WO2019189013A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2019189013A1
WO2019189013A1 PCT/JP2019/012563 JP2019012563W WO2019189013A1 WO 2019189013 A1 WO2019189013 A1 WO 2019189013A1 JP 2019012563 W JP2019012563 W JP 2019012563W WO 2019189013 A1 WO2019189013 A1 WO 2019189013A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
boom
controller
excavator
turning
Prior art date
Application number
PCT/JP2019/012563
Other languages
English (en)
French (fr)
Inventor
貴志 西
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to JP2020510818A priority Critical patent/JP7383599B2/ja
Priority to EP19776625.6A priority patent/EP3779070A4/en
Priority to CN201980022162.6A priority patent/CN111919003A/zh
Priority to KR1020207028084A priority patent/KR102687700B1/ko
Publication of WO2019189013A1 publication Critical patent/WO2019189013A1/ja
Priority to US17/030,867 priority patent/US20210002852A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/434Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like providing automatic sequences of movements, e.g. automatic dumping or loading, automatic return-to-dig
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2041Automatic repositioning of implements, i.e. memorising determined positions of the implement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • This disclosure relates to excavators.
  • an excavator for preventing contact between an attachment and a dump truck in an operation of loading excavated earth and sand on the dump truck is known (see Patent Document 1).
  • This shovel generates a trajectory line followed by the tip of the bucket based on the distance between the shovel and the dump truck and the height of the dump truck. Then, when the boom raising and turning operation is performed, the flow rate of the hydraulic oil supplied to each of the boom cylinder and the turning hydraulic motor is controlled so that the tip of the bucket follows the locus line.
  • the excavator may not be able to cope with a change in the state of the dump truck, which is an object detected by a camera or the like.
  • the excavator causes the bucket to contact the automatic opening / closing seat. There is a fear.
  • An excavator includes a lower traveling body, an upper swinging body that is turnably mounted on the lower traveling body, a surrounding monitoring device that is attached to the upper rotating body, and an output of the surrounding monitoring device. And a control device for recognizing the state of the object based on the control device.
  • the above-described means can provide an excavator that can more reliably prevent contact between the attachment in the loading operation and the detected object.
  • FIG. 1A It is a side view of the shovel which concerns on embodiment of this invention. It is a top view of the shovel which concerns on embodiment of this invention.
  • FIG. 1A It is the schematic which shows the structural example of the hydraulic system mounted in the shovel of FIG. 1A. It is a figure which shows the positional relationship of a shovel and a dump truck. It is a figure which shows the positional relationship of a shovel and a dump truck. It is a rear view of a dump truck. It is a right view of a dump truck. It is a rear view of a bucket and a dump truck. It is a rear view of a bucket and a dump truck. It is a figure which shows another structural example of the hydraulic system mounted in the shovel of FIG. 1A.
  • FIG. 1A is a side view of the excavator 100
  • FIG. 1B is a top view of the excavator 100.
  • the lower traveling body 1 of the excavator 100 includes a crawler 1C.
  • the crawler 1 ⁇ / b> C is driven by a traveling hydraulic motor 2 ⁇ / b> M mounted on the lower traveling body 1.
  • the crawler 1C includes a left crawler 1CL and a right crawler 1CR.
  • the left crawler 1CL is driven by a left traveling hydraulic motor 2ML
  • the right crawler 1CR is driven by a right traveling hydraulic motor 2MR.
  • the upper traveling body 3 is mounted on the lower traveling body 1 through a turning mechanism 2 so as to be capable of turning.
  • the turning mechanism 2 is driven by a turning hydraulic motor 2 ⁇ / b> A mounted on the upper turning body 3.
  • the turning hydraulic motor 2A may be a turning motor generator as an electric actuator.
  • Boom 4 is attached to upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • the boom 4, the arm 5, and the bucket 6 constitute an excavation attachment AT that is an example of an attachment.
  • the boom 4 is driven by a boom cylinder 7, the arm 5 is driven by an arm cylinder 8, and the bucket 6 is driven by a bucket cylinder 9.
  • the boom 4 is rotatably supported by the upper swing body 3.
  • a boom angle sensor S1 is attached to the boom 4.
  • Boom angle sensor S1 can detect the boom angle beta 1 is a rotational angle of the boom 4.
  • Boom angle beta 1 is, for example, an increase in the angle from the state of being most lower the boom 4. Therefore, the boom angle beta 1 is maximized when the was the most elevated boom 4.
  • the arm 5 is rotatably supported with respect to the boom 4.
  • An arm angle sensor S2 is attached to the arm 5.
  • Arm angle sensor S2 can detect the arm angle beta 2 is a rotational angle of the arm 5.
  • Arm angle beta 2 is, for example, an opening angle of the most closed arm 5. Therefore, the arm angle beta 2 is maximized when the most open arm 5.
  • the bucket 6 is supported so as to be rotatable with respect to the arm 5.
  • a bucket angle sensor S3 is attached to the bucket 6.
  • Bucket angle sensor S3 can detect the bucket angle beta 3 is a rotational angle of the bucket 6.
  • the bucket angle ⁇ 3 is an opening angle from a state where the bucket 6 is most closed. Therefore, the bucket angle beta 3 is maximized when the most open bucket 6.
  • each of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 includes a combination of an acceleration sensor and a gyro sensor.
  • at least one of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 may be configured by only an acceleration sensor.
  • the boom angle sensor S1 may be a stroke sensor attached to the boom cylinder 7, or may be a rotary encoder, a potentiometer, an inertial measurement device, or the like. The same applies to the arm angle sensor S2 and the bucket angle sensor S3.
  • the upper swing body 3 is provided with a cabin 10 as a cab and a power source such as an engine 11 is mounted. Further, an object detection device 70, an imaging device 80, a body tilt sensor S4, a turning angular velocity sensor S5, and the like are attached to the upper swing body 3. Inside the cabin 10, an operation device 26, a controller 30, a display device D1, a sound output device D2, and the like are provided.
  • the side of the upper swing body 3 where the excavation attachment AT is attached is referred to as the front, and the side where the counterweight is attached is referred to as the rear.
  • the object detection device 70 is an example of a surrounding monitoring device, and is configured to detect an object existing around the excavator 100.
  • the object is, for example, a person, an animal, a vehicle, a construction machine, a building, a wall, a fence, or a hole.
  • the object detection device 70 is, for example, a camera, an ultrasonic sensor, a millimeter wave radar, a stereo camera, a LIDAR, a distance image sensor, or an infrared sensor.
  • the object detection device 70 is attached to the front sensor 70F attached to the front upper end of the cabin 10, the rear sensor 70B attached to the upper rear end of the upper swing body 3, and the upper left end of the upper swing body 3.
  • the left sensor 70L and the right sensor 70R attached to the upper right end of the upper swing body 3 are included.
  • the object detection device 70 may be configured to detect a predetermined object in a predetermined area set around the excavator 100.
  • the object detection device 70 may be configured to be able to distinguish between a person and an object other than a person.
  • the object detection device 70 may be configured to calculate a distance from the object detection device 70 or the excavator 100 to the recognized object.
  • the imaging device 80 is another example of a surrounding monitoring device, and images the surroundings of the excavator 100.
  • the imaging device 80 includes a rear camera 80B attached to the upper rear end of the upper swing body 3, a left camera 80L attached to the upper left end of the upper swing body 3, and the upper right end of the upper swing body 3.
  • the right camera 80R attached to is included.
  • the imaging device 80 may include a front camera.
  • the rear camera 80B is disposed adjacent to the rear sensor 70B
  • the left camera 80L is disposed adjacent to the left sensor 70L
  • the right camera 80R is disposed adjacent to the right sensor 70R.
  • the front camera may be disposed adjacent to the front sensor 70F.
  • the image captured by the imaging device 80 is displayed on the display device D1.
  • the imaging device 80 may be configured to display a viewpoint conversion image such as a bird's-eye view image on the display device D1.
  • the overhead image is generated by, for example, combining images output from the rear camera 80B, the left camera 80L, and the right camera 80R.
  • the machine body inclination sensor S4 is configured to detect the inclination of the upper swing body 3 with respect to a predetermined plane.
  • the body inclination sensor S4 is an acceleration sensor that detects an inclination angle (roll angle) about the front-rear axis and an inclination angle (pitch angle) about the left-right axis with respect to the horizontal plane.
  • the front and rear axes and the left and right axes of the upper swing body 3 pass through a shovel center point that is one point on the swing axis of the shovel 100 and orthogonal to each other.
  • Airframe tilt sensor S4 may be configured by a combination of an acceleration sensor and a gyro sensor.
  • the turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper turning body 3.
  • the turning angular velocity sensor S5 is a gyro sensor.
  • the turning angular velocity sensor S5 may be a resolver or a rotary encoder.
  • the turning angular velocity sensor S5 may detect the turning speed.
  • the turning speed may be calculated from the turning angular speed.
  • each of the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the body tilt sensor S4, and the turning angular velocity sensor S5 is also referred to as an attitude detection device.
  • the display device D1 is configured to display various information.
  • the sound output device D2 is configured to output sound.
  • the operating device 26 is a device used by an operator for operating the actuator.
  • the controller 30 is a control device for controlling the excavator 100.
  • the controller 30 is configured by a computer including a CPU, a volatile storage device, a nonvolatile storage device, and the like. And the controller 30 reads the program corresponding to each function from a non-volatile storage device, and performs it.
  • Each function includes, for example, a machine guidance function for guiding manual operation of the shovel 100 by the operator, a machine control function for automatically supporting manual operation of the shovel 100 by the operator, and the like.
  • FIG. 2 is a diagram illustrating a configuration example of a hydraulic system mounted on the excavator 100.
  • a mechanical power transmission system, a hydraulic oil line, a pilot line, and an electric control system are respectively represented by a double line, a solid line, a broken line, and Shown with dotted lines.
  • the hydraulic system circulates hydraulic oil from the main pump 14 as a hydraulic pump driven by the engine 11 to the hydraulic oil tank through the center bypass pipeline 40.
  • the main pump 14 includes a left main pump 14L and a right main pump 14R.
  • the center bypass conduit 40 includes a left center bypass conduit 40L and a right center bypass conduit 40R.
  • the left center bypass conduit 40L is a hydraulic oil line that communicates with the control valves 151, 153, 155, and 157 disposed in the control valve, and the right center bypass conduit 40R is a control fluid disposed in the control valve.
  • a hydraulic oil line that communicates the valves 150, 152, 154, 156, and 158.
  • the control valve 150 is a traveling straight valve.
  • the control valve 151 supplies the hydraulic oil discharged from the left main pump 14L to the left traveling hydraulic motor 2ML, and the hydraulic oil flows to discharge the hydraulic oil in the left traveling hydraulic motor 2ML to the hydraulic oil tank. This is a spool valve that switches between the two.
  • the control valve 152 supplies the hydraulic oil discharged from the right main pump 14R to the right traveling hydraulic motor 2MR, and the hydraulic oil flows to discharge the hydraulic oil in the right traveling hydraulic motor 2MR to the hydraulic oil tank. This is a spool valve that switches between the two.
  • the control valve 153 is a spool valve that switches the flow of hydraulic oil to supply the hydraulic oil discharged from the left main pump 14L to the boom cylinder 7.
  • the control valve 154 is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the boom cylinder 7 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank. .
  • the control valve 155 is a spool valve that supplies the hydraulic oil discharged from the left main pump 14L to the arm cylinder 8 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank.
  • the control valve 156 is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged from the right main pump 14 ⁇ / b> R to the arm cylinder 8.
  • the control valve 157 is a spool valve that switches the flow of hydraulic oil so that the hydraulic oil discharged from the left main pump 14L is circulated by the turning hydraulic motor 2A.
  • the control valve 158 is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the bucket cylinder 9 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank. .
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 according to the discharge pressure of the main pump 14 (for example, by controlling the total horsepower).
  • the regulator 13 includes a left regulator 13L corresponding to the left main pump 14L and a right regulator 13R corresponding to the right main pump 14R.
  • the boom operation lever 26A is an operation device for operating the raising and lowering of the boom 4.
  • the boom operation lever 26 ⁇ / b> A uses the hydraulic oil discharged from the pilot pump 15 to introduce a control pressure corresponding to the lever operation amount to either the left or right pilot port of the control valve 154. Thereby, the movement amount of the spool in the control valve 154 is controlled, and the flow rate of the hydraulic oil supplied to the boom cylinder 7 is controlled.
  • FIG. 2 for the sake of clarity, illustration of a pilot line that connects the boom operation lever 26A and the left and right pilot ports of the control valve 153 and the left pilot port of the control valve 154 is omitted.
  • the operation pressure sensor 29A detects the operation content of the operator with respect to the boom operation lever 26A in the form of pressure, and outputs the detected value to the controller 30.
  • the operation content is, for example, a lever operation direction and a lever operation amount (lever operation angle).
  • the turning operation lever 26B is an operation device that operates the turning mechanism 2 by driving the turning hydraulic motor 2A.
  • the turning operation lever 26B uses, for example, hydraulic oil discharged from the pilot pump 15, and introduces a control pressure corresponding to the lever operation amount to either the left or right pilot port of the control valve 157.
  • the amount of movement of the spool in the control valve 157 is controlled, and the flow rate of the hydraulic oil supplied to the turning hydraulic motor 2A is controlled.
  • FIG. 2 for the sake of clarity, the illustration of the pilot line connecting the turning operation lever 26 ⁇ / b> B and the right pilot port of the control valve 157 is omitted.
  • the operation pressure sensor 29B detects the operation content of the operator with respect to the turning operation lever 26B in the form of pressure, and outputs the detected value to the controller 30.
  • the excavator 100 includes a travel lever, a travel pedal, an arm operation lever, and a bucket operation lever (all not shown) in addition to the boom operation lever 26A and the turning operation lever 26B. Similar to the boom operation lever 26A and the turning operation lever 26B, these operation devices utilize the hydraulic oil discharged from the pilot pump 15 and apply a control pressure corresponding to the lever operation amount or the pedal operation amount to the corresponding control valve. Acts on either the left or right pilot port. Further, the operation content of the operator for each of these operation devices is detected in the form of pressure by the corresponding operation pressure sensor, similarly to the operation pressure sensor 29A. Each operation pressure sensor outputs the detected value to the controller 30. In FIG. 2, for the sake of clarity, the illustration of a pilot line that connects these operating devices and the pilot port of the corresponding control valve is omitted.
  • the controller 30 receives outputs from the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the operation pressure sensor 29A, the operation pressure sensor 29B, the boom cylinder pressure sensor 7a, the discharge pressure sensor 28, etc. 11 and the regulator 13 are output to the control command.
  • the controller 30 may output a control command to the pressure reducing valve 50L and adjust the control pressure acting on the control valve 157 to control the turning operation of the upper swing body 3. Further, the controller 30 may output a control command to the pressure reducing valve 50R and adjust the control pressure acting on the control valve 154 to control the boom raising operation of the boom 4.
  • a configuration for adjusting the control pressure acting on the left pilot port of the control valve 157 is illustrated, and a configuration for adjusting the control pressure acting on the right pilot port of the control valve 157 is illustrated. It is omitted.
  • FIG. 2 for the sake of clarity, the configuration for adjusting the control pressure acting on the right pilot port of the control valve 154 is illustrated, and the configuration for adjusting the control pressure acting on the left pilot port of the control valve 154 is illustrated. It is omitted.
  • the controller 30 can adjust the control pressure related to the control valve 157 based on the relative positional relationship between the bucket 6 and the dump truck by the pressure reducing valve 50L. Moreover, the controller 30 can adjust the control pressure regarding the control valve 154 based on the relative positional relationship between the bucket 6 and the dump truck by the pressure reducing valve 50R. This is to appropriately support the boom raising and turning operation based on the lever operation.
  • the pressure reducing valve 50L and the pressure reducing valve 50R may be electromagnetic proportional valves.
  • FIGS. 3A and 3B show the positional relationship between the excavation attachment AT and the dump truck 60.
  • FIG. Specifically, FIGS. 3A and 3B show the excavation attachment AT in a simplified model for clarity.
  • 3A is a right side view of the excavation attachment AT and the dump truck 60
  • FIG. 3B is a rear view of the excavation attachment AT and the dump truck 60.
  • the excavator 100 is located obliquely rearward to the right of the dump truck 60 and directs the excavation attachment AT in a direction parallel to the X axis.
  • the boom 4 is configured to swing up and down around a swing axis J parallel to the Y axis.
  • An arm 5 is attached to the tip of the boom 4.
  • a bucket 6 is attached to the tip of the arm 5.
  • a boom angle sensor S1 is attached to a connecting portion between the upper swing body 3 and the boom 4 at the position indicated by the point P1.
  • An arm angle sensor S2 is attached to the connecting portion between the boom 4 and the arm 5 at the position indicated by the point P2.
  • a bucket angle sensor S3 is attached to the connecting portion between the arm 5 and the bucket 6 at the position indicated by the point P3.
  • a point P4 indicates the position of the tip (toe) of the bucket 6.
  • the boom angle sensor S1 measures the longitudinal direction of the boom 4, the boom angle beta 1 between the reference horizontal plane (XY plane).
  • Arm angle sensor S2 measures the arm angle beta 2 between the longitudinal direction of the longitudinal arm 5 of the boom 4.
  • the bucket angle sensor S ⁇ b> 3 measures a bucket angle ⁇ ⁇ b> 3 between the longitudinal direction of the arm 5 and the longitudinal direction of the bucket 6.
  • the longitudinal direction of the boom 4 means a direction of a straight line passing through the point P1 and the point P2 in a plane perpendicular to the swing axis J (in the XZ plane).
  • the longitudinal direction of the arm 5 means the direction of a straight line passing through the point P2 and the point P3 in the XZ plane.
  • the longitudinal direction of the bucket 6 means the direction of a straight line passing through the point P3 and the point P4 in the XZ plane.
  • the swing axis J is disposed at a position away from the turning axis K (Z axis). However, the swing axis J may be arranged so that the swing axis K and the swing axis J intersect.
  • the controller 30 can derive the relative position of the point P1 with respect to the turning axis K based on, for example, the outputs of the body tilt sensor S4 and the turning angular velocity sensor S5.
  • the relative positions of the points P2 to P4 with respect to the point P1 can be derived based on the outputs of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3.
  • the controller 30 can derive the relative position of any part of the excavation attachment AT, such as the end of the back surface of the bucket 6, with respect to the point P1.
  • the dump truck 60 is an earth and sand dump truck having a relatively shallow loading space.
  • the dump truck 60 may be a deep dump truck having a relatively deep loading space.
  • a gate 62 is attached to the loading platform 61 of the dump truck 60.
  • the gate 62 is an openable and closable member constituting the side wall of the loading platform 61, and includes a rear gate 62B, a left gate 62L, and a right gate 62R (see FIG. 5).
  • a front panel 62 ⁇ / b> F is installed at the front end of the loading platform 61.
  • a support post 61 ⁇ / b> P is formed at the rear end of the loading platform 61.
  • the column 61P is a member that supports the rear gate 62B so as to be opened and closed, and includes a left column 61PL and a right column 61PR.
  • a sheet 63 may be attached to the gate 62.
  • the sheet 63 is a member that prevents the work to be excavated loaded on the loading platform 61 from spilling down, and is also referred to as “aori sheet”.
  • a left sheet 63L made of synthetic resin is attached to the upper end of the left gate 62L so as to be openable and closable.
  • a right seat 63R made of synthetic resin is attached to the upper end of the right gate 62R so as to be opened and closed.
  • both the left seat 63L and the right seat 63R are configured to be individually opened and closed by an electric motor in accordance with the operation of a switch provided in the cab of the dump truck 60.
  • the left seat 63L and the right seat 63R may be configured to be manually opened and closed.
  • the dump truck 60 is stopped on a slope with an inclination angle ⁇ . Therefore, the loading platform 61 is disposed so that the rear end portion is inclined with respect to the horizontal plane and the rear end portion is higher than the front end portion.
  • the hatched area in each of FIG. 3A and FIG. 3B indicates a part of the entry prohibition area ZA that prohibits the entry of the excavation attachment AT.
  • the controller 30 can derive and set the entry prohibition area ZA based on the output of the surrounding monitoring device.
  • the controller 30 derives the entry prohibition area ZA based on the output of the LIDAR as the object detection device 70 that is an example of the surrounding monitoring device.
  • the entry prohibition area ZA may be set, for example, as a space larger than the outer shape of the dump truck 60 by a predetermined distance DS, that is, a space having a three-dimensional outer shape in which the outer shape of the dump truck 60 is similarly enlarged.
  • the entry prohibition area ZA may be set such that one of the boundary surfaces is arranged at a position separated from the front panel 62F by a distance DS as shown in FIG. 3A.
  • the entry prohibition area ZA may be set such that one of the boundary surfaces is disposed at a position separated from the right gate 62R by a distance DS to the left. The same applies to other boundary surfaces that define the entry prohibition area ZA.
  • the entry prohibition area ZA is a rectangular parallelepiped space formed in a space surrounded by the inner bottom surface 61B of the loading platform of the dump truck 60, the front panel 62F, the left gate 62L, the right gate 62R, and the rear gate 62B. It may be set to include. In this case, for example, as shown in FIG. 3B, the rectangular parallelepiped space may be set to have a boundary surface (upper surface) at a position higher by a predetermined distance HT from the inner bottom surface 61B.
  • the controller 30 recognizes the overall and three-dimensional outline (outer surface) of the dump truck 60 or the loading platform 61 using a virtual three-dimensional model such as a polygon model or a wire frame model, and the recognition result.
  • the entry prohibition area ZA may be derived based on the above.
  • the controller 30 recognizes that the object (dump truck 60) detected by the object detection device 70 has entered the working radius of the excavation attachment AT of the excavator 100. Then, the controller 30 recognizes that the object entering the work radius is the dump truck 60. Thereby, the controller 30 calculates the positional relationship between the object and the excavator 100 without interrupting the operation of the excavator 100 even when the object enters the working radius of the excavation attachment AT. At this time, the controller 30 generates an entry prohibition area ZA and a target trajectory described later based on the positional relationship between the object and the excavator 100. However, the state of the dump truck 60 that is the object changes. Specifically, the inclination angle of the dump truck 60 can change each time a loading operation is performed.
  • the controller 30 determines the state of the object based on the output of the object detection device 70, and sets the entry prohibition area ZA based on the state of the object. Further, the entry prohibition area ZA may be set based on the output of the imaging device 80 which is another example of the surrounding monitoring device.
  • the controller 30 determines whether or not the excavation attachment AT has entered the entry prohibition area ZA, and stops the movement of the excavation attachment AT when determining that the excavation attachment AT has entered. For example, if it is determined that the excavation attachment AT has entered the entry prohibition area ZA during turning, the controller 30 may output a control command to the pressure reducing valve 50L to forcibly stop the turning hydraulic motor 2A. Good. The controller 30 may determine whether or not the excavation attachment AT is approaching the entry prohibition area ZA, and when it is determined that the excavation attachment AT is approaching, the motion of the excavation attachment AT may be slowed down.
  • the controller 30 determines that the excavation attachment AT is approaching the entry prohibition area ZA during turning, the controller 30 outputs a control command to the pressure reducing valve 50L to forcibly decelerate the turning hydraulic motor 2A. May be.
  • the controller 30 determines that the excavation attachment AT has entered the entry prohibition area ZA or when it determines that the excavation attachment AT has approached the entry prohibition area ZA, the controller 30 outputs an alarm sound and an alarm lamp It is also possible to execute only at least one of blinking and the like.
  • the controller 30 can reliably prevent the contact between the excavation attachment AT and the dump truck 60 by appropriately setting the entry prohibition area ZA according to the state of the dump truck 60. Specifically, when the dump truck 60 is stopped on a slope, the controller 30 can set the entry prohibition area ZA that reflects the slope angle of the slope (the slope angle of the loading platform 61). Moreover, when the support
  • FIGS. 4 is a rear view of the dump truck 60
  • FIG. 5 is a right side view of the dump truck 60. 4 and 5 show that the left seat 63L and the right seat 63R are both closed to the upright position.
  • the left sheet 63La drawn with a dotted line indicates the left sheet 63L in the fully opened state before being closed to the upright position.
  • the right sheet 63Ra drawn with a dotted line indicates the right sheet 63R in the fully opened state before being closed to the upright position.
  • the controller 30 derives the entry prohibition area ZA based on the output of the LIDAR as the object detection device 70 which is an example of the surrounding monitoring device.
  • the hatched area in FIG. 4 shows a part of the entry prohibition area ZA.
  • An area surrounded by a broken line indicates an area ZB excluded from the entry prohibition area ZA because the state of the dump truck 60 has changed.
  • a region surrounded by a one-dot chain line indicates a region ZC that is newly included in the entry prohibition region ZA because the state of the dump truck 60 has changed.
  • the region ZB includes a region ZBL excluded from the entry prohibition region ZA because the left seat 63L is closed, and a region ZBR excluded from the entry prohibition region ZA because the right seat 63R is closed. including.
  • the area ZC includes the area ZCL newly included in the entry prohibition area ZA when the left seat 63L is closed to the upright position, and the entry prohibition area ZA when the right seat 63R is closed to the upright position. And the region ZCR newly included in.
  • the controller 30 can correct the size of the entry prohibition area ZA according to the change in the state of the dump truck 60 grasped based on the output of the LIDAR.
  • the state of the dump truck 60 includes, for example, at least one of an open / close state of the seat 63, an open / close state of the gate 62, and an inclined state of the loading platform 61.
  • the controller 30 can stop the movement of the bucket 6 approaching the right seat 63R as indicated by the dotted arrow AR1 when the right seat 63R is in the upright state.
  • the operator of the excavator 100 moves the bucket 6 to the left at a position higher than the upper end of the right seat 63R, as indicated by the solid arrow AR2, without bringing the bucket 6 into contact with the right seat 63R.
  • the bucket 6 can be positioned on the loading platform 61.
  • the controller 30 does not stop the movement of the bucket 6 that moves to the left as shown by the dotted arrow AR1 when the right seat 63R is in the fully open state. This is because it can be determined that the bucket 6 and the dump truck 60 do not contact each other.
  • the controller 30 is configured to derive the relative position of the bucket 6 with respect to the entry prohibition area ZA based on, for example, the output of the attitude detection device.
  • the controller 30 has a coordinate point BLu at the left end of the toe of the bucket 6, a coordinate point BCu at the center of the toe, a coordinate point BRu at the right end of the toe, and the left end of the back of the bucket 6.
  • the six coordinate points BLb, the center coordinate point BCb on the back surface, and the coordinate point BRb on the right end on the back surface are set as representative monitoring points, and the coordinates of each monitoring point are repeatedly calculated at a predetermined control cycle.
  • the monitoring point means a point where the transition of the position is monitored.
  • the controller 30 determines whether or not the bucket 6 has entered the entry prohibition area ZA based on the coordinates of each monitoring point and the plurality of coordinates that define the entry prohibition area ZA, that is, whether the bucket 6 and the dump truck 60 are Determine whether there is a risk of contact.
  • the controller 30 uses the virtual three-dimensional model such as a polygon model or a wire frame model to form the overall and three-dimensional outline of the bucket 6. After recognizing (outer surface), it may be determined whether or not the bucket 6 has entered the entry prohibited area ZA based on the recognition result.
  • the controller 30 is configured to perform a left turn at the height of the bucket 6 drawn by a solid line when the right seat 63 ⁇ / b> R is in an upright state. That is, when the left turn is performed at the height of the bucket 6 drawn by the one-dot chain line or the dotted line, the left turn is stopped.
  • the right seat 63R is in the fully open state (the state of the right seat 63Ra drawn with a dotted line)
  • the left turn is performed at the height of the bucket 6 drawn with a dotted line instead of a one-dot chain line. That is, even if a left turn is performed at the height of the bucket 6 drawn by a dotted line, the left turn is not stopped.
  • the shape of the right column 61PR can be accurately recognized by the output of LIDAR. That is, it is possible to accurately recognize that the upper end of the right gate 62R is lower than the upper end of the right column 61PR.
  • the controller 30 can prevent the movement of the excavation attachment AT from being excessively limited.
  • FIG. 6 is a rear view of the bucket 6 and the dump truck 60. Specifically, FIGS. 6A and 6B show the bucket 6 in a simplified model for clarity.
  • the excavator 100 performs a loading operation of loading the excavated material such as earth and sand on the loading platform 61 of the dump truck 60 after excavating the ground on the left side of the dump truck 60.
  • . 6A shows the movement trajectory of the bucket 6 when the left seat 63L is in the fully open state
  • FIG. 6B shows the movement trajectory of the bucket 6 when the left seat 63L is in the upright state.
  • the bucket 6 in which the work to be excavated can mainly follow two patterns of movement trajectories in the loading operation.
  • the first pattern is a moving trajectory that follows the trajectory line K1.
  • the bucket 6 is lifted in a substantially vertical direction by the raising of the boom 4 from the excavation completion position (A) through the bucket position (B) to the bucket position (C).
  • the height of the lower end of the bucket 6 is higher than the height Hd of the upper end of the loading platform 61.
  • the bucket 6 is moved to the earth removal position (D) by the right turn of the upper turning body 3.
  • the opening / closing operation of the arm 5 is also performed as appropriate.
  • the risk of contact between the bucket 6 and the dump truck 60 is small, but the travel height and travel distance are wasteful and fuel consumption is poor.
  • the second pattern is a moving trajectory that follows the trajectory line K2.
  • the track line K2 is a moving track that moves the bucket 6 to the earth removal position (D) with the shortest distance. Specifically, the bucket 6 reaches from the excavation completion position (A) to the earth removal position (D) through the bucket position (B) by the boom raising turning.
  • the excavation completion position (A) is lower than the bucket position (B), that is, lower than the plane on which the dump truck 60 is located.
  • the excavation completion position (A) may be higher than the plane on which the dump truck 60 is located.
  • the controller 30 moves between the bucket 6 and the dump truck 60 in the middle of the bucket 6 from the bucket position (B) to the soil removal position (D) along the track line K2.
  • the movement trajectory of the bucket 6 is predicted. Specifically, when the bucket 6 reaches the bucket position (E), the movement trajectory after the bucket position (E) is predicted based on the movement trajectory from the bucket position (B) to the bucket position (E).
  • the controller 30 outputs a control command to the pressure reducing valve 50L to force the turning hydraulic motor 2A. And stop in steps. This is to stop the turning before the bucket 6 enters the entry prohibition area ZA.
  • the controller 30 determines that the bucket 6 does not enter the entry prohibition area ZA according to the prediction result at the bucket position (E). In this case, the controller 30 does not stop the turning hydraulic motor 2 ⁇ / b> A when the bucket 6 approaches the dump truck 60. However, the controller 30 may control the movement of the bucket 6 to be slow when the bucket 6 enters the final range K2 END of the track line K2. This is because the bucket 6 is smoothly stopped at the soil removal position (D).
  • the controller 30 determines that the bucket 6 enters the entry prohibition area ZA according to the prediction result at the bucket position (E). In this case, the controller 30 stops the turning before the bucket 6 enters the entry prohibition area ZA by forcibly and stepwise stopping the turning hydraulic motor 2A. Specifically, the bucket 6 is stopped at the bucket position (F).
  • the controller 30 can more reliably prevent contact between the bucket 6 and the dump truck 60.
  • FIG. 7 is a diagram illustrating another configuration example of the hydraulic system mounted on the excavator 100.
  • FIG. 7 shows the mechanical power transmission system, the hydraulic oil line, the pilot line, and the electric control system by double lines, solid lines, broken lines, and dotted lines, respectively, as in FIG.
  • the hydraulic system of FIG. 7 is mainly similar to the hydraulic system of FIG. 2, mainly the engine 11, the regulator 13, the main pump 14, the pilot pump 15, the control valve 17, the operating device 26, the discharge pressure sensor 28, and the operating pressure sensor 29. And the controller 30 and the like.
  • the hydraulic system circulates the hydraulic oil from the main pump 14 driven by the engine 11 to the hydraulic oil tank via the center bypass pipe 40 or the parallel pipe 42.
  • the engine 11 is a drive source of the excavator 100.
  • the engine 11 is, for example, a diesel engine that operates so as to maintain a predetermined rotational speed.
  • the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15.
  • the main pump 14 supplies hydraulic oil to the control valve 17 through the hydraulic oil line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 controls the discharge amount of the main pump 14.
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 in accordance with a control command from the controller 30.
  • the pilot pump 15 is configured to supply hydraulic oil to a hydraulic control device including the operation device 26 via a pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the pilot pump 15 may be omitted.
  • the function of the pilot pump 15 may be realized by the main pump 14. That is, the main pump 14 may have a function of supplying the operating oil to the operating device 26 after the pressure of the operating oil is reduced by a throttle or the like, in addition to the function of supplying the operating oil to the control valve 17. Good.
  • the control valve 17 is a hydraulic control device that controls the hydraulic system in the excavator 100.
  • the control valve 17 includes control valves 171 to 176.
  • the control valve 175 includes a control valve 175L and a control valve 175R
  • the control valve 176 includes a control valve 176L and a control valve 176R.
  • the control valve 17 can selectively supply hydraulic oil discharged from the main pump 14 to one or a plurality of hydraulic actuators through the control valves 171 to 176.
  • the control valves 171 to 176 control the flow rate of the hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of the hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left traveling hydraulic motor 2ML, a right traveling hydraulic motor 2MR, and a turning hydraulic motor 2A.
  • the operating device 26 is a device used by an operator for operating the actuator.
  • the actuator includes at least one of a hydraulic actuator and an electric actuator.
  • the operating device 26 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port of the corresponding control valve in the control valve 17 via the pilot line.
  • the hydraulic oil pressure (pilot pressure) supplied to each pilot port is a pressure corresponding to the operation direction and operation amount of the operation device 26 corresponding to each hydraulic actuator.
  • the operating device 26 may be an electric control type instead of the pilot pressure type as described above.
  • the control valve in the control valve 17 may be an electromagnetic solenoid type spool valve.
  • the discharge pressure sensor 28 detects the discharge pressure of the main pump 14. In the present embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.
  • the operation pressure sensor 29 detects the content of operation of the operation device 26 by the operator.
  • the operation pressure sensor 29 detects the operation direction and operation amount of the lever or pedal of the operation device 26 corresponding to each of the actuators in the form of pressure (operation pressure), and the detected value to the controller 30. Output.
  • the content of the operation of the operation device 26 may be detected using a sensor other than the operation pressure sensor.
  • the main pump 14 includes a left main pump 14L and a right main pump 14R.
  • the left main pump 14L circulates the hydraulic oil to the hydraulic oil tank via the left center bypass pipe 40L or the left parallel pipe 42L, and the right main pump 14R has the right center bypass pipe 40R or the right parallel pipe 42R.
  • the hydraulic oil is circulated to the hydraulic oil tank via
  • the left center bypass conduit 40L is a hydraulic oil line that passes through the control valves 171, 173, 175L, and 176L disposed in the control valve 17.
  • the right center bypass conduit 40R is a hydraulic oil line that passes through control valves 172, 174, 175R, and 176R disposed in the control valve 17.
  • the control valve 171 supplies hydraulic oil discharged from the left main pump 14L to the left traveling hydraulic motor 2ML, and discharges hydraulic oil discharged from the left traveling hydraulic motor 2ML to the hydraulic oil tank. It is a spool valve that switches the flow.
  • the control valve 172 supplies the hydraulic oil discharged from the right main pump 14R to the right traveling hydraulic motor 2MR, and discharges the hydraulic oil discharged from the right traveling hydraulic motor 2MR to the hydraulic oil tank. It is a spool valve that switches the flow.
  • the control valve 173 supplies the hydraulic oil discharged from the left main pump 14L to the turning hydraulic motor 2A, and flows the hydraulic oil to discharge the hydraulic oil discharged from the turning hydraulic motor 2A to the hydraulic oil tank.
  • This is a spool valve for switching.
  • the control valve 174 is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the bucket cylinder 9 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank. .
  • the control valve 175L is a spool valve that switches the flow of the hydraulic oil in order to supply the hydraulic oil discharged from the left main pump 14L to the boom cylinder 7.
  • the control valve 175R is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the boom cylinder 7 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank. .
  • the control valve 176L is a spool valve that supplies the hydraulic oil discharged from the left main pump 14L to the arm cylinder 8 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .
  • the control valve 176R is a spool valve that supplies the hydraulic oil discharged from the right main pump 14R to the arm cylinder 8 and switches the flow of the hydraulic oil in order to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .
  • the left parallel pipeline 42L is a hydraulic oil line parallel to the left center bypass pipeline 40L.
  • the left parallel pipe line 42L can supply hydraulic oil to the control valve further downstream when the flow of the hydraulic oil passing through the left center bypass pipe line 40L is restricted or blocked by any of the control valves 171, 173, 175L.
  • the right parallel pipeline 42R is a hydraulic oil line parallel to the right center bypass pipeline 40R.
  • the right parallel pipe line 42R can supply hydraulic oil to the control valve downstream when the flow of the hydraulic oil passing through the right center bypass pipe line 40R is restricted or cut off by any of the control valves 172, 174, 175R. .
  • the regulator 13 includes a left regulator 13L and a right regulator 13R.
  • the left regulator 13L controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to the discharge pressure of the left main pump 14L.
  • the left regulator 13L for example, adjusts the swash plate tilt angle of the left main pump 14L according to an increase in the discharge pressure of the left main pump 14L, and decreases the discharge amount.
  • the operating device 26 includes a left operating lever 26L, a right operating lever 26R, and a traveling lever 26D.
  • the travel lever 26D includes a left travel lever 26DL and a right travel lever 26DR.
  • the left operation lever 26L is used for turning operation and arm 5 operation.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 176.
  • hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 173.
  • the left operating lever 26L introduces hydraulic oil into the right pilot port of the control valve 176L and introduces hydraulic oil into the left pilot port of the control valve 176R when operated in the arm closing direction. . Further, when operated in the arm opening direction, the left operating lever 26L introduces hydraulic oil into the left pilot port of the control valve 176L and introduces hydraulic oil into the right pilot port of the control valve 176R. Further, the left operating lever 26L introduces hydraulic oil into the left pilot port of the control valve 173 when operated in the left turning direction, and the right pilot port of the control valve 173 when operated in the right turning direction. To introduce hydraulic oil.
  • the right operation lever 26R is used for the operation of the boom 4 and the operation of the bucket 6.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 175.
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 174.
  • hydraulic oil is introduced into the left pilot port of the control valve 175R.
  • the right operating lever 26R when operated in the boom raising direction, introduces hydraulic oil into the right pilot port of the control valve 175L and introduces hydraulic oil into the left pilot port of the control valve 175R.
  • the right operating lever 26R introduces hydraulic oil into the right pilot port of the control valve 174 when operated in the bucket closing direction, and enters the left pilot port of the control valve 174 when operated in the bucket opening direction. Introduce hydraulic fluid.
  • the traveling lever 26D is used for the operation of the crawler 1C.
  • the left travel lever 26DL is used to operate the left crawler 1CL. You may be comprised so that it may interlock
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 171.
  • the right travel lever 26DR is used to operate the right crawler 1CR. You may be comprised so that it may interlock
  • the hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the lever operation amount into the pilot port of the control valve 172.
  • the discharge pressure sensor 28 includes a discharge pressure sensor 28L and a discharge pressure sensor 28R.
  • the discharge pressure sensor 28L detects the discharge pressure of the left main pump 14L and outputs the detected value to the controller 30. The same applies to the discharge pressure sensor 28R.
  • the operation pressure sensor 29 includes operation pressure sensors 29LA, 29LB, 29RA, 29RB, 29DL, and 29DR.
  • the operation pressure sensor 29LA detects the content of the operation of the left operation lever 26L by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the contents of the operation include, for example, a lever operation direction, a lever operation amount (lever operation angle), and the like.
  • the operation pressure sensor 29LB detects the content of the operation of the left operation lever 26L by the operator in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29RA detects the content of the operation of the right operation lever 26R by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29RB detects the content of the operation of the right operation lever 26R by the operator in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29DL detects the content of the operation of the left travel lever 26DL by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the operation pressure sensor 29DR detects the content of the operation in the front-rear direction on the right travel lever 26DR by the operator in the form of pressure, and outputs the detected value to the controller 30.
  • the controller 30 receives the output of the operation pressure sensor 29, outputs a control command to the regulator 13 as necessary, and changes the discharge amount of the main pump 14. Further, the controller 30 receives the output of the control pressure sensor 19 provided upstream of the throttle 18, outputs a control command to the regulator 13 as necessary, and changes the discharge amount of the main pump 14.
  • the diaphragm 18 includes a left diaphragm 18L and a right diaphragm 18R, and the control pressure sensor 19 includes a left control pressure sensor 19L and a right control pressure sensor 19R.
  • a left throttle 18L is disposed between the control valve 176L located at the most downstream side and the hydraulic oil tank. Therefore, the flow of hydraulic oil discharged from the left main pump 14L is limited by the left throttle 18L.
  • the left diaphragm 18L generates a control pressure for controlling the left regulator 13L.
  • the left control pressure sensor 19L is a sensor for detecting this control pressure, and outputs the detected value to the controller 30.
  • the controller 30 controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to the control pressure.
  • the controller 30 decreases the discharge amount of the left main pump 14L as the control pressure increases, and increases the discharge amount of the left main pump 14L as the control pressure decreases.
  • the discharge amount of the right main pump 14R is similarly controlled.
  • the hydraulic oil discharged from the left main pump 14L passes through the left center bypass conduit 40L to the left.
  • the diaphragm reaches 18L.
  • the flow of hydraulic oil discharged from the left main pump 14L increases the control pressure generated upstream of the left throttle 18L.
  • the controller 30 reduces the discharge amount of the left main pump 14L to the allowable minimum discharge amount, and suppresses the pressure loss (pumping loss) when the discharged hydraulic oil passes through the left center bypass conduit 40L.
  • the hydraulic oil discharged from the left main pump 14L flows into the operation target hydraulic actuator via the control valve corresponding to the operation target hydraulic actuator.
  • the flow of the hydraulic oil discharged from the left main pump 14L reduces or disappears the amount reaching the left throttle 18L, and lowers the control pressure generated upstream of the left throttle 18L.
  • the controller 30 increases the discharge amount of the left main pump 14L, circulates sufficient hydraulic oil to the operation target hydraulic actuator, and ensures the operation of the operation target hydraulic actuator.
  • the controller 30 similarly controls the discharge amount of the right main pump 14R.
  • the 7 can suppress wasteful energy consumption in the main pump 14 in the standby state.
  • the wasteful energy consumption includes a pumping loss generated by the hydraulic oil discharged from the main pump 14 in the center bypass conduit 40. Further, when the hydraulic actuator is operated, the hydraulic system of FIG. 7 can reliably supply the necessary and sufficient hydraulic oil from the main pump 14 to the hydraulic actuator to be operated.
  • FIGS. 8A to 8D are views of a part of the hydraulic system. Specifically, FIG. 8A is a diagram in which a hydraulic system portion relating to the operation of the arm cylinder 8 is extracted, and FIG. 8B is a diagram in which a hydraulic system portion relating to the operation of the turning hydraulic motor 2A is extracted. 8C is a diagram in which a hydraulic system portion related to the operation of the boom cylinder 7 is extracted, and FIG. 8D is a diagram in which a hydraulic system portion related to the operation of the bucket cylinder 9 is extracted.
  • the hydraulic system includes a proportional valve 31 and a shuttle valve 32.
  • the proportional valve 31 includes proportional valves 31AL to 31DL and 31AR to 31DR
  • the shuttle valve 32 includes shuttle valves 32AL to 32DL and 32AR to 32DR.
  • the proportional valve 31 functions as a control valve for machine control.
  • the proportional valve 31 is arranged in a pipe line connecting the pilot pump 15 and the shuttle valve 32, and is configured so that the flow path area of the pipe line can be changed.
  • the proportional valve 31 operates according to a control command output from the controller 30. Therefore, the controller 30 controls the pilot oil of the corresponding control valve in the control valve 17 through the proportional valve 31 and the shuttle valve 32 via the proportional valve 31 and the shuttle valve 32, regardless of the operation of the operating device 26 by the operator. Can be supplied to the port.
  • the shuttle valve 32 has two inlet ports and one outlet port. One of the two inlet ports is connected to the operating device 26, and the other is connected to the proportional valve 31. The outlet port is connected to the pilot port of the corresponding control valve in the control valve 17. Therefore, the shuttle valve 32 can cause the higher one of the pilot pressure generated by the operating device 26 and the pilot pressure generated by the proportional valve 31 to act on the pilot port of the corresponding control valve.
  • the controller 30 can operate the hydraulic actuator corresponding to the specific operation device 26 even when the operation to the specific operation device 26 is not performed.
  • the left operation lever 26L is used to operate the arm 5.
  • the left operation lever 26L uses the hydraulic oil discharged from the pilot pump 15 to apply a pilot pressure corresponding to the operation in the front-rear direction to the pilot port of the control valve 176.
  • the pilot pressure corresponding to the operation amount is applied to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R.
  • the pilot pressure corresponding to the operation amount is applied to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R.
  • the left operation lever 26L is provided with a switch NS.
  • the switch NS is a push button switch. The operator can operate the left operation lever 26L while pressing the switch NS.
  • the switch NS may be provided on the right operation lever 26 ⁇ / b> R, or may be provided at another position in the cabin 10.
  • the operation pressure sensor 29LA detects the content of the operation of the left operation lever 26L by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31AL operates according to the current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R is adjusted through the proportional valve 31AL and the shuttle valve 32AL.
  • the proportional valve 31AR operates in accordance with a current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R through the proportional valve 31AR and the shuttle valve 32AR is adjusted.
  • the proportional valves 31AL and 31AR can adjust the pilot pressure so that the control valves 176L and 176R can be stopped at arbitrary valve positions.
  • the controller 30 allows the hydraulic oil discharged from the pilot pump 15 to flow through the proportional valve 31AL and the shuttle valve 32AL, regardless of the arm closing operation by the operator, and to the right pilot port and the control valve 176R of the control valve 176L. Can be supplied to the left pilot port. That is, the arm 5 can be automatically closed. Further, the controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the left pilot port of the control valve 176L and the right side of the control valve 176R via the proportional valve 31AR and the shuttle valve 32AR regardless of the arm opening operation by the operator. Can be supplied to the pilot port. That is, the arm 5 can be automatically opened.
  • the left operation lever 26L is also used to operate the turning mechanism 2. Specifically, the left operation lever 26L uses the hydraulic oil discharged from the pilot pump 15 to apply a pilot pressure corresponding to the operation in the left-right direction to the pilot port of the control valve 173. More specifically, the left operation lever 26L causes a pilot pressure corresponding to the operation amount to act on the left pilot port of the control valve 173 when operated in the left turning direction (left direction). Further, when the left operation lever 26L is operated in the right turning direction (right direction), the pilot pressure corresponding to the operation amount is applied to the right pilot port of the control valve 173.
  • the operation pressure sensor 29LB detects the content of the operation of the left operation lever 26L by the operator in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31BL operates according to a current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 173 via the proportional valve 31BL and the shuttle valve 32BL is adjusted.
  • the proportional valve 31BR operates in accordance with a current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 173 via the proportional valve 31BR and the shuttle valve 32BR is adjusted.
  • the proportional valves 31BL and 31BR can adjust the pilot pressure so that the control valve 173 can be stopped at an arbitrary valve position.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the left pilot port of the control valve 173 via the proportional valve 31BL and the shuttle valve 32BL regardless of the left turning operation by the operator. That is, the turning mechanism 2 can be turned left automatically. Further, the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 173 via the proportional valve 31BR and the shuttle valve 32BR regardless of the right turning operation by the operator. That is, the turning mechanism 2 can be automatically turned right.
  • the right operation lever 26R is used to operate the boom 4. Specifically, the right operation lever 26R uses the hydraulic oil discharged from the pilot pump 15 to apply a pilot pressure corresponding to the operation in the front-rear direction to the pilot port of the control valve 175. More specifically, when the right operation lever 26R is operated in the boom raising direction (rearward direction), the pilot pressure corresponding to the operation amount is applied to the right pilot port of the control valve 175L and the left pilot port of the control valve 175R. Make it work. Further, when the right operation lever 26R is operated in the boom lowering direction (forward direction), the pilot pressure corresponding to the operation amount is applied to the right pilot port of the control valve 175R.
  • the operation pressure sensor 29RA detects the content of the operation of the right operation lever 26R by the operator in the front-rear direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31CL operates in accordance with a current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 175L and the left pilot port of the control valve 175R via the proportional valve 31CL and the shuttle valve 32CL is adjusted.
  • the proportional valve 31CR operates in accordance with a current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 175L and the right pilot port of the control valve 175R via the proportional valve 31CR and the shuttle valve 32CR is adjusted.
  • the proportional valves 31CL and 31CR can adjust the pilot pressure so that the control valves 175L and 175R can be stopped at arbitrary valve positions.
  • the controller 30 allows the hydraulic oil discharged from the pilot pump 15 to flow through the proportional valve 31CL and the shuttle valve 32CL, regardless of the boom raising operation by the operator, and the right pilot port and the control valve 175R of the control valve 175L. Can be supplied to the left pilot port. That is, the boom 4 can be raised automatically. Further, the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 175R via the proportional valve 31CR and the shuttle valve 32CR regardless of the boom lowering operation by the operator. That is, the boom 4 can be automatically lowered.
  • the right operation lever 26R is also used to operate the bucket 6. Specifically, the right operation lever 26R uses the hydraulic oil discharged from the pilot pump 15 to apply a pilot pressure corresponding to the operation in the left-right direction to the pilot port of the control valve 174. More specifically, the right operation lever 26R applies a pilot pressure corresponding to the operation amount to the left pilot port of the control valve 174 when operated in the bucket closing direction (left direction). Further, when the right operation lever 26R is operated in the bucket opening direction (right direction), the pilot pressure corresponding to the operation amount is applied to the right pilot port of the control valve 174.
  • the operation pressure sensor 29RB detects the content of the operation of the right operation lever 26R by the operator in the left-right direction in the form of pressure, and outputs the detected value to the controller 30.
  • the proportional valve 31DL operates in accordance with a current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 174 through the proportional valve 31DL and the shuttle valve 32DL is adjusted.
  • the proportional valve 31DR operates in accordance with a current command output from the controller 30. Then, the pilot pressure by the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 174 through the proportional valve 31DR and the shuttle valve 32DR is adjusted.
  • the proportional valves 31DL and 31DR can adjust the pilot pressure so that the control valve 174 can be stopped at an arbitrary valve position.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the left pilot port of the control valve 174 via the proportional valve 31DL and the shuttle valve 32DL regardless of the bucket closing operation by the operator. That is, the bucket 6 can be automatically closed. Further, the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 174 via the proportional valve 31DR and the shuttle valve 32DR regardless of the bucket opening operation by the operator. That is, the bucket 6 can be automatically opened.
  • the excavator 100 may have a configuration for automatically moving the lower traveling body 1 forward and backward.
  • the hydraulic system portion related to the operation of the left traveling hydraulic motor 2ML and the hydraulic system portion related to the operation of the right traveling hydraulic motor 2MR may be configured in the same manner as the hydraulic system portion related to the operation of the boom cylinder 7 and the like. Good.
  • the lever operation amount of the electric operation lever is input to the controller 30 as an electric signal.
  • An electromagnetic valve is disposed between the pilot pump 15 and the pilot port of each control valve.
  • the solenoid valve is configured to operate in response to an electrical signal from the controller 30.
  • the controller 30 moves each control valve by controlling the electromagnetic valve with an electric signal corresponding to the lever operation amount to increase or decrease the pilot pressure. be able to.
  • Each control valve may be constituted by an electromagnetic spool valve. In this case, the electromagnetic spool valve operates in accordance with an electric signal from the controller 30 corresponding to the lever operation amount of the electric operation lever.
  • FIG. 9 is a functional block diagram of the controller 30.
  • the controller 30 receives signals output from the attitude detection device, the operation device 26, the object detection device 70, the imaging device 80, the switch NS, and the like, executes various calculations, and performs the proportional valve 31 and display. Control commands can be output to the device D1, the sound output device D2, and the like.
  • the attitude detection device includes a boom angle sensor S1, an arm angle sensor S2, a bucket angle sensor S3, a body tilt sensor S4, and a turning angular velocity sensor S5.
  • the controller 30 includes a posture recording unit 30A, a trajectory calculation unit 30B, and an autonomous control unit 30C as functional elements. Each functional element may be configured by hardware or may be configured by software.
  • the posture recording unit 30A is configured to record information related to the posture of the excavator 100.
  • the posture recording unit 30A records information on the posture of the shovel 100 when the switch NS is pressed in the RAM.
  • the attitude recording unit 30A records the output of the attitude detection device every time the switch NS is pressed.
  • the posture recording unit 30A may be configured to start recording when the switch NS is pressed at the first time point and to end the recording when the switch NS is pressed at the second time point. In this case, the posture recording unit 30A may repeatedly record information related to the posture of the excavator 100 at a predetermined control period from the first time point to the second time point.
  • the trajectory calculation unit 30B is configured to calculate a target trajectory that is a trajectory drawn by a predetermined portion of the excavator 100 when the excavator 100 is operated autonomously.
  • the predetermined part is, for example, a predetermined point on the back surface of the bucket 6.
  • the trajectory calculation unit 30B calculates a target trajectory used when the autonomous control unit 30C operates the excavator 100 autonomously. Specifically, the trajectory calculation unit 30B calculates a target trajectory based on information regarding the attitude of the excavator 100 recorded by the attitude recording unit 30A.
  • the trajectory calculation unit 30B may calculate a target trajectory based on the output of LIDAR as the object detection device 70 which is an example of the surrounding monitoring device. Alternatively, the trajectory calculation unit 30B may calculate the target trajectory based on the output of the imaging device 80, which is another example of the surrounding monitoring device. Alternatively, the trajectory calculation unit 30B may calculate the target trajectory based on information regarding the attitude of the excavator 100 recorded by the attitude recording unit 30A and the output of the surrounding monitoring device.
  • the autonomous control unit 30C is configured to operate the excavator 100 autonomously.
  • a predetermined start condition is satisfied, a predetermined part of the excavator 100 is moved along the target trajectory calculated by the trajectory calculation unit 30B.
  • the operation device 26 is operated in a state where the switch NS is pressed, the excavator 100 is operated autonomously so that a predetermined part of the excavator 100 moves along the target track.
  • the left operating lever 26L is operated in the right turning direction and the right operating lever 26R is operated in the boom raising direction with the switch NS being pressed
  • the lower end of the bucket 6 is set to the target trajectory.
  • the excavator 100 may be operated autonomously so as to move along.
  • each of the left operation lever 26L and the right operation lever 26R may be operated with an arbitrary lever operation amount. Therefore, the operator can move the lower end of the bucket 6 along the target trajectory at a predetermined moving speed without worrying about the lever operation amount.
  • the moving speed of the bucket 6 may be configured to change according to a change in the operation amount of the left operation lever 26L or the right operation lever 26R.
  • the autonomous control unit 30C may be configured to control at least one of the boom cylinder 7 and the turning hydraulic motor 2A so that the lower end of the bucket 6 is along the target track, for example.
  • the autonomous control unit 30 ⁇ / b> C may semi-automatically control the turning speed of the upper swing body 3 according to the rising speed of the boom 4.
  • the turning speed of the upper swing body 3 may be increased as the rising speed of the boom 4 is increased.
  • the boom 4 rises at a speed corresponding to the lever operation amount of the right operation lever 26R in the boom raising direction, but the upper swing body 3 responds to the lever operation amount of the left operation lever 26L in the right rotation direction. You may turn at a speed different from the speed.
  • the autonomous control unit 30C may semi-automatically control the rising speed of the boom 4 according to the turning speed of the upper turning body 3.
  • the rising speed of the boom 4 may be increased as the turning speed of the upper swing body 3 is increased.
  • the upper swing body 3 turns at a speed corresponding to the lever operation amount of the left operation lever 26L in the right turn direction, but the boom 4 corresponds to the lever operation amount of the right operation lever 26R in the boom raising direction.
  • the speed may increase at a speed different from the speed.
  • the autonomous control unit 30C may semiautomatically control both the turning speed of the upper turning body 3 and the rising speed of the boom 4.
  • the upper swing body 3 may swing at a speed different from the speed corresponding to the lever operation amount in the right turning direction of the left operation lever 26L.
  • the boom 4 may be raised at a speed different from the speed corresponding to the lever operation amount of the right operation lever 26R in the boom raising direction.
  • the autonomous control unit 30C may correct the target trajectory according to a change in the state of the dump truck 60.
  • the autonomous control unit 30C may change the target trajectory according to changes in the open / close state of the left seat 63L, the open / close state of the right seat 63R, or the like.
  • the autonomous control unit 30C may set a target trajectory in consideration of surrounding conditions in addition to the state of the dump truck 60. For example, the autonomous control unit 30C may set the target trajectory so that the excavation attachment AT does not come into contact with an object such as a wall while the upper swing body 3 is turning. Alternatively, the autonomous control unit 30C sets the target trajectory so that the excavation attachment AT does not protrude beyond the guard rail during the turning operation when the excavator 100 is working on the sidewalk side of the guard rail. Also good.
  • autonomous control function a function in which the controller 30 autonomously controls the movement of the attachment.
  • the controller 30 generates a bucket target moving speed based on the operation tendency and determines the bucket target moving direction.
  • the operation tendency is determined based on the lever operation amount, for example.
  • the bucket target moving speed is a target value of the moving speed of the control reference point in the bucket 6, and the bucket target moving direction is a target value of the moving direction of the control reference point in the bucket 6.
  • the control reference point in the bucket 6 is a predetermined point on the back surface of the bucket 6, for example.
  • Current control reference position in FIG. 10 is a current position of the control reference point, for example, boom angle beta 1, arm angle beta 2, and is calculated based on the turning angle alpha 1.
  • the controller 30 may calculate the current control reference position by further utilizing the bucket angle beta 3.
  • the controller 30 determines the three-dimensional coordinates of the control reference position after the unit time has elapsed based on the bucket target movement speed, the bucket target movement direction, and the three-dimensional coordinates (Xe, Ye, Ze) of the current control reference position. (Xer, Yer, Zer) is calculated.
  • the three-dimensional coordinates (Xer, Yer, Zer) of the control reference position after the unit time has elapsed are, for example, coordinates on the target trajectory.
  • the unit time is, for example, a time corresponding to an integral multiple of the control period.
  • the target trajectory may be, for example, a target trajectory related to a loading operation that is an operation for realizing loading of earth and sand on a dump truck.
  • the target trajectory may be calculated based on, for example, the position of the dump truck and the excavation end position that is the position of the control reference point when the excavation operation ends.
  • the position of the dump truck may be calculated based on the output of at least one of the object detection device 70 and the imaging device 80, for example, and the excavation end position may be calculated based on the output of the posture detection device, for example.
  • the controller 30 determines, based on the calculated three-dimensional coordinates (Xer, Yer, Zer), command values ⁇ 1r and ⁇ 2r regarding the rotation of the boom 4 and the arm 5 and the command value ⁇ 1r regarding the rotation of the upper swing body 3. And generate
  • the command value ⁇ 1r represents, for example, the boom angle ⁇ 1 when the control reference position can be matched with the three-dimensional coordinates (Xer, Yer, Zer).
  • the command value ⁇ 2r represents the arm angle ⁇ 2 when the control reference position can be adjusted to the three-dimensional coordinates (Xer, Yer, Zer), and the command value ⁇ 1r represents the control reference position in three dimensions. represents the turning angle alpha 1 when the can match with coordinates (Xer, Yer, Zer).
  • the controller 30 sets the boom angle ⁇ 1 , arm angle ⁇ 2 , and turning angle ⁇ 1 to the generated command values ⁇ 1 r, ⁇ 2 r, ⁇ 1 r, respectively.
  • the boom cylinder 7, the arm cylinder 8, and the turning hydraulic motor 2A are operated.
  • the turning angle alpha 1 for example, it is calculated based on the output of the turning angular velocity sensor S5.
  • the controller 30 generates a boom cylinder pilot pressure command corresponding to the difference ⁇ 1 between the current value of the boom angle ⁇ 1 and the command value ⁇ 1 r. Then, a control current corresponding to the boom cylinder pilot pressure command is output to the boom control mechanism 31C.
  • the boom control mechanism 31C is configured such that a pilot pressure corresponding to a control current corresponding to a boom cylinder pilot pressure command can be applied to a control valve 175 serving as a boom control valve.
  • the boom control mechanism 31C may be, for example, the proportional valve 31CL and the proportional valve 31CR in FIG. 8C.
  • control valve 175 that has received the pilot pressure generated by the boom control mechanism 31C causes the hydraulic oil discharged from the main pump 14 to flow into the boom cylinder 7 in the flow direction and flow rate corresponding to the pilot pressure.
  • the controller 30 may generate a boom spool control command based on the spool displacement amount of the control valve 175 detected by the boom spool displacement sensor S7.
  • the boom spool displacement sensor S7 is a sensor that detects the amount of displacement of the spool that constitutes the control valve 175.
  • the controller 30 may output a control current corresponding to the boom spool control command to the boom control mechanism 31C.
  • the boom control mechanism 31C causes the pilot pressure corresponding to the control current corresponding to the boom spool control command to act on the control valve 175.
  • the boom cylinder 7 is expanded and contracted by hydraulic oil supplied through the control valve 175.
  • Boom angle sensor S1 detects the boom angle beta 1 of the boom 4 is moved by a boom cylinder 7 expands and contracts.
  • the above description relates to the operation of the boom 4 based on the command value ⁇ 1 r, but the operation of the arm 5 based on the command value ⁇ 2 r and the turning operation of the upper swing body 3 based on the command value ⁇ 1 r.
  • the arm control mechanism 31A is configured to allow a pilot pressure corresponding to a control current corresponding to the arm cylinder pilot pressure command to act on the control valve 176 as an arm control valve.
  • the arm control mechanism 31A may be, for example, the proportional valve 31AL and the proportional valve 31AR in FIG. 8A.
  • the turning control mechanism 31B is configured to allow a pilot pressure corresponding to a control current corresponding to the turning hydraulic motor pilot pressure command to act on the control valve 173 as a turning control valve.
  • the turning control mechanism 31B may be, for example, the proportional valve 31BL and the proportional valve 31BR in FIG. 8B.
  • the arm spool displacement sensor S8 is a sensor that detects the displacement amount of the spool that constitutes the control valve 176
  • the swing spool displacement sensor S2A is a sensor that detects the displacement amount of the spool that constitutes the control valve 173.
  • the controller 30 may derive the pump discharge amount from the command values ⁇ 1 r, ⁇ 2 r, and ⁇ 1 r using the pump discharge amount deriving units CP1, CP2, and CP3.
  • the pump discharge amount deriving units CP1, CP2, and CP3 derive the pump discharge amount from the command values ⁇ 1 r, ⁇ 2 r, and ⁇ 1 r using a pre-registered reference table or the like.
  • the pump discharge amounts derived by the pump discharge amount deriving units CP1, CP2, and CP3 are summed and input to the pump flow rate calculation unit as the total pump discharge amount.
  • the pump flow rate calculation unit controls the discharge amount of the main pump 14 based on the input total pump discharge amount. In the present embodiment, the pump flow rate calculation unit controls the discharge amount of the main pump 14 by changing the swash plate tilt angle of the main pump 14 according to the total pump discharge amount.
  • the controller 30 controls the opening of each of the control valve 175 as the boom control valve, the control valve 176 as the arm control valve, and the control valve 173 as the swing control valve and the discharge amount of the main pump 14. Can be executed simultaneously. Therefore, the controller 30 can supply an appropriate amount of hydraulic oil to each of the boom cylinder 7, the arm cylinder 8, and the turning hydraulic motor 2A.
  • the controller 30 calculates one-dimensional coordinates (Xer, Yer, Zer), generates command values ⁇ 1r , ⁇ 2r , and ⁇ 1r , and determines the discharge amount of the main pump 14 as one control cycle. Autonomous control is executed by repeating this control cycle. Further, the controller 30 can improve the accuracy of the autonomous control by performing feedback control of the control reference position based on the outputs of the boom angle sensor S1, the arm angle sensor S2, and the turning angular velocity sensor S5. Specifically, the controller 30 can improve the accuracy of autonomous control by performing feedback control of the flow rate of hydraulic oil flowing into each of the boom cylinder 7, the arm cylinder 8, and the turning hydraulic motor 2 ⁇ / b> A. The controller 30 may similarly control the flow rate of the hydraulic oil flowing into the bucket cylinder 9.
  • FIGS. 12A to 12C show an example of a situation at a work site where the excavator 100 is loading the dump truck 60.
  • FIG. 12A is a top view of the work site.
  • 12B and 12C are diagrams when the work site is viewed from the direction indicated by the arrow AR3 in FIG. 12A.
  • illustration of the shovel 100 (except the bucket 6) is omitted for the sake of clarity.
  • 12B shows a state when the left seat 63L is in a fully open state
  • FIG. 12C shows a state when the left seat 63L is in an upright state.
  • the excavator 100 drawn by a solid line represents a state when the excavation operation is completed
  • the excavator 100 drawn by a broken line represents a state during a turning operation
  • the excavator 100 drawn by a one-dot chain line represents the earth excavation. This represents the state before the operation starts.
  • the bucket 6A drawn with a solid line represents the state of the bucket 6 when the excavation operation is completed
  • the bucket 6B drawn with a broken line represents the state of the bucket 6 during the turning operation.
  • the bucket 6C drawn with a one-dot chain line represents the state of the bucket 6 before the earth removal operation is started.
  • a thick dotted line in each of FIGS. 12A to 12C represents a target trajectory TR that a predetermined point on the back surface of the bucket 6 follows.
  • the trajectory calculation unit 30B sets a target trajectory TR for moving the bucket 6 onto the loading platform 61 while preventing the loading platform 61 of the dump truck 60 having a height Hd from coming into contact with the bucket 6 based on the output of the object detection device 70. calculate.
  • the trajectory calculation unit 30B may calculate the target trajectory based on the output of the imaging device 80, which is another example of the surrounding monitoring device.
  • the trajectory calculation unit 30B may calculate the target trajectory based on information regarding the attitude of the excavator 100 recorded by the attitude recording unit 30A and the output of the surrounding monitoring device.
  • the trajectory calculation unit 30B may calculate a plurality of target trajectories so that the operator can select one of the plurality of target trajectories TR.
  • FIG. 12B shows three target trajectories TR1 to TR3 calculated by the trajectory calculation unit 30B.
  • Two target trajectories TR2 and TR3 represented by a one-dot chain line are calculated together with the target trajectory TR1 selected by the operator. That is, the target trajectories TR2 and TR3 are target trajectories that were presented to the operator together with the target trajectory TR1, but were not selected by the operator.
  • FIG. 12B shows three target trajectories TR1 to TR3 calculated by the trajectory calculation unit 30B.
  • Two target trajectories TR2 and TR3 represented by a one-dot chain line are calculated together with the target trajectory TR1 selected by the operator. That is, the target trajectories TR2 and TR3 are target trajectories that were presented to the operator together with the target trajectory TR1, but were not
  • the trajectory calculation unit 30B prioritizes the target trajectory TR1 in which the right turn operation is prioritized, the target trajectory TR2 in which the balance between the right turn operation and the boom raising operation is prioritized, and the boom raising operation.
  • the target trajectory TR3 to be calculated is calculated.
  • the operator uses an input device such as a touch panel while viewing an image including a figure of the dump truck 60 and lines representing three target trajectories displayed on the display device D1 by the trajectory calculation unit 30B. One of the target trajectories may be selected.
  • the controller 30 when the operator presses the switch NS so as to execute the boom raising turning operation, the controller 30 performs a composite operation including the right turning operation based on the created target trajectory TR. Specifically, at least one of the boom raising operation and the arm closing operation and the right turning operation are performed until the excavator 100 is in the posture indicated by the broken line, that is, until the lower end of the bucket 6 reaches the point P2. Perform complex actions including.
  • This combined operation may include an opening / closing operation of the bucket 6. This is because the bucket 6 is moved onto the loading platform 61 while preventing the loading platform 61 of the dump truck 60 having a height Hd from contacting the bucket 6.
  • the controller 30 performs a combined operation including an arm opening operation and a right turning operation until the excavator 100 is in the posture indicated by the one-dot chain line, that is, until the lower end of the bucket 6 reaches the point P3.
  • This combined operation may include at least one of a boom lowering operation and an opening / closing operation of the bucket 6. This is to allow earth and sand to be discharged to the front side (driver's seat side) of the loading platform 61 of the dump truck 60.
  • the controller 30 performs a boom raising turning operation when the operator presses the switch NS, but the operator pushes the left operation lever 26L in the direction in which the dump truck 60 exists while pressing the switch NS. You may perform boom raising turning operation, when tilting.
  • the controller 30 uses the calculated target trajectory TR to perform a boom raising turning operation by autonomous control. Specifically, the turning mechanism 2 is automatically turned right and the boom 4 is automatically raised so that the trajectory drawn by the lower end of the bucket 6 is along the target trajectory TR.
  • the end position of the target track TR is set so that the lower end of the bucket 6 is directly above the loading platform 61 of the dump truck 60. This is for the purpose of discharging the earth and sand in the bucket 6 to the loading platform 61 only by the operator performing the bucket opening operation when the boom raising and turning operation by the autonomous control is completed.
  • the end position of the target trajectory TR may be calculated based on information related to the bucket 6 such as the volume of the bucket 6 and information related to the dump truck 60.
  • the end position of the target trajectory TR may be the same as the end position of the orbit during the previous boom raising and turning operation. That is, the position of the lower end of the bucket 6 in the last terminal position may be sufficient.
  • the operator executes the soil removal operation by manual operation.
  • the operator can discharge the earth and sand in the bucket 6 to the loading platform 61 only by performing the bucket opening operation.
  • the operator After executing the earthing operation, the operator performs a boom lowering / turning operation by manual operation. And the earth and sand etc. which form the embankment F1 by the excavation operation by manual operation are taken in in the bucket 6 again. Thereafter, the operator starts the boom raising and turning operation by the autonomous control again at the time after finishing the excavation operation. The same applies to the boom raising and turning operation thereafter.
  • the controller 30 is configured to change the terminal position of the target trajectory TR every time the boom raising turning operation by the autonomous control is performed based on the information regarding the dump truck 60. Therefore, the operator of the excavator 100 can remove earth and sand at an appropriate position of the loading platform of the dump truck 60 only by performing the bucket opening operation every time the boom raising and turning operation by the autonomous control is completed.
  • the controller 30 may correct the target trajectory TR in accordance with a change in the state of the dump truck 60. For example, during the excavation operation, the controller 30 may correct the target trajectory TR when the left seat 63L is switched from the fully open state to the upright state as shown in FIG. 12C. Specifically, the controller 30 detects a change in the state of the dump truck 60 that is the detection target based on the output of the LIDAR, and determines the target trajectory TR used in the previous boom raising and turning operation as the state of the state. The target trajectory TRA used in the boom raising turning operation after the change is changed. The target trajectory TRA is a trajectory passing through the point P2A located at a position higher than the point P2. This is because the bucket 6 is moved onto the loading platform 61 while preventing the left seat 63L having the height HdA and the bucket 6 from contacting each other.
  • 13A to 13C are top views of the work site.
  • both the excavator 100 and the dump truck 60 are located on the sidewalk SW.
  • the sidewalk SW is provided along the roadway DW, and the sidewalk SW and the roadway DW are separated by a guard rail GR.
  • the controller 30 calculates the target trajectory TR based on the output of the LIDAR as the object detection device 70 that is an example of the surrounding monitoring device.
  • the controller 30 may calculate the target trajectory TR based on the information regarding the attitude of the excavator 100 recorded during the boom raising and turning operation by manual operation.
  • FIG. 13A shows a state when the excavator 100 completes the excavation operation.
  • the excavator 100 faces the + Y direction
  • the dump truck 60 faces the -Y direction.
  • a dotted line indicates the target trajectory TR calculated by the controller 30 based on the output of LIDAR.
  • the controller 30 calculates the target trajectory TR so that the tip of the excavation attachment AT does not protrude beyond the guard rail GR to the roadway DW side during the boom raising turning operation.
  • the solid line circle is a virtual circle drawn with the current turning radius SR1 of the excavator 100.
  • FIG. 13B shows a state when the excavator 100 is performing a boom raising turning operation. At this time, the shovel 100 faces the + X direction.
  • the broken-line circle is a virtual circle drawn with the current turning radius SR2 of the excavator 100.
  • the turning radius SR2 is smaller than the turning radius SR1.
  • FIG. 13C shows a state when the excavator 100 completes the earth removal operation. At this time, like the dump truck 60, the excavator 100 faces the ⁇ Y direction.
  • the one-dot chain line circle is a virtual circle drawn with the current turning radius SR3 of the excavator 100.
  • the turning radius SR3 is larger than the turning radius SR1.
  • the controller 30 may set the target trajectory TR so that the turning radius changes during turning.
  • the target trajectory TR may be set so that the turning radius temporarily decreases so that the tip of the excavation attachment AT does not protrude beyond the guard rail GR to the roadway DW side during turning.
  • controller 30 may be configured to dynamically correct the target trajectory TR. For example, when another excavation attachment AT is likely to come into contact with the construction machine when another excavation attachment AT is brought into contact with the excavator 100 when the turning operation is performed along the already set target trajectory TR, the controller 30 May correct the target trajectory TR so that the turning radius becomes small.
  • the controller 30 may consider the presence of an electric wire or the like over the work site. Further, when the controller 30 cannot set an appropriate target trajectory TR, or when the target trajectory TR that has already been set cannot be appropriately corrected, the controller 30 uses at least one of voice, light, vibration, and so on to that effect. You may make it notify an operator.
  • the excavator 100 includes the lower traveling body 1, the upper revolving body 3 that is turnably mounted on the lower traveling body 1, the surrounding monitoring device that is attached to the upper revolving body 3, And a controller 30 as a control device that recognizes the state of the object based on the output of the surrounding monitoring device.
  • the surrounding monitoring device may be, for example, the object detection device 70 or the imaging device 80. Recognizing the state of the object may include, for example, recognizing the three-dimensional shape of the object as well as recognizing the maximum height of the object or the shortest distance to the object. . That is, it may include recognizing the state of the object three-dimensionally. With this configuration, the excavator 100 can more reliably prevent contact between the excavation attachment AT and the object in the loading operation. Therefore, the safety of the work site can be improved.
  • controller 30 may be configured to perform control so as to avoid contact with the object. For example, autonomous control of the excavation attachment AT may be performed so as to avoid contact with the dump truck 60. Further, the controller 30 may be configured to set the entry prohibition area ZA for the object. The controller 30 may be configured to generate a target trajectory for the object. The controller 30 may be configured to correct the target trajectory when the state of the object changes.
  • the object may be a dump truck 60, for example.
  • the controller 30 may be configured to three-dimensionally recognize the state of the seat 63 attached to the gate 62 of the dump truck 60. With this configuration, the excavator 100 can control the movement of the excavation attachment AT according to the open / closed state of the seat 63. Therefore, contact between the excavation attachment AT and the seat 63 can be prevented.
  • the controller 30 may be configured to three-dimensionally recognize the column 61P at the rear end of the loading platform 61 of the dump truck 60. With this configuration, the excavator 100 can prevent contact between the excavation attachment AT and the column 61P. Further, by recognizing that the height of the loading platform 61 is lower than the height of the column 61P, it is possible to prevent the movement of the excavation attachment AT from being excessively restricted.
  • the state of the dump truck 60 may include the inclination of the dump truck 60, for example. That is, the excavator 100 may be configured to recognize an inclination angle with respect to the front-rear axis or the left-right axis of the loading platform 61 of the dump truck 60. With this configuration, the excavator 100 can control the movement of the excavation attachment AT after recognizing the detailed inclination of the dump truck 60. Therefore, the contact between the excavation attachment AT and the dump truck 60 can be more reliably prevented. In addition, it is possible to more appropriately perform excavation of the work to be excavated on the loading platform 61 of the dump truck 60.
  • the image Gx displayed on the display device D1 includes a time display unit 411, a rotation speed mode display unit 412, a travel mode display unit 413, an attachment display unit 414, and an engine control state display unit 415.
  • Image Gx shown in FIG. 14A includes a work state display unit 430 that displays a state when the work site (see FIG. 12A) is viewed from above, and the work site (see FIG. 12A) is viewed from the side. It differs from the image Gx shown in FIG. 14B including the work state display unit 430 that displays the state of the time.
  • Rotational speed mode display unit 412, travel mode display unit 413, attachment display unit 414, and engine control state display unit 415 are display units that display information related to the setting state of excavator 100.
  • the urea water remaining amount display unit 416, the fuel remaining amount display unit 417, the cooling water temperature display unit 418, and the engine operating time display unit 419 are display units that display information related to the operating state of the excavator 100.
  • the image displayed on each unit is generated by the display device D1 using various data transmitted from the controller 30, image data transmitted from the imaging device 80, and the like.
  • the time display unit 411 displays the current time.
  • the rotation speed mode display unit 412 displays a rotation speed mode set by an engine rotation speed adjustment dial (not shown) as operation information of the excavator 100.
  • the travel mode display unit 413 displays the travel mode as the operation information of the excavator 100.
  • the traveling mode represents a set state of a traveling hydraulic motor using a variable displacement motor.
  • the running mode has a low speed mode and a high speed mode, and a mark that represents “turtle” is displayed in the low speed mode, and a mark that represents “ ⁇ ” is displayed in the high speed mode.
  • the attachment display unit 414 is an area for displaying an icon representing the type of attachment currently attached.
  • the engine control state display unit 415 displays the control state of the engine 11 as the operation information of the excavator 100.
  • “automatic deceleration / automatic stop mode” is selected as the control state of the engine 11.
  • the “automatic deceleration / automatic stop mode” means a control state in which the engine speed is automatically reduced and the engine 11 is automatically stopped according to the duration of the non-operation state.
  • the control state of the engine 11 includes “automatic deceleration mode”, “automatic stop mode”, “manual deceleration mode”, and the like.
  • the urea water remaining amount display unit 416 displays an image of the remaining amount of urea water stored in the urea water tank as operation information of the excavator 100.
  • the urea water remaining amount display unit 416 displays a bar gauge indicating the current urea water remaining state. The remaining amount of urea water is displayed based on the data output from the urea water remaining amount sensor provided in the urea water tank.
  • Fuel remaining amount display unit 417 displays the remaining amount of fuel stored in the fuel tank as operation information.
  • the remaining fuel amount display unit 417 displays a bar gauge indicating the current remaining fuel amount state. The remaining amount of fuel is displayed based on the data output from the remaining fuel amount sensor provided in the fuel tank.
  • the cooling water temperature display unit 418 displays the temperature state of the engine cooling water as the operation information of the excavator 100.
  • the cooling water temperature display unit 418 displays a bar gauge representing the temperature state of the engine cooling water.
  • the temperature of the engine cooling water is displayed based on data output from a water temperature sensor provided in the engine 11.
  • the engine operation time display unit 419 displays the accumulated operation time of the engine 11 as operation information of the excavator 100.
  • the engine operating time display unit 419 displays the accumulated operating time since the count was restarted by the operator together with the unit “hr (hour)”.
  • the engine operating time display unit 419 may display the lifetime operating time of the entire period after excavator manufacture or the section operating time after the count is restarted by the operator.
  • the camera image display unit 420 displays an image taken by the imaging device 80.
  • an image taken by the rear camera 80 ⁇ / b> B attached to the upper rear end of the upper swing body 3 is displayed on the camera image display unit 420.
  • the camera image display unit 420 may display a camera image captured by the left camera 80L attached to the upper left end of the upper swing body 3 or the right camera 80R attached to the upper right end.
  • the camera image display unit 420 may display images taken by a plurality of cameras among the left camera 80L, the right camera 80R, and the rear camera 80B.
  • the camera image display unit 420 may display a composite image of a plurality of camera images captured by at least two of the left camera 80L, the right camera 80R, and the rear camera 80B.
  • the composite image may be, for example, an overhead image.
  • Each camera may be installed so that a part of the upper swing body 3 is included in the camera image. This is because a part of the upper swing body 3 is included in the displayed image, so that the operator can easily grasp the sense of distance between the object displayed on the camera image display unit 420 and the excavator 100.
  • the camera image display unit 420 displays an image of the counterweight 3w of the upper swing body 3.
  • the camera image display unit 420 displays a graphic 421 representing the orientation of the imaging device 80 that captured the camera image being displayed.
  • the figure 421 includes an excavator figure 421a that represents the shape of the shovel 100, and a band-shaped direction display figure 421b that represents the shooting direction of the imaging device 80 that has captured the currently displayed camera image.
  • the graphic 421 is a display unit that displays information related to the setting state of the excavator 100.
  • a direction display graphic 421b is displayed below the excavator graphic 421a (on the opposite side of the graphic representing the excavation attachment AT). This indicates that the rear image of the excavator 100 photographed by the rear camera 80B is displayed on the camera image display unit 420. For example, when an image taken by the right camera 80R is displayed on the camera image display unit 420, the direction display graphic 421b is displayed on the right side of the excavator graphic 421a. For example, when an image taken by the left camera 80L is displayed on the camera image display unit 420, the direction display graphic 421b is displayed on the left side of the excavator graphic 421a.
  • the operator can switch an image to be displayed on the camera image display unit 420 to an image taken by another camera, for example, by pressing an image switching switch (not shown) provided in the cabin 10.
  • Work status display unit 430 displays the work status of the excavator 100.
  • the work state display unit 430 includes a graphic 431 of the excavator 100, a graphic 432 of the dump truck 60, a graphic 433 indicating the state of the excavator 100, a graphic 434 indicating the excavation end position, a graphic 435 indicating the target track,
  • the figure includes a figure 436 representing the soil discharge start position and a figure 437 of earth and sand already loaded on the loading platform of the dump truck 60.
  • the figure 431 shows the state of the excavator 100 when the excavator 100 is viewed from above.
  • a graphic 432 shows the state of the dump truck 60 when the dump truck 60 is viewed from above.
  • a graphic 433 is a text message representing the state of the excavator 100.
  • the figure 434 shows the state of the bucket 6 when the bucket 6 when the excavation operation is finished is viewed from above.
  • the figure 435 shows the target trajectory viewed from above.
  • the figure 436 shows the state of the bucket 6 when starting the soil removal operation, that is, the bucket 6 when the bucket 6 at the end position of the target track is viewed from above.
  • the figure 437 shows the state of earth and sand already loaded on the loading platform of the dump truck 60.
  • the work state display unit 430 includes a graphic 431B of the bucket 6, a graphic 432B of the dump truck 60, a graphic 433B representing the state of the excavator 100, a graphic 434B representing the excavation end position, a graphic 435B representing the target trajectory, And the figure 436B showing the earth discharging start position is included.
  • the graphic 431B shows the state of the bucket 6 when the bucket 6 is viewed from the + Y side (see FIG. 12A).
  • the graphic 432B shows the state of the dump truck 60 when the dump truck 60 is viewed from the + Y side.
  • the figure 433B is a text message representing the state of the excavator 100.
  • a figure 434B shows the state of the bucket 6 when the bucket 6 is viewed from the + Y side when the excavation operation is terminated.
  • the figure 435B shows the target trajectory viewed from the + Y side.
  • the figure 436B shows the state of the bucket 6 when starting the soil removal operation, that is, the bucket 6 when the bucket 6 at the end position of the target track is viewed from the + Y side.
  • the controller 30 may be configured to generate the graphic 431 to the graphic 436 based on information on the attitude of the excavator 100, information on the dump truck 60, and the like.
  • the graphic 431 may be generated to represent the actual posture of the excavator 100
  • the graphic 432 may be generated to represent the actual orientation and size of the dump truck 60.
  • the graphic 434 may be generated based on information recorded by the posture recording unit 30A
  • the graphic 435 and the graphic 436 may be generated based on information calculated by the trajectory calculation unit 30B. The same applies to the figures 431B to 436B.
  • the controller 30 detects the state of earth and sand already loaded on the loading platform of the dump truck 60 based on the output of at least one of the object detection device 70 and the imaging device 80, and the position of the figure 437 according to the detected state.
  • the size may be changed.
  • the controller 30 performs the number of boom raising and turning operations related to the current dump truck 60, the number of boom raising and turning operations by autonomous control, the weight of earth and sand loaded on the dump truck 60, and the earth and sand loaded on the dump truck 60.
  • a ratio of the weight to the maximum load weight may be displayed on the work state display unit 430.
  • the operator of the excavator 100 can grasp whether or not autonomous control is performed by looking at the image Gx.
  • the image Gx includes a work state display unit 430 that displays a state when the work site is viewed from above.
  • the work site is viewed from the side (+ Y side).
  • a work state display unit 430 that displays a state when viewed is included.
  • the image Gx may include a work state display unit 430 that displays a state when the work site is viewed obliquely above or obliquely below.
  • the image Gx is an arbitrary state of a state when the work site is viewed from above, a state when the work site is viewed from the side (+ Y side), and a state when the work site is viewed from diagonally above or diagonally below.
  • a work state display unit 430 that simultaneously displays the combination may be included.
  • the image Gx includes the work state display unit 430
  • the image Gx is configured to include a camera image display unit 420 that displays an image captured by the rear camera 80B. This is because the operator can always monitor the rear of the upper swing body 3 when the boom raising swing operation is performed.
  • the excavator 100 is mounted on the lower traveling body 1, the upper swing body 3 that is pivotably mounted on the lower traveling body 1, and the upper swing body 3 so as to be pivotable.
  • a drilling attachment AT as an attachment
  • a controller 30 as a control device provided in the upper swing body 3.
  • the controller 30 is configured to autonomously execute a combined operation including the operation of the excavation attachment AT and the turning operation.
  • the excavator 100 can autonomously execute a combined operation including a turning operation in accordance with the intention of the operator.
  • the compound operation including the turning operation is, for example, a boom raising turning operation.
  • the target trajectory related to the boom raising and turning operation is calculated based on, for example, information recorded during the boom raising and turning operation by manual operation.
  • the target trajectory related to the boom raising and turning operation may be calculated based on information recorded during the boom lowering and turning operation by manual operation.
  • the combined operation including the turning operation may be a boom lowering turning operation.
  • the target trajectory related to the boom lowering turning operation is calculated based on information recorded during the boom lowering turning operation by manual operation, for example.
  • the target trajectory related to the boom lowering turning operation may be calculated based on information recorded during the boom raising turning operation by manual operation.
  • the composite operation including the turning motion may be another repetitive motion including the turning motion.
  • the excavator 100 may include a posture detection device that acquires information regarding the posture of the excavation attachment AT.
  • the posture detection device includes, for example, at least one of a boom angle sensor S1, an arm angle sensor S2, a bucket angle sensor S3, a body tilt sensor S4, and a turning angular velocity sensor S5.
  • the controller 30 calculates a target trajectory drawn by a predetermined point on the excavation attachment AT based on the information acquired by the attitude detection device, and autonomously executes the combined operation so that the predetermined point moves along the target trajectory. It may be configured to.
  • the predetermined point on the excavation attachment AT is, for example, a predetermined point on the back surface of the bucket 6.
  • the controller 30 may be configured to repeatedly execute the composite operation, and may be configured to change the target trajectory each time the composite operation is executed. For example, as described with reference to FIGS. 12A to 12C, the controller 30 may change the end position of the target track every time the boom raising turning operation by the autonomous control is executed.
  • the excavator 100 may have a recording switch NS1 as a second switch provided in the cabin 10. And the controller 30 may be comprised so that the information regarding the attitude
  • the controller 30 is configured to autonomously execute the combined operation while the automatic switch NS2 as the first switch is operated or while the turning operation is performed with the automatic switch NS2 being operated. May be. Even if the automatic switch NS2 is not provided, the controller 30 autonomously performs the combined operation including the turning operation on the condition that the turning operation is performed after recording the information on the attitude of the excavator 100 or the like. It may be configured to execute.
  • the excavator 100 may execute a composite operation autonomously by executing the following autonomous control function.
  • FIG. 15 is a block diagram illustrating another configuration example of the autonomous control function.
  • the controller 30 has functional elements Fa to Ff and F1 to F6 related to execution of autonomous control.
  • the functional element may be configured by software, may be configured by hardware, or may be configured by a combination of software and hardware.
  • the functional element Fa is configured to calculate the soil removal start position.
  • the functional element Fa is based on the object data output from the object detection device 70, and the position of the bucket 6 when starting the earthing operation is started before the earthing operation is actually started. Calculate as position.
  • the soil discharge start position is basically calculated as a position in the space above the loading platform of the dump truck 60.
  • the soil removal start position is preferably calculated so as to be a position away from the sheet 63 by a predetermined distance.
  • the functional element Fa detects the state of the earth and sand already loaded on the loading platform of the dump truck 60 based on the object data output from the object detection device 70.
  • the functional element Fa may detect the state of earth and sand already loaded on the loading platform of the dump truck 60 based on the image captured by the imaging device 80.
  • the state of earth and sand is, for example, how much earth and sand are loaded in which part of the loading platform of the dump truck 60.
  • the functional element Fa calculates the soil removal start position based on the detected state of the earth and sand.
  • the functional element Fa may calculate the soil removal start position based on the attitude of the excavator 100 (detected value of the attitude detection device) recorded by the attitude recording unit 30A when a past earth removal operation has been performed. .
  • the functional element Fa corrects the calculated soil removal start position based on the state of the earth and sand already loaded on the loading platform of the dump truck 60 or the state of the dump truck 60 during the boom raising and turning operation. It may be configured. For example, when it is detected that sediment has fallen from the edge of the loading platform of the dump truck 60 based on the output of at least one of the object detection device 70 and the imaging device 80, the functional element Fa sets the soil discharge start position from the edge of the loading platform. You may move only a predetermined distance in the direction to leave. This is to prevent the earth and sand from spilling from the edge of the loading platform of the dump truck 60 during the subsequent earth discharging operation.
  • the element Fa may correct the soil discharge start position according to the moving direction and moving amount of the dump truck 60. This is to offset the deviation of the soil discharge start position due to the movement of the dump truck 60.
  • the excavator 100 can discharge the earth and sand at the same position on the loading platform as when the dump truck 60 did not move.
  • a functional element F1 described later is configured to recalculate the target trajectory according to the corrected soil discharge start position.
  • the functional element Fb is configured to calculate the state of the dump truck 60 and the position of each part constituting the dump truck 60. In the present embodiment, the functional element Fb calculates the position of each part constituting the loading platform of the dump truck 60 based on the object data output from the object detection device 70. In addition, the functional element Fb is based on the object data output from the object detection device 70, and indicates the degree of opening and closing of the seat 63 attached to the loading platform of the dump truck 60, the inclination angle of the dump truck 60, and the like. Calculate as
  • the functional element Fc is configured to calculate the excavation end position.
  • the functional element Fc calculates the position of the bucket 6 when the excavation operation is terminated as the excavation end position based on the toe position of the bucket 6 when the latest excavation operation is terminated.
  • the functional element Fc calculates the excavation end position based on the current toe position of the bucket 6 calculated by the functional element F2 described later.
  • the functional element Fc may be configured to calculate the excavation end position based on at least one output of the posture detection device, the object detection device 70, and the imaging device 80.
  • the functional element Fd is configured to determine the start of a predetermined operation.
  • the functional element Fd can start the boom raising turning operation based on the operation data output from the operation pressure sensor 29 and the current toe position of the bucket 6 calculated by the functional element F2 described later. Determine if you can.
  • the functional element Fd is determined based on the current toe position, whether the boom 4 is raised, and the bucket 6 is more predetermined than the ground surface (for example, a virtual horizontal plane including the ground contact surface of the excavator 100). It is determined whether or not it is positioned upward by a vertical distance.
  • the functional element Fd determines that the boom raising turning operation can be started when it is determined that the boom 4 is raised and the bucket 6 is positioned above the ground surface by a predetermined vertical distance.
  • the function element Fd determines that the boom raising turning operation can be started, the operation data output from the operation pressure sensor 29 is input to the function element F3 described later.
  • the functional element Fe is configured to calculate the weight of the load.
  • the functional element Fe is based on the output of the cylinder pressure sensor 27 and the current posture of the excavation attachment AT calculated by the functional element F2 described later, and the weight of earth and sand taken into the bucket 6 is calculated. Calculated as the weight of the load.
  • the cylinder pressure sensor 27 includes, for example, a sensor that detects the pressure of hydraulic oil in the bottom side oil chamber of the boom cylinder 7.
  • the functional element Fe outputs the calculated weight of the load to the functional element F5 described later.
  • the functional element Ff is configured to determine the presence or absence of various abnormalities. In the present embodiment, the functional element Ff is configured to determine whether there is an abnormality in the object detection device 70 based on the output of the object detection device 70. The functional element Ff is configured to determine whether or not the dump truck 60 is abnormal based on the output of the functional element Fb. Specifically, the functional element Ff determines that the state of the dump truck 60 is abnormal when, for example, the dump truck 60 moves beyond an allowable predetermined distance due to an erroneous operation or the like. When the functional element Ff determines that the state of the object detection device 70 is abnormal or determines that the state of the dump truck 60 is abnormal, the functional element Ff outputs a command to the functional element F4 described later. The movement of the excavator 100 is decelerated or stopped.
  • the functional element F1 is configured to generate a target trajectory.
  • the functional element F1 generates a trajectory to be followed by the tip of the bucket 6 as a target trajectory based on the object data output from the object detection device 70 and the excavation end position calculated by the functional element Fc.
  • the object data is information regarding an object existing around the excavator 100 such as the position and shape of the dump truck 60.
  • the functional element F1 calculates the target trajectory based on the soil discharge start position calculated by the functional element Fa, the dump truck position calculated by the functional element Fb, and the excavation end position calculated by the functional element Fc. To do.
  • the functional element F1 is typically configured to calculate a target trajectory each time a boom raising excavation operation is started. That is, the target trajectory is typically updated every time a boom raising excavation operation is started. Similarly, the excavation end position and the soil discharge start position are updated every time the boom raising excavation operation is started.
  • the functional element F2 is configured to calculate the current toe position.
  • functional elements F2 includes a boom angle beta 1 the boom angle sensor S1 has detected an arm angle beta 2 in which the arm angle sensor S2 has detected, a bucket angle beta 3 of the bucket angle sensor S3 detects the turning based on the turning angle alpha 1 and the angular velocity sensor S5 has detected, to calculate the coordinate points of the toe of the bucket 6 as the current toe position.
  • the functional element F2 may use the output of the body tilt sensor S4 when calculating the current toe position.
  • the functional element F3 is configured to calculate the next toe position.
  • the functional element F3 is the toe after a predetermined time based on the operation data output from the operation pressure sensor 29, the target trajectory generated by the functional element F1, and the current toe position calculated by the functional element F2.
  • the position is calculated as the target toe position.
  • the functional element F3 may determine whether or not the deviation between the current toe position and the target trajectory is within an allowable range. In the present embodiment, the functional element F3 determines whether or not the distance between the current toe position and the target trajectory is a predetermined value or less. When the distance is equal to or smaller than the predetermined value, the functional element F3 determines that the deviation is within the allowable range, and calculates the target toe position. On the other hand, when the distance exceeds the predetermined value, the functional element F3 determines that the deviation is not within the allowable range, and decelerates or stops the movement of the actuator regardless of the lever operation amount.
  • the functional element F4 is configured to generate a command value related to the toe speed.
  • the functional element F4 moves the current toe position to the next toe position in a predetermined time based on the current toe position calculated by the functional element F2 and the next toe position calculated by the functional element F3.
  • the toe speed required for the toe is calculated as a command value related to the toe speed.
  • the functional element F5 is configured to limit the command value related to the toe speed.
  • the functional element F5 determines that the distance between the toe and the dump truck 60 is less than a predetermined value based on the current toe position calculated by the functional element F2 and the output of the object detection device 70.
  • the command value related to the toe speed is limited by a predetermined upper limit value.
  • the controller 30 reduces the speed of the toe when the toe approaches the dump truck 60.
  • the functional element F5 may be configured to change the upper limit value based on the weight of the load calculated by the functional element Fe.
  • the functional element F5 may be configured to change the upper limit value based on the turning radius of the excavation attachment AT.
  • the turning radius of the excavation attachment AT may be calculated by the functional element F2, or may be calculated by the functional element F5 based on the output of the functional element F2.
  • the functional element F6 is configured to calculate a command value for operating the actuator.
  • the functional element F6 has a command value ⁇ 1r for the boom angle ⁇ 1 and an arm angle ⁇ 2 based on the target toe position calculated by the functional element F3 in order to move the current toe position to the target toe position.
  • Command value ⁇ 2r , command value ⁇ 3r related to bucket angle ⁇ 3 , and command value ⁇ 1r related to turning angle ⁇ 1 are calculated.
  • the functional element F6 calculates the command value ⁇ 1r as necessary even when the boom 4 is not operated. This is because the boom 4 is automatically operated. The same applies to the arm 5, the bucket 6, and the turning mechanism 2.
  • FIG. 16 is a block diagram illustrating a configuration example of the functional element F6 that calculates various command values.
  • the controller 30 further includes functional elements F11 to F13, F21 to F23, F31 to F33, and F50 regarding generation of command values.
  • the functional element may be configured by software, may be configured by hardware, or may be configured by a combination of software and hardware.
  • the functional elements F11 to F13 are functional elements related to the command value ⁇ 1r
  • the functional elements F21 to F23 are functional elements related to the command value ⁇ 2r
  • the functional elements F31 to F33 are functional elements related to the command value ⁇ 3r
  • the functional elements F41 to F43 are functional elements relating to the command value ⁇ 1r .
  • Functional elements F11, F21, F31, and F41 are configured to generate a current command that is output to the proportional valve 31.
  • the functional element F11 outputs a boom current command to the boom control mechanism 31C
  • the functional element F21 outputs an arm current command to the arm control mechanism 31A
  • the functional element F31 performs bucket control.
  • the bucket current command is output to the mechanism 31D
  • the functional element F41 outputs the swing current command to the swing control mechanism 31B.
  • the bucket control mechanism 31D is configured so that a pilot pressure corresponding to a control current corresponding to the bucket cylinder pilot pressure command can be applied to the control valve 174 as a bucket control valve.
  • the bucket control mechanism 31D may be, for example, the proportional valve 31DL and the proportional valve 31DR in FIG. 8D.
  • the functional elements F12, F22, F32, and F42 are configured to calculate the displacement amount of the spool that constitutes the spool valve.
  • the functional element F12 calculates the displacement amount of the boom spool that constitutes the control valve 175 related to the boom cylinder 7 based on the output of the boom spool displacement sensor S7.
  • the functional element F22 calculates the displacement amount of the arm spool constituting the control valve 176 related to the arm cylinder 8 based on the output of the arm spool displacement sensor S8.
  • the functional element F32 calculates the displacement amount of the bucket spool constituting the control valve 174 related to the bucket cylinder 9 based on the output of the bucket spool displacement sensor S9.
  • the functional element F42 calculates the displacement amount of the turning spool that constitutes the control valve 173 related to the turning hydraulic motor 2A based on the output of the turning spool displacement sensor S2A.
  • the bucket spool displacement sensor S9 is a sensor that detects the amount of displacement of the spool that constitutes the control valve 174.
  • the functional elements F13, F23, F33, and F43 are configured to calculate the rotation angle of the work body.
  • functional elements F13 based on the output of the boom angle sensor S1, calculates a boom angle beta 1.
  • Functional elements F23 based on the output of the arm angle sensor S2, calculates an arm angle beta 2.
  • Functional elements F33 based on the output of the bucket angle sensor S3, and calculates the bucket angle beta 3.
  • Functional elements F43 based on the output of the turning angular velocity sensor S5, and calculates the turning angle alpha 1.
  • functional components F11 is essentially such that the difference between the boom angle beta 1 of functional elements F6 command value generated by beta 1r and functional elements F13 was calculated becomes zero, with respect to the boom control mechanism 31C A boom current command is generated. At that time, the functional element F11 adjusts the boom current command so that the difference between the target boom spool displacement amount derived from the boom current command and the boom spool displacement amount calculated by the functional element F12 becomes zero. Then, the functional element F11 outputs the adjusted boom current command to the boom control mechanism 31C.
  • the boom control mechanism 31C changes the opening area in accordance with the boom current command, and applies a pilot pressure corresponding to the size of the opening area to the pilot port of the control valve 175.
  • the control valve 175 moves the boom spool according to the pilot pressure, and causes the hydraulic oil to flow into the boom cylinder 7.
  • the boom spool displacement sensor S7 detects the displacement of the boom spool and feeds back the detection result to the functional element F12 of the controller 30.
  • the boom cylinder 7 expands and contracts in response to the inflow of hydraulic oil, and moves the boom 4 up and down.
  • the boom angle sensor S1 detects the rotation angle of the boom 4 that moves up and down, and feeds back the detection result to the functional element F13 of the controller 30.
  • Functional elements F13 feeds back the calculated boom angle beta 1 to the functional element F4.
  • the function element F21 basically generates an arm current command for the arm control mechanism 31A so that the difference between the command value ⁇ 2r generated by the function element F6 and the arm angle ⁇ 2 calculated by the function element F23 becomes zero. To do. At that time, the functional element F21 adjusts the arm current command so that the difference between the target arm spool displacement amount derived from the arm current command and the arm spool displacement amount calculated by the functional element F22 becomes zero. The functional element F21 outputs the adjusted arm current command to the arm control mechanism 31A.
  • the arm control mechanism 31A changes the opening area in accordance with the arm current command, and causes the pilot pressure corresponding to the size of the opening area to act on the pilot port of the control valve 176.
  • the control valve 176 moves the arm spool according to the pilot pressure and causes the hydraulic oil to flow into the arm cylinder 8.
  • the arm spool displacement sensor S8 detects the displacement of the arm spool and feeds back the detection result to the functional element F22 of the controller 30.
  • the arm cylinder 8 expands and contracts according to the inflow of hydraulic oil, and opens and closes the arm 5.
  • the arm angle sensor S2 detects the rotation angle of the arm 5 to be opened and closed, and feeds back the detection result to the functional element F23 of the controller 30. Functional elements F23 feeds back the arm angle beta 2 calculated for functional elements F4.
  • the functional element F31 basically generates a bucket current command for the bucket control mechanism 31D so that the difference between the command value ⁇ 3r generated by the functional element F6 and the bucket angle ⁇ 3 calculated by the functional element F33 becomes zero. To do. At that time, the functional element F31 adjusts the bucket current command so that the difference between the target bucket spool displacement amount derived from the bucket current command and the bucket spool displacement amount calculated by the functional element F32 becomes zero. Then, the functional element F31 outputs the adjusted bucket current command to the bucket control mechanism 31D.
  • the bucket control mechanism 31 ⁇ / b> D changes the opening area in accordance with the bucket current command, and applies a pilot pressure corresponding to the size of the opening area to the pilot port of the control valve 174.
  • the control valve 174 moves the bucket spool according to the pilot pressure, and causes the hydraulic oil to flow into the bucket cylinder 9.
  • the bucket spool displacement sensor S9 detects the displacement of the bucket spool and feeds back the detection result to the functional element F32 of the controller 30.
  • the bucket cylinder 9 expands and contracts according to the inflow of hydraulic oil, and opens and closes the bucket 6.
  • the bucket angle sensor S3 detects the rotation angle of the bucket 6 that opens and closes, and feeds back the detection result to the functional element F33 of the controller 30.
  • Functional elements F33 feeds back the bucket angle beta 3 calculated for functional elements F4.
  • the function element F41 basically generates a turning current command for the turning control mechanism 31B so that the difference between the command value ⁇ 1r generated by the function element F6 and the turning angle ⁇ 1 calculated by the function element F43 becomes zero. To do. At that time, the functional element F41 adjusts the swing current command so that the difference between the target swing spool displacement amount derived from the swing current command and the swing spool displacement amount calculated by the functional element F42 becomes zero. Then, the functional element F41 outputs the adjusted turning current command to the turning control mechanism 31B. Note that the difference between the command value ⁇ 1r generated by the functional element F6 and the turning angle ⁇ 1 calculated by the functional element F43 may be limited by the limiting unit F50 before being input to the functional element F41.
  • Limiting unit F50 based on the boom angle beta 1 of functional element F13 was calculated, the boom 4 is configured to determine whether or not risen to a predetermined height (angle).
  • the limiting unit F50 when the boom 4 is determined not to rise to a predetermined height (angle), and the functional element command value is the difference that is output to the F 41 alpha 1r turning angle alpha 1 and the The difference is limited to a predetermined value or less. This is to prevent the upper swing body 3 from turning suddenly when the boom 4 is not sufficiently raised.
  • the turning control mechanism 31B changes the opening area according to the turning current command, and causes the pilot pressure corresponding to the size of the opening area to act on the pilot port of the control valve 173.
  • the control valve 173 moves the swing spool in accordance with the pilot pressure, and causes hydraulic oil to flow into the swing hydraulic motor 2A.
  • the orbiting spool displacement sensor S2A detects the displacement of the orbiting spool and feeds back the detection result to the functional element F42 of the controller 30.
  • the turning hydraulic motor 2A rotates in response to the inflow of hydraulic oil, and turns the upper turning body 3.
  • the turning angular velocity sensor S5 detects the turning angle of the upper turning body 3, and feeds back the detection result to the functional element F43 of the controller 30.
  • Functional elements F43 feeds back the calculated turning angle alpha 1 to the functional element F4.
  • the controller 30 constitutes a three-stage feedback loop for each work body. That is, the controller 30 constitutes a feedback loop related to the spool displacement amount, a feedback loop related to the rotation angle of the work body, and a feedback loop related to the toe position. Therefore, the controller 30 can control the movement of the tip of the bucket 6 with high accuracy during autonomous control.
  • FIG. 17 is a block diagram illustrating still another configuration example of the autonomous control function.
  • the configuration shown in FIG. 17 includes functional elements for operating a manually operated manned excavator in that it includes functional elements for operating an automatically operated unmanned excavator. And different. Specifically, the configuration shown in FIG. 17 is based on the point that the next toe position is calculated based on the output of the communication device 25 instead of the output of the operation pressure sensor 29, and that the functional elements Fd1 to Fd4 are included. Different from the configuration shown in FIG. Therefore, in the following, description of portions common to the configuration shown in FIG. 15 is omitted, and different portions are described in detail.
  • the communication device 25 is configured to control communication between the excavator 100 and an external device outside the excavator 100.
  • the communication device 25 is configured to output a start command to the functional element Fd1 based on a signal received from an external device.
  • the communication device 25 may be configured to output operation data to the functional element Fd1 based on a signal received from an external device.
  • the communication device 25 may be an input device mounted on the excavator 100.
  • the functional element Fd1 is configured to determine the start of work.
  • the functional element Fd1 is configured to determine that the start of work has been instructed when receiving a start command from the communication device 25, and to output a start command to the functional element Fd2.
  • the function element Fd1 can determine that no object exists around the excavator 100 based on the output of at least one of the object detection device 70 and the imaging device 80. It may be configured to output a start command to Fd2.
  • the functional element Fd1 outputs a start command to the functional element Fd2
  • the functional element Fd1 outputs a command to the electromagnetic on-off valve arranged in the pilot line connecting the pilot pump 15 and the control valve 17, and opens the pilot line. May be.
  • the functional element Fd2 is configured to determine the content of the operation.
  • the functional element Fd2 when the functional element Fd2 receives a start command from the functional element Fd1, the functional element Fd2 is any of the excavation operation, the boom raising swiveling operation, and the earth discharging operation based on the current toe position calculated by the functional element F2. It is configured to determine whether the operation is currently performed or whether any operation is being performed.
  • the functional element Fd2 is configured to output a start command to the functional element Fd3 when it is determined that the excavation operation has ended based on the current toe position calculated by the functional element F2.
  • the functional element Fd3 is configured to set the operating conditions of the excavator 100.
  • the functional element Fd3 is configured to set operating conditions such as a turning speed when a boom raising turning operation by autonomous control is performed when a start command is received from the functional element Fd2.
  • the functional element Fd3 is configured to output a start command to the functional element Fd4 after setting operating conditions.
  • the functional element Fd4 is configured to determine the start of a predetermined operation.
  • the functional element Fd4 receives a start instruction from the functional element Fd3, can the boom raising swivel operation be started based on the current toe position of the bucket 6 calculated by the functional element F2? Determine whether or not.
  • the functional element Fd4 is determined based on the current toe position, whether or not the boom 4 is raised, and the bucket 6 is more predetermined than the ground surface (for example, a virtual horizontal plane including the ground contact surface of the excavator 100). It is determined whether or not it is positioned upward by a vertical distance.
  • the functional element Fd4 determines that the boom raising swivel operation can be started when it is determined that the boom 4 is raised and the bucket 6 is positioned above the ground surface by a predetermined vertical distance. .
  • the operation data automatically generated in the automatic driving unmanned excavator is input to the functional element F3.
  • the controller 30 can execute a boom raising turning operation by autonomous control even in an automatic operation type unmanned excavator, as in the case of a manual operation type manned excavator.
  • a hydraulic operation lever having a hydraulic pilot circuit is disclosed. Specifically, in the hydraulic pilot circuit related to the left operating lever 26L that functions as an arm operating lever, the hydraulic oil supplied from the pilot pump 15 to the remote control valve of the left operating lever 26L is opened and closed by the tilt of the left operating lever 26L. Is transmitted to a pilot port of a control valve 176 as an arm control valve at a flow rate corresponding to the opening of the remote control valve.
  • an electric operation lever having an electric pilot circuit may be employed instead of a hydraulic operation lever having such a hydraulic pilot circuit.
  • the lever operation amount of the electric operation lever is input to the controller 30 as an electric signal.
  • An electromagnetic valve is disposed between the pilot pump 15 and the pilot port of each control valve.
  • the solenoid valve is configured to operate in response to an electrical signal from the controller 30.
  • the controller 30 controls each solenoid valve by increasing or decreasing the pilot pressure by controlling the electromagnetic valve with an electric signal corresponding to the lever operation amount. 17 can be moved.
  • Each control valve may be constituted by an electromagnetic spool valve. In this case, the electromagnetic spool valve operates in accordance with an electric signal from the controller 30 corresponding to the lever operation amount of the electric operation lever.
  • FIG. 18 shows a configuration example of an electric operation system.
  • the electric operation system of FIG. 18 is an example of a boom operation system.
  • the boom raising operation electromagnetic valve 65 and the boom lowering operation electromagnetic valve 66 are configured.
  • the electric operation system of FIG. 18 can be similarly applied to an arm operation system, a bucket operation system, and the like.
  • the pilot pressure actuated control valve 17 includes a control valve 175 for the boom cylinder 7 (see FIG. 2), a control valve 176 for the arm cylinder 8 (see FIG. 2), and a control valve 174 for the bucket cylinder 9 (FIG. 2). Etc.).
  • the electromagnetic valve 65 is configured to be able to adjust the flow area of a pipe line connecting the pilot pump 15 and the pilot port on the raising side of the control valve 175.
  • the electromagnetic valve 66 is configured to be able to adjust the flow path area of a pipe line connecting the pilot pump 15 and the lower pilot port of the control valve 175.
  • the controller 30 When manual operation is performed, the controller 30 generates a boom raising operation signal (electric signal) or a boom lowering operation signal (electric signal) according to an operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26A. Generate.
  • the operation signal output by the operation signal generation unit of the boom operation lever 26A is an electrical signal that changes according to the operation amount and operation direction of the boom operation lever 26A.
  • the controller 30 when the boom operation lever 26A is operated in the boom raising direction, the controller 30 outputs a boom raising operation signal (electric signal) corresponding to the lever operation amount to the electromagnetic valve 65.
  • the electromagnetic valve 65 adjusts the flow path area according to the boom raising operation signal (electrical signal), and controls the pilot pressure as the boom raising operation signal (pressure signal) acting on the raising pilot port of the control valve 175. .
  • the controller 30 when the boom operation lever 26A is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the electromagnetic valve 66.
  • the electromagnetic valve 66 adjusts the flow path area according to the boom lowering operation signal (electrical signal), and controls the pilot pressure as the boom lowering operation signal (pressure signal) acting on the lower pilot port of the control valve 175. .
  • the controller 30, When executing autonomous control, the controller 30, for example, does not respond to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26 ⁇ / b> A, but operates the boom raising operation signal according to the correction operation signal (electric signal). (Electric signal) or boom lowering operation signal (electric signal) is generated.
  • the correction operation signal may be an electric signal generated by the controller 30, or an electric signal generated by an external control device other than the controller 30.
  • FIG. 19 is a schematic diagram illustrating a configuration example of the excavator management system SYS.
  • the management system SYS is a system that manages one or a plurality of excavators 100.
  • the management system SYS is mainly composed of an excavator 100, a support device 200, and a management device 300.
  • Each of the excavator 100, the support device 200, and the management device 300 configuring the management system SYS may be one or more.
  • the management system SYS includes one excavator 100, one support device 200, and one management device 300.
  • the support device 200 is typically a mobile terminal device, for example, a notebook PC, a tablet PC, a smartphone, or the like carried by an operator or the like at a construction site.
  • the support device 200 may be a computer carried by the operator of the excavator 100.
  • the support device 200 may be a fixed terminal device.
  • the management device 300 is typically a fixed terminal device, for example, a server computer installed in a management center or the like outside the construction site.
  • the management device 300 may be a portable computer (for example, a portable terminal device such as a notebook PC, a tablet PC, or a smartphone).
  • At least one of the support device 200 and the management device 300 may include a monitor and a remote operation device.
  • the operator may operate the excavator 100 while using an operation device for remote operation.
  • the remote operation device is connected to the controller 30 through a communication network such as a wireless communication network.
  • a communication network such as a wireless communication network.
  • the controller 30 of the excavator 100 includes the time and place when the autonomous control is started or stopped, the target trajectory used during the autonomous control, and the autonomous control. Information regarding at least one of the trajectories actually followed by the predetermined part may be transmitted to the management apparatus 300. At that time, the controller 30 may transmit at least one of the output of the object detection device 70 and the image captured by the imaging device 80 to the management device 300.
  • the images may be a plurality of images captured during a predetermined period including a period in which autonomous control is executed.
  • the controller 30 manages information on at least one of data relating to the work content of the excavator 100 during a predetermined period including a period during which autonomous control is executed, data relating to the attitude of the excavator 100, data relating to the attitude of the excavation attachment, and the like. You may transmit to 300. This is because an administrator who uses the management apparatus 300 can obtain information on the work site.
  • the data related to the work content of the excavator 100 includes, for example, the number of loadings that are the number of times the earthing operation has been performed, information about the load such as earth and sand loaded on the loading platform of the dump truck 60, the type of the dump truck 60 related to the loading work, It is at least one of information regarding the position of the excavator 100 when the loading operation is performed, information regarding the work environment, information regarding the operation of the excavator 100 when the loading operation is performed, and the like.
  • Information on the load includes, for example, the weight and type of the load loaded in each earthing operation, the weight and type of the load loaded on each dump truck 60, and the daily loading. It is at least one of the weight and type of the object loaded in the work.
  • the information related to the work environment is, for example, information related to the inclination of the ground around the excavator 100 or information related to the weather around the work site.
  • the information regarding the operation of the shovel 100 is at least one of, for example, a pilot pressure and a pressure of hydraulic oil in the hydraulic actuator.
  • the management system SYS of the excavator 100 uses the information regarding the excavator 100 acquired during a predetermined period including the period during which the autonomous control by the excavator 100 is executed, to the administrator and other excavators. It can be shared with operators.
  • traveling lever 26DL ... left traveling lever 26DR ... right traveling lever 26L ... left operating lever 26R ... right operating lever 27 ... cylinder pressure sensor 28 ... ⁇ Discharge pressure sensor 29, 29A, 29B, 29DL, 29DR, 29LA, 29LB, 29RA, 29RB ... Operation pressure sensor 30 ... Controller 30A ... Attitude recording unit 30B ... Orbit calculation unit 30C ... Autonomous control part 31, 31AL-31DL, 31AR-31DR ... proportional valve 32, 32AL-32DL, 32AR-32DR ... shuttle valve 40 ... center bypass pipe 42 ... parallel pipe 50L, 50R ⁇ ⁇ Reducing valve 60 ... Dump truck 61 ... Loading platform 61P ... Post 62 ... Gate 62B ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

本発明の実施形態に係るショベル(100)は、ダンプトラック(60)に被掘削物を積み込むことができるショベル(100)であって、下部走行体(1)と、下部走行体(1)に旋回可能に搭載される上部旋回体(3)と、上部旋回体(3)に取り付けられる周囲監視装置としての物体検知装置(70)と、物体検知装置(70)の出力に基づいてダンプトラック(60)の状態を立体的に認識するコントローラ(30)と、を有する。

Description

ショベル
 本開示は、ショベルに関する。
 従来、掘削した土砂等をダンプトラックに積み込む作業でのアタッチメントとダンプトラックとの接触を防止するショベルが知られている(特許文献1参照)。このショベルは、ショベルとダンプトラックとの間の距離、及び、ダンプトラックの高さに基づき、バケットの先端が辿る軌跡線を生成する。そして、ブーム上げ旋回動作が行われるときに、バケットの先端が軌跡線に沿うように、ブームシリンダ及び旋回用油圧モータのそれぞれに供給される作動油の流量を制御する。
国際公開2017/115809号
 しかしながら、上記ショベルは、カメラ等で検知された対象物であるダンプトラックの状態が変化した場合に対応できないおそれがある。例えば、積み込み作業の際に、ダンプトラックの荷台のゲートに取り付けられている自動開閉シートの状態が開状態から閉状態に切り換えられた場合、上記ショベルは、バケットを自動開閉シートに接触させてしまうおそれがある。
 そこで、積み込み作業でのアタッチメントと検知される対象物との接触をより確実に防止できるショベルを提供することが望ましい。
 本発明の実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられる周囲監視装置と、前記周囲監視装置の出力に基づいて対象物の状態を認識する制御装置と、を有する。
 上述の手段により、積み込み作業でのアタッチメントと検知される対象物との接触をより確実に防止できるショベルが提供される。
本発明の実施形態に係るショベルの側面図である。 本発明の実施形態に係るショベルの上面図である。 図1Aのショベルに搭載される油圧システムの構成例を示す概略図である。 ショベルとダンプトラックの位置関係を示す図である。 ショベルとダンプトラックの位置関係を示す図である。 ダンプトラックの背面図である。 ダンプトラックの右側面図である。 バケット及びダンプトラックの背面図である。 バケット及びダンプトラックの背面図である。 図1Aのショベルに搭載される油圧システムの別の構成例を示す図である。 図7に示す油圧システムの一部を抜き出した図である。 図7に示す油圧システムの一部を抜き出した図である。 図7に示す油圧システムの一部を抜き出した図である。 図7に示す油圧システムの一部を抜き出した図である。 コントローラの機能ブロック図である。 自律制御機能のブロック図である。 自律制御機能のブロック図である。 作業現場の様子の一例を示す図である。 作業現場の様子の一例を示す図である。 作業現場の様子の一例を示す図である。 作業現場の様子の別の一例を示す図である。 作業現場の様子の別の一例を示す図である。 作業現場の様子の別の一例を示す図である。 自律制御の際に表示される画像の一例を示す図である。 自律制御の際に表示される画像の別の一例を示す図である。 自律制御機能の別の構成例を示すブロック図である。 自律制御機能の別の構成例を示すブロック図である。 自律制御機能の更に別の構成例を示すブロック図である。 電気式操作システムの構成例を示す図である。 ショベルの管理システムの構成例を示す概略図である。
 最初に、図1A及び図1Bを参照して、本発明の実施形態に係る掘削機としてのショベル100について説明する。図1Aはショベル100の側面図であり、図1Bはショベル100の上面図である。
 本実施形態では、ショベル100の下部走行体1はクローラ1Cを含む。クローラ1Cは、下部走行体1に搭載されている走行用油圧モータ2Mによって駆動される。具体的には、クローラ1Cは左クローラ1CL及び右クローラ1CRを含む。左クローラ1CLは左走行用油圧モータ2MLによって駆動され、右クローラ1CRは右走行用油圧モータ2MRによって駆動される。
 下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。旋回機構2は、上部旋回体3に搭載されている旋回用油圧モータ2Aによって駆動される。但し、旋回用油圧モータ2Aは、電動アクチュエータとしての旋回用電動発電機であってもよい。
 上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。ブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントATを構成する。ブーム4はブームシリンダ7で駆動され、アーム5はアームシリンダ8で駆動され、バケット6はバケットシリンダ9で駆動される。
 ブーム4は、上部旋回体3によって回動可能に支持されている。そして、ブーム4にはブーム角度センサS1が取り付けられている。ブーム角度センサS1は、ブーム4の回動角度であるブーム角度βを検出できる。ブーム角度βは、例えば、ブーム4を最も下降させた状態からの上昇角度である。そのため、ブーム角度βは、ブーム4を最も上昇させたときに最大となる。
 アーム5は、ブーム4に関して回動可能に支持されている。そして、アーム5にはアーム角度センサS2が取り付けられている。アーム角度センサS2は、アーム5の回動角度であるアーム角度βを検出できる。アーム角度βは、例えば、アーム5を最も閉じた状態からの開き角度である。そのため、アーム角度βは、アーム5を最も開いたときに最大となる。
 バケット6は、アーム5に関して回動可能に支持されている。そして、バケット6にはバケット角度センサS3が取り付けられている。バケット角度センサS3は、バケット6の回動角度であるバケット角度βを検出できる。バケット角度βは、バケット6を最も閉じた状態からの開き角度である。そのため、バケット角度βは、バケット6を最も開いたときに最大となる。
 図1A及び図1Bに示す実施形態では、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3のそれぞれは、加速度センサとジャイロセンサの組み合わせで構成されている。但し、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3の少なくとも1つは、加速度センサのみで構成されていてもよい。また、ブーム角度センサS1は、ブームシリンダ7に取り付けられたストロークセンサであってもよく、ロータリエンコーダ、ポテンショメータ、又は慣性計測装置等であってもよい。アーム角度センサS2及びバケット角度センサS3についても同様である。
 上部旋回体3には、運転室としてのキャビン10が設けられ、且つ、エンジン11等の動力源が搭載されている。また、上部旋回体3には、物体検知装置70、撮像装置80、機体傾斜センサS4、及び旋回角速度センサS5等が取り付けられている。キャビン10の内部には、操作装置26、コントローラ30、表示装置D1、及び音出力装置D2等が設けられている。なお、本書では、便宜上、上部旋回体3における、掘削アタッチメントATが取り付けられている側を前方とし、カウンタウェイトが取り付けられている側を後方とする。
 物体検知装置70は、周囲監視装置の一例であり、ショベル100の周囲に存在する物体を検知するように構成されている。物体は、例えば、人、動物、車両、建設機械、建造物、壁、柵、又は穴等である。物体検知装置70は、例えば、カメラ、超音波センサ、ミリ波レーダ、ステレオカメラ、LIDAR、距離画像センサ、又は赤外線センサ等である。本実施形態では、物体検知装置70は、キャビン10の上面前端に取り付けられた前センサ70F、上部旋回体3の上面後端に取り付けられた後センサ70B、上部旋回体3の上面左端に取り付けられた左センサ70L、及び、上部旋回体3の上面右端に取り付けられた右センサ70Rを含む。
 物体検知装置70は、ショベル100の周囲に設定された所定領域内の所定物体を検知するように構成されていてもよい。物体検知装置70は、人と人以外の物体とを区別できるように構成されていてもよい。物体検知装置70は、物体検知装置70又はショベル100から認識された物体までの距離を算出するように構成されていてもよい。
 撮像装置80は、周囲監視装置の別の一例であり、ショベル100の周囲を撮像する。本実施形態では、撮像装置80は、上部旋回体3の上面後端に取り付けられた後カメラ80B、上部旋回体3の上面左端に取り付けられた左カメラ80L、及び、上部旋回体3の上面右端に取り付けられた右カメラ80Rを含む。撮像装置80は、前カメラを含んでいてもよい。
 後カメラ80Bは後センサ70Bに隣接して配置され、左カメラ80Lは左センサ70Lに隣接して配置され、且つ、右カメラ80Rは右センサ70Rに隣接して配置されている。撮像装置80が前カメラを含む場合、前カメラは、前センサ70Fに隣接して配置されていてもよい。
 撮像装置80が撮像した画像は表示装置D1に表示される。撮像装置80は、俯瞰画像等の視点変換画像を表示装置D1に表示できるように構成されていてもよい。俯瞰画像は、例えば、後カメラ80B、左カメラ80L及び右カメラ80Rのそれぞれが出力する画像を合成して生成される。
 機体傾斜センサS4は、所定の平面に対する上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は、水平面に関する上部旋回体3の前後軸回りの傾斜角(ロール角)及び左右軸回りの傾斜角(ピッチ角)を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、互いに直交してショベル100の旋回軸上の一点であるショベル中心点を通る。機体傾斜センサS4は、加速度センサとジャイロセンサの組み合わせで構成されていてもよい。
 旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ又はロータリエンコーダ等であってもよい。旋回角速度センサS5は、旋回速度を検出してもよい。旋回速度は、旋回角速度から算出されてもよい。
 以下では、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、及び旋回角速度センサS5のそれぞれは、姿勢検出装置とも称される。
 表示装置D1は、様々な情報を表示するように構成されている。音出力装置D2は、音を出力するように構成されている。操作装置26は、操作者がアクチュエータの操作のために用いる装置である。
 コントローラ30は、ショベル100を制御するための制御装置である。本実施形態では、コントローラ30は、CPU、揮発性記憶装置、及び不揮発性記憶装置等を備えたコンピュータで構成されている。そして、コントローラ30は、各機能に対応するプログラムを不揮発性記憶装置から読み出して実行する。各機能は、例えば、操作者によるショベル100の手動操作をガイド(案内)するマシンガイダンス機能、及び、操作者によるショベル100の手動操作を自動的に支援するマシンコントロール機能等を含む。
 図2は、ショベル100に搭載される油圧システムの構成例を示す図であり、機械的動力伝達系、作動油ライン、パイロットライン、及び電気制御系を、それぞれ二重線、実線、破線、及び点線で示す。
 油圧システムは、エンジン11によって駆動される油圧ポンプとしてのメインポンプ14からセンターバイパス管路40を経て作動油タンクまで作動油を循環させる。メインポンプ14は、左メインポンプ14L及び右メインポンプ14Rを含む。センターバイパス管路40は、左センターバイパス管路40L及び右センターバイパス管路40Rを含む。
 左センターバイパス管路40Lは、コントロールバルブ内に配置された制御弁151、153、155、及び157を連通する作動油ラインであり、右センターバイパス管路40Rは、コントロールバルブ内に配置された制御弁150、152、154、156、及び158を連通する作動油ラインである。
 制御弁150は、走行直進弁である。制御弁151は、左メインポンプ14Lが吐出する作動油を左走行用油圧モータ2MLへ供給し、且つ、左走行用油圧モータ2ML内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。制御弁152は、右メインポンプ14Rが吐出する作動油を右走行用油圧モータ2MRへ供給し、且つ、右走行用油圧モータ2MR内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁153は、左メインポンプ14Lが吐出する作動油をブームシリンダ7へ供給するために作動油の流れを切り換えるスプール弁である。制御弁154は、右メインポンプ14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁155は、左メインポンプ14Lが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。制御弁156は、右メインポンプ14Rが吐出する作動油をアームシリンダ8へ供給するために作動油の流れを切り換えるスプール弁である。
 制御弁157は、左メインポンプ14Lが吐出する作動油を旋回用油圧モータ2Aで循環させるために作動油の流れを切り換えるスプール弁である。
 制御弁158は、右メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 レギュレータ13は、メインポンプ14の吐出圧に応じてメインポンプ14の斜板傾転角を調節することによって(例えば、全馬力制御によって)、メインポンプ14の吐出量を制御する。図2の例では、レギュレータ13は、左メインポンプ14Lに対応する左レギュレータ13L、及び、右メインポンプ14Rに対応する右レギュレータ13Rを含む。
 ブーム操作レバー26Aは、ブーム4の上げ下げを操作するための操作装置である。ブーム操作レバー26Aは、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁154の左右何れかのパイロットポートに導入させる。これにより、制御弁154内のスプールの移動量が制御され、ブームシリンダ7へ供給される作動油の流量が制御される。制御弁153についても同様である。なお、図2では、明瞭化のため、ブーム操作レバー26Aと、制御弁153の左右のパイロットポート及び制御弁154の左側パイロットポートのそれぞれとを繋ぐパイロットラインの図示が省略されている。
 操作圧センサ29Aは、ブーム操作レバー26Aに対する操作者の操作内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作内容は、例えば、レバー操作方向及びレバー操作量(レバー操作角度)である。
 旋回操作レバー26Bは、旋回用油圧モータ2Aを駆動させて旋回機構2を動作させる操作装置である。旋回操作レバー26Bは、例えば、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁157の左右何れかのパイロットポートに導入させる。これにより、制御弁157内のスプールの移動量が制御され、旋回用油圧モータ2Aへ供給される作動油の流量が制御される。なお、図2では、明瞭化のため、旋回操作レバー26Bと、制御弁157の右側パイロットポートとを繋ぐパイロットラインの図示が省略されている。
 操作圧センサ29Bは、旋回操作レバー26Bに対する操作者の操作内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 ショベル100は、ブーム操作レバー26A及び旋回操作レバー26B以外にも、走行レバー、走行ペダル、アーム操作レバー、及びバケット操作レバー(何れも図示せず。)を有する。これらの操作装置は、ブーム操作レバー26A及び旋回操作レバー26Bと同様に、パイロットポンプ15が吐出する作動油を利用し、レバー操作量又はペダル操作量に応じた制御圧を、対応する制御弁の左右何れかのパイロットポートに作用させる。また、これらの操作装置のそれぞれに対する操作者の操作内容は、操作圧センサ29Aと同様に、対応する操作圧センサによって圧力の形で検出される。そして、各操作圧センサは、検出した値をコントローラ30に対して出力する。なお、図2では、明瞭化のため、これらの操作装置と、対応する制御弁のパイロットポートとを繋ぐパイロットラインの図示が省略されている。
 コントローラ30は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、操作圧センサ29A、操作圧センサ29B、ブームシリンダ圧センサ7a、及び吐出圧センサ28等の出力を受信し、適宜にエンジン11及びレギュレータ13等に対して制御指令を出力する。
 コントローラ30は、減圧弁50Lへ制御指令を出力し、制御弁157に作用する制御圧を調整して上部旋回体3の旋回動作を制御してもよい。また、コントローラ30は、減圧弁50Rへ制御指令を出力し、制御弁154に作用する制御圧を調整してブーム4のブーム上げ動作を制御してもよい。なお、図2では、明瞭化のため、制御弁157の左側パイロットポートに作用する制御圧を調整する構成が図示され、制御弁157の右側パイロットポートに作用する制御圧を調整する構成の図示が省略されている。また、図2では、明瞭化のため、制御弁154の右側パイロットポートに作用する制御圧を調整する構成が図示され、制御弁154の左側パイロットポートに作用する制御圧を調整する構成の図示が省略されている。
 このように、コントローラ30は、減圧弁50Lにより、バケット6とダンプトラックとの相対位置関係に基づいて制御弁157に関する制御圧を調整できる。また、コントローラ30は、減圧弁50Rにより、バケット6とダンプトラックとの相対位置関係に基づいて制御弁154に関する制御圧を調整できる。レバー操作に基づくブーム上げ旋回動作を適切に支援するためである。なお、減圧弁50L及び減圧弁50Rは、電磁比例弁であってよい。
 ここで、図3A及び図3Bを参照して、コントローラ30がダンプトラック60とショベル100との接触を防止する機能について説明する。図3A及び図3Bは、掘削アタッチメントATとダンプトラック60との位置関係を示す。具体的には、図3A及び図3Bは、明瞭化のため、掘削アタッチメントATを簡略化されたモデルで示している。図3Aは掘削アタッチメントAT及びダンプトラック60の右側面図であり、図3Bは掘削アタッチメントAT及びダンプトラック60の背面図である。図3A及び図3Bの例では、ショベル100は、ダンプトラック60の右斜め後方に位置し、X軸に平行な方向に掘削アタッチメントATを向けている。
 図3Aに示すように、ブーム4は、Y軸に平行な揺動軸Jを中心として上下に揺動するように構成されている。ブーム4の先端にはアーム5が取り付けられている。アーム5の先端にはバケット6が取り付けられている。点P1で示す位置にある上部旋回体3とブーム4との連結部にはブーム角度センサS1が取り付けられている。点P2で示す位置にあるブーム4とアーム5との連結部にはアーム角度センサS2が取り付けられている。点P3で示す位置にあるアーム5とバケット6との連結部にはバケット角度センサS3が取り付けられている。点P4は、バケット6の先端(爪先)の位置を示す。
 図3Aでは、ブーム角度センサS1は、ブーム4の長手方向と、基準水平面(XY面)との間のブーム角度βを測定する。アーム角度センサS2は、ブーム4の長手方向とアーム5の長手方向との間のアーム角度βを測定する。バケット角度センサS3は、アーム5の長手方向とバケット6の長手方向との間のバケット角度βを測定する。ブーム4の長手方向は、揺動軸Jに垂直な面内(XZ面内)で点P1と点P2とを通過する直線の方向を意味する。アーム5の長手方向は、XZ面内で点P2と点P3とを通過する直線の方向を意味する。バケット6の長手方向は、XZ面内で点P3と点P4とを通過する直線の方向を意味する。揺動軸Jは、旋回軸K(Z軸)から離れた位置に配置されている。但し、揺動軸Jは、旋回軸Kと揺動軸Jとが交差するように配置されていてもよい。
 コントローラ30は、例えば、機体傾斜センサS4及び旋回角速度センサS5のそれぞれの出力に基づいて旋回軸Kに関する点P1の相対位置を導き出すことができる。そして、ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3のそれぞれの出力に基づき、点P1に関する点P2~P4のそれぞれの相対位置を導き出すことができる。同様に、コントローラ30は、点P1に関する、バケット6の背面の端部等の掘削アタッチメントATの任意の部位の相対位置を導き出すことができる。
 図3A及び図3Bの例では、ダンプトラック60は、比較的浅い積載空間を有する土砂ダンプトラックである。但し、ダンプトラック60は、比較的深い積載空間を有する深あおりダンプトラックであってもよい。ダンプトラック60の荷台61にはゲート62が取り付けられている。ゲート62は、荷台61の側壁を構成する開閉可能な部材であり、後側ゲート62B、左側ゲート62L及び右側ゲート62R(図5参照)を含む。荷台61の前端部にはフロントパネル62Fが設置されている。荷台61の後端部には支柱61Pが形成されている。支柱61Pは、後側ゲート62Bを開閉可能に支持する部材であり、左支柱61PL及び右支柱61PRを含む。ゲート62にはシート63が取り付けられていてもよい。シート63は、荷台61に積み込まれた被掘削物がこぼれ落ちるのを防止する部材であり、「アオリシート」とも呼ばれる。図3A及び図3Bの例では、左側ゲート62Lの上端には合成樹脂で形成された左シート63Lが開閉可能に取り付けられている。同様に、右側ゲート62Rの上端には合成樹脂で形成された右シート63Rが開閉可能に取り付けられている。図3A及び図3Bの例では、左シート63L及び右シート63Rは何れも、ダンプトラック60の運転室に設けられたスイッチの操作に応じ、電動モータによって個別に開閉されるように構成されている。但し、左シート63L及び右シート63Rは、手動で開閉されるように構成されていてもよい。
 また、ダンプトラック60は、図3Aに示すように、傾斜角αの坂道で停車している。そのため、荷台61は、水平面に対して傾斜し、前端部に対して後端部が高くなるように配置されている。
 図3A及び図3Bのそれぞれにおける斜線領域は、掘削アタッチメントATの進入を禁止する進入禁止領域ZAの一部を示している。コントローラ30は、例えば、周囲監視装置の出力に基づいて進入禁止領域ZAを導き出し且つ設定することができる。図3A及び図3Bの例では、コントローラ30は、周囲監視装置の一例である物体検知装置70としてのLIDARの出力に基づいて進入禁止領域ZAを導き出す。
 進入禁止領域ZAは、例えば、ダンプトラック60の外形より所定の距離DSだけ大きい空間、すなわち、ダンプトラック60の外形を相似拡大した立体的な外形を有する空間として設定されてもよい。具体的には、進入禁止領域ZAは、図3Aに示すようにフロントパネル62Fから距離DSだけ後方に離れた位置に境界面の1つが配置されるように設定されてもよい。また、進入禁止領域ZAは、図3Bに示すように右側ゲート62Rから距離DSだけ左方に離れた位置に境界面の1つが配置されるように設定されてもよい。進入禁止領域ZAを定める他の境界面についても同様である。
 進入禁止領域ZAは、ダンプトラック60の荷台の内底面61Bと、フロントパネル62Fと、左側ゲート62Lと、右側ゲート62Rと、後側ゲート62Bとで囲まれた空間内に形成される直方体空間を含むように設定されてもよい。この場合、直方体空間は、例えば、図3Bに示すように、内底面61Bから所定の距離HTだけ高い位置に境界面(上面)を有するように設定されてもよい。
 コントローラ30は、例えば、ポリゴンモデル又はワイヤーフレームモデル等の仮想的な三次元モデルを用いてダンプトラック60又は荷台61の全体的且つ立体的な外形(外表面)を認識した上で、その認識結果に基づいて進入禁止領域ZAを導き出すように構成されていてもよい。
 この際、コントローラ30は、物体検知装置70により検出された対象物(ダンプトラック60)がショベル100の掘削アタッチメントATの作業半径内に進入していることを認識する。そして、コントローラ30は、作業半径内に進入している対象物がダンプトラック60であることを認識する。これにより、コントローラ30は、対象物が掘削アタッチメントATの作業半径内に進入していてもショベル100の動作を中断させずに、対象物とショベル100との位置関係を算出する。この際、コントローラ30は、対象物とショベル100との位置関係に基づいて進入禁止領域ZA及び後述する目標軌道を生成する。しかしながら、対象物であるダンプトラック60の状態は変化する。具体的には、積み込み作業が行われる度にダンプトラック60の傾斜角は変化し得る。そして、ダンプトラック60が傾斜地に位置している場合には、進入禁止領域ZAの設定箇所及び目標軌道は、ダンプトラック60が平地に位置している場合とは異なるべきである。このため、本実施形態では、コントローラ30は、物体検知装置70の出力に基づいて対象物の状態を判断し、対象物の状態に基づいて進入禁止領域ZAを設定する。また、周囲監視装置の別の一例である撮像装置80の出力に基づいて進入禁止領域ZAを設定してもよい。
 そして、コントローラ30は、例えば、掘削アタッチメントATが進入禁止領域ZAに進入したか否かを判定し、進入したと判定した場合に掘削アタッチメントATの動きを停止させる。例えば、コントローラ30は、旋回中に掘削アタッチメントATが進入禁止領域ZAに進入したと判定した場合、減圧弁50Lに対して制御指令を出力して旋回用油圧モータ2Aを強制的に停止させてもよい。コントローラ30は、掘削アタッチメントATが進入禁止領域ZAに接近しているか否かを判定し、接近していると判定した場合に掘削アタッチメントATの動きを鈍化させてもよい。例えば、コントローラ30は、旋回中に掘削アタッチメントATが進入禁止領域ZAに接近していると判定した場合、減圧弁50Lに対して制御指令を出力して旋回用油圧モータ2Aを強制的に減速させてもよい。コントローラ30は、掘削アタッチメントATが進入禁止領域ZAに進入したと判定した場合、或いは、掘削アタッチメントATが進入禁止領域ZAに接近していると判定した場合に、警報音の出力、及び、警報ランプの点滅等の少なくとも1つを実行するのみであってもよい。
 この構成により、コントローラ30は、ダンプトラック60の状態に応じて進入禁止領域ZAを適切に設定することで、掘削アタッチメントATとダンプトラック60との接触を確実に防止できる。具体的には、コントローラ30は、ダンプトラック60が坂道に停車している場合、坂道の傾斜角(荷台61の傾斜角)を反映させた進入禁止領域ZAを設定できる。また、荷台61の後端部に支柱61Pが形成されている場合、支柱61Pの形状を反映させた進入禁止領域ZAを設定できる。また、ゲート62にシート63が開閉可能に取り付けられている場合、シート63の開閉状態を反映させた進入禁止領域ZAを設定できる。
 次に、図4及び図5を参照し、コントローラ30が進入禁止領域ZAの大きさを修正する機能について説明する。図4はダンプトラック60の背面図であり、図5はダンプトラック60の右側面図である。図4及び図5は、左シート63L及び右シート63Rが何れも直立位置まで閉じられた状態にあることを示している。点線で描かれた左シート63Laは、直立位置まで閉じられる前の全開状態の左シート63Lを示している。同様に、点線で描かれた右シート63Raは、直立位置まで閉じられる前の全開状態の右シート63Rを示している。
 コントローラ30は、周囲監視装置の一例である物体検知装置70としてのLIDARの出力に基づいて進入禁止領域ZAを導き出している。図4の斜線領域は進入禁止領域ZAの一部を示している。破線で囲まれた領域は、ダンプトラック60の状態が変化したため、進入禁止領域ZAから除外された領域ZBを示している。一点鎖線で囲まれた領域は、ダンプトラック60の状態が変化したため、進入禁止領域ZAに新たに含まれることになった領域ZCを示している。具体的には、領域ZBは、左シート63Lが閉じられたことで進入禁止領域ZAから除外された領域ZBLと、右シート63Rが閉じられたことで進入禁止領域ZAから除外された領域ZBRとを含む。また、領域ZCは、左シート63Lが直立位置まで閉じられたことで進入禁止領域ZAに新たに含まれるになった領域ZCLと、右シート63Rが直立位置まで閉じられたことで進入禁止領域ZAに新たに含まれることになった領域ZCRとを含む。
 このように、コントローラ30は、LIDARの出力に基づいて把握するダンプトラック60の状態の変化に応じて進入禁止領域ZAの大きさを修正できる。ダンプトラック60の状態は、例えば、シート63の開閉状態、ゲート62の開閉状態、及び、荷台61の傾斜状態等の少なくとも1つを含む。
 そのため、コントローラ30は、例えば図4に示すように、右シート63Rが直立状態のときには、点線矢印AR1で示すように右シート63Rに接近するバケット6の動きを停止させることができる。この場合、ショベル100の操作者は、実線矢印AR2で示すように、右シート63Rの上端よりも高いところでバケット6を左方に移動させることで、バケット6を右シート63Rに接触させることなく、荷台61の上にバケット6を位置付けることができる。但し、コントローラ30は、右シート63Rが全開状態のときには、点線矢印AR1で示すように左方向に移動するバケット6の動きを停止させることはない。バケット6とダンプトラック60とが接触しないと判断できるためである。
 なお、コントローラ30は、例えば、姿勢検出装置の出力に基づき、進入禁止領域ZAに対するバケット6の相対位置を導き出すように構成されている。例えば、コントローラ30は、図4に示すように、バケット6の爪先の左端の座標点BLu、爪先の中央の座標点BCu、及び爪先の右端の座標点BRu、並びに、バケット6の背面の左端の座標点BLb、背面の中央の座標点BCb、及び背面の右端の座標点BRbの6つの座標点を代表的な監視点とし、各監視点の座標を所定の制御周期で繰り返し算出する。監視点は、その位置の推移が監視される点を意味する。そして、コントローラ30は、各監視点の座標と、進入禁止領域ZAを定める複数の座標とに基づき、バケット6が進入禁止領域ZAに進入したか否か、すなわち、バケット6とダンプトラック60とが接触するおそれがあるか否かを判定する。コントローラ30は、ダンプトラック60又は荷台61の立体的な外形を認識する場合と同様に、ポリゴンモデル又はワイヤーフレームモデル等の仮想的な三次元モデルを用いてバケット6の全体的且つ立体的な外形(外表面)を認識した上で、その認識結果に基づいてバケット6が進入禁止領域ZAに進入したか否かを判定してもよい。
 コントローラ30は、例えば図5に示すように、右シート63Rが直立状態のときには、実線で描かれたバケット6の高さで左旋回が行われるように構成されている。すなわち、一点鎖線又は点線で描かれたバケット6の高さで左旋回が行われた場合には、その左旋回を停止させるように構成されている。そして、右シート63Rが全開状態(点線で描かれた右シート63Raの状態)のときには、一点鎖線ではなく点線で描かれたバケット6の高さで左旋回が行われるように構成されている。すなわち、点線で描かれたバケット6の高さで左旋回が行われた場合であっても、その左旋回を停止させないように構成されている。LIDARの出力により、右支柱61PRの形状を正確に認識できるためである。すなわち、右側ゲート62Rの上端が右支柱61PRの上端より低いことを正確に認識できるためである。また、図5に示す例では、バケット6が右支柱61PRよりも前方にあり、右支柱61PRの上端より低い位置までバケット6を下げたとしてもバケット6と右支柱61PRとが接触しないと判断できるためである。この構成により、コントローラ30は、掘削アタッチメントATの動きが過度に制限されてしまうのを防止できる。
 コントローラ30は、バケット6の移動軌道を予測することで、掘削アタッチメントATとダンプトラック60との接触を防止してもよい。そこで、図6A及び図6Bを参照し、コントローラ30がバケット6の移動軌道を予測する機能について説明する。図6は、バケット6及びダンプトラック60の背面図である。具体的には、図6A及び図6Bは、明瞭化のため、バケット6を簡略化されたモデルで示している。図6A及び図6Bの例では、ショベル100は、ダンプトラック60の左方にある地面を掘削した後で、掘削した土砂等の被掘削物をダンプトラック60の荷台61に積み込む積み込み動作を実行する。図6Aは左シート63Lが全開状態にあるときのバケット6の移動軌道を示し、図6Bは左シート63Lが直立状態にあるときのバケット6の移動軌道を示す。
 被掘削物を取り込んだバケット6は、図6Aに示すように、積み込み動作において、主に、2パターンの移動軌道を辿ることができる。第1パターンは、軌道線K1を辿る移動軌道である。すなわち、バケット6は、掘削完了位置(A)からバケット位置(B)を経てバケット位置(C)まで、ブーム4の上昇により略垂直方向に持ち上げられる。このときのバケット6の下端の高さは、荷台61の上端の高さHdより高い。そして、バケット6は、上部旋回体3の右旋回により排土位置(D)へ移動させられる。このときアーム5の開閉操作も適宜行われる。第1パターンでは、バケット6とダンプトラック60とが接触するリスクは少ないが、移動高さと移動距離に無駄が多く燃費が悪い。
 第2パターンは、軌道線K2を辿る移動軌道である。軌道線K2は、バケット6を最短距離で排土位置(D)まで移動させる移動軌道である。具体的には、バケット6は、掘削完了位置(A)から、ブーム上げ旋回によってバケット位置(B)を経て排土位置(D)に至る。
 図6A及び図6Bの例では、掘削完了位置(A)は、バケット位置(B)よりも低い位置、すなわち、ダンプトラック60が位置する平面よりも低い位置にある。しかし、掘削完了位置(A)は、ダンプトラック60が位置する平面よりも高い位置にあってもよい。
 通常、操作者は、軌道線K2に沿ってバケット6を移動させようとする場合、バケット6がダンプトラック60と接触する可能性が比較的高いため、操作速度を遅くする傾向にある。そのため、積み込み作業の効率が悪化し易い。
 そこで、コントローラ30は、図6Aに示すように、軌道線K2に沿うようにバケット6がバケット位置(B)から排土位置(D)へ向かう途中で、バケット6とダンプトラック60との間の距離が所定値未満となる前に、バケット6の移動軌道を予測する。具体的には、バケット6がバケット位置(E)に達したときに、バケット位置(B)からバケット位置(E)までの移動軌跡に基づき、バケット位置(E)以後の移動軌道を予測する。そして、予測した移動軌道に沿ってバケット6が移動するとバケット6が進入禁止領域ZAに進入すると判定した場合、コントローラ30は、減圧弁50Lに制御指令を出力し、旋回用油圧モータ2Aを強制的且つ段階的に停止させる。バケット6が進入禁止領域ZAに進入する前に旋回を停止させるためである。
 コントローラ30は、図6Aに示すように左シート63Lが全開状態にあるときには、バケット位置(E)での予測結果によると、バケット6が進入禁止領域ZAに進入しないと判定する。この場合、コントローラ30は、バケット6がダンプトラック60に接近するときに、旋回用油圧モータ2Aを停止させることはない。但し、コントローラ30は、バケット6が軌道線K2の最終範囲K2ENDに入るとバケット6の動きが遅くなるように制御してもよい。排土位置(D)でバケット6を滑らかに停止させるためである。
 一方で、コントローラ30は、図6Bに示すように左シート63Lが直立状態にあるときには、バケット位置(E)での予測結果によると、バケット6が進入禁止領域ZAに進入すると判定する。この場合、コントローラ30は、旋回用油圧モータ2Aを強制的且つ段階的に停止させることで、バケット6が進入禁止領域ZAに進入する前に旋回を停止させる。具体的には、バケット位置(F)でバケット6を停止させる。
 この構成により、コントローラ30は、バケット6とダンプトラック60との接触をより確実に防止できる。
 次に、図7を参照し、ショベル100に搭載される油圧システムの別の構成例について説明する。図7は、ショベル100に搭載される油圧システムの別の構成例を示す図である。図7は、図2と同様に、機械的動力伝達系、作動油ライン、パイロットライン及び電気制御系を、それぞれ二重線、実線、破線及び点線で示している。
 図7の油圧システムは、図2の油圧システムと同様に、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、吐出圧センサ28、操作圧センサ29及びコントローラ30等を含む。
 図7において、油圧システムは、エンジン11によって駆動されるメインポンプ14から、センターバイパス管路40又はパラレル管路42を経て作動油タンクまで作動油を循環させている。
 エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15の入力軸に連結されている。
 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブ17に供給する。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。
 レギュレータ13は、メインポンプ14の吐出量を制御する。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。
 パイロットポンプ15は、パイロットラインを介して操作装置26を含む油圧制御機器に作動油を供給するように構成されている。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロットポンプ15は、省略されてもよい。この場合、パイロットポンプ15が担っていた機能は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、コントロールバルブ17に作動油を供給する機能とは別に、絞り等により作動油の圧力を低下させた後で操作装置26等に作動油を供給する機能を備えていてもよい。
 コントロールバルブ17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブ17は、制御弁171~176を含む。制御弁175は制御弁175L及び制御弁175Rを含み、制御弁176は制御弁176L及び制御弁176Rを含む。コントロールバルブ17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できる。制御弁171~176は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左走行用油圧モータ2ML、右走行用油圧モータ2MR及び旋回用油圧モータ2Aを含む。
 操作装置26は、操作者がアクチュエータの操作のために用いる装置である。アクチュエータは、油圧アクチュエータ及び電動アクチュエータの少なくとも一方を含む。本実施形態では、操作装置26は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を、コントロールバルブ17内の対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量に応じた圧力である。但し、操作装置26は、上述のようなパイロット圧式ではなく、電気制御式であってもよい。この場合、コントロールバルブ17内の制御弁は、電磁ソレノイド式スプール弁であってもよい。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出する。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。
 操作圧センサ29は、操作者による操作装置26の操作の内容を検出する。本実施形態では、操作圧センサ29は、アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力(操作圧)の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作の内容は、操作圧センサ以外の他のセンサを用いて検出されてもよい。
 メインポンプ14は、左メインポンプ14L及び右メインポンプ14Rを含む。そして、左メインポンプ14Lは、左センターバイパス管路40L又は左パラレル管路42Lを経て作動油タンクまで作動油を循環させ、右メインポンプ14Rは、右センターバイパス管路40R又は右パラレル管路42Rを経て作動油タンクまで作動油を循環させる。
 左センターバイパス管路40Lは、コントロールバルブ17内に配置された制御弁171、173、175L及び176Lを通る作動油ラインである。右センターバイパス管路40Rは、コントロールバルブ17内に配置された制御弁172、174、175R及び176Rを通る作動油ラインである。
 制御弁171は、左メインポンプ14Lが吐出する作動油を左走行用油圧モータ2MLへ供給し、且つ、左走行用油圧モータ2MLが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁172は、右メインポンプ14Rが吐出する作動油を右走行用油圧モータ2MRへ供給し、且つ、右走行用油圧モータ2MRが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁173は、左メインポンプ14Lが吐出する作動油を旋回用油圧モータ2Aへ供給し、且つ、旋回用油圧モータ2Aが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁174は、右メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁175Lは、左メインポンプ14Lが吐出する作動油をブームシリンダ7へ供給するために作動油の流れを切り換えるスプール弁である。制御弁175Rは、右メインポンプ14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Lは、左メインポンプ14Lが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Rは、右メインポンプ14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 左パラレル管路42Lは、左センターバイパス管路40Lに並行する作動油ラインである。左パラレル管路42Lは、制御弁171、173、175Lの何れかによって左センターバイパス管路40Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。右パラレル管路42Rは、右センターバイパス管路40Rに並行する作動油ラインである。右パラレル管路42Rは、制御弁172、174、175Rの何れかによって右センターバイパス管路40Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 レギュレータ13は、左レギュレータ13L及び右レギュレータ13Rを含む。左レギュレータ13Lは、左メインポンプ14Lの吐出圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。具体的には、左レギュレータ13Lは、例えば、左メインポンプ14Lの吐出圧の増大に応じて左メインポンプ14Lの斜板傾転角を調節して吐出量を減少させる。右レギュレータ13Rについても同様である。吐出圧と吐出量との積で表されるメインポンプ14の吸収馬力がエンジン11の出力馬力を超えないようにするためである。
 操作装置26は、左操作レバー26L、右操作レバー26R及び走行レバー26Dを含む。走行レバー26Dは、左走行レバー26DL及び右走行レバー26DRを含む。
 左操作レバー26Lは、旋回操作とアーム5の操作に用いられる。左操作レバー26Lは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁176のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁173のパイロットポートに導入させる。
 具体的には、左操作レバー26Lは、アーム閉じ方向に操作された場合に、制御弁176Lの右側パイロットポートに作動油を導入させ、且つ、制御弁176Rの左側パイロットポートに作動油を導入させる。また、左操作レバー26Lは、アーム開き方向に操作された場合には、制御弁176Lの左側パイロットポートに作動油を導入させ、且つ、制御弁176Rの右側パイロットポートに作動油を導入させる。また、左操作レバー26Lは、左旋回方向に操作された場合に、制御弁173の左側パイロットポートに作動油を導入させ、右旋回方向に操作された場合に、制御弁173の右側パイロットポートに作動油を導入させる。
 右操作レバー26Rは、ブーム4の操作とバケット6の操作に用いられる。右操作レバー26Rは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁175のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁174のパイロットポートに導入させる。
 具体的には、右操作レバー26Rは、ブーム下げ方向に操作された場合に、制御弁175Rの左側パイロットポートに作動油を導入させる。また、右操作レバー26Rは、ブーム上げ方向に操作された場合には、制御弁175Lの右側パイロットポートに作動油を導入させ、且つ、制御弁175Rの左側パイロットポートに作動油を導入させる。また、右操作レバー26Rは、バケット閉じ方向に操作された場合に、制御弁174の右側パイロットポートに作動油を導入させ、バケット開き方向に操作された場合に、制御弁174の左側パイロットポートに作動油を導入させる。
 走行レバー26Dは、クローラ1Cの操作に用いられる。具体的には、左走行レバー26DLは、左クローラ1CLの操作に用いられる。左走行ペダルと連動するように構成されていてもよい。左走行レバー26DLは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁171のパイロットポートに導入させる。右走行レバー26DRは、右クローラ1CRの操作に用いられる。右走行ペダルと連動するように構成されていてもよい。右走行レバー26DRは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁172のパイロットポートに導入させる。
 吐出圧センサ28は、吐出圧センサ28L及び吐出圧センサ28Rを含む。吐出圧センサ28Lは、左メインポンプ14Lの吐出圧を検出し、検出した値をコントローラ30に対して出力する。吐出圧センサ28Rについても同様である。
 操作圧センサ29は、操作圧センサ29LA、29LB、29RA、29RB、29DL、29DRを含む。操作圧センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作の内容は、例えば、レバー操作方向、レバー操作量(レバー操作角度)等である。
 同様に、操作圧センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29DLは、操作者による左走行レバー26DLに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作圧センサ29DRは、操作者による右走行レバー26DRに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 コントローラ30は、操作圧センサ29の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。また、コントローラ30は、絞り18の上流に設けられた制御圧センサ19の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。絞り18は左絞り18L及び右絞り18Rを含み、制御圧センサ19は左制御圧センサ19L及び右制御圧センサ19Rを含む。
 左センターバイパス管路40Lには、最も下流にある制御弁176Lと作動油タンクとの間に左絞り18Lが配置されている。そのため、左メインポンプ14Lが吐出した作動油の流れは、左絞り18Lで制限される。そして、左絞り18Lは、左レギュレータ13Lを制御するための制御圧を発生させる。左制御圧センサ19Lは、この制御圧を検出するためのセンサであり、検出した値をコントローラ30に対して出力する。コントローラ30は、この制御圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。コントローラ30は、この制御圧が大きいほど左メインポンプ14Lの吐出量を減少させ、この制御圧が小さいほど左メインポンプ14Lの吐出量を増大させる。右メインポンプ14Rの吐出量も同様に制御される。
 具体的には、図7で示されるようにショベル100における油圧アクチュエータが何れも操作されていない待機状態の場合、左メインポンプ14Lが吐出する作動油は、左センターバイパス管路40Lを通って左絞り18Lに至る。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lの上流で発生する制御圧を増大させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を許容最小吐出量まで減少させ、吐出した作動油が左センターバイパス管路40Lを通過する際の圧力損失(ポンピングロス)を抑制する。一方、何れかの油圧アクチュエータが操作された場合、左メインポンプ14Lが吐出する作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lに至る量を減少或いは消失させ、左絞り18Lの上流で発生する制御圧を低下させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータの駆動を確かなものとする。なお、コントローラ30は、右メインポンプ14Rの吐出量も同様に制御する。
 上述のような構成により、図7の油圧システムは、待機状態においては、メインポンプ14における無駄なエネルギ消費を抑制できる。無駄なエネルギ消費は、メインポンプ14が吐出する作動油がセンターバイパス管路40で発生させるポンピングロスを含む。また、図7の油圧システムは、油圧アクチュエータを作動させる場合には、メインポンプ14から必要十分な作動油を作動対象の油圧アクチュエータに確実に供給できる。
 次に、図8A~図8Dを参照し、コントローラ30がマシンコントロール機能によってアクチュエータを自動的に動作させるための構成について説明する。図8A~図8Dは、油圧システムの一部を抜き出した図である。具体的には、図8Aは、アームシリンダ8の操作に関する油圧システム部分を抜き出した図であり、図8Bは、旋回用油圧モータ2Aの操作に関する油圧システム部分を抜き出した図である。また、図8Cは、ブームシリンダ7の操作に関する油圧システム部分を抜き出した図であり、図8Dは、バケットシリンダ9の操作に関する油圧システム部分を抜き出した図である。
 図8A~図8Dに示すように、油圧システムは、比例弁31及びシャトル弁32を含む。比例弁31は、比例弁31AL~31DL及び31AR~31DRを含み、シャトル弁32は、シャトル弁32AL~32DL及び32AR~32DRを含む。
 比例弁31は、マシンコントロール用制御弁として機能する。比例弁31は、パイロットポンプ15とシャトル弁32とを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁31は、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31及びシャトル弁32を介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 シャトル弁32は、2つの入口ポートと1つの出口ポートを有する。2つの入口ポートのうちの一方は操作装置26に接続され、他方は比例弁31に接続されている。出口ポートは、コントロールバルブ17内の対応する制御弁のパイロットポートに接続されている。そのため、シャトル弁32は、操作装置26が生成するパイロット圧と比例弁31が生成するパイロット圧のうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。
 この構成により、コントローラ30は、特定の操作装置26に対する操作が行われていない場合であっても、その特定の操作装置26に対応する油圧アクチュエータを動作させることができる。
 例えば、図8Aに示すように、左操作レバー26Lは、アーム5を操作するために用いられる。具体的には、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁176のパイロットポートに作用させる。より具体的には、左操作レバー26Lは、アーム閉じ方向(後方向)に操作された場合に、操作量に応じたパイロット圧を制御弁176Lの右側パイロットポートと制御弁176Rの左側パイロットポートに作用させる。また、左操作レバー26Lは、アーム開き方向(前方向)に操作された場合には、操作量に応じたパイロット圧を制御弁176Lの左側パイロットポートと制御弁176Rの右側パイロットポートに作用させる。
 左操作レバー26LにはスイッチNSが設けられている。本実施形態では、スイッチNSは、押しボタンスイッチである。操作者は、スイッチNSを押しながら左操作レバー26Lを操作できる。スイッチNSは、右操作レバー26Rに設けられていてもよく、キャビン10内の他の位置に設けられていてもよい。
 操作圧センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31ALは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31AL及びシャトル弁32ALを介して制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31ARは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31AR及びシャトル弁32ARを介して制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31AL、31ARは、制御弁176L、176Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるアーム閉じ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31AL及びシャトル弁32ALを介し、制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに供給できる。すなわち、アーム5を自動的に閉じることができる。また、コントローラ30は、操作者によるアーム開き操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31AR及びシャトル弁32ARを介し、制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに供給できる。すなわち、アーム5を自動的に開くことができる。
 また、図8Bに示すように、左操作レバー26Lは、旋回機構2を操作するためにも用いられる。具体的には、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、左右方向への操作に応じたパイロット圧を制御弁173のパイロットポートに作用させる。より具体的には、左操作レバー26Lは、左旋回方向(左方向)に操作された場合に、操作量に応じたパイロット圧を制御弁173の左側パイロットポートに作用させる。また、左操作レバー26Lは、右旋回方向(右方向)に操作された場合には、操作量に応じたパイロット圧を制御弁173の右側パイロットポートに作用させる。
 操作圧センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31BLは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31BL及びシャトル弁32BLを介して制御弁173の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31BRは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31BR及びシャトル弁32BRを介して制御弁173の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31BL、31BRは、制御弁173を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者による左旋回操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31BL及びシャトル弁32BLを介し、制御弁173の左側パイロットポートに供給できる。すなわち、旋回機構2を自動的に左旋回させることができる。また、コントローラ30は、操作者による右旋回操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31BR及びシャトル弁32BRを介し、制御弁173の右側パイロットポートに供給できる。すなわち、旋回機構2を自動的に右旋回させることができる。
 また、図8Cに示すように、右操作レバー26Rは、ブーム4を操作するために用いられる。具体的には、右操作レバー26Rは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁175のパイロットポートに作用させる。より具体的には、右操作レバー26Rは、ブーム上げ方向(後方向)に操作された場合に、操作量に応じたパイロット圧を制御弁175Lの右側パイロットポートと制御弁175Rの左側パイロットポートに作用させる。また、右操作レバー26Rは、ブーム下げ方向(前方向)に操作された場合には、操作量に応じたパイロット圧を制御弁175Rの右側パイロットポートに作用させる。
 操作圧センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31CLは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31CL及びシャトル弁32CLを介して制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31CRは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31CR及びシャトル弁32CRを介して制御弁175Lの左側パイロットポート及び制御弁175Rの右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31CL、31CRは、制御弁175L、175Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるブーム上げ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31CL及びシャトル弁32CLを介し、制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに供給できる。すなわち、ブーム4を自動的に上げることができる。また、コントローラ30は、操作者によるブーム下げ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31CR及びシャトル弁32CRを介し、制御弁175Rの右側パイロットポートに供給できる。すなわち、ブーム4を自動的に下げることができる。
 また、図8Dに示すように、右操作レバー26Rは、バケット6を操作するためにも用いられる。具体的には、右操作レバー26Rは、パイロットポンプ15が吐出する作動油を利用し、左右方向への操作に応じたパイロット圧を制御弁174のパイロットポートに作用させる。より具体的には、右操作レバー26Rは、バケット閉じ方向(左方向)に操作された場合に、操作量に応じたパイロット圧を制御弁174の左側パイロットポートに作用させる。また、右操作レバー26Rは、バケット開き方向(右方向)に操作された場合には、操作量に応じたパイロット圧を制御弁174の右側パイロットポートに作用させる。
 操作圧センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。
 比例弁31DLは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31DL及びシャトル弁32DLを介して制御弁174の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31DRは、コントローラ30が出力する電流指令に応じて動作する。そして、パイロットポンプ15から比例弁31DR及びシャトル弁32DRを介して制御弁174の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31DL、31DRは、制御弁174を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるバケット閉じ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31DL及びシャトル弁32DLを介し、制御弁174の左側パイロットポートに供給できる。すなわち、バケット6を自動的に閉じることができる。また、コントローラ30は、操作者によるバケット開き操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31DR及びシャトル弁32DRを介し、制御弁174の右側パイロットポートに供給できる。すなわち、バケット6を自動的に開くことができる。
 ショベル100は、下部走行体1を自動的に前進・後進させる構成を備えていてもよい。この場合、左走行用油圧モータ2MLの操作に関する油圧システム部分、及び、右走行用油圧モータ2MRの操作に関する油圧システム部分は、ブームシリンダ7の操作に関する油圧システム部分等と同じように構成されてもよい。
 また、図2、図7及び図8A~図8Dでは油圧式パイロット回路を備えた油圧式操作レバーを記載したが、油圧式操作レバーではなく電気式パイロット回路を備えた電気式操作レバーが採用されてもよい。この場合、電気式操作レバーのレバー操作量は、電気信号としてコントローラ30へ入力される。また、パイロットポンプ15と各制御弁のパイロットポートとの間には電磁弁が配置される。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、電気式操作レバーを用いた手動操作が行われると、コントローラ30は、レバー操作量に対応する電気信号によって電磁弁を制御してパイロット圧を増減させることで各制御弁を移動させることができる。なお、各制御弁は電磁スプール弁で構成されていてもよい。この場合、電磁スプール弁は、電気式操作レバーのレバー操作量に対応するコントローラ30からの電気信号に応じて動作する。
 次に、図9を参照し、コントローラ30の機能について説明する。図9は、コントローラ30の機能ブロック図である。図9の例では、コントローラ30は、姿勢検出装置、操作装置26、物体検知装置70、撮像装置80、及びスイッチNS等が出力する信号を受け、様々な演算を実行し、比例弁31、表示装置D1、及び音出力装置D2等に制御指令を出力できるように構成されている。姿勢検出装置は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4及び旋回角速度センサS5を含む。コントローラ30は、姿勢記録部30A、軌道算出部30B及び自律制御部30Cを機能要素として有する。各機能要素は、ハードウェアで構成されていてもよく、ソフトウェアで構成されていてもよい。
 姿勢記録部30Aは、ショベル100の姿勢に関する情報を記録するように構成されている。本実施形態では、姿勢記録部30Aは、スイッチNSが押されたときのショベル100の姿勢に関する情報をRAMに記録する。具体的には、姿勢記録部30Aは、スイッチNSが押される度に姿勢検出装置の出力を記録する。姿勢記録部30Aは、第1時点でスイッチNSが押されたときに記録を開始し、第2時点でスイッチNSが押されたときにその記録を終了するように構成されていてもよい。この場合、姿勢記録部30Aは、第1時点から第2時点まで、ショベル100の姿勢に関する情報を所定の制御周期で繰り返し記録してもよい。
 軌道算出部30Bは、ショベル100を自律的に動作させるときにショベル100の所定部位が描く軌道である目標軌道を算出するように構成されている。所定部位は、例えば、バケット6の背面にある所定点である。本実施形態では、軌道算出部30Bは、自律制御部30Cがショベル100を自律的に動作させるときに利用する目標軌道を算出する。具体的には、軌道算出部30Bは、姿勢記録部30Aが記録したショベル100の姿勢に関する情報に基づいて目標軌道を算出する。
 軌道算出部30Bは、周囲監視装置の一例である物体検知装置70としてのLIDARの出力に基づいて目標軌道を算出してもよい。或いは、軌道算出部30Bは、周囲監視装置の別の一例である撮像装置80の出力に基づいて目標軌道を算出してもよい。或いは、軌道算出部30Bは、姿勢記録部30Aが記録したショベル100の姿勢に関する情報と周囲監視装置の出力とに基づいて目標軌道を算出してもよい。
 自律制御部30Cは、ショベル100を自律的に動作させるように構成されている。本実施形態では、所定の開始条件が満たされた場合に、軌道算出部30Bが算出した目標軌道に沿ってショベル100の所定部位を移動させるように構成されている。具体的には、スイッチNSが押されている状態で操作装置26が操作されたときに、ショベル100の所定部位が目標軌道に沿って移動するように、ショベル100を自律的に動作させる。例えば、スイッチNSが押されている状態で、左操作レバー26Lが右旋回方向に操作され、且つ、右操作レバー26Rがブーム上げ方向に操作されたときに、バケット6の下端が目標軌道に沿って移動するように、ショベル100を自律的に動作させてもよい。この場合、左操作レバー26L及び右操作レバー26Rのそれぞれは、任意のレバー操作量で操作されてもよい。したがって、操作者は、レバー操作量を気にすることなく、所定の移動速度でバケット6の下端を目標軌道に沿って移動させることができる。或いは、バケット6の移動速度は、左操作レバー26L又は右操作レバー26Rの操作量の変化に応じて変化するように構成されていてもよい。
 自律制御部30Cは、例えば、バケット6の下端が目標軌道に沿うようにブームシリンダ7及び旋回用油圧モータ2Aの少なくとも1つを制御するように構成されていてもよい。例えば、自律制御部30Cは、ブーム4の上昇速度に応じて上部旋回体3の旋回速度を半自動的に制御してもよい。例えば、ブーム4の上昇速度が大きいほど上部旋回体3の旋回速度を大きくしてもよい。この場合、ブーム4は右操作レバー26Rのブーム上げ方向へのレバー操作量に応じた速度で上昇するが、上部旋回体3は左操作レバー26Lの右旋回方向へのレバー操作量に応じた速度とは異なる速度で旋回してもよい。
 或いは、自律制御部30Cは、上部旋回体3の旋回速度に応じてブーム4の上昇速度を半自動的に制御してもよい。例えば、上部旋回体3の旋回速度が大きいほどブーム4の上昇速度を大きくしてもよい。この場合、上部旋回体3は左操作レバー26Lの右旋回方向へのレバー操作量に応じた速度で旋回するが、ブーム4は右操作レバー26Rのブーム上げ方向へのレバー操作量に応じた速度とは異なる速度で上昇してもよい。
 或いは、自律制御部30Cは、上部旋回体3の旋回速度、及び、ブーム4の上昇速度の双方を半自動的に制御してもよい。この場合、上部旋回体3は左操作レバー26Lの右旋回方向へのレバー操作量に応じた速度とは異なる速度で旋回してもよい。同様に、ブーム4は右操作レバー26Rのブーム上げ方向へのレバー操作量に応じた速度とは異なる速度で上昇してもよい。
 自律制御部30Cは、ダンプトラック60の状態の変化に応じ、目標軌道を修正してもよい。例えば、自律制御部30Cは、左シート63Lの開閉状態、又は、右シート63Rの開閉状態等の変化に応じて目標軌道を変化させてもよい。
 自律制御部30Cは、ダンプトラック60の状態に加え、周囲の状況を考慮して目標軌道を設定してもよい。例えば、自律制御部30Cは、上部旋回体3の旋回中に掘削アタッチメントATが壁等の物体と接触しないように目標軌道を設定してもよい。或いは、自律制御部30Cは、ガードレールの歩道側でショベル100が作業しているときに、掘削アタッチメントATが旋回動作の際にガードレールを超えて車道側にはみ出さないように目標軌道を設定してもよい。
 次に、図10及び図11を参照しながら、コントローラ30がアタッチメントの動きを自律的に制御する機能(以下、「自律制御機能」とする。)の一例について説明する。図10及び図11は、自律制御機能のブロック図である。
 最初に、コントローラ30は、図10に示すように、操作傾向に基づいてバケット目標移動速度を生成し、且つ、バケット目標移動方向を決定する。操作傾向は、例えば、レバー操作量に基づいて判定される。バケット目標移動速度は、バケット6における制御基準点の移動速度の目標値であり、バケット目標移動方向は、バケット6における制御基準点の移動方向の目標値である。バケット6における制御基準点は、例えば、バケット6の背面にある所定点である。図10における現在の制御基準位置は、制御基準点の現在位置であり、例えば、ブーム角度β1、アーム角度β2、及び、旋回角度αに基づいて算出される。コントローラ30は、更にバケット角度βを利用して現在の制御基準位置を算出してもよい。
 その後、コントローラ30は、バケット目標移動速度と、バケット目標移動方向と、現在の制御基準位置の三次元座標(Xe、Ye、Ze)とに基づいて単位時間経過後の制御基準位置の三次元座標(Xer、Yer、Zer)を算出する。単位時間経過後の制御基準位置の三次元座標(Xer、Yer、Zer)は、例えば、目標軌道上の座標である。単位時間は、例えば、制御周期の整数倍に相当する時間である。目標軌道は、例えば、ダンプトラックへの土砂等の積み込みを実現する作業である積み込み作業に関する目標軌道であってもよい。この場合、目標軌道は、例えば、ダンプトラックの位置と、掘削動作が終了したときの制御基準点の位置である掘削終了位置とに基づいて算出されてもよい。なお、ダンプトラックの位置は、例えば、物体検知装置70及び撮像装置80の少なくとも一方の出力に基づいて算出され、掘削終了位置は、例えば、姿勢検出装置の出力に基づいて算出されてもよい。
 その後、コントローラ30は、算出した三次元座標(Xer、Yer、Zer)に基づき、ブーム4及びアーム5の回動に関する指令値β1r及びβ2rと、上部旋回体3の旋回に関する指令値α1rとを生成する。指令値β1rは、例えば、制御基準位置を三次元座標(Xer、Yer、Zer)に合わせることができたときのブーム角度βを表す。同様に、指令値β2rは、制御基準位置を三次元座標(Xer、Yer、Zer)に合わせることができたときのアーム角度βを表し、指令値α1rは、制御基準位置を三次元座標(Xer、Yer、Zer)に合わせることができたときの旋回角度αを表す。
 その後、コントローラ30は、図11に示すように、ブーム角度β、アーム角度β、及び旋回角度αのそれぞれが、生成された指令値βr、βr、αrとなるようにブームシリンダ7、アームシリンダ8、及び旋回用油圧モータ2Aを動作させる。なお、旋回角度αは、例えば、旋回角速度センサS5の出力に基づいて算出される。
 具体的には、コントローラ30は、ブーム角度βの現在値と指令値βrとの差Δβに対応するブームシリンダパイロット圧指令を生成する。そして、ブームシリンダパイロット圧指令に対応する制御電流をブーム制御機構31Cに対して出力する。ブーム制御機構31Cは、ブームシリンダパイロット圧指令に対応する制御電流に応じたパイロット圧をブーム制御弁としての制御弁175に対して作用させることができるように構成されている。ブーム制御機構31Cは、例えば、図8Cにおける比例弁31CL及び比例弁31CRであってもよい。
 その後、ブーム制御機構31Cが生成したパイロット圧を受けた制御弁175は、メインポンプ14が吐出する作動油を、パイロット圧に対応する流れ方向及び流量でブームシリンダ7に流入させる。
 このとき、コントローラ30は、ブームスプール変位センサS7が検出する制御弁175のスプール変位量に基づいてブームスプール制御指令を生成してもよい。ブームスプール変位センサS7は、制御弁175を構成するスプールの変位量を検出するセンサである。そして、コントローラ30は、ブームスプール制御指令に対応する制御電流をブーム制御機構31Cに対して出力してもよい。この場合、ブーム制御機構31Cは、ブームスプール制御指令に対応する制御電流に応じたパイロット圧を制御弁175に対して作用させる。
 ブームシリンダ7は、制御弁175を介して供給される作動油により伸縮する。ブーム角度センサS1は、伸縮するブームシリンダ7によって動かされるブーム4のブーム角度βを検出する。
 その後、コントローラ30は、ブーム角度センサS1が検出したブーム角度βを、ブームシリンダパイロット圧指令を生成する際に用いるブーム角度βの現在値としてフィードバックする。
 上述の説明は、指令値βrに基づくブーム4の動作に関するものであるが、指令値βrに基づくアーム5の動作、及び、指令値αrに基づく上部旋回体3の旋回動作にも同様に適用可能である。なお、アーム制御機構31Aは、アームシリンダパイロット圧指令に対応する制御電流に応じたパイロット圧をアーム制御弁としての制御弁176に対して作用させることができるように構成されている。アーム制御機構31Aは、例えば、図8Aにおける比例弁31AL及び比例弁31ARであってもよい。また、旋回制御機構31Bは、旋回用油圧モータパイロット圧指令に対応する制御電流に応じたパイロット圧を旋回制御弁としての制御弁173に対して作用させることができるように構成されている。旋回制御機構31Bは、例えば、図8Bにおける比例弁31BL及び比例弁31BRであってもよい。また、アームスプール変位センサS8は、制御弁176を構成するスプールの変位量を検出するセンサであり、旋回スプール変位センサS2Aは、制御弁173を構成するスプールの変位量を検出するセンサである。
 コントローラ30は、図10に示すように、ポンプ吐出量導出部CP1、CP2、及びCP3を用い、指令値βr、βr、及びαrからポンプ吐出量を導き出してもよい。本実施形態では、ポンプ吐出量導出部CP1、CP2、及びCP3は、予め登録された参照テーブル等を用いて指令値βr、βr、及びαrからポンプ吐出量を導き出す。ポンプ吐出量導出部CP1、CP2、及びCP3が導き出したポンプ吐出量は合計され、合計ポンプ吐出量としてポンプ流量演算部に入力される。ポンプ流量演算部は、入力された合計ポンプ吐出量に基づいてメインポンプ14の吐出量を制御する。本実施形態では、ポンプ流量演算部は、合計ポンプ吐出量に応じてメインポンプ14の斜板傾転角を変更することによってメインポンプ14の吐出量を制御する。
 このように、コントローラ30は、ブーム制御弁としての制御弁175、アーム制御弁としての制御弁176、及び、旋回制御弁としての制御弁173のそれぞれの開口制御とメインポンプ14の吐出量の制御とを同時に実行できる。そのため、コントローラ30は、ブームシリンダ7、アームシリンダ8、及び旋回用油圧モータ2Aのそれぞれに適切な量の作動油を供給できる。
 また、コントローラ30は、三次元座標(Xer、Yer、Zer)の算出と、指令値β1r、β2r、及びα1rの生成と、メインポンプ14の吐出量の決定とを1制御サイクルとし、この制御サイクルを繰り返すことで自律制御を実行する。また、コントローラ30は、ブーム角度センサS1、アーム角度センサS2、及び旋回角速度センサS5のそれぞれの出力に基づいて制御基準位置をフィードバック制御することで自律制御の精度を向上させることができる。具体的には、コントローラ30は、ブームシリンダ7、アームシリンダ8、及び旋回用油圧モータ2Aのそれぞれに流入する作動油の流量をフィードバック制御することで自律制御の精度を向上させることができる。なお、コントローラ30は、バケットシリンダ9に流入する作動油の流量を同様に制御してもよい。
 次に、図12A~図12Cを参照し、目標軌道の設定について説明する。図12A~図12Cは、ショベル100によるダンプトラック60への積み込み作業が行われている作業現場の様子の一例を示す。具体的には、図12Aは作業現場の上面図である。図12B及び図12Cは、図12Aの矢印AR3で示す方向から作業現場を見たときの図である。図12B及び図12Cでは、明瞭化のため、ショベル100(バケット6を除く。)の図示が省略されている。図12Bは左シート63Lが全開状態のときの様子を示し、図12Cは左シート63Lが直立状態のときの様子を示す。
 図12Aにおいて、実線で描かれたショベル100は掘削動作が終了したときの状態を表し、破線で描かれたショベル100は旋回動作中の状態を表し、一点鎖線で描かれたショベル100は排土動作が開始する前の状態を表す。同様に、図12B及び図12Cにおいて、実線で描かれたバケット6Aは掘削動作が終了したときのバケット6の状態を表し、破線で描かれたバケット6Bは旋回動作中のバケット6の状態を表し、一点鎖線で描かれたバケット6Cは排土動作が開始する前のバケット6の状態を表す。また、図12A~図12Cのそれぞれにおける太い点線は、バケット6の背面にある所定点が辿る目標軌道TRを表す。
 軌道算出部30Bは、物体検知装置70の出力に基づいて高さHdのダンプトラック60の荷台61とバケット6とが接触しないようにしながら、バケット6を荷台61の上に移動させる目標軌道TRを算出する。或いは、軌道算出部30Bは、周囲監視装置の別の一例である撮像装置80の出力に基づいて目標軌道を算出してもよい。或いは、軌道算出部30Bは、姿勢記録部30Aが記録したショベル100の姿勢に関する情報と周囲監視装置の出力とに基づいて目標軌道を算出してもよい。
 軌道算出部30Bは、複数の目標軌道TRのうちの1つを操作者が選択できるように、複数の目標軌道を算出してもよい。図12Bは、軌道算出部30Bによって算出された3つの目標軌道TR1~TR3を示している。一点鎖線で表される2つの目標軌道TR2及びTR3は、操作者に選択された目標軌道TR1と共に算出されたものである。すなわち、目標軌道TR2及びTR3は、目標軌道TR1と共に操作者に提示されたが、操作者によって選択されなかった目標軌道である。図12Bに示す例では、軌道算出部30Bは、右旋回動作が優先される目標軌道TR1と、右旋回動作とブーム上げ動作のバランスが優先される目標軌道TR2と、ブーム上げ動作が優先される目標軌道TR3とを算出している。操作者は、例えば、軌道算出部30Bによって表示装置D1に表示された、ダンプトラック60の図形と3つの目標軌道を表す線とを含む画像を見ながら、タッチパネル等の入力装置を用い、3つの目標軌道のうちの1つを選択してもよい。
 これにより、本実施形態では、操作者がブーム上げ旋回動作を実行するようにスイッチNSを押すと、コントローラ30は、作成した目標軌道TRに基づいて、右旋回動作を含む複合動作を行う。具体的には、ショベル100の姿勢が破線で示すような姿勢になるまで、すなわち、バケット6の下端が点P2に達するまで、ブーム上げ動作及びアーム閉じ動作の少なくとも一方と右旋回動作とを含む複合動作を行う。この複合動作にはバケット6の開閉動作が含まれていてもよい。高さHdのダンプトラック60の荷台61とバケット6とが接触しないようにしながら、バケット6を荷台61の上に移動させるためである。
 その後、コントローラ30は、ショベル100の姿勢が一点鎖線で示すような姿勢になるまで、すなわち、バケット6の下端が点P3に達するまで、アーム開き動作及び右旋回動作を含む複合動作を行う。この複合動作には、ブーム下げ動作及びバケット6の開閉動作の少なくとも1つが含まれていてもよい。ダンプトラック60の荷台61の前側(運転席側)に土砂等を排土できるようにするためである。
 上術の例では、コントローラ30は、操作者がスイッチNSを押した際にブーム上げ旋回動作を実行するが、操作者がスイッチNSを押しながら左操作レバー26Lをダンプトラック60が存在する方向へ傾倒した際にブーム上げ旋回動作を実行してもよい。
 コントローラ30は、算出した目標軌道TRを利用し、自律制御によるブーム上げ旋回動作を実行する。具体的には、バケット6の下端によって描かれる軌道が目標軌道TRに沿うように、旋回機構2を自動的に右旋回させ、且つ、ブーム4を自動的に上昇させる。本実施形態では、目標軌道TRの終端位置は、バケット6の下端がダンプトラック60の荷台61の真上に来るように設定される。自律制御によるブーム上げ旋回動作が終了した時点で操作者がバケット開き操作を実行するだけで、バケット6内の土砂等が荷台61に排土されるようにするためである。この場合、目標軌道TRの終端位置は、バケット6の容積等のバケット6に関する情報、及び、ダンプトラック60に関する情報等に基づいて算出されてもよい。また、ブーム上げ旋回動作は繰り返し行われる動作であるため、目標軌道TRの終端位置は、前回のブーム上げ旋回動作のときの軌道の終端位置と同じであってもよい。すなわち、前回の終端位置におけるバケット6の下端の位置であってもよい。
 自律制御によるブーム上げ旋回動作が終了した後、操作者は、手動操作による排土動作を実行する。本実施形態では、操作者は、バケット開き操作を実行するだけで、バケット6内の土砂等を荷台61に排土できる。
 排土動作を実行した後、操作者は、手動操作によるブーム下げ旋回動作を実行する。そして、手動操作による掘削動作によって盛り土F1を形成している土砂等を再びバケット6内に取り込む。その後、操作者は、掘削動作を終了させた後の時点で再び自律制御によるブーム上げ旋回動作を開始させる。それ以降のブーム上げ旋回動作についても同様である。
 また、本実施形態では、コントローラ30は、ダンプトラック60に関する情報に基づき、自律制御によるブーム上げ旋回動作が行われる度に、目標軌道TRの終端位置を変更するように構成されている。そのため、ショベル100の操作者は、自律制御によるブーム上げ旋回動作が終了する度にバケット開き操作を実行するだけで、ダンプトラック60の荷台の適切な位置に土砂等を排土できる。
 また、コントローラ30は、ダンプトラック60の状態の変化に応じて目標軌道TRを修正してもよい。コントローラ30は、例えば掘削動作中に、図12Cに示すように左シート63Lが全開状態から直立状態に切り換えられた場合に、目標軌道TRを修正してもよい。具体的には、コントローラ30は、LIDARの出力に基づき、検出対象物であるダンプトラック60の状態の変化を検出し、前回のブーム上げ旋回動作の際に使用された目標軌道TRを、状態の変化後のブーム上げ旋回動作の際に使用される目標軌道TRAに変更する。目標軌道TRAは、点P2よりも高い位置にある点P2Aを通る軌道である。高さHdAの左シート63Lとバケット6とが接触しないようにしながら、バケット6を荷台61の上に移動させるためである。
 次に、図13A~図13Cを参照し、自律制御を実行するショベル100によるダンプトラック60への積み込み作業について説明する。図13A~図13Cは、作業現場の上面図である。図13A~図13Cの例では、ショベル100及びダンプトラック60は何れも歩道SWに位置している。歩道SWは、車道DWに沿うように設けられ、歩道SWと車道DWとはガードレールGRで区切られている。コントローラ30は、例えば、周囲監視装置の一例である物体検知装置70としてのLIDARの出力に基づいて目標軌道TRを算出する。但し、コントローラ30は、上述のように、手動操作によるブーム上げ旋回動作の際に記録したショベル100の姿勢に関する情報に基づいて目標軌道TRを算出してもよい。
 図13Aは、ショベル100が掘削動作を完了したときの状態を示す。このとき、ショベル100は+Y方向を向き、ダンプトラック60は-Y方向を向いている。点線は、LIDARの出力に基づいてコントローラ30が算出した目標軌道TRを示す。コントローラ30は、ブーム上げ旋回動作のときに、掘削アタッチメントATの先端がガードレールGRを超えて車道DW側にはみ出さないように目標軌道TRを算出している。なお、実線円は、ショベル100の現在の旋回半径SR1で描かれる仮想円である。
 図13Bは、ショベル100がブーム上げ旋回動作を実行しているときの状態を示す。このとき、ショベル100は、+X方向を向いている。破線円は、ショベル100の現在の旋回半径SR2で描かれる仮想円である。旋回半径SR2は、旋回半径SR1より小さい。
 図13Cは、ショベル100が排土動作を完了したときの状態を示す。このとき、ショベル100は、ダンプトラック60と同様に、-Y方向を向いている。一点鎖線円は、ショベル100の現在の旋回半径SR3で描かれる仮想円である。旋回半径SR3は、旋回半径SR1よりも大きい。
 図13A~図13Cに示すように、コントローラ30は、旋回中に旋回半径が変化するように目標軌道TRを設定してもよい。具体的には、旋回中に掘削アタッチメントATの先端がガードレールGRを超えて車道DW側にはみ出さないように、旋回半径が一時的に小さくなるように目標軌道TRを設定してもよい。
 また、コントローラ30は、目標軌道TRを動的に修正するように構成されていてもよい。例えば、別の建設機械がショベル100に接近したため、既に設定されている目標軌道TRに沿って旋回動作が行われると、掘削アタッチメントATがその建設機械と接触してしまうおそれがある場合、コントローラ30は、旋回半径が小さくなるように目標軌道TRを修正してもよい。
 また、コントローラ30は、目標軌道TRを設定し或いは修正する際には、作業現場の上空にある電線等の存在を考慮してもよい。また、コントローラ30は、適切な目標軌道TRを設定できない場合、或いは、既に設定されている目標軌道TRを適切に修正できない場合、音声、光及び振動等の少なくとも1つを利用してその旨を操作者に知らせるようにしてもよい。
 このように、本発明の実施形態に係るショベル100は、下部走行体1と、下部走行体1に旋回可能に搭載される上部旋回体3と、上部旋回体3に取り付けられる周囲監視装置と、周囲監視装置の出力に基づいて対象物の状態を認識する制御装置としてのコントローラ30と、を有する。周囲監視装置は、例えば、物体検知装置70であってもよく、撮像装置80であってもよい。対象物の状態を認識することは、例えば、対象物の最大高さ、又は、対象物までの最短距離を認識するだけではなく、対象物の三次元形状を認識することを含んでいてもよい。すなわち、対象物の状態を立体的に認識することを含んでいてもよい。この構成により、ショベル100は、積み込み作業での掘削アタッチメントATと対象物との接触をより確実に防止できる。そのため、作業現場の安全性を向上させることができる。
 なお、コントローラ30は、対象物との接触を回避するように制御を行うように構成されていてもよい。例えば、ダンプトラック60との接触を回避するように、掘削アタッチメントATの自律制御を実行するように構成されていてもよい。また、コントローラ30は、対象物に関して進入禁止領域ZAを設定するように構成されていてもよい。また、コントローラ30は、対象物に関して目標軌道を生成するように構成されていてもよい。また、コントローラ30は、対象物の状態が変化すると目標軌道を修正するように構成されていてもよい。
 対象物は、例えば、ダンプトラック60であってもよい。この場合、コントローラ30は、ダンプトラック60のゲート62に取り付けられているシート63の状態を立体的に認識するように構成されていてもよい。この構成により、ショベル100は、シート63の開閉状態に応じて掘削アタッチメントATの動きを制御できる。そのため、掘削アタッチメントATとシート63との接触を防止できる。
 コントローラ30は、ダンプトラック60の荷台61の後端にある支柱61Pを立体的に認識するように構成されていてもよい。この構成により、ショベル100は、掘削アタッチメントATと支柱61Pとの接触を防止できる。また、荷台61の高さが支柱61Pの高さより低いことを認識することで、掘削アタッチメントATの動きが過度に制限されてしまうのを防止できる。
 ダンプトラック60の状態は、例えば、ダンプトラック60の傾きを含んでいてもよい。すなわち、ショベル100は、ダンプトラック60の荷台61の前後軸又は左右軸に対する傾斜角を認識するように構成されていてもよい。この構成により、ショベル100は、ダンプトラック60の詳細な傾きを認識した上で、掘削アタッチメントATの動きを制御できる。そのため、掘削アタッチメントATとダンプトラック60との接触をより確実に防止できる。また、ダンプトラック60の荷台61への被掘削物の排土がより適切に行われるようにすることができる。
 次に、図14A及び図14Bを参照し、自律制御の実行中に表示される画像の例について説明する。図14A及び図14Bに示すように、表示装置D1に表示される画像Gxは、時刻表示部411、回転数モード表示部412、走行モード表示部413、アタッチメント表示部414、エンジン制御状態表示部415、尿素水残量表示部416、燃料残量表示部417、冷却水温表示部418、エンジン稼働時間表示部419、カメラ画像表示部420、及び作業状態表示部430を有する。図14Aに示す画像Gxは、作業現場(図12A参照。)を上から見たときの状態を表示する作業状態表示部430を含む点で、作業現場(図12A参照。)を横から見たときの状態を表示する作業状態表示部430を含む図14Bに示す画像Gxと異なる。
 回転数モード表示部412、走行モード表示部413、アタッチメント表示部414、及びエンジン制御状態表示部415は、ショベル100の設定状態に関する情報を表示する表示部である。尿素水残量表示部416、燃料残量表示部417、冷却水温表示部418、及びエンジン稼働時間表示部419は、ショベル100の運転状態に関する情報を表示する表示部である。各部に表示される画像は、表示装置D1によって、コントローラ30から送信される各種データ及び撮像装置80から送信される画像データ等を用いて生成される。
 時刻表示部411は、現在の時刻を表示する。回転数モード表示部412は、不図示のエンジン回転数調整ダイヤルによって設定されている回転数モードをショベル100の稼働情報として表示する。走行モード表示部413は、走行モードをショベル100の稼働情報として表示する。走行モードは、可変容量モータを用いた走行用油圧モータの設定状態を表す。例えば、走行モードは、低速モード及び高速モードを有し、低速モードでは「亀」を象ったマークが表示され、高速モードでは「兎」を象ったマークが表示される。アタッチメント表示部414は、現在装着されているアタッチメントの種類を表すアイコンを表示する領域である。エンジン制御状態表示部415は、エンジン11の制御状態をショベル100の稼働情報として表示する。図14A及び図14Bの例では、エンジン11の制御状態として「自動減速・自動停止モード」が選択されている。「自動減速・自動停止モード」は、非操作状態の継続時間に応じて、エンジン回転数を自動的に低減し、さらにはエンジン11を自動的に停止させる制御状態を意味する。その他、エンジン11の制御状態には、「自動減速モード」、「自動停止モード」、及び「手動減速モード」等がある。
 尿素水残量表示部416は、尿素水タンクに貯蔵されている尿素水の残量状態をショベル100の稼働情報として画像表示する。図14A及び図14Bの例では、尿素水残量表示部416には、現在の尿素水の残量状態を表すバーゲージが表示されている。尿素水の残量は、尿素水タンクに設けられている尿素水残量センサが出力するデータに基づいて表示される。
 燃料残量表示部417は、燃料タンクに貯蔵されている燃料の残量状態を稼働情報として表示する。図14A及び図14Bの例では、燃料残量表示部417には、現在の燃料の残量状態を表すバーゲージが表示されている。燃料の残量は、燃料タンクに設けられている燃料残量センサが出力するデータに基づいて表示される。
 冷却水温表示部418は、エンジン冷却水の温度状態をショベル100の稼働情報として表示する。図14A及び図14Bの例では、冷却水温表示部418には、エンジン冷却水の温度状態を表すバーゲージが表示されている。エンジン冷却水の温度は、エンジン11に設けられている水温センサが出力するデータに基づいて表示される。
 エンジン稼働時間表示部419は、エンジン11の累積稼働時間をショベル100の稼働情報として表示する。図14A及び図14Bの例では、エンジン稼働時間表示部419には、操作者によりカウントがリスタートされてからの稼働時間の累積が、単位「hr(時間)」と共に表示されている。エンジン稼働時間表示部419には、ショベル製造後の全期間の生涯稼働時間又は操作者によりカウントがリスタートされてからの区間稼働時間が表示されてもよい。
 カメラ画像表示部420は、撮像装置80によって撮影された画像を表示する。図14A及び図14Bの例では、上部旋回体3の上面後端に取り付けられた後カメラ80Bによって撮影された画像がカメラ画像表示部420に表示されている。カメラ画像表示部420には、上部旋回体3の上面左端に取り付けられた左カメラ80L又は上面右端に取り付けられた右カメラ80Rによって撮像されたカメラ画像が表示されてもよい。また、カメラ画像表示部420には、左カメラ80L、右カメラ80R、及び後カメラ80Bのうちの複数のカメラによって撮影された画像が並ぶように表示されてもよい。また、カメラ画像表示部420には、左カメラ80L、右カメラ80R、及び後カメラ80Bの少なくとも2つによって撮像された複数のカメラ画像の合成画像が表示されてもよい。合成画像は、例えば、俯瞰画像であってもよい。
 各カメラは上部旋回体3の一部がカメラ画像に含まれるように設置されていてもよい。表示される画像に上部旋回体3の一部が含まれることで、操作者は、カメラ画像表示部420に表示される物体とショベル100との間の距離感を把握し易くなるためである。図14A及び図14Bの例では、カメラ画像表示部420は、上部旋回体3のカウンタウェイト3wの画像を表示している。
 カメラ画像表示部420には、表示中のカメラ画像を撮影した撮像装置80の向きを表す図形421が表示されている。図形421は、ショベル100の形状を表すショベル図形421aと、表示中のカメラ画像を撮像した撮像装置80の撮影方向を表す帯状の方向表示図形421bとで構成されている。図形421は、ショベル100の設定状態に関する情報を表示する表示部である。
 図14A及び図14Bの例では、ショベル図形421aの下側(掘削アタッチメントATを表す図形の反対側)に方向表示図形421bが表示されている。これは、後カメラ80Bによって撮影されたショベル100の後方の画像がカメラ画像表示部420に表示されていることを表す。例えば、カメラ画像表示部420に右カメラ80Rによって撮影された画像が表示されている場合には、ショベル図形421aの右側に方向表示図形421bが表示される。また、例えばカメラ画像表示部420に左カメラ80Lによって撮影された画像が表示されている場合には、ショベル図形421aの左側に方向表示図形421bが表示される。
 操作者は、例えば、キャビン10内に設けられている不図示の画像切換スイッチを押すことで、カメラ画像表示部420に表示する画像を他のカメラにより撮影された画像等に切り換えることができる。
 ショベル100に撮像装置80が設けられていない場合には、カメラ画像表示部420の代わりに、異なる情報が表示されてもよい。
 作業状態表示部430は、ショベル100の作業状態を表示する。図14Aの例では、作業状態表示部430は、ショベル100の図形431、ダンプトラック60の図形432、ショベル100の状態を表す図形433、掘削終了位置を表す図形434、目標軌道を表す図形435、排土開始位置を表す図形436、及び、ダンプトラック60の荷台に既に積み込まれている土砂の図形437を含む。図形431は、ショベル100を上から見たときのショベル100の状態を示す。図形432は、ダンプトラック60を上から見たときのダンプトラック60の状態を示す。図形433は、ショベル100の状態を表すテキストメッセージである。図形434は、掘削動作を終了させたときのバケット6を上から見たときのバケット6の状態を示す。図形435は、上から見た目標軌道を示す。図形436は、排土動作を開始させるときのバケット6、すなわち、目標軌道の終端位置におけるバケット6を上から見たときのバケット6の状態を示す。図形437は、ダンプトラック60の荷台に既に積み込まれている土砂の状態を示す。
 図14Bの例では、作業状態表示部430は、バケット6の図形431B、ダンプトラック60の図形432B、ショベル100の状態を表す図形433B、掘削終了位置を表す図形434B、目標軌道を表す図形435B、及び、排土開始位置を表す図形436Bを含む。図形431Bは、バケット6を+Y側(図12A参照。)から見たときのバケット6の状態を示す。図形432Bは、ダンプトラック60を+Y側から見たときのダンプトラック60の状態を示す。図形433Bは、ショベル100の状態を表すテキストメッセージである。図形434Bは、掘削動作を終了させたときのバケット6を+Y側から見たときのバケット6の状態を示す。図形435Bは、+Y側から見た目標軌道を示す。図形436Bは、排土動作を開始させるときのバケット6、すなわち、目標軌道の終端位置におけるバケット6を+Y側から見たときのバケット6の状態を示す。
 コントローラ30は、ショベル100の姿勢に関する情報及びダンプトラック60に関する情報等に基づいて図形431~図形436を生成するように構成されていてもよい。具体的には、図形431は、ショベル100の実際の姿勢を表すように生成されてもよく、図形432は、ダンプトラック60の実際の向き及びサイズを表すように生成されてもよい。また、図形434は、姿勢記録部30Aが記録した情報に基づいて生成されてもよく、図形435及び図形436は、軌道算出部30Bが算出した情報に基づいて生成されてもよい。図形431B~図形436Bについても同様である。また、コントローラ30は、物体検知装置70及び撮像装置80の少なくとも一方の出力に基づき、ダンプトラック60の荷台に既に積み込まれている土砂の状態を検出し、検出した状態に応じて図形437の位置及び大きさを変化させてもよい。
 また、コントローラ30は、現在のダンプトラック60に関するブーム上げ旋回動作の回数、自律制御によるブーム上げ旋回動作の回数、ダンプトラック60に積載された土砂の重量、及び、ダンプトラック60に積載された土砂の重量の最大積載重量に対する比率等を作業状態表示部430に表示させてもよい。
 この構成により、ショベル100の操作者は、画像Gxを見ることで、自律制御が行われているか否かを把握することができる。
 なお、画像Gxは、図14Aに示す例では、作業現場を上から見たときの状態を表示する作業状態表示部430を含み、図14Bに示す例では、作業現場を横(+Y側)から見たときの状態を表示する作業状態表示部430を含んでいる。しかしながら、画像Gxは、作業現場を斜め上或いは斜め下から見たときの状態を表示する作業状態表示部430を含んでいてもよい。また、画像Gxは、作業現場を上から見たときの状態、作業現場を横(+Y側)から見たときの状態、及び、作業現場を斜め上又は斜め下から見たときの状態の任意の組み合わせを同時に表示する作業状態表示部430を含んでいてもよい。但し、画像Gxは、作業状態表示部430を含む場合には、後カメラ80Bによって撮影された画像を表示するカメラ画像表示部420を含むように構成される。ブーム上げ旋回動作が行われる際には、操作者が常に上部旋回体3の後方を監視できるようにするためである。
 上述のように、本発明の実施形態に係るショベル100は、下部走行体1と、下部走行体1に旋回可能に搭載された上部旋回体3と、上部旋回体3に回動可能に搭載されたアタッチメントとしての掘削アタッチメントATと、上部旋回体3に設けられた制御装置としてのコントローラ30と、を有する。コントローラ30は、掘削アタッチメントATの動作と旋回動作を含む複合動作を自律的に実行するように構成されている。この構成により、ショベル100は、操作者の意図に沿って旋回動作を含む複合動作を自律的に実行できる。
 旋回動作を含む複合操作は、例えば、ブーム上げ旋回動作である。ブーム上げ旋回動作に関する目標軌道は、例えば、手動操作によるブーム上げ旋回動作の際に記録された情報に基づいて算出される。但し、ブーム上げ旋回動作に関する目標軌道は、手動操作によるブーム下げ旋回動作の際に記録された情報に基づいて算出されてもよい。また、旋回動作を含む複合操作は、ブーム下げ旋回動作であってもよい。ブーム下げ旋回動作に関する目標軌道は、例えば、手動操作によるブーム下げ旋回動作の際に記録された情報に基づいて算出される。但し、ブーム下げ旋回動作に関する目標軌道は、手動操作によるブーム上げ旋回動作の際に記録された情報に基づいて算出されてもよい。また、旋回動作を含む複合操作は、旋回動作を含む他の繰り返し動作であってもよい。
 ショベル100は、掘削アタッチメントATの姿勢に関する情報を取得する姿勢検出装置を備えていてもよい。姿勢検出装置は、例えば、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、及び旋回角速度センサS5の少なくとも1つを含む。そして、コントローラ30は、姿勢検出装置が取得した情報に基づいて掘削アタッチメントATにおける所定点が描く目標軌道を算出し、その目標軌道に沿って所定点が移動するように複合動作を自律的に実行するように構成されていてもよい。掘削アタッチメントATにおける所定点は、例えば、バケット6の背面における所定点である。
 コントローラ30は、複合動作を繰り返し実行するように構成され、且つ、複合動作を実行する毎に、目標軌道を変更するように構成されていてもよい。例えば、コントローラ30は、図12A~図12Cを参照して説明したように、自律制御によるブーム上げ旋回動作を実行する毎に、目標軌道の終端位置を変更してもよい。
 ショベル100は、キャビン10内に設けられる第2スイッチとしての記録スイッチNS1を有していてもよい。そして、コントローラ30は、記録スイッチNS1が操作されたときに掘削アタッチメントATの姿勢に関する情報を取得するように構成されていてもよい。
 コントローラ30は、第1スイッチとしての自動スイッチNS2が操作されている間、或いは、自動スイッチNS2が操作された状態で旋回操作が行われている間、複合動作を自律的に実行するように構成されていてもよい。また、自動スイッチNS2を備えていない場合であっても、コントローラ30は、ショベル100の姿勢に関する情報等の記録後に旋回操作が行われたことを条件として、旋回動作を含む複合動作を自律的に実行するように構成されていてもよい。
 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形又は置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。
 例えば、ショベル100は、以下に示すような自律制御機能を実行して複合操作を自律的に実行してもよい。図15は、自律制御機能の別の構成例を示すブロック図である。図15の例では、コントローラ30は、自律制御の実行に関する機能要素Fa~Ff及びF1~F6を有する。機能要素は、ソフトウェアで構成されていてもよく、ハードウェアで構成されていてもよく、ソフトウェアとハードウェアの組み合わせで構成されていてもよい。
 機能要素Faは、排土開始位置を算出するように構成されている。本実施形態では、機能要素Faは、物体検知装置70が出力する物体データに基づき、排土動作が実際に開始される前に、排土動作を開始させるときのバケット6の位置を排土開始位置として算出する。なお、排土開始位置は、基本的には、ダンプトラック60の荷台の上にある空間内にある位置として算出される。また、排土開始位置は、望ましくは、シート63から所定距離だけ離れた位置となるように算出される。
 具体的には、機能要素Faは、物体検知装置70が出力する物体データに基づき、ダンプトラック60の荷台に既に積み込まれている土砂の状態を検出する。機能要素Faは、撮像装置80が撮像した画像に基づき、ダンプトラック60の荷台に既に積み込まれている土砂の状態を検出してもよい。土砂の状態は、例えば、ダンプトラック60の荷台のどの部分に土砂がどの程度積み込まれているか等である。そして、機能要素Faは、検出した土砂の状態に基づいて排土開始位置を算出する。但し、機能要素Faは、過去の排土動作が行われたときに姿勢記録部30Aが記録したショベル100の姿勢(姿勢検出装置の検出値)に基づいて排土開始位置を算出してもよい。
 機能要素Faは、ブーム上げ旋回動作の際に、ダンプトラック60の荷台に既に積載されている土砂の状態、又は、ダンプトラック60の状態等に基づき、算出した排土開始位置を補正するように構成されていてもよい。例えば、物体検知装置70及び撮像装置80の少なくとも一方の出力に基づいてダンプトラック60の荷台の縁から土砂がこぼれ落ちたことを検知した場合、機能要素Faは、排土開始位置を荷台の縁から離れる方向に所定距離だけ移動させてもよい。その後の排土動作の際にダンプトラック60の荷台の縁から土砂がこぼれ落ちるのを防止するためである。或いは、物体検知装置70及び撮像装置80の少なくとも一方の出力に基づき、誤操作等に起因してダンプトラック60が僅かに(許容可能な所定距離未満の距離だけ)移動したことを検知した場合、機能要素Faは、ダンプトラック60の移動方向及び移動量に応じて排土開始位置を補正してもよい。ダンプトラック60の移動による排土開始位置のズレを相殺するためである。この構成により、ショベル100は、ダンプトラック60が移動しなかった場合と同じ荷台上の位置に土砂を排土させることができる。この場合、後述の機能要素F1は、補正後の排土開始位置に応じて目標軌道を算出し直すように構成される。
 機能要素Fbは、ダンプトラック60の状態及びダンプトラック60を構成する各部の位置を算出するように構成されている。本実施形態では、機能要素Fbは、物体検知装置70が出力する物体データに基づき、ダンプトラック60の荷台を構成する各部の位置を算出する。また、機能要素Fbは、物体検知装置70が出力する物体データに基づき、ダンプトラック60の荷台に取り付けられたシート63の開閉の度合い、及び、ダンプトラック60の傾斜角等をダンプトラック60の状態として算出する。
 機能要素Fcは、掘削終了位置を算出するように構成されている。本実施形態では、機能要素Fcは、直近の掘削動作を終了させたときのバケット6の爪先位置に基づき、掘削動作を終了させたときのバケット6の位置を掘削終了位置として算出する。具体的には、機能要素Fcは、後述の機能要素F2によって算出される現在のバケット6の爪先位置に基づいて掘削終了位置を算出する。なお、機能要素Fcは、姿勢検出装置、物体検知装置70、及び撮像装置80の少なくとも1つの出力に基づいて掘削終了位置を算出するように構成されていてもよい。
 機能要素Fdは、所定動作の開始を判定するように構成されている。本実施形態では、機能要素Fdは、操作圧センサ29が出力する操作データと、後述の機能要素F2によって算出される現在のバケット6の爪先位置とに基づき、ブーム上げ旋回動作を開始させることができるか否かを判定する。具体的には、機能要素Fdは、現在の爪先位置に基づき、ブーム4が上昇しているか否か、及び、バケット6が地表面(例えば、ショベル100の接地面を含む仮想水平面)よりも所定の鉛直距離だけ上方に位置するか否か等を判定する。そして、機能要素Fdは、ブーム4が上昇しており、且つ、バケット6が地表面よりも所定の鉛直距離だけ上方に位置すると判定した場合、ブーム上げ旋回動作を開始させることができると判定する。そして、機能要素Fdは、ブーム上げ旋回動作を開始させることができると判定した場合、操作圧センサ29が出力する操作データが後述の機能要素F3に入力されるようにする。
 機能要素Feは、被積載物の重量を算出するように構成されている。本実施形態では、機能要素Feは、シリンダ圧センサ27の出力と、後述の機能要素F2によって算出される掘削アタッチメントATの現在の姿勢とに基づき、バケット6内に取り込まれた土砂等の重量を被積載物の重量として算出する。シリンダ圧センサ27は、例えば、ブームシリンダ7のボトム側油室における作動油の圧力を検出するセンサを含む。そして、機能要素Feは、算出した被積載物の重量を後述の機能要素F5に対して出力する。
 機能要素Ffは、各種の異常の有無を判定するように構成されている。本実施形態では、機能要素Ffは、物体検知装置70の出力に基づいて物体検知装置70の異常の有無を判定するように構成されている。また、機能要素Ffは、機能要素Fbの出力に基づいてダンプトラック60の異常の有無を判定するように構成されている。具体的には、機能要素Ffは、例えば、誤操作等に起因してダンプトラック60が許容可能な所定距離を超えて移動した場合に、ダンプトラック60の状態が異常であると判定する。そして、機能要素Ffは、物体検知装置70の状態が異常であると判定した場合、又は、ダンプトラック60の状態が異常であると判定した場合、後述の機能要素F4に対して指令を出力し、ショベル100の動きを減速させ或いは停止させる。
 機能要素F1は、目標軌道を生成するように構成されている。本実施形態では、機能要素F1は、物体検知装置70が出力する物体データと、機能要素Fcが算出した掘削終了位置とに基づいてバケット6の爪先が辿るべき軌道を目標軌道として生成する。物体データは、例えば、ダンプトラック60の位置及び形状等、ショベル100の周囲に存在する物体に関する情報である。具体的には、機能要素F1は、機能要素Faが算出した排土開始位置と、機能要素Fbが算出したダンプトラック位置と、機能要素Fcが算出した掘削終了位置とに基づいて目標軌道を算出する。機能要素F1は、典型的には、ブーム上げ掘削動作が開始される度に、目標軌道を算出するように構成されている。すなわち、目標軌道は、典型的には、ブーム上げ掘削動作が開始される度に更新される。掘削終了位置及び排土開始位置も同様に、ブーム上げ掘削動作が開始される度に更新される。
 機能要素F2は、現在の爪先位置を算出するように構成されている。本実施形態では、機能要素F2は、ブーム角度センサS1が検出したブーム角度βと、アーム角度センサS2が検出したアーム角度βと、バケット角度センサS3が検出したバケット角度βと、旋回角速度センサS5が検出した旋回角度αとに基づき、バケット6の爪先の座標点を現在の爪先位置として算出する。機能要素F2は、現在の爪先位置を算出する際に、機体傾斜センサS4の出力を利用してもよい。
 機能要素F3は、次の爪先位置を算出するように構成されている。本実施形態では、機能要素F3は、操作圧センサ29が出力する操作データと、機能要素F1が生成した目標軌道と、機能要素F2が算出した現在の爪先位置とに基づき、所定時間後の爪先位置を目標爪先位置として算出する。
 機能要素F3は、現在の爪先位置と目標軌道との間の乖離が許容範囲内に収まっているか否かを判定してもよい。本実施形態では、機能要素F3は、現在の爪先位置と目標軌道との間の距離が所定値以下であるか否かを判定する。そして、機能要素F3は、その距離が所定値以下である場合、乖離が許容範囲内に収まっていると判定し、目標爪先位置を算出する。一方で、機能要素F3は、その距離が所定値を上回っている場合、乖離が許容範囲内に収まっていないと判定し、レバー操作量とは無関係に、アクチュエータの動きを減速させ或いは停止させる。
 機能要素F4は、爪先の速度に関する指令値を生成するように構成されている。本実施形態では、機能要素F4は、機能要素F2が算出した現在の爪先位置と、機能要素F3が算出した次の爪先位置とに基づき、所定時間で現在の爪先位置を次の爪先位置に移動させるために必要な爪先の速度を爪先の速度に関する指令値として算出する。
 機能要素F5は、爪先の速度に関する指令値を制限するように構成されている。本実施形態では、機能要素F5は、機能要素F2が算出した現在の爪先位置と、物体検知装置70の出力とに基づき、爪先とダンプトラック60との間の距離が所定値未満であると判定した場合、爪先の速度に関する指令値を所定の上限値で制限する。このようにして、コントローラ30は、爪先がダンプトラック60に接近したときに爪先の速度を減速させる。機能要素F5は、機能要素Feが算出した被積載物の重量に基づいて上限値を変更するように構成されていてもよい。機能要素F5は、掘削アタッチメントATの旋回半径に基づいて上限値を変更するように構成されていてもよい。掘削アタッチメントATの旋回半径は、機能要素F2で算出されてもよく、機能要素F2の出力に基づいて機能要素F5で算出されてもよい。
 機能要素F6は、アクチュエータを動作させるための指令値を算出するように構成されている。本実施形態では、機能要素F6は、現在の爪先位置を目標爪先位置に移動させるために、機能要素F3が算出した目標爪先位置に基づき、ブーム角度βに関する指令値β1r、アーム角度βに関する指令値β2r、バケット角度βに関する指令値β3r、及び旋回角度αに関する指令値α1rを算出する。機能要素F6は、ブーム4が操作されていないときであっても、必要に応じて指令値β1rを算出する。これは、ブーム4を自動的に動作させるためである。アーム5、バケット6、及び旋回機構2についても同様である。
 次に、図16を参照し、機能要素F6の詳細について説明する。図16は、各種指令値を算出する機能要素F6の構成例を示すブロック図である。
 コントローラ30は、図16に示すように、指令値の生成に関する機能要素F11~F13、F21~F23、F31~F33、及びF50を更に有する。機能要素は、ソフトウェアで構成されていてもよく、ハードウェアで構成されていてもよく、ソフトウェアとハードウェアの組み合わせで構成されていてもよい。
 機能要素F11~F13は、指令値β1rに関する機能要素であり、機能要素F21~F23は、指令値β2rに関する機能要素であり、機能要素F31~F33は、指令値β3rに関する機能要素であり、機能要素F41~F43は、指令値α1rに関する機能要素である。
 機能要素F11、F21、F31、及びF41は、比例弁31に対して出力される電流指令を生成するように構成されている。本実施形態では、機能要素F11は、ブーム制御機構31Cに対してブーム電流指令を出力し、機能要素F21は、アーム制御機構31Aに対してアーム電流指令を出力し、機能要素F31は、バケット制御機構31Dに対してバケット電流指令を出力し、機能要素F41は、旋回制御機構31Bに対して旋回電流指令を出力する。
 なお、バケット制御機構31Dは、バケットシリンダパイロット圧指令に対応する制御電流に応じたパイロット圧をバケット制御弁としての制御弁174に対して作用させることができるように構成されている。バケット制御機構31Dは、例えば、図8Dにおける比例弁31DL及び比例弁31DRであってもよい。
 機能要素F12、F22、F32、及びF42は、スプール弁を構成するスプールの変位量を算出するように構成されている。本実施形態では、機能要素F12は、ブームスプール変位センサS7の出力に基づき、ブームシリンダ7に関する制御弁175を構成するブームスプールの変位量を算出する。機能要素F22は、アームスプール変位センサS8の出力に基づき、アームシリンダ8に関する制御弁176を構成するアームスプールの変位量を算出する。機能要素F32は、バケットスプール変位センサS9の出力に基づき、バケットシリンダ9に関する制御弁174を構成するバケットスプールの変位量を算出する。機能要素F42は、旋回スプール変位センサS2Aの出力に基づき、旋回用油圧モータ2Aに関する制御弁173を構成する旋回スプールの変位量を算出する。なお、バケットスプール変位センサS9は、制御弁174を構成するスプールの変位量を検出するセンサである。
 機能要素F13、F23、F33、及びF43は、作業体の回動角度を算出するように構成されている。本実施形態では、機能要素F13は、ブーム角度センサS1の出力に基づき、ブーム角度βを算出する。機能要素F23は、アーム角度センサS2の出力に基づき、アーム角度βを算出する。機能要素F33は、バケット角度センサS3の出力に基づき、バケット角度βを算出する。機能要素F43は、旋回角速度センサS5の出力に基づき、旋回角度αを算出する。
 具体的には、機能要素F11は、基本的に、機能要素F6が生成した指令値β1rと機能要素F13が算出したブーム角度βとの差がゼロになるように、ブーム制御機構31Cに対するブーム電流指令を生成する。その際に、機能要素F11は、ブーム電流指令から導き出される目標ブームスプール変位量と機能要素F12が算出したブームスプール変位量との差がゼロになるように、ブーム電流指令を調節する。そして、機能要素F11は、その調節後のブーム電流指令をブーム制御機構31Cに対して出力する。
 ブーム制御機構31Cは、ブーム電流指令に応じて開口面積を変化させ、その開口面積の大きさに対応するパイロット圧を制御弁175のパイロットポートに作用させる。制御弁175は、パイロット圧に応じてブームスプールを移動させ、ブームシリンダ7に作動油を流入させる。ブームスプール変位センサS7は、ブームスプールの変位を検出し、その検出結果をコントローラ30の機能要素F12にフィードバックする。ブームシリンダ7は、作動油の流入に応じて伸縮し、ブーム4を上下動させる。ブーム角度センサS1は、上下動するブーム4の回動角度を検出し、その検出結果をコントローラ30の機能要素F13にフィードバックする。機能要素F13は、算出したブーム角度βを機能要素F4にフィードバックする。
 機能要素F21は、基本的に、機能要素F6が生成した指令値β2rと機能要素F23が算出したアーム角度βとの差がゼロになるように、アーム制御機構31Aに対するアーム電流指令を生成する。その際に、機能要素F21は、アーム電流指令から導き出される目標アームスプール変位量と機能要素F22が算出したアームスプール変位量との差がゼロになるように、アーム電流指令を調節する。そして、機能要素F21は、その調節後のアーム電流指令をアーム制御機構31Aに対して出力する。
 アーム制御機構31Aは、アーム電流指令に応じて開口面積を変化させ、その開口面積の大きさに対応するパイロット圧を制御弁176のパイロットポートに作用させる。制御弁176は、パイロット圧に応じてアームスプールを移動させ、アームシリンダ8に作動油を流入させる。アームスプール変位センサS8は、アームスプールの変位を検出し、その検出結果をコントローラ30の機能要素F22にフィードバックする。アームシリンダ8は、作動油の流入に応じて伸縮し、アーム5を開閉させる。アーム角度センサS2は、開閉するアーム5の回動角度を検出し、その検出結果をコントローラ30の機能要素F23にフィードバックする。機能要素F23は、算出したアーム角度βを機能要素F4にフィードバックする。
 機能要素F31は、基本的に、機能要素F6が生成した指令値β3rと機能要素F33が算出したバケット角度βとの差がゼロになるように、バケット制御機構31Dに対するバケット電流指令を生成する。その際に、機能要素F31は、バケット電流指令から導き出される目標バケットスプール変位量と機能要素F32が算出したバケットスプール変位量との差がゼロになるように、バケット電流指令を調節する。そして、機能要素F31は、その調節後のバケット電流指令をバケット制御機構31Dに対して出力する。
 バケット制御機構31Dは、バケット電流指令に応じて開口面積を変化させ、その開口面積の大きさに対応するパイロット圧を制御弁174のパイロットポートに作用させる。制御弁174は、パイロット圧に応じてバケットスプールを移動させ、バケットシリンダ9に作動油を流入させる。バケットスプール変位センサS9は、バケットスプールの変位を検出し、その検出結果をコントローラ30の機能要素F32にフィードバックする。バケットシリンダ9は、作動油の流入に応じて伸縮し、バケット6を開閉させる。バケット角度センサS3は、開閉するバケット6の回動角度を検出し、その検出結果をコントローラ30の機能要素F33にフィードバックする。機能要素F33は、算出したバケット角度βを機能要素F4にフィードバックする。
 機能要素F41は、基本的に、機能要素F6が生成した指令値α1rと機能要素F43が算出した旋回角度αとの差がゼロになるように、旋回制御機構31Bに対する旋回電流指令を生成する。その際に、機能要素F41は、旋回電流指令から導き出される目標旋回スプール変位量と機能要素F42が算出した旋回スプール変位量との差がゼロになるように、旋回電流指令を調節する。そして、機能要素F41は、その調節後の旋回電流指令を旋回制御機構31Bに対して出力する。なお、機能要素F6が生成した指令値α1rと機能要素F43が算出した旋回角度αとの差は、機能要素F41に入力される前に、制限部F50によって制限される場合がある。
 制限部F50は、機能要素F13が算出したブーム角度βに基づき、ブーム4が所定の高さ(角度)まで上昇しているか否かを判定するように構成されている。そして、制限部F50は、ブーム4が所定の高さ(角度)まで上昇していないと判定した場合、機能要素F41に対して出力される差である指令値α1rと旋回角度αとの差を所定値以下に制限するように構成されている。ブーム4が十分に上昇していない段階で上部旋回体3が急旋回されてしまうのを防止するためである。
 旋回制御機構31Bは、旋回電流指令に応じて開口面積を変化させ、その開口面積の大きさに対応するパイロット圧を制御弁173のパイロットポートに作用させる。制御弁173は、パイロット圧に応じて旋回スプールを移動させ、旋回用油圧モータ2Aに作動油を流入させる。旋回スプール変位センサS2Aは、旋回スプールの変位を検出し、その検出結果をコントローラ30の機能要素F42にフィードバックする。旋回用油圧モータ2Aは、作動油の流入に応じて回転し、上部旋回体3を旋回させる。旋回角速度センサS5は、上部旋回体3の旋回角度を検出し、その検出結果をコントローラ30の機能要素F43にフィードバックする。機能要素F43は、算出した旋回角度αを機能要素F4にフィードバックする。
 上述のように、コントローラ30は、作業体毎に、3段のフィードバックループを構成している。すなわち、コントローラ30は、スプール変位量に関するフィードバックループ、作業体の回動角度に関するフィードバックループ、及び、爪先位置に関するフィードバックループを構成している。そのため、コントローラ30は、自律制御の際に、バケット6の爪先の動きを高精度に制御できる。
 次に、図17を参照し、自律制御機能の更に別の構成例について説明する。図17は、自律制御機能の更に別の構成例を示すブロック図である。図17に示す構成は、自動運転式の無人ショベルを動作させるための機能要素を含む点で、手動運転式の有人ショベルを動作させるための機能要素を含む図10及び図15のそれぞれに示す構成と異なる。具体的には、図17に示す構成は、操作圧センサ29の出力ではなく通信装置25の出力に基づいて次の爪先位置を算出する点、及び、機能要素Fd1~Fd4を有する点で、図15に示す構成と異なる。そのため、以下では、図15に示す構成と共通する部分の説明が省略され、相違部分が詳説される。
 通信装置25は、ショベル100とショベル100の外部にある外部機器との間の通信を制御するように構成されている。本実施形態では、通信装置25は、外部機器から受信した信号に基づいて機能要素Fd1に開始指令を出力するように構成されている。通信装置25は、外部機器から受信した信号に基づいて機能要素Fd1に操作データを出力するように構成されていてもよい。但し、通信装置25は、ショベル100に搭載されている入力装置であってもよい。
 機能要素Fd1は、作業の開始を判定するように構成されている。本実施形態では、機能要素Fd1は、通信装置25から開始指令を受けた場合に、作業の開始が指示されたと判定し、機能要素Fd2に対して開始指令を出力するように構成されている。機能要素Fd1は、通信装置25から開始指令を受けた場合、物体検知装置70及び撮像装置80の少なくとも一方の出力に基づいてショベル100の周囲に物体が存在しないと判定できたときに、機能要素Fd2に対して開始指令を出力するように構成されていてもよい。機能要素Fd1は、機能要素Fd2に対して開始指令を出力する際に、パイロットポンプ15とコントロールバルブ17とを繋ぐパイロットラインに配置された電磁開閉弁に指令を出力し、そのパイロットラインを開通させてもよい。
 機能要素Fd2は、動作の内容を判定するように構成されている。本実施形態では、機能要素Fd2は、機能要素Fd1から開始指令を受けた場合に、機能要素F2が算出した現在の爪先位置に基づき、掘削動作、ブーム上げ旋回動作、及び排土動作等の何れの動作が現在行われているか、或いは、何れの動作も行われていないかを判定するように構成されている。そして、機能要素Fd2は、機能要素F2が算出した現在の爪先位置に基づいて掘削動作が終了したと判定した場合、機能要素Fd3に対して開始指令を出力するように構成されている。
 機能要素Fd3は、ショベル100の動作条件を設定するように構成されている。本実施形態では、機能要素Fd3は、機能要素Fd2から開始指令を受けた場合に、自律制御によるブーム上げ旋回動作が行われる際の旋回速度等の動作条件を設定するように構成されている。そして、機能要素Fd3は、動作条件を設定した後で、機能要素Fd4に対して開始指令を出力するように構成されている。
 機能要素Fd4は、所定動作の開始を判定するように構成されている。本実施形態では、機能要素Fd4は、機能要素Fd3から開始指令を受けた場合に、機能要素F2によって算出される現在のバケット6の爪先位置に基づき、ブーム上げ旋回動作を開始させることができるか否かを判定する。具体的には、機能要素Fd4は、現在の爪先位置に基づき、ブーム4が上昇しているか否か、及び、バケット6が地表面(例えば、ショベル100の接地面を含む仮想水平面)よりも所定の鉛直距離だけ上方に位置するか否か等を判定する。そして、機能要素Fd4は、ブーム4が上昇しており、且つ、バケット6が地表面よりも所定の鉛直距離だけ上方に位置すると判定した場合、ブーム上げ旋回動作を開始させることができると判定する。そして、機能要素Fd4は、ブーム上げ旋回動作を開始させることができると判定した場合、自動運転式の無人ショベルにおいて自動的に生成される操作データが機能要素F3に入力されるようにする。
 この構成により、コントローラ30は、自動運転式の無人ショベルにおいても、手動運転式の有人ショベルにおける場合と同様に、自律制御によるブーム上げ旋回動作を実行できる。
 また、上述の実施形態では、油圧式パイロット回路を備えた油圧式操作レバーが開示されている。具体的には、アーム操作レバーとして機能する左操作レバー26Lに関する油圧式パイロット回路では、パイロットポンプ15から左操作レバー26Lのリモコン弁へ供給される作動油が、左操作レバー26Lの傾倒によって開閉されるリモコン弁の開度に応じた流量で、アーム制御弁としての制御弁176のパイロットポートへ伝達される。
 但し、このような油圧式パイロット回路を備えた油圧式操作レバーではなく、電気式パイロット回路を備えた電気式操作レバーが採用されてもよい。この場合、電気式操作レバーのレバー操作量は、電気信号としてコントローラ30へ入力される。また、パイロットポンプ15と各制御弁のパイロットポートとの間には電磁弁が配置される。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、電気式操作レバーを用いた手動操作が行われると、コントローラ30は、レバー操作量に対応する電気信号によって電磁弁を制御してパイロット圧を増減させることで各制御弁をコントロールバルブ17内で移動させることができる。なお、各制御弁は電磁スプール弁で構成されていてもよい。この場合、電磁スプール弁は、電気式操作レバーのレバー操作量に対応するコントローラ30からの電気信号に応じて動作する。
 電気式操作レバーを備えた電気式操作システムが採用された場合、コントローラ30は、油圧式操作レバーを備えた油圧式操作システムが採用される場合に比べ、自律制御機能を容易に実行できる。図18は、電気式操作システムの構成例を示す。具体的には、図18の電気式操作システムは、ブーム操作システムの一例であり、主に、パイロット圧作動型のコントロールバルブ17と、電気式操作レバーとしてのブーム操作レバー26Aと、コントローラ30と、ブーム上げ操作用の電磁弁65と、ブーム下げ操作用の電磁弁66とで構成されている。図18の電気式操作システムは、アーム操作システム及びバケット操作システム等にも同様に適用され得る。
 パイロット圧作動型のコントロールバルブ17は、ブームシリンダ7に関する制御弁175(図2参照。)、アームシリンダ8に関する制御弁176(図2参照。)、及び、バケットシリンダ9に関する制御弁174(図2参照。)等を含む。電磁弁65は、パイロットポンプ15と制御弁175の上げ側パイロットポートとを繋ぐ管路の流路面積を調節できるように構成されている。電磁弁66は、パイロットポンプ15と制御弁175の下げ側パイロットポートとを繋ぐ管路の流路面積を調節できるように構成されている。
 手動操作が行われる場合、コントローラ30は、ブーム操作レバー26Aの操作信号生成部が出力する操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。ブーム操作レバー26Aの操作信号生成部が出力する操作信号は、ブーム操作レバー26Aの操作量及び操作方向に応じて変化する電気信号である。
 具体的には、コントローラ30は、ブーム操作レバー26Aがブーム上げ方向に操作された場合、レバー操作量に応じたブーム上げ操作信号(電気信号)を電磁弁65に対して出力する。電磁弁65は、ブーム上げ操作信号(電気信号)に応じて流路面積を調節し、制御弁175の上げ側パイロットポートに作用する、ブーム上げ操作信号(圧力信号)としてのパイロット圧を制御する。同様に、コントローラ30は、ブーム操作レバー26Aがブーム下げ方向に操作された場合、レバー操作量に応じたブーム下げ操作信号(電気信号)を電磁弁66に対して出力する。電磁弁66は、ブーム下げ操作信号(電気信号)に応じて流路面積を調節し、制御弁175の下げ側パイロットポートに作用する、ブーム下げ操作信号(圧力信号)としてのパイロット圧を制御する。
 自律制御を実行する場合、コントローラ30は、例えば、ブーム操作レバー26Aの操作信号生成部が出力する操作信号(電気信号)に応じる代わりに、補正操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。補正操作信号は、コントローラ30が生成する電気信号であってもよく、コントローラ30以外の外部の制御装置等が生成する電気信号であってもよい。
 ショベル100が取得する情報は、図19に示すようなショベルの管理システムSYSを通じ、管理者及び他のショベルの操作者等と共有されてもよい。図19は、ショベルの管理システムSYSの構成例を示す概略図である。管理システムSYSは、1台又は複数台のショベル100を管理するシステムである。本実施形態では、管理システムSYSは、主に、ショベル100、支援装置200、及び管理装置300で構成されている。管理システムSYSを構成するショベル100、支援装置200、及び管理装置300のそれぞれは、1台であってもよく、複数台であってもよい。図19の例では、管理システムSYSは、1台のショベル100と、1台の支援装置200と、1台の管理装置300とを含む。
 支援装置200は、典型的には携帯端末装置であり、例えば、施工現場にいる作業者等が携帯するノートPC、タブレットPC、又はスマートフォン等である。支援装置200は、ショベル100の操作者が携帯するコンピュータであってもよい。支援装置200は、固定端末装置であってもよい。
 管理装置300は、典型的には固定端末装置であり、例えば、施工現場外の管理センタ等に設置されるサーバコンピュータである。管理装置300は、可搬性のコンピュータ(例えば、ノートPC、タブレットPC、又はスマートフォン等の携帯端末装置)であってもよい。
 支援装置200及び管理装置300の少なくとも一方は、モニタと遠隔操作用の操作装置とを備えていてもよい。この場合、操作者は、遠隔操作用の操作装置を用いつつ、ショベル100を操作してもよい。遠隔操作用の操作装置は、例えば、無線通信ネットワーク等の通信ネットワークを通じ、コントローラ30に接続される。以下では、ショベル100と管理装置300との間での情報のやり取りについて説明するが、以下の説明は、ショベル100と支援装置200との間での情報のやり取りについても同様に適用される。
 上述のようなショベル100の管理システムSYSでは、ショベル100のコントローラ30は、自律制御を開始或いは停止させたときの時刻及び場所、自律制御の際に利用された目標軌道、並びに、自律制御の際に所定部位が実際に辿った軌跡等の少なくとも1つに関する情報を管理装置300に送信してもよい。その際、コントローラ30は、物体検知装置70の出力、及び、撮像装置80が撮像した画像等の少なくとも1つを管理装置300に送信してもよい。画像は、自律制御が実行された期間を含む所定期間中に撮像された複数の画像であってもよい。更に、コントローラ30は、自律制御が実行された期間を含む所定期間におけるショベル100の作業内容に関するデータ、ショベル100の姿勢に関するデータ、及び掘削アタッチメントの姿勢に関するデータ等の少なくとも1つに関する情報を管理装置300に送信してもよい。管理装置300を利用する管理者が、作業現場に関する情報を入手できるようにするためである。ショベル100の作業内容に関するデータは、例えば、排土動作が行われた回数である積み込み回数、ダンプトラック60の荷台に積み込んだ土砂等の被積載物に関する情報、積み込み作業に関するダンプトラック60の種類、積み込み作業が行われたときのショベル100の位置に関する情報、作業環境に関する情報、及び、積み込み作業が行われているときのショベル100の動作に関する情報等の少なくとも1つである。被積載物に関する情報は、例えば、各回の排土動作で積み込まれた被積載物の重量及び種類等、各ダンプトラック60に積み込まれた被積載物の重量及び種類等、及び、1日の積み込み作業で積み込まれた被積載物の重量及び種類等の少なくとも1つである。作業環境に関する情報は、例えば、ショベル100の周囲にある地面の傾斜に関する情報、又は、作業現場の周辺の天気に関する情報等である。ショベル100の動作に関する情報は、例えば、パイロット圧、及び、油圧アクチュエータにおける作動油の圧力等の少なくとも1つである。
 このように、本発明の実施形態に係るショベル100の管理システムSYSは、ショベル100による自律制御が実行された期間を含む所定期間中に取得されるショベル100に関する情報を管理者及び他のショベルの操作者等と共有できるようにする。
 本願は、2018年3月26日に出願した日本国特許出願2018-058914号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1C・・・クローラ 1CL・・・左クローラ 1CR・・・右クローラ 2・・・旋回機構 2A・・・旋回用油圧モータ 2M・・・走行用油圧モータ 2ML・・・左走行用油圧モータ 2MR・・・右走行用油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 7a・・・ブームシリンダ圧センサ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13・・・レギュレータ 14・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブ 18・・・絞り 19・・・制御圧センサ 25・・・通信装置 26・・・操作装置 26A・・・ブーム操作レバー 26B・・・旋回操作レバー 26D・・・走行レバー 26DL・・・左走行レバー 26DR・・・右走行レバー 26L・・・左操作レバー 26R・・・右操作レバー 27・・・シリンダ圧センサ 28・・・吐出圧センサ 29、29A、29B、29DL、29DR、29LA、29LB、29RA、29RB・・・操作圧センサ 30・・・コントローラ 30A・・・姿勢記録部 30B・・・軌道算出部 30C・・・自律制御部 31、31AL~31DL、31AR~31DR・・・比例弁 32、32AL~32DL、32AR~32DR・・・シャトル弁 40・・・センターバイパス管路 42・・・パラレル管路 50L、50R・・・減圧弁 60・・・ダンプトラック 61・・・荷台 61P・・・支柱 62・・・ゲート 62B・・・後側ゲート 62L・・・左側ゲート 62R・・・右側ゲート 63・・・シート 65、66・・・電磁弁 70・・・物体検知装置 70F・・・前センサ 70B・・・後センサ 70L・・・左センサ 70R・・・右センサ 80・・・撮像装置 80B・・・後カメラ 80L・・・左カメラ 80R・・・右カメラ 100・・・ショベル 150~158、171~176・・・制御弁 AT・・・掘削アタッチメント D1・・・表示装置 D2・・・音出力装置 NS・・・スイッチ S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回角速度センサ

Claims (8)

  1.  下部走行体と、
     前記下部走行体に旋回可能に搭載される上部旋回体と、
     前記上部旋回体に取り付けられる周囲監視装置と、
     前記周囲監視装置の出力に基づいて対象物の状態を認識する制御装置と、
     を有する、
     ショベル。
  2.  前記制御装置は、前記対象物との接触を回避するように制御を行う、
     請求項1に記載のショベル。
  3.  前記制御装置は、前記対象物に関して進入禁止領域を設定する、
     請求項1に記載のショベル。
  4.  前記制御装置は、前記対象物に関して目標軌道を生成する、
     請求項1に記載のショベル。
  5.  前記制御装置は、前記対象物の状態が変化すると目標軌道を修正する、
     請求項4に記載のショベル。
  6.  前記対象物は、ダンプトラックであって、
     前記制御装置は、前記ダンプトラックのゲートに取り付けられているシートの状態を立体的に認識する、
     請求項1に記載のショベル。
  7.  前記制御装置は、前記ダンプトラックの荷台の後端にある支柱を立体的に認識する、
     請求項6に記載のショベル。
  8.  前記ダンプトラックの状態は、前記ダンプトラックの傾きを含む、
     請求項6に記載のショベル。
PCT/JP2019/012563 2018-03-26 2019-03-25 ショベル WO2019189013A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020510818A JP7383599B2 (ja) 2018-03-26 2019-03-25 ショベル
EP19776625.6A EP3779070A4 (en) 2018-03-26 2019-03-25 EXCAVATOR
CN201980022162.6A CN111919003A (zh) 2018-03-26 2019-03-25 挖土机
KR1020207028084A KR102687700B1 (ko) 2018-03-26 2019-03-25 쇼벨
US17/030,867 US20210002852A1 (en) 2018-03-26 2020-09-24 Shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058914 2018-03-26
JP2018058914 2018-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/030,867 Continuation US20210002852A1 (en) 2018-03-26 2020-09-24 Shovel

Publications (1)

Publication Number Publication Date
WO2019189013A1 true WO2019189013A1 (ja) 2019-10-03

Family

ID=68058182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012563 WO2019189013A1 (ja) 2018-03-26 2019-03-25 ショベル

Country Status (6)

Country Link
US (1) US20210002852A1 (ja)
EP (1) EP3779070A4 (ja)
JP (1) JP7383599B2 (ja)
KR (1) KR102687700B1 (ja)
CN (1) CN111919003A (ja)
WO (1) WO2019189013A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020196838A1 (ja) * 2019-03-27 2020-10-01
WO2021210665A1 (ja) * 2020-04-17 2021-10-21 株式会社小松製作所 制御システムおよび制御方法
WO2021241526A1 (ja) * 2020-05-25 2021-12-02 住友建機株式会社 ショベル及びショベル用のシステム
WO2022049987A1 (ja) * 2020-09-01 2022-03-10 コベルコ建機株式会社 アタッチメントの目標軌跡設定システム
WO2022102298A1 (ja) * 2020-11-13 2022-05-19 株式会社日立製作所 積載作業支援システム
WO2022186215A1 (ja) * 2021-03-02 2022-09-09 日立建機株式会社 作業機械
WO2023037515A1 (ja) * 2021-09-10 2023-03-16 日本電気株式会社 接触判定装置、接触判定システム、接触判定方法及びプログラム
WO2023053992A1 (ja) * 2021-10-01 2023-04-06 コベルコ建機株式会社 作業機械
WO2023140559A1 (ko) * 2022-01-18 2023-07-27 현대두산인프라코어(주) 웨잉 값을 산출하는 방법 및 장치
WO2023149104A1 (ja) * 2022-02-02 2023-08-10 株式会社小松製作所 作業機械および作業機械の制御方法
EP4198205A4 (en) * 2020-09-29 2024-02-21 Kobelco Construction Machinery Co., Ltd. SYSTEM FOR DEFINITING THE TARGET PATH OF AN ACCESSORY
EP4194615A4 (en) * 2020-09-29 2024-03-06 Kobelco Construction Machinery Co., Ltd. AUTOMATIC LEVELING SYSTEM
WO2024075639A1 (ja) * 2022-10-05 2024-04-11 日立建機株式会社 作業機械
KR102720714B1 (ko) 2020-04-17 2024-10-21 가부시키가이샤 고마쓰 세이사쿠쇼 제어 시스템 및 제어 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2012000933A1 (es) 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
JP6868938B2 (ja) * 2017-08-24 2021-05-12 日立建機株式会社 建設機械の荷重計測システム
CN111902582B (zh) * 2018-03-23 2022-08-16 住友重机械工业株式会社 挖土机
JP6995687B2 (ja) * 2018-04-27 2022-01-17 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
JP7166108B2 (ja) * 2018-08-31 2022-11-07 株式会社小松製作所 画像処理システム、表示装置、画像処理方法、学習済みモデルの生成方法、および学習用データセット
JP7293933B2 (ja) * 2019-07-17 2023-06-20 コベルコ建機株式会社 作業機械および作業機械支援サーバ
JP7306191B2 (ja) * 2019-09-26 2023-07-11 コベルコ建機株式会社 輸送車位置判定装置
US11851844B2 (en) * 2020-01-21 2023-12-26 Caterpillar Inc. Implement travel prediction for a work machine
JP2022160163A (ja) * 2021-04-06 2022-10-19 コベルコ建機株式会社 作業機械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088625A (ja) * 1996-09-13 1998-04-07 Komatsu Ltd 自動掘削機、自動掘削方法および自動積み込み方法
JPH11325880A (ja) * 1997-12-19 1999-11-26 Carnegie Mellon Univ 三次元対象物の増分的決定方法
JP2015190159A (ja) * 2014-03-27 2015-11-02 住友建機株式会社 ショベル及びその制御方法
WO2017115809A1 (ja) 2015-12-28 2017-07-06 住友建機株式会社 ショベル
JP2018058914A (ja) 2016-09-30 2018-04-12 富士フイルム株式会社 多孔質膜形成用組成物、多孔質膜形成用組成物の製造方法、多孔質膜の製造方法、積層体、及び太陽電池モジュール

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169948B1 (en) * 1996-06-26 2001-01-02 Hitachi Construction Machinery Co., Ltd. Front control system, area setting method and control panel for construction machine
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
JP2010052934A (ja) * 2008-08-29 2010-03-11 Chugoku Electric Power Co Inc:The 粉粒体の運搬監視システム
KR101565055B1 (ko) * 2011-05-26 2015-11-02 스미도모쥬기가이고교 가부시키가이샤 전동선회장치를 구비한 쇼벨 및 그 제어방법
WO2013057758A1 (ja) * 2011-10-19 2013-04-25 住友重機械工業株式会社 旋回作業機械及び旋回作業機械の制御方法
JP5888956B2 (ja) * 2011-12-13 2016-03-22 住友建機株式会社 ショベル及び該ショベルの周囲画像表示方法
JP5707313B2 (ja) * 2011-12-19 2015-04-30 日立建機株式会社 作業車両
US9598836B2 (en) * 2012-03-29 2017-03-21 Harnischfeger Technologies, Inc. Overhead view system for a shovel
WO2015181972A1 (ja) * 2014-05-30 2015-12-03 株式会社日立製作所 運行管理サーバと運行管理方法及び運行管理プログラム
JP6407663B2 (ja) * 2014-10-30 2018-10-17 日立建機株式会社 作業支援画像生成装置、及びそれを備えた作業機械の操縦システム
US9454147B1 (en) * 2015-09-11 2016-09-27 Caterpillar Inc. Control system for a rotating machine
US9695571B1 (en) * 2015-12-10 2017-07-04 Caterpillar Inc. Payload monitoring system
US9982414B2 (en) * 2016-05-16 2018-05-29 Caterpillar Inc. Operation identification of a work machine
JP2018024997A (ja) * 2016-08-08 2018-02-15 日立建機株式会社 建設機械の作業機軌道修正システム
US10570582B2 (en) * 2016-11-23 2020-02-25 Caterpillar Inc. System and method for operating a material-handling machine
GB2558266A (en) * 2016-12-23 2018-07-11 Caterpillar Inc Work tool positioning system
JP7283332B2 (ja) * 2019-09-26 2023-05-30 コベルコ建機株式会社 容器計測システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088625A (ja) * 1996-09-13 1998-04-07 Komatsu Ltd 自動掘削機、自動掘削方法および自動積み込み方法
JPH11325880A (ja) * 1997-12-19 1999-11-26 Carnegie Mellon Univ 三次元対象物の増分的決定方法
JP2015190159A (ja) * 2014-03-27 2015-11-02 住友建機株式会社 ショベル及びその制御方法
WO2017115809A1 (ja) 2015-12-28 2017-07-06 住友建機株式会社 ショベル
JP2018058914A (ja) 2016-09-30 2018-04-12 富士フイルム株式会社 多孔質膜形成用組成物、多孔質膜形成用組成物の製造方法、多孔質膜の製造方法、積層体、及び太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779070A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439053B2 (ja) 2019-03-27 2024-02-27 住友重機械工業株式会社 ショベル及びショベルの管理装置
JPWO2020196838A1 (ja) * 2019-03-27 2020-10-01
KR102720714B1 (ko) 2020-04-17 2024-10-21 가부시키가이샤 고마쓰 세이사쿠쇼 제어 시스템 및 제어 방법
WO2021210665A1 (ja) * 2020-04-17 2021-10-21 株式会社小松製作所 制御システムおよび制御方法
JP2021172972A (ja) * 2020-04-17 2021-11-01 株式会社小松製作所 制御システムおよび制御方法
JP7469127B2 (ja) 2020-04-17 2024-04-16 株式会社小松製作所 制御システムおよび制御方法
CN115380144A (zh) * 2020-04-17 2022-11-22 株式会社小松制作所 控制系统以及控制方法
WO2021241526A1 (ja) * 2020-05-25 2021-12-02 住友建機株式会社 ショベル及びショベル用のシステム
JP7571424B2 (ja) 2020-09-01 2024-10-23 コベルコ建機株式会社 アタッチメントの目標軌跡変更システム
WO2022049987A1 (ja) * 2020-09-01 2022-03-10 コベルコ建機株式会社 アタッチメントの目標軌跡設定システム
EP4177403A4 (en) * 2020-09-01 2023-12-27 Kobelco Construction Machinery Co., Ltd. SYSTEM FOR ADJUSTING THE TRAVEL OF AN IMPLEMENT
EP4194615A4 (en) * 2020-09-29 2024-03-06 Kobelco Construction Machinery Co., Ltd. AUTOMATIC LEVELING SYSTEM
EP4198205A4 (en) * 2020-09-29 2024-02-21 Kobelco Construction Machinery Co., Ltd. SYSTEM FOR DEFINITING THE TARGET PATH OF AN ACCESSORY
WO2022102298A1 (ja) * 2020-11-13 2022-05-19 株式会社日立製作所 積載作業支援システム
JP7482754B2 (ja) 2020-11-13 2024-05-14 株式会社日立製作所 積載作業支援システム
JP7360568B2 (ja) 2021-03-02 2023-10-12 日立建機株式会社 作業機械
JPWO2022186215A1 (ja) * 2021-03-02 2022-09-09
WO2022186215A1 (ja) * 2021-03-02 2022-09-09 日立建機株式会社 作業機械
WO2023037515A1 (ja) * 2021-09-10 2023-03-16 日本電気株式会社 接触判定装置、接触判定システム、接触判定方法及びプログラム
WO2023053992A1 (ja) * 2021-10-01 2023-04-06 コベルコ建機株式会社 作業機械
WO2023140559A1 (ko) * 2022-01-18 2023-07-27 현대두산인프라코어(주) 웨잉 값을 산출하는 방법 및 장치
WO2023149104A1 (ja) * 2022-02-02 2023-08-10 株式会社小松製作所 作業機械および作業機械の制御方法
WO2024075639A1 (ja) * 2022-10-05 2024-04-11 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
JP7383599B2 (ja) 2023-11-20
EP3779070A1 (en) 2021-02-17
KR102687700B1 (ko) 2024-07-22
EP3779070A4 (en) 2021-11-17
KR20200132890A (ko) 2020-11-25
US20210002852A1 (en) 2021-01-07
CN111919003A (zh) 2020-11-10
JPWO2019189013A1 (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2019189013A1 (ja) ショベル
JP7227222B2 (ja) ショベル
CN112867831B (zh) 挖土机
JP7460538B2 (ja) ショベル、ショベルの制御装置
US20210002859A1 (en) Shovel
WO2021054436A1 (ja) ショベル
CN113039326B (zh) 挖土机、挖土机的控制装置
JP7307051B2 (ja) ショベル
CN118007731A (zh) 挖土机及挖土机的管理系统
JP7439053B2 (ja) ショベル及びショベルの管理装置
JP7474192B2 (ja) ショベル
CN113544338B (zh) 挖土机及施工系统
KR20210104668A (ko) 쇼벨, 쇼벨의 제어장치, 쇼벨의 지원장치
CN117468520A (zh) 挖土机及施工系统
CN113677855A (zh) 挖土机及挖土机的控制装置
WO2022196776A1 (ja) ショベル
JP2024031019A (ja) ショベルの表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510818

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207028084

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019776625

Country of ref document: EP

Effective date: 20201026