の磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板10の母材鋼板11において、C含有量は、0.010%以下とする。C含有量は、好ましくは0.005%以下である。C含有量は、低ければ低いほうが好ましいが、C含有量を0.0001%未満に低減しても、組織制御の効果は飽和し、製造コストが嵩むだけとなる。従って、C含有量は、0.0001%以上であることが好ましい。
[Si:2.50~4.00%]
 Si(ケイ素)は、鋼の電気抵抗を高めて渦電流損を低減する元素である。Siの含有量が2.50%未満である場合には、上記のような渦電流損の低減効果を十分に得られない。そのため、Si含有量は、2.50%以上とする。Si含有量は、好ましくは2.70%以上であり、より好ましくは2.80%以上である。
 一方、Si含有量が4.00%を超えると、鋼の冷間加工性が低下する。従って、本実施形態に係る方向性電磁鋼板10の母材鋼板11において、Si含有量は、4.00%以下とする。Si含有量は、好ましくは3.90%以下であり、より好ましくは3.80%以下である。
[Mn:0.050~1.000%]
 Mn(マンガン)は、製造工程中に、後述するS及びSeと結合して、MnS及びMnSeを形成する。これらの析出物は、インヒビター(正常結晶粒成長の抑制剤)として機能し、鋼において、二次再結晶を発現させる。Mnは、更に、鋼の熱間加工性も高める元素である。Mn含有量が0.050%未満である場合には、上記のような効果を十分に得ることができない。そのため、Mn含有量は、0.050%以上とする。Mn含有量は、好ましくは0.060%以上である。
 一方、Mn含有量が1.000%を超えると、二次再結晶が発現せずに、鋼の磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板10の母材鋼板11において、Mn含有量は、1.000%以下とする。Mn含有量は、好ましくは0.500%以下である。
[SとSeの1種以上(S+Se):合計で0.005%以下]
 S(硫黄)及びSe(セレン)は、製造工程においてMnと結合して、インヒビターとして機能するMnS及びMnSeを形成する。しかしながら、S含有量、Se含有量の合計が0.005%を超える場合には、残存するインヒビターにより、磁気特性が低下する。従って、本実施形態に係る母材鋼板11において、S及びSeの合計含有量は、0.005%以下とする。方向性電磁鋼板におけるS及びSeの合計含有量は、なるべく低いほうが好ましい。しかしながら、方向性電磁鋼板中のS及びSeの合計含有量を0.0001%未満に低減しても、製造コストが嵩むだけとなる。従って、方向性電磁鋼板中のS及びSeの合計含有量は、0.0001%以上であることが好ましい。
[酸可溶性Al:0.005%以下]
 酸可溶性アルミニウム(sol.Al)は、方向性電磁鋼板の製造工程中において、Nと結合して、インヒビターとして機能するAlNを形成する。しかしながら、母材鋼板11の酸可溶性Al含有量が0.005%を超えると、母材鋼板11中にインヒビターが過剰に残存しているので、磁気特性が低下する。従って、本実施形態に係る母材鋼板11において、酸可溶性Al含有量は、0.005%以下とする。酸可溶性Al含有量は、好ましくは0.004%以下である。酸可溶性Al含有量の下限値は、特に規定するものではないが、0.0001%未満に低減しても、製造コストが嵩むだけとなる。従って、酸可溶性Al含有量は、0.0001%以上であることが好ましい。
[N:0.005%以下]
 N(窒素)は、製造工程においてAlと結合して、インヒビターとして機能するAlNを形成する。しかしながら、N含有量が0.005%を超えると、方向性電磁鋼板中にインヒビターが過剰に残存して、磁気特性が低下する。従って、本実施形態に係る母材鋼板11において、N含有量は、0.005%以下とする。N含有量は、好ましくは0.004%以下である。
 一方、N含有量の下限値は、特に規定するものではないが、0.0001%未満に低減しても、製造コストが嵩むだけとなる。従って、N含有量は、0.0001%以上であることが好ましい。
[残部:Fe及び不純物]
 本実施形態に係る母材鋼板11の化学組成は、上述の元素を含有し、残部は、鉄(Fe)及び不純物であることを基本とする。しかしながら、磁気特性を高めることを目的として、さらにBi、Te、Pb、Sb、Sn、Cr、Cuを以下に示す範囲で含有してもよい。
 ここで、不純物とは、母材鋼板11を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入するものであり、本実施形態に係る方向性電磁鋼板の作用に悪影響を及ぼさない含有量で含有することを許容される元素を意味する。
[Bi,Te又はPbの少なくとも一種(Bi+Te+Pb):合計で0~0.0300%]
 本実施形態に係る母材鋼板11は、上記の任意元素として、残部のFeの一部に換えて、Bi(ビスマス)、Te(テルル)又はPb(鉛)の少なくとも1種を含有させてもよい。これらの元素の1種以上を含有することにより、方向性電磁鋼板の磁気特性を、より一層高めることができる。この効果を得る場合、Bi、Te又はPbの少なくとも1種(Bi、Te及びPbから選択される1種以上)の合計含有量は、好ましくは0.0005%以上であり、より好ましくは0.0010%以上である。
 一方、これらの元素の合計含有量が0.0300%を超えると、熱間での脆化が引き起こされる。従って、Bi、Te又はPbの少なくとも1種の合計含有量は、0.0300%以下とすることが好ましい。Bi、Te及びPbは必ずしも含有させる必要はないので、合計含有量の下限は0%である。
 本実施形態に係る母材鋼板11は、上記の任意元素以外にも、方向性電磁鋼板の磁気特性向上に有効な、Sb(アンチモン)、Sn(スズ)、Cr(クロム)、又は、Cu(銅)の少なくとも何れかを、任意元素として含有していてもよい。これらの元素を含有させる場合、各元素の含有量は、Sb:0%以上0.50%以下、Sn:0%以上0.50%以下、Cr:0%以上0.50%以下、Cu:0%以上1.0%以下であることが好ましい。それぞれの含有量は、より好ましくは、0.005%以上であり、更に好ましくは0.010%以上である。
<母材鋼板11の表面形状について>
 本実施形態に係る母材鋼板11において、張力付与性絶縁被膜13との界面となる表面は、先だって簡単に言及したように、所定の算術平均粗さRaを有しており、かつ、所定の深さを有する凹部が所定の割合で存在している。
 以下、本実施形態に係る母材鋼板11における特徴的な表面形状について、図2~図4を参照しながら詳細に説明する。図2は、本実施形態に係る方向性電磁鋼板を模式的に示した図である。図3は、本実施形態に係る方向性電磁鋼板の母材鋼板の表面について模式的に示した図である。図4は、本実施形態に係る母材鋼板の表面における凹部の深さについて説明するための図である。
 方向性電磁鋼板の磁化過程では、主として、図2に模式的に示したような圧延方向に磁化が向いている磁区間の磁壁が移動する。かかる場合における磁壁の移動方向は、圧延方向に対して直角な方向(図2における板幅方向に該当する。)である。以下では、この圧延方向に対して直角な方向のことを、「圧延90°方向」と称する。磁壁の移動方向が圧延90°方向であることから、磁気特性に及ぼす表面形状の影響は、圧延90°方向が指標となる。
 グラス被膜を有していないにも関わらず優れた張力付与性絶縁被膜の密着性を示し、優れた磁気特性を示す方向性電磁鋼板10は、圧延90°方向に沿った母材鋼板11の表面が、特徴的な表面形状を有している。
 本実施形態に係る母材鋼板11の表面は、図2に示したA-A切断線で(すなわち、圧延90°方向と平行に)方向性電磁鋼板10(母材鋼板11)を切断した場合に、母材鋼板11の表面は、JIS B0601(2013)で規定される算術平均粗さRaが、0.60μm以下となっている。圧延90°方向に沿った母材鋼板11の表面の算術平均粗さRaが0.60μmを超えている場合には、上記のような磁壁の移動に影響が生じ、優れた磁気特性を実現することができない。圧延90°方向に沿った母材鋼板11の表面の算術平均粗さRaは、好ましくは0.30μm以上0.50μm以下である。かかる算術平均粗さRaは、JIS B0601(2013)に準拠した公知の表面粗さ計を用いて測定することが可能である。張力付与性絶縁被膜を形成後の方向性電磁鋼板については、液温:60~80℃、NaOH濃度:30~40%の水溶液に浸漬し、張力付与性絶縁被膜を除去後の表面をJIS B 0601(2013)に準拠した公知の表面粗さ計を用いて測定することで、母材鋼板の表面の算術平均粗さRaを測定することが可能である。
 また、本実施形態に係る母材鋼板11の表面は、図2に示したA-A切断線で方向性電磁鋼板10(母材鋼板11)を切断した場合に、図3に模式的に示したように、母材鋼板11の表面に、所定の深さを有する凹部101が所定の割合で存在している。より詳細には、圧延90°方向で切断した場合の母材鋼板11の表面には、0.1μm以上2.0μm以下の深さを有する凹部101が、1.0個/100μm以上、6.0個/100μm以下存在する。
 すなわち、本実施形態に係る母材鋼板11の表面において、深さが0.1μm以上2.0μm以下である凹部101の存在個数は、断面長さが100μmの範囲内で、1.0個以上6.0個以下である。凹部101の存在個数が1.0個/100μm未満である場合には、形成された凹部101の個数が少なすぎて、張力付与性絶縁被膜13の優れた密着性、及び、優れた磁気特性を実現することができない。一方、凹部101の存在個数が6.0個/100μmを超える場合には、張力付与性絶縁被膜13の密着性は向上するものの、優れた磁気特性を実現することができない。凹部101の存在個数を1.0個/100μm以上6.0個/100μm以下とすることで、張力付与性絶縁被膜13の優れた密着性が発現され、かつ、母材鋼板11へ付与される張力が高まることで、優れた磁気特性が発現される。凹部101の存在個数は、好ましくは、1.0個/100μm以上5.0個/100μm以下である。
 上記のような凹部101は、圧延90°方向の断面を、一般的な走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いることで観察することができる。より詳細には、母材鋼板11の圧延90°方向の任意の位置の断面を、倍率1000倍で観察し、まず、母材鋼板11の表面が平坦となっている部位を特定する。このような平坦部を、図4に示したような深さを測定する際の「深さ基準点」とする。
 着目している観察視野で、このような深さ基準点を2つ以上選択した後、選択した複数の深さ基準線を結ぶ線分を考え、かかる線分を「深さ基準線」とする。本実施形態に係る凹部101の深さは、図4に模式的に示したように、上記のように特定した「深さ基準線」と、凹部の一番深い位置と、の離隔距離として規定される。このような観察を、同一の倍率(1000倍)において、任意の3視野で実施し、得られた個数の平均値で評価を行えばよい。
 図3及び図4に示したような、本実施形態に係る母材鋼板11に特徴的な表面形状は、後述するウェットブラスト法を用いることで形成できる。ウェットブラスト法は、研磨剤が混合されているスラリーを母材鋼板11の表面へ投射することで実現され、スラリーの投射された母材鋼板11の表面に形成される機械的な凹凸は均一なものとなるため、上記のような平坦部が存在するような特徴的な平面となっている。
 本実施形態に係る母材鋼板11では、深さ2.0μm以下の凹部101を実現するために、以下で詳述するような特定の条件下で、ウェットブラストによる表面加工処理が施される。そのため、本実施形態に係る母材鋼板11の表面には、深さが2.0μmを超える凹部101は、存在しない。また、深さが2.0μmを超える凹部が存在した場合には、方向性電磁鋼板は優れた磁気特性を発現しないので、深さ2.0μmを超える凹部の存在は、考慮しなくともよい。
 また、深さが0.1μm未満である凹部101、及び、高さが0.1μm未満である凸部は、張力付与性絶縁被膜13の密着性や磁気特性の向上に影響を及ぼすものではない。そのため、上記のような観察の際に考慮する必要はなく、着目する凹部101の深さは、0.1μm以上とする。
 深さ0.1μm以上2.0μm以下の凹部の個数と、算術平均粗さRaとは技術的意味が異なる。すなわち、深さ0.1μm以上2.0μm以下の凹部の個数は、張力付与性絶縁被膜の密着性向上に寄与する機械的凹凸であり、被膜張力の向上を通じて磁気特性の向上にも寄与する。一方、算術平均粗さRaは、基準長さにおける凹凸状態の平均値を表すものであり、必ずしも密着性向上に寄与する機械的凹凸の形態とは一致しない。また、Raが高くとも、深さ0.1μm以上2.0μm以下の凹部の個数が必ずしも多くはならない。
 また、上記のような特定の表面形状は、以下で詳述するように、グラス被膜が形成されないような焼鈍分離剤を用いて仕上げ焼鈍を実施し、その後に適切な条件下でウェットブラスト法による表面加工処理を実施した場合にのみ実現される。グラス被膜が生成されるような一般的な焼鈍分離剤を用いて仕上げ焼鈍を実施し、生成したグラス被膜を化学研磨又は電解研磨により除去した場合には、母材鋼板11の表面粗さを適切に制御することができずに表面が荒れすぎてしまい、上記のような深さを有する凹部101を実現することはできない。
 以上、本実施形態に係る方向性電磁鋼板10について、詳細に説明した。
 本実施形態に係る方向性電磁鋼板の示す各種の磁気特性は、JIS C2550-1(2011)に規定されたエプスタイン法や、JIS C2556(2015)に規定された単板磁気特性測定法(Single Sheet Tester:SST)に則して、測定することが可能である。
(方向性電磁鋼板の製造方法について)
 次に、本実施形態に係る方向性電磁鋼板の製造方法について、図5を参照しながら詳細に説明する。図5は、本実施形態に係る方向性電磁鋼板の、製造方法の流れの一例を示したフロー図である。
<方向性電磁鋼板の製造方法の全体的な流れ>
 以下では、本実施形態に係る方向性電磁鋼板の製造方法の全体的な流れを説明する。
 本実施形態に係る方向性電磁鋼板の製造方法の全体的な流れは、以下の通りである。
 まず、後述する化学成分を有する鋼片(スラブ)を熱間圧延して熱延鋼板を得る。その後、熱延鋼板に焼鈍を実施して、熱延焼鈍鋼板を得る。次に、得られた熱延焼鈍鋼板に対して、酸洗後、1回、又は、中間焼鈍をはさむ2回の冷間圧延を実施して、所定の冷延後の板厚まで冷延された冷延鋼板を得る。その後、得られた冷延鋼板について、湿潤水素雰囲気中の焼鈍(脱炭焼鈍)により、脱炭及び一次再結晶を行って、脱炭焼鈍鋼板とする。かかる脱炭焼鈍において、鋼板の表面には、所定の酸化膜が形成される。続いて、MgOとAlとを主体とする焼鈍分離剤を脱炭焼鈍鋼板の表面に塗布した後乾燥させて、仕上げ焼鈍を行う。かかる仕上げ焼鈍により、二次再結晶が起こり、鋼板の結晶粒組織が{110}<001>方位に集積する。また、本実施形態に係る方向性電磁鋼板の製造方法では、グラス被膜が生成しないような特定の焼鈍分離剤を用いるため、仕上げ焼鈍後の鋼板表面にはグラス被膜が形成されず、表面が平坦になる。その後、仕上げ焼鈍後の鋼板の表面に対して、ウェットブラストを用いた表面加工処理が施さる。この表面加工処理によって、鋼板表面に先だって説明したような凹部が形成される。表面加工が施された仕上焼鈍板を水洗又は酸洗により除粉した後、リン酸塩を主体とする塗布液を塗布して焼付けることで、張力付与性絶縁被膜が形成される。
 すなわち、本実施形態に係る方向性電磁鋼板の製造方法では、図5に示したように、上記のような化学成分を有する鋼片を所定の温度で熱間圧延して、熱延鋼板を得る熱間圧延工程(ステップS101)と、得られた熱延鋼板を任意に焼鈍して熱延焼鈍鋼板を得る熱延板焼鈍工程(ステップS103)と、得られた熱延鋼板または熱延焼鈍鋼板に対し、一回の冷間圧延、又は、中間焼鈍をはさむ複数の冷間圧延を施して、冷延鋼板を得る冷間圧延工程(ステップS105)と、得られた冷延鋼板に対して脱炭焼鈍を施して、脱炭焼鈍鋼板を得る脱炭焼鈍工程(ステップS107)と、得られた脱炭焼鈍鋼板に対して焼鈍分離剤を塗布した後に、仕上げ焼鈍を施す仕上げ焼鈍工程(ステップS109)と、仕上げ焼鈍後の鋼板表面の板幅方向全体に対して、所定の条件でウェットブラストにより表面加工を施す表面加工工程(ステップS111)と、表面加工後の鋼板表面に絶縁被膜(より詳細には、張力付与性絶縁被膜)を形成する絶縁被膜形成工程(ステップS113)と、を含む。
 以下、これら工程について、詳細に説明する。以下の説明において、各工程における何らかの条件が記載されていない場合には、公知の条件を適宜適用して各工程を行うことが可能である。
<熱間圧延工程>
 熱間圧延工程(ステップS101)は、所定の化学成分を有する鋼片(例えば、スラブ等の鋼塊)を熱間圧延して、熱延鋼板とする工程である。かかる熱間圧延工程において、以下で簡単に説明するような化学組成を有するケイ素鋼の鋼片は、まず、加熱処理される。ここで、加熱温度は、1200~1400℃の範囲内とすることが好ましい。加熱温度は、より好ましくは1250℃以上1380℃以下である。次いで、上記のような温度まで加熱された鋼片は、引き続く熱間圧延により、熱延鋼板へと加工される。加工された熱延鋼板の板厚は、例えば、2.0mm以上3.0mm以下の範囲内であることが好ましい。
<鋼片の化学組成について>
 熱間圧延工程に供される鋼片の化学組成について、以下で簡単に説明する。以下の説明において、特に断りのない限り、「%」との表記は「質量%」を表わすものとする。
[C:0.020~0.100%]
 Cは、製造工程における脱炭焼鈍工程の完了までの組織制御を通じた磁気特性向上に有効な元素である。鋼片におけるC含有量が0.020%未満である場合、又は、鋼片におけるC含有量が0.100%を超える場合には、上記のような磁気特性向上効果を得ることができない。そのため、鋼片におけるC含有量は、0.020~0.100%である。鋼片におけるC含有量は、好ましくは0.030~0.090%である。
[Si:2.50~4.00%]
 Siは、鋼の電気抵抗を高めて渦電流損を低減する元素である。鋼片におけるSi含有量が2.50%未満である場合には、渦電流損の低減効果を十分に得ることができない。そのため、Si含有量は、2.50%以上とする。鋼片におけるSi含有量は、好ましくは2.70%以上であり、より好ましくは2.80%以上である。
 一方、鋼片におけるSi含有量が4.00%を超える場合には、鋼の冷間加工性が低下する。従って、鋼片において、Si含有量は、4.00%以下とする。鋼片におけるSi含有量は、好ましくは3.90%以下であり、より好ましくは3.80%以下である。
[Mn:0.050~1.000%]
 Mnは、製造工程中にS及びSeと結合して、MnS及びMnSeを形成する。これらの析出物は、インヒビターとして機能し、鋼において、二次再結晶を発現させる。また、Mnは、鋼の熱間加工性を高める元素でもある。鋼片におけるMn含有量が0.050%未満である場合には、これら効果を十分に得ることができない。そのため、鋼片において、Mn含有量は、0.050%以上とする。Mn含有量は、好ましくは0.060%以上である。
 一方、鋼片におけるMn含有量が1.000%を超える場合には、二次再結晶が発現せず、鋼の磁気特性が低下する。従って、鋼片において、Mn含有量は、0.050~1.000%とする。Mn含有量は、好ましくは0.500%以下である。
[S、Seの1種以上(S+Se):合計で0.005~0.080%]
 S及びSeは、製造工程においてMnと結合して、インヒビターとして機能するMnS及びMnSeを形成する。S及びSeの合計含有量が0.005%未満である場合には、MnS及びMnSeの形成効果を発現させるのが困難となる。そのため、鋼片において、S及びSeの合計含有量は、0.005%以上とする。鋼片におけるS及びSeの合計含有量は、好ましくは0.006%以上である。
 一方、S及びSeの合計含有量が0.080%を超える場合には、磁気特性が劣化するばかりか、熱間での脆化を引き起こす。従って、鋼片において、S及びSeの合計含有量は、0.080%以下とする。好ましくは0.070%以下である。
[酸可溶性Al:0.010~0.070%]
 酸可溶性Al(sol.Al)は、方向性電磁鋼板の製造工程中においてNと結合して、インヒビターとして機能するAlNを形成する。酸可溶性Al含有量が0.010%未満である場合、AlNが十分に生成せずに磁気特性が劣化する。また、酸可溶性Al含有量が0.070%を超える場合、磁気特性が劣化するばかりか、冷間圧延時に割れの原因となる。従って、鋼片において、酸可溶性Al含有量は、0.010~0.070%とする。酸可溶性Al含有量は、好ましくは0.020%~0.050%である。
[N:0.005~0.020%]
 Nは、製造工程中においてAlと結合して、インヒビターとして機能するAlNを形成する。N含有量が0.005%未満である場合には、AlNが十分に生成せずに磁気特性が劣化する。従って、鋼片において、N含有量は、0.005%以上とする。
 一方、N含有量が0.020%を超える場合には、AlNがインヒビターとして機能し難くなり、二次再結晶が発現しない場合があるばかりか、冷間圧延時に割れの原因となる。従って、鋼片において、N含有量は0.020%以下とする。N含有量は、好ましくは0.012%以下であり、より好ましくは0.010%以下である。
[残部:Fe及び不純物]
 鋼片の化学組成は、上述の元素を含有し残部は、Fe及び不純物であることを基本とする。しかしながら、磁気特性を高めることを目的として、さらにBi、Te、Pb、Sb、Sn、Cr、Cuを以下に示す範囲で含有してもよい。これらの元素は必ずしも含有させる必要がないので、下限は0%である。
 ここで、不純物とは、鋼片(例えば、鋼スラブ)を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであり、本実施形態に係る方向性電磁鋼板の作用に悪影響を及ぼさない範囲で許容されるものを意味する。
[Bi,Te,Pbの少なくとも一種(Bi+Te+Pb):合計で0~0.0300%]
 鋼片は、任意元素として、残部のFeの一部に換えて、Bi、Te又はPbの少なくとも1種を、合計で0.0300%以下含有してもよい。これらの元素の少なくとも1種を含有することにより、方向性電磁鋼板の磁気特性をより一層向上させることができる。Bi、Te又はPbの少なくとも1種の合計含有量は、好ましくは0.0005%以上であり、より好ましくは0.0010%以上である。
 しかしながら、これら元素の合計含有量が0.0300%を超える場合には、熱間での脆化の原因となる。従って、鋼片において、Bi、Te又はPbの少なくとも1種の合計含有量は、0~0.0300%であることが好ましい。
 その他、鋼片は、さらに、方向性電磁鋼板の磁気特性向上に有効な、Sb、Sn、Cr、又は、Cuの少なくとも何れかを含有してもよい。これらの元素を含有させる場合、各元素の含有量は、Sb:0%以上0.50%以下、Sn:0%以上0.50%以下、Cr:0%以上0.50%以下、Cu:0%以上1.0%以下であることが好ましい。それぞれの含有量は、より好ましくは、0.005%以上であり、更に好ましくは0.010%以上である。
<熱延板焼鈍工程>
 熱延板焼鈍工程(ステップS103)は、熱間圧延工程を経て製造された熱延鋼板を焼鈍して、熱延焼鈍鋼板とする工程である。このような焼鈍処理を施すことで、鋼板組織に再結晶が生じ、良好な磁気特性を実現することが可能となる。
 本実施形態に係る熱延板焼鈍工程では、公知の方法に従い、熱間圧延工程を経て製造された熱延鋼板を焼鈍して、熱延焼鈍鋼板とすればよい。焼鈍に際して熱延鋼板を加熱する手段については、特に限定されるものではなく、公知の加熱方式を採用することが可能である。また、焼鈍条件についても、特に限定されるものではないが、例えば、熱延鋼板に対して、900~1200℃の温度域で10秒~5分間の焼鈍を行うことができる。
 かかる熱延板焼鈍工程は、必要に応じて省略することが可能である。
 また、かかる熱延板焼鈍工程後、以下で詳述する冷間圧延工程の前に、熱延鋼板の表面に対して酸洗を施してもよい。
<冷間圧延工程>
 冷間圧延工程(ステップS105)は、熱延工程後の熱延鋼板または熱延板焼鈍後の熱延焼鈍鋼板に対して、一回又は中間焼鈍を挟む二回以上の冷間圧延を実施して、冷延鋼板とする工程である。また、上記のような熱延板焼鈍を施した場合、鋼板形状が良好になるため、1回目の圧延における鋼板破断の可能性を軽減することができる。また、冷間圧延は、3回以上に分けて実施してもよいが、製造コストが増大するため、1回又は2回とすることが好ましい。
 本実施形態に係る冷間圧延工程では、公知の方法に従い、熱延鋼板または熱延焼鈍鋼板を冷間圧延し、冷延鋼板とすればよい。例えば、最終圧下率は、80%以上95%以下の範囲内とすることができる。最終圧下率が80%未満である場合には、{110}<001>方位が圧延方向に高い集積度をもつGoss核を得ることができない可能性が高くなり、好ましくない。一方、最終圧下率が95%を超える場合には、後段の仕上げ焼鈍工程において、二次再結晶が不安定となる可能性が高くなるため、好ましくない。最終圧下率を上記範囲内とすることにより、{110}<001>方位が圧延方向に高い集積度をもつGoss核を得るとともに、二次再結晶の不安定化を抑制することができる。
 最終圧下率とは、冷間圧延の累積圧下率であり、中間焼鈍を行う場合には、中間焼鈍後の冷間圧延の累積圧下率である。
 また、中間焼鈍を挟む2回以上の冷間圧延を実施する場合、一回目の冷間圧延は、圧下率を5~50%程度とし、950℃~1200℃の温度で30秒~30分程度の中間焼鈍を実施することが好ましい。
 ここで、冷間圧延が施された冷延鋼板の板厚(冷延後の板厚)は、通常、最終的に製造される方向性電磁鋼板の板厚(張力付与性絶縁被膜の厚みを含めた製品板厚)と異なる。方向性電磁鋼板の製品板厚については、先だって言及した通りである。
 上記のような冷間圧延工程に際して、磁気特性をより一層向上させるために、エージング処理を与えることも可能である。冷間圧延が複数回のパスによって行われる場合、最終パスの前のいずれかの途中の段階において、鋼板に対し100℃以上の温度範囲で1分以上の時間保持する熱効果を与えることが好ましい。かかる熱効果により、後段の脱炭焼鈍工程において、より優れた一次再結晶集合組織を形成させることが可能となり、ひいては、後段の仕上げ焼鈍工程において、{110}<001>方位が圧延方向に揃った良好な二次再結晶組織を十分に発達させることが可能となる。
<脱炭焼鈍工程>
 脱炭焼鈍工程(ステップS107)は、得られた冷延鋼板に対して脱炭焼鈍を行って、脱炭焼鈍鋼板とする工程である。本実施形態に係る方向性電磁鋼板の製造方法では、かかる脱炭焼鈍工程において、所定の熱処理条件に則して焼鈍処理を施すことで、二次再結晶粒組織を制御する。
 本実施形態に係る脱炭焼鈍工程は、所望の二次再結晶粒組織を得るために、昇温工程と均熱工程という、2つの工程で構成される。
 脱炭焼鈍工程における昇温工程において、脱炭焼鈍温度に到達するまでの昇温速度は、一次再結晶集合組織変化を通じて、二次再結晶後のGoss方位集積度に影響を及ぼす。上記のような凹部101を有することを前提とした、グラス被膜を有していない方向性電磁鋼板においては、張力付与性絶縁被膜形成後、及び、磁区細分化処理後の磁気特性に及ぼす母材のGoss方位集積度の影響が大きく、脱炭焼鈍時の昇温速度を適切に制御することが好ましい。
 一次再結晶集合組織を改善するという観点から、500℃から700℃までの温度域における昇温速度は、300℃/秒以上とすることが好適である。ここで、500℃以上600℃未満の昇温過程における昇温速度S1と、600℃以上700℃以下の昇温過程における昇温速度S2とは、一次再結晶集合組織への影響と脱炭焼鈍時に形成される酸化膜への影響の観点から、好適範囲が異なる。500℃以上600℃未満の温度域は、一次再結晶集合組織のみならずMn系酸化物形成への影響を有しており、600℃以上700℃以下の温度域は、一次再結晶集合組織のみならずSiO形成への影響を有している。
 後述する焼鈍分離剤によってグラス被膜の形成を抑制する本実施形態において、グラス被膜の形成反応に影響を及ぼすSiOが形成される600℃以上700℃以下の温度域は、滞留時間を短くすることが好ましい。そこで、600℃以上700℃以下の昇温過程における昇温速度S2を1000℃/秒以上3000℃/秒以下とし、かつ、500℃以上600℃未満の昇温過程における昇温速度S1よりも高めることが好ましい。以上、一次再結晶集合組織を改善し、かつ、グラス被膜を有していない方向性電磁鋼板を得る、という観点から、昇温速度S1,S2は、下記式(101)~(103)で表される関係を満足することが好ましい。下記の式(101)~(103)で表される関係を満足することで、方向性電磁鋼板の磁気特性(鉄損)を更に向上させることが可能となる。
   300 ≦ S1 ≦ 1000   ・・・式(101)
  1000 ≦ S2 ≦ 3000   ・・・式(102)
  1.0 < S2/S1 ≦ 10.0 ・・・式(103)
 上記式(101)に関して、昇温速度S1が300℃/秒未満となる場合には、一次再結晶集合組織の変化に起因して磁気特性が劣化する可能性があるので、好ましくない。一方、昇温速度S1が1000℃/秒を超える場合には、母材鋼板11と張力付与性絶縁被膜13との密着性が十分ではない可能性があるので、好ましくない。500℃以上600℃未満の温度域における昇温速度S1は、より好ましくは350℃/秒以上900℃/秒以下である。
 上記式(102)に関して、昇温速度S2が1000℃/秒未満となる場合には、グラス被膜形成反応に影響を及ぼすSiOの形成を十分に抑制できない可能性があるので、好ましくない。一方、昇温速度S2が3000℃/秒を超える場合には、脱炭焼鈍温度のオーバーシュートが生じる可能性があるので、好ましくない。600℃以上700℃以下の温度域における昇温速度S2は、より好ましくは1200℃/秒以上2500℃/秒以下である。
 上記式(103)に関して、昇温速度の比S2/S1が1.0以下である場合には、磁気特性が劣化する可能性があるので、好ましくない。一方、昇温速度の比S2/S1が10.0を超える場合には、温度制御が困難となる可能性があるので、好ましくない。昇温速度の比S2/S1は、より好ましくは1.2以上9.0以下である。
 上記のような昇温速度のもとで、750℃以上950℃以下の脱炭焼鈍温度まで、冷延鋼板を加熱することが好ましい。
 かかる昇温工程における他の条件(例えば、昇温雰囲気等)については、特に限定されるものではなく、常法に従って周知の水素-窒素含有湿潤雰囲気中で冷延鋼板の昇温を行えばよい。
 上記のような昇温工程の後に、脱炭焼鈍温度を保持する均熱工程が実施される。上記のような昇温工程における各条件を満足していれば、均熱工程については特に限定されるものではなく、例えば、750℃以上950℃以下の範囲内である温度を、1分以上5分以下保持する工程とすればよい。また、均熱雰囲気についても、特に限定されるものではなく、常法に従って周知の水素-窒素含有湿潤雰囲気中で均熱工程を実施すればよい。
<仕上げ焼鈍工程>
 仕上げ焼鈍工程(ステップS109)は、脱炭焼鈍工程で得られた脱炭焼鈍鋼板に対して所定の焼鈍分離剤を塗布した後に、仕上げ焼鈍を施す工程である。ここで、仕上げ焼鈍は、一般に、鋼板をコイル状に巻いた状態において、長時間行われる。従って、仕上焼鈍に先立ち、コイルの巻きの内と外との焼付きの防止を目的として、焼鈍分離剤を脱炭焼鈍鋼板に塗布し、乾燥させる。本実施形態に係る方向性電磁鋼板の製造方法では、グラス被膜を形成しない焼鈍分離剤を用いることとする。
 上記のようなグラス被膜を形成しない焼鈍分離剤として、MgOとAlとを主成分(例えばMgOとAlとで85%以上含有)とし、質量比(MgO:Al)が、3:7~7:3の範囲内であり、かつ、ビスマス塩化物を、0.5~15質量%含有する焼鈍分離剤を用いる。このような質量比及びビスマス塩化物の含有量を有する焼鈍分離剤を用いることで、グラス被膜を有していない、平滑度の良好な母材鋼板を得ることができる。
 MgOの割合が上記範囲を超えて多い場合には、グラス被膜が鋼板表面に形成されて残存することで、平滑度の良好な母材鋼板を得ることができない。また、Alの割合が上記範囲を超えて多い場合には、Alの焼き付きが生じることで、平滑度の良好な母材鋼板を得ることができない。MgOとAlとの質量比(MgO:Al)は、好ましくは、3.5:6.5~6.5:3.5の範囲内である。
 また、ビスマス塩化物は、形成されるグラス被膜を剥離しやすくする効果があることから、ビスマス塩化物の含有量が、0.5質量%未満である場合には、グラス被膜が残存してしまう。一方、ビスマス塩化物の含有量が15質量%を超える場合には、焼鈍分離剤として鋼板と鋼板との焼付きを防ぐ機能が損なわれる。ビスマス塩化物の含有量は、好ましくは、3~7質量%である。
 ここで、ビスマス塩化物としては、例えば、オキシ塩化ビスマス(BiOCl)、三塩化ビスマス(BiCl)等を挙げることができるが、仕上げ焼鈍工程中に焼鈍分離剤中での反応からオキシ塩化ビスマスを形成することが可能な化合物種を用いてもよい。このような、オキシ塩化ビスマスを形成可能な化合物種として、例えば、ビスマス化合物と金属の塩素化合物との混合物を挙げることができる。上記のビスマス化合物としては、例えば、酸化ビスマス、水酸化ビスマス、硫化ビスマス、硫酸ビスマス、リン酸ビスマス、炭酸ビスマス、硝酸ビスマス、有機酸ビスマス、ハロゲン化ビスマス等を挙げることができ、金属の塩素化合物としては、例えば、塩化鉄、塩化コバルト、塩化ニッケル等を挙げることができる。
 上記のような焼鈍分離剤を、脱炭焼鈍後の鋼板表面に塗布及び乾燥させた後、仕上げ焼鈍を施す。本実施形態に係る仕上げ焼鈍工程の熱処理条件は、特に限定されるものではなく、例えば、1100℃以上1300℃以下の温度域で、10時間以上30時間以下保持すればよい。また、炉内雰囲気は、周知の窒素雰囲気又は窒素水素雰囲気とすればよい。仕上げ焼鈍後は、鋼板表面の余剰の焼鈍分離剤を水洗又は酸洗により除去することが好ましい。
<表面加工工程>
 表面加工工程(ステップS111)は、仕上げ焼鈍後の鋼板表面の板幅方向全体に対して、下記式(104)を満たす条件で、ウェットブラストにより表面加工を施す工程である。これにより、仕上げ焼鈍後の鋼板の表面に、先だって説明したような特徴的な分布を示す凹部101が形成される。
  0.15 ≦ (S×c×ρ)/(6×v×W) ≦ 3.00 ・・・式(104)
 ここで、上記式(104)において、
  S:ウェットブラストに用いるスラリーの流量(L/分)
  c:ウェットブラストに用いる研磨剤の濃度(体積%)
  ρ:ウェットブラストに用いる研磨剤の密度(kg/m
  v:スラリーが吐出されるノズルと鋼板との相対速度(mm/秒)
  W:スラリーが吐出されるノズルの幅(スラリー投射口の幅)(mm)
である。
 より詳細には、上記式(104)の条件を満足できる公知のウェットブラスト装置を準備した上で、表面加工ラインに対し、かかるウェットブラスト装置をウェットブラスト法の常法に則して設置して、仕上げ焼鈍後の鋼板に対して、ウェットブラスト処理を施せばよい。ここで、ウェットブラスト装置の設置条件等については、特に限定されるものではなく、また、スラリーが吐出されるノズルの個数についても、1個であってもよいし、複数個であってもよい。
 上記式(104)の中央の項で表される値は、単位面積当たりに投射される研磨材の量に相当する。中央の項で表される値が3.00を超える場合には、鋼板表面に過度な凹部101が形成されてしまい(深さが0.1μm以上2.0μm以下である凹部101の存在個数が、6.0個/100μmを超え)、方向性電磁鋼板の磁気特性が低下する。また、算術平均粗さRaが0.60μmを超え、磁気特区性が劣化する。一方、中央の項で表される値が0.15未満となる場合には、張力付与性絶縁被膜の密着性及び張力付与による鉄損低減効果が不十分となる。
 上記式(104)における変数vに関して、停止している鋼板に対して、ノズルが移動しながらスラリーを投射する形式の場合、変数vは、ノズルの移動速度に対応する。また、連続ライン上を搬送される鋼板に対して、固定配置されたノズルからスラリーが投射される形式の場合、変数vは、ライン速度に相当する。
 上記スラリーを構成する溶媒については、特に限定するものではないが、コストの観点から、例えば水を用いることが可能である。また、所望の凹部101が形成されることで張力付与性絶縁被膜の密着性及び鉄損低減効果が得られるため、ウェットブラストに用いる研磨材の種類は、特に限定されるものではないが、コストと得られる効果の観点から、例えば、中心粒径が40~60μmであるアルミナを用いることが好ましい。
<絶縁被膜形成工程>
 絶縁被膜形成工程(ステップS113)は、表面加工後の冷延鋼板の片面又は両面に対し、張力付与性絶縁被膜を形成する工程である。ここで、絶縁被膜形成工程については、特に限定されるものではなく、下記のような公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。鋼板表面に張力付与性絶縁被膜を形成することで、方向性電磁鋼板の磁気特性を更に向上させることが可能となる。
 絶縁被膜が形成される鋼板の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施された表面であってもよいし、これら前処理が施されない仕上焼鈍後のままの表面であってもよい。
 ここで、鋼板の表面に形成される絶縁被膜は、方向性電磁鋼板の絶縁被膜として用いられるものであれば、特に限定されるものではなく、公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、更に有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩又はコロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 また、上記のような絶縁被膜形成工程に続いて、形状矯正のための平坦化焼鈍を施しても良い。鋼板に対して平坦化焼鈍を行うことで、更に鉄損を低減させることが可能となる
 本実施形態に係る方向性電磁鋼板の製造方法では、仕上げ焼鈍工程、又は、絶縁被膜形成工程後に、磁区細分化処理を行ってもよい。磁区細分化処理は、方向性電磁鋼板の表面に、磁区細分化効果のあるレーザー光を照射したり、表面に溝を形成したりする処理である。かかる磁区細分化処理により、より一層磁気特性に優れる方向性電磁鋼板を製造することができる。
 以上説明したような工程を経ることで、本実施形態に係る方向性電磁鋼板を製造することができる。
 以上、本実施形態に係る方向性電磁鋼板の製造方法について、詳細に説明した。
 以下では、実施例及び比較例を示しながら、本発明の技術的内容について、更に説明する。以下に示す実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。また、本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(実験例1)
 C:0.082質量%、Si:3.30質量%、Mn:0.082質量%、S:0.023質量%、酸可溶性Al:0.025質量%、N:0.008質量%を含有し、残部がFe及び不純物からなる鋼スラブAと、C:0.081質量%、Si:3.30質量%、Mn:0.083質量%、S:0.022質量%、酸可溶性Al:0.025質量%、N:0.008質量、Bi:0.0025質量%を含有し、残部がFe及び不純物からなる鋼スラブBと、をそれぞれ1350℃に加熱し、熱間圧延を行って、厚さ2.3mmの熱延鋼板を得た。得られたそれぞれの熱延鋼板に対し、1100℃で120秒間の焼鈍を行った後、酸洗を実施した。酸洗後の熱延鋼板を、冷間圧延により0.23mmに仕上げ、冷延鋼板を得た。その後、得られた冷延鋼板に対し、脱炭焼鈍を実施した。かかる脱炭焼鈍では、各冷延鋼板を、500℃以上600℃未満の昇温過程における昇温速度S1を400℃/秒とし、600℃以上700℃以下の昇温過程における昇温速度S2を1100℃/秒(S2/S1=2.75)として加熱して、850℃で120秒間保持した。その後、MgOとAlの配合比が質量%で50%:50%(質量比1:1)であり、BiOClを5質量%含有する組成の焼鈍分離剤を塗布し及び乾燥させて、1200℃で20時間保持する仕上げ焼鈍に供した。
 得られた各鋼板の余剰の焼鈍分離剤を水洗にて除去したところ、いずれの鋼板においても、グラス被膜は形成されていなかった。また、余剰の焼鈍分離剤を水洗にて除去した後に化学分析を実施したところ、いずれの鋼板も、C含有量:0.001%以下、sol.Al含有量:0.005%以下、S含有量:0.005%以下、N含有量:0.005%以下であった。また、Si含有量が3.30%であり、Mn含有量が0.050~0.083%、Bi含有量が0~0.0025%であった。
 余剰の焼鈍分離剤を水洗にて除去した鋼板から試験片を切り出し、歪取り焼鈍を実施した後、水を溶媒として用いた中心粒径50μmのアルミナ砥粒をスラリーとし、ノズル移動速度v:200mm/秒、ノズル幅w:250mmの条件は固定した上で、スラリー流量と研磨材濃度とを変化させて、ウェットブラストにより鋼板両面に対してスラリーを投射した。以下に示す試験番号1-10~1-13、1-22~1-25、1-28、1-29は、投射を複数回実施することで、スラリー投射量を変化させた。また、試験番号1-26、1-27は、ウェットブラストを実施せずに、表面性状を平滑面とした。
 その後、各試験片について、リン酸アルミニウムとコロイダルシリカとを主成分とする水溶液を塗布し、850℃で1分間焼付けることで、試験片の表面に目付量4.5g/mの張力付与性絶縁被膜を形成させた。得られた試験片にレーザービームを照射し、磁区細分化処理を実施した。
<評価>
 得られた各試験片について、磁気特性、母材鋼板の表面形状、及び、張力付与性絶縁被膜の密着性の観点から、評価を行った。評価方法は、以下の通りである。
[磁気特性]
 JIS C 2556(2015)に規定された単板試験器による磁気特性の測定方法で、圧延方向の磁束密度B8(800A/mでの磁束密度)、鉄損W17/50(50Hzにおいて1.7Tに磁化したときの鉄損)をそれぞれ評価した。
[母材鋼板の表面形状]
 ウェットブラストにより母材鋼板の表面に形成される凹部について、表面粗さ計(小坂研究所製サーフコーダ)を用いて、ウェットブラスト後の圧延90°方向の算術平均粗さRaを測定した。また、ウェットブラスト後の鋼板の圧延90°方向断面を、走査型電子顕微鏡(JSM-IT300)にて観察し、深さ0.1μm以上2.0μm以下の凹部の個数を評価した。観察は、先だって説明したように、1000倍で3視野実施し、得られた測定結果から平均値を算出した。
[張力付与性絶縁被膜の密着性]
 張力付与性絶縁被膜の密着性は、圧延方向を長手方向として採取した試験片を用い、円筒型マンドレル屈曲試験機にて、曲げ径φ10及び曲げ径φ20での曲げ試験により評価した。評価は、曲げ試験後の試験片表面で、曲げ部の面積に対して剥離せずに残存する張力被膜の面積の比率(被膜残存率)を算出し、かかる被膜残存率に基づき判定を行った。判定基準は、以下の通りであり、評点A,Bを合格とした。
 評点A:被膜残存率90%以上
   B:被膜残存率70%以上90%未満
   C:被膜残存率70%未満
 得られた結果を、以下の表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、ウェットブラスト条件が本発明の範囲内となる試験番号1-1~1-7、1-14~1-20では、母材鋼板の表面形状が本発明の範囲内となり、磁気特性及び被膜密着性の双方が良好な結果を示した。また、試験番号1-1~1-7、1-14~1-20を比較すると、鋼スラブが好ましい化学組成を有する試験番号1-14~1-20の方が、優れた磁気特性を有していた。
 これに対し、試験番号1-8~1-13、1-21~1-25、1-28、1-29の比較例は、ウェットブラスト条件が本発明の範囲外となっており、母材鋼板の表面形状についても、本発明の範囲外となって、特に磁気特性に劣っていた。試験番号1-26、1-27は、ウェットブラストを実施していないために、張力付与性絶縁被膜の密着性に劣っており、曲げ部のみならず、曲げ部以外の平坦部でも、被膜焼付直後で既に被膜剥離が生じた。また、鋼A、Bを用いた発明例と比較して、鉄損に劣っていた。
(実験例2)
 以下の表2に示す鋼スラブを1380℃に加熱し、熱間圧延を行って、厚さ2.3mmの熱延鋼板を得た。一部の鋼は割れが発生したため、次工程へ進めることができなかった。次工程へ進めることができた熱延鋼板には、1120℃で20秒間の焼鈍を行った後、酸洗を実施した。ただし、試験番号2-2については、熱延鋼板への焼鈍を行うことなく、酸洗を実施した。酸洗後の鋼板を、冷間圧延により0.23mmに仕上げ、冷延鋼板を得た。一部の鋼は冷間圧延時に割れが発生したため、次工程へ進めることができなかった。次工程へ進めることができた冷延鋼板に対し、脱炭焼鈍を実施した。かかる脱炭焼鈍では、各冷延鋼板を、500℃以上600℃未満の昇温過程における昇温速度S1を900℃/秒とし、600℃以上700℃以下の昇温過程における昇温速度S2を1600℃/秒(S2/S1=1.78)として加熱して、850℃で150秒間保持した。その後、MgOとAlと塩化物とからなり、MgOとAlの配合比が質量%で50%:50%(質量比1:1)であり、BiOClを6質量%含有する組成の焼鈍分離剤を、塗布して乾燥させた。その後、脱炭焼鈍鋼板を1200℃で20時間保持する仕上げ焼鈍に供した。
 得られた鋼板の余剰の焼鈍分離剤を水洗にて除去したところ、いずれの鋼板においても、グラス被膜は形成されていなかった。また、余剰の焼鈍分離剤を水洗にて除去した後に化学分析を実施したところ、いずれの鋼板も、C含有量:0.001%以下、sol.Al含有量:0.005%以下、S+Se含有量:0.005%以下、N含有量:0.005%以下であった。また、Si含有量はスラブの段階と同じであり、Mn含有量は、0.050~1.000%、Bi+Te+Pb(合計含有量)は0~0.0300%であった。また、Sb、Sn、Crの含有量は0~0.04%、Cuの含有量は0~0.05%であった。
 余剰の焼鈍分離剤を水洗にて除去した鋼板から試験片を切り出し、歪取り焼鈍を実施した後、水を溶媒として用いた中心粒径50μmのアルミナ砥粒をスラリーとし、ノズル移動速度v:200mm/秒、ノズル幅w:250mm、スラリー流量S:15l/min、研磨材濃度c:1体積%((S×c×ρ)/(6×v×W))=0.20)に条件を固定して、ウェットブラストにより鋼板両面に対してスラリーを投射した。以下に示す試験番号2-24は、ウェットブラストを実施せず、表面状態を平滑面とした。その後、リン酸アルミニウムとコロイダルシリカを主成分とする水溶液を塗布し、850℃で1分間焼付けることで、試験片の表面に目付量4.5g/mの張力付与性絶縁被膜を形成させた。
Figure JPOXMLDOC01-appb-T000002
 得られた各試験片について、磁気特性、母材鋼板の表面形状、及び、張力付与性絶縁被膜の密着性の評価を行った。母材鋼板の表面形状、及び、張力付与性絶縁被膜の密着性の評価方法は、実験例1と同様とした。また、磁気特性については、以下のように評価を行った。得られた結果を、以下の表3にまとめて示した。
[磁気特性]
 JIS C 2556(2015)に規定された単板試験器による磁気特性の測定方法で、圧延方向の磁気特性を評価した。評価に際しては、磁束密度B8(800A/mでの磁束密度)を測定し、1.90T超の値が得られた条件を良好な二次再結晶が発現していると判断して、試験片にレーザービームを照射し、磁区細分化処理を実施した。その後、レーザ照射後の鉄損W17/50(50Hzにおいて1.7Tに磁化したときの鉄損)を評価した。
Figure JPOXMLDOC01-appb-T000003
 上記表3から明らかなように、試験番号2-12は、Si含有量が本発明の上限値を超えているために、冷間圧延時に破断した。試験番号2-13は、Si含有量が本発明の下限値を下回っているために、磁気特性に劣っていた。試験番号2-14は、C含有量が本発明の下限値を下回っており、試験番号2-15は、C含有量が本発明の上限値を超えており、いずれも磁気特性に劣っていた。試験番号2-16は、酸可溶性Al含有量が本発明の下限値を下回っており、磁気特性に劣っていた。試験番号2-17は、酸可溶性Al含有量が本発明の上限値を超えており、冷間圧延時に破断した。試験番号2-18は、Mn含有量が本発明の下限値を下回っており、試験番号2-19は、Mn含有量が本発明の上限値を超えており、いずれも磁気特性に劣っていた。試験番号2-20は、S+Seの合計含有量が本発明の下限値を下回っており、磁気特性に劣っていた。試験番号2-21は、S+Seの合計含有量が本発明の上限値を超えており、熱間圧延時に割れを生じた。試験番号2-22は、N含有量が本発明の上限値を超えており、冷間圧延時に割れを生じた。試験番号2-23は、N含有量が本発明の下限値を下回っており、磁気特性に劣っていた。試験番号2-24は、ウェットブラストを実施していないため被膜密着性に劣っており、曲げ部のみならず、曲げ部以外の平坦部でも被膜焼付直後で既に被膜剥離が生じた。また、レーザ照射を実施した他の試験番号(2-1~2-11)と比較して、鉄損に劣っていた。
 これに対し、化学組成が本発明の範囲内である試験番号2-1~2-11および2-25~2-29は、母材鋼板の表面形状が本発明の範囲内となり、磁気特性及び被膜密着性の双方が良好な結果を示した。また、鋼スラブが好ましい化学組成を有する試験番号2-3~2-11および2-25~2-29の方が、試験番号2-1と比較して、優れた磁気特性を有していた。
(実験例3)
 以下の表4に示す鋼スラブを1380℃に加熱し、熱間圧延を行って、厚さ2.3mmの熱延鋼板を得た。その後、熱延鋼板に対し、1120℃×120秒間の焼鈍を行った後、酸洗を実施した。酸洗後の鋼板を、冷間圧延により0.23mmに仕上げ、冷延鋼板を得た。その後、得られた冷延鋼板に対して、脱炭焼鈍を実施した。その際、500℃以上600℃未満の昇温過程における昇温速度S1(℃/秒)、600℃以上700℃以下の昇温過程における昇温速度S2(℃/秒)をそれぞれ変化させて加熱して、850℃で150秒間保持した。その後、焼鈍分離剤を塗布乾燥させ、1200℃で20時間保持する仕上げ焼鈍に供した。焼鈍分離剤は、以下に示す5種類とした。
 (A)MgOとAlの配合比を質量%で50%:50%とし、BiOCl:5質量%を含有させた焼鈍分離剤
 (B)MgOとAlの配合比を質量%で80%:20%とし、BiOCl:5質量%を含有させた焼鈍分離剤
 (C)MgOとAlの配合比を質量%で20%:80%とし、BiOCl:5質量%を含有させた焼鈍分離剤
 (D)MgOとAlの配合比を質量%で80%:20%とし、BiOClを含有させない焼鈍分離剤
 (E)MgOとAlの配合比を質量%で20%:80%とし、BiOClを含有させない焼鈍分離剤
 得られた鋼板の余剰の焼鈍分離剤を水洗にて除去したところ、焼鈍分離剤Aを用いた鋼板にはグラス被膜は形成されていなかった。焼鈍分離剤B、C、D、Eを用いた鋼板は、表面に形成されたグラス被膜、あるいは表面に焼きついたアルミナに起因して、平滑な表面を有していなかった。焼鈍分離剤Aを用いた鋼板について、余剰の焼鈍分離剤を水洗にて除去した後に化学分析を実施したところ、いずれの鋼板についても、C含有量:0.001%以下、sol.Al含有量:0.005%以下、S含有量:0.005%以下、N含有量:0.005%以下であった。Si含有量はスラブの段階と同じであり、Mn含有量は0.050~0.082%、Bi+Te+Pb(合計含有量)は0~0.0300%であった。
 余剰の焼鈍分離剤を水洗にて除去した鋼板から試験片を切り出し、歪取り焼鈍を実施した後、水を溶媒として用いた中心粒径50μmのアルミナ砥粒をスラリーとし、ノズル移動速度v:200mm/秒、ノズル幅w:250mmを固定した上で、スラリー流量Sと研磨材濃度cを変化させて、ウェットブラストにより鋼板両面に対しスラリーを投射した。以下に示す試験番号3-17は、ウェットブラストを実施せず、表面性状を平滑面とした。その後、リン酸アルミニウムとコロイダルシリカを主成分とする水溶液を塗布し、850℃で1分間焼付けることで、試験片の表面に目付量4.5g/mの張力付与性絶縁被膜を形成させた。得られた試験片にレーザービームを照射し、磁区細分化処理を実施した。
Figure JPOXMLDOC01-appb-T000004
 得られた各試験片について、磁気特性、母材鋼板の表面形状、及び、張力付与性絶縁被膜の密着性の観点から、評価を行った。評価方法は、実験例1と同様とした。得られた結果を、以下の表5にまとめて示した。
Figure JPOXMLDOC01-appb-T000005
 焼鈍分離剤が本発明の範囲外である試験番号3-13~3-16は、表面に形成されたグラス被膜、あるいは、表面に焼きついたアルミナに起因して、平滑な表面を有していなかった。グラス被膜又はアルミナの除去のためには、ウェットブラストでの投射量を増加する必要があったが、ウェットブラスト条件が本発明の範囲外となるために、母材鋼板の表面形状が本発明の範囲外となり、磁気特性に劣っていた。試験番号3-17、3-18は、焼鈍分離剤が本発明の範囲内であり、上記水洗後に表面にグラス被膜が形成されておらず、平滑な表面を有していた。試験番号3-17では、ウェットブラストを実施していないため、被膜密着性に劣っており、曲げ部のみならず、曲げ部以外の平坦部でも被膜焼付直後で既に被膜剥離が生じた。試験番号3-18では、ウェットブラスト条件が本発明の上限値を上回っており、表面形状が本発明の範囲内とならず、磁気特性に劣っていた。試験番号3-19では、脱炭焼鈍時の条件が本発明のより好ましい範囲外となっており、他の実施例と比較して、磁気特性がわずかに劣っていた。試験番号3-20では、ウェットブラスト条件が下限値を下回っており、被膜密着性に劣っていた。
 これに対し、焼鈍分離剤が本発明の範囲内である試験番号3-1~3-12では、上記水洗後に表面にグラス被膜が形成されておらず、平滑な表面を有していた。更に、ウェットブラスト条件が本発明の範囲内であったため、母材鋼板の表面形状が本発明の範囲内となって、優れた磁気特性と被膜密着性とを示した。試験番号3-1~3-3、3-4~3-7、3-8~3-12を比較すると、鋼スラブが好ましい化学組成を有する試験番号3-4~3-12の方が、優れた磁気特性を有しており、脱炭焼鈍時の500℃以上600℃未満の昇温過程における昇温速度S1(℃/秒)、600℃以上700℃以下の昇温過程における昇温速度S2(℃/秒)が本発明の好ましい範囲を満足する試験番号3-6~12の方が、更に優れた磁気特性を有していた。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
  10  方向性電磁鋼板
  11  母材鋼板
  13  張力付与性絶縁被膜
 101  凹部

Claims (5)

  1.  質量%で、
     C:0.010%以下、
     Si:2.50~4.00%、
     Mn:0.050~1.000%、
     S+Se:合計で0.005%以下、
     Sol.Al:0.005%以下、
     N:0.005%以下、
     Bi+Te+Pb:合計で0~0.0300%、
     Sb:0~0.50%、
     Sn:0~0.50%、
     Cr:0~0.50%、
     Cu:0~1.0%
    を含有し、残部がFe及び不純物からなる化学組成を有する母材鋼板と、
     前記母材鋼板の表面上に設けられた張力付与性絶縁被膜と、
    を備え、
     前記母材鋼板の前記表面において、圧延方向に対して直角な方向である圧延90°方向に沿った算術平均粗さRaが、0.60μm以下であり、
     前記圧延90°方向に沿って前記母材鋼板の断面を観察したときに、前記母材鋼板の前記表面に深さ0.1μm以上2.0μm以下の凹部が、1.0個/100μm以上、6.0個/100μm以下存在する、
    方向性電磁鋼板。
  2.  前記母材鋼板は、前記化学組成として、
     Bi+Te+Pb:合計で0.0005~0.0300%、
    を含有する、請求項1に記載の方向性電磁鋼板。
  3.  質量%で、C:0.020~0.100%、Si:2.50~4.00%、Mn:0.050~1.000%、S+Se:合計で0.005~0.080%、Sol.Al:0.010~0.070%、N:0.005~0.020%、Bi+Te+Pb:合計で0~0.0300%、Sb:0~0.50%、Sn:0~0.50%、Cr:0~0.50%、Cu:0~1.0%を含有し、残部がFe及び不純物からなる鋼片を加熱した後に熱間圧延し、熱延鋼板を得る熱間圧延工程と、
     任意に、前記熱延鋼板を焼鈍して、熱延焼鈍鋼板を得る熱延板焼鈍工程と、
     前記熱延鋼板または前記熱延焼鈍鋼板に対し、一回の冷間圧延、又は、中間焼鈍をはさむ複数の冷間圧延を施して、冷延鋼板を得る冷間圧延工程と、
     前記冷延鋼板に対して脱炭焼鈍を施して、脱炭焼鈍鋼板を得る脱炭焼鈍工程と、
     前記脱炭焼鈍鋼板に対して焼鈍分離剤を塗布した後に、仕上げ焼鈍を施す仕上げ焼鈍工程と、
     前記仕上げ焼鈍工程後の鋼板表面の板幅方向全体に対して、下記式(1)を満たす条件でウェットブラストにより表面加工を施す表面加工工程と、
     前記表面加工工程後の前記鋼板表面に張力付与性絶縁被膜を形成する絶縁被膜形成工程と、
    を含み、
     前記焼鈍分離剤は、MgOとAlとを主成分とし、前記MgOと前記Alとの質量比であるMgO:Alが3:7~7:3の範囲内であり、かつ、ビスマス塩化物を0.5~15質量%含有する、
     方向性電磁鋼板の製造方法。
      0.15 ≦ (S×c×ρ)/(6×v×W) ≦ 3.00 ・・・式(1)
     ここで、上記式(1)において、
      S:前記ウェットブラストに用いるスラリーの流量(L/分)
      c:前記ウェットブラストに用いる研磨剤の濃度(体積%)
      ρ:前記ウェットブラストに用いる前記研磨剤の密度(kg/m
      v:前記スラリーが吐出されるノズルと鋼板との相対速度(mm/秒)
      W:前記スラリーが吐出される前記ノズルの幅(mm)
    である。
  4.  前記脱炭焼鈍工程では、500℃以上600℃未満の温度域における昇温速度S1と、600℃以上700℃以下の温度域における昇温速度S2と、が、以下の式(2)~式(4)をそれぞれ満足する、
    請求項3に記載の方向性電磁鋼板の製造方法。
       300 ≦ S1 ≦ 1000   ・・・式(2)
      1000 ≦ S2 ≦ 3000   ・・・式(3)
      1.0 < S2/S1 ≦ 10.0 ・・・式(4)
  5.  前記鋼片は、前記化学組成として、
     Bi+Te+Pb:合計で0.0005~0.0300%、
    を含有する、請求項3又は4に記載の方向性電磁鋼板の製造方法。
PCT/JP2019/012252 2018-03-22 2019-03-22 方向性電磁鋼板及び方向性電磁鋼板の製造方法 WO2019182149A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980019589.0A CN111902555A (zh) 2018-03-22 2019-03-22 方向性电磁钢板及方向性电磁钢板的制造方法
US16/981,585 US11441215B2 (en) 2018-03-22 2019-03-22 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR1020207026998A KR102464102B1 (ko) 2018-03-22 2019-03-22 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
JP2020507955A JP7052864B2 (ja) 2018-03-22 2019-03-22 方向性電磁鋼板及び方向性電磁鋼板の製造方法
BR112020017924-8A BR112020017924B1 (pt) 2018-03-22 2019-03-22 Chapa de aço elétrico de grão orientado e método de produção para chapa de aço elétrico de grão orientado
RU2020131077A RU2759812C1 (ru) 2018-03-22 2019-03-22 Лист анизотропной электротехнической стали и способ его производства
EP19770854.8A EP3770290B1 (en) 2018-03-22 2019-03-22 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054675 2018-03-22
JP2018-054675 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182149A1 true WO2019182149A1 (ja) 2019-09-26

Family

ID=67986510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012252 WO2019182149A1 (ja) 2018-03-22 2019-03-22 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US11441215B2 (ja)
EP (1) EP3770290B1 (ja)
JP (1) JP7052864B2 (ja)
KR (1) KR102464102B1 (ja)
CN (1) CN111902555A (ja)
BR (1) BR112020017924B1 (ja)
RU (1) RU2759812C1 (ja)
WO (1) WO2019182149A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115605624A (zh) * 2020-06-09 2023-01-13 杰富意钢铁株式会社(Jp) 方向性电磁钢板
WO2024075621A1 (ja) * 2022-10-03 2024-04-11 日本製鉄株式会社 積鉄心および積鉄心の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946113B2 (en) 2019-01-16 2024-04-02 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311453A (ja) 1992-05-08 1993-11-22 Nippon Steel Corp 超低鉄損一方向性電磁鋼板の製造方法
JPH06116642A (ja) * 1992-10-06 1994-04-26 Nippon Steel Corp 方向性電磁鋼板の微細疵付与方法
JP2000038618A (ja) * 1998-07-23 2000-02-08 Nippon Steel Corp 磁気特性が良好な一方向性電磁鋼板の製造方法
JP2000038615A (ja) * 1998-07-21 2000-02-08 Nippon Steel Corp 鏡面方向性電磁鋼板の製造方法
JP2001303215A (ja) 2000-04-25 2001-10-31 Kawasaki Steel Corp 低鉄損方向性電磁鋼板およびその製造方法
JP2002249880A (ja) 2001-02-22 2002-09-06 Nippon Steel Corp 方向性電磁鋼板の絶縁被膜形成方法
JP2003313644A (ja) 2002-04-25 2003-11-06 Nippon Steel Corp 張力付与性絶縁皮膜の鋼板密着性に優れる一方向性珪素鋼板とその製造方法
JP2018003049A (ja) * 2016-06-28 2018-01-11 新日鐵住金株式会社 占積率に優れる電磁鋼板およびその製造方法
JP2018054675A (ja) 2016-09-26 2018-04-05 株式会社ジャパンディスプレイ 表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004929A1 (en) 1985-02-22 1986-08-28 Kawasaki Steel Corporation Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
DE3666229D1 (en) * 1985-02-22 1989-11-16 Kawasaki Steel Co Extra-low iron loss grain oriented silicon steel sheets
JPS621820A (ja) 1985-02-22 1987-01-07 Kawasaki Steel Corp 熱安定性、超低鉄損一方向性けい素鋼板の製造方法
CN1039915C (zh) * 1989-07-05 1998-09-23 新日本制铁株式会社 方向性电磁钢板上的绝缘皮膜成型方法
JPH03119038A (ja) * 1989-09-29 1991-05-21 Sumitomo Chem Co Ltd 着色プリプレグ及び着色繊維強化樹脂成形体
DE69326792T2 (de) 1992-04-07 2000-04-27 Nippon Steel Corp Kornorientiertes Siliziumstahlblech mit geringen Eisenverlusten und Herstellungsverfahren
JPH06336660A (ja) * 1993-05-28 1994-12-06 Kawasaki Steel Corp 磁気特性に優れた無方向性電磁鋼板
KR19990088437A (ko) 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
JP3482374B2 (ja) 1999-09-14 2003-12-22 新日本製鐵株式会社 被膜特性に優れた方向性電磁鋼板およびその製造方法
KR100837129B1 (ko) * 2001-01-19 2008-06-11 제이에프이 스틸 가부시키가이샤 포스테라이트를 주체로 하는 하지피막을 갖지 않는,자기특성이 양호한 방향성 전자강판과 그 제조방법
JP4569070B2 (ja) * 2003-03-13 2010-10-27 Jfeスチール株式会社 方向性電磁鋼板の仕上焼鈍方法
JP5104128B2 (ja) * 2007-08-30 2012-12-19 Jfeスチール株式会社 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
US10062483B2 (en) * 2011-12-28 2018-08-28 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
IN2014MN01830A (ja) * 2012-03-29 2015-07-03 Jfe Steel Corp
KR101683693B1 (ko) * 2013-02-27 2016-12-07 제이에프이 스틸 가부시키가이샤 방향성 전자 강판의 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311453A (ja) 1992-05-08 1993-11-22 Nippon Steel Corp 超低鉄損一方向性電磁鋼板の製造方法
JPH06116642A (ja) * 1992-10-06 1994-04-26 Nippon Steel Corp 方向性電磁鋼板の微細疵付与方法
JP2000038615A (ja) * 1998-07-21 2000-02-08 Nippon Steel Corp 鏡面方向性電磁鋼板の製造方法
JP2000038618A (ja) * 1998-07-23 2000-02-08 Nippon Steel Corp 磁気特性が良好な一方向性電磁鋼板の製造方法
JP2001303215A (ja) 2000-04-25 2001-10-31 Kawasaki Steel Corp 低鉄損方向性電磁鋼板およびその製造方法
JP2002249880A (ja) 2001-02-22 2002-09-06 Nippon Steel Corp 方向性電磁鋼板の絶縁被膜形成方法
JP2003313644A (ja) 2002-04-25 2003-11-06 Nippon Steel Corp 張力付与性絶縁皮膜の鋼板密着性に優れる一方向性珪素鋼板とその製造方法
JP2018003049A (ja) * 2016-06-28 2018-01-11 新日鐵住金株式会社 占積率に優れる電磁鋼板およびその製造方法
JP2018054675A (ja) 2016-09-26 2018-04-05 株式会社ジャパンディスプレイ 表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115605624A (zh) * 2020-06-09 2023-01-13 杰富意钢铁株式会社(Jp) 方向性电磁钢板
CN115605624B (zh) * 2020-06-09 2024-01-30 杰富意钢铁株式会社 方向性电磁钢板
US11990261B2 (en) 2020-06-09 2024-05-21 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2024075621A1 (ja) * 2022-10-03 2024-04-11 日本製鉄株式会社 積鉄心および積鉄心の製造方法

Also Published As

Publication number Publication date
BR112020017924A2 (pt) 2020-12-22
JP7052864B2 (ja) 2022-04-12
KR20200120736A (ko) 2020-10-21
CN111902555A (zh) 2020-11-06
US11441215B2 (en) 2022-09-13
EP3770290A4 (en) 2021-09-01
EP3770290B1 (en) 2024-04-24
US20210054489A1 (en) 2021-02-25
KR102464102B1 (ko) 2022-11-09
JPWO2019182149A1 (ja) 2021-03-11
EP3770290A1 (en) 2021-01-27
RU2759812C1 (ru) 2021-11-18
BR112020017924B1 (pt) 2024-01-02

Similar Documents

Publication Publication Date Title
KR102572634B1 (ko) 방향성 전자 강판, 방향성 전자 강판의 절연 피막 형성 방법 및 방향성 전자 강판의 제조 방법
WO2019182149A1 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
WO2020149321A1 (ja) 方向性電磁鋼板の製造方法
WO2019013351A1 (ja) 方向性電磁鋼板及びその製造方法
WO2020149351A1 (ja) 方向性電磁鋼板の製造方法
JP7269505B2 (ja) 方向性電磁鋼板の製造方法
JP2018154881A (ja) 方向性電磁鋼板の製造方法
JP3979004B2 (ja) 方向性電磁鋼板の絶縁被膜形成方法
RU2771130C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
JP7299512B2 (ja) 方向性電磁鋼板の製造方法
JP2022060749A (ja) 方向性電磁鋼板の製造方法
CN113166875A (zh) 电工钢板及其制造方法
KR102561510B1 (ko) 방향성 전자 강판, 방향성 전자 강판의 절연 피막 형성 방법, 및 방향성 전자 강판의 제조 방법
JP7151792B2 (ja) 方向性電磁鋼板の製造方法
RU2768905C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2768932C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
JP7269504B2 (ja) 方向性電磁鋼板の製造方法
WO2024111638A1 (ja) 方向性電磁鋼板及びその製造方法
WO2024111612A1 (ja) 方向性電磁鋼板
WO2023112421A1 (ja) 方向性電磁鋼板およびその製造方法
JP2019178378A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020507955

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20207026998

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020017924

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019770854

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019770854

Country of ref document: EP

Effective date: 20201022

ENP Entry into the national phase

Ref document number: 112020017924

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200902