WO2019181874A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2019181874A1
WO2019181874A1 PCT/JP2019/011248 JP2019011248W WO2019181874A1 WO 2019181874 A1 WO2019181874 A1 WO 2019181874A1 JP 2019011248 W JP2019011248 W JP 2019011248W WO 2019181874 A1 WO2019181874 A1 WO 2019181874A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavator
controller
movable range
detection
control device
Prior art date
Application number
PCT/JP2019/011248
Other languages
English (en)
French (fr)
Inventor
春男 呉
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to EP19771571.7A priority Critical patent/EP3770334B1/en
Priority to KR1020207028048A priority patent/KR102588568B1/ko
Priority to CN201980021340.3A priority patent/CN111902582B/zh
Priority to JP2020507801A priority patent/JPWO2019181874A1/ja
Publication of WO2019181874A1 publication Critical patent/WO2019181874A1/ja
Priority to US17/025,234 priority patent/US20210002859A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This disclosure relates to excavators.
  • An excavator is provided in a lower traveling body, an upper swinging body that is pivotably mounted on the lower traveling body, an object detection device provided in the upper swinging body, and the upper swinging body.
  • a control device and a driven body moved by an actuator wherein the object detection device is configured to detect an object in a detection space set around a shovel, and the control device includes the object Based on the state of the object detected by the detection device, a movable range that is a range in which the driven body can enter is changed.
  • the above-described means provides an excavator that can work efficiently while avoiding collisions with other objects working nearby.
  • FIGS. 1A and 1B are diagrams illustrating a configuration example of the excavator 100.
  • FIG. 1A is a side view of the excavator 100
  • FIG. 1B is a top view of the excavator 100.
  • the lower traveling body 1 of the excavator 100 includes a crawler 1C as a driven body.
  • the crawler 1 ⁇ / b> C is driven by a traveling hydraulic motor 2 ⁇ / b> M mounted on the lower traveling body 1.
  • the traveling hydraulic motor 2M may be a traveling motor generator as an electric actuator.
  • the crawler 1C includes a left crawler 1CL and a right crawler 1CR.
  • the left crawler 1CL is driven by a left traveling hydraulic motor 2ML
  • the right crawler 1CR is driven by a right traveling hydraulic motor 2MR. Since the lower traveling body 1 is driven by the crawler 1C, it functions as a driven body.
  • the upper traveling body 3 is mounted on the lower traveling body 1 through a turning mechanism 2 so as to be capable of turning.
  • the turning mechanism 2 as a driven body is driven by a turning hydraulic motor 2A mounted on the upper turning body 3.
  • the turning hydraulic motor 2A may be a turning motor generator as an electric actuator. Since the upper swing body 3 is driven by the swing mechanism 2, it functions as a driven body.
  • a boom 4 as a driven body is attached to the upper swing body 3.
  • An arm 5 as a driven body is attached to the tip of the boom 4, and a driven body and a bucket 6 as an end attachment are attached to the tip of the arm 5.
  • the boom 4, the arm 5, and the bucket 6 constitute an excavation attachment that is an example of an attachment.
  • the boom 4 is driven by a boom cylinder 7, the arm 5 is driven by an arm cylinder 8, and the bucket 6 is driven by a bucket cylinder 9. Since the excavation attachment is driven by the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9, it functions as a driven body.
  • the boom angle sensor S1 is attached to the boom 4, the arm angle sensor S2 is attached to the arm 5, and the bucket angle sensor S3 is attached to the bucket 6.
  • the boom angle sensor S1 is configured to detect the rotation angle of the boom 4.
  • the boom angle sensor S ⁇ b> 1 is an acceleration sensor and can detect a boom angle that is a rotation angle of the boom 4 with respect to the upper swing body 3.
  • the boom angle is, for example, the minimum angle when the boom 4 is lowered to the minimum, and increases as the boom 4 is raised.
  • the arm angle sensor S2 is configured to detect the rotation angle of the arm 5.
  • the arm angle sensor S ⁇ b> 2 is an acceleration sensor and can detect an arm angle that is a rotation angle of the arm 5 with respect to the boom 4.
  • the arm angle is, for example, the minimum angle when the arm 5 is most closed, and increases as the arm 5 is opened.
  • the bucket angle sensor S3 is configured to detect the rotation angle of the bucket 6.
  • the bucket angle sensor S ⁇ b> 3 is an acceleration sensor, and can detect a bucket angle that is a rotation angle of the bucket 6 with respect to the arm 5.
  • the bucket angle is, for example, the minimum angle when the bucket 6 is most closed, and increases as the bucket 6 is opened.
  • the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are a potentiometer that uses a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotary that detects the rotation angle around the connecting pin.
  • An encoder, a gyro sensor, or a combination of an acceleration sensor and a gyro sensor may be used.
  • the upper swing body 3 is provided with a cabin 10 as a cab and a power source such as an engine 11 is mounted. Further, the controller 30, the object detection device 70, the orientation detection device 85, the body tilt sensor S 4, the turning angular velocity sensor S 5, and the like are attached to the upper swing body 3. An operation device 26 and the like are provided inside the cabin 10.
  • the side of the upper swing body 3 where the boom 4 is attached is referred to as the front, and the side where the counterweight is attached is referred to as the rear.
  • the controller 30 is a control device for controlling the excavator 100.
  • the controller 30 is configured by a computer including a CPU, RAM, NVRAM, ROM, and the like. Then, the controller 30 reads a program corresponding to each function from the ROM, loads it into the RAM, and causes the CPU to execute a corresponding process.
  • the object detection device 70 is configured to detect an object existing around the excavator 100.
  • the object detection device 70 is configured to calculate the distance from the object detection device 70 or the excavator 100 to the detected object.
  • the object is, for example, a person, an animal, a vehicle, a construction machine, a building, a fence, or a hole.
  • the object detection device 70 is, for example, a monocular camera, an ultrasonic sensor, a millimeter wave radar, a laser radar, a stereo camera, a LIDAR, a distance image sensor, or an infrared sensor.
  • the object detection device 70 includes a plurality of distance image sensors, and includes a front sensor 70F attached to the front upper end of the cabin 10, a rear sensor 70B attached to the upper rear end of the upper swing body 3, and an upper part. It includes a left sensor 70L attached to the upper left end of the revolving unit 3 and a right sensor 70R attached to the upper right end of the upper revolving unit 3.
  • the controller 30 may be configured to detect a predetermined object in a predetermined area set around the excavator 100 based on the output of the object detection device 70.
  • the predetermined object is a movable body such as another excavator, for example.
  • the controller 30 may be configured to distinguish an object other than an excavator, such as a stationary object such as a fence, from the excavator.
  • the controller 30 since the controller 30 recognizes the shovel as a movable body that performs a predetermined movement, the operation trajectory of the shovel can be easily estimated.
  • the predetermined movement is, for example, turning of the upper turning body 3 around the turning axis, turning of the boom 4 around the boom turning axis, or forward / backward movement in the extending direction of the crawler 1C.
  • the orientation detection device 85 is configured to detect information related to the relative relationship between the orientation of the upper swing body 3 and the orientation of the lower traveling body 1 (hereinafter referred to as “information about orientation”).
  • the orientation detection device 85 may be configured by a combination of a geomagnetic sensor attached to the lower traveling body 1 and a geomagnetic sensor attached to the upper swing body 3.
  • the orientation detection device 85 may be configured by a combination of a GNSS receiver attached to the lower traveling body 1 and a GNSS receiver attached to the upper swing body 3.
  • the direction detection device 85 may include a resolver.
  • the machine body inclination sensor S4 is configured to detect the inclination of the upper swing body 3 with respect to a predetermined plane.
  • the body inclination sensor S4 is an acceleration sensor that detects an inclination angle (roll angle) about the front-rear axis and an inclination angle (pitch angle) about the left-right axis with respect to the horizontal plane.
  • the front and rear axes and the left and right axes of the upper swing body 3 pass through a shovel center point that is one point on the swing axis of the shovel 100 and orthogonal to each other.
  • Airframe tilt sensor S4 may be a combination of an acceleration sensor and a gyro sensor.
  • the turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper turning body 3.
  • the turning angular velocity sensor S5 is a gyro sensor.
  • the turning angular velocity sensor S5 may be a resolver or a rotary encoder.
  • the turning angular velocity sensor S5 may detect the turning speed.
  • the turning speed may be calculated from the turning angular speed.
  • attitude sensor an arbitrary combination of the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the body tilt sensor S4, and the turning angular velocity sensor S5 is collectively referred to as an attitude sensor.
  • the attitude sensor is configured to acquire information regarding the attitude of the excavator 100.
  • FIG. 2 is a diagram illustrating a configuration example of a hydraulic system mounted on the excavator 100.
  • FIG. 2 shows a mechanical power transmission line, a hydraulic oil line, a pilot line, and an electric control line by a double line, a solid line, a broken line, and a dotted line, respectively.
  • the hydraulic system of the excavator 100 mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve 17, an operating device 26, a discharge pressure sensor 28, an operating pressure sensor 29, a controller 30, a control valve 60, and the like. including.
  • the hydraulic system circulates hydraulic oil from the main pump 14 driven by the engine 11 to the hydraulic oil tank through the center bypass pipe 40 or the parallel pipe 42.
  • the engine 11 is a drive source of the excavator 100.
  • the engine 11 is, for example, a diesel engine that operates so as to maintain a predetermined rotational speed.
  • the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15.
  • the main pump 14 is configured to supply hydraulic oil to the control valve 17 via the hydraulic oil line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 is configured to control the discharge amount (push-out volume) of the main pump 14.
  • the regulator 13 controls the discharge amount (push-out volume) of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 in accordance with a control command from the controller 30.
  • the pilot pump 15 is configured to supply hydraulic oil to a hydraulic control device including the operation device 26 via a pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the pilot pump 15 may be omitted.
  • the function of the pilot pump 15 may be realized by the main pump 14. That is, the main pump 14 may have a function of supplying the operating oil to the operating device 26 after the pressure of the operating oil is reduced by a throttle or the like, in addition to the function of supplying the operating oil to the control valve 17. Good.
  • the control valve 17 is a hydraulic control device that controls the hydraulic system in the excavator 100.
  • the control valve 17 includes control valves 171 to 176.
  • the control valve 175 includes a control valve 175L and a control valve 175R
  • the control valve 176 includes a control valve 176L and a control valve 1756.
  • the control valve 17 can selectively supply hydraulic oil discharged from the main pump 14 to one or a plurality of hydraulic actuators through the control valves 171 to 176.
  • the control valves 171 to 176 control the flow rate of the hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of the hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left traveling hydraulic motor 2ML, a right traveling hydraulic motor 2MR, and a turning hydraulic motor 2A.
  • the operating device 26 is a device used by an operator for operating the actuator.
  • the actuator includes at least one of a hydraulic actuator and an electric actuator.
  • the operating device 26 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port of the corresponding control valve in the control valve 17 via the pilot line.
  • the hydraulic oil pressure (pilot pressure) supplied to each pilot port is a pressure corresponding to the operating direction and operating amount of a lever or pedal (not shown) of the operating device 26 corresponding to each hydraulic actuator. .
  • the discharge pressure sensor 28 is configured to detect the discharge pressure of the main pump 14. In the present embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.
  • the operation pressure sensor 29 is configured to detect the content of operation of the operation device 26 by the operator.
  • the operation pressure sensor 29 detects the operation direction and operation amount of the lever or pedal of the operation device 26 corresponding to each of the actuators in the form of pressure (operation pressure), and the detected value to the controller 30. Output.
  • the operation content of the operation device 26 may be detected using a sensor other than the operation pressure sensor.
  • the main pump 14 includes a left main pump 14L and a right main pump 14R.
  • the left main pump 14L circulates the hydraulic oil to the hydraulic oil tank via the left center bypass pipe 40L or the left parallel pipe 42L, and the right main pump 14R has the right center bypass pipe 40R or the right parallel pipe 42R.
  • the hydraulic oil is circulated to the hydraulic oil tank via
  • the left center bypass conduit 40L is a hydraulic oil line that passes through control valves 171, 173, 175L, and 176L disposed in the control valve 17.
  • the right center bypass pipeline 40R is a hydraulic oil line that passes through control valves 172, 174, 175R, and 176R disposed in the control valve 17.
  • the control valve 171 supplies hydraulic oil discharged from the left main pump 14L to the left traveling hydraulic motor 2ML, and discharges hydraulic oil discharged from the left traveling hydraulic motor 2ML to the hydraulic oil tank. It is a spool valve that switches the flow.
  • the control valve 172 supplies the hydraulic oil discharged from the right main pump 14R to the right traveling hydraulic motor 2MR, and discharges the hydraulic oil discharged from the right traveling hydraulic motor 2MR to the hydraulic oil tank. It is a spool valve that switches the flow.
  • the control valve 173 supplies the hydraulic oil discharged from the left main pump 14L to the turning hydraulic motor 2A, and flows the hydraulic oil to discharge the hydraulic oil discharged from the turning hydraulic motor 2A to the hydraulic oil tank.
  • This is a spool valve for switching.
  • the control valve 174 is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the bucket cylinder 9 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank. .
  • the control valve 175L is a spool valve that switches the flow of the hydraulic oil in order to supply the hydraulic oil discharged from the left main pump 14L to the boom cylinder 7.
  • the control valve 175R is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the boom cylinder 7 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank. .
  • the control valve 176L is a spool valve that supplies the hydraulic oil discharged from the left main pump 14L to the arm cylinder 8 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .
  • the control valve 176R is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the arm cylinder 8 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .
  • the left parallel pipeline 42L is a hydraulic oil line parallel to the left center bypass pipeline 40L.
  • the left parallel pipe 42L supplies hydraulic oil to the control valve downstream when the flow of hydraulic oil through the left center bypass pipe 40L is restricted or blocked by any of the control valves 171, 173, and 175L. it can.
  • the right parallel pipeline 42R is a hydraulic oil line parallel to the right center bypass pipeline 40R.
  • the right parallel pipe line 42R supplies hydraulic oil to the control valve downstream when the flow of the hydraulic oil passing through the right center bypass pipe line 40R is restricted or blocked by any of the control valves 172, 174, and 175R. it can.
  • the regulator 13 includes a left regulator 13L and a right regulator 13R.
  • the left regulator 13L controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to the discharge pressure of the left main pump 14L.
  • the left regulator 13L for example, adjusts the swash plate tilt angle of the left main pump 14L according to an increase in the discharge pressure of the left main pump 14L, and decreases the discharge amount.
  • the right regulator 13R This is because the absorption power (for example, absorption horsepower) of the main pump 14 represented by the product of the discharge pressure and the discharge amount does not exceed the output power (for example, output horsepower) of the engine 11.
  • the operating device 26 includes a left operating lever 26L, a right operating lever 26R, and a traveling lever 26D.
  • the travel lever 26D includes a left travel lever 26DL and a right travel lever 26DR.
  • the left operation lever 26L is used for turning operation and arm 5 operation.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 176.
  • the left operation lever 26L uses the hydraulic oil discharged from the pilot pump 15 to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 173.
  • the left operating lever 26L introduces hydraulic oil into the right pilot port of the control valve 176L and introduces hydraulic oil into the left pilot port of the control valve 176R when operated in the arm closing direction.
  • hydraulic oil is introduced into the left pilot port of the control valve 176L and hydraulic oil is introduced into the right pilot port of the control valve 176R.
  • hydraulic oil is introduced into the left pilot port of the control valve 173, and when it is operated in the right turn direction, the right pilot port of the control valve 173 To introduce hydraulic oil.
  • the right operation lever 26R is used for the operation of the boom 4 and the operation of the bucket 6.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 175.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 174.
  • the right operation lever 26R introduces hydraulic oil into the left pilot port of the control valve 175R when operated in the boom lowering direction. Further, when the right operation lever 26R is operated in the boom raising direction, the hydraulic oil is introduced into the right pilot port of the control valve 175L, and the hydraulic oil is introduced into the left pilot port of the control valve 175R. Further, the right operating lever 26R introduces hydraulic oil into the left pilot port of the control valve 174 when operated in the bucket closing direction, and enters the right pilot port of the control valve 174 when operated in the bucket opening direction. Introduce hydraulic fluid.
  • the traveling lever 26D is used for the operation of the crawler 1C.
  • the left travel lever 26DL is used to operate the left crawler 1CL.
  • the left travel lever 26DL may be configured to be interlocked with the left travel pedal.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 171.
  • the right travel lever 26DR is used to operate the right crawler 1CR.
  • the right travel lever 26DR may be configured to be interlocked with the right travel pedal.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 172.
  • the discharge pressure sensor 28 includes a discharge pressure sensor 28L and a discharge pressure sensor 28R.
  • the discharge pressure sensor 28L detects the discharge pressure of the left main pump 14L and outputs the detected value to the controller 30. The same applies to the discharge pressure sensor 28R.
  • the operation pressure sensor 29 includes operation pressure sensors 29LA, 29LB, 29RA, 29RB, 29DL, and 29DR.
  • the operation pressure sensor 29LA detects the content of the operation of the left operation lever 26L by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation content includes, for example, a lever operation direction and a lever operation amount (lever operation angle).
  • the operation pressure sensor 29LB detects the content of the operation of the left operation lever 26L by the operator in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29RA detects the content of the operation of the right operation lever 26R by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29RB detects the content of the operation of the right operation lever 26R by the operator in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29DL detects the content of the operation of the left travel lever 26DL by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29DR detects the content of the operation in the front-rear direction on the right travel lever 26DR by the operator in the form of pressure, and outputs the detected value to the controller 30.
  • the controller 30 receives the output of the operation pressure sensor 29, outputs a control command to the regulator 13 as necessary, and changes the discharge amount of the main pump 14.
  • the diaphragm 18 includes a left diaphragm 18L and a right diaphragm 18R
  • the control pressure sensor 19 includes a left control pressure sensor 19L and a right control pressure sensor 19R.
  • a left throttle 18L is disposed between the control valve 176L located at the most downstream side and the hydraulic oil tank. Therefore, the flow of hydraulic oil discharged from the left main pump 14L is limited by the left throttle 18L.
  • the left diaphragm 18L generates a control pressure for controlling the left regulator 13L.
  • the left control pressure sensor 19L is a sensor for detecting this control pressure, and outputs the detected value to the controller 30.
  • the controller 30 controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to the control pressure.
  • the controller 30 decreases the discharge amount of the left main pump 14L as the control pressure increases, and increases the discharge amount of the left main pump 14L as the control pressure decreases.
  • the discharge amount of the right main pump 14R is similarly controlled.
  • the hydraulic oil discharged from the left main pump 14L passes through the left center bypass conduit 40L and is left.
  • the diaphragm reaches 18L.
  • the flow of hydraulic oil discharged from the left main pump 14L increases the control pressure generated upstream of the left throttle 18L.
  • the controller 30 reduces the discharge amount of the left main pump 14L to the allowable minimum discharge amount, and suppresses the pressure loss (pumping loss) when the discharged hydraulic oil passes through the left center bypass conduit 40L.
  • the hydraulic oil discharged from the left main pump 14L passes through the control valve corresponding to the hydraulic actuator to be operated, and the hydraulic actuator to be operated. Flow into.
  • the flow of the hydraulic oil discharged from the left main pump 14L reduces or disappears the amount reaching the left throttle 18L, and lowers the control pressure generated upstream of the left throttle 18L.
  • the controller 30 increases the discharge amount of the left main pump 14L, causes sufficient hydraulic oil to flow into the operation target hydraulic actuator, and ensures the operation of the operation target hydraulic actuator.
  • the controller 30 similarly controls the discharge amount of the right main pump 14R.
  • the 2 can suppress wasteful energy consumption in the main pump 14 in the standby state.
  • the wasteful energy consumption includes a pumping loss generated by the hydraulic oil discharged from the main pump 14 in the center bypass conduit 40. 2 can reliably supply necessary and sufficient hydraulic fluid from the main pump 14 to the hydraulic actuator to be operated when the hydraulic actuator is operated.
  • the control valve 60 is configured to switch between the valid state and the invalid state of the operation device 26.
  • the valid state of the operating device 26 is a state in which the operator can move the related driven body by operating the operating device 26, and the invalid state of the operating device 26 is that the operator operates the operating device 26. However, the related driven body cannot be moved.
  • control valve 60 is an electromagnetic valve capable of switching between a communication state and a cutoff state of the pilot line CD1 connecting the pilot pump 15 and the operation device 26. Specifically, the control valve 60 is configured to switch between the communication state and the cutoff state of the pilot line CD1 in accordance with a command from the controller 30.
  • the control valve 60 may be configured to interlock with a gate lock lever (not shown). Specifically, the pilot line CD1 may be cut off when the gate lock lever is pushed down, and the pilot line CD1 may be put in communication when the gate lock lever is pulled up.
  • a hydraulic operation lever having a hydraulic pilot circuit is employed, but an electric pilot circuit is provided instead of a hydraulic operation lever having such a hydraulic pilot circuit.
  • An electric operation lever may be employed.
  • the lever operation amount of the electric operation lever is input to the controller 30 as an electric signal.
  • An electromagnetic valve is disposed between the pilot pump 15 and the pilot port of each control valve.
  • the solenoid valve is configured to operate in response to an electrical signal from the controller 30.
  • FIG. 3 is a flowchart of an example of the operation restriction process.
  • the controller 30 repeatedly performs this operation restriction process at a predetermined control cycle.
  • the controller 30 determines whether or not an object is detected inside the work space WS as shown in FIG. 1B (step ST1). In the present embodiment, the controller 30 determines whether an object is detected inside the work space WS included in the detection space DS as illustrated in FIG. 1B based on the output of the object detection device 70.
  • the object is, for example, another excavator.
  • the object may be another machine such as a dump truck.
  • the detection space DS is a space set around the excavator 100.
  • the detection space DS is a cylindrical space having a radius larger than the maximum turning radius of the excavator 100.
  • the maximum turning radius is, for example, the distance between the turning axis and the tip of the bucket 6 when the excavation attachment is extended to the maximum extent outward.
  • the object detection device 70 is configured to be able to detect an object existing inside the detection space DS.
  • the work space WS is a space set inside the detection space DS as a space where the excavator 100 can work.
  • the work space WS is a range derived from the operation trajectory of the excavator 100.
  • the work space WS is a cylindrical space having a maximum turning radius as its radius.
  • step ST1 If it is determined that no object is detected inside the work space WS (NO in step ST1), the controller 30 ends the current operation restriction process.
  • the controller 30 determines whether or not the operating device 26 has been operated (step ST2). In the present embodiment, the controller 30 determines whether or not the operating device 26 has been operated based on the output of the operating pressure sensor 29. For example, the controller 30 determines whether or not the arm closing operation is performed based on the output of the operation pressure sensor 29LA and whether the arm opening operation is performed, and based on the output of the operation pressure sensor 29LB, the left-handed rotation is performed. It is determined whether or not a turning operation has been performed and whether or not a right turn operation has been performed.
  • the controller 30 determines whether or not a boom raising operation has been performed and whether or not a boom lowering operation has been performed based on the output of the operation pressure sensor 29RA, and based on the output of the operation pressure sensor 29RB, It is determined whether a closing operation has been performed and whether a bucket opening operation has been performed. Similarly, the controller 30 determines, based on the output of the operation pressure sensor 29DL, whether or not the forward operation of the left crawler 1CL has been performed and whether or not the reverse operation of the left crawler 1CL has been performed, and the operation pressure sensor Based on the output of 29DR, it is determined whether or not the forward operation of the right crawler 1CR has been performed, and whether or not the reverse operation of the right crawler 1CR has been performed.
  • step ST2 If it is determined that the operation device 26 is not operated (NO in step ST2), the controller 30 ends the current operation restriction process.
  • step ST3 the controller 30 determines whether or not to limit the movement of the driven body corresponding to the operation. Limiting the movement of the driven body may include prohibiting the movement of the driven body. That is, the controller 30 determines whether or not the movement of the driven body corresponding to the manual operation via the operation device 26 is permitted.
  • the controller 30 acquires information related to the posture of the excavator 100 based on the output of the posture sensor, and the movement of the driven body is based on the information within the movable range MS as shown in FIG. 1B. It is determined whether or not it is a movement. In FIG. 1B, the movable range MS is dot-hatched.
  • the movable range MS is a range that is variably set inside the work space WS and into which the driven body can enter.
  • the movable range MS is variably set based on the state of the object in the detection space DS or the object in the work space WS included in the detection space DS.
  • the restriction range RS is a range in which entry of the driven body is restricted. In FIG. 1B, since the entire work space WS is within the movable range MS, there is no limit range RS.
  • the controller 30 is configured to variably set the movable range MS based on the state of the object in the detection space DS, for example.
  • the controller 30 variably sets the movable range MS based on the current state or future state of the object detected by the object detection device 70.
  • the future state is a state after a predetermined time has elapsed from the present time, and is predicted from at least one of the past state and the current state.
  • the controller 30 variably sets the movable range MS so that the movable range MS becomes smaller when an object detected by the object detection device 70 approaches the excavator 100.
  • the movable range MS is variably set so that the movable range MS becomes larger when the object detected by the object detection device 70 moves away from the excavator 100.
  • the controller 30 may be configured to update the movable range MS every predetermined control cycle, for example.
  • the controller 30 determines whether or not the driven body is out of the movable range MS when the driven body is moved in accordance with a manual operation via the operation device 26. When it is determined that the driven body is out of the movable range MS, it is determined that the movement of the driven body is not movement inside the movable range MS, and it is determined that the driven body is not out of the movable range MS. It is determined that the movement of the driven body is a movement inside the movable range MS.
  • the controller 30 determines that the driven body does not come out of the movable range MS, that is, when the movement of the driven body is determined to be inside the movable range MS, the controller 30 does not limit the movement of the driven body. .
  • the controller 30 turns the right turning of the upper turning body 3. The upper turning body 3 is allowed to turn right without limiting the rotation.
  • the controller 30 determines that the driven body is out of the movable range MS and enters the restricted range RS, that is, when it is determined that the movement of the driven body is not a movement inside the movable range MS, Limit the movement of the drive. For example, when a right turn operation is performed, if it is determined that the excavation attachment comes out of the movable range MS when the upper turn body 3 is turned to the right, the controller 30 allows the upper turn body 3 to turn right. Without the right turn of the upper swing body 3 is prohibited.
  • step ST3 If it is determined that the movement of the driven body is not limited (NO in step ST3), the controller 30 ends the current operation limiting process.
  • the controller 30 limits the movement of the driven body (step ST4).
  • the controller 30 starts braking the driven body when the driven body has already moved, and prohibits the movement of the driven body when the driven body has not yet moved.
  • the controller 30 outputs a control command to the control valve 60 to turn off the pilot line CD1, and invalidates the operation via the operation device 26.
  • the controller 30 when the turning of the upper swing body 3 is prohibited, the controller 30 outputs a control command to the control valve 60 to shut off the pilot line CD1, and perform an operation via the left operation lever 26L. To disable. Similarly, when prohibiting the reverse travel of the lower traveling body 1, the controller 30 outputs a control command to the control valve 60 to turn off the pilot line CD1 and invalidate the operation via the travel lever 26D.
  • the controller 30 even when the controller 30 detects an object inside the work space WS, the controller 30 does not uniformly restrict or prohibit the movement of the driven body and does not contact the object with the excavator 100. In this way, the driven body can be operated. Therefore, it is possible to prevent the movement of the excavator 100 from being uniformly restricted when an object is detected in the work space WS.
  • step ST1 and step ST2 are out of order, and step ST1 may be executed after step ST2 is executed, or may be executed simultaneously with step ST2.
  • the controller 30 disables all operations via the operation device 26 when restricting the movement of the driven body.
  • the left operation lever 26L, the right operation lever 26R, and Each of the travel levers 26D may be configured to be individually disabled.
  • the controller 30 may be configured such that the travel lever 26D can be disabled while the left operation lever 26L and the right operation lever 26R are enabled.
  • Such a configuration may be realized by using a plurality of control valves 60, for example.
  • the control valve 60 is disposed on the pilot line that connects the pilot pump 15 and the operation device 26.
  • the control valve 60 is disposed on the pilot line that connects the operation device 26 and each of the control valves 171 to 176. May be.
  • the control valve 60 related to the boom raising operation may be disposed on a pilot line connecting the right operation lever 26R and the control valve 175.
  • FIGS. 4 to 7 are top views of the excavator showing examples of setting of the movable range MS and the limited range RS. 4 to 7, another excavator 200 exists inside the work space WS included in the detection space DS of the excavator 100.
  • the movable range MS is provided with dot hatching.
  • the controller 30 sets the movable range MS and the limited range RS as shown below, so as to detect the entering object without reducing the work efficiency of the excavator 100, and It is possible to realize the stopping of the driven body or the braking such as the deceleration caused by the entering object.
  • the controller 30 acquires information on the state of the excavator 200 based on the output of the object detection device 70. Then, the controller 30 sets the movable range MS based on the information and allows the driven body to move within the movable range MS. On the other hand, the controller 30 restricts or prohibits the movement of the driven body in the restriction range RS that is a range other than the movable range MS in the work space WS.
  • the information regarding the state of the excavator 200 includes information regarding the operation trajectory of the excavator 200, for example.
  • the controller 30 can turn the upper swing body 3 to the right by the angle ⁇ and turn the upper swing body 3 to the left by the angle ⁇ .
  • the movable range MS is set as a possible range.
  • An excavator 100R indicated by a broken line represents a state of the excavator 100 when the upper swing body 3 is turned right by an angle ⁇
  • an excavator 100L indicated by a broken line is a result when the upper swing body 3 is turned left by an angle ⁇ .
  • the state of the excavator 100 is represented.
  • the controller 30 detects that the excavator 200 is turning right as shown in FIG. 5, the controller 30 makes the movable range MS larger than in the case of FIG. Specifically, the controller 30 increases the angle at which it can turn right by an angle ⁇ 1.
  • the controller 30 detects that the excavator 200 is traveling in a direction away from the excavator 100 as shown in FIG. 6, the controller 30 enlarges the movable range MS than in the case of FIG. 4. Specifically, the controller 30 increases the angle at which it can turn right by an angle ⁇ 2.
  • the controller 30 detects that the excavator 200 is turning left as shown in FIG. 7, the controller 30 makes the movable range MS smaller than in the case of FIG. Specifically, the controller 30 reduces the angle at which the vehicle can turn right by an angle ⁇ 3.
  • the controller 30 may set, as the movable range MS, a range that does not overlap with the range derived from the operation trajectory of the excavator 200 in the work space WS derived from the operation trajectory of the excavator 100.
  • FIG. 8 is a flowchart of another example of the operation restriction process.
  • the controller 30 repeatedly performs this operation restriction process at a predetermined control cycle.
  • the controller 30 determines whether or not an object is detected inside the detection space DS and outside the work space WS (step ST11). In the present embodiment, the controller 30 determines whether another excavator 200 is detected inside the detection space DS and outside the work space WS based on the output of the object detection device 70.
  • step ST11 the controller 30 ends the current operation restriction process.
  • step ST11 the controller 30 determines whether or not the operating device 26 has been operated. In the present embodiment, the controller 30 determines whether or not the operating device 26 has been operated based on the output of the operating pressure sensor 29.
  • step ST12 the controller 30 ends the current operation restriction process.
  • step ST12 the controller 30 determines whether or not there is a possibility that the object enters the work space WS (step ST13).
  • the controller 30 ends the current operation restriction process.
  • the controller 30 determines whether or not to limit the movement of the driven body corresponding to the operation (step ST14). That is, the controller 30 determines whether or not the movement of the driven body corresponding to the manual operation via the operation device 26 is allowed.
  • the controller 30 acquires information related to the attitude of the excavator 100 based on the output of the attitude sensor, and determines whether or not the movement of the driven body is movement within the movable range based on the information. judge. Specifically, it is determined whether or not the driven body moves out of the movable range MS when the driven body is moved in accordance with a manual operation via the operation device 26.
  • the controller 30 determines that the driven body does not go out of the movable range MS, the controller 30 does not limit the movement of the driven body. For example, when the right turning operation is performed, if it is determined that the excavation attachment does not come out of the movable range MS even if the upper turning body 3 is turned to the right, the controller 30 turns the right turning of the upper turning body 3. The rotation is not prohibited, that is, the right turn of the upper swing body 3 is allowed.
  • the controller 30 determines that the driven body is out of the movable range MS, that is, when it is determined that the driven body enters the restriction range RS, the controller 30 prohibits the movement of the driven body. For example, when the right turning operation is performed, if it is determined that the excavation attachment comes out of the movable range MS when the upper turning body 3 is turned right, the controller 30 prohibits the upper turning body 3 from turning right. To do.
  • the controller 30 ends the current operation limiting process.
  • the controller 30 limits the movement of the driven body (step ST15).
  • the controller 30 starts braking the driven body when the driven body has already moved, and prohibits the movement of the driven body when the driven body has not yet moved.
  • the controller 30 outputs a control command to the control valve 60 to turn off the pilot line CD1, and invalidates the operation via the operation device 26.
  • the controller 30 when the turning of the upper swing body 3 is prohibited, the controller 30 outputs a control command to the control valve 60 to shut off the pilot line CD1, and perform an operation via the left operation lever 26L. To disable. Similarly, when prohibiting the reverse travel of the lower traveling body 1, the controller 30 outputs a control command to the control valve 60 to turn off the pilot line CD1 and invalidate the operation via the travel lever 26D.
  • the controller 30 when there is a possibility that the excavator 200 existing inside the detection space DS and outside the work space WS may enter the work space WS, the controller 30 has not yet entered the work space WS. Even when it is not, the movable range MS can be narrowed. Therefore, the controller 30 can more reliably prevent contact between the excavator 100 and the excavator 200.
  • step ST11 and step ST12 are out of order, and step ST11 may be executed after step ST12 is executed, or may be executed simultaneously with step ST12.
  • the controller 30 disables all operations via the operation device 26 when restricting the movement of the driven body, but the left operation lever 26L, the right operation lever 26R, and the traveling
  • Each of the levers 26D may be configured to be individually disabled.
  • the controller 30 may be configured such that the travel lever 26D can be disabled while the left operation lever 26L and the right operation lever 26R are enabled.
  • Such a configuration may be realized by using a plurality of control valves 60, for example.
  • FIGS. 9 to 11 are top views of the excavator showing another setting example of the movable range MS and the limited range RS.
  • another excavator 200 exists inside the detection space DS of the excavator 100 and outside the work space WS.
  • the movable range MS is dot-hatched.
  • the controller 30 acquires information on the state of the excavator 200 based on the output of the object detection device 70. Then, the controller 30 sets the movable range MS based on the information and allows the driven body to move within the movable range MS. On the other hand, the controller 30 restricts or prohibits the movement of the driven body in the restriction range RS that is a range other than the movable range MS in the work space WS.
  • the information regarding the state of the excavator 200 includes information regarding the operation trajectory of the excavator 200, for example.
  • the controller 30 sets the entire work space WS as the movable range MS.
  • the controller 30 detects that the excavator 200 is turning right as shown in FIG. 10, the controller 30 makes the movable range MS smaller than in the case of FIG. Specifically, the right rear range of the excavator 100 is set as the limit range RS.
  • the controller 30 detects that the excavator 200 is traveling in a direction approaching the excavator 100 as shown in FIG. 11, the controller 30 makes the movable range MS smaller than in the case of FIG. Specifically, the range on the left side of the excavator 100 is set as the limit range RS.
  • the controller 30 may set, as the movable range MS, a range that does not overlap with the range derived from the operation trajectory of the excavator 200 in the work space WS derived from the operation trajectory of the excavator 100.
  • FIGS. 12A and 12B are diagrams showing another configuration example of the excavator 100, FIG. 12A shows a side view, and FIG. 12B shows a top view.
  • the shovel shown in FIGS. 12A and 12B differs from the shovel 100 shown in FIG. 1 in that the display device 45, the imaging device 80, the communication device T1, and the positioning device P1 are mounted, but is common in other points. Therefore, the description of the common part is omitted, and the different part is described in detail.
  • the display device 45 is configured to display various information.
  • the display device 45 may be connected to the controller 30 via a communication network such as CAN, or may be connected to the controller 30 via a dedicated line.
  • the imaging device 80 images the periphery of the excavator 100.
  • the rear camera 80B attached to the upper rear end of the upper swing body 3, the left camera 80L attached to the upper left end of the upper swing body 3, and the upper face of the upper swing body 3 It includes a right camera 80R attached to the right end.
  • the imaging device 80 may include a front camera.
  • the rear camera 80B is disposed adjacent to the rear sensor 70B
  • the left camera 80L is disposed adjacent to the left sensor 70L
  • the right camera 80R is disposed adjacent to the right sensor 70R.
  • the front camera may be disposed adjacent to the front sensor 70F.
  • the image captured by the imaging device 80 is displayed on the display device 45 installed in the cabin 10.
  • the imaging device 80 may be configured to display a viewpoint conversion image such as a bird's-eye view image on the display device 45.
  • the overhead image is generated by, for example, combining images output from the rear camera 80B, the left camera 80L, and the right camera 80R.
  • the communication device T1 is configured to control communication with an external device outside the excavator 100.
  • the communication device T1 controls communication with an external device via a satellite communication network, a mobile phone communication network, an Internet network, or the like.
  • the positioning device P1 is configured to measure the position of the upper swing body 3.
  • the positioning device P1 may be configured to measure the orientation of the upper swing body 3.
  • the positioning device P1 is a GNSS compass, detects the position and orientation of the upper swing body 3, and outputs the detected value to the controller 30.
  • the excavator 100 illustrated in FIGS. 12A and 12B can display an image of the object detected by the object detection device 70 on the display device 45. Therefore, when the operation of the driven body is restricted or prohibited, the operator of the excavator 100 can immediately confirm the state of the object causing the cause by looking at the image displayed on the display device 45.
  • the excavator 100 shown in FIGS. 12A and 12B is configured to exchange various information with the excavator 200 via the communication device T1.
  • the exchanged information includes at least one of information on the position and orientation of each excavator, information on manual operation via the operation device 26, and the like. Therefore, the excavator 100 can acquire more detailed information about the state of the excavator 200 than when acquired through the object detection device 70, and can set the movable range MS more appropriately.
  • FIG. 13 is a schematic diagram illustrating an example of a construction support system.
  • the construction support system includes an excavator 100, an excavator 200, a management device FS, and a portable terminal TS as a support device.
  • the excavator 100, the excavator 200, the management device FS, and the mobile terminal TS function as communication terminals connected to each other through the communication network CN.
  • Each of the management device FS and the mobile terminal TS constituting the construction support system may be one or a plurality.
  • three or more excavators may be included in the construction support system.
  • the construction support system includes one management device FS and one portable terminal TS.
  • each of the excavator 100 and the excavator 200 has a positioning device P1 and a communication device T1.
  • the communication device T1 transmits information to the outside.
  • the communication device T1 transmits information that can be received by at least one of the management device FS, the mobile terminal TS, and another communication device T1.
  • the management device FS is a device that manages the work of the excavator.
  • the management apparatus FS may be a portable computer that can be carried by the user.
  • the mobile terminal TS is a communication terminal provided with a display device, and is a smartphone, a tablet terminal, a notebook computer, or the like.
  • the communication device T1 of the excavator 100 acquires, for example, information related to the position and orientation of the excavator 100 or information related to manual operation via the operation device 26, the communication device T1 sends information to the management device FS via the communication network CN. send. The same applies to the communication device T1 of the excavator 200.
  • the management device FS derives information related to the relative positional relationship between the excavator 100 and the excavator 200 based on the received information, and information necessary when each of the excavator 100 and the excavator 200 executes the operation restriction process. It may be generated. Then, the generated information may be transmitted to each of the excavator 100 and the excavator 200.
  • the management device FS may function as a relay that transmits the information received from the excavator 100 to the excavator 200 as it is.
  • the above-described processing executed by the management device FS may be executed by the mobile terminal TS. Further, the communication device T1 of the excavator 100 and the communication device T1 of the excavator 200 may exchange information directly without going through the management device FS and the portable terminal TS, and directly send information without going through the communication network CN. You may exchange.
  • the excavator 100 can exchange various information with the excavator 200 via the communication device T1.
  • the exchanged information includes at least one of information on the position and orientation of each excavator, information on manual operation via the operation device 26, and the like. Therefore, the excavator 100 can acquire detailed information regarding the state of the excavator 200 and can set the movable range MS more appropriately. The same applies to the excavator 200.
  • At least one of the mobile terminal TS and the management device FS may include an operation device for remote operation.
  • the operator may operate the excavator 100 while using an operation device for remote operation.
  • the operation device for remote operation is connected to the controller 30 of the excavator 100 through the communication network CN, for example.
  • the exchange of information between the excavator 100 and the management apparatus FS will be described. However, the following explanation will be made on the exchange of information between the excavator 100 and the portable terminal TS, and the excavator 200 and the portable terminal TS. The same applies to the exchange of information with each of the management devices FS.
  • the controller 30 of the excavator 100 includes the time and place when the movement of the driven body in the excavator 100 is restricted, the respective operation trajectories of the excavator 100 and the excavator 200 estimated at that time, In addition, information regarding at least one of the movable range MS and the limited range RS set at that time may be transmitted to the management apparatus FS. At that time, the controller 30 may transmit at least one of the output of the object detection device 70 and the image captured by the imaging device 80 to the management device FS.
  • the images may be a plurality of images captured during a predetermined period including a period in which the movement of the driven body is limited.
  • the predetermined period may include a period preceding the period in which the movement of the driven body is limited, or may include a period subsequent to the period in which the movement of the driven body is limited.
  • the controller 30 includes information regarding the work content of the excavator 100 during a predetermined period including a period in which the movement of the driven body is limited, information regarding the position of the excavator 100 and its transition, information regarding the attitude of the excavator 100 and its transition, and In addition, at least one of the information regarding the attitude of the excavation attachment and the transition thereof may be transmitted to the management apparatus FS.
  • the controller 30 mounted on the excavator 100 may transmit information received from the excavator 200 near the excavator 100 via communication to the management apparatus FS as information on the excavator 100.
  • the information received from the excavator 200 includes, for example, information regarding the work content of the excavator 200, information regarding the position of the excavator 200 and its transition, information regarding the posture of the excavator 200 and its transition, and the excavation attachment attached to the excavator 200. It is at least one of information on the posture and its transition. This is because an administrator who uses the management apparatus FS can obtain information on the excavator 100.
  • the controller 30 may transmit information on the work site to the management device FS.
  • the information regarding the work site is, for example, information regarding the type of place where the excavator 100 works.
  • the type of place where the excavator 100 works is, for example, in a tunnel, a demolition site, or a parking lot.
  • the information about the excavator 100 acquired during a predetermined period including the period in which the movement of the driven body is limited is the operator of the excavator 100 and the administrator or the operator of the other excavator. Allows sharing with.
  • the excavator 100 includes the lower traveling body 1, the upper swinging body 3 that is rotatably mounted on the lower traveling body 1, and the object detection device 70 that is provided on the upper swinging body 3.
  • a controller 30 as a control device provided in the upper swing body 3 and a driven body moved by an actuator are provided.
  • the object detection device 70 is configured to detect an object in a detection space DS set around the excavator 100. Then, the controller 30 is configured to change the movable range MS that is a range in which the driven body can enter based on the state of the object detected by the object detection device 70.
  • the controller 30 variably sets the movable range MS that is a range in which the driven body can enter based on the state of the object in the detection space DS, and moves the driven body in the movable range MS. Is configured to allow. With this configuration, the excavator 100 can continue work efficiently while avoiding collision with other objects working nearby.
  • the operator of the excavator 100 may cause the excavator 100 to come into contact with the excavator 200 when the excavator 100 is turned or moved backward.
  • the excavator 100 can acquire information regarding the state of the excavator 200 based on the output of the object detection device 70. Therefore, the excavator 100 can limit or stop turning or traveling as necessary. Therefore, the shovel 100 can prevent contact between the shovel 100 and the shovel 200, can reduce the burden on the operator of the shovel 100, and can further improve the working efficiency of the shovel 100.
  • the state of the object in the detection space DS may be the current state or the future state of the object. That is, the controller 30 variably sets a movable range MS that is a range in which the driven body of the excavator 100 can enter based on the current state or future state of the excavator 200 in the detection space DS. It may be configured to allow movement of the driven body.
  • the future state of the excavator 200 may be predicted from at least one of the past state and the current state of the excavator 200.
  • the controller 30 variably sets the movable range MS so that the movable range MS becomes smaller when the excavator 200 detected by the object detection device 70 is approaching the excavator 100 or when it is predicted to approach. May be.
  • the controller 30 variably sets the movable range MS so that the movable range MS becomes small when the excavator 200 detected by the object detection device 70 moves away from the excavator 100 or when it is predicted to move away. It may be set.
  • the controller 30 is configured to acquire information on the state of the excavator 200 in the detection space DS via at least one of the object detection device 70 and the communication device T1 that controls communication with the excavator 200 in the detection space DS. It may be.
  • the controller 30 monitors the movement of the excavator 200 existing inside the detection space DS and outside the work space WS included in the detection space DS, and when the excavator 200 may enter the work space WS, the excavator 100 It may be configured to brake the driven body. Specifically, the controller 30 may be configured to brake the turning of the upper revolving structure 3 or may be configured to brake the traveling of the lower traveling structure 1.
  • the controller 30 monitors the movement of the excavator 200 that exists inside the detection space DS and outside the work space WS included in the detection space DS, and when there is a possibility that the excavator 200 may enter the work space WS, the excavator 200.
  • the movable range MS may be variably set based on the above state, and the movement of the driven body of the excavator 100 in the movable range MS may be allowed.
  • the driven body of the shovel 100 may include at least one of the lower traveling body 1, the turning mechanism 2, the upper turning body 3, the boom 4, the arm 5, and the bucket 6.
  • the controller 30 causes the excavator 200 that exists inside the detection space DS and outside the work space WS included in the detection space DS to enter the work space WS. It may be configured to determine whether or not there is a risk of doing so.
  • a hydraulic operation lever including a hydraulic pilot circuit is disclosed. Specifically, in the hydraulic pilot circuit related to the left operation lever 26L as the arm operation lever, the hydraulic oil supplied from the pilot pump 15 to the remote operation valve of the left operation lever 26L is opened and closed by the tilt of the left operation lever 26L. Is transmitted to the pilot port of the control valve 176 at a flow rate corresponding to the opening of the remote control valve.
  • an electric operation lever having an electric pilot circuit may be employed instead of a hydraulic operation lever having such a hydraulic pilot circuit.
  • the lever operation amount of the electric operation lever is input to the controller 30 as an electric signal.
  • An electromagnetic valve is disposed between the pilot pump 15 and the pilot port of each control valve.
  • the solenoid valve is configured to operate in response to an electrical signal from the controller 30.
  • the controller 30 controls each solenoid valve by increasing or decreasing the pilot pressure by controlling the electromagnetic valve with an electric signal corresponding to the lever operation amount. 17 can be moved.
  • Each control valve may be constituted by an electromagnetic spool valve. In this case, the electromagnetic spool valve operates in accordance with an electric signal from the controller 30 corresponding to the lever operation amount of the electric operation lever.
  • FIG. 14 shows a configuration example of an electric operation system.
  • the electric operation system of FIG. 14 is an example of a boom operation system.
  • the boom raising operation electromagnetic valve 61 and the boom lowering operation electromagnetic valve 62 are configured.
  • the electric operation system of FIG. 14 can be similarly applied to an arm operation system, a bucket operation system, and the like.
  • the pilot pressure actuated control valve 17 includes a control valve 175 for the boom cylinder 7 (see FIG. 2), a control valve 176 for the arm cylinder 8 (see FIG. 2), and a control valve 174 for the bucket cylinder 9 (FIG. 2). Etc.).
  • the solenoid valve 61 is configured so that the flow area of a pipe line connecting the pilot pump 15 and the raising side pilot port of the control valve 175 can be adjusted.
  • the electromagnetic valve 62 is configured so that the flow area of a pipe line connecting the pilot pump 15 and the lower pilot port of the control valve 175 can be adjusted.
  • the controller 30 When manual operation is performed, the controller 30 generates a boom raising operation signal (electric signal) or a boom lowering operation signal (electric signal) according to an operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26A. Generate.
  • the operation signal output by the operation signal generation unit of the boom operation lever 26A is an electrical signal that changes according to the operation amount and operation direction of the boom operation lever 26A.
  • the controller 30 when the boom operation lever 26A is operated in the boom raising direction, the controller 30 outputs a boom raising operation signal (electric signal) corresponding to the lever operation amount to the electromagnetic valve 61.
  • the electromagnetic valve 61 adjusts the flow passage area in accordance with the boom raising operation signal (electrical signal), and controls the pilot pressure as the boom raising operation signal (pressure signal) that acts on the raising side pilot port of the control valve 175. .
  • the controller 30 when the boom operation lever 26 ⁇ / b> A is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the electromagnetic valve 62.
  • the electromagnetic valve 62 adjusts the flow path area according to the boom lowering operation signal (electrical signal), and controls the pilot pressure as the boom lowering operation signal (pressure signal) that acts on the lower pilot port of the control valve 175. .
  • the controller 30, When executing autonomous control, the controller 30, for example, does not respond to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26 ⁇ / b> A, but operates the boom raising operation signal according to the correction operation signal (electric signal). (Electric signal) or boom lowering operation signal (electric signal) is generated.
  • the correction operation signal may be an electric signal generated by the controller 30, or an electric signal generated by an external control device other than the controller 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明の実施形態に係るショベル(100)は、下部走行体(1)と、下部走行体(1)に旋回自在に搭載された上部旋回体(3)と、上部旋回体(3)に設けられる物体検知装置(70)と、上部旋回体(3)に設けられる制御装置としてのコントローラ(30)と、アクチュエータによって動かされる被駆動体と、を備えている。物体検知装置(70)は、ショベル(100)の周囲に設定された検知空間(DS)で別のショベル(200)を検知するように構成されている。コントローラ(30)は、物体検知装置(70)が検知した物体の状態に基づき、被駆動体が進入可能な範囲である可動範囲(MS)を変化させるように構成されている。

Description

ショベル
 本開示は、ショベルに関する。
 従来、近くで作業している別のショベルと干渉(衝突)する可能性があると判断した場合にアームの動きを減速させ或いは停止させるショベルが知られている(特許文献1参照。)。
特開2016-45674号公報
 しかしながら、上述のショベルは、衝突の可能性が少しでもあればアームの動きを減速させ或いは停止させてしまう。そのため、作業効率を低下させてしまうおそれがある。
 そこで、近くで作業している他の物体との衝突を避けながら効率的に作業できるショベルを提供することが望ましい。
 本発明の実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回自在に搭載された上部旋回体と、前記上部旋回体に設けられる物体検知装置と、前記上部旋回体に設けられる制御装置と、アクチュエータによって動かされる被駆動体と、を備え、前記物体検知装置は、ショベルの周囲に設定された検知空間で物体を検知するように構成され、且つ、前記制御装置は、前記物体検知装置が検知した物体の状態に基づき、前記被駆動体が進入可能な範囲である可動範囲を変化させるように構成されている。
 上述の手段により、近くで作業している他の物体との衝突を避けながら効率的に作業できるショベルが提供される。
本発明の実施形態に係るショベルの側面図である。 本発明の実施形態に係るショベルの上面図である。 ショベルに搭載される油圧システムの構成例を示す図である。 動作制限処理の一例のフローチャートである。 可動範囲及び制限範囲の設定例を表すショベルの上面図である。 可動範囲及び制限範囲の別の設定例を表すショベルの上面図である。 可動範囲及び制限範囲の更に別の設定例を表すショベルの上面図である。 可動範囲及び制限範囲の更に別の設定例を表すショベルの上面図である。 動作制限処理の別の一例のフローチャートである。 可動範囲及び制限範囲の更に別の設定例を表すショベルの上面図である。 可動範囲及び制限範囲の更に別の設定例を表すショベルの上面図である。 可動範囲及び制限範囲の更に別の設定例を表すショベルの上面図である。 本発明の実施形態に係るショベルの別の構成例を示すショベルの側面図である。 本発明の実施形態に係るショベルの別の構成例を示すショベルの上面図である。 施工支援システムの一例を示す図である。 電気式操作システムの構成例を示す図である。
 最初に、図1A及び図1Bを参照して、本発明の実施形態に係る掘削機としてのショベル100について説明する。図1A及び図1Bは、ショベル100の構成例を示す図である。図1Aはショベル100の側面図であり、図1Bはショベル100の上面図である。
 本実施形態では、ショベル100の下部走行体1は被駆動体としてのクローラ1Cを含む。クローラ1Cは、下部走行体1に搭載されている走行用油圧モータ2Mによって駆動される。但し、走行用油圧モータ2Mは、電動アクチュエータとしての走行用電動発電機であってもよい。具体的には、クローラ1Cは左クローラ1CL及び右クローラ1CRを含む。左クローラ1CLは左走行用油圧モータ2MLによって駆動され、右クローラ1CRは右走行用油圧モータ2MRによって駆動される。下部走行体1は、クローラ1Cによって駆動されるため、被駆動体として機能する。
 下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。被駆動体としての旋回機構2は、上部旋回体3に搭載されている旋回用油圧モータ2Aによって駆動される。但し、旋回用油圧モータ2Aは、電動アクチュエータとしての旋回用電動発電機であってもよい。上部旋回体3は、旋回機構2によって駆動されるため、被駆動体として機能する。
 上部旋回体3には被駆動体としてのブーム4が取り付けられている。ブーム4の先端には被駆動体としてのアーム5が取り付けられ、アーム5の先端に被駆動体及びエンドアタッチメントとしてのバケット6が取り付けられている。ブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成する。ブーム4はブームシリンダ7で駆動され、アーム5はアームシリンダ8で駆動され、バケット6はバケットシリンダ9で駆動される。掘削アタッチメントは、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によって駆動されるため、被駆動体として機能する。
 ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。
 ブーム角度センサS1はブーム4の回動角度を検出するように構成されている。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度であるブーム角度を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。
 アーム角度センサS2はアーム5の回動角度を検出するように構成されている。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度であるアーム角度を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。
 バケット角度センサS3はバケット6の回動角度を検出するように構成されている。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度であるバケット角度を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。
 ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3はそれぞれ、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ、ジャイロセンサ、又は、加速度センサとジャイロセンサの組み合わせ等であってもよい。
 上部旋回体3には、運転室としてのキャビン10が設けられ、且つ、エンジン11等の動力源が搭載されている。また、上部旋回体3には、コントローラ30、物体検知装置70、向き検出装置85、機体傾斜センサS4、及び旋回角速度センサS5等が取り付けられている。キャビン10の内部には、操作装置26等が設けられている。なお、本書では、便宜上、上部旋回体3における、ブーム4が取り付けられている側を前方とし、カウンタウェイトが取り付けられている側を後方とする。
 コントローラ30は、ショベル100を制御するための制御装置である。本実施形態では、コントローラ30は、CPU、RAM、NVRAM、及びROM等を備えたコンピュータで構成されている。そして、コントローラ30は、各機能に対応するプログラムをROMから読み出してRAMにロードし、対応する処理をCPUに実行させる。
 物体検知装置70は、ショベル100の周囲に存在する物体を検知するように構成されている。また、物体検知装置70は、物体検知装置70又はショベル100から検知された物体までの距離を算出するように構成されている。物体は、例えば、人、動物、車両、建設機械、建造物、柵、又は穴等である。物体検知装置70は、例えば、単眼カメラ、超音波センサ、ミリ波レーダ、レーザレーダ、ステレオカメラ、LIDAR、距離画像センサ、又は赤外線センサ等である。本実施形態では、物体検知装置70は、複数の距離画像センサで構成され、キャビン10の上面前端に取り付けられた前方センサ70F、上部旋回体3の上面後端に取り付けられた後方センサ70B、上部旋回体3の上面左端に取り付けられた左方センサ70L、及び、上部旋回体3の上面右端に取り付けられた右方センサ70Rを含む。
 コントローラ30は、物体検知装置70の出力に基づき、ショベル100の周囲に設定された所定領域内の所定物体を検知できるように構成されていてもよい。所定物体は、例えば、別のショベル等の可動体である。具体的には、コントローラ30は、フェンス等の静止物といったショベル以外の物体とショベルとを区別できるように構成されていてもよい。この場合、コントローラ30は、所定の動きをする可動体としてショベルを認識するため、そのショベルの動作軌道を容易に推定できる。所定の動きは、例えば、旋回軸回りの上部旋回体3の旋回、ブーム回動軸回りのブーム4の回動、又は、クローラ1Cの延長方向への前進・後進等である。
 向き検出装置85は、上部旋回体3の向きと下部走行体1の向きとの相対的な関係に関する情報(以下、「向きに関する情報」とする。)を検出するように構成されている。例えば、向き検出装置85は、下部走行体1に取り付けられた地磁気センサと上部旋回体3に取り付けられた地磁気センサとの組み合わせで構成されていてもよい。或いは、向き検出装置85は、下部走行体1に取り付けられたGNSS受信機と上部旋回体3に取り付けられたGNSS受信機との組み合わせで構成されていてもよい。旋回用電動発電機で上部旋回体3が旋回駆動される構成では、向き検出装置85は、レゾルバを含んでいてもよい。
 機体傾斜センサS4は所定の平面に対する上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は、水平面に関する上部旋回体3の前後軸回りの傾斜角(ロール角)及び左右軸回りの傾斜角(ピッチ角)を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、互いに直交してショベル100の旋回軸上の一点であるショベル中心点を通る。機体傾斜センサS4は、加速度センサとジャイロセンサとの組み合わせであってもよい。
 旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ又はロータリエンコーダ等であってもよい。旋回角速度センサS5は、旋回速度を検出してもよい。旋回速度は、旋回角速度から算出されてもよい。
 以下では、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、及び旋回角速度センサS5の任意の組み合わせは、集合的に姿勢センサとも称される。姿勢センサは、ショベル100の姿勢に関する情報を取得するように構成されている。
 次に、図2を参照し、ショベル100に搭載される油圧システムの構成例について説明する。図2は、ショベル100に搭載される油圧システムの構成例を示す図である。図2は、機械的動力伝達ライン、作動油ライン、パイロットライン、及び電気制御ラインを、それぞれ二重線、実線、破線、及び点線で示している。
 ショベル100の油圧システムは、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、吐出圧センサ28、操作圧センサ29、コントローラ30、及び制御弁60等を含む。
 図2において、油圧システムは、エンジン11によって駆動されるメインポンプ14から、センターバイパス管路40又はパラレル管路42を経て作動油タンクまで作動油を循環させている。
 エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15のそれぞれの入力軸に連結されている。
 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブ17に供給するように構成されている。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。
 レギュレータ13は、メインポンプ14の吐出量(押し退け容積)を制御するように構成されている。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量(押し退け容積)を制御する。
 パイロットポンプ15は、パイロットラインを介して操作装置26を含む油圧制御機器に作動油を供給するように構成されている。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロットポンプ15は、省略されてもよい。この場合、パイロットポンプ15が担っていた機能は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、コントロールバルブ17に作動油を供給する機能とは別に、絞り等により作動油の圧力を低下させた後で操作装置26等に作動油を供給する機能を備えていてもよい。
 コントロールバルブ17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブ17は、制御弁171~176を含む。制御弁175は制御弁175L及び制御弁175Rを含み、制御弁176は制御弁176L及び制御弁1756を含む。コントロールバルブ17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できる。制御弁171~176は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左走行用油圧モータ2ML、右走行用油圧モータ2MR、及び旋回用油圧モータ2Aを含む。
 操作装置26は、操作者がアクチュエータの操作のために用いる装置である。アクチュエータは、油圧アクチュエータ及び電動アクチュエータの少なくとも一方を含む。本実施形態では、操作装置26は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を、コントロールバルブ17内の対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダル(図示せず。)の操作方向及び操作量に応じた圧力である。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出するように構成されている。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。
 操作圧センサ29は、操作者による操作装置26の操作の内容を検出するように構成されている。本実施形態では、操作圧センサ29は、アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力(操作圧)の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作内容は、操作圧センサ以外の他のセンサを用いて検出されてもよい。
 メインポンプ14は、左メインポンプ14L及び右メインポンプ14Rを含む。そして、左メインポンプ14Lは、左センターバイパス管路40L又は左パラレル管路42Lを経て作動油タンクまで作動油を循環させ、右メインポンプ14Rは、右センターバイパス管路40R又は右パラレル管路42Rを経て作動油タンクまで作動油を循環させる。
 左センターバイパス管路40Lは、コントロールバルブ17内に配置された制御弁171、173、175L、及び176Lを通る作動油ラインである。右センターバイパス管路40Rは、コントロールバルブ17内に配置された制御弁172、174、175R、及び176Rを通る作動油ラインである。
 制御弁171は、左メインポンプ14Lが吐出する作動油を左走行用油圧モータ2MLへ供給し、且つ、左走行用油圧モータ2MLが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁172は、右メインポンプ14Rが吐出する作動油を右走行用油圧モータ2MRへ供給し、且つ、右走行用油圧モータ2MRが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁173は、左メインポンプ14Lが吐出する作動油を旋回用油圧モータ2Aへ供給し、且つ、旋回用油圧モータ2Aが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁174は、右メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁175Lは、左メインポンプ14Lが吐出する作動油をブームシリンダ7へ供給するために作動油の流れを切り換えるスプール弁である。制御弁175Rは、右メインポンプ14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Lは、左メインポンプ14Lが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Rは、右メインポンプ14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 左パラレル管路42Lは、左センターバイパス管路40Lに並行する作動油ラインである。左パラレル管路42Lは、制御弁171、173、及び175Lの何れかによって左センターバイパス管路40Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。右パラレル管路42Rは、右センターバイパス管路40Rに並行する作動油ラインである。右パラレル管路42Rは、制御弁172、174、及び175Rの何れかによって右センターバイパス管路40Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 レギュレータ13は、左レギュレータ13L及び右レギュレータ13Rを含む。左レギュレータ13Lは、左メインポンプ14Lの吐出圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。具体的には、左レギュレータ13Lは、例えば、左メインポンプ14Lの吐出圧の増大に応じて左メインポンプ14Lの斜板傾転角を調節して吐出量を減少させる。右レギュレータ13Rについても同様である。吐出圧と吐出量との積で表されるメインポンプ14の吸収パワー(例えば吸収馬力)がエンジン11の出力パワー(例えば出力馬力)を超えないようにするためである。
 操作装置26は、左操作レバー26L、右操作レバー26R、及び走行レバー26Dを含む。走行レバー26Dは、左走行レバー26DL及び右走行レバー26DRを含む。
 左操作レバー26Lは、旋回操作とアーム5の操作に用いられる。左操作レバー26Lは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁176のパイロットポートに導入させる。また、左右方向に操作されると、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁173のパイロットポートに導入させる。
 具体的には、左操作レバー26Lは、アーム閉じ方向に操作された場合に、制御弁176Lの右パイロットポートに作動油を導入させ、且つ、制御弁176Rの左パイロットポートに作動油を導入させる。また、左操作レバー26Lは、アーム開き方向に操作された場合には、制御弁176Lの左パイロットポートに作動油を導入させ、且つ、制御弁176Rの右パイロットポートに作動油を導入させる。また、左操作レバー26Lは、左旋回方向に操作された場合に、制御弁173の左パイロットポートに作動油を導入させ、右旋回方向に操作された場合に、制御弁173の右パイロットポートに作動油を導入させる。
 右操作レバー26Rは、ブーム4の操作とバケット6の操作に用いられる。右操作レバー26Rは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁175のパイロットポートに導入させる。また、右操作レバー26Rは、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁174のパイロットポートに導入させる。
 具体的には、右操作レバー26Rは、ブーム下げ方向に操作された場合に、制御弁175Rの左パイロットポートに作動油を導入させる。また、右操作レバー26Rは、ブーム上げ方向に操作された場合には、制御弁175Lの右パイロットポートに作動油を導入させ、且つ、制御弁175Rの左パイロットポートに作動油を導入させる。また、右操作レバー26Rは、バケット閉じ方向に操作された場合に、制御弁174の左パイロットポートに作動油を導入させ、バケット開き方向に操作された場合に、制御弁174の右パイロットポートに作動油を導入させる。
 走行レバー26Dは、クローラ1Cの操作に用いられる。具体的には、左走行レバー26DLは、左クローラ1CLの操作に用いられる。左走行レバー26DLは、左走行ペダルと連動するように構成されていてもよい。左走行レバー26DLは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁171のパイロットポートに導入させる。右走行レバー26DRは、右クローラ1CRの操作に用いられる。右走行レバー26DRは、右走行ペダルと連動するように構成されていてもよい。右走行レバー26DRは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁172のパイロットポートに導入させる。
 吐出圧センサ28は、吐出圧センサ28L及び吐出圧センサ28Rを含む。吐出圧センサ28Lは、左メインポンプ14Lの吐出圧を検出し、検出した値をコントローラ30に対して出力する。吐出圧センサ28Rについても同様である。
 操作圧センサ29は、操作圧センサ29LA、29LB、29RA、29RB、29DL、及び29DRを含む。操作圧センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作内容は、例えば、レバー操作方向及びレバー操作量(レバー操作角度)等である。
 同様に、操作圧センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29DLは、操作者による左走行レバー26DLに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29DRは、操作者による右走行レバー26DRに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 コントローラ30は、操作圧センサ29の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。
 ここで、絞り18と制御圧センサ19を用いたネガティブコントロール制御について説明する。絞り18は左絞り18L及び右絞り18Rを含み、制御圧センサ19は左制御圧センサ19L及び右制御圧センサ19Rを含む。
 左センターバイパス管路40Lには、最も下流にある制御弁176Lと作動油タンクとの間に左絞り18Lが配置されている。そのため、左メインポンプ14Lが吐出した作動油の流れは、左絞り18Lで制限される。そして、左絞り18Lは、左レギュレータ13Lを制御するための制御圧を発生させる。左制御圧センサ19Lは、この制御圧を検出するためのセンサであり、検出した値をコントローラ30に対して出力する。コントローラ30は、この制御圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。コントローラ30は、この制御圧が大きいほど左メインポンプ14Lの吐出量を減少させ、この制御圧が小さいほど左メインポンプ14Lの吐出量を増大させる。右メインポンプ14Rの吐出量も同様に制御される。
 具体的には、図2で示されるようにショベル100における油圧アクチュエータが何れも操作されていない待機状態の場合、左メインポンプ14Lが吐出する作動油は、左センターバイパス管路40Lを通って左絞り18Lに至る。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lの上流で発生する制御圧を増大させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を許容最小吐出量まで減少させ、吐出した作動油が左センターバイパス管路40Lを通過する際の圧力損失(ポンピングロス)を抑制する。一方、左センターバイパス管路40Lに関する何れかの油圧アクチュエータが操作された場合、左メインポンプ14Lが吐出する作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lに至る量を減少或いは消失させ、左絞り18Lの上流で発生する制御圧を低下させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を流入させ、操作対象の油圧アクチュエータの駆動を確かなものとする。なお、コントローラ30は、右メインポンプ14Rの吐出量も同様に制御する。
 上述のような構成により、図2の油圧システムは、待機状態においては、メインポンプ14における無駄なエネルギ消費を抑制できる。無駄なエネルギ消費は、メインポンプ14が吐出する作動油がセンターバイパス管路40で発生させるポンピングロスを含む。また、図2の油圧システムは、油圧アクチュエータを作動させる場合には、メインポンプ14から必要十分な作動油を作動対象の油圧アクチュエータに確実に供給できる。
 制御弁60は、操作装置26の有効状態と無効状態とを切り換えるように構成されている。操作装置26の有効状態は、操作者が操作装置26を操作することで関連する被駆動体を動かすことができる状態であり、操作装置26の無効状態は、操作者が操作装置26を操作しても関連する被駆動体を動かすことができない状態である。
 本実施形態では、制御弁60は、パイロットポンプ15と操作装置26とを繋ぐパイロットラインCD1の連通状態と遮断状態とを切り換え可能な電磁弁である。具体的には、制御弁60は、コントローラ30からの指令に応じてパイロットラインCD1の連通状態と遮断状態とを切り換えるように構成されている。
 制御弁60は、不図示のゲートロックレバーに連動するように構成されていてもよい。具体的には、ゲートロックレバーが押し下げられたときにパイロットラインCD1を遮断状態にし、ゲートロックレバーが引き上げられたときにパイロットラインCD1を連通状態にするように構成されていてもよい。
 なお、上述の実施形態では、油圧式パイロット回路を備えた油圧式操作レバーが採用されているが、このような油圧式パイロット回路を備えた油圧式操作レバーではなく、電気式パイロット回路を備えた電気式操作レバーが採用されてもよい。この場合、電気式操作レバーのレバー操作量は、電気信号としてコントローラ30へ入力される。また、パイロットポンプ15と各制御弁のパイロットポートとの間には電磁弁が配置される。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、電気式操作レバーを用いた手動操作が行われると、コントローラ30は、レバー操作量に対応する電気信号によって電磁弁を制御してパイロット圧を増減させることで各制御弁を移動させることができる。なお、各制御弁は電磁スプール弁で構成されていてもよい。この場合、電磁スプール弁は、電気式操作レバーのレバー操作量に対応するコントローラ30からの電気信号に応じて動作する。
 次に、図3を参照し、コントローラ30が被駆動体の動きを制限する処理(以下、「動作制限処理」とする。)について説明する。図3は、動作制限処理の一例のフローチャートである。コントローラ30は、例えば、所定の制御周期で繰り返しこの動作制限処理を実行する。
 最初に、コントローラ30は、図1Bに示すような作業空間WSの内側で物体を検知しているか否かを判定する(ステップST1)。本実施形態では、コントローラ30は、物体検知装置70の出力に基づき、図1Bに示すような検知空間DSに含まれる作業空間WSの内側で物体を検知しているか否かを判定する。物体は、例えば、別のショベルである。物体は、ダンプトラック等の他の機械であってもよい。
 検知空間DSは、ショベル100の周囲に設定される空間である。本実施形態では、検知空間DSは、ショベル100の最大旋回半径よりも大きな距離を半径とする円柱状の空間である。最大旋回半径は、例えば、掘削アタッチメントを外方に最大限伸長させたときの旋回軸とバケット6の爪先との間の距離である。物体検知装置70は、検知空間DSの内側に存在する物体を検知できるように構成されている。
 作業空間WSは、ショベル100が作業可能な空間として検知空間DSの内側に設定される空間である。本実施形態では、作業空間WSは、ショベル100の動作軌道から導き出される範囲である。具体的には、作業空間WSは、最大旋回半径をその半径とする円柱状の空間である。
 作業空間WSの内側で物体を検知していないと判定した場合(ステップST1のNO)、コントローラ30は、今回の動作制限処理を終了させる。
 作業空間WSの内側で物体を検知していると判定した場合(ステップST1のYES)、コントローラ30は、操作装置26が操作されたか否かを判定する(ステップST2)。本実施形態では、コントローラ30は、操作圧センサ29の出力に基づいて操作装置26が操作されたか否かを判定する。例えば、コントローラ30は、操作圧センサ29LAの出力に基づき、アーム閉じ操作が行われたか否か、及び、アーム開き操作が行われたか否かを判定し、操作圧センサ29LBの出力に基づき、左旋回操作が行われたか否か、及び、右旋回操作が行われたか否かを判定する。或いは、コントローラ30は、操作圧センサ29RAの出力に基づき、ブーム上げ操作が行われたか否か、及び、ブーム下げ操作が行われたか否かを判定し、操作圧センサ29RBの出力に基づき、バケット閉じ操作が行われたか否か、及び、バケット開き操作が行われたか否かを判定する。同様に、コントローラ30は、操作圧センサ29DLの出力に基づき、左クローラ1CLの前進操作が行われたか否か、及び、左クローラ1CLの後進操作が行われたか否かを判定し、操作圧センサ29DRの出力に基づき、右クローラ1CRの前進操作が行われたか否か、及び、右クローラ1CRの後進操作が行われたか否かを判定する。
 操作装置26が操作されていないと判定した場合(ステップST2のNO)、コントローラ30は、今回の動作制限処理を終了させる。
 操作装置26が操作されたと判定した場合(ステップST2のYES)、コントローラ30は、操作に対応する被駆動体の動きを制限するか否かを判定する(ステップST3)。被駆動体の動きを制限することは、被駆動体の動きを禁止することを含んでいてもよい。すなわち、コントローラ30は、操作装置26を介した手動操作に対応する被駆動体の動きを許容するか否かを判定する。本実施形態では、コントローラ30は、姿勢センサの出力に基づいてショベル100の姿勢に関する情報を取得し、その情報に基づいて被駆動体の動きが図1Bに示すような可動範囲MSの内側での動きであるか否かを判定する。図1Bでは、可動範囲MSにはドットハッチングが付されている。
 可動範囲MSは、作業空間WSの内側に可変的に設定される、被駆動体が進入可能な範囲である。本実施形態では、可動範囲MSは、検知空間DSにおける物体、又は、検知空間DSに含まれる作業空間WSにおける物体の状態に基づいて可変的に設定される。
 作業空間WSのうちの可動範囲MS以外は制限範囲RS(図4参照。)である。制限範囲RSは、被駆動体の進入が制限される範囲である。図1Bでは、作業空間WSの全てが可動範囲MSとなっているため、制限範囲RSは存在しない。
 コントローラ30は、例えば、検知空間DSにおける物体の状態に基づいて可動範囲MSを可変的に設定するように構成されている。本実施形態では、コントローラ30は、物体検知装置70が検知している物体の現在の状態又は将来の状態に基づいて可動範囲MSを可変的に設定する。将来の状態は、現時点から所定時間が経過した後の状態であり、過去の状態及び現在の状態の少なくとも一方から予測される。典型的には、コントローラ30は、物体検知装置70が検知している物体がショベル100に近づくときに可動範囲MSが小さくなるように、可動範囲MSを可変的に設定する。また、物体検知装置70が検知している物体がショベル100から遠ざかるときに可動範囲MSが大きくなるように、可動範囲MSを可変的に設定する。コントローラ30は、例えば、所定の制御周期毎に可動範囲MSを更新するように構成されていてもよい。
 そして、コントローラ30は、操作装置26を介した手動操作に応じて被駆動体を動かした場合に被駆動体が可動範囲MSから出るか否かを判断する。そして、被駆動体が可動範囲MSから出ると判断した場合、被駆動体の動きが可動範囲MSの内側での動きではないと判定し、被駆動体が可動範囲MSから出ないと判断した場合、被駆動体の動きが可動範囲MSの内側での動きであると判定する。
 コントローラ30は、被駆動体が可動範囲MSから出ないと判断した場合、すなわち、被駆動体の動きが可動範囲MSの内側での動きであると判定した場合、被駆動体の動きを制限しない。例えば、右旋回操作が行われた際に、上部旋回体3を右旋回させたとしても掘削アタッチメントが可動範囲MSから出ないと判断した場合、コントローラ30は、上部旋回体3の右旋回を制限せず、上部旋回体3の右旋回を許容する。
 一方、コントローラ30は、被駆動体が可動範囲MSから出て制限範囲RSに進入すると判断した場合、すなわち、被駆動体の動きが可動範囲MSの内側での動きではないと判定した場合、被駆動体の動きを制限する。例えば、右旋回操作が行われた際に、上部旋回体3を右旋回させると掘削アタッチメントが可動範囲MSから出ると判断した場合、コントローラ30は、上部旋回体3の右旋回を許容せず、上部旋回体3の右旋回を禁止する。
 被駆動体の動きを制限しないと判定した場合(ステップST3のNO)、コントローラ30は、今回の動作制限処理を終了させる。
 被駆動体の動きを制限すると判定した場合(ステップST3のYES)、コントローラ30は、被駆動体の動きを制限する(ステップST4)。本実施形態では、コントローラ30は、被駆動体が既に動いている場合には被駆動体の制動を開始し、被駆動体が未だ動いていない場合には被駆動体の動きを禁止する。
 具体的には、コントローラ30は、制御弁60に対して制御指令を出力してパイロットラインCD1を遮断状態にし、操作装置26を介した操作を無効にする。
 より具体的には、コントローラ30は、上部旋回体3の旋回を禁止する場合、制御弁60に対して制御指令を出力してパイロットラインCD1を遮断状態にし、左操作レバー26Lを介した操作を無効にする。同様に、コントローラ30は、下部走行体1の後進を禁止する場合、制御弁60に対して制御指令を出力してパイロットラインCD1を遮断状態にし、走行レバー26Dを介した操作を無効にする。
 この構成により、コントローラ30は、作業空間WSの内側で物体を検知している場合であっても、被駆動体の動きを一律に制限或いは禁止することなく、その物体とショベル100とを接触させないようにしながら、被駆動体を動作させることができる。そのため、作業空間WSで物体が検知されたときに、ショベル100の動きが一律に制限されてしまうのを防止できる。
 なお、ステップST1とステップST2は順不同であり、ステップST1は、ステップST2が実行された後で実行されてもよく、ステップST2と同時に実行されてもよい。
 また、上述の実施形態では、コントローラ30は、被駆動体の動きを制限する際に、操作装置26を介した全ての操作を無効状態にするが、左操作レバー26L、右操作レバー26R、及び走行レバー26Dのそれぞれを個別に無効状態にできるように構成されていてもよい。例えば、コントローラ30は、左操作レバー26L及び右操作レバー26Rを有効状態としながら、走行レバー26Dを無効状態にできるように構成されていてもよい。このような構成は、例えば、複数の制御弁60を利用することで実現されてもよい。また、上述の実施形態では、制御弁60は、パイロットポンプ15と操作装置26とを繋ぐパイロットラインに配置されているが、操作装置26と制御弁171~176のそれぞれとを繋ぐパイロットラインに配置されていてもよい。例えば、ブーム上げ操作に関する制御弁60は、右操作レバー26Rと制御弁175とを繋ぐパイロットラインに配置されていてもよい。
 ここで、図4~図7を参照し、可動範囲MS及び制限範囲RSの設定例について説明する。図4~図7は、可動範囲MS及び制限範囲RSの設定例を示すショベルの上面図である。図4~図7の例では、ショベル100の検知空間DSに含まれる作業空間WSの内側に別のショベル200が存在している。また、図4~図7では、可動範囲MSにはドットハッチングが付されている。
 ショベル100とショベル200が近接しているこのような状況は、トンネル内、駐機場内、又は解体場内等の狭い場所で複数台の建設機械が同時に作業する場合に発生する。コントローラ30は、このような状況下であっても、以下に示すように可動範囲MS及び制限範囲RSを設定することで、ショベル100の作業効率を低下させることなく、進入物の検知と、その進入物に起因する被駆動体の停止又は減速等の制動とを実現できる。
 コントローラ30は、物体検知装置70の出力に基づいてショベル200の状態に関する情報を取得する。そして、コントローラ30は、その情報に基づいて可動範囲MSを設定し、可動範囲MSにおける被駆動体の動きを許容する。一方で、コントローラ30は、作業空間WSのうちの可動範囲MS以外の範囲である制限範囲RSにおける被駆動体の動きを制限或いは禁止する。ショベル200の状態に関する情報は、例えば、ショベル200の動作軌道に関する情報を含む。
 例えば、コントローラ30は、図4に示すようにショベル200が静止している場合、角度αだけ上部旋回体3を右旋回させることができ、且つ、角度βだけ上部旋回体3を左旋回させることができる範囲として可動範囲MSを設定する。破線で示すショベル100Rは、角度αだけ上部旋回体3を右旋回させたときのショベル100の状態を表し、破線で示すショベル100Lは、角度βだけ上部旋回体3を左旋回させたときのショベル100の状態を表す。
 また、コントローラ30は、図5に示すようにショベル200が右旋回していることを検知した場合、図4の場合よりも可動範囲MSを大きくする。具体的には、コントローラ30は、右旋回できる角度を角度α1だけ大きくする。
 また、コントローラ30は、図6に示すようにショベル200がショベル100から離れる方向に走行していることを検知した場合、図4の場合よりも可動範囲MSを大きくする。具体的には、コントローラ30は、右旋回できる角度を角度α2だけ大きくする。
 一方、コントローラ30は、図7に示すようにショベル200が左旋回していることを検知した場合、図4の場合よりも可動範囲MSを小さくする。具体的には、コントローラ30は、右旋回できる角度を角度α3だけ小さくする。
 このように、コントローラ30は、ショベル100の動作軌道から導き出される作業空間WSのうち、ショベル200の動作軌道から導き出される範囲と重複しない範囲を可動範囲MSとして設定してもよい。
 次に、図8を参照し、動作制限処理の別の一例について説明する。図8は、動作制限処理の別の一例のフローチャートである。コントローラ30は、例えば、所定の制御周期で繰り返しこの動作制限処理を実行する。
 最初に、コントローラ30は、検知空間DSの内側、且つ、作業空間WSの外側で物体を検知しているか否かを判定する(ステップST11)。本実施形態では、コントローラ30は、物体検知装置70の出力に基づき、検知空間DSの内側、且つ、作業空間WSの外側で別のショベル200を検知しているか否かを判定する。
 物体を検知していないと判定した場合(ステップST11のNO)、コントローラ30は、今回の動作制限処理を終了させる。
 物体を検知していると判定した場合(ステップST11のYES)、コントローラ30は、操作装置26が操作されたか否かを判定する(ステップST12)。本実施形態では、コントローラ30は、操作圧センサ29の出力に基づいて操作装置26が操作されたか否かを判定する。
 操作装置26が操作されていないと判定した場合(ステップST12のNO)、コントローラ30は、今回の動作制限処理を終了させる。
 操作装置26が操作されたと判定した場合(ステップST12のYES)、コントローラ30は、物体が作業空間WSに進入するおそれがあるか否かを判定する(ステップST13)。
 物体が作業空間WSに進入するおそれがないと判定した場合(ステップST13のNO)、コントローラ30は、今回の動作制限処理を終了させる。
 物体が作業空間WSに進入するおそれがあると判定した場合(ステップST13のYES)、コントローラ30は、操作に対応する被駆動体の動きを制限するか否かを判定する(ステップST14)。すなわち、コントローラ30は、操作装置26を介した手動操作に対応する被駆動体の動きが許容されるか否かを判定する。本実施形態では、コントローラ30は、姿勢センサの出力に基づいてショベル100の姿勢に関する情報を取得し、その情報に基づいて被駆動体の動きが可動範囲の内側での動きであるか否かを判定する。具体的には、操作装置26を介した手動操作に応じて被駆動体を動かした場合に被駆動体が可動範囲MSから出るか否かを判断する。
 コントローラ30は、被駆動体が可動範囲MSから出ないと判断した場合、被駆動体の動きを制限しない。例えば、右旋回操作が行われた際に、上部旋回体3を右旋回させたとしても掘削アタッチメントが可動範囲MSから出ないと判断した場合、コントローラ30は、上部旋回体3の右旋回を禁止しない、すなわち、上部旋回体3の右旋回を許容する。
 一方、コントローラ30は、被駆動体が可動範囲MSから出ると判断した場合、すなわち、被駆動体が制限範囲RSに進入すると判断した場合、被駆動体の動きを禁止する。例えば、右旋回操作が行われた際に、上部旋回体3を右旋回させると掘削アタッチメントが可動範囲MSから出ると判断した場合、コントローラ30は、上部旋回体3の右旋回を禁止する。
 被駆動体の動きを制限しないと判定した場合(ステップST14のNO)、コントローラ30は、今回の動作制限処理を終了させる。
 被駆動体の動きを制限すると判定した場合(ステップST14のYES)、コントローラ30は、被駆動体の動きを制限する(ステップST15)。本実施形態では、コントローラ30は、被駆動体が既に動いている場合には被駆動体の制動を開始し、被駆動体が未だ動いていない場合には被駆動体の動きを禁止する。
 具体的には、コントローラ30は、制御弁60に対して制御指令を出力してパイロットラインCD1を遮断状態にし、操作装置26を介した操作を無効にする。
 より具体的には、コントローラ30は、上部旋回体3の旋回を禁止する場合、制御弁60に対して制御指令を出力してパイロットラインCD1を遮断状態にし、左操作レバー26Lを介した操作を無効にする。同様に、コントローラ30は、下部走行体1の後進を禁止する場合、制御弁60に対して制御指令を出力してパイロットラインCD1を遮断状態にし、走行レバー26Dを介した操作を無効にする。
 この構成により、コントローラ30は、検知空間DSの内側で且つ作業空間WSの外側に存在するショベル200が作業空間WSに進入するおそれがある場合には、ショベル200が作業空間WSに未だ進入していないときであっても、可動範囲MSを狭めることができる。そのため、コントローラ30は、ショベル100とショベル200との接触をより確実に防止できる。
 なお、ステップST11とステップST12は順不同であり、ステップST11は、ステップST12が実行された後で実行されてもよく、ステップST12と同時に実行されてもよい。
 また、上述の実施形態では、コントローラ30は、被駆動体の動きを制限する際に、操作装置26を介した全ての操作を無効状態にするが、左操作レバー26L、右操作レバー26R及び走行レバー26Dのそれぞれを個別に無効状態にできるように構成されていてもよい。例えば、コントローラ30は、左操作レバー26L及び右操作レバー26Rを有効状態としながら、走行レバー26Dを無効状態にできるように構成されていてもよい。このような構成は、例えば、複数の制御弁60を利用することで実現されてもよい。
 ここで、図9~図11を参照し、可動範囲MS及び制限範囲RSの別の設定例について説明する。図9~図11は、可動範囲MS及び制限範囲RSの別の設定例を示すショベルの上面図である。図9~図11の例では、ショベル100の検知空間DSの内側で、且つ、作業空間WSの外側に別のショベル200が存在している。また、図9~図11では、可動範囲MSにはドットハッチングが付されている。
 コントローラ30は、物体検知装置70の出力に基づいてショベル200の状態に関する情報を取得する。そして、コントローラ30は、その情報に基づいて可動範囲MSを設定し、可動範囲MSにおける被駆動体の動きを許容する。一方で、コントローラ30は、作業空間WSのうちの可動範囲MS以外の範囲である制限範囲RSにおける被駆動体の動きを制限或いは禁止する。ショベル200の状態に関する情報は、例えば、ショベル200の動作軌道に関する情報を含む。
 例えば、コントローラ30は、図9に示すようにショベル200が静止している場合、作業空間WSの全てを可動範囲MSとして設定する。
 また、コントローラ30は、図10に示すようにショベル200が右旋回していることを検知した場合、図9の場合よりも可動範囲MSを小さくする。具体的には、ショベル100の右後方の範囲を制限範囲RSとして設定する。
 また、コントローラ30は、図11に示すようにショベル200がショベル100に近づく方向に走行していることを検知した場合、図9の場合よりも可動範囲MSを小さくする。具体的には、ショベル100の左側方の範囲を制限範囲RSとして設定する。
 このように、コントローラ30は、ショベル100の動作軌道から導き出される作業空間WSのうち、ショベル200の動作軌道から導き出される範囲と重複しない範囲を可動範囲MSとして設定してもよい。
 次に、図12A及び図12Bを参照し、ショベル100の別の構成例について説明する。図12A及び図12Bは、ショベル100の別の構成例を示す図であり、図12Aが側面図を示し、図12Bが上面図を示す。
 図12A及び図12Bに示すショベルは、表示装置45、撮像装置80、通信装置T1及び測位装置P1を搭載している点で、図1に示すショベル100と異なるが、その他の点で共通する。そのため、共通部分の説明を省略し、相違部分を詳説する。
 表示装置45は様々な情報を表示するように構成されている。表示装置45は、CAN等の通信ネットワークを介してコントローラ30に接続されていてもよく、専用線を介してコントローラ30に接続されていてもよい。
 撮像装置80は、ショベル100の周囲を撮像する。図12A及び図12Bに示す例では、上部旋回体3の上面後端に取り付けられた後方カメラ80B、上部旋回体3の上面左端に取り付けられた左方カメラ80L、及び、上部旋回体3の上面右端に取り付けられた右方カメラ80Rを含む。撮像装置80は、前方カメラを含んでいてもよい。
 後方カメラ80Bは後方センサ70Bに隣接して配置され、左方カメラ80Lは左方センサ70Lに隣接して配置され、且つ、右方カメラ80Rは右方センサ70Rに隣接して配置されている。撮像装置80が前方カメラを含む場合、前方カメラは、前方センサ70Fに隣接して配置されていてもよい。
 撮像装置80が撮像した画像は、キャビン10内に設置されている表示装置45に表示される。撮像装置80は、俯瞰画像等の視点変換画像を表示装置45に表示できるように構成されていてもよい。俯瞰画像は、例えば、後方カメラ80B、左方カメラ80L、及び右方カメラ80Rのそれぞれが出力する画像を合成して生成される。
 通信装置T1は、ショベル100の外部にある外部機器との通信を制御するように構成されている。本実施形態では、通信装置T1は、衛星通信網、携帯電話通信網、又はインターネット網等を介した外部機器との通信を制御する。
 測位装置P1は、上部旋回体3の位置を測定するように構成されている。測位装置P1は、上部旋回体3の向きを測定できるように構成されていてもよい。本実施形態では、測位装置P1は、GNSSコンパスであり、上部旋回体3の位置及び向きを検出し、検出値をコントローラ30に対して出力する。
 この構成により、図12A及び図12Bに示すショベル100は、物体検知装置70が検知した物体の画像を表示装置45に表示できる。そのため、ショベル100の操作者は、被駆動体の動作が制限或いは禁止された場合、表示装置45に表示されている画像を見ることで、その原因となった物体の状態をすぐに確認できる。
 また、図12A及び図12Bに示すショベル100は、通信装置T1を介してショベル200と様々な情報をやり取りできるように構成されている。やり取りされる情報は、各ショベルの位置及び向きに関する情報、並びに、操作装置26を介した手動操作に関する情報等の少なくとも1つを含む。そのため、ショベル100は、物体検知装置70を通じて取得する場合よりも詳細なショベル200の状態に関する情報を取得でき、可動範囲MSをより適切に設定できる。
 ここで、図13を参照し、複数のショベルの間での情報の送受信を可能にすることでショベルによる施工を支援する施工支援システムについて説明する。図13は、施工支援システムの一例を示す概略図である。図13で示すように、施工支援システムは、ショベル100、ショベル200、管理装置FS、及び、支援装置としての携帯端末TSを含む。ショベル100、ショベル200、管理装置FS、及び携帯端末TSは、通信ネットワークCNを通じて互いに接続される通信端末として機能する。施工支援システムを構成する管理装置FS及び携帯端末TSのそれぞれは1台であってもよく複数台であってもよい。また、施工支援システムを構成するショベルは3台以上であってもよい。図13の例では、施工支援システムは、1台の管理装置FSと1台の携帯端末TSとを含む。
 図13に示すように、ショベル100及びショベル200のそれぞれは測位装置P1及び通信装置T1を有する。通信装置T1は外部に向けて情報を発信する。通信装置T1は、例えば、管理装置FS、携帯端末TS、及び別の通信装置T1の少なくとも1つが受信可能な情報を発信する。
 管理装置FSは、ショベルの作業を管理する装置であり、例えば、作業現場外の管理センタ等に設置される、表示装置を備えたコンピュータである。管理装置FSは、使用者が持ち運び可能な可搬性のコンピュータであってもよい。携帯端末TSは、表示装置を備えた通信端末であり、スマートフォン、タブレット端末、又はノートパソコン等である。
 ショベル100の通信装置T1は、例えば、ショベル100の位置及び向きに関する情報、又は、操作装置26を介した手動操作に関する情報等を取得すると、通信ネットワークCNを介して管理装置FSに向けて情報を発信する。ショベル200の通信装置T1についても同様である。
 管理装置FSは、例えば、受信した情報に基づいてショベル100とショベル200との相対位置関係に関する情報を導き出し、且つ、ショベル100及びショベル200のそれぞれが動作制限処理を実行する際に必要な情報を生成してもよい。そして、生成した情報をショベル100及びショベル200のそれぞれに送信してもよい。或いは、管理装置FSは、ショベル100から受信した情報をそのままショベル200に送信する中継器として機能してもよい。
 管理装置FSが実行する上述の処理は携帯端末TSで実行されてもよい。また、ショベル100の通信装置T1とショベル200の通信装置T1は管理装置FS及び携帯端末TSを介さずに直接的に情報をやり取りしてもよく、通信ネットワークCNを介さずに直接的に情報をやり取りしてもよい。
 この構成により、ショベル100は、通信装置T1を介してショベル200と様々な情報をやり取りできる。やり取りされる情報は、各ショベルの位置及び向きに関する情報、並びに、操作装置26を介した手動操作に関する情報等の少なくとも1つを含む。そのため、ショベル100は、ショベル200の状態に関する詳細な情報を取得でき、可動範囲MSをより適切に設定できる。ショベル200についても同様である。
 携帯端末TS及び管理装置FSの少なくとも一方は、遠隔操作用の操作装置を備えていてもよい。この場合、操作者は、遠隔操作用の操作装置を用いつつ、ショベル100を操作してもよい。遠隔操作用の操作装置は、例えば、通信ネットワークCNを通じ、ショベル100のコントローラ30に接続される。以下では、ショベル100と管理装置FSとの間での情報のやり取りについて説明するが、以下の説明は、ショベル100と携帯端末TSとの間での情報のやり取り、並びに、ショベル200と携帯端末TS及び管理装置FSのそれぞれとの間での情報のやり取りについても同様に適用される。
 上述のような施工支援システムでは、ショベル100のコントローラ30は、ショベル100における被駆動体の動きを制限したときの時刻及び場所、その際に推定されたショベル100及びショベル200のそれぞれの動作軌道、並びに、その際に設定された可動範囲MS及び制限範囲RS等の少なくとも1つに関する情報を管理装置FSに送信してもよい。その際、コントローラ30は、物体検知装置70の出力、及び、撮像装置80が撮像した画像等の少なくとも1つを管理装置FSに送信してもよい。画像は、被駆動体の動きが制限された期間を含む所定期間中に撮像された複数の画像であってもよい。所定期間は、被駆動体の動きが制限された期間に先行する期間を含んでいてもよく、被駆動体の動きが制限された期間に後続する期間を含んでいてもよい。更に、コントローラ30は、被駆動体の動きが制限された期間を含む所定期間におけるショベル100の作業内容に関する情報、ショベル100の位置及びその推移に関する情報、ショベル100の姿勢及びその推移に関する情報、並びに、掘削アタッチメントの姿勢及びその推移に関する情報等の少なくとも1つを管理装置FSに送信してもよい。更に、ショベル100に搭載されているコントローラ30は、ショベル100の近くにいるショベル200から通信を介して受信する情報を、ショベル100に関する情報として、管理装置FSに送信してもよい。ショベル200から受信する情報は、例えば、ショベル200の作業内容に関する情報、ショベル200の位置及びその推移に関する情報、ショベル200の姿勢及びその推移に関する情報、並びに、ショベル200に取り付けられている掘削アタッチメントの姿勢及びその推移に関する情報等の少なくとも1つである。管理装置FSを利用する管理者が、ショベル100に関する情報を入手できるようにするためである。また、コントローラ30は、作業現場に関する情報を管理装置FSに送信してもよい。作業現場に関する情報は、例えば、ショベル100が作業する場所の種類に関する情報である。ショベル100が作業する場所の種類は、例えば、トンネル内、解体場内、又は駐機場内等である。
 このように、施工支援システムは、被駆動体の動きが制限された期間を含む所定期間中に取得されるショベル100に関する情報が、ショベル100の操作者と管理者又は他のショベルの操作者等とで共有されるのを可能にする。
 上述の通り、本発明の実施形態に係るショベル100は、下部走行体1と、下部走行体1に旋回自在に搭載された上部旋回体3と、上部旋回体3に設けられる物体検知装置70と、上部旋回体3に設けられる制御装置としてのコントローラ30と、アクチュエータによって動かされる被駆動体と、を備えている。物体検知装置70は、ショベル100の周囲に設定された検知空間DSで物体を検知するように構成されている。そして、コントローラ30は、物体検知装置70が検知した物体の状態に基づき、被駆動体が進入可能な範囲である可動範囲MSを変化させるように構成されている。具体的には、コントローラ30は、例えば、検知空間DSにおける物体の状態に基づき、被駆動体が進入可能な範囲である可動範囲MSを可変的に設定し、可動範囲MSにおける被駆動体の動きを許容するように構成されている。この構成により、ショベル100は、近くで作業している他の物体との衝突を避けながら効率的に作業を継続できる。
 例えば、ショベル100の操作者は、近くで作業している別のショベル200との距離を目視で判断するのが困難な場合がある。特に、ショベル100の操作者は、ショベル100の後方で作業しているショベル200とショベル100との距離を目視で判断するのが困難な場合がある。そのため、ショベル100の操作者は、ショベル100を旋回させたり、或いは、後進させたりする際に、ショベル100をショベル200に接触させてしまうおそれがある。しかしながら、ショベル100は、物体検知装置70の出力に基づいてショベル200の状態に関する情報を取得できる。そのため、ショベル100は、必要に応じて旋回又は走行を制限或いは停止させることができる。そのため、ショベル100は、ショベル100とショベル200との接触を防止でき、ショベル100の操作者の負担を軽減でき、更には、ショベル100の作業効率を向上させることができる。
 検知空間DSにおける物体の状態は、その物体の現在の状態又は将来の状態であってもよい。すなわち、コントローラ30は、検知空間DSにおけるショベル200の現在の状態又は将来の状態に基づき、ショベル100の被駆動体が進入可能な範囲である可動範囲MSを可変的に設定し、可動範囲MSにおける被駆動体の動きを許容するように構成されていてもよい。ショベル200の将来の状態は、ショベル200の過去の状態及び現在の状態の少なくとも一方から予測されてもよい。
 コントローラ30は、物体検知装置70が検知しているショベル200がショベル100に近づいているとき或いは近づくことが予測されたときに可動範囲MSが小さくなるように、可動範囲MSを可変的に設定してもよい。また、コントローラ30は、物体検知装置70が検知しているショベル200がショベル100から遠ざかっているとき或いは遠ざかることが予測されたときに可動範囲MSが小さくなるように、可動範囲MSを可変的に設定してもよい。
 コントローラ30は、物体検知装置70、及び、検知空間DSにおけるショベル200との通信を制御する通信装置T1の少なくとも1つを介して検知空間DSにおけるショベル200の状態に関する情報を取得するように構成されていてもよい。
 コントローラ30は、検知空間DSの内側で且つ検知空間DSに含まれる作業空間WSの外側に存在するショベル200の動きを監視し、ショベル200が作業空間WSに進入するおそれがある場合に、ショベル100の被駆動体を制動させるように構成されていてもよい。具体的には、コントローラ30は、上部旋回体3の旋回を制動させるように構成されていてもよく、下部走行体1の走行を制動させるように構成されていてもよい。
 コントローラ30は、検知空間DSの内側で且つ検知空間DSに含まれる作業空間WSの外側に存在するショベル200の動きを監視し、ショベル200が作業空間WSに進入するおそれがある場合に、ショベル200の状態に基づいて可動範囲MSを可変的に設定し、可動範囲MSにおけるショベル100の被駆動体の動きを許容するように構成されていてもよい。
 ショベル100の被駆動体は、下部走行体1、旋回機構2、上部旋回体3、ブーム4、アーム5、及びバケット6の少なくとも1つを含んでいてもよい。
 コントローラ30は、例えば、過去の所定期間にわたる物体検知装置70の出力に基づき、検知空間DSの内側で且つ検知空間DSに含まれる作業空間WSの外側に存在するショベル200が、作業空間WSに進入するおそれがあるか否かを判断するように構成されていてもよい。
 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形又は置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。
 例えば、上述の実施形態では、油圧式パイロット回路を備えた油圧式操作レバーが開示されている。具体的には、アーム操作レバーとしての左操作レバー26Lに関する油圧式パイロット回路では、パイロットポンプ15から左操作レバー26Lの遠隔操作弁へ供給される作動油が、左操作レバー26Lの傾倒によって開閉される遠隔操作弁の開度に応じた流量で、制御弁176のパイロットポートへ伝達される。
 但し、このような油圧式パイロット回路を備えた油圧式操作レバーではなく、電気式パイロット回路を備えた電気式操作レバーが採用されてもよい。この場合、電気式操作レバーのレバー操作量は、電気信号としてコントローラ30へ入力される。また、パイロットポンプ15と各制御弁のパイロットポートとの間には電磁弁が配置される。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、電気式操作レバーを用いた手動操作が行われると、コントローラ30は、レバー操作量に対応する電気信号によって電磁弁を制御してパイロット圧を増減させることで各制御弁をコントロールバルブ17内で移動させることができる。なお、各制御弁は電磁スプール弁で構成されていてもよい。この場合、電磁スプール弁は、電気式操作レバーのレバー操作量に対応するコントローラ30からの電気信号に応じて動作する。
 電気式操作レバーを備えた電気式操作システムが採用された場合、コントローラ30は、油圧式操作レバーを備えた油圧式操作システムが採用される場合に比べ、自律制御機能を容易に実行できる。図14は、電気式操作システムの構成例を示す。具体的には、図14の電気式操作システムは、ブーム操作システムの一例であり、主に、パイロット圧作動型のコントロールバルブ17と、電気式操作レバーとしてのブーム操作レバー26Aと、コントローラ30と、ブーム上げ操作用の電磁弁61と、ブーム下げ操作用の電磁弁62とで構成されている。図14の電気式操作システムは、アーム操作システム及びバケット操作システム等にも同様に適用され得る。
 パイロット圧作動型のコントロールバルブ17は、ブームシリンダ7に関する制御弁175(図2参照。)、アームシリンダ8に関する制御弁176(図2参照。)、及び、バケットシリンダ9に関する制御弁174(図2参照。)等を含む。電磁弁61は、パイロットポンプ15と制御弁175の上げ側パイロットポートとを繋ぐ管路の流路面積を調節できるように構成されている。電磁弁62は、パイロットポンプ15と制御弁175の下げ側パイロットポートとを繋ぐ管路の流路面積を調節できるように構成されている。
 手動操作が行われる場合、コントローラ30は、ブーム操作レバー26Aの操作信号生成部が出力する操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。ブーム操作レバー26Aの操作信号生成部が出力する操作信号は、ブーム操作レバー26Aの操作量及び操作方向に応じて変化する電気信号である。
 具体的には、コントローラ30は、ブーム操作レバー26Aがブーム上げ方向に操作された場合、レバー操作量に応じたブーム上げ操作信号(電気信号)を電磁弁61に対して出力する。電磁弁61は、ブーム上げ操作信号(電気信号)に応じて流路面積を調節し、制御弁175の上げ側パイロットポートに作用する、ブーム上げ操作信号(圧力信号)としてのパイロット圧を制御する。同様に、コントローラ30は、ブーム操作レバー26Aがブーム下げ方向に操作された場合、レバー操作量に応じたブーム下げ操作信号(電気信号)を電磁弁62に対して出力する。電磁弁62は、ブーム下げ操作信号(電気信号)に応じて流路面積を調節し、制御弁175の下げ側パイロットポートに作用する、ブーム下げ操作信号(圧力信号)としてのパイロット圧を制御する。
 自律制御を実行する場合、コントローラ30は、例えば、ブーム操作レバー26Aの操作信号生成部が出力する操作信号(電気信号)に応じる代わりに、補正操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。補正操作信号は、コントローラ30が生成する電気信号であってもよく、コントローラ30以外の外部の制御装置等が生成する電気信号であってもよい。
 本願は、2018年3月23日に出願した日本国特許出願2018-057173号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1C・・・クローラ 1CL・・・左クローラ 1CR・・・右クローラ 2・・・旋回機構 2A・・・旋回用油圧モータ 2M・・・走行用油圧モータ 2ML・・・左走行用油圧モータ 2MR・・・右走行用油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13・・・レギュレータ 14・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブ 18・・・絞り 19・・・制御圧センサ 26・・・操作装置 26A・・・ブーム操作レバー 26D・・・走行レバー 26DL・・・左走行レバー 26DR・・・右走行レバー 26L・・・左操作レバー 26R・・・右操作レバー 28・・・吐出圧センサ 29、29DL、29DR、29LA、29LB、29RA、29RB・・・操作圧センサ 30・・・コントローラ 40・・・センターバイパス管路 42・・・パラレル管路 45・・・表示装置 60・・・制御弁 61、62・・・電磁弁 70・・・物体検知装置 70F・・・前方センサ 70B・・・後方センサ 70L・・・左方センサ 70R・・・右方センサ 80・・・撮像装置 80B・・・後方カメラ 80L・・・左方カメラ 80R・・・右方カメラ 85・・・向き検出装置 100・・・ショベル 171~176・・・制御弁 200・・・ショベル CD1・・・パイロットライン S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回角速度センサ P1・・・測位装置 T1・・・通信装置

Claims (15)

  1.  下部走行体と、
     前記下部走行体に旋回自在に搭載された上部旋回体と、
     前記上部旋回体に設けられる物体検知装置と、
     前記上部旋回体に設けられる制御装置と、
     アクチュエータによって動かされる被駆動体と、を備え、
     前記物体検知装置は、ショベルの周囲に設定された検知空間で物体を検知するように構成され、且つ、
     前記制御装置は、前記物体検知装置が検知した物体の状態に基づき、前記被駆動体が進入可能な範囲である可動範囲を変化させる、
     ショベル。
  2.  前記物体検知装置が検知した物体の状態に関する情報は、該物体の位置の推移に関する情報、及び、該物体の姿勢の推移に関する情報を含む、
     請求項1に記載のショベル。
  3.  前記制御装置は、過去の所定期間にわたる前記物体検知装置の出力に基づき、前記検知空間の内側で且つ前記検知空間に含まれる作業空間の外側に存在する物体が、該作業空間に進入するおそれがあるか否かを判断するように構成されている、
     請求項1に記載のショベル。
  4.  前記制御装置は、前記物体検知装置、及び、前記検知空間における物体との通信を制御する通信装置の少なくとも1つを介して前記検知空間における物体の状態に関する情報を取得するように構成されている、
     請求項1に記載のショベル。
  5.  下部走行体と、
     前記下部走行体に旋回自在に搭載された上部旋回体と、
     前記上部旋回体に設けられる物体検知装置と、
     前記上部旋回体に設けられる制御装置と、
     アクチュエータによって動かされる被駆動体と、を備え、
     前記物体検知装置は、ショベルの周囲に設定された検知空間で物体を検知するように構成され、且つ、
     前記制御装置は、前記検知空間における物体の状態に基づき、前記被駆動体が進入可能な範囲である可動範囲を可変的に設定し、該可動範囲における前記被駆動体の動きを許容するように構成されている、
     ショベル。
  6.  前記検知空間における物体の状態は、該物体の現在の状態又は将来の状態である、
     請求項5に記載のショベル。
  7.  前記制御装置は、前記検知空間における物体が前記ショベルに近づいているとき或いは近づくことが予測されたときに、前記可動範囲が小さくなるように前記可動範囲を可変的に設定し、且つ、前記検知空間における物体が前記ショベルから遠ざかっているとき或いは遠ざかることが予測されたときに、前記可動範囲が大きくなるように前記可動範囲を可変的に設定するように構成されている、
     請求項5に記載のショベル。
  8.  前記制御装置は、前記検知空間の内側で且つ前記検知空間に含まれる作業空間の外側に存在する物体の動きを監視し、該物体が該作業空間に進入するおそれがある場合に、前記被駆動体を制動させるように構成されている、
     請求項5に記載のショベル。
  9.  前記制御装置は、前記検知空間の内側で且つ前記検知空間に含まれる作業空間の外側に存在する物体の動きを監視し、該物体が該作業空間に進入するおそれがある場合に、該物体の状態に基づいて前記可動範囲を可変的に設定し、該可動範囲における前記被駆動体の動きを許容するように構成されている、
     請求項5に記載のショベル。
  10.  前記被駆動体は、前記上部旋回体、前記下部走行体、旋回機構、ブーム、アーム及びバケットの少なくとも1つを含む、
     請求項5に記載のショベル。
  11.  前記制御装置は、通信装置を介して前記検知空間における物体の作業内容に関する情報を受信するように構成されている、
     請求項1に記載のショベル。
  12.  前記制御装置は、通信装置を介して、前記検知空間における物体の位置の推移に関する情報、及び、前記検知空間における物体の姿勢の推移に関する情報を受信するように構成されている、
     請求項1に記載のショベル。
  13.  前記制御装置は、通信装置を介して、前記検知空間における物体の位置の推移に関する情報を受信するように構成されている、
     請求項1に記載のショベル。
  14.  前記制御装置は、前記ショベルの位置の推移に関する情報、及び、前記ショベルの姿勢の推移に関する情報を、管理装置に送信するように構成されている、
     請求項1に記載のショベル。
  15.  前記制御装置は、前記検知空間における物体として検知した他のショベルの位置の推移に関する情報、及び、前記検知空間における物体として検知した他のショベルの姿勢の推移に関する情報を、管理装置に送信するように構成されている、
     請求項1に記載のショベル。
PCT/JP2019/011248 2018-03-23 2019-03-18 ショベル WO2019181874A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19771571.7A EP3770334B1 (en) 2018-03-23 2019-03-18 Shovel
KR1020207028048A KR102588568B1 (ko) 2018-03-23 2019-03-18 쇼벨
CN201980021340.3A CN111902582B (zh) 2018-03-23 2019-03-18 挖土机
JP2020507801A JPWO2019181874A1 (ja) 2018-03-23 2019-03-18 ショベル
US17/025,234 US20210002859A1 (en) 2018-03-23 2020-09-18 Shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057173 2018-03-23
JP2018-057173 2018-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/025,234 Continuation US20210002859A1 (en) 2018-03-23 2020-09-18 Shovel

Publications (1)

Publication Number Publication Date
WO2019181874A1 true WO2019181874A1 (ja) 2019-09-26

Family

ID=67987731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011248 WO2019181874A1 (ja) 2018-03-23 2019-03-18 ショベル

Country Status (6)

Country Link
US (1) US20210002859A1 (ja)
EP (1) EP3770334B1 (ja)
JP (1) JPWO2019181874A1 (ja)
KR (1) KR102588568B1 (ja)
CN (1) CN111902582B (ja)
WO (1) WO2019181874A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010249A1 (ja) * 2019-07-12 2021-01-21 株式会社小松製作所 作業機械および作業機械の制御システム
WO2021192114A1 (ja) * 2020-03-25 2021-09-30 日立建機株式会社 作業機械の運転支援システム
WO2022117226A1 (en) * 2020-12-02 2022-06-09 Caterpillar Sarl Machine with means for detecting objects within a working area and corresponding method
JPWO2022208725A1 (ja) * 2021-03-31 2022-10-06
EP4050162A4 (en) * 2019-12-10 2023-01-18 Kobelco Construction Machinery Co., Ltd. REMOTE CONTROL ASSISTANCE SYSTEM FOR WORK MACHINE
WO2023286351A1 (ja) * 2021-07-13 2023-01-19 コベルコ建機株式会社 作業機械の異常動作を検出するシステム
WO2023100566A1 (ja) * 2021-11-30 2023-06-08 株式会社小松製作所 作業機械および作業機械の制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883256B2 (en) * 2018-05-25 2021-01-05 Deere & Company Object responsive control system for a work machine
US11987961B2 (en) 2021-03-29 2024-05-21 Joy Global Surface Mining Inc Virtual field-based track protection for a mining machine
US20220307225A1 (en) * 2021-03-29 2022-09-29 Joy Global Surface Mining Inc Systems and methods for mitigating collisions between a mining machine and an exclusionary zone
US11939748B2 (en) 2021-03-29 2024-03-26 Joy Global Surface Mining Inc Virtual track model for a mining machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321304A (ja) * 1992-05-26 1993-12-07 Yutani Heavy Ind Ltd 建設機械の安全装置
JP2002047692A (ja) * 2000-08-02 2002-02-15 Komatsu Ltd 作業用自走機械
JP2010198519A (ja) * 2009-02-27 2010-09-09 Hitachi Constr Mach Co Ltd 周囲監視装置
JP2013205956A (ja) * 2012-03-27 2013-10-07 Sumitomo Heavy Ind Ltd 画像生成方法、画像生成装置、及び操作支援システム
JP2016045674A (ja) 2014-08-22 2016-04-04 株式会社Ihiエアロスペース 作業用車両
WO2017184068A1 (en) * 2016-04-21 2017-10-26 Construction Tools Pc Ab Safety system, method and computer program for remotely controlled work vehicles
JP2018057173A (ja) 2016-09-29 2018-04-05 ラピスセミコンダクタ株式会社 無線受電装置、無線給電システム、及び無線受電方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321304A (en) * 1976-08-10 1978-02-27 Toshiba Corp Steam generator
JPS6030778B2 (ja) * 1982-04-20 1985-07-18 小松精練株式会社 高圧液流染色装置
JPH06136782A (ja) * 1992-10-26 1994-05-17 Yutani Heavy Ind Ltd 建設機械の作業範囲制御方法
JP4262180B2 (ja) * 2004-09-21 2009-05-13 株式会社小松製作所 移動機械の管理システム
CN101500840B (zh) * 2006-08-04 2013-10-16 易斯麦私人有限公司 一种减少第一对象与第二对象之间碰撞概率的方法
US9038835B2 (en) * 2012-02-22 2015-05-26 Total Support, LLC Crane mat carrier
DE102013212683A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen oder Vermeiden einer Kollision
US20170073935A1 (en) * 2015-09-11 2017-03-16 Caterpillar Inc. Control System for a Rotating Machine
US9454147B1 (en) * 2015-09-11 2016-09-27 Caterpillar Inc. Control system for a rotating machine
AU2015319797C1 (en) * 2015-10-30 2018-08-16 Komatsu Ltd. Mine management system and mine management method
WO2019168122A1 (ja) * 2018-02-28 2019-09-06 住友建機株式会社 ショベル
WO2019178506A1 (en) * 2018-03-15 2019-09-19 Modular Mining Systems, Inc. Projected zone overlap
EP3779070A4 (en) * 2018-03-26 2021-11-17 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. EXCAVATOR
US20220275606A1 (en) * 2019-07-17 2022-09-01 Nec Corporation Method for generating excavation trajectory, system, and excavation trajectory generation apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321304A (ja) * 1992-05-26 1993-12-07 Yutani Heavy Ind Ltd 建設機械の安全装置
JP2002047692A (ja) * 2000-08-02 2002-02-15 Komatsu Ltd 作業用自走機械
JP2010198519A (ja) * 2009-02-27 2010-09-09 Hitachi Constr Mach Co Ltd 周囲監視装置
JP2013205956A (ja) * 2012-03-27 2013-10-07 Sumitomo Heavy Ind Ltd 画像生成方法、画像生成装置、及び操作支援システム
JP2016045674A (ja) 2014-08-22 2016-04-04 株式会社Ihiエアロスペース 作業用車両
WO2017184068A1 (en) * 2016-04-21 2017-10-26 Construction Tools Pc Ab Safety system, method and computer program for remotely controlled work vehicles
JP2018057173A (ja) 2016-09-29 2018-04-05 ラピスセミコンダクタ株式会社 無線受電装置、無線給電システム、及び無線受電方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010249A1 (ja) * 2019-07-12 2021-01-21 株式会社小松製作所 作業機械および作業機械の制御システム
JP2021014736A (ja) * 2019-07-12 2021-02-12 株式会社小松製作所 作業機械および作業機械の制御システム
KR102631627B1 (ko) 2019-07-12 2024-01-30 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계 및 작업 기계의 제어 시스템
JP7340710B2 (ja) 2019-07-12 2023-09-07 株式会社小松製作所 作業機械および作業機械の制御システム
KR20210152558A (ko) * 2019-07-12 2021-12-15 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계 및 작업 기계의 제어 시스템
JP7289232B2 (ja) 2019-07-12 2023-06-09 株式会社小松製作所 作業機械および作業機械の制御システム
EP4050162A4 (en) * 2019-12-10 2023-01-18 Kobelco Construction Machinery Co., Ltd. REMOTE CONTROL ASSISTANCE SYSTEM FOR WORK MACHINE
JPWO2021192114A1 (ja) * 2020-03-25 2021-09-30
KR20220031077A (ko) * 2020-03-25 2022-03-11 히다찌 겐끼 가부시키가이샤 작업 기계의 운전 지원 시스템
KR102647539B1 (ko) 2020-03-25 2024-03-15 히다찌 겐끼 가부시키가이샤 작업 기계의 운전 지원 시스템
WO2021192114A1 (ja) * 2020-03-25 2021-09-30 日立建機株式会社 作業機械の運転支援システム
JP7286874B2 (ja) 2020-03-25 2023-06-05 日立建機株式会社 作業機械の運転支援システム
WO2022117226A1 (en) * 2020-12-02 2022-06-09 Caterpillar Sarl Machine with means for detecting objects within a working area and corresponding method
US11898331B2 (en) 2020-12-02 2024-02-13 Caterpillar Sarl System and method for detecting objects within a working area
JP7254254B2 (ja) 2021-03-31 2023-04-07 日立建機株式会社 作業機械および作業機械の制御システム
WO2022208725A1 (ja) * 2021-03-31 2022-10-06 日立建機株式会社 作業機械および作業機械の制御システム
JPWO2022208725A1 (ja) * 2021-03-31 2022-10-06
KR102643531B1 (ko) 2021-03-31 2024-03-06 히다치 겡키 가부시키 가이샤 작업 기계 및 작업 기계의 제어 시스템
KR20220137039A (ko) * 2021-03-31 2022-10-11 히다치 겡키 가부시키 가이샤 작업 기계 및 작업 기계의 제어 시스템
WO2023286351A1 (ja) * 2021-07-13 2023-01-19 コベルコ建機株式会社 作業機械の異常動作を検出するシステム
WO2023100566A1 (ja) * 2021-11-30 2023-06-08 株式会社小松製作所 作業機械および作業機械の制御方法

Also Published As

Publication number Publication date
EP3770334A1 (en) 2021-01-27
CN111902582B (zh) 2022-08-16
EP3770334A4 (en) 2021-08-04
EP3770334B1 (en) 2024-03-13
CN111902582A (zh) 2020-11-06
KR20200130340A (ko) 2020-11-18
US20210002859A1 (en) 2021-01-07
JPWO2019181874A1 (ja) 2021-03-18
KR102588568B1 (ko) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2019181874A1 (ja) ショベル
WO2019189013A1 (ja) ショベル
EP4012111B1 (en) Excavator
WO2019181872A1 (ja) ショベル
US20210025135A1 (en) Shovel
WO2019182066A1 (ja) ショベル
JPWO2019151335A1 (ja) ショベル及びショベルの管理システム
CN113039327B (zh) 挖土机、挖土机的控制装置
JP2023115325A (ja) ショベル
CN113167051A (zh) 挖土机、挖土机的控制装置
CN113056591A (zh) 挖土机、挖土机的控制装置及挖土机的支援装置
JP2023184732A (ja) ショベル
JP7275108B2 (ja) ショベル
CN113677855A (zh) 挖土机及挖土机的控制装置
JP2021025258A (ja) ショベル
EP4317604A1 (en) Excavator
JP2023176796A (ja) ショベル
JP2022146687A (ja) ショベル
JP2021155937A (ja) 施工支援システム
JP2010255248A (ja) オフセットブーム式油圧ショベルの作業機制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028048

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019771571

Country of ref document: EP