WO2021241526A1 - ショベル及びショベル用のシステム - Google Patents

ショベル及びショベル用のシステム Download PDF

Info

Publication number
WO2021241526A1
WO2021241526A1 PCT/JP2021/019682 JP2021019682W WO2021241526A1 WO 2021241526 A1 WO2021241526 A1 WO 2021241526A1 JP 2021019682 W JP2021019682 W JP 2021019682W WO 2021241526 A1 WO2021241526 A1 WO 2021241526A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
weight
earth
sand
controller
Prior art date
Application number
PCT/JP2021/019682
Other languages
English (en)
French (fr)
Inventor
貴志 西
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to JP2022526547A priority Critical patent/JPWO2021241526A1/ja
Priority to KR1020227035323A priority patent/KR20230015315A/ko
Priority to CN202180029186.1A priority patent/CN115427639A/zh
Priority to EP21813056.5A priority patent/EP4159932A4/en
Publication of WO2021241526A1 publication Critical patent/WO2021241526A1/ja
Priority to US18/056,789 priority patent/US20230078047A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/10Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having fluid weight-sensitive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • This disclosure relates to excavators and systems for excavators.
  • Patent Document 1 There is known a device that integrates and displays the weight of earth and sand loaded on the loading platform of a dump truck by an excavator (see Patent Document 1).
  • This device detects the start and completion of loading work based on whether or not a combination of boom raising and turning operation and soil removal operation is performed. Then, the integrated value of the multiple excavation weights calculated from the start to the completion of the loading work for the specific dump truck is calculated as the loading capacity (cumulative weight) which is the amount of earth and sand loaded on the specific dump truck. do.
  • the soil removal operation is an operation including a bucket opening operation.
  • the setup work is a preparatory work for the loading work, and includes, for example, a work for collecting the earth and sand to be loaded so that the loading work can be performed efficiently.
  • the excavator includes a lower traveling body, an upper swivel body rotatably mounted on the lower traveling body, an attachment attached to the upper swivel body, and a bucket constituting the attachment.
  • a control device that calculates the weight of the object transferred from the bucket to the loading platform of the transport vehicle based on the output of the space recognition device that recognizes the space around the upper swing body and the weight of the object in the bucket. To prepare for.
  • the above-mentioned excavator can more accurately calculate the amount of load loaded on the transport vehicle.
  • FIG. 1 is a side view of the excavator 100 as an excavator according to the present embodiment.
  • the excavator 100 is located on a horizontal plane facing the uphill slope ES to be constructed, and is an example of the target construction surface to be described later, which is an uphill slope BS (that is, after construction on the uphill slope ES). Slope shape) is also described.
  • the uphill slope ES to be constructed is provided with a cylindrical body (not shown) indicating the normal direction of the uphill slope BS, which is the target construction surface.
  • the shovel 100 includes a lower traveling body 1, an upper swivel body 3 that is swivelably mounted on the lower traveling body 1 via a swivel mechanism 2, a boom 4 and an arm constituting an attachment (working machine). It includes 5, a bucket 6, and a cabin 10.
  • the lower traveling body 1 travels the excavator 100 by driving a pair of left and right crawlers hydraulically by the traveling hydraulic motors 1L and 1R (see FIG. 2 to be described later), respectively. That is, the pair of traveling hydraulic motors 1L and 1R (an example of the traveling motor) drive the lower traveling body 1 (crawler) as the driven portion.
  • the upper swing body 3 turns with respect to the lower traveling body 1 by being driven by the swing hydraulic motor 2A (see FIG. 2 described later). That is, the swivel hydraulic motor 2A is a swivel drive unit that drives the upper swivel body 3 as a driven unit, and can change the direction of the upper swivel body 3.
  • the upper swivel body 3 may be electrically driven by an electric motor (hereinafter, "swivel motor”) instead of the swivel hydraulic motor 2A. That is, the swivel motor is a swivel drive unit that drives the upper swivel body 3 as a non-drive unit, like the swivel hydraulic motor 2A, and can change the direction of the upper swivel body 3.
  • swivel motor is a swivel drive unit that drives the upper swivel body 3 as a non-drive unit, like the swivel hydraulic motor 2A, and can change the direction of the upper swivel body 3.
  • the boom 4 is pivotally attached to the center of the front portion of the upper swing body 3 so as to be vertically movable
  • the arm 5 is pivotally attached to the tip of the boom 4 so as to be vertically rotatable
  • the tip of the arm 5 is pivotally attached to the tip of the arm 5 as an end attachment.
  • the bucket 6 is pivotally attached so as to be vertically rotatable.
  • the boom 4, arm 5, and bucket 6 are each hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 as hydraulic actuators, which are examples of actuators.
  • the bucket 6 is an example of an end attachment, and the tip of the arm 5 has another end attachment, for example, a slope bucket, a dredging bucket, or a breaker, instead of the bucket 6 depending on the work content or the like. Etc. may be attached.
  • the cabin 10 is a driver's cab on which the operator is boarded, and is mounted on the front left side of the upper swivel body 3.
  • FIG. 2 is a diagram schematically showing an example of the configuration of the shovel 100 according to the present embodiment.
  • FIG. 2 the mechanical power system, the hydraulic oil line, the pilot line, and the electric control system are shown by double lines, solid lines, broken lines, and dotted lines, respectively.
  • the drive system of the excavator 100 includes an engine 11, a regulator 13, a main pump 14, and a control valve 17. Further, as described above, the hydraulic drive system of the excavator 100 according to the present embodiment is a traveling hydraulic motor 1L, 1R that hydraulically drives each of the lower traveling body 1, the upper turning body 3, the boom 4, the arm 5, and the bucket 6. , Swirling hydraulic motor 2A, boom cylinder 7, arm cylinder 8, bucket cylinder 9, and other hydraulic actuators.
  • the engine 11 is the main power source in the hydraulic drive system, and is mounted on the rear part of the upper swing body 3, for example. Specifically, the engine 11 rotates constantly at a preset target rotation speed under direct or indirect control by the controller 30, which will be described later, to drive the main pump 14 and the pilot pump 15.
  • the engine 11 is, for example, a diesel engine that uses light oil as fuel.
  • the regulator 13 controls the discharge amount of the main pump 14. For example, the regulator 13 adjusts the angle (tilt angle) of the swash plate of the main pump 14 in response to a control command from the controller 30.
  • the regulator 13 includes regulators 13L and 13R, for example, as described later.
  • the main pump 14 is mounted on the rear part of the upper swing body 3 like the engine 11, and supplies hydraulic oil to the control valve 17 through the high-pressure hydraulic line.
  • the main pump 14 is driven by the engine 11 as described above.
  • the main pump 14 is, for example, a variable displacement hydraulic pump, and as described above, the stroke length of the piston is adjusted by adjusting the tilt angle of the swash plate by the regulator 13 under the control of the controller 30, and the discharge is performed.
  • the flow rate (discharge pressure) is controlled.
  • the main pump 14 includes, for example, the main pumps 14L and 14R as described later.
  • the control valve 17 is, for example, a hydraulic control device mounted in the central portion of the upper swing body 3 and controls the hydraulic drive system in response to the operation of the operator with respect to the operation device 26.
  • the control valve 17 is connected to the main pump 14 via the high-pressure hydraulic line, and the hydraulic oil supplied from the main pump 14 is subjected to a hydraulic actuator (running hydraulic motor 1L) according to the operating state of the operating device 26. , 1R, swivel hydraulic motor 2A, boom cylinder 7, arm cylinder 8, and bucket cylinder 9) are selectively supplied.
  • the control valve 17 includes control valves 171 to 176 that control the flow rate and the flow direction of the hydraulic oil supplied from the main pump 14 to each of the hydraulic actuators.
  • control valve 171 corresponds to the traveling hydraulic motor 1L
  • control valve 172 corresponds to the traveling hydraulic motor 1R
  • control valve 173 corresponds to the swing hydraulic motor 2A
  • control valve 174 corresponds to the bucket cylinder 9
  • control valve 175 corresponds to the boom cylinder 7
  • the control valve 176 corresponds to the arm cylinder 8.
  • control valve 175 includes, for example, control valves 175L and 175R as described later
  • control valve 176 includes, for example, control valves 176L and 176R as described later. Details of the control valves 171 to 176 will be described later.
  • the operation system of the excavator 100 includes the pilot pump 15 and the operation device 26. Further, the operation system of the excavator 100 includes a shuttle valve 32 as a configuration related to a machine control function by the controller 30, which will be described later.
  • the pilot pump 15 is mounted on the rear part of the upper swing body 3, for example, and supplies the pilot pressure to the operating device 26 via the pilot line.
  • the pilot pump 15 is, for example, a fixed-capacity hydraulic pump, and is driven by the engine 11 as described above.
  • the operation device 26 is provided near the cockpit of the cabin 10, and is an operation input means for the operator to operate various operation elements (lower traveling body 1, upper turning body 3, boom 4, arm 5, bucket 6, etc.). Is.
  • the operating device 26 is an actuator in which the operator drives each operating element (hydraulic actuators (that is, traveling hydraulic motors 1L, 1R, swivel hydraulic motor 2A, boom cylinder 7, arm cylinder 8, bucket cylinder 9, etc.)).
  • the operating device 26 is attached to the control valve 17 directly through the pilot line on the secondary side thereof or indirectly via the shuttle valve 32 described later provided on the pilot line on the secondary side. Be connected.
  • the operating device 26 includes, for example, a lever device for operating the arm 5 (arm cylinder 8). Further, the operating device 26 includes, for example, lever devices 26A to 26C for operating each of the boom 4 (boom cylinder 7), the bucket 6 (bucket cylinder 9), and the upper swing body 3 (swing hydraulic motor 2A) (FIG. 4A). -See FIG. 4C). Further, the operating device 26 includes, for example, a lever device and a pedal device for operating each of the pair of left and right crawlers (running hydraulic motors 1L, 1R) of the lower traveling body 1.
  • the actuator may be an electric actuator.
  • the shuttle valve 32 has two inlet ports and one outlet port, and outputs the hydraulic oil having the higher pilot pressure of the pilot pressures input to the two inlet ports to the outlet port.
  • one of the two inlet ports is connected to the operating device 26 and the other is connected to the proportional valve 31.
  • the outlet port of the shuttle valve 32 is connected through a pilot line to the pilot port of the corresponding control valve in the control valve 17 (see FIGS. 4A-4C for details). Therefore, the shuttle valve 32 can make the higher of the pilot pressure generated by the operating device 26 and the pilot pressure generated by the proportional valve 31 act on the pilot port of the corresponding control valve.
  • the controller 30, which will be described later, outputs a pilot pressure higher than the pilot pressure on the secondary side output from the operating device 26 from the proportional valve 31, so that the corresponding control is performed regardless of the operation of the operating device 26 by the operator. It is possible to control the valve and control the operation of various operating elements.
  • the shuttle valve 32 includes, for example, shuttle valves 32AL, 32AR, 32BL, 32BR, 32CL, 32CR as described later.
  • the operating device 26 (left operating lever, right operating lever, left traveling lever, and right traveling lever) may be an electric type that outputs an electric signal instead of a hydraulic pilot type that outputs a pilot pressure.
  • the electric signal from the operating device 26 is input to the controller 30, and the controller 30 controls each of the control valves 171 to 176 in the control valve 17 according to the input electric signal.
  • the operation of various hydraulic actuators according to the operation content with respect to 26 is realized.
  • the control valves 171 to 176 in the control valve 17 may be electromagnetic solenoid type spool valves driven by a command from the controller 30.
  • a solenoid valve that operates in response to an electric signal from the controller 30 may be arranged between the pilot pump 15 and the pilot ports of the control valves 171 to 176.
  • the controller 30 controls the solenoid valve by an electric signal corresponding to the operation amount (for example, a lever operation amount) to increase or decrease the pilot pressure.
  • the operation amount for example, a lever operation amount
  • the controller 30 can drive the actuator by transmitting the operation amount of the operation device 26 input by the operator to the proportional valve 31 as an electric signal. Therefore, when the electric operation device 26 is used, the proportional valve 33 can be omitted.
  • the operating device 26 does not necessarily have to be arranged in the cabin 10.
  • the operation device 26 may be arranged in a remote control room installed outside the excavator 100. Further, the operating device 26 may be realized by a mobile terminal carried by a worker around the shovel 100. In this way, even when the operating device 26 is provided outside the excavator 100, the controller 30 receives the operating amount of the operating device 26 input by the operator as an electric signal via the communication device, and then the proportional valve.
  • the actuator can be driven by transmitting to 31. Therefore, the proportional valve 33 can be omitted even when the operating device 26 is provided outside the excavator 100. Further, the controller 30 transmits an electric signal generated based on a preset operation pattern, a target trajectory, or the like to the proportional valve 31 instead of the operation amount of the operation device 26 input by the operator. The actuator can be driven. That is, the controller 30 transmits an electric signal generated based on the operation pattern or the target trajectory or the like to the proportional valve 31 even in the case of an autonomous control type excavator in which each actuator is driven along the operation pattern or the target trajectory or the like. Thereby, the actuator can be driven.
  • the control system of the excavator 100 includes a controller 30, a discharge pressure sensor 28, an operation pressure sensor 29, a proportional valve 31, a display device 40, an input device 42, a voice output device 43, and storage.
  • the device 47, a boom angle sensor S1, an arm angle sensor S2, a bucket angle sensor S3, a machine body tilt sensor S4, a turning state sensor S5, an image pickup device S6, a positioning device PS, and a communication device T1 are included.
  • the controller 30 (an example of a control device) is provided in the cabin 10, for example, and controls the drive of the excavator 100.
  • the function of the controller 30 may be realized by any hardware, software, or a combination thereof.
  • the controller 30 is centered on a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a non-volatile auxiliary storage device, and various input / output interfaces. It is composed.
  • the controller 30 realizes various functions by executing various programs stored in a ROM or a non-volatile auxiliary storage device on the CPU, for example.
  • the controller 30 sets a target rotation speed based on a work mode or the like preset by a predetermined operation by an operator or the like, and performs drive control to rotate the engine 11 at a constant speed.
  • the controller 30 outputs a control command to the regulator 13 as necessary to change the discharge amount of the main pump 14.
  • the controller 30 controls the machine guidance function for guiding the manual operation of the excavator 100 through the operating device 26 by the operator. Further, the controller 30 controls, for example, a machine control function that automatically supports the manual operation of the excavator 100 through the operating device 26 by the operator. That is, the controller 30 includes the machine guidance unit 50 as a functional unit related to the machine guidance function and the machine control function. Further, the controller 30 includes a soil weight processing unit 60, which will be described later.
  • controller 30 may be realized by another controller (control device). That is, the function of the controller 30 may be realized in a manner distributed by a plurality of controllers.
  • the machine guidance function and the machine control function may be realized by a dedicated controller (control device).
  • the discharge pressure sensor 28 detects the discharge pressure of the main pump 14.
  • the detection signal corresponding to the discharge pressure detected by the discharge pressure sensor 28 is taken into the controller 30.
  • the discharge pressure sensor 28 includes, for example, discharge pressure sensors 28L and 28R as described later.
  • the operating pressure sensor 29 has a pilot pressure on the secondary side of the operating device 26, that is, an operating state (for example, an operating direction, an operating amount, etc.) relating to each operating element (that is, a hydraulic actuator) in the operating device 26.
  • the pilot pressure corresponding to the operation content) is detected.
  • the pilot pressure detection signal corresponding to the operating state of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the bucket 6 and the like in the operating device 26 by the operating pressure sensor 29 is taken into the controller 30.
  • the operating pressure sensor 29 includes, for example, operating pressure sensors 29A to 29C as described later.
  • the operating pressure sensor 29 it is possible to detect the operating amount (tilting amount) and tilting direction of other sensors capable of detecting the operating state of each operating element in the operating device 26, for example, the lever devices 26A to 26C.
  • An encoder, a potentiometer, or the like may be provided.
  • the proportional valve 31 is provided in the pilot line connecting the pilot pump 15 and the shuttle valve 32, and is configured so that the flow path area (cross-sectional area through which hydraulic oil can flow) can be changed.
  • the proportional valve 31 operates in response to a control command input from the controller 30.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the proportional valve 31 and the proportional valve 31 even when the operating device 26 (specifically, the lever devices 26A to 26C) is not operated by the operator. It can be supplied to the pilot port of the corresponding control valve in the control valve 17 via the shuttle valve 32.
  • the proportional valve 31 includes, for example, proportional valves 31AL, 31AR, 31BL, 31BR, 31CL, 31CR as described later.
  • the display device 40 is provided in a place in the cabin 10 that is easily visible to the seated operator, and displays various information images under the control of the controller 30.
  • the display device 40 may be connected to the controller 30 via an in-vehicle communication network such as CAN (Controller Area Network), or may be connected to the controller 30 via a one-to-one dedicated line.
  • CAN Controller Area Network
  • the input device 42 is provided within reach of the seated operator in the cabin 10, receives various operation inputs by the operator, and outputs a signal corresponding to the operation input to the controller 30.
  • the input device 42 includes a touch panel mounted on a display of a display device that displays various information images, a knob switch provided at the tip of a lever portion of the lever devices 26A to 26C, a button switch installed around the display device 40, and a lever. , Toggle, rotary dial, etc.
  • the signal corresponding to the operation content for the input device 42 is taken into the controller 30.
  • the voice output device 43 is provided in the cabin 10, for example, is connected to the controller 30, and outputs voice under the control of the controller 30.
  • the audio output device 43 is, for example, a speaker, a buzzer, or the like.
  • the voice output device 43 outputs various information by voice in response to a voice output command from the controller 30.
  • the storage device 47 is provided in the cabin 10, for example, and stores various information under the control of the controller 30.
  • the storage device 47 is a non-volatile storage medium such as a semiconductor memory.
  • the storage device 47 may store information output by various devices during the operation of the shovel 100, or may store information acquired through the various devices before the operation of the shovel 100 is started.
  • the storage device 47 may store data regarding a target construction surface acquired via, for example, a communication device T1 or the like, or set through an input device 42 or the like.
  • the target construction surface may be set (saved) by the operator of the excavator 100, or may be set by the construction manager or the like.
  • the boom angle sensor S1 is attached to the boom 4, and the elevation angle of the boom 4 with respect to the upper swivel body 3 (hereinafter referred to as “boom angle”), for example, in a side view, the boom 4 is attached to the swivel plane of the upper swivel body 3. Detects the angle formed by the straight line connecting the fulcrums at both ends.
  • the boom angle sensor S1 may include, for example, a rotary encoder, an acceleration sensor, a 6-axis sensor, an IMU (Inertial Measurement Unit), and the like.
  • the boom angle sensor S1 may include a potentiometer using a variable resistor, a cylinder sensor for detecting the stroke amount of the hydraulic cylinder (boom cylinder 7) corresponding to the boom angle, and the like.
  • boost cylinder 7 a cylinder sensor for detecting the stroke amount of the hydraulic cylinder
  • the detection signal corresponding to the boom angle by the boom angle sensor S1 is taken into the controller 30.
  • the arm angle sensor S2 is attached to the arm 5, and the rotation angle of the arm 5 with respect to the boom 4 (hereinafter referred to as “arm angle”), for example, the arm 5 with respect to a straight line connecting fulcrums at both ends of the boom 4 in a side view. Detects the angle formed by the straight line connecting the fulcrums at both ends of. The detection signal corresponding to the arm angle by the arm angle sensor S2 is taken into the controller 30.
  • the bucket angle sensor S3 is attached to the bucket 6, and the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter referred to as “bucket angle”), for example, the bucket 6 with respect to a straight line connecting the fulcrums at both ends of the arm 5 in a side view. Detects the angle formed by the straight line connecting the fulcrum and the tip (blade edge). The detection signal corresponding to the bucket angle by the bucket angle sensor S3 is taken into the controller 30.
  • the aircraft tilt sensor S4 detects the tilted state of the aircraft (upper swivel body 3 or lower traveling body 1) with respect to a horizontal plane.
  • the machine body tilt sensor S4 is attached to, for example, the upper swivel body 3, and is tilted around two axes in the front-rear direction and the left-right direction of the shovel 100 (that is, the upper swivel body 3) (hereinafter, “front-back tilt angle” and “left-right”. Tilt angle ”) is detected.
  • the airframe tilt sensor S4 may include, for example, a rotary encoder, an acceleration sensor, a 6-axis sensor, an IMU, and the like.
  • the detection signal corresponding to the tilt angle (front-back tilt angle and left-right tilt angle) by the machine body tilt sensor S4 is taken into the controller 30.
  • the turning state sensor S5 outputs detection information regarding the turning state of the upper turning body 3.
  • the turning state sensor S5 detects, for example, the turning angular velocity and the turning angle of the upper turning body 3.
  • the turning state sensor S5 may include, for example, a gyro sensor, a resolver, a rotary encoder, and the like.
  • the detection signal corresponding to the turning angle and the turning angular velocity of the upper turning body 3 by the turning state sensor S5 is taken into the controller 30.
  • the image pickup device S6 as a space recognition device takes an image of the periphery of the excavator 100.
  • the image pickup apparatus S6 includes a camera S6F that images the front of the excavator 100, a camera S6L that images the left side of the excavator 100, a camera S6R that images the right side of the excavator 100, and a camera S6B that images the rear of the excavator 100. ..
  • the image pickup apparatus S6 may include an attachment camera attached to the attachment.
  • the camera S6F is mounted, for example, on the ceiling of the cabin 10, that is, inside the cabin 10. Further, the camera S6F may be attached to the outside of the cabin 10, such as the roof of the cabin 10 and the side surface of the boom 4.
  • the camera S6L is attached to the left end of the upper surface of the upper swivel body 3
  • the camera S6R is attached to the right end of the upper surface of the upper swivel body 3
  • the camera S6B is attached to the rear end of the upper surface of the upper swivel body 3.
  • the image pickup apparatus S6 (cameras S6F, S6B, S6L, S6R) is, for example, a monocular wide-angle camera having a very wide angle of view. Further, the image pickup device S6 may be a stereo camera, a distance image camera, or the like. The image captured by the image pickup device S6 is captured by the controller 30 via the display device 40.
  • the image pickup device S6 as a space recognition device may function as an object detection device.
  • the image pickup apparatus S6 may detect an object existing around the shovel 100.
  • the object to be detected may include, for example, a person, an animal, a vehicle, a construction machine, a building, a hole, or the like. Further, the image pickup apparatus S6 may calculate the distance from the image pickup apparatus S6 or the excavator 100 to the recognized object.
  • the image pickup device S6 as an object detection device may include, for example, a stereo camera, a distance image sensor, or the like.
  • the space recognition device is, for example, a monocular camera having an image pickup element such as a CCD or CMOS, and outputs the captured image to the display device 40.
  • the space recognition device may be configured to calculate the distance from the space recognition device or the shovel 100 to the recognized object.
  • another object detection device such as an ultrasonic sensor, a millimeter wave radar, a lidar, or an infrared sensor may be provided as a space recognition device.
  • a millimeter-wave radar, ultrasonic sensor, laser radar, etc. is used as a space recognition device, a large number of signals (laser light, etc.) are transmitted to the object, and the reflected signal is received, so that the object is reflected from the reflected signal. Distances and directions may be detected.
  • the image pickup device S6 may be omitted.
  • the controller 30 When a person is detected by the space recognition device within a predetermined distance from the shovel 100 before the actuator operates, the controller 30 excessively operates the shovel 100 even if the operator operates the operating device 26.
  • the actuator may be in an inoperable state or a slow speed state so as not to move.
  • the controller 30 can put the actuator in an inoperable state by locking the gate lock valve.
  • the controller 30 can disable the actuator by disabling the signal transmitted from the controller 30 to the operation control valve (proportional valve 31).
  • the controller 30 can put the actuator in the slow speed state by reducing the output of the signal (for example, the current signal) transmitted from the controller 30 to the operation control valve. In this way, when an object is detected within a predetermined distance, the actuator is not driven even if the operating device 26 is operated, or from the signal output when the object is not detected within a predetermined distance. The actuator is driven at a very low speed with a small output.
  • the controller 30 stops the actuator or stops the actuator regardless of the operation content of the operator. , May be slowed down. Specifically, when a person is detected within a predetermined distance from the excavator 100, the controller 30 stops the actuator by locking the gate lock valve. When an operation control valve that outputs a pilot pressure corresponding to a control command from the controller 30 and causes the pilot pressure to act on the pilot port of the corresponding control valve in the control valve 17, the controller 30 is the controller 30. By disabling the signal transmitted from the control valve for operation or by outputting a deceleration command, the actuator can be put into an inoperable state or a deceleration state. Further, when the detected object is a truck, the stop control may be omitted. In this case, the actuator may be controlled to avoid the detected track. Thus, the actuator may be controlled based on the type of object detected.
  • the image pickup apparatus S6 may be directly connected to the controller 30 so as to be communicable. Further, the space recognition device may be arranged outside the shovel 100. In this case, the controller 30 may acquire the information output by the space recognition device via the communication device T1. Specifically, the space recognition device may be attached to a multicopter for aerial photography, a steel tower installed at a work site, a dump truck DT, or the like. Then, the controller 30 may determine the state of spilling earth and sand based on an image viewed from an arbitrary position around the excavator 100.
  • a boom rod pressure sensor S7R and a boom bottom pressure sensor S7B are attached to the boom cylinder 7.
  • An arm rod pressure sensor S8R and an arm bottom pressure sensor S8B are attached to the arm cylinder 8.
  • a bucket rod pressure sensor S9R and a bucket bottom pressure sensor S9B are attached to the bucket cylinder 9.
  • the boom rod pressure sensor S7R, boom bottom pressure sensor S7B, arm rod pressure sensor S8R, arm bottom pressure sensor S8B, bucket rod pressure sensor S9R and bucket bottom pressure sensor S9B are collectively also referred to as "cylinder pressure sensor”.
  • the boom rod pressure sensor S7R detects the pressure in the rod side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”), and the boom bottom pressure sensor S7B detects the pressure in the bottom side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”). , “Boom bottom pressure”) is detected.
  • the arm rod pressure sensor S8R detects the pressure in the rod side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”), and the arm bottom pressure sensor S8B detects the pressure in the bottom side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”). , "Arm bottom pressure”) is detected.
  • the bucket rod pressure sensor S9R detects the pressure in the rod side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”), and the bucket bottom pressure sensor S9B detects the pressure in the bottom side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”). , “Bucket bottom pressure”) is detected.
  • the positioning device PS measures the position and orientation of the upper swivel body 3.
  • the positioning device PS is, for example, a GNSS (Global Navigation Satellite System) compass, detects the position and orientation of the upper swivel body 3, and captures the detection signal corresponding to the position and orientation of the upper swivel body 3 into the controller 30. .. Further, among the functions of the positioning device PS, the function of detecting the direction of the upper swivel body 3 may be replaced by the directional sensor attached to the upper swivel body 3.
  • GNSS Global Navigation Satellite System
  • the communication device T1 communicates with an external device through a predetermined network including a mobile communication network having a base station as an end, a satellite communication network, an Internet network, and the like.
  • the communication device T1 is, for example, a mobile communication module compatible with mobile communication standards such as LTE (LongTermEvolution), 4G (4thGeneration), and 5G (5thGeneration), and satellite communication for connecting to a satellite communication network. Modules, etc.
  • the machine guidance unit 50 controls the excavator 100 regarding the machine guidance function, for example.
  • the machine guidance unit 50 conveys work information such as the distance between the target construction surface and the tip of the attachment, specifically, the work part of the end attachment, to the operator through the display device 40, the voice output device 43, or the like. ..
  • the data regarding the target construction surface is stored in advance in the storage device 47, for example, as described above.
  • the data regarding the target construction surface is represented by, for example, a reference coordinate system.
  • the reference coordinate system is, for example, a world geodetic system.
  • the world geodetic system has a three-dimensional orthogonality with the origin at the center of the earth, the X-axis in the direction of the intersection of the Greenwich meridian and the equator, the Y-axis in the direction of 90 degrees east longitude, and the Z-axis in the direction of the North Pole. It is an XYZ coordinate system.
  • the operator may set an arbitrary point on the construction site as a reference point, and set a target construction surface based on the relative positional relationship with the reference point through the input device 42.
  • the working part of the bucket 6 is, for example, the toe of the bucket 6, the back surface of the bucket 6, and the like.
  • the tip portion of the breaker corresponds to the working part.
  • the machine guidance unit 50 notifies the operator of work information through the display device 40, the voice output device 43, and the like, and guides the operator to operate the shovel 100 through the operation device 26.
  • the machine guidance unit 50 executes control of the excavator 100 regarding the machine control function, for example.
  • the machine guidance unit 50 is, for example, at least one of the boom 4, the arm 5, and the bucket 6 so that the target construction surface and the tip position of the bucket 6 coincide with each other when the operator manually performs the excavation operation. One may be operated automatically.
  • the machine guidance unit 50 receives information from the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the machine tilt sensor S4, the turning state sensor S5, the image pickup device S6, the positioning device PS, the communication device T1, the input device 42, and the like. get. Then, for example, the machine guidance unit 50 calculates the distance between the bucket 6 and the target construction surface based on the acquired information, and the bucket is based on the sound from the sound output device 43 and the image displayed on the display device 40. Notify the operator of the degree of distance between 6 and the target construction surface, and so that the tip of the attachment (specifically, the work part such as the tip or back of the bucket 6) matches the target construction surface. Automatically control the operation of attachments.
  • the machine guidance unit 50 has a position calculation unit 51, a distance calculation unit 52, an information transmission unit 53, an automatic control unit 54, and a turning angle calculation unit 55 as detailed functional configurations related to the machine guidance function and the machine control function. And the relative angle calculation unit 56.
  • the position calculation unit 51 calculates the position of a predetermined positioning target. For example, the position calculation unit 51 calculates the coordinate points in the reference coordinate system of the tip portion of the attachment, specifically, the work portion such as the toe or the back surface of the bucket 6. Specifically, the position calculation unit 51 calculates the coordinate points of the working portion of the bucket 6 from the elevation angles (boom angle, arm angle, and bucket angle) of the boom 4, the arm 5, and the bucket 6.
  • the elevation angles boost angle, arm angle, and bucket angle
  • the distance calculation unit 52 calculates the distance between two positioning targets. For example, the distance calculation unit 52 calculates the distance between the tip of the attachment, specifically, the work site such as the toe or the back surface of the bucket 6 and the target construction surface. Further, the distance calculation unit 52 may calculate an angle (relative angle) between the back surface of the bucket 6 as a work site and the target construction surface.
  • the information transmission unit 53 transmits (notifies) various information to the operator of the excavator 100 through a predetermined notification means such as the display device 40 and the voice output device 43.
  • the information transmission unit 53 notifies the operator of the excavator 100 of the magnitude (degree) of various distances and the like calculated by the distance calculation unit 52. For example, using at least one of the visual information by the display device 40 and the auditory information by the audio output device 43, the distance (magnitude) between the tip end portion of the bucket 6 and the target construction surface is transmitted to the operator.
  • the information transmission unit 53 uses at least one of the visual information by the display device 40 and the auditory information by the audio output device 43, and the relative angle (large) between the back surface of the bucket 6 as a work site and the target construction surface. You may tell the operator.
  • the information transmission unit 53 informs the operator of the magnitude of the distance (for example, the vertical distance) between the work part of the bucket 6 and the target construction surface by using the intermittent sound from the voice output device 43.
  • the information transmission unit 53 may shorten the interval between intermittent sounds as the vertical distance becomes smaller, and lengthen the sensation of intermittent sounds as the vertical distance increases.
  • the information transmission unit 53 may use continuous sound, and may express the difference in the magnitude of the vertical distance while changing the pitch, strength, and the like of the sound.
  • the information transmission unit 53 may issue an alarm through the voice output device 43 when the tip end portion of the bucket 6 is at a position lower than the target construction surface, that is, when the target construction surface is exceeded.
  • the alarm is, for example, a continuous sound that is significantly louder than an intermittent sound.
  • the information transmission unit 53 is the tip of the attachment, specifically, the size of the distance between the work part of the bucket 6 and the target construction surface, and the relative angle between the back surface of the bucket 6 and the target construction surface.
  • the size and the like may be displayed on the display device 40 as work information.
  • the display device 40 displays, for example, the work information received from the information transmission unit 53 together with the image data received from the image pickup device S6.
  • the information transmission unit 53 may transmit the magnitude of the vertical distance to the operator by using, for example, an image of an analog meter, an image of a bar graph indicator, or the like.
  • the automatic control unit 54 automatically supports the manual operation of the excavator 100 through the operating device 26 by the operator by automatically operating the actuator.
  • the automatic control unit 54 is a control valve (specifically, specifically, a control valve corresponding to a plurality of hydraulic actuators (specifically, a swing hydraulic motor 2A, a boom cylinder 7, and a bucket cylinder 9), as described later.
  • the pilot pressure acting on the control valve 173, the control valves 175L, 175R, and the control valve 174) can be adjusted individually and automatically.
  • the automatic control unit 54 can automatically operate each of the hydraulic actuators.
  • the control related to the machine control function by the automatic control unit 54 may be executed, for example, when a predetermined switch included in the input device 42 is pressed.
  • the predetermined switch is, for example, a machine control switch (hereinafter, “MC (Machine Control) switch”), and is a grip portion by an operator of an operating device 26 (for example, a lever device corresponding to the operation of the arm 5) as a knob switch. It may be arranged at the tip of.
  • MC Machine Control
  • the automatic control unit 54 automatically switches at least one of the boom cylinder 7 and the bucket cylinder 9 in accordance with the operation of the arm cylinder 8 in order to support the excavation work and the shaping work. Stretch to expand and contract.
  • the automatic control unit 54 has a target construction surface and a work part such as a toe or a back surface of the bucket 6.
  • At least one of the boom cylinder 7 and the bucket cylinder 9 is automatically expanded and contracted so as to match the position of. In this case, the operator can close the arm 5 while aligning the toes of the bucket 6 with the target construction surface by simply operating the lever device corresponding to the operation of the arm 5, for example.
  • the automatic control unit 54 may automatically rotate the swing hydraulic motor 2A (an example of an actuator) in order to make the upper swing body 3 face the target construction surface when the MC switch or the like is pressed. ..
  • the control by the controller 30 (automatic control unit 54) to make the upper swing body 3 face the target construction surface is referred to as "face-to-face control".
  • the operator or the like can target the upper swivel body 3 by simply pressing a predetermined switch or by operating the lever device 26C described later corresponding to the swivel operation while the switch is pressed. It can be made to face the surface. Further, the operator can make the upper swivel body 3 face the target construction surface and start the machine control function related to the excavation work of the target construction surface described above by simply pressing the MC switch.
  • the tip of the attachment (for example, the toe or the back surface of the bucket 6 as a work part) is set to the target construction surface (for example, according to the operation of the attachment). It is in a state where it can be moved along the inclination direction of the ascending slope BS).
  • the operating surface of the attachment (attachment operating surface) vertical to the swivel plane of the excavator 100 corresponds to the target construction surface. It is a state including the normal of the surface (in other words, a state along the normal).
  • the automatic control unit 54 can automatically rotate the swivel hydraulic motor 2A to face the upper swivel body 3. As a result, the excavator 100 can appropriately construct the target construction surface.
  • the automatic control unit 54 determines, for example, the leftmost vertical distance between the leftmost coordinate point of the toe of the bucket 6 and the target construction surface (hereinafter, simply “leftmost vertical distance") and the tongue of the bucket 6.
  • the rightmost vertical distance between the rightmost coordinate point and the target construction surface (hereinafter, simply “rightmost vertical distance") becomes equal, it is judged that the excavator faces the target construction surface.
  • the automatic control unit 54 is not when the leftmost vertical distance and the rightmost vertical distance are equal (that is, when the difference between the leftmost vertical distance and the rightmost vertical distance becomes zero), but the difference is not more than a predetermined value. When becomes, it may be determined that the excavator 100 faces the target construction surface.
  • the automatic control unit 54 may operate the swing hydraulic motor 2A based on, for example, the difference between the leftmost vertical distance and the rightmost vertical distance. Specifically, when the lever device 26C corresponding to the turning operation is operated while a predetermined switch such as the MC switch is pressed, the lever device 26C moves in the direction in which the upper turning body 3 faces the target construction surface. Determine if it has been manipulated. For example, when the lever device 26C is operated in the direction in which the vertical distance between the toe of the bucket 6 and the target construction surface (uphill slope BS) increases, the automatic control unit 54 does not execute the face-to-face control.
  • the automatic control unit 54 executes face-to-face control.
  • the automatic control unit 54 can operate the swing hydraulic motor 2A so that the difference between the leftmost vertical distance and the rightmost vertical distance becomes small.
  • the automatic control unit 54 stops the swing hydraulic motor 2A.
  • the automatic control unit 54 sets a turning angle at which the difference is equal to or less than a predetermined value or becomes zero as a target angle, and is based on the target angle and the current turning angle (specifically, the detection signal of the turning state sensor S5).
  • the operation of the swing hydraulic motor 2A may be controlled so that the angle difference from the detected value) becomes zero.
  • the turning angle is, for example, the angle of the front-rear axis of the upper turning body 3 with respect to the reference direction.
  • the automatic control unit 54 performs face-to-face control with the swivel motor (an example of an actuator) as a control target. ..
  • the turning angle calculation unit 55 calculates the turning angle of the upper turning body 3. This allows the controller 30 to identify the current orientation of the upper swing body 3.
  • the turning angle calculation unit 55 calculates, for example, the angle of the front-rear axis of the upper turning body 3 with respect to the reference direction as the turning angle based on the output signal of the GNSS compass included in the positioning device PS. Further, the turning angle calculation unit 55 may calculate the turning angle based on the detection signal of the turning state sensor S5. Further, when the reference point is set at the construction site, the turning angle calculation unit 55 may use the direction in which the reference point is viewed from the turning axis as the reference direction.
  • the turning angle indicates the direction in which the attachment operating surface extends with respect to the reference direction.
  • the attachment operating surface is, for example, a virtual plane that vertically traverses the attachment, and is arranged so as to be perpendicular to the turning plane.
  • the swivel plane is, for example, a virtual plane including the bottom surface of the swivel frame perpendicular to the swivel axis.
  • the controller 30 (machine guidance unit 50) determines, for example, that the upper swivel body 3 faces the target construction surface when it is determined that the attachment operating surface includes the normal of the target construction surface.
  • the relative angle calculation unit 56 calculates the turning angle (relative angle) required to make the upper turning body 3 face the target construction surface.
  • the relative angle is formed, for example, between the direction of the front-rear axis of the upper swivel body 3 when the upper swivel body 3 faces the target construction surface and the current direction of the front-rear axis of the upper swivel body 3. Relative angle.
  • the relative angle calculation unit 56 calculates the relative angle based on, for example, the data regarding the target construction surface stored in the storage device 47 and the turning angle calculated by the turning angle calculation unit 55.
  • the automatic control unit 54 When the lever device 26C corresponding to the turning operation is operated while a predetermined switch such as the MC switch is pressed, the automatic control unit 54 is turned in the direction in which the upper turning body 3 faces the target construction surface. Judge whether or not. When the automatic control unit 54 determines that the upper swivel body 3 has been swiveled in the direction facing the target construction surface, the automatic control unit 54 sets the relative angle calculated by the relative angle calculation unit 56 as the target angle. Then, when the change in the turning angle after the lever device 26C is operated reaches the target angle, the automatic control unit 54 determines that the upper turning body 3 faces the target construction surface, and determines that the turning hydraulic motor 2A You may stop the movement.
  • the automatic control unit 54 can make the upper swivel body 3 face the target construction surface on the premise of the configuration shown in FIG.
  • face-to-face control an example of face-to-face control with respect to the target construction surface is shown, but the present invention is not limited to this.
  • a target track target excavation track
  • Pair control may be performed.
  • the target excavation track is changed each time the scooping operation is performed. Therefore, after excavation to the dump truck, it is directly controlled against the newly changed target excavation track.
  • the swivel hydraulic motor 2A has a first port 2A1 and a second port 2A2.
  • the hydraulic sensor 21 detects the pressure of the hydraulic oil in the first port 2A1 of the swivel hydraulic motor 2A.
  • the hydraulic sensor 22 detects the pressure of the hydraulic oil in the second port 2A2 of the swivel hydraulic motor 2A.
  • the detection signal corresponding to the discharge pressure detected by the hydraulic sensors 21 and 22 is taken into the controller 30.
  • first port 2A1 is connected to the hydraulic oil tank via the relief valve 23.
  • the relief valve 23 opens when the pressure on the first port 2A1 side reaches a predetermined relief pressure, and discharges the hydraulic oil on the first port 2A1 side to the hydraulic oil tank.
  • the second port 2A2 is connected to the hydraulic oil tank via the relief valve 24.
  • the relief valve 24 opens when the pressure on the second port 2A2 side reaches a predetermined relief pressure, and discharges the hydraulic oil on the second port 2A2 side to the hydraulic oil tank.
  • FIG. 3 is a diagram schematically showing an example of the configuration of the hydraulic system of the excavator 100 according to the present embodiment.
  • the flood control system realized by the hydraulic circuit circulates hydraulic oil from the main pumps 14L and 14R driven by the engine 11 to the hydraulic oil tank via the center bypass oil passages C1L and C1R and the parallel oil passages C2L and C2R, respectively. Let me.
  • the center bypass oil passage C1L starts from the main pump 14L, passes through the control valves 171, 173, 175L, and 176L arranged in the control valve 17 in order, and reaches the hydraulic oil tank.
  • the center bypass oil passage C1R starts from the main pump 14R, passes through the control valves 172, 174, 175R, and 176R arranged in the control valve 17 in order, and reaches the hydraulic oil tank.
  • the control valve 171 is a spool valve that supplies the hydraulic oil discharged from the main pump 14L to the traveling hydraulic motor 1L and discharges the hydraulic oil discharged from the traveling hydraulic motor 1L to the hydraulic oil tank.
  • the control valve 172 is a spool valve that supplies the hydraulic oil discharged from the main pump 14R to the traveling hydraulic motor 1R and discharges the hydraulic oil discharged from the traveling hydraulic motor 1R to the hydraulic oil tank.
  • the control valve 173 is a spool valve that supplies the hydraulic oil discharged from the main pump 14L to the swivel hydraulic motor 2A and discharges the hydraulic oil discharged by the swivel hydraulic motor 2A to the hydraulic oil tank.
  • the control valve 174 is a spool valve that supplies the hydraulic oil discharged from the main pump 14R to the bucket cylinder 9 and discharges the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank.
  • the control valves 175L and 175R are spool valves that supply the hydraulic oil discharged by the main pumps 14L and 14R to the boom cylinder 7 and discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank, respectively.
  • the control valves 176L and 176R supply the hydraulic oil discharged by the main pumps 14L and 14R to the arm cylinder 8 and discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank.
  • the control valves 171, 172, 173, 174, 175L, 175R, 176L, and 176R adjust the flow rate of the hydraulic oil supplied to and discharged from the hydraulic actuator according to the pilot pressure acting on the pilot port, and the flow direction, respectively. To switch.
  • the parallel oil passage C2L supplies the hydraulic oil of the main pump 14L to the control valves 171, 173, 175L, 176L in parallel with the center bypass oil passage C1L.
  • the parallel oil passage C2L branches from the center bypass oil passage C1L on the upstream side of the control valve 171 and supplies the hydraulic oil of the main pump 14L in parallel with the control valves 171, 173, 175L, and 176R, respectively. Possible to be configured.
  • the parallel oil passage C2L supplies the hydraulic oil to the control valve further downstream when the flow of the hydraulic oil through the center bypass oil passage C1L is restricted or blocked by any of the control valves 171, 173, and 175L. can.
  • the parallel oil passage C2R supplies the hydraulic oil of the main pump 14R to the control valves 172, 174, 175R and 176R in parallel with the center bypass oil passage C1R.
  • the parallel oil passage C2R branches from the center bypass oil passage C1R on the upstream side of the control valve 172, and supplies hydraulic oil for the main pump 14R in parallel with the control valves 172, 174, 175R, and 176R, respectively. Possible to be configured.
  • the parallel oil passage C2R can supply the hydraulic oil to the control valve further downstream when the flow of the hydraulic oil through the center bypass oil passage C1R is restricted or blocked by any of the control valves 172, 174, 175R.
  • the regulators 13L and 13R adjust the discharge amount of the main pumps 14L and 14R by adjusting the tilt angle of the swash plate of the main pumps 14L and 14R, respectively, under the control of the controller 30.
  • the discharge pressure sensor 28L detects the discharge pressure of the main pump 14L, and the detection signal corresponding to the detected discharge pressure is taken into the controller 30. The same applies to the discharge pressure sensor 28R. As a result, the controller 30 can control the regulators 13L and 13R according to the discharge pressures of the main pumps 14L and 14R.
  • throttles 18L and 18R are provided between each of the most downstream control valves 176L and 176R and the hydraulic oil tank.
  • the flow of hydraulic oil discharged by the main pumps 14L and 14R is limited by the throttles 18L and 18R.
  • the diaphragms 18L and 18R generate a control pressure for controlling the regulators 13L and 13R.
  • the control pressure sensors 19L and 19R detect the control pressure, and the detection signal corresponding to the detected control pressure is taken into the controller 30.
  • the controller 30 may control the regulators 13L and 13R according to the discharge pressures of the main pumps 14L and 14R detected by the discharge pressure sensors 28L and 28R, and adjust the discharge amount of the main pumps 14L and 14R. For example, the controller 30 may reduce the discharge amount by controlling the regulator 13L in response to the increase in the discharge pressure of the main pump 14L and adjusting the swash plate tilt angle of the main pump 14L. The same applies to the regulator 13R. As a result, the controller 30 controls the total horsepower of the main pumps 14L and 14R so that the absorbed horsepower of the main pumps 14L and 14R, which is represented by the product of the discharge pressure and the discharge amount, does not exceed the output horsepower of the engine 11. be able to.
  • the controller 30 may adjust the discharge amount of the main pumps 14L and 14R by controlling the regulators 13L and 13R according to the control pressure detected by the control pressure sensors 19L and 19R. For example, the controller 30 reduces the discharge amount of the main pumps 14L and 14R as the control pressure is larger, and increases the discharge amount of the main pumps 14L and 14R as the control pressure is smaller.
  • the hydraulic oil discharged from the main pumps 14L and 14R passes through the center bypass oil passages C1L and C1R. It passes through to reach the apertures 18L and 18R.
  • the flow of hydraulic oil discharged from the main pumps 14L and 14R increases the control pressure generated upstream of the throttles 18L and 18R.
  • the controller 30 reduces the discharge amount of the main pumps 14L and 14R to the allowable minimum discharge amount, and suppresses the pressure loss (pumping loss) when the discharged hydraulic oil passes through the center bypass oil passages C1L and C1R. ..
  • the hydraulic oil discharged from the main pumps 14L and 14R is sent to the operation target hydraulic actuator via the control valve corresponding to the operation target hydraulic actuator. It flows in. Then, the flow of the hydraulic oil discharged from the main pumps 14L and 14R reduces or eliminates the amount reaching the throttles 18L and 18R, and lowers the control pressure generated upstream of the throttles 18L and 18R. As a result, the controller 30 can increase the discharge amount of the main pumps 14L and 14R, circulate sufficient hydraulic oil to the hydraulic actuator to be operated, and reliably drive the hydraulic actuator to be operated.
  • FIG. 4A to 4C are diagrams schematically showing an example of a component related to an operation system in the hydraulic system of the excavator 100 according to the present embodiment.
  • FIG. 4A is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to the control valves 175L and 175R that hydraulically control the boom cylinder 7.
  • FIG. 4B is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to a control valve 174 that hydraulically controls the bucket cylinder 9.
  • FIG. 4C is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to a control valve 173 that hydraulically controls the swing hydraulic motor 2A.
  • the lever device 26A is used by an operator or the like to operate the boom cylinder 7 corresponding to the boom 4.
  • the lever device 26A uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26A corresponding to the operation in the raising direction of the boom 4 (hereinafter referred to as “boom raising operation”) and the secondary of the proportional valve 31AL, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 175L and the pilot port on the left side of the control valve 175R.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26A corresponding to the operation in the lowering direction of the boom 4 (hereinafter referred to as “boom lowering operation”) and the secondary of the proportional valve 31AR, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 175R.
  • the lever device 26A acts on the pilot ports of the control valves 175L and 175R by applying the pilot pressure according to the operation content (for example, the operation direction and the operation amount) via the shuttle valves 32AL and 32AR. Specifically, the lever device 26A outputs the pilot pressure according to the operation amount to one inlet port of the shuttle valve 32AL when the boom is raised, and the right side of the control valve 175L via the shuttle valve 32AL. It acts on the pilot port of the above and the pilot port on the left side of the control valve 175R.
  • the operation content for example, the operation direction and the operation amount
  • the lever device 26A when the boom lowering operation is performed, the lever device 26A outputs the pilot pressure according to the operation amount to one inlet port of the shuttle valve 32AR, and the pilot port on the right side of the control valve 175R via the shuttle valve 32AR. To act on.
  • the proportional valve 31AL operates according to the control current input from the controller 30. Specifically, the proportional valve 31AL utilizes the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the control current input from the controller 30 to the other inlet port of the shuttle valve 32AL. Thereby, the proportional valve 31AL can adjust the pilot pressure acting on the pilot port on the right side of the control valve 175L and the pilot port on the left side of the control valve 175R via the shuttle valve 32AL.
  • the proportional valve 31AR operates according to the control current input from the controller 30. Specifically, the proportional valve 31AR uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the control current input from the controller 30 to the other inlet port of the shuttle valve 32AR. Thereby, the proportional valve 31AR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 175R via the shuttle valve 32AR.
  • the proportional valves 31AL and 31AR can adjust the pilot pressure output to the secondary side so that the control valves 175L and 175R can be stopped at any valve position regardless of the operating state of the lever device 26A.
  • the proportional valve 33AL functions as a control valve for machine control in the same manner as the proportional valve 31AL.
  • the proportional valve 33AL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32AL, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33AL operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32AL. Can be supplied to the pilot port of.
  • the proportional valve 33AR functions as a control valve for machine control.
  • the proportional valve 33AR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32AR, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33AR operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32AR. Can be supplied to the pilot port of.
  • the operating pressure sensor 29A detects the operation content of the lever device 26A by the operator in the form of pressure (operating pressure), and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content for the lever device 26A.
  • the controller 30 controls the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 175L via the proportional valve 31AL and the shuttle valve 32AL, regardless of the boom raising operation for the lever device 26A by the operator. It can be supplied to the pilot port on the left side of the valve 175R. Further, the controller 30 directs the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 175R via the proportional valve 31AR and the shuttle valve 32AR, regardless of the boom lowering operation of the lever device 26A by the operator. Can be supplied to. That is, the controller 30 can automatically control the raising and lowering operation of the boom 4. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation for the specific operating device 26 is being performed.
  • the proportional valve 33AL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right side pilot port of the control valve 175L and the left side pilot port of the control valve 175R via the lever device 26A, the proportional valve 33AL, and the shuttle valve 32AL is reduced.
  • the proportional valve 33AR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 175R via the lever device 26A, the proportional valve 33AR, and the shuttle valve 32AR is reduced.
  • the proportional valves 33AL and 33AR can adjust the pilot pressure so that the control valves 175L and 175R can be stopped at any valve position.
  • the controller 30 can use the pilot port on the raising side of the control valve 175 (the left pilot port and the control valve of the control valve 175L) as necessary even when the boom raising operation is performed by the operator.
  • the pilot pressure acting on the right side pilot port of 175R) can be reduced, and the closing operation of the boom 4 can be forcibly stopped.
  • the lowering operation of the boom 4 is forcibly stopped while the boom lowering operation is being performed by the operator.
  • the controller 30 controls the proportional valve 31AR as necessary even when the boom raising operation is performed by the operator, and is on the opposite side of the pilot port on the raising side of the control valve 175.
  • the proportional valve 33AL may be omitted.
  • the proportional valves 33AL and 33AR may be omitted.
  • the lever device 26B is used by an operator or the like to operate the bucket cylinder 9 corresponding to the bucket 6.
  • the lever device 26B uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26B corresponding to the operation in the closing direction of the bucket 6 (hereinafter referred to as “bucket closing operation”) and the secondary of the proportional valve 31BL, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the left side of the control valve 174.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26B corresponding to the operation in the opening direction of the bucket 6 (hereinafter referred to as “bucket opening operation”) and the secondary of the proportional valve 31BR, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 174.
  • the lever device 26B causes the pilot pressure according to the operation content to act on the pilot port of the control valve 174 via the shuttle valves 32BL and 32BR. Specifically, when the bucket is closed, the lever device 26B outputs a pilot pressure according to the operation amount to one inlet port of the shuttle valve 32BL, and via the shuttle valve 32BL, the left side of the control valve 174. Act on the pilot port of. Further, when the bucket opening operation is performed, the lever device 26B outputs the pilot pressure according to the operation amount to one inlet port of the shuttle valve 32BR, and the pilot port on the right side of the control valve 174 via the shuttle valve 32BR. To act on.
  • the proportional valve 31BL operates according to the control current input from the controller 30. Specifically, the proportional valve 31BL utilizes the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the control current input from the controller 30 to the other pilot port of the shuttle valve 32BL. Thereby, the proportional valve 31BL can adjust the pilot pressure acting on the pilot port on the left side of the control valve 174 via the shuttle valve 32BL.
  • the proportional valve 31BR operates according to the control current output by the controller 30. Specifically, the proportional valve 31BR uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32BR. Thereby, the proportional valve 31BR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 174 via the shuttle valve 32BR.
  • the proportional valves 31BL and 31BR can adjust the pilot pressure output to the secondary side so that the control valve 174 can be stopped at an arbitrary valve position regardless of the operating state of the lever device 26B.
  • the proportional valve 33BL functions as a machine control control valve in the same manner as the proportional valve 31BL.
  • the proportional valve 33BL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32BL, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33BL operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32BL. Can be supplied to the pilot port of.
  • the proportional valve 33BR functions as a control valve for machine control.
  • the proportional valve 33BR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32BR, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33BR operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32BR. Can be supplied to the pilot port of.
  • the operating pressure sensor 29B detects the operation content of the lever device 26B by the operator in the form of pressure (operating pressure), and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content of the lever device 26B.
  • the controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the left side of the control valve 174 via the proportional valve 31BL and the shuttle valve 32BL, regardless of the bucket closing operation for the lever device 26B by the operator. Can be made to. Further, the controller 30 directs the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 174 via the proportional valve 31BR and the shuttle valve 32BR, regardless of the bucket opening operation for the lever device 26B by the operator. Can be supplied to. That is, the controller 30 can automatically control the opening / closing operation of the bucket 6. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation for the specific operating device 26 is being performed.
  • the operation of the proportional valves 33BL and 33BR for forcibly stopping the operation of the bucket 6 when the bucket closing operation or the bucket opening operation is performed by the operator is performed by the operator by performing a boom raising operation or a boom lowering operation. This is the same as the operation of the proportional valves 33AL and 33AR for forcibly stopping the operation of the boom 4 when the boom 4 is broken, and the duplicate description will be omitted. Further, the proportional valves 33BL and 33BR may be omitted as in the case of the proportional valves 33AL and 33AR.
  • the lever device 26C is used by an operator or the like to operate the swivel hydraulic motor 2A corresponding to the upper swivel body 3 (swivel mechanism 2).
  • the lever device 26C uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26C corresponding to the left turning operation of the upper turning body 3 (hereinafter referred to as “left turning operation”) and the proportional valve 31CL, respectively. It is connected to the pilot line on the secondary side of the control valve 173, and the outlet port is connected to the pilot port on the left side of the control valve 173.
  • the shuttle valve 32CR has two inlet ports, each of which is a proportional valve with a pilot line on the secondary side of the lever device 26C corresponding to a rightward turning operation (hereinafter, “right turning operation”) of the upper turning body 3. It is connected to the pilot line on the secondary side of 31CR and the outlet port is connected to the pilot port on the right side of the control valve 173.
  • the lever device 26C applies a pilot pressure according to the operation content in the left-right direction to the pilot port of the control valve 173 via the shuttle valves 32CL and 32CR. Specifically, when the lever device 26C is operated to turn left, the pilot pressure according to the operation amount is output to one inlet port of the shuttle valve 32CL, and the left side of the control valve 173 is output via the shuttle valve 32CL. Act on the pilot port of. Further, when the lever device 26C is turned to the right, the pilot pressure according to the operation amount is output to one inlet port of the shuttle valve 32CR, and the pilot on the right side of the control valve 173 via the shuttle valve 32CR. Act on the port.
  • the proportional valve 31CL operates according to the control current input from the controller 30. Specifically, the proportional valve 31CL utilizes the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the control current input from the controller 30 to the other pilot port of the shuttle valve 32CL. Thereby, the proportional valve 31CL can adjust the pilot pressure acting on the pilot port on the left side of the control valve 173 via the shuttle valve 32CL.
  • the proportional valve 31CR operates according to the control current output by the controller 30. Specifically, the proportional valve 31CR uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32CR. Thereby, the proportional valve 31CR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 173 via the shuttle valve 32CR.
  • the proportional valves 31CL and 31CR can adjust the pilot pressure output to the secondary side so that the control valve 173 can be stopped at an arbitrary valve position regardless of the operating state of the lever device 26C.
  • the proportional valve 33CL functions as a machine control control valve in the same manner as the proportional valve 31CL.
  • the proportional valve 33CL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32CL, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33CL operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32CL. Can be supplied to the pilot port of.
  • the proportional valve 33CR functions as a control valve for machine control.
  • the proportional valve 33CR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32CR, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33CR operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32CR. Can be supplied to the pilot port of.
  • the operating pressure sensor 29C detects the operating state of the lever device 26C by the operator as a pressure, and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content in the left-right direction with respect to the lever device 26C.
  • the controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the left side of the control valve 173 via the proportional valve 31CL and the shuttle valve 32CL regardless of the left turning operation of the lever device 26C by the operator. Can be made to. Further, the controller 30 transfers the hydraulic oil discharged from the pilot pump 15 to the pilot on the right side of the control valve 173 via the proportional valve 31CR and the shuttle valve 32CR regardless of the right turning operation of the lever device 26C by the operator. It can be supplied to the port. That is, the controller 30 can automatically control the turning operation of the upper turning body 3 in the left-right direction. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation for the specific operating device 26 is being performed.
  • the operation of the proportional valves 33CL and 33CR for forcibly stopping the operation of the upper swivel body 3 when the swivel operation is performed by the operator is performed by the operator as a boom raising operation or a boom lowering operation.
  • the operation is the same as the operation of the proportional valves 33AL and 33AR for forcibly stopping the operation of the boom 4, and duplicate description will be omitted.
  • the proportional valves 33CL and 33CR may be omitted as in the case of the proportional valves 33AL and 33AR.
  • the excavator 100 may further have a configuration for automatically opening and closing the arm 5 and a configuration for automatically moving the lower traveling body 1 forward and backward.
  • the components related to the operation system of the arm cylinder 8 are the components related to the operation system of the traveling hydraulic motor 1L, and the components related to the operation of the traveling hydraulic motor 1R are the components related to the operation system of the boom cylinder 7. It may be configured in the same manner as the parts and the like (FIGS. 4A to 4C).
  • FIG. 5 is a diagram schematically showing an example of a component related to a sediment weight detecting function in the shovel 100 according to the present embodiment.
  • the controller 30 includes a sediment weight processing unit 60 as a functional unit related to a function of detecting the weight (soil weight) of the earth and sand excavated in the bucket 6.
  • the earth and sand weight processing unit 60 includes a weight calculation unit 61, a maximum load capacity detection unit 62, a load capacity calculation unit 63, a remaining load capacity calculation unit 64, and a center of gravity calculation unit 65.
  • the excavator 100 controls the attachment at the excavation position and excavates the earth and sand by the bucket 6 (excavation operation).
  • the excavator 100 swivels the upper swivel body 3 and moves the bucket 6 from the excavation position to the soil discharge position (swivel operation).
  • a dump truck carrier is placed below the soil removal position.
  • the excavator 100 loads the earth and sand in the bucket 6 onto the loading platform of the dump truck by controlling the attachment and discharging the earth and sand in the bucket 6 at the earth removal position (soil discharge operation).
  • the excavator 100 swivels the upper swivel body 3 and moves the bucket 6 from the soil discharge position to the excavation position (swivel operation). By repeating these operations, the excavator 100 loads the excavated earth and sand onto the loading platform of the dump truck.
  • the weight calculation unit 61 calculates the weight of the earth and sand (load) in the bucket 6.
  • the weight calculation unit 61 calculates the earth and sand weight based on the thrust of the boom cylinder 7. For example, the weight calculation unit 61 determines the thrust of the boom cylinder 7, the distance from the pin connecting the upper swing body 3 and the boom 4, to the center of gravity of the earth and sand, and the moment around the pin connecting the upper swing body 3 and the boom 4. Calculate the sediment weight based on the formula of.
  • the maximum load capacity detection unit 62 detects the maximum load capacity of the dump truck to be loaded with earth and sand. For example, the maximum load capacity detection unit 62 identifies a dump truck to be loaded with earth and sand based on the image captured by the image pickup device S6. "Based on the image captured by the image pickup device S6" means, for example, using the information obtained by performing one or more image processing on the image captured by the image pickup device S6. Next, the maximum load capacity detection unit 62 detects the maximum load capacity of the dump truck based on the image of the specified dump truck. For example, the maximum load capacity detecting unit 62 determines the vehicle type (size, etc.) of the dump truck based on the image of the specified dump truck.
  • the maximum load capacity detecting unit 62 has a table in which the vehicle type and the maximum load capacity are associated with each other, and obtains the maximum load capacity of the dump truck based on the vehicle type and the table determined from the image.
  • the input device 42 inputs the maximum load capacity of the dump truck, the vehicle type, and the like, and the maximum load capacity detection unit 62 may obtain the maximum load capacity of the dump truck based on the input information of the input device 42.
  • the load capacity calculation unit 63 calculates the weight of the earth and sand loaded on the dump truck. That is, each time the earth and sand in the bucket 6 is discharged to the loading platform of the dump truck, the load capacity calculation unit 63 adds the weight of the earth and sand in the bucket 6 calculated by the weight calculation unit 61 to the dump truck. The load capacity (total weight), which is the total weight of the earth and sand loaded on the loading platform, is calculated. If the dump truck to be loaded with earth and sand becomes a new dump truck, the load capacity will be reset.
  • the remaining load capacity calculation unit 64 calculates the difference between the maximum load capacity of the dump truck detected by the maximum load capacity detection unit 62 and the current load capacity calculated by the load capacity calculation unit 63 as the remaining load capacity.
  • the remaining load capacity is the remaining weight of earth and sand that can be loaded on the dump truck.
  • the center of gravity calculation unit 65 calculates the center of gravity of the earth and sand (load) in the bucket 6. The method of calculating the center of gravity of earth and sand will be described later.
  • the display device 40 includes the weight of earth and sand in the bucket 6 calculated by the weight calculation unit 61, the maximum load capacity of the dump truck detected by the maximum load capacity detection unit 62, and the dump truck calculated by the load capacity calculation unit 63. (Total weight of earth and sand loaded on the loading platform) and remaining load amount of the dump truck calculated by the remaining load amount calculation unit 64 (remaining weight of earth and sand that can be loaded) may be displayed.
  • the display device 40 may be configured to warn when the load capacity exceeds the maximum load capacity. Further, when the calculated weight of the earth and sand in the bucket 6 exceeds the remaining load capacity, the display device 40 may be configured to give a warning.
  • the warning is not limited to the case where it is displayed on the display device 40, and may be a voice output by the voice output device 43. As a result, it is possible to prevent the earth and sand from being loaded in excess of the maximum load capacity of the dump truck.
  • the information displayed on the main screen 41V of FIG. 6 is, for example, the weight of earth and sand in the bucket 6 (current weight), the load capacity of the dump truck (cumulative weight), the remaining load capacity of the dump truck (remaining weight), and the maximum. Includes information on load capacity (maximum load weight), etc.
  • the main screen 41V has a date / time display area 41a, a travel mode display area 41b, an attachment display area 41c, a fuel consumption display area 41d, an engine control status display area 41e, an engine operating time display area 41f, a cooling water temperature display area 41g, and a fuel remaining amount display.
  • the traveling mode display area 41b, the attachment display area 41c, the engine control state display area 41e, and the rotation speed mode display area 41i are areas for displaying the setting state information which is the information regarding the setting state of the excavator 100.
  • 41q is an area for displaying operating state information, which is information related to the operating state of the excavator 100.
  • the date and time display area 41a is an area for displaying the current date and time.
  • the travel mode display area 41b is an area for displaying the current travel mode.
  • the attachment display area 41c is an area for displaying an image representing the currently mounted end attachment.
  • FIG. 6 shows a state in which an image representing the bucket 6 is displayed.
  • the fuel consumption display area 41d is an area for displaying fuel consumption information calculated by the controller 30.
  • the fuel consumption display area 41d includes an average fuel consumption display area 41d1 for displaying lifetime average fuel consumption or section average fuel consumption, and an instantaneous fuel consumption display area 41d2 for displaying instantaneous fuel consumption.
  • the engine control status display area 41e is an area for displaying the control status of the engine 11.
  • the engine operating time display area 41f is an area for displaying the cumulative operating time of the engine 11.
  • the cooling water temperature display area 41g is an area for displaying the current temperature state of the engine cooling water.
  • the fuel remaining amount display area 41h is an area for displaying the remaining amount state of the fuel stored in the fuel tank.
  • the rotation speed mode display area 41i is an area for displaying the current rotation speed mode set by the engine rotation speed adjustment dial.
  • the urea water remaining amount display area 41j is an area for displaying the remaining amount state of the urea water stored in the urea water tank.
  • the hydraulic oil temperature display area 41k is an area for displaying the temperature state of the hydraulic oil in the hydraulic oil tank.
  • the camera image display area 41m is an area for displaying an image captured by the image pickup device S6 as a space recognition device.
  • the camera image display area 41m displays the image captured by the camera S6B.
  • the image captured by the camera S6B is a rear image that reflects the space behind the excavator 100, and includes a counterweight image 3a.
  • the current weight display area 41p is an area for displaying the weight (current weight) of the earth and sand in the bucket 6.
  • FIG. 6 shows that the current weight is 550 kg.
  • the cumulative weight display area 41q is an area for displaying the load capacity (cumulative weight) of the dump truck.
  • FIG. 6 shows that the cumulative weight is 9500 kg.
  • the cumulative weight is reset every time the dump truck to be loaded is replaced.
  • the controller 30 is configured to automatically recognize the replacement of dump trucks and automatically reset the cumulative weight. Specifically, the controller 30 recognizes the replacement of the dump truck by using the image captured by the image pickup device S6. The controller 30 may recognize the replacement of the dump truck by using the communication device. Alternatively, the controller 30 may reset the cumulative weight when the reset button is pressed.
  • the reset button may be a software button, or may be a hardware button arranged on the input device 42, the left operation lever, the right operation lever, or the like.
  • the excavator 100 can prevent a load such as earth and sand from being loaded on the loading platform of the dump truck in excess of the maximum load weight of the dump truck.
  • a load such as earth and sand
  • the dump truck driver returns to the loading yard and removes a part of the load loaded on the loading platform. It is necessary to carry out the work of lowering.
  • the excavator 100 can prevent the occurrence of such load weight adjustment work.
  • the predetermined period may be, for example, a period from the time when the work of the day starts to the time when the work of the day ends. This is so that the operator or the manager can easily recognize the total weight of the load carried by the work of one day.
  • controller 30 may be configured to integrate the current weight after recognizing that the earth and sand in the bucket 6 has been loaded on the loading platform of the dump truck based on the image captured by the image pickup device S6. .. This is to prevent the earth and sand moved to a place other than the loading platform of the dump truck from being accumulated as the earth and sand loaded on the dump truck.
  • the controller 30 may determine whether or not the earth and sand in the bucket 6 has been loaded on the loading platform of the dump truck based on the posture of the attachment. Specifically, the controller 30 loads the earth and sand into the dump truck bed, for example, when the height of the bucket 6 exceeds a predetermined value (for example, the height of the dump truck bed) and the bucket 6 is opened. It may be determined that the truck has been used.
  • a predetermined value for example, the height of the dump truck bed
  • the remaining weight display area 41s is an area for displaying the remaining weight.
  • the maximum load weight display area 41t is an area for displaying the maximum load weight.
  • FIG. 6 shows that the cumulative weight is 9,500 kg, the remaining weight is 500 kg, and the maximum load weight is 10,000 kg. However, the display device 40 may display the maximum load weight without displaying the remaining weight.
  • a message is displayed in the message display area 41m1. For example, a message is displayed when the cumulative weight exceeds the maximum load weight.
  • the controller 30 can prompt the operator to carry out the loading / unloading work, and can prevent the dump truck from being overloaded.
  • FIG. 7A and 7B are schematic views illustrating parameters related to the calculation of soil weight.
  • FIG. 7A shows the excavator 100
  • FIG. 7B shows the vicinity of the bucket 6.
  • the pin P1 the bucket center of gravity G3, and the earth and sand center of gravity Gs, which will be described later, are arranged on the horizontal line L1.
  • the pin connecting the upper swing body 3 and the boom 4 is referred to as P1.
  • the pin connecting the upper swing body 3 and the boom cylinder 7 is referred to as P2.
  • the pin connecting the boom 4 and the boom cylinder 7 is P3.
  • the pin connecting the boom 4 and the arm cylinder 8 is P4.
  • the pin connecting the arm 5 and the arm cylinder 8 is referred to as P5.
  • the pin connecting the boom 4 and the arm 5 is P6.
  • the pin connecting the arm 5 and the bucket 6 is P7.
  • the center of gravity of the boom 4 is set to G1.
  • the center of gravity of the arm 5 is G2.
  • the center of gravity of the bucket 6 is G3. Let Gs be the center of gravity of the earth and sand (load) loaded on the bucket 6.
  • the reference line L2 passes through the pin P7 and is parallel to the opening surface of the bucket 6. Further, the distance between the pin P1 and the center of gravity G1 of the boom 4 is D1. The distance between the pin P1 and the center of gravity G2 of the arm 5 is D2. The distance between the pin P1 and the center of gravity G3 of the bucket 6 is D3. Let Ds be the distance between the pin P1 and the center of gravity Gs of the earth and sand. Let Dc be the distance between the straight line connecting the pin P2 and the pin P3 and the pin P1. Further, the force due to the cylinder pressure of the boom cylinder 7 is defined as Fb.
  • the vertical component in the direction perpendicular to the straight line connecting the pin P1 and the boom center of gravity G1 is defined as W1a.
  • the vertical component in the direction perpendicular to the straight line connecting the pin P1 and the center of gravity G2 is W2a.
  • the weight of the bucket 6 is W6, and the weight of the earth and sand (load) loaded on the bucket 6 is Ws.
  • the position of the pin P7 is calculated from the boom angle and the arm angle. That is, the position of the pin P7 can be calculated based on the detected values of the boom angle sensor S1 and the arm angle sensor S2.
  • the positional relationship between the pin P7 and the bucket center of gravity G3 (the angle ⁇ 4 between the reference line L2 of the bucket 6 and the straight line connecting the pin P7 and the bucket center of gravity G3.
  • the distance D4. Is the default value.
  • the positional relationship between the pin P7 and the center of gravity Gs (the angle ⁇ 5 between the reference line L2 of the bucket 6 and the straight line connecting the pin P7 and the center of gravity Gs; the distance D5 between the pin P7 and the center of gravity Gs) is, for example.
  • Experimentally obtained in advance and stored in the controller 30 That is, the earth and sand center of gravity Gs and the bucket center of gravity G3 can be estimated based on the bucket angle sensor S3.
  • the center of gravity calculation unit 65 can estimate the sediment center of gravity Gs based on the detected values of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3.
  • the force Fb due to the cylinder pressure of the boom cylinder 7 is calculated from at least one detected value of the boom rod pressure sensor S7R and the boom bottom pressure sensor S7B.
  • the vertical component W1a of the distance Dc and the boom weight is calculated from the detected value of the boom angle sensor S1.
  • the vertical component W2a and the distance D2 of the arm weight are calculated from the respective detection values of the boom angle sensor S1 and the arm angle sensor S2.
  • the distance D1 and the bucket weight W3 (gravity due to the weight of the bucket 6) are known values. Further, by estimating the center of gravity Gs of the earth and sand and the center of gravity G3 of the bucket, the distance Ds and the distance D3 are also estimated.
  • the earth and sand weight Ws is the detection value of the cylinder pressure of the boom cylinder 7 (detection value of the boom rod pressure sensor S7R and the boom bottom pressure sensor S7B), the boom angle (detection value of the boom angle sensor S1), and the arm angle (arm angle). It can be calculated based on the detection value of the sensor S2).
  • the weight calculation unit 61 can calculate the earth and sand weight Ws based on the earth and sand center of gravity Gs estimated by the center of gravity calculation unit 65.
  • Whether or not the excavator 100 is in the specified operation can be determined by estimating the posture of the attachment based on the detected value of the pilot pressure of the bucket cylinder 9.
  • the posture of the bucket 6 during the specified operation is described as assuming that the opening surface of the bucket 6 is horizontal, estimating the center of gravity of the earth and sand, and calculating the weight of the earth and sand, but the present invention is not limited to this. ..
  • the bucket 6 may be imaged by the camera S6F that images the front, and the posture of the bucket 6 may be estimated based on the image. Further, when the bucket 6 is imaged by the camera S6F and it is determined that the opening surface of the bucket 6 is horizontal based on the image, the center of gravity of the earth and sand may be estimated and the weight of the earth and sand may be calculated.
  • FIGS. 8 and 9 show an example of a work site where earth and sand are loaded onto the dump truck DT by the excavator 100.
  • FIG. 8 is a top view of the work site.
  • FIG. 9 is a view when the work site is viewed from the direction indicated by the arrow AR1 in FIG.
  • the excavator 100 (excluding the bucket 6) is not shown for the sake of clarity. Further, in FIG.
  • the excavator 100 drawn with a solid line represents the state of the excavator 100 when the excavation operation is completed, and the excavator 100 drawn with a broken line represents the state of the excavator 100 during the combined operation.
  • the drawn excavator 100 represents the state of the excavator 100 before the soil removal operation is started.
  • the bucket 6A drawn with a solid line represents the state of the bucket 6 when the excavation operation is completed, and the bucket 6B drawn with a broken line represents the state of the bucket 6 during the combined operation.
  • the bucket 6C drawn in is represented by the state of the bucket 6 before the excavation operation is started.
  • the thick broken line in FIGS. 8 and 9 represents a locus drawn by a predetermined point on the back surface of the bucket 6.
  • the controller 30 calculates the weight of earth and sand (earth and sand weight) in the bucket 6 when the excavation operation is completed.
  • the weight calculation unit 61 of the sediment weight processing unit 60 in the controller 30 calculates the sediment weight.
  • the weight calculation unit 61 calculates the soil weight based on the output of at least one of the posture sensor, the cylinder pressure sensor, the operation pressure sensor 29, and the like, for example. In this example shown in FIGS. 8 and 9, the weight calculation unit 61 determines the thrust of the boom cylinder 7, the distance from the pin connecting the upper swing body 3 and the boom 4, to the center of gravity of the earth and sand, and the upper swing body 3 and the boom.
  • the sediment weight is calculated based on the equation of the moment around the pin connecting with 4.
  • the attitude sensor is, for example, at least one of a boom angle sensor, an arm angle sensor S2, a bucket angle sensor S3, a machine body tilt sensor S4, and a turning state sensor S5.
  • controller 30 may determine whether or not the excavation operation is completed based on the output of at least one of the posture sensor, the cylinder pressure sensor, the operation pressure sensor 29, and the like.
  • the controller 30 determines that the excavation operation is completed, and the weight calculation unit 61 calculates the sediment weight.
  • the point PT1 is referred to as the excavation end point.
  • the operator of the excavator 100 performs a combined operation using the operating device 26.
  • the operator performs a combined operation including a right turn operation.
  • the operator performs at least the boom raising operation and the arm closing operation until the posture of the excavator 100 becomes the posture shown by the broken line, that is, until the predetermined point on the back surface of the bucket 6 reaches the point PT2.
  • the combined operation may include the operation of the bucket 6. This is to move the bucket 6 to the point PT3 located on the loading platform while preventing the loading platform of the dump truck DT having a height of Hd from coming into contact with the bucket 6.
  • the boom raising and turning operation is performed by the combined operation.
  • the operator basically executes this combined operation so that earth and sand do not spill from the bucket 6. This is because the earth and sand spilled from the bucket 6 may contaminate the dump truck DT. Alternatively, the earth and sand spilled from the bucket 6 may pollute the paved road. Therefore, for example, when the bucket 6 is lifted into the air, the operator vibrates the bucket 6 by performing the opening / closing operation of the bucket 6 a plurality of times with the opening surface of the bucket 6 facing upward. The earth and sand that are biased toward the front side of the bucket 6 are moved to the rear side of the bucket 6.
  • the vibration of the bucket 6 is typically realized by slightly moving at least one of the boom 4, the arm 5, and the bucket 6. That is, the vibration of the bucket 6 is typically realized by slightly expanding and contracting the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9.
  • the operator moves the arm until the posture of the excavator 100 becomes the posture shown by the alternate long and short dash line, that is, until the predetermined point on the back surface of the bucket 6 reaches the point PT3 located above the loading platform of the dump truck DT.
  • the combined operation may include at least one of the operation of the boom 4 and the operation of the bucket 6.
  • the point PT3 is referred to as the soil removal start point.
  • the sediment weight in the bucket 6 is calculated. It is preferable that the calculation of the sediment weight is performed while the bucket 6 moves from the point PT1 to the point PT2.
  • the operator starts the soil removal operation. That is, the earth and sand in the bucket 6 is dropped from the inside of the bucket 6 to the loading platform of the dump truck DT outside the bucket 6.
  • the operator performs a combined operation including a bucket opening operation. Specifically, the operator performs a combined operation including a bucket opening operation until the earth and sand in the bucket 6 is discharged to the loading platform of the dump truck DT.
  • the bucket 6 may perform a bucket opening operation corresponding to an arm opening operation.
  • the predetermined point on the back surface of the bucket 6 moves from the point PT3 to the front of the dump truck DT.
  • at least one of the arm opening speed and the bucket opening speed may be controlled according to the state of the earth and sand falling from the bucket 6 to the loading platform.
  • the controller 30 updates the loading capacity (total weight) which is the total weight of the earth and sand loaded on the loading platform of the dump truck DT. Specifically, the controller 30 calculates the load capacity (total weight), which is the total weight of the earth and sand loaded on the loading platform of the dump truck DT when the soil discharge operation is completed. More specifically, the load capacity calculation unit 63 of the earth and sand weight processing unit 60 in the controller 30 is a bucket calculated by the weight calculation unit 61 each time the earth and sand in the bucket 6 is discharged to the loading platform of the dump truck DT. The weight of the earth and sand in 6 is added to the current load capacity (total weight) to update the load capacity (total weight).
  • the load capacity calculation unit 63 adds the weight of the earth and sand in the bucket 6 to the current load capacity (total weight) when the earth and sand in the bucket 6 is discharged to the loading platform of the dump truck DT. Update the load capacity (total weight). As described above, the loading capacity (total weight), which is the total weight of the earth and sand loaded on the loading platform of the dump truck DT, is updated on condition that the bucket 6 is located on the loading platform of the dump truck DT.
  • the load capacity calculation unit 63 does not add the weight of the earth and sand in the bucket 6 to the current load capacity (total weight) when the earth and sand in the bucket 6 is discharged to other than the loading platform of the dump truck DT. ..
  • the load capacity calculation unit 63 determines whether or not the soil removal operation is performed when the bucket 6 is above the loading platform of the dump truck DT based on the image captured by the camera S6F. More specifically, the load capacity calculation unit 63 recognizes the positions of the loading platform of the dump truck DT and the bucket 6 based on the image captured by the camera S6F, and then the bucket 6 is above the loading platform of the dump truck DT. It is determined whether or not the soil removal operation was performed when the soil was discharged. The load amount calculation unit 63 may determine whether or not the soil removal operation is performed when the bucket 6 is above the loading platform of the dump truck DT, based on the output of another space recognition device such as LIDAR.
  • the load capacity calculation unit 63 determines that the soil discharge operation is performed when the bucket 6 is above the loading platform of the dump truck DT, the weight of the earth and sand in the bucket 6 is the current load capacity (total weight). And update the load capacity (total weight).
  • the load capacity calculation unit 63 determines that the soil discharge operation is performed when the bucket 6 is not above the loading platform of the dump truck DT, the weight of the earth and sand in the bucket 6 is used as the current load capacity ( Do not add to the total weight). For example, this is to prevent the weight of the earth and sand discharged on the ground from being added to the load capacity (total weight) due to the soil discharge operation during the setup work.
  • the load capacity calculation unit 63 may be configured to reset the load capacity when it is determined that the dump truck DT has moved to carry out the earth and sand. In this example, the load capacity calculation unit 63 determines whether or not the dump truck DT has moved (whether or not it has run away) based on the image captured by the camera S6F. The load amount calculation unit 63 may determine whether or not the dump truck DT has moved based on the output of another space recognition device such as LIDAR. With this configuration, the operator of the excavator 100 presses the reset button to reset the load capacity each time the dump truck DT arrives at the work site (loading position) or leaves the work site (loading position). There is no need to perform troublesome operations such as.
  • the operator not only uses the excavator to load the dump truck DT, but also transports the earth and sand to a position where it is easy to load when the dump truck DT does not exist. .. This is to complete the loading work on the dump truck DT in a short time.
  • Such transport work is also composed of excavation operation and soil removal operation, but in the case of transport work, it is not necessary to calculate the load capacity (total weight).
  • the excavator 100 can accurately calculate the load capacity (total weight) when it is necessary to calculate the load capacity (total weight).
  • the load capacity calculation unit 63 calculates the weight of the earth and sand spilled from the bucket 6 (earth and sand dropped from the inside of the bucket 6) as the spill amount after the excavation operation is completed and before the earth removal operation is started. You may. Then, when the load capacity calculation unit 63 adds the weight of the earth and sand in the bucket 6 to the current load capacity (total weight) and updates the load capacity (total weight), the load capacity calculation unit 63 spills from the weight of the earth and sand in the bucket 6. The amount may be subtracted. This is to prevent the weight of the earth and sand spilled from the bucket 6 from being added to the load capacity (total weight) without being loaded on the loading platform of the dump truck DT.
  • the load capacity calculation unit 63 causes the spilled earth and sand to be inside the loading platform of the dump truck DT based on the output of the space recognition device. It is determined whether the vehicle has fallen or has fallen to the outside of the loading platform of the dump truck DT. For example, the load capacity calculation unit 63 calculates the weight of the earth and sand SF1 spilled from the bucket 6 to the ground outside the loading platform of the dump truck DT as the spill amount during the boom raising and turning operation.
  • the load capacity calculation unit 63 updates the load capacity (total weight) by adding the weight obtained by subtracting the spillage amount from the weight of the earth and sand in the bucket 6 to the load capacity (total weight) of the current dump truck DT. ..
  • the load capacity calculation unit 63 includes the weight of the earth and sand SF2 spilled from the bucket 6 to the loading platform of the dump truck DT even if the earth and sand spilled from the bucket 6 before the earth discharge operation is started. Try not to. This is because the earth and sand spilled from the bucket 6 onto the loading platform of the dump truck DT is still the earth and sand loaded on the loading platform of the dump truck DT. In this case, the load capacity calculation unit 63 may omit the calculation of the spill amount.
  • the load capacity calculation unit 63 is calculated before the earth removal operation is started.
  • the weight of the earth and sand in the bucket 6 is added to the current load capacity (total weight) of the dump truck DT to update the load capacity (total weight).
  • the load capacity calculation unit 63 determines whether or not earth and sand have spilled from the bucket 6 based on the image captured by the camera S6F. Then, when it is determined that the earth and sand have spilled from the bucket 6, the load capacity calculation unit 63 calculates the volume of the earth and sand spilled from the bucket 6 based on the image captured by the camera S6F.
  • the load capacity calculation unit 63 may calculate the volume of the earth and sand based on the image of the earth and sand when the earth and sand spilled from the bucket 6 are in the air (first image), and when the earth and sand fall to the ground, the earth and sand may be calculated.
  • the volume of the earth and sand may be calculated based on the image of the earth and sand after the earth and sand has fallen to the ground (second image), and the volume of the earth and sand may be calculated based on both the first image and the second image. May be good. Then, the load capacity calculation unit 63 multiplies the calculated volume value by the density of the earth and sand to derive the weight (spill amount) of the earth and sand.
  • the sediment density may be a value input in advance, and is a value dynamically calculated based on the output of at least one of the attitude sensor, the cylinder pressure sensor, the operation pressure sensor 29, and the like. May be good.
  • the load capacity calculation unit 63 may determine whether or not the earth and sand have spilled from the bucket 6 based on the output of another space recognition device such as LIDAR, and calculate the volume of the earth and sand spilled from the bucket 6. May be good.
  • the load capacity calculation unit 63 not only before the soil discharge operation is started, but also during the soil discharge operation, the earth and sand that has fallen from the bucket 6 has fallen to the outside of the loading platform of the dump truck DT, or the inside of the loading platform. It may be determined whether or not it has fallen to. Even when the earth and sand fall to the outside of the loading platform of the dump truck DT during the earth removal operation, the weight of the earth and sand falling to the outside of the loading platform of the dump truck DT is not included in the spill amount.
  • the weight calculation unit 61 may recalculate the weight of the earth and sand (earth and sand weight) in the bucket 6. For example, the weight calculation unit 61 may recalculate the earth and sand weight when the bucket 6 reaches the point PT3 which is the soil removal start point. In this case, the weight calculation unit 61 may calculate the soil weight based on the output of at least one of the posture sensor, the cylinder pressure sensor, the operation pressure sensor 29, and the like.
  • the weight calculation unit 61 may calculate the weight of the earth and sand (earth and sand weight) in the bucket 6 based on the image captured by the camera S6F. In this case, the calculation of the earth and sand weight based on the output of at least one of the attitude sensor, the cylinder pressure sensor, the operation pressure sensor 29, and the like may be omitted. For example, when it is determined that the excavation operation is completed, the weight calculation unit 61 calculates the volume of the earth and sand contained in the bucket 6 based on the image of the earth and sand in the bucket 6 captured by the camera S6F.
  • the weight calculation unit 61 multiplies the calculated volume value by the density of the earth and sand to derive the weight of the earth and sand (earth and sand weight).
  • the sediment density may be a value input in advance, and is a value dynamically calculated based on the output of at least one of the attitude sensor, the cylinder pressure sensor, the operation pressure sensor 29, and the like. May be good.
  • the weight calculation unit 61 may calculate the weight of earth and sand (earth and sand weight) in the bucket 6 based on the output of another space recognition device such as LIDAR.
  • the shovel 100 includes a lower traveling body 1, an upper turning body 3 rotatably mounted on the lower traveling body 1, an attachment attached to the upper turning body 3, and an attachment.
  • a bucket 6 constituting the above and a controller 30 as a control device are provided.
  • the controller 30 is transferred from the bucket 6 to the loading platform of the dump truck DT as a transport vehicle (earth and sand, etc.) based on the output of the image pickup device S6 and the weight of the object (earth and sand, etc.) in the bucket 6. It is configured to calculate the weight of.
  • the image pickup device S6 is an example of a space recognition device.
  • the space recognition device is a device for recognizing the space around the upper swivel body 3, and is attached to the upper swivel body 3 in the present embodiment.
  • the space recognition device may be attached to a member outside the excavator 100 such as a pole installed at the work site.
  • the controller 30 determines whether or not the bucket 6 has been lifted onto the loading platform of the dump truck DT, or whether or not the sediment is removed from the bucket 6 between the time when the excavation operation is completed and the time when the soil removal operation is started. You can recognize whether or not it has spilled. Therefore, the controller 30 can more accurately calculate the load capacity, which is the amount of the load loaded on the dump truck DT.
  • the controller 30 adds the weight of the object (earth and sand, etc.) in the bucket 6 to the weight of the object loaded on the dump truck DT carrier when the earth removal operation is performed on the dump truck DT carrier. It may be configured as follows.
  • the controller 30 can prevent the weight of the earth and sand in the bucket 6 from being added to the load capacity when the earth removal operation is performed at a position other than on the loading platform of the dump truck DT.
  • the controller 30 can prevent the weight of the earth and sand discharged on the ground from being added to the load capacity due to the soil removal operation during the setup work. This is because the controller 30 can accurately distinguish between the soil removal operation performed during the loading operation and the soil removal operation performed during the setup work.
  • the controller 30 may calculate the weight of an object (earth and sand, etc.) in the bucket 6 based on the output of the space recognition device, and may calculate the weight of the object (earth and sand, etc.) in the bucket 6 based on the output of a sensor different from the space recognition device. Etc.) may be calculated. Further, the controller 30 may calculate the weight of an object (earth and sand, etc.) in the bucket 6 based on the outputs of two or more sensors including the space recognition device. For example, the controller 30 may calculate the weight of an object (earth and sand, etc.) in the bucket 6 based on the image captured by the image pickup device S6, and is among the posture sensor, the cylinder pressure sensor, the operation pressure sensor 29, and the like.
  • the weight of an object (earth and sand, etc.) in the bucket 6 may be calculated based on at least one output.
  • the controller 30 determines the weight (current weight) of the earth and sand in the bucket 6 and the dump based only on the output of the space recognition device.
  • the weight of earth and sand loaded on the truck DT cumulative weight
  • the maximum load weight of the dump truck DT and the remaining weight (difference between the maximum load weight and the cumulative weight) can be calculated.
  • the controller 30 may be configured to determine whether or not the weight of the earth and sand loaded on the loading platform of the dump truck DT needs to be reset based on the output of the space recognition device. For example, even if the controller 30 resets the cumulative weight to zero when it recognizes that the dump truck DT stopped at the loading position has run away based on the image captured by the image pickup device S6 as the space recognition device. good.
  • the controller 30 can improve the operability of the excavator 100. This is because the controller 30 can automatically reset the cumulative weight without forcing the operator of the shovel 100 to perform a troublesome operation such as pressing the reset button to reset the cumulative weight. As a result, this configuration can improve the work efficiency of the operator of the excavator 100.
  • the controller 30 may determine the presence or absence of earth and sand spilled from the bucket 6 based on the output of the space recognition device. For example, the controller 30 may determine the presence or absence of earth and sand spilled from the bucket 6 based on the image captured by the image pickup device S6 as the space recognition device.
  • the controller 30 determines the earth and sand weight when the bucket 6 reaches the point PT3 (see FIGS. 8 and 9) which is the soil discharge start point. You may recalculate.
  • the controller 30 can more accurately calculate the load capacity, which is the weight of the earth and sand loaded on the dump truck DT.
  • the controller 30 may be configured to be able to calculate the weight of the earth and sand spilled from the bucket 6 to the outside of the loading platform of the dump truck DT based on the output of the space recognition device.
  • the controller 30 is configured to estimate the volume of earth and sand spilled from the bucket 6 based on the image captured by the image pickup device S6 as a space recognition device, and multiply the estimated volume by the density to calculate the weight of the earth and sand. It may have been done.
  • the controller 30 will spill out the sediment based on, for example, the sediment characteristics (density, etc.) input in advance and the state of the spilling sediment (area, volume, etc.) determined from the information acquired by the space recognition device.
  • Weight can be estimated.
  • the controller 30 may calculate the weight of the spilled earth and sand by using a table or a learning model in which the relationship between the state of the earth and sand and the weight of the earth and sand determined by the space recognition device is preset.
  • the learning model is used, for example, to learn the weight calculation conditions associated with the soil condition.
  • the learning model is, for example, the state of spilling earth and sand (shape information, etc.) determined by the space recognition device based on the captured image of the earth and sand acquired by the space recognition device, and the determination data stored in advance in the storage device. According to the data set created based on the combination with the reference information representing "weight of earth and sand", the relationship between the state of the spilling earth and sand and the weight (weight calculation condition) is learned.
  • the learning process of the learning model is pre-executed by, for example, a management device outside the excavator 100. In this case, the learning model in which the learning process is executed in the management device is transmitted in advance to the excavator 100.
  • the controller 30 obtains, for example, the weight of the spilling earth and sand corresponding to the determined state of the spilling earth and sand using the learning model, and uses the obtained weight of the earth and sand to calculate the weight of the earth and sand in the loading platform of the dump truck DT. calculate.
  • controller 30 determines whether the earth and sand spilled from the bucket 6 has fallen on or out of the loading platform based on the relative positional relationship between the bucket 6 and the loading platform of the dump truck DT. May be good.
  • the controller 30 subtracts the weight of the earth and sand spilled out of the loading platform from the bucket 6 from the weight of the earth and sand loaded on the loading platform of the dump truck DT, thereby reducing the weight of the object loaded on the loading platform of the dump truck DT. It may be configured so that it can be updated (corrected).
  • the controller 30 can prevent the weight of the earth and sand spilled from the bucket 6 to the outside of the loading platform from being added to the load capacity, and can calculate the load capacity more accurately.
  • the controller 30 may be configured to add the weight of the earth and sand in the bucket 6 to the weight of the earth and sand loaded on the loading platform of the dump truck DT. ..
  • the controller 30 converts the weight of the earth and sand in the bucket 6 into the weight of the earth and sand loaded on the loading platform of the dump truck DT. It may be configured to add.
  • the controller 30 can prevent, for example, the weight of the earth and sand discharged on the ground due to the soil removal operation during the setup work from being added to the load capacity (total weight).
  • the controller 30 may be configured to determine whether the fall of earth and sand in the bucket 6 is from the bucket 6 onto the loading platform of the dump truck DT or to the outside of the loading platform.
  • the controller 30 can prevent the weight of the earth and sand that has fallen from the bucket 6 to the outside of the loading platform of the dump truck DT from being added to the load capacity (total weight), and can prevent the weight of the earth and sand from being added to the load capacity (total weight), and also from the bucket 6 to the dump truck DT.
  • the weight of earth and sand that has fallen on the loading platform can be appropriately added to the load capacity (total weight).
  • the controller 30 may be configured to calculate the weight in the bucket 6 after the fall of the object in the bucket 6 to the outside of the loading platform. For example, when the controller 30 determines that the fall of an object in the bucket 6 is a fall to the outside of the loading platform, the controller 30 recalculates the weight in the bucket 6 after the determination and before the soil removal operation. It may be configured in. This is to calculate the weight of the earth and sand remaining in the bucket 6 based on the information acquired after the earth and sand fell from the bucket 6 instead of the information acquired before the earth and sand fell from the bucket 6.
  • the controller 30 may acquire the shape of the earth and sand discharged in the loading platform by the space recognition device. In this case, the controller 30 determines whether the arm opening speed and the bucket opening speed at the time of the previous soil removal operation are appropriate based on the shape of the earth and sand discharged in the loading platform at the time of the previous soil discharge operation. Can be done. For example, the controller 30 can determine that the bucket opening speed is faster than the arm opening speed when the earth and sand in the loading platform have a shape higher than that of the excavator 100. Further, the controller 30 can determine that the bucket opening speed is slower than the arm opening speed when the earth and sand in the loading platform have a shape higher than the excavator 100.
  • the controller 30 can control the bucket opening speed with respect to the arm opening speed, for example, based on the shape of the earth and sand in the loading platform. In this way, the controller 30 can make the shape of the earth and sand in the loading platform uniform by the earth removal operation. Further, the controller 30 may determine that leveling is necessary when the height difference of the earth and sand for each place in the loading platform is equal to or more than a predetermined height. In this case, for example, in the next earth removal operation, the controller 30 has a target track height of earth and sand so as to bring the back surface of the bucket 6 into contact with the convex part of the loaded earth and sand in order to level the convex part of the loaded earth and sand.
  • the controller 30 can execute the opening operation of the bucket 6 while bringing the back surface of the bucket 6 into contact with the convex portion of the loaded earth and sand. Therefore, the excavator 100 can level the earth and sand in the loading platform while performing the earth removal operation.
  • the controller 30 may control the bucket opening speed and the arm opening speed at this time by a learning model based on the shape of the earth and sand in the loading platform.
  • the learning model learns, for example, the control conditions associated with the sediment shape in the loading platform.
  • the learning model is stored in advance in the storage device, for example, the state of the earth and sand in the loading platform (earth and sand shape information, etc.) determined based on the captured image of the earth and sand in the loading platform acquired by the space recognition device.
  • Learn attachment opening control conditions
  • the learning process of the learning model may be performed, for example, in a management device connected to the excavator 100 via wireless communication. In this case, the learning model in which the learning process is executed in the management device is transmitted to the excavator 100.
  • the controller 30 obtains a preferable attachment opening control state corresponding to the determined state of earth and sand in the loading platform, and controls the actuator so as to be in the obtained attachment opening control state. In this way, the controller 30 can change the shape of the earth and sand in the loading platform by controlling the attachment so that the earth and sand discharged into the loading platform do not slide down from the loading platform to the outside of the dump truck DT.
  • the controller 30 is mounted on the shovel 100, but may be mounted outside the shovel 100.
  • the controller 30 may be, for example, a control device installed in the remote control room.
  • Regulator 14 ⁇ ⁇ Main pump 15 ⁇ ⁇ ⁇ Pilot pump 18L, 18R ⁇ ⁇ ⁇ Aperture 19L, 19R ⁇ ⁇ ⁇ Control pressure sensor 21, 22 ⁇ ⁇ ⁇ Hydraulic sensor 23, 24 ⁇ ⁇ ⁇ Relief valve 26 ⁇ ⁇ ⁇ Operating device 28 ⁇ Discharge pressure sensor 29, 29A to 29C ... Operating pressure sensor 30 ... Controller 31AL, 31AR, 31BL, 31BR, 31CL, 31CR ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

ショベル(100)は、下部走行体(1)と、下部走行体(1)に旋回可能に搭載される上部旋回体(3)と、上部旋回体(3)に取り付けられるアタッチメントと、アタッチメントを構成するバケット(6)と、上部旋回体(3)の周囲の空間を認識する空間認識装置としての撮像装置(S6)の出力とバケット(6)内の土砂の重量とに基づき、バケット(6)内からダンプトラックの荷台に移された土砂の重量を算出するコントローラ(30)とを備えている。コントローラ(30)は、例えば、ダンプトラックの荷台の上で排土動作が行われたときに、バケット(6)内の土砂の重量を、ダンプトラックの荷台に積み込まれた土砂の重量である積載量に加算する。

Description

ショベル及びショベル用のシステム
 本開示は、ショベル及びショベル用のシステムに関する。
 ショベルがダンプトラックの荷台に積み込んだ土砂の重量を積算して表示する装置が知られている(特許文献1参照)。
 この装置は、ブーム上げ旋回操作及び排土操作の組み合わせが行われているか否かに基づいて積み込み作業の開始及び完了を検出する。そして、特定のダンプトラックに関する積み込み作業の開始から完了までの間に算出された複数の掘削重量の積算値をその特定のダンプトラックに積み込まれた土砂の量である積載量(累積重量)として算出する。排土操作は、バケット開き操作を含む操作である。
国際公開第2019/031551号
 しかしながら、バケット開き操作が行われているか否かに基づいてダンプトラックの荷台に土砂が排土されたか否かを判定すると、積載量を正確に算出できないおそれがある。段取り作業の際に算出された掘削重量も積載量に加算されてしまうためである。段取り作業は、積み込み作業の準備作業であり、例えば、積み込み作業を効率的に行うことができるように、積み込み対象の土砂を寄せ集めるための作業を含む。
 そこで、ダンプトラック等の運搬車両に積載された土砂等の積載物の量である積載量をより正確に算出するショベルを提供することが望ましい。
 本発明の一実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、前記アタッチメントを構成するバケットと、前記上部旋回体の周囲の空間を認識する空間認識装置の出力と前記バケット内の物の重量とに基づき、前記バケット内から運搬車両の荷台に移された物の重量を算出する制御装置と、を備える。
 上述のショベルは、運搬車両に積載された積載物の量をより正確に算出できる。
本実施形態に係る掘削機としてのショベルの側面図である。 本実施形態に係るショベルの構成の一例を概略的に示す図である。 本実施形態に係るショベルの油圧システムの構成の一例を概略的に示す図である。 ブームシリンダを油圧制御する制御弁にパイロット圧を作用させるパイロット回路の一例を示す図である。 バケットシリンダを油圧制御する制御弁にパイロット圧を作用させるパイロット回路の一例を示す図である。 旋回油圧モータを油圧制御する制御弁にパイロット圧を作用させるパイロット回路の一例を示す図である。 本実施形態に係るショベルのうちの土砂重量検出機能に関する構成部分の一例を概略的に示す図である。 メイン画面の構成例を示す図である。 土砂重量の算出に関するパラメータを説明する模式図である。 土砂重量の算出に関するパラメータを説明する模式図である。 作業現場の様子の一例を示す図である。 作業現場の様子の一例を示す図である。
 以下、図面を参照して発明を実施するための形態について説明する。
 [ショベルの概要]
 最初に、図1を参照して、本実施形態に係るショベル100の概要について説明する。
 図1は、本実施形態に係る掘削機としてのショベル100の側面図である。
 尚、図1では、ショベル100は、施工対象の上り傾斜面ESに面する水平面に位置すると共に、後述する目標施工面の一例である上り法面BS(つまり、上り傾斜面ESに対する施工後の法面形状)が併せて記載されている。なお、施工対象の上り傾斜面ESには、目標施工面である上り法面BSの法線方向を示す円筒体(図示せず)が設けられている。
 本実施形態に係るショベル100は、下部走行体1と、旋回機構2を介して旋回自在に下部走行体1に搭載される上部旋回体3と、アタッチメント(作業機)を構成するブーム4、アーム5、及び、バケット6と、キャビン10を備える。
 下部走行体1は、左右一対のクローラが走行油圧モータ1L,1R(後述する図2参照)でそれぞれ油圧駆動されることにより、ショベル100を走行させる。つまり、一対の走行油圧モータ1L,1R(走行モータの一例)は、被駆動部としての下部走行体1(クローラ)を駆動する。
 上部旋回体3は、旋回油圧モータ2A(後述する図2参照)で駆動されることにより、下部走行体1に対して旋回する。つまり、旋回油圧モータ2Aは、被駆動部としての上部旋回体3を駆動する旋回駆動部であり、上部旋回体3の向きを変化させることができる。
 尚、上部旋回体3は、旋回油圧モータ2Aの代わりに、電動機(以下、「旋回用電動機」)により電気駆動されてもよい。つまり、旋回用電動機は、旋回油圧モータ2Aと同様、非駆動部としての上部旋回体3を駆動する旋回駆動部であり、上部旋回体3の向きを変化させることができる。
 ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、エンドアタッチメントとしてのバケット6が上下回動可能に枢着される。ブーム4、アーム5、及びバケット6は、それぞれ、アクチュエータの一例である油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。
 尚、バケット6は、エンドアタッチメントの一例であり、アーム5の先端には、作業内容等に応じて、バケット6の代わりに、他のエンドアタッチメント、例えば、法面用バケット、浚渫用バケット、ブレーカ等が取り付けられてもよい。
 キャビン10は、オペレータが搭乗する運転室であり、上部旋回体3の前部左側に搭載される。
 [ショベルの構成]
 次に、図1に加えて、図2を参照して、本実施形態に係るショベル100の具体的な構成について説明する。
 図2は、本実施形態に係るショベル100の構成の一例を概略的に示す図である。
 尚、図2において、機械的動力系、作動油ライン、パイロットライン、及び電気制御系は、それぞれ、二重線、実線、破線、及び点線で示されている。
 本実施形態に係るショベル100の駆動系は、エンジン11と、レギュレータ13と、メインポンプ14と、コントロールバルブ17を含む。また、本実施形態に係るショベル100の油圧駆動系は、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のそれぞれを油圧駆動する走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等の油圧アクチュエータを含む。
 エンジン11は、油圧駆動系におけるメイン動力源であり、例えば、上部旋回体3の後部に搭載される。具体的には、エンジン11は、後述するコントローラ30による直接或いは間接的な制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。
 レギュレータ13は、メインポンプ14の吐出量を制御する。例えば、レギュレータ13は、コントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(傾転角)を調節する。レギュレータ13は、例えば、後述の如く、レギュレータ13L,13Rを含む。
 メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、高圧油圧ラインを通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、上述の如く、コントローラ30による制御下で、レギュレータ13により斜板の傾転角が調節されることでピストンのストローク長が調整され、吐出流量(吐出圧)が制御される。メインポンプ14は、例えば、後述の如く、メインポンプ14L,14Rを含む。
 コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載され、オペレータによる操作装置26に対する操作に応じて、油圧駆動系の制御を行う油圧制御装置である。コントロールバルブ17は、上述の如く、高圧油圧ラインを介してメインポンプ14と接続され、メインポンプ14から供給される作動油を、操作装置26の操作状態に応じて、油圧アクチュエータ(走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9)に選択的に供給する。具体的には、コントロールバルブ17は、メインポンプ14から油圧アクチュエータのそれぞれに供給される作動油の流量と流れる方向を制御する制御弁171~176を含む。より具体的には、制御弁171は、走行油圧モータ1Lに対応し、制御弁172は、走行油圧モータ1Rに対応し、制御弁173は、旋回油圧モータ2Aに対応する。また、制御弁174は、バケットシリンダ9に対応し、制御弁175は、ブームシリンダ7に対応し、制御弁176は、アームシリンダ8に対応する。また、制御弁175は、例えば、後述の如く、制御弁175L,175Rを含み、制御弁176は、例えば、後述の如く、制御弁176L,176Rを含む。制御弁171~176の詳細は、後述する。
 本実施形態に係るショベル100の操作系は、パイロットポンプ15と、操作装置26を含む。また、ショベル100の操作系は、後述するコントローラ30によるマシンコントロール機能に関する構成として、シャトル弁32を含む。
 パイロットポンプ15は、例えば、上部旋回体3の後部に搭載され、パイロットラインを介して操作装置26にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。
 操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各種動作要素(下部走行体1、上部旋回体3、ブーム4、アーム5、バケット6等)の操作を行うための操作入力手段である。換言すれば、操作装置26は、オペレータがそれぞれの動作要素を駆動するアクチュエータ(油圧アクチュエータ(即ち、走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、バケットシリンダ9等))の操作を行うための操作入力手段である。本実施形態では、操作装置26は、その二次側のパイロットラインを通じて直接的に、或いは、二次側のパイロットラインに設けられる後述のシャトル弁32を介して間接的に、コントロールバルブ17にそれぞれ接続される。これにより、コントロールバルブ17には、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に応じたパイロット圧が入力され得る。そのため、コントロールバルブ17は、操作装置26における操作状態に応じて、それぞれの油圧アクチュエータを駆動することができる。操作装置26は、例えば、アーム5(アームシリンダ8)を操作するレバー装置を含む。また、操作装置26は、例えば、ブーム4(ブームシリンダ7)、バケット6(バケットシリンダ9)、上部旋回体3(旋回油圧モータ2A)のそれぞれを操作するレバー装置26A~26Cを含む(図4A~図4C参照)。また、操作装置26は、例えば、下部走行体1の左右一対のクローラ(走行油圧モータ1L,1R)のそれぞれを操作するレバー装置やペダル装置を含む。なお、アクチュエータは、電動アクチュエータであってもよい。
 シャトル弁32は、2つの入口ポートと1つの出口ポートを有し、2つの入口ポートに入力されたパイロット圧のうちの高い方のパイロット圧を有する作動油を出口ポートに出力させる。シャトル弁32は、2つの入口ポートのうちの一方が操作装置26に接続され、他方が比例弁31に接続される。シャトル弁32の出口ポートは、パイロットラインを通じて、コントロールバルブ17内の対応する制御弁のパイロットポートに接続されている(詳細は、図4A~図4C参照)。そのため、シャトル弁32は、操作装置26が生成するパイロット圧と比例弁31が生成するパイロット圧のうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。つまり、後述するコントローラ30は、操作装置26から出力される二次側のパイロット圧よりも高いパイロット圧を比例弁31から出力させることにより、オペレータによる操作装置26の操作に依らず、対応する制御弁を制御し、各種動作要素の動作を制御することができる。シャトル弁32は、例えば、後述の如く、シャトル弁32AL,32AR,32BL,32BR,32CL,32CRを含む。
 尚、操作装置26(左操作レバー、右操作レバー、左走行レバー、及び右走行レバー)は、パイロット圧を出力する油圧パイロット式ではなく、電気信号を出力する電気式であってもよい。この場合、操作装置26からの電気信号は、コントローラ30に入力され、コントローラ30は、入力される電気信号に応じて、コントロールバルブ17内の各制御弁171~176を制御することにより、操作装置26に対する操作内容に応じた、各種油圧アクチュエータの動作を実現する。例えば、コントロールバルブ17内の制御弁171~176は、コントローラ30からの指令により駆動する電磁ソレノイド式スプール弁であってよい。また、例えば、パイロットポンプ15と各制御弁171~176のパイロットポートとの間には、コントローラ30からの電気信号に応じて動作する電磁弁が配置されてもよい。この場合、電気式の操作装置26を用いた手動操作が行われると、コントローラ30は、その操作量(例えば、レバー操作量)に対応する電気信号によって、当該電磁弁を制御しパイロット圧を増減させることで、操作装置26に対する操作内容に合わせて、各制御弁171~176を動作させることができる。
 電気式の操作装置26を用いる場合、コントローラ30は、操作者が入力する操作装置26の操作量を電気信号として比例弁31へ送信することにより、アクチュエータを駆動させることができる。このため、電気式の操作装置26を用いる場合には、比例弁33は省略可能である。また、操作装置26は必ずしもキャビン10内に配置される必要はない。操作装置26は、ショベル100の外部に設置された遠隔操作室内に配置されてもよい。更に、操作装置26は、ショベル100の周囲の作業者が携帯する携帯端末により実現されてもよい。このように、操作装置26をショベル100の外部に設ける場合にも、コントローラ30は、通信機器を介して、操作者が入力する操作装置26の操作量を電気信号として受信し、その後、比例弁31へ送信することにより、アクチュエータを駆動させることができる。このため、操作装置26をショベル100の外部に設ける場合にも、比例弁33は省略可能である。また、コントローラ30は、操作者が入力する操作装置26の操作量ではなく、予め設定された動作パターン、若しくは、目標軌道等に基づいて生成される電気信号を比例弁31に送信することにより、アクチュエータを駆動させることができる。すなわち、コントローラ30は、動作パターン又は目標軌道等に沿って各アクチュエータが駆動する自律制御式のショベルの場合にも、動作パターン又は目標軌道等に基づき生成された電気信号を比例弁31へ送信することにより、アクチュエータを駆動させることができる。
 本実施形態に係るショベル100の制御系は、コントローラ30と、吐出圧センサ28と、操作圧センサ29と、比例弁31と、表示装置40と、入力装置42と、音声出力装置43と、記憶装置47と、ブーム角度センサS1と、アーム角度センサS2と、バケット角度センサS3と、機体傾斜センサS4と、旋回状態センサS5と、撮像装置S6と、測位装置PSと、通信装置T1を含む。
 コントローラ30(制御装置の一例)は、例えば、キャビン10内に設けられ、ショベル100の駆動制御を行う。コントローラ30は、その機能が任意のハードウェア、ソフトウェア、或いは、その組み合わせにより実現されてよい。例えば、コントローラ30は、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、不揮発性の補助記憶装置と、各種入出力インターフェース等を含むマイクロコンピュータを中心に構成される。コントローラ30は、例えば、ROMや不揮発性の補助記憶装置に格納される各種プログラムをCPU上で実行することにより各種機能を実現する。
 例えば、コントローラ30は、オペレータ等の所定操作により予め設定される作業モード等に基づき、目標回転数を設定し、エンジン11を一定回転させる駆動制御を行う。
 また、例えば、コントローラ30は、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。
 また、例えば、コントローラ30は、例えば、オペレータによる操作装置26を通じたショベル100の手動操作をガイド(案内)するマシンガイダンス機能に関する制御を行う。また、コントローラ30は、例えば、オペレータによる操作装置26を通じたショベル100の手動操作を自動的に支援するマシンコントロール機能に関する制御を行う。つまり、コントローラ30は、マシンガイダンス機能及びマシンコントロール機能に関する機能部として、マシンガイダンス部50を含む。また、コントローラ30は、後述する土砂重量処理部60を含む。
 尚、コントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、コントローラ30の機能は、複数のコントローラにより分散される態様で実現されてもよい。例えば、マシンガイダンス機能及びマシンコントロール機能は、専用のコントローラ(制御装置)により実現されてもよい。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出する。吐出圧センサ28により検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28は、例えば、後述の如く、吐出圧センサ28L,28Rを含む。
 操作圧センサ29は、上述の如く、操作装置26の二次側のパイロット圧、即ち、操作装置26におけるそれぞれの動作要素(即ち、油圧アクチュエータ)に関する操作状態(例えば、操作方向や操作量等の操作内容)に対応するパイロット圧を検出する。操作圧センサ29による操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に対応するパイロット圧の検出信号は、コントローラ30に取り込まれる。操作圧センサ29は、例えば、後述の如く、操作圧センサ29A~29Cを含む。
 尚、操作圧センサ29の代わりに、操作装置26におけるそれぞれの動作要素に関する操作状態を検出可能な他のセンサ、例えば、レバー装置26A~26C等の操作量(傾倒量)や傾倒方向を検出可能なエンコーダやポテンショメータ等が設けられてもよい。
 比例弁31は、パイロットポンプ15とシャトル弁32とを接続するパイロットラインに設けられ、その流路面積(作動油が通流可能な断面積)を変更できるように構成される。比例弁31は、コントローラ30から入力される制御指令に応じて動作する。これにより、コントローラ30は、オペレータにより操作装置26(具体的には、レバー装置26A~26C)が操作されていない場合であっても、パイロットポンプ15から吐出される作動油を、比例弁31及びシャトル弁32を介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。比例弁31は、例えば、後述の如く、比例弁31AL,31AR,31BL,31BR,31CL,31CRを含む。
 表示装置40は、キャビン10内の着座したオペレータから視認し易い場所に設けられ、コントローラ30による制御下で、各種情報画像を表示する。表示装置40は、CAN(Controller Area Network)等の車載通信ネットワークを介してコントローラ30に接続されていてもよいし、一対一の専用線を介してコントローラ30に接続されていてもよい。
 入力装置42は、キャビン10内の着座したオペレータから手が届く範囲に設けられ、オペレータによる各種操作入力を受け付け、操作入力に応じた信号をコントローラ30に出力する。入力装置42は、各種情報画像を表示する表示装置のディスプレイに実装されるタッチパネル、レバー装置26A~26Cのレバー部の先端に設けられるノブスイッチ、表示装置40の周囲に設置されるボタンスイッチ、レバー、トグル、回転ダイヤル等を含む。入力装置42に対する操作内容に対応する信号は、コントローラ30に取り込まれる。
 音声出力装置43は、例えば、キャビン10内に設けられ、コントローラ30と接続され、コントローラ30による制御下で、音声を出力する。音声出力装置43は、例えば、スピーカやブザー等である。音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力する。
 記憶装置47は、例えば、キャビン10内に設けられ、コントローラ30による制御下で、各種情報を記憶する。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。記憶装置47は、ショベル100の動作中に各種機器が出力する情報を記憶してもよく、ショベル100の動作が開始される前に各種機器を介して取得する情報を記憶してもよい。記憶装置47は、例えば、通信装置T1等を介して取得される、或いは、入力装置42等を通じて設定される目標施工面に関するデータを記憶していてもよい。当該目標施工面は、ショベル100のオペレータにより設定(保存)されてもよいし、施工管理者等により設定されてもよい。
 ブーム角度センサS1は、ブーム4に取り付けられ、ブーム4の上部旋回体3に対する俯仰角度(以下、「ブーム角度」)、例えば、側面視において、上部旋回体3の旋回平面に対してブーム4の両端の支点を結ぶ直線が成す角度を検出する。ブーム角度センサS1は、例えば、ロータリエンコーダ、加速度センサ、6軸センサ、IMU(Inertial Measurement Unit:慣性計測装置)等を含んでよい。また、ブーム角度センサS1は、可変抵抗器を利用したポテンショメータ、ブーム角度に対応する油圧シリンダ(ブームシリンダ7)のストローク量を検出するシリンダセンサ等を含んでもよい。以下、アーム角度センサS2、バケット角度センサS3についても同様である。ブーム角度センサS1によるブーム角度に対応する検出信号は、コントローラ30に取り込まれる。
 アーム角度センサS2は、アーム5に取り付けられ、アーム5のブーム4に対する回動角度(以下、「アーム角度」)、例えば、側面視において、ブーム4の両端の支点を結ぶ直線に対してアーム5の両端の支点を結ぶ直線が成す角度を検出する。アーム角度センサS2によるアーム角度に対応する検出信号は、コントローラ30に取り込まれる。
 バケット角度センサS3は、バケット6に取り付けられ、バケット6のアーム5に対する回動角度(以下、「バケット角度」)、例えば、側面視において、アーム5の両端の支点を結ぶ直線に対してバケット6の支点と先端(刃先)とを結ぶ直線が成す角度を検出する。バケット角度センサS3によるバケット角度に対応する検出信号は、コントローラ30に取り込まれる。
 機体傾斜センサS4は、水平面に対する機体(上部旋回体3或いは下部走行体1)の傾斜状態を検出する。機体傾斜センサS4は、例えば、上部旋回体3に取り付けられ、ショベル100(即ち、上部旋回体3)の前後方向及び左右方向の2軸回りの傾斜角度(以下、「前後傾斜角」及び「左右傾斜角」)を検出する。機体傾斜センサS4は、例えば、ロータリエンコーダ、加速度センサ、6軸センサ、IMU等を含んでよい。機体傾斜センサS4による傾斜角度(前後傾斜角及び左右傾斜角)に対応する検出信号は、コントローラ30に取り込まれる。
 旋回状態センサS5は、上部旋回体3の旋回状態に関する検出情報を出力する。旋回状態センサS5は、例えば、上部旋回体3の旋回角速度及び旋回角度を検出する。旋回状態センサS5は、例えば、ジャイロセンサ、レゾルバ、ロータリエンコーダ等を含んでよい。旋回状態センサS5による上部旋回体3の旋回角度や旋回角速度に対応する検出信号は、コントローラ30に取り込まれる。
 空間認識装置としての撮像装置S6は、ショベル100の周辺を撮像する。撮像装置S6は、ショベル100の前方を撮像するカメラS6F、ショベル100の左方を撮像するカメラS6L、ショベル100の右方を撮像するカメラS6R、及び、ショベル100の後方を撮像するカメラS6Bを含む。撮像装置S6は、アタッチメントに取り付けられたアタッチメントカメラを含んでいてもよい。
 カメラS6Fは、例えば、キャビン10の天井、即ち、キャビン10の内部に取り付けられている。また、カメラS6Fは、キャビン10の屋根、ブーム4の側面等、キャビン10の外部に取り付けられていてもよい。カメラS6Lは、上部旋回体3の上面左端に取り付けられ、カメラS6Rは、上部旋回体3の上面右端に取り付けられ、カメラS6Bは、上部旋回体3の上面後端に取り付けられている。
 撮像装置S6(カメラS6F,S6B,S6L,S6R)は、それぞれ、例えば、非常に広い画角を有する単眼の広角カメラである。また、撮像装置S6は、ステレオカメラや距離画像カメラ等であってもよい。撮像装置S6による撮像画像は、表示装置40を介してコントローラ30に取り込まれる。
 空間認識装置としての撮像装置S6は、物体検知装置として機能してもよい。この場合、撮像装置S6は、ショベル100の周囲に存在する物体を検知してもよい。検知対象の物体には、例えば、人、動物、車両、建設機械、建造物、又は穴等が含まれ得る。また、撮像装置S6は、撮像装置S6又はショベル100から認識された物体までの距離を算出してもよい。物体検知装置としての撮像装置S6には、例えば、ステレオカメラ又は距離画像センサ等が含まれ得る。そして、空間認識装置は、例えば、CCD又はCMOS等の撮像素子を有する単眼カメラであり、撮像した画像を表示装置40に出力する。また、空間認識装置は、空間認識装置又はショベル100から認識された物体までの距離を算出するように構成されていてもよい。また、撮像装置S6に加えて、空間認識装置として、例えば、超音波センサ、ミリ波レーダ、LIDAR、又は赤外線センサ等の他の物体検知装置が設けられてもよい。空間認識装置としてミリ波レーダ、超音波センサ、又はレーザレーダ等を利用する場合には、多数の信号(レーザ光等)を物体に発信し、その反射信号を受信することで、反射信号から物体の距離及び方向を検出してもよい。物体検知装置が設けられる場合、撮像装置S6は省略されてもよい。
 そして、アクチュエータが動作する前にショベル100から所定距離の範囲内で空間認識装置により人が検知された場合には、コントローラ30は、操作者が操作装置26を操作してもショベル100が過度に動かないように、アクチュエータを動作不能状態、若しくは、微速状態にしてもよい。具体的には、ショベル100から所定距離の範囲内で人が検知された場合、コントローラ30は、ゲートロック弁をロック状態にすることでアクチュエータを動作不能状態にすることができる。電気式の操作装置26の場合には、コントローラ30から操作用制御弁(比例弁31)へ送信される信号を無効にすることで、コントローラ30は、アクチュエータを動作不能状態にすることができる。他の方式の操作装置26を用いる場合(例えば、コントローラ30からの制御指令に対応するパイロット圧を出力し、コントロールバルブ17内の対応する制御弁のパイロットポートにそのパイロット圧を作用させる操作用制御弁を用いる場合)も同様である。アクチュエータを微速状態にしたい場合には、コントローラ30は、コントローラ30から操作用制御弁へ送信される信号(例えば、電流信号)の出力を小さくすることで、アクチュエータを微速状態にすることができる。このように、所定距離の範囲内で物体が検知されると、操作装置26が操作されてもアクチュエータは駆動されない、若しくは、所定距離の範囲内で物体が検知されていないときの信号の出力よりも小さい出力でアクチュエータは微速駆動される。更に、操作者が操作装置26を操作しているときにショベルから所定距離の範囲内で人が検知された場合には、コントローラ30は、操作者の操作内容にかかわらずアクチュエータを停止させ、若しくは、減速させてもよい。具体的には、ショベル100から所定距離の範囲内で人が検知された場合、コントローラ30は、ゲートロック弁をロック状態にすることでアクチュエータを停止させる。コントローラ30からの制御指令に対応するパイロット圧を出力し、コントロールバルブ17内の対応する制御弁のパイロットポートにそのパイロット圧を作用させる操作用制御弁を用いる場合には、コントローラ30は、コントローラ30から操作用制御弁へ送信される信号を無効にすることで、若しくは減速指令を出力することで、アクチュエータを動作不能状態若しくは減速状態にすることができる。また、検知された物体がトラックの場合には、停止制御は省略されてもよい。この場合、検知されたトラックを回避するようにアクチュエータは制御されてもよい。このように、検知された物体の種類に基づいて、アクチュエータは制御されてもよい。
 尚、撮像装置S6は、直接、コントローラ30と通信可能に接続されてもよい。また、空間認識装置はショベル100の外部に配置されていてもよい。この場合、コントローラ30は、通信装置T1を介して空間認識装置が出力する情報を取得してもよい。具体的には、空間認識装置は、空撮用マルチコプタ、作業現場に設置された鉄塔、又はダンプトラックDT等に取り付けられていてもよい。そして、コントローラ30は、ショベル100の周囲の任意の位置から見た画像に基づいてこぼれ落ちる土砂の状態等を判定してもよい。
 ブームシリンダ7にはブームロッド圧センサS7R及びブームボトム圧センサS7Bが取り付けられている。アームシリンダ8にはアームロッド圧センサS8R及びアームボトム圧センサS8Bが取り付けられている。バケットシリンダ9にはバケットロッド圧センサS9R及びバケットボトム圧センサS9Bが取り付けられている。ブームロッド圧センサS7R、ブームボトム圧センサS7B、アームロッド圧センサS8R、アームボトム圧センサS8B、バケットロッド圧センサS9R及びバケットボトム圧センサS9Bは、集合的に「シリンダ圧センサ」とも称される。
 ブームロッド圧センサS7Rはブームシリンダ7のロッド側油室の圧力(以下、「ブームロッド圧」とする。)を検出し、ブームボトム圧センサS7Bはブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出する。アームロッド圧センサS8Rはアームシリンダ8のロッド側油室の圧力(以下、「アームロッド圧」とする。)を検出し、アームボトム圧センサS8Bはアームシリンダ8のボトム側油室の圧力(以下、「アームボトム圧」とする。)を検出する。バケットロッド圧センサS9Rはバケットシリンダ9のロッド側油室の圧力(以下、「バケットロッド圧」とする。)を検出し、バケットボトム圧センサS9Bはバケットシリンダ9のボトム側油室の圧力(以下、「バケットボトム圧」とする。)を検出する。
 測位装置PSは、上部旋回体3の位置及び向きを測定する。測位装置PSは、例えば、GNSS(Global Navigation Satellite System)コンパスであり、上部旋回体3の位置及び向きを検出し、上部旋回体3の位置及び向きに対応する検出信号は、コントローラ30に取り込まれる。また、測位装置PSの機能のうちの上部旋回体3の向きを検出する機能は、上部旋回体3に取り付けられた方位センサにより代替されてもよい。
 通信装置T1は、基地局を末端とする移動体通信網、衛星通信網、インターネット網等を含む所定のネットワークを通じて外部機器と通信を行う。通信装置T1は、例えば、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の移動体通信規格に対応する移動体通信モジュールや、衛星通信網に接続するための衛星通信モジュール等である。
 マシンガイダンス部50は、例えば、マシンガイダンス機能に関するショベル100の制御を実行する。マシンガイダンス部50は、例えば、目標施工面とアタッチメントの先端部、具体的には、エンドアタッチメントの作業部位との距離等の作業情報を、表示装置40や音声出力装置43等を通じて、オペレータに伝える。目標施工面に関するデータは、例えば、上述の如く、記憶装置47に予め記憶されている。目標施工面に関するデータは、例えば、基準座標系で表現されている。基準座標系は、例えば、世界測地系である。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向に、Y軸を東経90度の方向に、そして、Z軸を北極の方向にとる三次元直交XYZ座標系である。オペレータは、施工現場の任意の点を基準点と定め、入力装置42を通じて、基準点との相対的な位置関係により目標施工面を設定してよい。バケット6の作業部位は、例えば、バケット6の爪先、バケット6の背面等である。また、エンドアタッチメントとして、バケット6の代わりに、例えば、ブレーカが採用される場合、ブレーカの先端部が作業部位に相当する。マシンガイダンス部50は、表示装置40、音声出力装置43等を通じて、作業情報をオペレータに通知し、オペレータによる操作装置26を通じたショベル100の操作をガイドする。
 また、マシンガイダンス部50は、例えば、マシンコントロール機能に関するショベル100の制御を実行する。マシンガイダンス部50は、例えば、オペレータが手動で掘削操作を行っているときに、目標施工面とバケット6の先端位置とが一致するように、ブーム4、アーム5、及び、バケット6の少なくとも一つを自動的に動作させてもよい。
 マシンガイダンス部50は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回状態センサS5、撮像装置S6、測位装置PS、通信装置T1及び入力装置42等から情報を取得する。そして、マシンガイダンス部50は、例えば、取得した情報に基づき、バケット6と目標施工面との間の距離を算出し、音声出力装置43からの音声及び表示装置40に表示される画像により、バケット6と目標施工面との間の距離の程度をオペレータに通知したり、アタッチメントの先端部(具体的には、バケット6の爪先や背面等の作業部位)が目標施工面に一致するように、アタッチメントの動作を自動的に制御したりする。マシンガイダンス部50は、当該マシンガイダンス機能及びマシンコントロール機能に関する詳細な機能構成として、位置算出部51と、距離算出部52と、情報伝達部53と、自動制御部54と、旋回角度算出部55と、相対角度算出部56と、を含む。
 位置算出部51は、所定の測位対象の位置を算出する。例えば、位置算出部51は、アタッチメントの先端部、具体的には、バケット6の爪先や背面等の作業部位の基準座標系における座標点を算出する。具体的には、位置算出部51は、ブーム4、アーム5、及びバケット6のそれぞれの俯仰角度(ブーム角度、アーム角度、及びバケット角度)からバケット6の作業部位の座標点を算出する。
 距離算出部52は、2つの測位対象間の距離を算出する。例えば、距離算出部52は、アタッチメントの先端部、具体的には、バケット6爪先や背面等の作業部位と目標施工面との間の距離を算出する。また、距離算出部52は、バケット6の作業部位としての背面と目標施工面との間の角度(相対角度)を算出してもよい。
 情報伝達部53は、表示装置40や音声出力装置43等の所定の通知手段を通じて、各種情報をショベル100のオペレータに伝達(通知)する。情報伝達部53は、距離算出部52により算出された各種距離等の大きさ(程度)をショベル100のオペレータに通知する。例えば、表示装置40による視覚情報及び音声出力装置43による聴覚情報の少なくとも一方を用いて、バケット6の先端部と目標施工面との間の距離(の大きさ)をオペレータに伝える。また、情報伝達部53は、表示装置40による視覚情報及び音声出力装置43による聴覚情報の少なくとも一方を用いて、バケット6の作業部位としての背面と目標施工面との間の相対角度(の大きさ)をオペレータに伝えてもよい。
 具体的には、情報伝達部53は、音声出力装置43による断続音を用いて、バケット6の作業部位と目標施工面との間の距離(例えば、鉛直距離)の大きさをオペレータに伝える。この場合、情報伝達部53は、鉛直距離が小さくなるほど、断続音の間隔を短くし、鉛直距離が大きくなるほど、断続音の感覚を長くしてよい。また、情報伝達部53は、連続音を用いてもよく、音の高低、強弱等を変化させながら、鉛直距離の大きさの違いを表すようにしてもよい。また、情報伝達部53は、バケット6の先端部が目標施工面よりも低い位置になった、つまり、目標施工面を超えてしまった場合、音声出力装置43を通じて警報を発してもよい。当該警報は、例えば、断続音より顕著に大きい連続音である。
 また、情報伝達部53は、アタッチメントの先端部、具体的には、バケット6の作業部位と目標施工面との間の距離の大きさやバケット6の背面と目標施工面との間の相対角度の大きさ等を作業情報として表示装置40に表示させてもよい。表示装置40は、コントローラ30による制御下で、例えば、撮像装置S6から受信した画像データと共に、情報伝達部53から受信した作業情報を表示する。情報伝達部53は、例えば、アナログメータの画像やバーグラフインジケータの画像等を用いて、鉛直距離の大きさをオペレータに伝えるようにしてもよい。
 自動制御部54は、アクチュエータを自動的に動作させることでオペレータによる操作装置26を通じたショベル100の手動操作を自動的に支援する。具体的には、自動制御部54は、後述の如く、複数の油圧アクチュエータ(具体的には、旋回油圧モータ2A、ブームシリンダ7、及びバケットシリンダ9)に対応する制御弁(具体的には、制御弁173、制御弁175L,175R、及び制御弁174)に作用するパイロット圧を個別に且つ自動的に調整することができる。これにより、自動制御部54は、それぞれの油圧アクチュエータを自動的に動作させることができる。自動制御部54によるマシンコントロール機能に関する制御は、例えば、入力装置42に含まれる所定のスイッチが押下された場合に実行されてよい。当該所定のスイッチは、例えば、マシンコントロールスイッチ(以下、「MC(Machine Control)スイッチ」)であり、ノブスイッチとして操作装置26(例えば、アーム5の操作に対応するレバー装置)のオペレータによる把持部の先端に配置されていてもよい。以下、MCスイッチが押下されている場合に、マシンコントロール機能が有効である前提で説明を進める。
 例えば、自動制御部54は、MCスイッチ等が押下されている場合、掘削作業や整形作業を支援するために、アームシリンダ8の動作に合わせて、ブームシリンダ7及びバケットシリンダ9の少なくとも一方を自動的に伸縮させる。具体的には、自動制御部54は、オペレータが手動でアーム5の閉じ操作(以下、「アーム閉じ操作」)を行っている場合に、目標施工面とバケット6の爪先や背面等の作業部位の位置とが一致するようにブームシリンダ7及びバケットシリンダ9の少なくとも一方を自動的に伸縮させる。この場合、オペレータは、例えば、アーム5の操作に対応するレバー装置をアーム閉じ操作するだけで、バケット6の爪先等を目標施工面に一致させながら、アーム5を閉じることができる。
 また、自動制御部54は、MCスイッチ等が押下されている場合、上部旋回体3を目標施工面に正対させるために旋回油圧モータ2A(アクチュエータの一例)を自動的に回転させてもよい。以下、コントローラ30(自動制御部54)による上部旋回体3を目標施工面に正対させる制御を「正対制御」と称する。これにより、オペレータ等は、所定のスイッチを押下するだけで、或いは、当該スイッチが押下された状態で、旋回操作に対応する後述のレバー装置26Cを操作するだけで、上部旋回体3を目標施工面に正対させることができる。また、オペレータは、MCスイッチを押下するだけで、上部旋回体3を目標施工面に正対させ且つ上述の目標施工面の掘削作業等に関するマシンコントロール機能を開始させることができる。
 例えば、ショベル100の上部旋回体3が目標施工面に正対している状態は、アタッチメントの動作に従い、アタッチメントの先端部(例えば、バケット6の作業部位としての爪先や背面等)を目標施工面(上り法面BS)の傾斜方向に沿って移動させることが可能な状態である。具体的には、ショベル100の上部旋回体3が目標施工面に正対している状態は、ショベル100の旋回平面に鉛直なアタッチメントの稼動面(アタッチメント稼動面)が、円筒体に対応する目標施工面の法線を含む状態(換言すれば、当該法線に沿う状態)である。
 ショベル100のアタッチメント稼動面が円筒体に対応する目標施工面の法線を含む状態にない場合、アタッチメントの先端部は、目標施工面を傾斜方向に移動させることができない。そのため、結果として、ショベル100は、目標施工面を適切に施工できない。これに対して、自動制御部54は、自動的に旋回油圧モータ2Aを回転させることで、上部旋回体3を正対させることができる。これにより、ショベル100は、目標施工面を適切に施工することができる。
 自動制御部54は、正対制御において、例えば、バケット6の爪先の左端の座標点と目標施工面との間の左端鉛直距離(以下、単に「左端鉛直距離」)と、バケット6の爪先の右端の座標点と目標施工面との間の右端鉛直距離(以下、単に「右端鉛直距離」)とが等しくなった場合に、ショベルが目標施工面に正対していると判断する。また、自動制御部54は、左端鉛直距離と右端鉛直距離とが等しくなった場合(即ち、左端鉛直距離と右端鉛直距離との差がゼロになった場合)ではなく、その差が所定値以下になった場合に、ショベル100が目標施工面に正対していると判断してもよい。
 また、自動制御部54は、正対制御において、例えば、左端鉛直距離と右端鉛直距離との差に基づき、旋回油圧モータ2Aを動作させてもよい。具体的には、MCスイッチ等の所定のスイッチが押下された状態で旋回操作に対応するレバー装置26Cが操作されると、上部旋回体3を目標施工面に正対させる方向にレバー装置26Cが操作されたか否かを判断する。例えば、バケット6の爪先と目標施工面(上り法面BS)との間の鉛直距離が大きくなる方向にレバー装置26Cが操作された場合、自動制御部54は、正対制御を実行しない。一方で、バケット6の爪先と目標施工面(上り法面BS)との間の鉛直距離が小さくなる方向に旋回操作レバーが操作された場合、自動制御部54は、正対制御を実行する。その結果、自動制御部54は、左端鉛直距離と右端鉛直距離との差が小さくなるように旋回油圧モータ2Aを動作させることができる。その後、自動制御部54は、その差が所定値以下或いはゼロになると、旋回油圧モータ2Aを停止させる。また、自動制御部54は、その差が所定値以下或いはゼロとなる旋回角度を目標角度として設定し、その目標角度と現在の旋回角度(具体的には、旋回状態センサS5の検出信号に基づく検出値)との角度差がゼロになるように、旋回油圧モータ2Aの動作制御を行ってもよい。この場合、旋回角度は、例えば、基準方向に対する上部旋回体3の前後軸の角度である。
 尚、上述の如く、旋回油圧モータ2Aの代わりに、旋回用電動機がショベル100に搭載される場合、自動制御部54は、旋回用電動機(アクチュエータの一例)を制御対象として、正対制御を行う。
 旋回角度算出部55は、上部旋回体3の旋回角度を算出する。これにより、コントローラ30は、上部旋回体3の現在の向きを特定することができる。旋回角度算出部55は、例えば、測位装置PSに含まれるGNSSコンパスの出力信号に基づき、基準方向に対する上部旋回体3の前後軸の角度を旋回角度として算出する。また、旋回角度算出部55は、旋回状態センサS5の検出信号に基づき、旋回角度を算出してもよい。また、施工現場に基準点が設定されている場合、旋回角度算出部55は、旋回軸から基準点を見た方向を基準方向としてもよい。
 旋回角度は、基準方向に対するアタッチメント稼動面が延びる方向を示す。アタッチメント稼動面は、例えば、アタッチメントを縦断する仮想平面であり、旋回平面に垂直となるように配置される。旋回平面は、例えば、旋回軸に垂直な旋回フレームの底面を含む仮想平面である。コントローラ30(マシンガイダンス部50)は、例えば、アタッチメント稼動面が目標施工面の法線を含んでいると判断した場合に、上部旋回体3が目標施工面に正対していると判断する。
 相対角度算出部56は、上部旋回体3を目標施工面に正対させるために必要な旋回角度(相対角度)を算出する。相対角度は、例えば、上部旋回体3を目標施工面に正対させたときの上部旋回体3の前後軸の方向と、上部旋回体3の前後軸の現在の方向との間に形成される相対的な角度である。相対角度算出部56は、例えば、記憶装置47に記憶されている目標施工面に関するデータと、旋回角度算出部55により算出された旋回角度とに基づき、相対角度を算出する。
 自動制御部54は、MCスイッチ等の所定のスイッチが押下された状態で旋回操作に対応するレバー装置26Cが操作されると、上部旋回体3を目標施工面に正対させる方向に旋回操作されたか否かを判断する。自動制御部54は、上部旋回体3を目標施工面に正対させる方向に旋回操作されたと判断した場合、相対角度算出部56により算出された相対角度を目標角度として設定する。そして、自動制御部54は、レバー装置26Cが操作された後の旋回角度の変化が目標角度に達した場合、上部旋回体3が目標施工面に正対したと判断し、旋回油圧モータ2Aの動きを停止させてよい。これにより、自動制御部54は、図2に示す構成を前提として、上部旋回体3を目標施工面に正対させることができる。上記正対制御の実施例では目標施工面に対する正対制御の事例を示したが、これに限られることはない。例えば、仮置きの土砂をダンプトラックに積み込む際の掬い取り動作においても、目標体積に相当する目標軌道(目標掘削軌道)を生成し、目標掘削軌道に対してアタッチメントが向かい合うように旋回動作の正対制御をおこなってもよい。この場合、掬い取り動作の都度、目標掘削軌道は変更される。このため、ダンプトラックへの排土後は、新たに変更された目標掘削軌道に対して正対制御される。
 また、旋回油圧モータ2Aは、第1ポート2A1及び第2ポート2A2を有している。油圧センサ21は、旋回油圧モータ2Aの第1ポート2A1の作動油の圧力を検出する。油圧センサ22は、旋回油圧モータ2Aの第2ポート2A2の作動油の圧力を検出する。油圧センサ21,22により検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。
 また、第1ポート2A1は、リリーフ弁23を介して作動油タンクと接続される。リリーフ弁23は、第1ポート2A1側の圧力が所定のリリーフ圧に達した場合に開き、第1ポート2A1側の作動油を作動油タンクに排出する。同様に、第2ポート2A2は、リリーフ弁24を介して作動油タンクと接続される。リリーフ弁24は、第2ポート2A2側の圧力が所定のリリーフ圧に達した場合に開き、第2ポート2A2側の作動油を作動油タンクに排出する。
 [ショベルの油圧システム]
 次に、図3を参照して、本実施形態に係るショベル100の油圧システムについて説明する。
 図3は、本実施形態に係るショベル100の油圧システムの構成の一例を概略的に示す図である。
 尚、図3において、機械的動力系、作動油ライン、パイロットライン、及び電気制御系は、図2等の場合と同様、それぞれ、二重線、実線、破線、及び点線で示されている。
 当該油圧回路により実現される油圧システムは、エンジン11により駆動されるメインポンプ14L,14Rのそれぞれから、センタバイパス油路C1L,C1R、パラレル油路C2L,C2Rを経て作動油タンクまで作動油を循環させる。
 センタバイパス油路C1Lは、メインポンプ14Lを起点として、コントロールバルブ17内に配置される制御弁171,173,175L,176Lを順に通過し、作動油タンクに至る。
 センタバイパス油路C1Rは、メインポンプ14Rを起点として、コントロールバルブ17内に配置される制御弁172,174,175R,176Rを順に通過し、作動油タンクに至る。
 制御弁171は、メインポンプ14Lから吐出される作動油を走行油圧モータ1Lへ供給し、且つ、走行油圧モータ1Lが吐出する作動油を作動油タンクに排出させるスプール弁である。
 制御弁172は、メインポンプ14Rから吐出される作動油を走行油圧モータ1Rへ供給し、且つ、走行油圧モータ1Rが吐出する作動油を作動油タンクへ排出させるスプール弁である。
 制御弁173は、メインポンプ14Lから吐出される作動油を旋回油圧モータ2Aへ供給し、且つ、旋回油圧モータ2Aが吐出する作動油を作動油タンクへ排出させるスプール弁である。
 制御弁174は、メインポンプ14Rから吐出される作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出させるスプール弁である。
 制御弁175L,175Rは、それぞれ、メインポンプ14L,14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出させるスプール弁である。
 制御弁176L,176Rは、メインポンプ14L,14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出させる。
 制御弁171,172,173,174,175L,175R,176L,176Rは、それぞれ、パイロットポートに作用するパイロット圧に応じて、油圧アクチュエータに給排される作動油の流量を調整したり、流れる方向を切り換えたりする。
 パラレル油路C2Lは、センタバイパス油路C1Lと並列的に、制御弁171,173,175L,176Lにメインポンプ14Lの作動油を供給する。具体的には、パラレル油路C2Lは、制御弁171の上流側でセンタバイパス油路C1Lから分岐し、制御弁171,173,175L,176Rのそれぞれに並列してメインポンプ14Lの作動油を供給可能に構成される。これにより、パラレル油路C2Lは、制御弁171,173,175Lの何れかによってセンタバイパス油路C1Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 パラレル油路C2Rは、センタバイパス油路C1Rと並列的に、制御弁172,174,175R,176Rにメインポンプ14Rの作動油を供給する。具体的には、パラレル油路C2Rは、制御弁172の上流側でセンタバイパス油路C1Rから分岐し、制御弁172,174,175R,176Rのそれぞれに並列してメインポンプ14Rの作動油を供給可能に構成される。パラレル油路C2Rは、制御弁172,174,175Rの何れかによってセンタバイパス油路C1Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 レギュレータ13L,13Rは、それぞれ、コントローラ30による制御下で、メインポンプ14L,14Rの斜板の傾転角を調節することによって、メインポンプ14L,14Rの吐出量を調節する。
 吐出圧センサ28Lは、メインポンプ14Lの吐出圧を検出し、検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28Rについても同様である。これにより、コントローラ30は、メインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御することができる。
 センタバイパス油路C1L,C1Rには、最も下流にある制御弁176L,176Rのそれぞれと作動油タンクとの間には、絞り18L,18Rが設けられる。これにより、メインポンプ14L,14Rにより吐出された作動油の流れは、絞り18L,18Rで制限される。そして、絞り18L,18Rは、レギュレータ13L,13Rを制御するための制御圧を発生させる。
 制御圧センサ19L,19Rは、制御圧を検出し、検出された制御圧に対応する検出信号は、コントローラ30に取り込まれる。
 コントローラ30は、吐出圧センサ28L,28Rにより検出されるメインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御し、メインポンプ14L,14Rの吐出量を調節してよい。例えば、コントローラ30は、メインポンプ14Lの吐出圧の増大に応じて、レギュレータ13Lを制御し、メインポンプ14Lの斜板傾転角を調節することにより、吐出量を減少させてよい。レギュレータ13Rについても同様である。これにより、コントローラ30は、吐出圧と吐出量との積で表されるメインポンプ14L,14Rの吸収馬力がエンジン11の出力馬力を超えないように、メインポンプ14L,14Rの全馬力制御を行うことができる。
 また、コントローラ30は、制御圧センサ19L,19Rにより検出される制御圧に応じて、レギュレータ13L,13Rを制御することにより、メインポンプ14L,14Rの吐出量を調節してよい。例えば、コントローラ30は、制御圧が大きいほどメインポンプ14L,14Rの吐出量を減少させ、制御圧が小さいほどメインポンプ14L,14Rの吐出量を増大させる。
 具体的には、ショベル100における油圧アクチュエータが何れも操作されていない待機状態(図3に示す状態)の場合、メインポンプ14L,14Rから吐出される作動油は、センタバイパス油路C1L,C1Rを通って絞り18L,18Rに至る。そして、メインポンプ14L,14Rから吐出される作動油の流れは、絞り18L,18Rの上流で発生する制御圧を増大させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を許容最小吐出量まで減少させ、吐出した作動油がセンタバイパス油路C1L,C1Rを通過する際の圧力損失(ポンピングロス)を抑制する。
 一方、何れかの油圧アクチュエータが操作装置26を通じて操作された場合、メインポンプ14L,14Rから吐出される作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、メインポンプ14L,14Rから吐出される作動油の流れは、絞り18L,18Rに至る量を減少或いは消失させ、絞り18L,18Rの上流で発生する制御圧を低下させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータを確実に駆動させることができる。
 [ショベルのマシンコントロール機能に関する構成の詳細]
 次に、図4A~図4Cを参照して、ショベル100のマシンコントロール機能に関する構成の詳細について説明する。
 図4A~図4Cは、本実施形態に係るショベル100の油圧システムのうちの操作系に関する構成部分の一例を概略的に示す図である。具体的には、図4Aは、ブームシリンダ7を油圧制御する制御弁175L,175Rにパイロット圧を作用させるパイロット回路の一例を示す図である。また、図4Bは、バケットシリンダ9を油圧制御する制御弁174にパイロット圧を作用させるパイロット回路の一例を示す図である。また、図4Cは、旋回油圧モータ2Aを油圧制御する制御弁173にパイロット圧を作用させるパイロット回路の一例を示す図である。
 また、例えば、図4Aに示すように、レバー装置26Aは、オペレータ等がブーム4に対応するブームシリンダ7を操作するために用いられる。レバー装置26Aは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。
 シャトル弁32ALは、二つの入口ポートが、それぞれ、ブーム4の上げ方向の操作(以下、「ブーム上げ操作」)に対応するレバー装置26Aの二次側のパイロットラインと、比例弁31ALの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに接続される。
 シャトル弁32ARは、二つの入口ポートが、それぞれ、ブーム4の下げ方向の操作(以下、「ブーム下げ操作」)に対応するレバー装置26Aの二次側のパイロットラインと、比例弁31ARの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Rの右側のパイロットポートに接続される。
 つまり、レバー装置26Aは、シャトル弁32AL,32ARを介して、操作内容(例えば、操作方向及び操作量)に応じたパイロット圧を制御弁175L,175Rのパイロットポートに作用させる。具体的には、レバー装置26Aは、ブーム上げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32ALの一方の入口ポートに出力し、シャトル弁32ALを介して、制御弁175Lの右側のパイロットポートと制御弁175Rの左側のパイロットポートに作用させる。また、レバー装置26Aは、ブーム下げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32ARの一方の入口ポートに出力し、シャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに作用させる。
 比例弁31ALは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ALは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ALの他方の入口ポートに出力する。これにより、比例弁31ALは、シャトル弁32ALを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに作用するパイロット圧を調整することができる。
 比例弁31ARは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ARは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ARの他方の入口ポートに出力する。これにより、比例弁31ARは、シャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに作用するパイロット圧を調整することができる。
 つまり、比例弁31AL,31ARは、レバー装置26Aの操作状態に依らず、制御弁175L、175Rを任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
 比例弁33ALは、比例弁31ALと同様に、マシンコントロール用制御弁として機能する。比例弁33ALは、操作装置26とシャトル弁32ALとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33ALは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32ALを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 同様に、比例弁33ARは、マシンコントロール用制御弁として機能する。比例弁33ARは、操作装置26とシャトル弁32ARとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33ARは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32ARを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 操作圧センサ29Aは、オペレータによるレバー装置26Aに対する操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Aに対する操作内容を把握できる。
 コントローラ30は、オペレータによるレバー装置26Aに対するブーム上げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AL及びシャトル弁32ALを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Aに対するブーム下げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AR及びシャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに供給できる。即ち、コントローラ30は、ブーム4の上げ下げの動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 比例弁33ALは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15からレバー装置26A、比例弁33AL、及びシャトル弁32ALを介して制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33ARは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15からレバー装置26A、比例弁33AR、及びシャトル弁32ARを介して制御弁175Rの右側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33AL、33ARは、制御弁175L、175Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるブーム上げ操作が行われている場合であっても、必要に応じて、制御弁175の上げ側のパイロットポート(制御弁175Lの左側パイロットポート及び制御弁175Rの右側パイロットポート)に作用するパイロット圧を減圧し、ブーム4の閉じ動作を強制的に停止させることができる。操作者によるブーム下げ操作が行われているときにブーム4の下げ動作を強制的に停止させる場合についても同様である。
 或いは、コントローラ30は、操作者によるブーム上げ操作が行われている場合であっても、必要に応じて、比例弁31ARを制御し、制御弁175の上げ側のパイロットポートの反対側にある、制御弁175の下げ側のパイロットポート(制御弁175Rの右側パイロットポート)に作用するパイロット圧を増大させ、制御弁175を強制的に中立位置に戻すことで、ブーム4の上げ動作を強制的に停止させてもよい。この場合、比例弁33ALは省略されてもよい。操作者によるブーム下げ操作が行われている場合にブーム4の下げ動作を強制的に停止させる場合についても同様である。すなわち、比例弁33AL、33ARは省略されてもよい。
 図4Bに示すように、レバー装置26Bは、オペレータ等がバケット6に対応するバケットシリンダ9を操作するために用いられる。レバー装置26Bは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。
 シャトル弁32BLは、二つの入口ポートが、それぞれ、バケット6の閉じ方向の操作(以下、「バケット閉じ操作」)に対応するレバー装置26Bの二次側のパイロットラインと、比例弁31BLの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の左側のパイロットポートに接続される。
 シャトル弁32BRは、二つの入口ポートが、それぞれ、バケット6の開き方向の操作(以下、「バケット開き操作」)に対応するレバー装置26Bの二次側のパイロットラインと、比例弁31BRの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の右側のパイロットポートに接続される。
 つまり、レバー装置26Bは、シャトル弁32BL,32BRを介して、操作内容に応じたパイロット圧を制御弁174のパイロットポートに作用させる。具体的には、レバー装置26Bは、バケット閉じ操作された場合に、操作量に応じたパイロット圧をシャトル弁32BLの一方の入口ポートに出力し、シャトル弁32BLを介して、制御弁174の左側のパイロットポートに作用させる。また、レバー装置26Bは、バケット開き操作された場合に、操作量に応じたパイロット圧をシャトル弁32BRの一方の入口ポートに出力し、シャトル弁32BRを介して、制御弁174の右側のパイロットポートに作用させる。
 比例弁31BLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31BLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BLの他方のパイロットポートに出力する。これにより、比例弁31BLは、シャトル弁32BLを介して、制御弁174の左側のパイロットポートに作用するパイロット圧を調整することができる。
 比例弁31BRは、コントローラ30が出力する制御電流に応じて動作する。具体的には、比例弁31BRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BRの他方のパイロットポートに出力する。これにより、比例弁31BRは、シャトル弁32BRを介して、制御弁174の右側のパイロットポートに作用するパイロット圧を調整することができる。
 つまり、比例弁31BL,31BRは、レバー装置26Bの操作状態に依らず、制御弁174を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
 比例弁33BLは、比例弁31BLと同様に、マシンコントロール用制御弁として機能する。比例弁33BLは、操作装置26とシャトル弁32BLとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33BLは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32BLを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 同様に、比例弁33BRは、マシンコントロール用制御弁として機能する。比例弁33BRは、操作装置26とシャトル弁32BRとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33BRは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32BRを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 操作圧センサ29Bは、オペレータによるレバー装置26Bに対する操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Bの操作内容を把握できる。
 コントローラ30は、オペレータによるレバー装置26Bに対するバケット閉じ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BL及びシャトル弁32BLを介して、制御弁174の左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Bに対するバケット開き操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BR及びシャトル弁32BRを介して、制御弁174の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、バケット6の開閉動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 なお、操作者によるバケット閉じ操作又はバケット開き操作が行われている場合にバケット6の動作を強制的に停止させる比例弁33BL,33BRの操作は、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる比例弁33AL,33ARの操作と同様であり、重複する説明を省略する。また、比例弁33BL,33BRは、比例弁33AL,33ARと同様に、省略されてもよい。
 また、例えば、図4Cに示すように、レバー装置26Cは、オペレータ等が上部旋回体3(旋回機構2)に対応する旋回油圧モータ2Aを操作するために用いられる。レバー装置26Cは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。
 シャトル弁32CLは、二つの入口ポートが、それぞれ、上部旋回体3の左方向の旋回操作(以下、「左旋回操作」)に対応するレバー装置26Cの二次側のパイロットラインと、比例弁31CLの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の左側のパイロットポートに接続される。
 シャトル弁32CRは、二つの入口ポートが、それぞれ、上部旋回体3の右方向の旋回操作(以下、「右旋回操作」)に対応するレバー装置26Cの二次側のパイロットラインと、比例弁31CRの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の右側のパイロットポートに接続される。
 つまり、レバー装置26Cは、シャトル弁32CL,32CRを介して、左右方向への操作内容に応じたパイロット圧を制御弁173のパイロットポートに作用させる。具体的には、レバー装置26Cは、左旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32CLの一方の入口ポートに出力し、シャトル弁32CLを介して、制御弁173の左側のパイロットポートに作用させる。また、レバー装置26Cは、右旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32CRの一方の入口ポートに出力し、シャトル弁32CRを介して、制御弁173の右側のパイロットポートに作用させる。
 比例弁31CLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31CLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CLの他方のパイロットポートに出力する。これにより、比例弁31CLは、シャトル弁32CLを介して、制御弁173の左側のパイロットポートに作用するパイロット圧を調整することができる。
 比例弁31CRは、コントローラ30が出力する制御電流に応じて動作する。具体的には、比例弁31CRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CRの他方のパイロットポートに出力する。これにより、比例弁31CRは、シャトル弁32CRを介して、制御弁173の右側のパイロットポートに作用するパイロット圧を調整することができる。
 つまり、比例弁31CL,31CRは、レバー装置26Cの操作状態に依らず、制御弁173を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
 比例弁33CLは、比例弁31CLと同様に、マシンコントロール用制御弁として機能する。比例弁33CLは、操作装置26とシャトル弁32CLとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33CLは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32CLを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 同様に、比例弁33CRは、マシンコントロール用制御弁として機能する。比例弁33CRは、操作装置26とシャトル弁32CRとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33CRは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32CRを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 操作圧センサ29Cは、オペレータによるレバー装置26Cに対する操作状態を圧力として検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Cに対する左右方向への操作内容を把握できる。
 コントローラ30は、オペレータによるレバー装置26Cに対する左旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CL及びシャトル弁32CLを介して、制御弁173の左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Cに対する右旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CR及びシャトル弁32CRを介して、制御弁173の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、上部旋回体3の左右方向への旋回動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 なお、操作者による旋回操作が行われている場合に上部旋回体3の動作を強制的に停止させる比例弁33CL,33CRの操作は、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる比例弁33AL,33ARの操作と同様であり、重複する説明を省略する。また、比例弁33CL,33CRは、比例弁33AL,33ARと同様に、省略されてもよい。
 尚、ショベル100は、更に、アーム5を自動的に開閉させる構成、及び、下部走行体1を自動的に前進・後進させる構成を備えていてもよい。この場合、油圧システムのうち、アームシリンダ8の操作系に関する構成部分、走行油圧モータ1Lの操作系に関する構成部分、及び、走行油圧モータ1Rの操作に関する構成部分は、ブームシリンダ7の操作系に関する構成部分等(図4A~図4C)と同様に構成されてよい。
 [ショベルの土砂重量検出機能に関する構成の詳細]
 次に、図5を参照して、本実施形態に係るショベル100の土砂重量検出機能に関する構成の詳細について説明する。図5は、本実施形態に係るショベル100のうちの土砂重量検出機能に関する構成部分の一例を概略的に示す図である。
 図3で前述したように、コントローラ30は、バケット6で掘削した土砂の重量(土砂重量)を検出する機能に関する機能部として、土砂重量処理部60を含む。
 土砂重量処理部60は、重量算出部61と、最大積載量検出部62と、積載量算出部63と、残積載量算出部64と、重心算出部65と、を有する。
 ここで、本実施形態に係るショベル100によるダンプトラックへの土砂(積載物)の積み込み作業の動作の一例について説明する。
 まず、ショベル100は、掘削位置において、アタッチメントを制御してバケット6により土砂を掘削する(掘削動作)。次に、ショベル100は、上部旋回体3を旋回させ、バケット6を掘削位置から排土位置へと移動する(旋回動作)。排土位置の下方には、ダンプトラックの荷台が配置されている。次に、ショベル100は、排土位置において、アタッチメントを制御してバケット6内の土砂を排土することにより、バケット6内の土砂をダンプトラックの荷台へと積み込む(排土動作)。次に、ショベル100は、上部旋回体3を旋回させ、バケット6を排土位置から掘削位置へと移動する(旋回動作)。これらの動作を繰り返すことにより、ショベル100は、掘削した土砂をダンプトラックの荷台へと積み込む。
 重量算出部61は、バケット6内の土砂(積載物)の重量を算出する。重量算出部61は、ブームシリンダ7の推力に基づいて土砂重量を算出する。例えば、重量算出部61は、ブームシリンダ7の推力と、上部旋回体3とブーム4とを連結するピンから土砂重心までの距離と、上部旋回体3とブーム4とを連結するピン回りのモーメントの式と、に基づいて土砂重量を算出する。
 最大積載量検出部62は、土砂を積載する対象のダンプトラックの最大積載量を検出する。例えば、最大積載量検出部62は、撮像装置S6で撮像された画像に基づいて、土砂を積載する対象のダンプトラックを特定する。「撮像装置S6で撮像された画像に基づいて」は、例えば、撮像装置S6が撮像した画像に1又は複数の画像処理を施すことによって得られる情報を利用することを意味する。次に、最大積載量検出部62は、特定されたダンプトラックの画像に基づいて、ダンプトラックの最大積載量を検出する。例えば、最大積載量検出部62は、特定されたダンプトラックの画像に基づいて、ダンプトラックの車種(サイズ等)を判定する。最大積載量検出部62は、車種と最大積載量とを対応付けしたテーブルを有しており、画像から判定した車種及びテーブルに基づいて、ダンプトラックの最大積載量を求める。なお、入力装置42によってダンプトラックの最大積載量、車種等が入力され、最大積載量検出部62は、入力装置42の入力情報に基づいて、ダンプトラックの最大積載量を求めてもよい。
 積載量算出部63は、ダンプトラックに積載された土砂の重量を算出する。即ち、バケット6内の土砂がダンプトラックの荷台に排土される毎に、積載量算出部63は、重量算出部61で算出されたバケット6内の土砂の重量を加算して、ダンプトラックの荷台に積載された土砂の重量の合計である積載量(合計重量)を算出する。なお、土砂を積載する対象のダンプトラックが新しいダンプトラックとなった場合には、積載量はリセットされる。
 残積載量算出部64は、最大積載量検出部62で検出したダンプトラックの最大積載量と、積載量算出部63で算出した現在の積載量との差を残積載量として算出する。残積載量とは、ダンプトラックに積載可能な土砂の残りの重量である。
 重心算出部65は、バケット6内の土砂(積載物)の重心を算出する。なお、土砂の重心の算出方法については、後述する。
 表示装置40には、重量算出部61で算出されたバケット6内の土砂の重量、最大積載量検出部62で検出されたダンプトラックの最大積載量、積載量算出部63で算出されたダンプトラックの積載量(荷台に積載された土砂の重量の合計)、残積載量算出部64で算出されたダンプトラックの残積載量(積載可能な土砂の残りの重量)が表示されてもよい。
 なお、積載量が最大積載量を超えた場合、表示装置40に警告が出るように構成されていてもよい。また、算出されたバケット6内の土砂の重量が残積載量を超える場合、表示装置40に警告が出るように構成されていてもよい。なお、警告は、表示装置40に表示される場合に限られず、音声出力装置43による音声出力であってもよい。これにより、ダンプトラックの最大積載量を超えて土砂が積載されることを防止することができる。
 ここで、図6を参照し、表示装置40に表示されるメイン画面41Vの構成例について説明する。図6のメイン画面41Vに表示される情報は、例えば、バケット6内の土砂の重量(現重量)、ダンプトラックの積載量(累積重量)、ダンプトラックの残積載量(残重量)、及び最大積載量(最大積載重量)等に関する情報を含む。
 メイン画面41Vは、日時表示領域41a、走行モード表示領域41b、アタッチメント表示領域41c、燃費表示領域41d、エンジン制御状態表示領域41e、エンジン稼働時間表示領域41f、冷却水温表示領域41g、燃料残量表示領域41h、回転数モード表示領域41i、尿素水残量表示領域41j、作動油温表示領域41k、カメラ画像表示領域41m、現重量表示領域41p、累積重量表示領域41q、残重量表示領域41s、及び最大積載重量表示領域41tを含む。
 走行モード表示領域41b、アタッチメント表示領域41c、エンジン制御状態表示領域41e、及び回転数モード表示領域41iは、ショベル100の設定状態に関する情報である設定状態情報を表示する領域である。燃費表示領域41d、エンジン稼働時間表示領域41f、冷却水温表示領域41g、燃料残量表示領域41h、尿素水残量表示領域41j、作動油温表示領域41k、現重量表示領域41p及び累積重量表示領域41qは、ショベル100の稼動状態に関する情報である稼動状態情報を表示する領域である。
 具体的には、日時表示領域41aは、現在の日時を表示する領域である。走行モード表示領域41bは、現在の走行モードを表示する領域である。アタッチメント表示領域41cは、現在装着されているエンドアタッチメントを表す画像を表示する領域である。図6は、バケット6を表す画像が表示された状態を示している。
 燃費表示領域41dは、コントローラ30によって算出された燃費情報を表示する領域である。燃費表示領域41dは、生涯平均燃費又は区間平均燃費を表示する平均燃費表示領域41d1、瞬間燃費を表示する瞬間燃費表示領域41d2を含む。
 エンジン制御状態表示領域41eは、エンジン11の制御状態を表示する領域である。エンジン稼働時間表示領域41fは、エンジン11の累積稼働時間を表示する領域である。冷却水温表示領域41gは、現在のエンジン冷却水の温度状態を表示する領域である。燃料残量表示領域41hは、燃料タンクに貯蔵されている燃料の残量状態を表示する領域である。回転数モード表示領域41iは、エンジン回転数調節ダイヤルによって設定された現在の回転数モードを表示する領域である。尿素水残量表示領域41jは、尿素水タンクに貯蔵されている尿素水の残量状態を表示する領域である。作動油温表示領域41kは、作動油タンク内の作動油の温度状態を表示する領域である。
 カメラ画像表示領域41mは、空間認識装置としての撮像装置S6が撮像した画像を表示する領域である。図6の例では、カメラ画像表示領域41mは、カメラS6Bが撮像した画像を表示している。カメラS6Bが撮像した画像は、ショベル100の後方の空間を映し出す後方画像であり、カウンタウェイトの画像3aを含む。
 現重量表示領域41pは、バケット6内の土砂の重量(現重量)を表示する領域である。図6は、現重量が550kgであることを示している。
 累積重量表示領域41qは、ダンプトラックの積載量(累積重量)を表示する領域である。図6は、累積重量が9500kgであることを示している。
 累積重量は、積み込み対象のダンプトラックが入れ替わる度にリセットされる。本実施形態では、コントローラ30は、ダンプトラックの入れ替わりを自動的に認識して累積重量を自動的にリセットするように構成されている。具体的には、コントローラ30は、撮像装置S6が撮像した画像を利用してダンプトラックの入れ替わりを認識する。コントローラ30は、通信装置を利用してダンプトラックの入れ替わりを認識してもよい。或いは、コントローラ30は、リセットボタンが押されたときに累積重量をリセットしてもよい。リセットボタンは、ソフトウェアボタンであってもよく、入力装置42、左操作レバー、又は右操作レバー等に配置されるハードウェアボタンであってもよい。
 この構成により、ショベル100は、ダンプトラックの最大積載重量を超えて、ダンプトラックの荷台に土砂等の積載物が積み込まれてしまうのを防止できる。最大積載重量を超えて積載物が積み込まれていることが台貫での重量測定によって検知されると、ダンプトラックの運転者は、積み込みヤードに戻り、荷台に積み込まれた積載物の一部を下ろす作業を行う必要がある。ショベル100は、このような積載重量の調整作業の発生を防止できる。
 所定の期間は、例えば、1日の作業を開始する時刻から1日の作業を終了する時刻までの期間であってもよい。1日の作業によって運搬された積載物の総重量を操作者又は管理者が容易に認識できるようにするためである。
 また、コントローラ30は、撮像装置S6が撮像した画像に基づき、バケット6内の土砂がダンプトラックの荷台に積み込まれたことを認識した上で、現重量を積算するように構成されていてもよい。ダンプトラックの荷台以外の場所に移された土砂がダンプトラックに積み込まれた土砂として積算されてしまうのを防止するためである。
 コントローラ30は、アタッチメントの姿勢に基づき、バケット6内の土砂がダンプトラックの荷台に積み込まれたか否かを判定してもよい。具体的には、コントローラ30は、例えば、バケット6の高さが所定値(例えば、ダンプトラックの荷台の高さ)を超え且つバケット6が開かれた場合に、土砂がダンプトラックの荷台に積み込まれたと判定してもよい。
 残重量表示領域41sは、残重量を表示する領域である。最大積載重量表示領域41tは、最大積載重量を表示する領域である。図6は、累積重量が9500kgで、残重量が500kgで、且つ、最大積載重量が10000kgであることを示している。但し、表示装置40は、残重量を表示させずに最大積載重量を表示させてもよい。
 メッセージ表示領域41m1には、メッセージが表示される。例えば、累積重量が最大積載重量を超過した場合にメッセージが表示される。これにより、コントローラ30は、オペレータに積み降ろし作業を促すことができ、ダンプトラックの過積載を防止することができる。
 [重量算出部61における土砂重量算出方法]
 次に、図5を参照しつつ、図7A及び図7Bを用いて、本実施形態に係るショベル100の重量算出部61におけるバケット6内の土砂(積載物)の重量を算出する方法について説明する。
 図7A及び図7Bは、土砂重量の算出に関するパラメータを説明する模式図である。図7Aはショベル100を示し、図7Bはバケット6付近を示す。なお、以下の説明において、後述するピンP1とバケット重心G3及び土砂重心Gsが水平線L1上に配置されているものとして説明する。
 ここで、上部旋回体3とブーム4を連結するピンをP1とする。上部旋回体3とブームシリンダ7を連結するピンをP2とする。ブーム4とブームシリンダ7を連結するピンをP3とする。ブーム4とアームシリンダ8を連結するピンをP4とする。アーム5とアームシリンダ8を連結するピンをP5とする。ブーム4とアーム5を連結するピンをP6とする。アーム5とバケット6を連結するピンをP7とする。また、ブーム4の重心をG1とする。アーム5の重心をG2とする。バケット6の重心をG3とする。バケット6に積載された土砂(積載物)の重心をGsとする。基準線L2は、ピンP7を通りバケット6の開口面と平行な線とする。また、ピンP1とブーム4の重心G1との距離をD1とする。ピンP1とアーム5の重心G2との距離をD2とする。ピンP1とバケット6の重心G3との距離をD3とする。ピンP1と土砂の重心Gsとの距離をDsとする。ピンP2とピンP3を結ぶ直線と、ピンP1との距離をDcとする。また、ブームシリンダ7のシリンダ圧による力をFbとする。また、ブーム重量(ブーム4の自重による重力)のうち、ピンP1とブーム重心G1を結ぶ直線に対して垂直方向の垂直成分をW1aとする。アーム重量(アーム5の自重による重力)のうち、ピンP1とアーム重心G2を結ぶ直線に対して垂直方向の垂直成分をW2aとする。バケット6の重量をW6とし、バケット6に積載された土砂(積載物)の重量をWsとする。
 図7Aに示すように、ピンP7の位置は、ブーム角度及びアーム角度により算出される。即ち、ピンP7の位置は、ブーム角度センサS1及びアーム角度センサS2の検出値に基づいて算出することができる。
 また、図7Bに示すように、ピンP7とバケット重心G3との位置関係(バケット6の基準線L2と、ピンP7とバケット重心G3を結ぶ直線との角度θ4。ピンP7とバケット重心G3との距離D4。)は、既定値である。また、ピンP7と土砂重心Gsとの位置関係(バケット6の基準線L2と、ピンP7と土砂重心Gsを結ぶ直線との角度θ5。ピンP7と土砂重心Gsとの距離D5。)は、例えば、実験的に予め求めてコントローラ30に記憶させておく。即ち、バケット角度センサS3に基づいて、土砂重心Gsとバケット重心G3を推定することができる。
 即ち、重心算出部65は、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3の検出値に基づいて、土砂重心Gsを推定することができる。
 次に、ピンP1回りの各モーメントとブームシリンダ7との釣り合いの式は、以下の式(A1)で表すことができる。
 WsDs+W1aD1+W2aD2+W3D3=FbDc ・・・(A1)
 式(A1)を土砂重量Wsについて展開すると、以下の式(A2)で表すことができる。
 Ws=(FbDc-(W1aD1+W2aD2+W3D3))/Ds ・・・(A2)
 ここで、ブームシリンダ7のシリンダ圧による力Fbは、ブームロッド圧センサS7R及びブームボトム圧センサS7Bの少なくとも1つの検出値より算出される。距離Dc及びブーム重量の垂直成分W1aは、ブーム角度センサS1の検出値より算出される。アーム重量の垂直成分W2a及び距離D2は、ブーム角度センサS1及びアーム角度センサS2のそれぞれの検出値より算出される。距離D1及びバケット重量W3(バケット6の自重による重力)は既知の値である。また、土砂重心Gsとバケット重心G3を推定したことにより、距離Ds、距離D3も推定される。
 よって、土砂重量Wsは、ブームシリンダ7のシリンダ圧の検出値(ブームロッド圧センサS7R、ブームボトム圧センサS7Bの検出値)、ブーム角度(ブーム角度センサS1の検出値)及びアーム角度(アーム角度センサS2の検出値)に基づいて算出することができる。これにより、重量算出部61は、重心算出部65で推定した土砂重心Gsに基づいて土砂重量Wsを算出することができる。
 なお、ショベル100が規定動作時であるか否かは、バケットシリンダ9のパイロット圧の検出値に基づいて、アタッチメントの姿勢を推定し、判定することができる。
 なお、規定動作時におけるバケット6の姿勢は、バケット6の開口面が水平であるものとみなして、土砂重心を推定し、土砂重量を算出するものとして説明したが、これに限られるものではない。例えば、前方を撮像するカメラS6Fでバケット6を撮像し、その画像に基づいて、バケット6の姿勢を推定してもよい。また、カメラS6Fでバケット6を撮像し、その画像に基づいて、バケット6の開口面が水平であると判定した場合に土砂重心の推定及び土砂重量の算出を行ってもよい。
 次に、図8及び図9を参照し、積み込み作業の際にコントローラ30がダンプトラックDTに積み込まれた土砂の重量を算出し且つ表示する機能について説明する。図8及び図9は、ショベル100によるダンプトラックDTへの土砂等の積み込みが行われている作業現場の様子の一例を示す。具体的には、図8は作業現場の上面図である。図9は、図8の矢印AR1で示す方向から作業現場を見たときの図である。図9では、明瞭化のため、ショベル100(バケット6を除く。)の図示が省略されている。また、図8において、実線で描かれたショベル100は掘削動作が終了したときのショベル100の状態を表し、破線で描かれたショベル100は複合動作中のショベル100の状態を表し、一点鎖線で描かれたショベル100は排土動作が開始される前のショベル100の状態を表す。同様に、図9において、実線で描かれたバケット6Aは掘削動作が終了したときのバケット6の状態を表し、破線で描かれたバケット6Bは複合動作中のバケット6の状態を表し、一点鎖線で描かれたバケット6Cは排土動作が開始される前のバケット6の状態を表す。また、図8及び図9における太い破線は、バケット6の背面にある所定点が描く軌跡を表す。
 コントローラ30は、掘削動作が終了したときに、バケット6内の土砂の重量(土砂重量)を算出する。具体的には、コントローラ30における土砂重量処理部60の重量算出部61が土砂重量を算出する。重量算出部61は、例えば、姿勢センサ、シリンダ圧センサ、及び操作圧センサ29等のうちの少なくとも1つの出力に基づいて土砂重量を算出する。図8及び図9に示すこの例では、重量算出部61は、ブームシリンダ7の推力と、上部旋回体3とブーム4とを連結するピンから土砂重心までの距離と、上部旋回体3とブーム4とを連結するピン回りのモーメントの式とに基づいて土砂重量を算出する。姿勢センサは、例えば、ブーム角度センサ、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、及び旋回状態センサS5のうちの少なくとも1つである。
 また、コントローラ30は、姿勢センサ、シリンダ圧センサ、及び操作圧センサ29等のうちの少なくとも1つの出力に基づいて掘削動作が終了したか否かを判定してもよい。
 この例では、バケット6の背面にある所定点が点PT1にあるときに、コントローラ30は、掘削動作が終了したと判定し、重量算出部61は、土砂重量を算出する。この場合、点PT1は、掘削終了点として参照される。
 その後、ショベル100の操作者は、操作装置26を用いて複合操作を行う。この例では、操作者は、右旋回操作を含む複合操作を行う。具体的には、操作者は、ショベル100の姿勢が破線で示すような姿勢になるまで、すなわち、バケット6の背面にある所定点が点PT2に達するまで、ブーム上げ操作及びアーム閉じ操作の少なくとも一方と右旋回操作とを含む複合操作を行う。複合操作にはバケット6の操作が含まれていてもよい。高さHdのダンプトラックDTの荷台とバケット6とが接触しないようにしながら、バケット6を、荷台の上に位置する点PT3まで移動させるためである。この例では、複合操作によってブーム上げ旋回動作が行われる。
 操作者は、基本的には、土砂等がバケット6からこぼれ落ちないようにこの複合操作を実行する。バケット6からこぼれ落ちた土砂等がダンプトラックDTを汚してしまうおそれがあるためである。或いは、バケット6からこぼれ落ちた土砂等が舗装道路を汚してしまうおそれがあるためである。そのため、操作者は、例えば、バケット6を空中に持ち上げた時点で、バケット6の開口面を上に向けた状態でバケット6の開閉動作を複数回行うことでバケット6を振動させることによって、バケット6の前側に偏っている土砂をバケット6の後側に移動させる。バケット6の奥側へ土砂を移動させてバケット6内の土砂を均すことによってブーム上げ旋回動作中に土砂等がバケット6からこぼれ落ちるのを抑制するためである。なお、バケット6の振動は、典型的には、ブーム4、アーム5、及びバケット6の少なくとも1つを僅かに動かすことによって実現される。すなわち、バケット6の振動は、典型的には、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9を僅かに伸縮させることによって実現される。
 その後、操作者は、ショベル100の姿勢が一点鎖線で示すような姿勢になるまで、すなわち、バケット6の背面にある所定点がダンプトラックDTの荷台の上方に位置する点PT3に達するまで、アーム開き操作及び右旋回操作を含む複合操作を行う。複合操作には、ブーム4の操作及びバケット6の操作の少なくとも1つが含まれていてもよい。この場合、点PT3は、排土開始点として参照される。バケット6が点PT1から点PT3まで移動する間に、バケット6内の土砂重量が算出される。土砂重量の算出は、バケット6が点PT1から点PT2まで移動する間に行われる方が好ましい。
 その後、操作者は、排土動作を開始させる。つまり、バケット6内の土砂は、バケット6内からバケット6外のダンプトラックDTの荷台へ落下させられる。この例では、操作者は、バケット開き操作を含む複合操作を行う。具体的には、操作者は、バケット6内の土砂がダンプトラックDTの荷台に排土されるまでバケット開き操作を含む複合操作を行う。
 バケット6はアーム開き動作に対応してバケット開き動作を行ってもよい。これにより、点PT3からダンプトラックDTの前方へバケット6の背面にある所定点は移動する。この際のアーム開き速度及びバケット開き速度の少なくとも一方はバケット6から荷台への土砂の落下の状態に応じて制御されてもよい。
 その後、コントローラ30は、バケット6がダンプトラックDTの荷台の上に位置する場合に、ダンプトラックDTの荷台に積載された土砂の重量の合計である積載量(合計重量)を更新する。具体的には、コントローラ30は、排土動作が終了したときに、ダンプトラックDTの荷台に積載された土砂の重量の合計である積載量(合計重量)を算出する。より具体的には、コントローラ30における土砂重量処理部60の積載量算出部63は、バケット6内の土砂がダンプトラックDTの荷台に排土される毎に、重量算出部61で算出されたバケット6内の土砂の重量を現在の積載量(合計重量)に加算して積載量(合計重量)を更新する。
 この例では、積載量算出部63は、バケット6内の土砂がダンプトラックDTの荷台に排土された場合に、バケット6内の土砂の重量を現在の積載量(合計重量)に加算して積載量(合計重量)を更新する。このように、バケット6がダンプトラックDTの荷台の上に位置することを条件として、ダンプトラックDTの荷台に積載された土砂の重量の合計である積載量(合計重量)は更新される。
 一方で、積載量算出部63は、バケット6内の土砂がダンプトラックDTの荷台以外に排土された場合には、バケット6内の土砂の重量を現在の積載量(合計重量)に加算しない。
 具体的には、積載量算出部63は、カメラS6Fが撮像した画像に基づき、バケット6がダンプトラックDTの荷台の上方にあるときに排土動作が行われたか否かを判定する。より具体的には、積載量算出部63は、カメラS6Fが撮像した画像に基づき、ダンプトラックDTの荷台及びバケット6のそれぞれの位置を認識した上で、バケット6がダンプトラックDTの荷台の上方にあるときに排土動作が行われたか否かを判定する。積載量算出部63は、LIDAR等の他の空間認識装置の出力に基づき、バケット6がダンプトラックDTの荷台の上方にあるときに排土動作が行われたか否かを判定してもよい。
 そして、積載量算出部63は、バケット6がダンプトラックDTの荷台の上方にあるときに排土動作が行われたと判定した場合、バケット6内の土砂の重量を現在の積載量(合計重量)に加算して積載量(合計重量)を更新する。
 一方で、積載量算出部63は、バケット6がダンプトラックDTの荷台の上方にないときに排土動作が行われたと判定した場合には、バケット6内の土砂の重量を現在の積載量(合計重量)に加算しない。例えば、段取り作業の際の排土動作によって地面上に排土された土砂の重量が積載量(合計重量)に加算されてしまうのを防止するためである。
 なお、積載量算出部63は、ダンプトラックDTが土砂の搬出のために移動したと判定した場合には、積載量をリセットするように構成されていてもよい。この例では、積載量算出部63は、カメラS6Fが撮像した画像に基づき、ダンプトラックDTが移動したか否か(走り去ったか否か)を判定する。積載量算出部63は、LIDAR等の他の空間認識装置の出力に基づき、ダンプトラックDTが移動したか否かを判定してもよい。この構成により、ショベル100の操作者は、ダンプトラックDTが作業現場(積み込み位置)に到着する毎に或いは作業現場(積み込み位置)から退出する毎に、積載量をリセットするためにリセットボタンを押すといった煩わしい操作を行う必要はない。積み込み作業が行われる作業現場では、操作者は、ショベルを用いてダンプトラックDTへの積み込み作業を行うだけでなく、ダンプトラックDTが存在しないときには、積み込み易い位置まで土砂を搬送する搬送作業を行う。ダンプトラックDTへの積み込み作業を短時間で終了させるためである。このような搬送作業も掘削動作及び排土動作で構成されているが、搬送作業の場合には、積載量(合計重量)の算出は不要である。上述した機能を用いることで、ショベル100は、積載量(合計重量)の算出が必要な場合に、正確に積載量(合計重量)を算出できる。
 他の実施形態として、積載量算出部63は、掘削動作の終了後で且つ排土動作の開始前にバケット6からこぼれ落ちた土砂(バケット6内から落下した土砂)の重量をこぼれ量として算出してもよい。そして、積載量算出部63は、バケット6内の土砂の重量を現在の積載量(合計重量)に加算して積載量(合計重量)を更新する際に、バケット6内の土砂の重量からこぼれ量を減算してもよい。ダンプトラックDTの荷台に積載されることなくバケット6からこぼれ落ちた土砂の重量が積載量(合計重量)に加算されてしまうのを防止するためである。
 図9に示す例では、積載量算出部63は、バケット6からのこぼれ(土砂の落下)が発生した場合に、空間認識装置の出力に基づき、こぼれた土砂がダンプトラックDTの荷台の内側に落下したのか、ダンプトラックDTの荷台の外側に落下したのかを判定する。例えば、積載量算出部63は、ブーム上げ旋回動作中にバケット6からダンプトラックDTの荷台の外側の地面にこぼれ落ちた土砂SF1の重量をこぼれ量として算出する。このように、ダンプトラックDTの荷台の外側へ土砂が落下した場合には、ダンプトラックDTの荷台の外側へ落下した土砂SF2の重量は、バケット6内の土砂の重量に含まれないようにする。つまり、積載量算出部63は、バケット6内の土砂の重量からこぼれ量を除いた重量を、現在のダンプトラックDTの積載量(合計重量)に加算して積載量(合計重量)を更新する。但し、積載量算出部63は、排土動作が開始される前にバケット6からこぼれ落ちた土砂ではあっても、バケット6からダンプトラックDTの荷台にこぼれ落ちた土砂SF2の重量は、こぼれ量に含まれないようにする。バケット6からダンプトラックDTの荷台にこぼれ落ちた土砂は、ダンプトラックDTの荷台に積載された土砂であることに変わりはないためである。この場合、積載量算出部63は、こぼれ量の算出を省略してもよい。
 このように、積載量算出部63は、バケット6からこぼれた土砂がダンプトラックDTの荷台の内側へ落下した場合(土砂SF2の場合)には、排土動作が開始される前に算出されたバケット6内の土砂の重量を現在のダンプトラックDTの積載量(合計重量)に加算して積載量(合計重量)を更新する。
 具体的には、積載量算出部63は、カメラS6Fが撮像した画像に基づき、バケット6から土砂がこぼれ落ちたか否かを判定する。そして、バケット6から土砂がこぼれ落ちたと判定した場合、積載量算出部63は、カメラS6Fが撮像した画像に基づき、バケット6からこぼれ落ちた土砂の体積を算出する。積載量算出部63は、バケット6からこぼれ落ちた土砂が空中にあるときの土砂の画像(第1画像)に基づいて土砂の体積を算出してもよく、その土砂が地面に落ちた場合には、その土砂が地面に落ちた後の土砂の画像(第2画像)に基づいて土砂の体積を算出してもよく、第1画像及び第2画像の双方に基づいて土砂の体積を算出してもよい。そして、積載量算出部63は、算出した体積の値に土砂の密度を乗じて土砂の重量(こぼれ量)を導き出す。土砂の密度は、事前に入力された値であってもよく、姿勢センサ、シリンダ圧センサ、及び操作圧センサ29等のうちの少なくとも1つの出力に基づいて動的に算出される値であってもよい。また、積載量算出部63は、LIDAR等の他の空間認識装置の出力に基づき、バケット6から土砂がこぼれ落ちたか否かを判定してもよく、バケット6からこぼれ落ちた土砂の体積を算出してもよい。
 また、積載量算出部63は、排土動作が開始される前だけでなく、排土動作中においても、バケット6から落下した土砂がダンプトラックDTの荷台の外側へ落下したか、荷台の内側へ落下したかを判定してもよい。排土動作中において、ダンプトラックDTの荷台の外側へ土砂が落下した場合にも、ダンプトラックDTの荷台の外側へ落下した土砂の重量は、こぼれ量に含まれないようにする。
 また、バケット6から土砂がこぼれ落ちたと積載量算出部63が判定した場合、重量算出部61は、バケット6内の土砂の重量(土砂重量)を算出し直してもよい。例えば、重量算出部61は、バケット6が排土開始点である点PT3に達した時点で、土砂重量を再計算してもよい。この場合、重量算出部61は、例えば、姿勢センサ、シリンダ圧センサ、及び操作圧センサ29等のうちの少なくとも1つの出力に基づいて土砂重量を算出してもよい。
 他の実施形態として、重量算出部61は、カメラS6Fが撮像した画像に基づき、バケット6内の土砂の重量(土砂重量)を算出してもよい。この場合、姿勢センサ、シリンダ圧センサ、及び操作圧センサ29等のうちの少なくとも1つの出力に基づく土砂重量の算出は省略されてもよい。例えば、重量算出部61は、掘削動作が終了したと判定された場合に、カメラS6Fが撮像したバケット6内の土砂の画像に基づき、バケット6内に入っている土砂の体積を算出する。そして、重量算出部61は、算出した体積の値に土砂の密度を乗じて土砂の重量(土砂重量)を導き出す。土砂の密度は、事前に入力された値であってもよく、姿勢センサ、シリンダ圧センサ、及び操作圧センサ29等のうちの少なくとも1つの出力に基づいて動的に算出される値であってもよい。また、重量算出部61は、LIDAR等の他の空間認識装置の出力に基づき、バケット6内の土砂の重量(土砂重量)を算出してもよい。
 上述のように、本発明の実施形態に係るショベル100は、下部走行体1と、下部走行体1に旋回可能に搭載される上部旋回体3と、上部旋回体3に取り付けられるアタッチメントと、アタッチメントを構成するバケット6と、制御装置としてのコントローラ30とを備えている。そして、コントローラ30は、撮像装置S6の出力と、バケット6内の物(土砂等)の重量とに基づき、バケット6内から運搬車両としてのダンプトラックDTの荷台に移された物(土砂等)の重量を算出するように構成されている。撮像装置S6は、空間認識装置の一例である。空間認識装置は、上部旋回体3の周囲の空間を認識するための装置であり、本実施形態では、上部旋回体3に取り付けられている。但し、空間認識装置は、作業現場に設置されたポール等のショベル100の外部にある部材に取り付けられていてもよい。
 この構成により、コントローラ30は、バケット6がダンプトラックDTの荷台の上に持ち上げられたか否か、又は、掘削動作が終了した時点から排土動作が開始する時点までの間にバケット6から土砂がこぼれ落ちたか否か等を認識できる。そのため、コントローラ30は、ダンプトラックDTに積載された積載物の量である積載量をより正確に算出できる。
 コントローラ30は、ダンプトラックDTの荷台の上で排土動作が行われたときに、バケット6内の物(土砂等)の重量を、ダンプトラックDTの荷台に積み込まれた物の重量に加算するように構成されていてもよい。
 この構成により、コントローラ30は、ダンプトラックDTの荷台の上以外の位置で排土動作が行われたときのバケット6内の土砂の重量が積載量に加算されてしまうのを防止できる。例えば、コントローラ30は、段取り作業の際の排土動作によって地面上に排土された土砂の重量が積載量に加算されてしまうのを防止できる。コントローラ30は、積み込み作業の際に行われた排土動作と、段取り作業の際に行われた排土動作とを正確に区別できるためである。
 コントローラ30は、空間認識装置の出力に基づいてバケット6内の物(土砂等)の重量を算出してもよく、空間認識装置とは別のセンサの出力に基づいてバケット6内の物(土砂等)の重量を算出してもよい。また、コントローラ30は、空間認識装置を含む2つ以上のセンサの出力に基づいてバケット6内の物(土砂等)の重量を算出してもよい。例えば、コントローラ30は、撮像装置S6が撮像した画像に基づいてバケット6内の物(土砂等)の重量を算出してもよく、姿勢センサ、シリンダ圧センサ、及び操作圧センサ29等のうちの少なくとも1つの出力に基づいてバケット6内の物(土砂等)の重量を算出してもよい。空間認識装置の出力に基づいてバケット6内の物(土砂等)の重量を算出する場合、コントローラ30は、空間認識装置の出力のみに基づき、バケット6内の土砂の重量(現重量)、ダンプトラックDTに積み込まれた土砂の重量(累積重量)、ダンプトラックDTの最大積載重量、及び、残重量(最大積載重量と累積重量との差)を算出できる。
 コントローラ30は、空間認識装置の出力に基づき、ダンプトラックDTの荷台に積み込まれた土砂の重量のリセットの要否を判定するように構成されていてもよい。例えば、コントローラ30は、空間認識装置としての撮像装置S6が撮像した画像に基づき、積み込み位置に停車していたダンプトラックDTが走り去ったことを認識したときに、累積重量をゼロにリセットしてもよい。
 この構成により、コントローラ30は、ショベル100の操作性を向上させることができる。コントローラ30は、累積重量をリセットするためにリセットボタンを押すといった煩わしい操作をショベル100の操作者に強いることなく、累積重量を自動的にリセットできるためである。その結果、この構成は、ショベル100の操作者の作業効率を高めることができる。
 コントローラ30は、空間認識装置の出力に基づき、バケット6からこぼれ落ちた土砂の有無を判定してもよい。例えば、コントローラ30は、空間認識装置としての撮像装置S6が撮像した画像に基づき、バケット6からこぼれ落ちた土砂の有無を判定してもよい。
 そして、コントローラ30は、例えば、バケット6からこぼれ落ちた土砂が存在すると判定した場合、バケット6が排土開始点である点PT3(図8及び図9参照。)に達した時点で、土砂重量を再計算してもよい。
 この構成により、コントローラ30は、ダンプトラックDTに積み込まれた土砂の重量である積載量をより正確に算出することができる。
 コントローラ30は、空間認識装置の出力に基づき、バケット6からダンプトラックDTの荷台の外にこぼれ落ちた土砂の重量を算出できるように構成されていてもよい。例えば、コントローラ30は、空間認識装置としての撮像装置S6が撮像した画像に基づき、バケット6からこぼれ落ちた土砂の体積を推定し、推定した体積に密度を乗じて土砂の重量を算出するように構成されていてもよい。
 この場合、コントローラ30は、例えば、予め入力された土砂特性(密度等)と空間認識装置により取得した情報から判定されるこぼれ落ちる土砂の状態(面積、若しくは、体積等)とに基づきこぼれ落ちる土砂の重量を推定することができる。コントローラ30は、空間認識装置により判定される土砂の状態と土砂の重量との関係を予め設定したテーブル又は学習モデル等を用いてこぼれ落ちる土砂の重量を算出してもよい。学習モデルは、例えば、土砂の状態に関連付けられる重量算出条件を学習するために用いられる。学習モデルは、例えば、空間認識装置が取得した土砂の撮像画像等に基づいて空間認識装置が判定したこぼれ落ちる土砂の状態(形状情報等)と、記憶装置に予め記憶されている判定データとしての「土砂の重量」を表す参照情報との組み合わせに基づいて作成されるデータセットに従って、こぼれ落ちる土砂の状態と重量との関係性(重量算出条件)を学習する。学習モデルの学習工程は、例えば、ショベル100の外部にある管理装置により予め実行される。この場合、管理装置において学習工程が実行された学習モデルは、ショベル100へ事前に送信される。コントローラ30は、例えば、その学習モデルを用いて、判定したこぼれ落ちる土砂の状態に対応したこぼれ落ちる土砂の重量を求め、求めた土砂の重量を用いてダンプトラックDTの荷台内の土砂の重量を算出する。
 また、コントローラ30は、バケット6とダンプトラックDTの荷台との間の相対位置関係に基づき、バケット6からこぼれ落ちた土砂が荷台の上に落ちたのか或いは荷台の外に落ちたのかを判定してもよい。
 そして、コントローラ30は、ダンプトラックDTの荷台に積み込まれた土砂の重量から、バケット6から荷台の外にこぼれ落ちた土砂の重量を差し引くことにより、ダンプトラックDTの荷台に積み込まれた物の重量を更新(補正)できるように構成されていてもよい。
 この構成により、コントローラ30は、バケット6から荷台の外にこぼれ落ちた土砂の重量が積載量に加算されてしまうのを防止でき、積載量をより正確に算出することができる。
 コントローラ30は、ダンプトラックDTの荷台の上にバケット6が位置すると、バケット6内の土砂の重量を、ダンプトラックDTの荷台に積み込まれた土砂の重量に加算するように構成されていてもよい。
 或いは、コントローラ30は、ダンプトラックDTの荷台の上へバケット6内の土砂がバケット6から落下した場合に、バケット6内の土砂の重量を、ダンプトラックDTの荷台に積み込まれた土砂の重量に加算するように構成されていてもよい。
 これらの構成により、コントローラ30は、例えば、段取り作業の際の排土動作によって地面上に排土された土砂の重量が積載量(合計重量)に加算されてしまうのを防止できる。
 コントローラ30は、バケット6内の土砂の落下がバケット6からダンプトラックDTの荷台の上への落下か、荷台の外への落下かを判定するように構成されていてもよい。
 この構成により、コントローラ30は、バケット6からダンプトラックDTの荷台の外に落下した土砂の重量が積載量(合計重量)に加算されてしまうのを防止でき、且つ、バケット6からダンプトラックDTの荷台の上に落下した土砂の重量を適切に積載量(合計重量)に加算できる。
 コントローラ30は、バケット6内の物の落下が荷台の外への落下の場合には、その後、バケット6内の重量を算出するように構成されていてもよい。例えば、コントローラ30は、バケット6内の物の落下が荷台の外への落下であると判定した場合には、その判定後で且つ排土動作の前にバケット6内の重量を算出し直すように構成されていてもよい。土砂がバケット6から落下する前に取得した情報ではなく、土砂がバケット6から落下した後に取得した情報に基づいてバケット6内に残っている土砂の重量を算出するためである。
 更に、コントローラ30は、空間認識装置により、荷台内に排土された土砂の形状を取得してもよい。この場合、コントローラ30は、前回の排土動作時の荷台内に排土された土砂の形状に基づいて、前回の排土動作時のアーム開き速度及びバケット開き速度が適切かどうかを判断することができる。例えば、コントローラ30は、ショベル100に近い方が高い形状を荷台内の土砂が有する場合には、アーム開き速度に対してバケット開き速度が速いと判定できる。また、コントローラ30は、ショベル100から遠い方が高い形状を荷台内の土砂が有する場合には、アーム開き速度に対してバケット開き速度が遅いと判定できる。このため、コントローラ30は、例えば、荷台内の土砂の形状に基づき、アーム開き速度に対してバケット開き速度を制御できる。このようにして、コントローラ30は、排土動作により荷台内の土砂の形状を均一な形状にすることができる。また、コントローラ30は、荷台内の場所毎の土砂の高低差が所定の高さ以上の場合には、均しが必要と判断してもよい。この場合、コントローラ30は、例えば、次の排土動作時に、積み込んだ土砂の凸部を均すため、積み込んだ土砂の凸部にバケット6の背面を当接させるべく目標軌道の高さが土砂の凸部よりも低くなるように目標軌道を設定する。これにより、コントローラ30は、積み込んだ土砂の凸部にバケット6の背面を当接させつつ、バケット6の開き動作を実行することができる。したがって、ショベル100は、排土動作を行いつつ、荷台内の土砂を均すことができる。
 コントローラ30は、この時のバケット開き速度とアーム開き速度を荷台内の土砂形状に基づく学習モデルにより制御してもよい。学習モデルは、例えば、荷台内の土砂形状に関連付けられる制御条件を学習する。具体的には、学習モデルは、例えば、空間認識装置が取得した荷台内の土砂の撮像画像に基づいて判定される荷台内の土砂の状態(土砂形状情報等)と、記憶装置に予め記憶されている判定データとしての「好ましいアタッチメントの開閉状態」を表す参照情報との組み合わせに基づいて作成されるデータセットに従って、荷台内の土砂の状態とアーム5及びバケット6のそれぞれの開状態との関係(アタッチメント開き制御条件)を学習する。学習モデルの学習工程は、例えば、ショベル100と無線通信を介して接続された管理装置において実行されてもよい。この場合、管理装置において学習工程が実行された学習モデルは、ショベル100へ送信される。コントローラ30は、その学習モデルを用いて、判定した荷台内の土砂の状態に対応した好ましいアタッチメントの開き制御状態を求め、求めたアタッチメントの開き制御状態になるようにアクチュエータを制御する。このようにして、コントローラ30は、荷台内へ排土した土砂が荷台からダンプトラックDTの外へ滑り落ちないように、アタッチメントを制御して荷台内の土砂の形状を変えることができる。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。前述した各具体例が備える各要素及びその配置、条件、及び形状等は、例示したものに限定されるわけではなく適宜変更され得る。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わされてもよい。
 例えば、上述の実施形態では、コントローラ30は、ショベル100に搭載されているが、ショベル100の外部に設置されていてもよい。この場合、コントローラ30は、例えば、遠隔操作室に設置された制御装置であってもよい。
 本願は、2020年5月25日に出願した日本国特許出願2020-090916号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1L、1R・・・走行油圧モータ 2・・・旋回機構 2A・・・旋回油圧モータ 2A1・・・第1ポート 2A2・・・第2ポート 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13・・・レギュレータ 14・・・メインポンプ 15・・・パイロットポンプ 18L、18R・・・絞り 19L、19R・・・制御圧センサ 21、22・・・油圧センサ 23、24・・・リリーフ弁 26・・・操作装置 28・・・吐出圧センサ 29、29A~29C・・・操作圧センサ 30・・・コントローラ 31AL、31AR、31BL、31BR、31CL、31CR・・・比例弁 32AL、32AR、32BL、32BR、32CL、32CR・・・シャトル弁 33AL、33AR、33BL、33BR、33CL、33CR・・・比例弁 40・・・表示装置 42・・・入力装置 43・・・音声出力装置 47・・・記憶装置 50・・・マシンガイダンス部 51・・・位置算出部 52・・・距離算出部 53・・・情報伝達部 54・・・自動制御部 55・・・旋回角度算出部 56・・・相対角度算出部 60・・・土砂重量処理部 61・・・重量算出部 62・・・最大積載量検出部 63・・・積載量算出部 64・・・残積載量算出部 65・・・重心算出部 100・・・ショベル 171~176・・・制御弁 DT・・・ダンプトラック PS・・・測位装置 S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回状態センサ S6・・・撮像装置 S6B、S6F、S6L、S6R・・・カメラ S7B・・・ブームボトム圧センサ S7R・・・ブームロッド圧センサ S8B・・・アームボトム圧センサ S8R・・・アームロッド圧センサ S9B・・・バケットボトム圧センサ S9R・・・バケットロッド圧センサ T1・・・通信装置

Claims (11)

  1.  下部走行体と、
     前記下部走行体に旋回可能に搭載される上部旋回体と、
     前記上部旋回体に取り付けられるアタッチメントと、
     前記アタッチメントを構成するバケットと、
     前記上部旋回体の周囲の空間を認識する空間認識装置の出力と前記バケット内の物の重量とに基づき、前記バケット内から運搬車両の荷台に移された物の重量を算出する制御装置と、を備える、
     ショベル。
  2.  前記制御装置は、前記運搬車両の荷台の上で排土動作が行われると、前記バケット内の物の重量を、前記運搬車両の荷台に積み込まれた物の重量に加算する、
     請求項1に記載のショベル。
  3.  前記バケット内の物の重量は、前記空間認識装置とは別のセンサの出力に基づいて算出される、
     請求項1に記載のショベル。
  4.  前記制御装置は、前記空間認識装置の出力に基づき、前記運搬車両の荷台に積み込まれた物の重量のリセットの要否を判定する、
     請求項1に記載のショベル。
  5.  前記制御装置は、前記空間認識装置の出力に基づき、掘削動作が終了してから排土動作が開始されるまでの間に、前記バケットからこぼれ落ちた物の有無を判定する、
     請求項1に記載のショベル。
  6.  前記制御装置は、前記運搬車両の荷台に積み込まれた物の重量から、前記バケットから前記運搬車両の荷台の外にこぼれ落ちた物の重量を差し引くことにより、前記運搬車両の荷台に積み込まれた物の重量を更新する、
     請求項5に記載のショベル。
  7.  前記制御装置は、前記運搬車両の荷台の上に前記バケットが位置すると、前記バケット内の物の重量を、前記運搬車両の荷台に積み込まれた物の重量に加算する、
     請求項1に記載のショベル。
  8.  前記制御装置は、前記運搬車両の荷台の上へ前記バケット内の物が前記バケットから落下した場合に、前記バケット内の物の重量を、前記運搬車両の荷台に積み込まれた物の重量に加算する、
     請求項1に記載のショベル。
  9.  前記制御装置は、前記バケット内の物の落下が前記バケットから前記運搬車両の荷台の上への落下か、前記荷台の外への落下かを判定する、
     請求項1に記載のショベル。
  10.  前記制御装置は、前記バケット内の物の落下が前記荷台の外への落下の場合には、その後、前記バケット内の重量を算出する、
     請求項9に記載のショベル。
  11.  下部走行体と、前記下部走行体に旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、前記アタッチメントを構成するバケットと、を備えるショベルに用いられるショベル用のシステムであって、
     前記上部旋回体の周囲の空間を認識する空間認識装置の出力と前記バケット内の物の重量とに基づき、前記バケット内から運搬車両の荷台に移された物の重量を算出する制御装置を備える、
     ショベル用のシステム。
PCT/JP2021/019682 2020-05-25 2021-05-24 ショベル及びショベル用のシステム WO2021241526A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022526547A JPWO2021241526A1 (ja) 2020-05-25 2021-05-24
KR1020227035323A KR20230015315A (ko) 2020-05-25 2021-05-24 쇼벨 및 쇼벨용의 시스템
CN202180029186.1A CN115427639A (zh) 2020-05-25 2021-05-24 挖土机及挖土机用的系统
EP21813056.5A EP4159932A4 (en) 2020-05-25 2021-05-24 EXCAVATOR AND EXCAVATOR SYSTEM
US18/056,789 US20230078047A1 (en) 2020-05-25 2022-11-18 Excavator and system for excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-090916 2020-05-25
JP2020090916 2020-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/056,789 Continuation US20230078047A1 (en) 2020-05-25 2022-11-18 Excavator and system for excavator

Publications (1)

Publication Number Publication Date
WO2021241526A1 true WO2021241526A1 (ja) 2021-12-02

Family

ID=78744395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019682 WO2021241526A1 (ja) 2020-05-25 2021-05-24 ショベル及びショベル用のシステム

Country Status (6)

Country Link
US (1) US20230078047A1 (ja)
EP (1) EP4159932A4 (ja)
JP (1) JPWO2021241526A1 (ja)
KR (1) KR20230015315A (ja)
CN (1) CN115427639A (ja)
WO (1) WO2021241526A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200370282A1 (en) * 2016-01-29 2020-11-26 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel and autonomous aerial vehicle flying around shovel
WO2023140559A1 (ko) * 2022-01-18 2023-07-27 현대두산인프라코어(주) 웨잉 값을 산출하는 방법 및 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102687696B1 (ko) * 2018-10-03 2024-07-22 스미도모쥬기가이고교 가부시키가이샤 쇼벨

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241300A (ja) * 2007-03-26 2008-10-09 Komatsu Ltd 油圧ショベルの作業量計測方法および作業量計測装置
JP2016089559A (ja) * 2014-11-10 2016-05-23 日立建機株式会社 建設機械
WO2019031551A1 (ja) 2017-08-08 2019-02-14 住友建機株式会社 ショベル及びショベルの支援装置
WO2019117166A1 (ja) * 2017-12-11 2019-06-20 住友建機株式会社 ショベル
JP2019157362A (ja) * 2018-03-07 2019-09-19 日立建機株式会社 作業機械
WO2019189013A1 (ja) * 2018-03-26 2019-10-03 住友建機株式会社 ショベル
JP2020020155A (ja) * 2018-07-31 2020-02-06 株式会社小松製作所 作業機械を制御するためのシステム及び方法
WO2020101006A1 (ja) * 2018-11-14 2020-05-22 住友重機械工業株式会社 ショベル、ショベルの制御装置
JP2020090916A (ja) 2018-12-04 2020-06-11 トヨタ自動車株式会社 アクセルペダルの反力制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7865285B2 (en) * 2006-12-27 2011-01-04 Caterpillar Inc Machine control system and method
WO2017033991A1 (ja) * 2015-08-26 2017-03-02 住友建機株式会社 ショベルの計測装置
DE102020206368A1 (de) * 2020-05-20 2021-11-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum automatisierten Entfernen von an einem Ladewerkzeug einer Lademaschine anhaftendem Material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241300A (ja) * 2007-03-26 2008-10-09 Komatsu Ltd 油圧ショベルの作業量計測方法および作業量計測装置
JP2016089559A (ja) * 2014-11-10 2016-05-23 日立建機株式会社 建設機械
WO2019031551A1 (ja) 2017-08-08 2019-02-14 住友建機株式会社 ショベル及びショベルの支援装置
WO2019117166A1 (ja) * 2017-12-11 2019-06-20 住友建機株式会社 ショベル
JP2019157362A (ja) * 2018-03-07 2019-09-19 日立建機株式会社 作業機械
WO2019189013A1 (ja) * 2018-03-26 2019-10-03 住友建機株式会社 ショベル
JP2020020155A (ja) * 2018-07-31 2020-02-06 株式会社小松製作所 作業機械を制御するためのシステム及び方法
WO2020101006A1 (ja) * 2018-11-14 2020-05-22 住友重機械工業株式会社 ショベル、ショベルの制御装置
JP2020090916A (ja) 2018-12-04 2020-06-11 トヨタ自動車株式会社 アクセルペダルの反力制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159932A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200370282A1 (en) * 2016-01-29 2020-11-26 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel and autonomous aerial vehicle flying around shovel
US11492783B2 (en) * 2016-01-29 2022-11-08 Sumitomo(S.H.I) Construction Machinery Co., Ltd. Shovel and autonomous aerial vehicle flying around shovel
WO2023140559A1 (ko) * 2022-01-18 2023-07-27 현대두산인프라코어(주) 웨잉 값을 산출하는 방법 및 장치

Also Published As

Publication number Publication date
US20230078047A1 (en) 2023-03-16
CN115427639A (zh) 2022-12-02
EP4159932A4 (en) 2023-12-06
EP4159932A1 (en) 2023-04-05
KR20230015315A (ko) 2023-01-31
JPWO2021241526A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2021241526A1 (ja) ショベル及びショベル用のシステム
JP7301875B2 (ja) ショベル、ショベルの制御装置
WO2021006349A1 (ja) ショベル
US12104353B2 (en) Excavator and control apparatus for excavator
WO2020203851A1 (ja) ショベル
JP2020165259A (ja) ショベル
EP3951085A1 (en) Excavator and construction system
WO2022124319A1 (ja) 作業機械及び作業機械用の制御装置
CN112411662B (zh) 挖土机
WO2022210173A1 (ja) ショベルの表示装置、ショベル
CN113677855A (zh) 挖土机及挖土机的控制装置
US20240175243A1 (en) Shovel control device and shovel
JP2020165253A (ja) ショベル
JP7285679B2 (ja) ショベル
JP2021156078A (ja) ショベル
JP2021156080A (ja) 施工支援システム及び施工支援装置
WO2022210143A1 (ja) ショベルの表示装置、ショベル、ショベルの支援装置
JP7420619B2 (ja) ショベル
JP2021188260A (ja) ショベル
JP7420618B2 (ja) ショベル
JP2020165256A (ja) ショベル
JP7395403B2 (ja) 検出装置及びショベル
JP2021156081A (ja) 作業機械
JP2021188432A (ja) ショベル
JP2022152393A (ja) ショベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813056

Country of ref document: EP

Effective date: 20230102