WO2022124319A1 - 作業機械及び作業機械用の制御装置 - Google Patents

作業機械及び作業機械用の制御装置 Download PDF

Info

Publication number
WO2022124319A1
WO2022124319A1 PCT/JP2021/045018 JP2021045018W WO2022124319A1 WO 2022124319 A1 WO2022124319 A1 WO 2022124319A1 JP 2021045018 W JP2021045018 W JP 2021045018W WO 2022124319 A1 WO2022124319 A1 WO 2022124319A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
torque
arm
bucket
calculation unit
Prior art date
Application number
PCT/JP2021/045018
Other languages
English (en)
French (fr)
Inventor
泰広 山本
一則 平沼
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN202180071103.5A priority Critical patent/CN116438356A/zh
Priority to JP2022568298A priority patent/JPWO2022124319A1/ja
Priority to EP21903418.8A priority patent/EP4257755A1/en
Publication of WO2022124319A1 publication Critical patent/WO2022124319A1/ja
Priority to US18/316,789 priority patent/US20230279634A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/42Gripping members engaging only the external or internal surfaces of the articles
    • B66C1/44Gripping members engaging only the external or internal surfaces of the articles and applying frictional forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/42Gripping members engaging only the external or internal surfaces of the articles
    • B66C1/58Gripping members engaging only the external or internal surfaces of the articles and deforming the articles, e.g. by using gripping members such as tongs or grapples
    • B66C1/585Log grapples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/68Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles mounted on, or guided by, jibs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C3/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materials; Grabs
    • B66C3/005Grab supports, e.g. articulations; Oscillation dampers; Orientation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • This disclosure relates to work machines.
  • the measured value of the angle sensor that detects the relative angle between the upper swing body and the boom the measured value of the angle sensor that detects the relative angle between the boom and the arm, and the pressure of the hydraulic oil supplied to the boom cylinder.
  • a shovel that calculates the sediment weight in the bucket based on the measured value of the pressure sensor that detects the pressure and the measured value of the pressure sensor that detects the pressure of the hydraulic oil supplied to the arm cylinder is disclosed (Patent). See Document 1).
  • the pressure of the actuator fluctuates during the attachment operation, for example, during the boom raising operation. Therefore, even if the sediment weight in the bucket is constant, the sediment weight calculated due to the disturbance may fluctuate.
  • a boom there is at least a boom, an arm attached to the tip of the boom, an end attachment attached to the tip of the arm, and an attachment attached to an upper swing body.
  • the control device compensates for the torque to rotate the boom based on at least one of the centrifugal force of the arm and the inertial force of the arm, and is based on the compensated torque.
  • a work machine is provided that calculates the weight of the transported object to be conveyed by the attachment.
  • FIG. 1 is a side view of the excavator 100 as an excavator according to the first embodiment.
  • the excavator 100 is located on a horizontal plane facing the uphill slope ES to be constructed, and is an example of the target construction surface to be described later, which is an uphill slope BS (that is, after construction on the uphill slope ES). Slope shape) is also described.
  • the uphill slope ES to be constructed is provided with a cylindrical body (not shown) indicating the normal direction of the uphill slope BS, which is the target construction surface.
  • the shovel 100 includes a lower traveling body 1, an upper rotating body 3 that is swivelably mounted on the lower traveling body 1 via a turning mechanism 2, and a boom 4 that constitutes an attachment (working machine). It includes an arm 5, a bucket 6, and a cabin 10.
  • the lower traveling body 1 travels the excavator 100 by hydraulically driving a pair of left and right crawlers with traveling hydraulic motors 1L and 1R (see FIG. 2 described later), respectively. That is, the pair of traveling hydraulic motors 1L and 1R (an example of the traveling motor) drive the lower traveling body 1 (crawler) as the driven portion.
  • the upper swing body 3 turns with respect to the lower traveling body 1 by being driven by the swing hydraulic motor 2A (see FIG. 2 described later). That is, the swivel hydraulic motor 2A is a swivel drive unit that drives the upper swivel body 3 as a driven unit, and can change the direction of the upper swivel body 3.
  • the upper swing body 3 may be electrically driven by an electric motor (hereinafter, "swivel motor”) instead of the swing hydraulic motor 2A. That is, the swivel motor is a swivel drive unit that drives the upper swivel body 3 as a non-drive unit, like the swivel hydraulic motor 2A, and can change the direction of the upper swivel body 3.
  • swivel motor is a swivel drive unit that drives the upper swivel body 3 as a non-drive unit, like the swivel hydraulic motor 2A, and can change the direction of the upper swivel body 3.
  • the boom 4 is pivotally attached to the center of the front portion of the upper swing body 3 so as to be vertically rotatable
  • the arm 5 is pivotally attached to the tip of the boom 4 so as to be vertically rotatable
  • the tip of the arm 5 is pivotally attached to the tip of the arm 5 as an end attachment.
  • the bucket 6 is pivotally attached so as to be rotatable up and down.
  • the boom 4, arm 5, and bucket 6 are each hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 as hydraulic actuators, respectively.
  • the bucket 6 is an example of an end attachment, and the tip of the arm 5 has another end attachment, for example, a slope bucket, a dredging bucket, or a breaker, instead of the bucket 6 depending on the work content or the like.
  • a harvester including a lifting magnet, a grapple, a fork, a chainsaw and the like may be attached.
  • the cabin 10 is a driver's cab on which the operator is boarded, and is mounted on the front left side of the upper swivel body 3.
  • FIG. 2 is a diagram schematically showing an example of the configuration of the shovel 100 according to the first embodiment.
  • FIG. 2 the mechanical power system, the hydraulic oil line, the pilot line, and the electric control system are shown by double lines, solid lines, broken lines, and dotted lines, respectively.
  • the drive system of the excavator 100 according to the first embodiment includes an engine 11, a regulator 13, a main pump 14, and a control valve 17. Further, as described above, the hydraulic drive system of the excavator 100 according to the first embodiment is a traveling hydraulic motor 1L that hydraulically drives each of the lower traveling body 1, the upper turning body 3, the boom 4, the arm 5, and the bucket 6. 1R includes hydraulic actuators such as a swivel hydraulic motor 2A, a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9.
  • the engine 11 is the main power source in the hydraulic drive system, and is mounted on the rear part of the upper swing body 3, for example. Specifically, the engine 11 rotates constantly at a preset target rotation speed under direct or indirect control by a controller 30, which will be described later, to drive the main pump 14 and the pilot pump 15.
  • the engine 11 is, for example, a diesel engine that uses light oil as fuel.
  • the regulator 13 controls the discharge amount of the main pump 14. For example, the regulator 13 adjusts the angle (tilt angle) of the swash plate of the main pump 14 in response to a control command from the controller 30.
  • the regulator 13 includes regulators 13L and 13R, for example, as described later.
  • the main pump 14 is mounted on the rear part of the upper swing body 3 like the engine 11, and supplies hydraulic oil to the control valve 17 through the high-pressure hydraulic line.
  • the main pump 14 is driven by the engine 11 as described above.
  • the main pump 14 is, for example, a variable displacement hydraulic pump, and as described above, the stroke length of the piston is adjusted by adjusting the tilt angle of the swash plate by the regulator 13 under the control of the controller 30, and the discharge is performed.
  • the flow rate (discharge pressure) is controlled.
  • the main pump 14 includes, for example, the main pumps 14L and 14R as described later.
  • the control valve 17 is, for example, a hydraulic control device mounted in the central portion of the upper swing body 3 and controls the hydraulic drive system according to the operation of the operating device 26 by the operator. As described above, the control valve 17 is connected to the main pump 14 via the high-pressure hydraulic line, and the hydraulic oil supplied from the main pump 14 is supplied to the hydraulic actuator (running hydraulic motor 1L) according to the operating state of the operating device 26. , 1R, swivel hydraulic motor 2A, boom cylinder 7, arm cylinder 8, and bucket cylinder 9) are selectively supplied. Specifically, the control valve 17 includes control valves 171 to 176 that control the flow rate and the flow direction of the hydraulic oil supplied from the main pump 14 to each of the hydraulic actuators.
  • control valve 171 corresponds to the traveling hydraulic motor 1L
  • control valve 172 corresponds to the traveling hydraulic motor 1R
  • control valve 173 corresponds to the turning hydraulic motor 2A
  • control valve 174 corresponds to the bucket cylinder 9
  • control valve 175 corresponds to the boom cylinder 7
  • the control valve 176 corresponds to the arm cylinder 8.
  • control valve 175 includes, for example, control valves 175L and 175R as described later
  • control valve 176 includes, for example, control valves 176L and 176R as described later. Details of the control valves 171 to 176 will be described later.
  • the operation system of the excavator 100 includes the pilot pump 15 and the operation device 26. Further, the operation system of the excavator 100 includes a shuttle valve 32 as a configuration related to a machine control function by the controller 30, which will be described later.
  • the pilot pump 15 is mounted on the rear part of the upper swing body 3, for example, and supplies the pilot pressure to the operating device 26 via the pilot line.
  • the pilot pump 15 is, for example, a fixed-capacity hydraulic pump, and is driven by the engine 11 as described above.
  • the operation device 26 is provided near the cockpit of the cabin 10, and is an operation input means for the operator to operate various operation elements (lower traveling body 1, upper turning body 3, boom 4, arm 5, bucket 6, etc.). Is. In other words, the operating device 26 operates the hydraulic actuators (that is, traveling hydraulic motors 1L, 1R, swivel hydraulic motor 2A, boom cylinder 7, arm cylinder 8, bucket cylinder 9, etc.) in which the operator drives each operating element. It is an operation input means for performing.
  • the operating device 26 is connected to the control valve 17 directly through the pilot line on the secondary side or indirectly via the shuttle valve 32 described later provided on the pilot line on the secondary side.
  • the operating device 26 includes, for example, a lever device for operating the arm 5 (arm cylinder 8). Further, the operating device 26 includes, for example, lever devices 26A to 26C for operating each of the boom 4 (boom cylinder 7), the bucket 6 (bucket cylinder 9), and the upper swing body 3 (swing hydraulic motor 2A) (FIG. 4A). -See FIG. 4C). Further, the operating device 26 includes, for example, a lever device and a pedal device for operating each of the pair of left and right crawlers (traveling hydraulic motors 1L, 1R) of the lower traveling body 1.
  • the shuttle valve 32 has two inlet ports and one outlet port, and outputs the hydraulic oil having the higher pilot pressure of the pilot pressures input to the two inlet ports to the outlet port.
  • one of the two inlet ports is connected to the operating device 26 and the other is connected to the proportional valve 31.
  • the outlet port of the shuttle valve 32 is connected through a pilot line to the pilot port of the corresponding control valve in the control valve 17 (see FIGS. 4A-4C for details). Therefore, the shuttle valve 32 can make the higher of the pilot pressure generated by the operating device 26 and the pilot pressure generated by the proportional valve 31 act on the pilot port of the corresponding control valve.
  • the controller 30, which will be described later, outputs a pilot pressure higher than the pilot pressure on the secondary side output from the operating device 26 from the proportional valve 31, so that the corresponding control is performed regardless of the operation of the operating device 26 by the operator. It is possible to control the valve and control the operation of various operating elements.
  • the shuttle valve 32 includes, for example, shuttle valves 32AL, 32AR, 32BL, 32BR, 32CL, 32CR as described later.
  • the operating device 26 (left operating lever, right operating lever, left traveling lever, and right traveling lever) may be an electric type that outputs an electric signal instead of a hydraulic pilot type that outputs a pilot pressure.
  • the electric signal from the operating device 26 is input to the controller 30, and the controller 30 controls each of the control valves 171 to 176 in the control valve 17 according to the input electric signal.
  • the operation of various hydraulic actuators according to the operation content with respect to 26 is realized.
  • the control valves 171 to 176 in the control valve 17 may be electromagnetic solenoid type spool valves driven by a command from the controller 30.
  • a solenoid valve that operates in response to an electric signal from the controller 30 may be arranged between the pilot pump 15 and the pilot ports of the control valves 171 to 176.
  • the controller 30 controls the solenoid valve by an electric signal corresponding to the operation amount (for example, a lever operation amount) to increase or decrease the pilot pressure.
  • the operation amount for example, a lever operation amount
  • the control system of the excavator 100 includes a controller 30, a discharge pressure sensor 28, an operation pressure sensor 29, a proportional valve 31, a display device 40, an input device 42, an audio output device 43, and the like.
  • the storage device 47, the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the machine body tilt sensor S4, the turning state sensor S5, the image pickup device S6, the positioning device P1, and the communication device T1 are included. ..
  • the controller 30 (an example of a control device) is provided in the cabin 10, for example, and controls the drive of the excavator 100.
  • the function of the controller 30 may be realized by any hardware, software, or a combination thereof.
  • the controller 30 is centered on a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a non-volatile auxiliary storage device, and various input / output interfaces. It is composed.
  • the controller 30 realizes various functions by executing various programs stored in a ROM or a non-volatile auxiliary storage device on the CPU, for example.
  • the controller 30 sets a target rotation speed based on a work mode or the like preset by a predetermined operation by an operator or the like, and performs drive control to rotate the engine 11 at a constant speed.
  • the controller 30 outputs a control command to the regulator 13 as necessary to change the discharge amount of the main pump 14.
  • the controller 30 controls the machine guidance function for guiding the manual operation of the excavator 100 through the operating device 26 by the operator. Further, the controller 30 controls, for example, a machine control function that automatically supports the manual operation of the excavator 100 through the operating device 26 by the operator. That is, the controller 30 includes the machine guidance unit 50 as a functional unit related to the machine guidance function and the machine control function. Further, the controller 30 includes a sediment load processing unit 60, which will be described later.
  • controller 30 may be realized by another controller (control device). That is, the function of the controller 30 may be realized in a manner distributed by a plurality of controllers.
  • the machine guidance function and the machine control function may be realized by a dedicated controller (control device).
  • the discharge pressure sensor 28 detects the discharge pressure of the main pump 14.
  • the detection signal corresponding to the discharge pressure detected by the discharge pressure sensor 28 is taken into the controller 30.
  • the discharge pressure sensor 28 includes, for example, discharge pressure sensors 28L and 28R as described later.
  • the operating pressure sensor 29 has a pilot pressure on the secondary side of the operating device 26, that is, an operating state (for example, an operating direction, an operating amount, etc.) relating to each operating element (that is, a hydraulic actuator) in the operating device 26.
  • the pilot pressure corresponding to the operation content) is detected.
  • the detection signal of the pilot pressure corresponding to the operating state of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the bucket 6 and the like in the operating device 26 by the operating pressure sensor 29 is taken into the controller 30.
  • the operating pressure sensor 29 includes, for example, operating pressure sensors 29A to 29C as described later.
  • the operating pressure sensor 29 it is possible to detect the operating amount (tilting amount) and tilting direction of other sensors capable of detecting the operating state of each operating element in the operating device 26, for example, the lever devices 26A to 26C.
  • An encoder, a potentiometer, or the like may be provided.
  • the proportional valve 31 is provided in the pilot line connecting the pilot pump 15 and the shuttle valve 32, and is configured so that the flow path area (cross-sectional area through which hydraulic oil can flow) can be changed.
  • the proportional valve 31 operates in response to a control command input from the controller 30.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the proportional valve 31 and the proportional valve 31 even when the operating device 26 (specifically, the lever devices 26A to 26C) is not operated by the operator. It can be supplied to the pilot port of the corresponding control valve in the control valve 17 via the shuttle valve 32.
  • the proportional valve 31 includes, for example, proportional valves 31AL, 31AR, 31BL, 31BR, 31CL, 31CR as described later.
  • the display device 40 is provided in a place in the cabin 10 that is easily visible to the seated operator, and displays various information images under the control of the controller 30.
  • the display device 40 may be connected to the controller 30 via an in-vehicle communication network such as CAN (Controller Area Network), or may be connected to the controller 30 via a one-to-one dedicated line.
  • CAN Controller Area Network
  • the input device 42 is provided within reach of the seated operator in the cabin 10, receives various operation inputs by the operator, and outputs a signal corresponding to the operation input to the controller 30.
  • the input device 42 includes a touch panel mounted on the display of a display device that displays various information images, a knob switch provided at the tip of the lever portion of the lever devices 26A to 26C, a button switch installed around the display device 40, and a lever. , Toggle, rotary dial, etc.
  • the signal corresponding to the operation content for the input device 42 is taken into the controller 30.
  • the voice output device 43 is provided in the cabin 10, for example, is connected to the controller 30, and outputs voice under the control of the controller 30.
  • the audio output device 43 is, for example, a speaker, a buzzer, or the like.
  • the voice output device 43 outputs various information by voice in response to a voice output command from the controller 30.
  • the storage device 47 is provided in the cabin 10, for example, and stores various information under the control of the controller 30.
  • the storage device 47 is a non-volatile storage medium such as a semiconductor memory.
  • the storage device 47 may store information output by various devices during the operation of the shovel 100, or may store information acquired through the various devices before the operation of the shovel 100 is started.
  • the storage device 47 may store data regarding a target construction surface acquired via, for example, a communication device T1 or the like, or set through an input device 42 or the like.
  • the target construction surface may be set (saved) by the operator of the excavator 100, or may be set by the construction manager or the like.
  • the boom angle sensor S1 is attached to the boom 4, and the elevation angle of the boom 4 with respect to the upper swivel body 3 (hereinafter referred to as “boom angle”), for example, in a side view, the boom 4 is attached to the swivel plane of the upper swivel body 3. Detects the angle formed by the straight line connecting the fulcrums at both ends.
  • the boom angle sensor S1 may include, for example, a rotary encoder, an acceleration sensor, a 6-axis sensor, an IMU (Inertial Measurement Unit), and the like.
  • the boom angle sensor S1 may include a potentiometer using a variable resistor, a cylinder sensor for detecting the stroke amount of the hydraulic cylinder (boom cylinder 7) corresponding to the boom angle, and the like.
  • boost cylinder 7 a cylinder sensor for detecting the stroke amount of the hydraulic cylinder
  • the detection signal corresponding to the boom angle by the boom angle sensor S1 is taken into the controller 30.
  • the arm angle sensor S2 is attached to the arm 5, and the rotation angle of the arm 5 with respect to the boom 4 (hereinafter referred to as “arm angle”), for example, the arm 5 with respect to a straight line connecting fulcrums at both ends of the boom 4 in a side view. Detects the angle formed by the straight line connecting the fulcrums at both ends of. The detection signal corresponding to the arm angle by the arm angle sensor S2 is taken into the controller 30.
  • the bucket angle sensor S3 is attached to the bucket 6, and the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter referred to as “bucket angle”), for example, the bucket 6 with respect to a straight line connecting the fulcrums at both ends of the arm 5 in a side view. Detects the angle formed by the straight line connecting the fulcrum and the tip (blade edge). The detection signal corresponding to the bucket angle by the bucket angle sensor S3 is taken into the controller 30.
  • the airframe tilt sensor S4 detects the tilted state of the airframe (upper swivel body 3 or lower traveling body 1) with respect to a horizontal plane.
  • the machine body tilt sensor S4 is attached to, for example, the upper swivel body 3, and is tilted around two axes in the front-rear direction and the left-right direction of the shovel 100 (that is, the upper swivel body 3) (hereinafter, “front-back tilt angle” and “left-right”. Tilt angle ”) is detected.
  • the airframe tilt sensor S4 may include, for example, a rotary encoder, an acceleration sensor, a 6-axis sensor, an IMU, and the like.
  • the detection signal corresponding to the tilt angle (front-back tilt angle and left-right tilt angle) by the machine body tilt sensor S4 is taken into the controller 30.
  • the turning state sensor S5 outputs detection information regarding the turning state of the upper turning body 3.
  • the turning state sensor S5 detects, for example, the turning angular velocity and the turning angle of the upper turning body 3.
  • the swivel state sensor S5 may include, for example, a gyro sensor, a resolver, a rotary encoder, and the like.
  • the detection signal corresponding to the turning angle and the turning angular velocity of the upper turning body 3 by the turning state sensor S5 is taken into the controller 30.
  • the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the machine body tilt sensor S4, and the turning state sensor S5 are included in the attitude sensor.
  • the attitude sensor detects not only the toe position of the bucket 6 but also the boom angle, boom angular velocity, boom angular acceleration, and the like.
  • the image pickup device S6 as a space recognition device takes a picture of the periphery of the excavator 100.
  • the image pickup apparatus S6 includes a camera S6F that images the front of the excavator 100, a camera S6L that images the left side of the excavator 100, a camera S6R that images the right side of the excavator 100, and a camera S6B that images the rear of the excavator 100. ..
  • the camera S6F is mounted, for example, on the ceiling of the cabin 10, that is, inside the cabin 10. Further, the camera S6F may be attached to the outside of the cabin 10, such as the roof of the cabin 10 and the side surface of the boom 4.
  • the camera S6L is attached to the left end of the upper surface of the upper swivel body 3
  • the camera S6R is attached to the right end of the upper surface of the upper swivel body 3
  • the camera S6B is attached to the rear end of the upper surface of the upper swivel body 3.
  • the image pickup apparatus S6 (cameras S6F, S6B, S6L, S6R) is, for example, a monocular wide-angle camera having a very wide angle of view. Further, the image pickup device S6 may be a stereo camera, a distance image camera, or the like. The image captured by the image pickup device S6 is captured by the controller 30 via the display device 40.
  • the image pickup device S6 as a space recognition device may function as an object detection device.
  • the image pickup apparatus S6 may detect an object existing around the excavator 100.
  • the object to be detected may include, for example, a person, an animal, a vehicle, a construction machine, a building, a hole, or the like. Further, the image pickup device S6 may calculate the distance from the image pickup device S6 or the excavator 100 to the recognized object.
  • the image pickup device S6 as an object detection device may include, for example, a stereo camera, a distance image sensor, and the like.
  • the space recognition device is, for example, a monocular camera having an image pickup element such as a CCD or CMOS, and outputs the captured image to the display device 40.
  • the space recognition device may be configured to calculate the distance from the space recognition device or the shovel 100 to the recognized object.
  • another object detection device such as an ultrasonic sensor, a millimeter wave radar, a lidar, or an infrared sensor may be provided as a space recognition device.
  • a millimeter-wave radar, an ultrasonic sensor, a laser radar, or the like is used as the space recognition device 80, a large number of signals (laser light, etc.) are transmitted to an object and the reflected signal is received from the reflected signal. The distance and direction of the object may be detected.
  • the image pickup device S6 may be directly connected to the controller 30 so as to be communicable.
  • a boom rod pressure sensor S7R and a boom bottom pressure sensor S7B are attached to the boom cylinder 7.
  • An arm rod pressure sensor S8R and an arm bottom pressure sensor S8B are attached to the arm cylinder 8.
  • a bucket rod pressure sensor S9R and a bucket bottom pressure sensor S9B are attached to the bucket cylinder 9.
  • the boom rod pressure sensor S7R, boom bottom pressure sensor S7B, arm rod pressure sensor S8R, arm bottom pressure sensor S8B, bucket rod pressure sensor S9R and bucket bottom pressure sensor S9B are collectively also referred to as "cylinder pressure sensor”.
  • the boom rod pressure sensor S7R detects the pressure in the rod side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”), and the boom bottom pressure sensor S7B detects the pressure in the bottom side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”). , “Boom bottom pressure”) is detected.
  • the arm rod pressure sensor S8R detects the pressure in the rod side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”), and the arm bottom pressure sensor S8B detects the pressure in the bottom side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”). , "Arm bottom pressure”) is detected.
  • the bucket rod pressure sensor S9R detects the pressure in the rod side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”), and the bucket bottom pressure sensor S9B detects the pressure in the bottom side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”). , “Bucket bottom pressure”) is detected.
  • the positioning device P1 measures the position and orientation of the upper swivel body 3.
  • the positioning device P1 is, for example, a GNSS (Global Navigation Satellite System) compass, detects the position and orientation of the upper swivel body 3, and captures the detection signal corresponding to the position and orientation of the upper swivel body 3 into the controller 30. .. Further, among the functions of the positioning device P1, the function of detecting the direction of the upper swivel body 3 may be replaced by the directional sensor attached to the upper swivel body 3.
  • GNSS Global Navigation Satellite System
  • the communication device T1 communicates with an external device through a predetermined network including a mobile communication network having a base station as an end, a satellite communication network, an Internet network, and the like.
  • the communication device T1 is, for example, a mobile communication module corresponding to a mobile communication standard such as LTE (LongTermEvolution), 4G (4thGeneration), 5G (5thGeneration), or satellite communication for connecting to a satellite communication network. Modules, etc.
  • the machine guidance unit 50 controls the excavator 100 regarding the machine guidance function, for example.
  • the machine guidance unit 50 conveys work information such as the distance between the target construction surface and the tip of the attachment, specifically, the work part of the end attachment, to the operator through the display device 40, the voice output device 43, or the like. ..
  • the data regarding the target construction surface is stored in advance in the storage device 47, for example, as described above.
  • the data regarding the target construction surface is represented by, for example, a reference coordinate system.
  • the reference coordinate system is, for example, a world geodetic system.
  • the world geodetic system has a three-dimensional orthogonality with the origin at the center of the earth, the X-axis in the direction of the intersection of the Greenwich meridian and the equator, the Y-axis in the direction of 90 degrees east longitude, and the Z-axis in the direction of the North Pole. It is an XYZ coordinate system.
  • the operator may set an arbitrary point on the construction site as a reference point, and set a target construction surface based on the relative positional relationship with the reference point through the input device 42.
  • the working part of the bucket 6 is, for example, the toe of the bucket 6, the back surface of the bucket 6, and the like.
  • the tip portion of the breaker corresponds to the working part.
  • the machine guidance unit 50 notifies the operator of work information through the display device 40, the voice output device 43, and the like, and guides the operator to operate the shovel 100 through the operation device 26.
  • the machine guidance unit 50 executes control of the excavator 100 regarding the machine control function, for example.
  • the machine guidance unit 50 is, for example, at least one of the boom 4, the arm 5, and the bucket 6 so that the target construction surface and the tip position of the bucket 6 coincide with each other when the operator manually performs the excavation operation. One may be operated automatically.
  • the machine guidance unit 50 receives information from the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the machine tilt sensor S4, the turning state sensor S5, the image pickup device S6, the positioning device P1, the communication device T1, the input device 42, and the like. get. Then, for example, the machine guidance unit 50 calculates the distance between the bucket 6 and the target construction surface based on the acquired information, and the bucket is based on the voice from the voice output device 43 and the image displayed on the display device 40. Notify the operator of the degree of distance between 6 and the target construction surface, and so that the tip of the attachment (specifically, the work part such as the tip or back of the bucket 6) matches the target construction surface. Automatically control the operation of attachments.
  • the machine guidance unit 50 has a position calculation unit 51, a distance calculation unit 52, an information transmission unit 53, an automatic control unit 54, and a turning angle calculation unit 55 as detailed functional configurations related to the machine guidance function and the machine control function. And the relative angle calculation unit 56.
  • the position calculation unit 51 calculates the position of a predetermined positioning target. For example, the position calculation unit 51 calculates the coordinate points in the reference coordinate system of the tip portion of the attachment, specifically, the work portion such as the toe or the back surface of the bucket 6. Specifically, the position calculation unit 51 calculates the coordinate points of the working portion of the bucket 6 from the elevation angles (boom angle, arm angle, and bucket angle) of the boom 4, the arm 5, and the bucket 6.
  • the elevation angles boost angle, arm angle, and bucket angle
  • the distance calculation unit 52 calculates the distance between two positioning targets. For example, the distance calculation unit 52 calculates the distance between the tip of the attachment, specifically, the work site such as the toe or the back surface of the bucket 6 and the target construction surface. Further, the distance calculation unit 52 may calculate an angle (relative angle) between the back surface of the bucket 6 as a work site and the target construction surface.
  • the information transmission unit 53 transmits (notifies) various information to the operator of the excavator 100 through a predetermined notification means such as the display device 40 and the voice output device 43.
  • the information transmission unit 53 notifies the operator of the excavator 100 of the magnitude (degree) of various distances and the like calculated by the distance calculation unit 52. For example, using at least one of the visual information by the display device 40 and the auditory information by the audio output device 43, the distance (magnitude) between the tip end portion of the bucket 6 and the target construction surface is transmitted to the operator.
  • the information transmission unit 53 uses at least one of the visual information by the display device 40 and the auditory information by the audio output device 43, and the relative angle (large) between the back surface of the bucket 6 as a work site and the target construction surface. You may tell the operator.
  • the information transmission unit 53 informs the operator of the magnitude of the distance (for example, the vertical distance) between the work part of the bucket 6 and the target construction surface by using the intermittent sound from the voice output device 43.
  • the information transmission unit 53 may shorten the interval between intermittent sounds as the vertical distance becomes smaller, and lengthen the sensation of intermittent sounds as the vertical distance increases.
  • the information transmission unit 53 may use continuous sound, and may express the difference in the magnitude of the vertical distance while changing the pitch, strength, and the like of the sound.
  • the information transmission unit 53 may issue an alarm through the voice output device 43 when the tip end portion of the bucket 6 is at a position lower than the target construction surface, that is, when the target construction surface is exceeded.
  • the alarm is, for example, a continuous sound that is significantly louder than an intermittent sound.
  • the information transmission unit 53 is the tip of the attachment, specifically, the size of the distance between the work part of the bucket 6 and the target construction surface, and the relative angle between the back surface of the bucket 6 and the target construction surface.
  • the size and the like may be displayed on the display device 40 as work information.
  • the display device 40 displays, for example, the work information received from the information transmission unit 53 together with the image data received from the image pickup device S6.
  • the information transmission unit 53 may transmit the magnitude of the vertical distance to the operator by using, for example, an image of an analog meter, an image of a bar graph indicator, or the like.
  • the automatic control unit 54 automatically supports the manual operation of the shovel 100 through the operating device 26 by the operator by automatically operating the actuator.
  • the automatic control unit 54 is a control valve (specifically, specifically, a control valve corresponding to a plurality of hydraulic actuators (specifically, a swing hydraulic motor 2A, a boom cylinder 7, and a bucket cylinder 9), as described later.
  • the pilot pressure acting on the control valve 173, the control valves 175L, 175R, and the control valve 174) can be adjusted individually and automatically.
  • the automatic control unit 54 can automatically operate each hydraulic actuator.
  • the control related to the machine control function by the automatic control unit 54 may be executed, for example, when a predetermined switch included in the input device 42 is pressed.
  • the predetermined switch is, for example, a machine control switch (hereinafter, “MC (Machine Control) switch”), and is a grip portion by an operator of an operating device 26 (for example, a lever device corresponding to the operation of the arm 5) as a knob switch. It may be arranged at the tip of.
  • MC Machine Control
  • the automatic control unit 54 automatically switches at least one of the boom cylinder 7 and the bucket cylinder 9 in accordance with the operation of the arm cylinder 8 in order to support the excavation work and the shaping work. Expand and contract.
  • the automatic control unit 54 has a target construction surface and a work part such as a toe or a back surface of the bucket 6.
  • At least one of the boom cylinder 7 and the bucket cylinder 9 is automatically expanded and contracted so as to match the position of. In this case, the operator can close the arm 5 while aligning the toes of the bucket 6 with the target construction surface by simply operating the lever device corresponding to the operation of the arm 5, for example.
  • the automatic control unit 54 may automatically rotate the swing hydraulic motor 2A (an example of an actuator) in order to make the upper swing body 3 face the target construction surface when the MC switch or the like is pressed. ..
  • the control by the controller 30 (automatic control unit 54) to make the upper swing body 3 face the target construction surface is referred to as "face-to-face control".
  • the operator or the like can target the upper swivel body 3 by simply pressing a predetermined switch or by operating the lever device 26C described later corresponding to the swivel operation while the switch is pressed. It can be made to face the surface. Further, the operator can make the upper swivel body 3 face the target construction surface and start the machine control function related to the excavation work of the target construction surface described above by simply pressing the MC switch.
  • the tip of the attachment (for example, the toe or the back surface of the bucket 6 as a work part) is set to the target construction surface (for example, according to the operation of the attachment). It is in a state where it can be moved along the inclination direction of the ascending slope BS).
  • the operating surface of the attachment (attachment operating surface) vertical to the swivel plane of the excavator 100 corresponds to the target construction surface. It is a state including the normal of the surface (in other words, a state along the normal).
  • the automatic control unit 54 can automatically rotate the swing hydraulic motor 2A to face the upper swing body 3. As a result, the excavator 100 can appropriately construct the target construction surface.
  • the automatic control unit 54 determines, for example, the leftmost vertical distance between the coordinate point of the left end of the toe of the bucket 6 and the target construction surface (hereinafter, simply “leftmost vertical distance") and the toe of the bucket 6.
  • the rightmost vertical distance between the rightmost coordinate point and the target construction surface hereinafter, simply “rightmost vertical distance” becomes equal, it is judged that the excavator faces the target construction surface.
  • the automatic control unit 54 is not when the leftmost vertical distance and the rightmost vertical distance are equal (that is, when the difference between the leftmost vertical distance and the rightmost vertical distance becomes zero), but the difference is not more than a predetermined value. When becomes, it may be determined that the excavator 100 faces the target construction surface.
  • the automatic control unit 54 may operate the swing hydraulic motor 2A based on, for example, the difference between the leftmost vertical distance and the rightmost vertical distance in the face-to-face control. Specifically, when the lever device 26C corresponding to the turning operation is operated while a predetermined switch such as the MC switch is pressed, the lever device 26C moves in the direction in which the upper turning body 3 faces the target construction surface. Determine if it has been manipulated. For example, when the lever device 26C is operated in the direction in which the vertical distance between the toe of the bucket 6 and the target construction surface (uphill slope BS) increases, the automatic control unit 54 does not execute the face-to-face control.
  • the automatic control unit 54 executes face-to-face control.
  • the automatic control unit 54 can operate the swing hydraulic motor 2A so that the difference between the leftmost vertical distance and the rightmost vertical distance becomes small.
  • the automatic control unit 54 stops the swing hydraulic motor 2A.
  • the automatic control unit 54 sets a turning angle at which the difference is equal to or less than a predetermined value or becomes zero as a target angle, and is based on the target angle and the current turning angle (specifically, the detection signal of the turning state sensor S5).
  • the operation of the swing hydraulic motor 2A may be controlled so that the angle difference from the detected value) becomes zero.
  • the turning angle is, for example, the angle of the front-rear axis of the upper turning body 3 with respect to the reference direction.
  • the automatic control unit 54 performs face-to-face control with the swivel motor (an example of an actuator) as a control target. ..
  • the turning angle calculation unit 55 calculates the turning angle of the upper turning body 3. This allows the controller 30 to identify the current orientation of the upper swing body 3.
  • the turning angle calculation unit 55 calculates, for example, the angle of the front-rear axis of the upper turning body 3 with respect to the reference direction as the turning angle based on the output signal of the GNSS compass included in the positioning device P1. Further, the turning angle calculation unit 55 may calculate the turning angle based on the detection signal of the turning state sensor S5. Further, when the reference point is set at the construction site, the turning angle calculation unit 55 may use the direction in which the reference point is viewed from the turning axis as the reference direction.
  • the turning angle indicates the direction in which the attachment operating surface extends with respect to the reference direction.
  • the attachment operating surface is, for example, a virtual plane that vertically traverses the attachment, and is arranged so as to be perpendicular to the turning plane.
  • the swivel plane is, for example, a virtual plane including the bottom surface of the swivel frame perpendicular to the swivel axis.
  • the controller 30 (machine guidance unit 50) determines, for example, that the upper swivel body 3 faces the target construction surface when it is determined that the attachment operating surface includes the normal of the target construction surface.
  • the relative angle calculation unit 56 calculates the turning angle (relative angle) required to make the upper turning body 3 face the target construction surface.
  • the relative angle is formed, for example, between the direction of the front-rear axis of the upper swivel body 3 when the upper swivel body 3 faces the target construction surface and the current direction of the front-rear axis of the upper swivel body 3. Relative angle.
  • the relative angle calculation unit 56 calculates the relative angle based on, for example, the data regarding the target construction surface stored in the storage device 47 and the turning angle calculated by the turning angle calculation unit 55.
  • the automatic control unit 54 When the lever device 26C corresponding to the turning operation is operated while a predetermined switch such as an MC switch is pressed, the automatic control unit 54 is turned in a direction in which the upper turning body 3 faces the target construction surface. Judge whether or not. When the automatic control unit 54 determines that the upper swivel body 3 has been swiveled in the direction facing the target construction surface, the automatic control unit 54 sets the relative angle calculated by the relative angle calculation unit 56 as the target angle. Then, when the change in the turning angle after the lever device 26C is operated reaches the target angle, the automatic control unit 54 determines that the upper turning body 3 faces the target construction surface, and the turning hydraulic motor 2A. You may stop the movement.
  • the automatic control unit 54 can make the upper swivel body 3 face the target construction surface on the premise of the configuration shown in FIG.
  • face-to-face control an example of face-to-face control with respect to the target construction surface is shown, but the present invention is not limited to this.
  • the target excavation track is changed each time the scooping operation is performed. Therefore, after excavation to the dump truck, it is directly controlled against the newly changed target excavation track.
  • the swing hydraulic motor 2A has a first port 2A1 and a second port 2A2.
  • the hydraulic sensor 21 detects the pressure of the hydraulic oil in the first port 2A1 of the swivel hydraulic motor 2A.
  • the hydraulic sensor 22 detects the pressure of the hydraulic oil in the second port 2A2 of the swivel hydraulic motor 2A.
  • the detection signal corresponding to the discharge pressure detected by the hydraulic sensors 21 and 22 is taken into the controller 30.
  • first port 2A1 is connected to the hydraulic oil tank via the relief valve 23.
  • the relief valve 23 opens when the pressure on the first port 2A1 side reaches a predetermined relief pressure, and discharges the hydraulic oil on the first port 2A1 side to the hydraulic oil tank.
  • the second port 2A2 is connected to the hydraulic oil tank via the relief valve 24.
  • the relief valve 24 opens when the pressure on the second port 2A2 side reaches a predetermined relief pressure, and discharges the hydraulic oil on the second port 2A2 side to the hydraulic oil tank.
  • FIG. 3 is a diagram schematically showing an example of the configuration of the hydraulic system of the excavator 100 according to the first embodiment.
  • the hydraulic system realized by the hydraulic circuit circulates hydraulic oil from the main pumps 14L and 14R driven by the engine 11 to the hydraulic oil tank via the center bypass oil passages C1L and C1R and the parallel oil passages C2L and C2R. Let me.
  • the center bypass oil passage C1L starts from the main pump 14L, passes through the control valves 171, 173, 175L, and 176L arranged in the control valve 17 in order, and reaches the hydraulic oil tank.
  • the center bypass oil passage C1R starts from the main pump 14R, passes through the control valves 172, 174, 175R, and 176R arranged in the control valve 17 in order, and reaches the hydraulic oil tank.
  • the control valve 171 is a spool valve that supplies the hydraulic oil discharged from the main pump 14L to the traveling hydraulic motor 1L and discharges the hydraulic oil discharged from the traveling hydraulic motor 1L to the hydraulic oil tank.
  • the control valve 172 is a spool valve that supplies the hydraulic oil discharged from the main pump 14R to the traveling hydraulic motor 1R and discharges the hydraulic oil discharged from the traveling hydraulic motor 1R to the hydraulic oil tank.
  • the control valve 173 is a spool valve that supplies the hydraulic oil discharged from the main pump 14L to the turning hydraulic motor 2A and discharges the hydraulic oil discharged by the turning hydraulic motor 2A to the hydraulic oil tank.
  • the control valve 174 is a spool valve that supplies the hydraulic oil discharged from the main pump 14R to the bucket cylinder 9 and discharges the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank.
  • the control valves 175L and 175R are spool valves that supply the hydraulic oil discharged by the main pumps 14L and 14R to the boom cylinder 7 and discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank, respectively.
  • the control valves 176L and 176R supply the hydraulic oil discharged by the main pumps 14L and 14R to the arm cylinder 8 and discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank.
  • the control valves 171, 172, 173, 174, 175L, 175R, 176L, and 176R adjust the flow rate of the hydraulic oil supplied to and discharged from the hydraulic actuator according to the pilot pressure acting on the pilot port, and the flow direction, respectively. To switch.
  • the parallel oil passage C2L supplies the hydraulic oil of the main pump 14L to the control valves 171, 173, 175L, 176L in parallel with the center bypass oil passage C1L.
  • the parallel oil passage C2L branches from the center bypass oil passage C1L on the upstream side of the control valve 171 and supplies the hydraulic oil of the main pump 14L in parallel with the control valves 171, 173, 175L, and 176R, respectively. Possible to be configured.
  • the parallel oil passage C2L supplies the hydraulic oil to the control valve further downstream when the flow of the hydraulic oil through the center bypass oil passage C1L is restricted or blocked by any of the control valves 171, 173, and 175L. can.
  • the parallel oil passage C2R supplies the hydraulic oil of the main pump 14R to the control valves 172, 174, 175R and 176R in parallel with the center bypass oil passage C1R.
  • the parallel oil passage C2R branches from the center bypass oil passage C1R on the upstream side of the control valve 172, and supplies hydraulic oil for the main pump 14R in parallel with the control valves 172, 174, 175R, and 176R, respectively. Possible to be configured.
  • the parallel oil passage C2R can supply the hydraulic oil to the control valve further downstream when the flow of the hydraulic oil through the center bypass oil passage C1R is restricted or blocked by any of the control valves 172, 174, 175R.
  • the regulators 13L and 13R adjust the discharge amount of the main pumps 14L and 14R by adjusting the tilt angle of the swash plate of the main pumps 14L and 14R, respectively, under the control of the controller 30.
  • the discharge pressure sensor 28L detects the discharge pressure of the main pump 14L, and the detection signal corresponding to the detected discharge pressure is taken into the controller 30. The same applies to the discharge pressure sensor 28R. As a result, the controller 30 can control the regulators 13L and 13R according to the discharge pressures of the main pumps 14L and 14R.
  • Negative control throttles (hereinafter referred to as “negative control throttles”) 18L and 18R are provided between the most downstream control valves 176L and 176R and the hydraulic oil tank in the center bypass oil passages C1L and C1R. As a result, the flow of hydraulic oil discharged by the main pumps 14L and 14R is limited by the negative control throttles 18L and 18R. Then, the negative control diaphragms 18L and 18R generate a control pressure (hereinafter, “negative control pressure”) for controlling the regulators 13L and 13R.
  • negative control pressure hereinafter, “negative control pressure”
  • the negative control pressure sensors 19L and 19R detect the negative control pressure, and the detection signal corresponding to the detected negative control pressure is taken into the controller 30.
  • the controller 30 may control the regulators 13L and 13R according to the discharge pressures of the main pumps 14L and 14R detected by the discharge pressure sensors 28L and 28R, and adjust the discharge amount of the main pumps 14L and 14R. For example, the controller 30 may reduce the discharge amount by controlling the regulator 13L in response to the increase in the discharge pressure of the main pump 14L and adjusting the swash plate tilt angle of the main pump 14L. The same applies to the regulator 13R. As a result, the controller 30 controls the total horsepower of the main pumps 14L and 14R so that the absorbed horsepower of the main pumps 14L and 14R, which is represented by the product of the discharge pressure and the discharge amount, does not exceed the output horsepower of the engine 11. be able to.
  • the controller 30 may adjust the discharge amount of the main pumps 14L and 14R by controlling the regulators 13L and 13R according to the negative control pressure detected by the negative control pressure sensors 19L and 19R. For example, the controller 30 reduces the discharge amount of the main pumps 14L and 14R as the negative control pressure increases, and increases the discharge amount of the main pumps 14L and 14R as the negative control pressure decreases.
  • the hydraulic oil discharged from the main pumps 14L and 14R passes through the center bypass oil passages C1L and C1R. Through it, it reaches the negative control aperture 18L and 18R.
  • the flow of hydraulic oil discharged from the main pumps 14L and 14R increases the negative control pressure generated upstream of the negative control throttles 18L and 18R.
  • the controller 30 reduces the discharge amount of the main pumps 14L and 14R to the allowable minimum discharge amount, and suppresses the pressure loss (pumping loss) when the discharged hydraulic oil passes through the center bypass oil passages C1L and C1R. ..
  • the hydraulic oil discharged from the main pumps 14L and 14R is sent to the hydraulic actuator to be operated via the control valve corresponding to the hydraulic actuator to be operated. It flows in. Then, the flow of the hydraulic oil discharged from the main pumps 14L and 14R reduces or eliminates the amount reaching the negative control throttles 18L and 18R, and lowers the negative control pressure generated upstream of the negative control throttles 18L and 18R. As a result, the controller 30 can increase the discharge amount of the main pumps 14L and 14R, circulate sufficient hydraulic oil to the hydraulic actuator to be operated, and reliably drive the hydraulic actuator to be operated.
  • FIG. 4A is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to the control valves 175L and 175R that hydraulically control the boom cylinder 7.
  • FIG. 4B is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to a control valve 174 that hydraulically controls the bucket cylinder 9.
  • FIG. 4C is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to a control valve 173 that hydraulically controls the swing hydraulic motor 2A.
  • the lever device 26A is used by an operator or the like to operate the boom cylinder 7 corresponding to the boom 4.
  • the lever device 26A uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26A corresponding to the operation in the raising direction of the boom 4 (hereinafter referred to as “boom raising operation”) and the secondary of the proportional valve 31AL, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 175L and the pilot port on the left side of the control valve 175R.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26A corresponding to the operation in the lowering direction of the boom 4 (hereinafter referred to as “boom lowering operation”) and the secondary of the proportional valve 31AR, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 175R.
  • the lever device 26A acts on the pilot ports of the control valves 175L and 175R by applying the pilot pressure according to the operation content (for example, the operation direction and the operation amount) via the shuttle valves 32AL and 32AR. Specifically, the lever device 26A outputs the pilot pressure according to the operation amount to one inlet port of the shuttle valve 32AL when the boom is raised, and the right side of the control valve 175L via the shuttle valve 32AL. It acts on the pilot port of the above and the pilot port on the left side of the control valve 175R.
  • the operation content for example, the operation direction and the operation amount
  • the lever device 26A when the boom lowering operation is performed, the lever device 26A outputs the pilot pressure according to the operation amount to one inlet port of the shuttle valve 32AR, and the pilot port on the right side of the control valve 175R via the shuttle valve 32AR. To act on.
  • the proportional valve 31AL operates according to the control current input from the controller 30. Specifically, the proportional valve 31AL utilizes the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the control current input from the controller 30 to the other inlet port of the shuttle valve 32AL. Thereby, the proportional valve 31AL can adjust the pilot pressure acting on the pilot port on the right side of the control valve 175L and the pilot port on the left side of the control valve 175R via the shuttle valve 32AL.
  • the proportional valve 31AR operates according to the control current input from the controller 30. Specifically, the proportional valve 31AR uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the control current input from the controller 30 to the other inlet port of the shuttle valve 32AR. Thereby, the proportional valve 31AR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 175R via the shuttle valve 32AR.
  • the proportional valves 31AL and 31AR can adjust the pilot pressure output to the secondary side so that the control valves 175L and 175R can be stopped at any valve position regardless of the operating state of the lever device 26A.
  • the proportional valve 33AL functions as a machine control control valve in the same manner as the proportional valve 31AL.
  • the proportional valve 33AL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32AL, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33AL operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32AL. Can be supplied to the pilot port of.
  • the proportional valve 33AR functions as a control valve for machine control.
  • the proportional valve 33AR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32AR, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33AR operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32AR. Can be supplied to the pilot port of.
  • the operating pressure sensor 29A detects the operation content of the lever device 26A by the operator in the form of pressure (operating pressure), and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content for the lever device 26A.
  • the controller 30 controls the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 175L via the proportional valve 31AL and the shuttle valve 32AL, regardless of the boom raising operation for the lever device 26A by the operator. It can be supplied to the pilot port on the left side of the valve 175R. Further, the controller 30 directs the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 175R via the proportional valve 31AR and the shuttle valve 32AR, regardless of the boom lowering operation of the lever device 26A by the operator. Can be supplied to. That is, the controller 30 can automatically control the raising and lowering operation of the boom 4. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation is performed on the specific operating device 26.
  • the proportional valve 33AL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right side pilot port of the control valve 175L and the left side pilot port of the control valve 175R via the lever device 26A, the proportional valve 33AL, and the shuttle valve 32AL is reduced.
  • the proportional valve 33AR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 175R via the lever device 26A, the proportional valve 33AR, and the shuttle valve 32AR is reduced.
  • the proportional valves 33AL and 33AR can adjust the pilot pressure so that the control valves 175L and 175R can be stopped at any valve position.
  • the controller 30 can use the pilot port on the raising side of the control valve 175 (the left pilot port and the control valve of the control valve 175L) as necessary even when the boom raising operation is performed by the operator.
  • the pilot pressure acting on the right side pilot port of 175R) can be reduced to forcibly stop the closing operation of the boom 4. The same applies to the case where the lowering operation of the boom 4 is forcibly stopped while the boom lowering operation is being performed by the operator.
  • the controller 30 controls the proportional valve 31AR as necessary even when the boom raising operation is performed by the operator, and is on the opposite side of the pilot port on the raising side of the control valve 175.
  • the boom 4 raising operation is forcibly performed. You may stop it.
  • the proportional valve 33AL may be omitted. The same applies to the case where the lowering operation of the boom 4 is forcibly stopped when the boom lowering operation is performed by the operator.
  • the lever device 26B is used by an operator or the like to operate the bucket cylinder 9 corresponding to the bucket 6.
  • the lever device 26B uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26B corresponding to the operation in the closing direction of the bucket 6 (hereinafter, “bucket closing operation”) and the secondary of the proportional valve 31BL, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the left side of the control valve 174.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26B corresponding to the operation in the opening direction of the bucket 6 (hereinafter referred to as “bucket opening operation”) and the secondary of the proportional valve 31BR, respectively. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 174.
  • the lever device 26B causes the pilot pressure according to the operation content to act on the pilot port of the control valve 174 via the shuttle valves 32BL and 32BR. Specifically, when the bucket is closed, the lever device 26B outputs a pilot pressure according to the operation amount to one inlet port of the shuttle valve 32BL, and via the shuttle valve 32BL, the left side of the control valve 174. Act on the pilot port of. Further, when the bucket opening operation is performed, the lever device 26B outputs the pilot pressure according to the operation amount to one inlet port of the shuttle valve 32BR, and the pilot port on the right side of the control valve 174 via the shuttle valve 32BR. To act on.
  • the proportional valve 31BL operates according to the control current input from the controller 30. Specifically, the proportional valve 31BL utilizes the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure according to the control current input from the controller 30 to the other pilot port of the shuttle valve 32BL. Thereby, the proportional valve 31BL can adjust the pilot pressure acting on the pilot port on the left side of the control valve 174 via the shuttle valve 32BL.
  • the proportional valve 31BR operates according to the control current output by the controller 30. Specifically, the proportional valve 31BR uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32BR. Thereby, the proportional valve 31BR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 174 via the shuttle valve 32BR.
  • the proportional valves 31BL and 31BR can adjust the pilot pressure output to the secondary side so that the control valve 174 can be stopped at an arbitrary valve position regardless of the operating state of the lever device 26B.
  • the proportional valve 33BL functions as a machine control control valve in the same manner as the proportional valve 31BL.
  • the proportional valve 33BL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32BL, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33BL operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32BL. Can be supplied to the pilot port of.
  • the proportional valve 33BR functions as a control valve for machine control.
  • the proportional valve 33BR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32BR, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33BR operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged from the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32BR. Can be supplied to the pilot port of.
  • the operating pressure sensor 29B detects the operation content of the lever device 26B by the operator in the form of pressure (operating pressure), and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content of the lever device 26B.
  • the controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the left side of the control valve 174 via the proportional valve 31BL and the shuttle valve 32BL, regardless of the bucket closing operation for the lever device 26B by the operator. Can be made to. Further, the controller 30 directs the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 174 via the proportional valve 31BR and the shuttle valve 32BR, regardless of the bucket opening operation for the lever device 26B by the operator. Can be supplied to. That is, the controller 30 can automatically control the opening / closing operation of the bucket 6. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation is performed on the specific operating device 26.
  • the operation of the proportional valves 33BL and 33BR for forcibly stopping the operation of the bucket 6 when the bucket closing operation or the bucket opening operation is performed by the operator is performed by the operator by performing a boom raising operation or a boom lowering operation. This is the same as the operation of the proportional valves 33AL and 33AR for forcibly stopping the operation of the boom 4 when the boom 4 is broken, and the duplicate description will be omitted.
  • the lever device 26C is used by an operator or the like to operate the swivel hydraulic motor 2A corresponding to the upper swivel body 3 (swivel mechanism 2).
  • the lever device 26C uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.
  • the two inlet ports have the pilot line on the secondary side of the lever device 26C corresponding to the left turning operation of the upper turning body 3 (hereinafter referred to as “left turning operation”) and the proportional valve 31CL, respectively. It is connected to the pilot line on the secondary side of the control valve 173, and the outlet port is connected to the pilot port on the left side of the control valve 173.
  • the two inlet ports are the pilot line on the secondary side of the lever device 26C corresponding to the rightward turning operation of the upper turning body 3 (hereinafter referred to as “right turning operation”) and the proportional valve, respectively. It is connected to the pilot line on the secondary side of 31CR and the outlet port is connected to the pilot port on the right side of the control valve 173.
  • the lever device 26C applies a pilot pressure according to the operation content in the left-right direction to the pilot port of the control valve 173 via the shuttle valves 32CL and 32CR. Specifically, when the lever device 26C is operated to turn left, the pilot pressure according to the operation amount is output to one inlet port of the shuttle valve 32CL, and the left side of the control valve 173 is output via the shuttle valve 32CL. Act on the pilot port of. Further, when the lever device 26C is turned to the right, the pilot pressure according to the operation amount is output to one inlet port of the shuttle valve 32CR, and the pilot on the right side of the control valve 173 via the shuttle valve 32CR. Act on the port.
  • the proportional valve 31CL operates according to the control current input from the controller 30. Specifically, the proportional valve 31CL uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32CL. Thereby, the proportional valve 31CL can adjust the pilot pressure acting on the pilot port on the left side of the control valve 173 via the shuttle valve 32CL.
  • the proportional valve 31CR operates according to the control current output by the controller 30. Specifically, the proportional valve 31CR uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32CR. Thereby, the proportional valve 31CR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 173 via the shuttle valve 32CR.
  • the proportional valves 31CL and 31CR can adjust the pilot pressure output to the secondary side so that the control valve 173 can be stopped at an arbitrary valve position regardless of the operating state of the lever device 26C.
  • the proportional valve 33CL functions as a machine control control valve in the same manner as the proportional valve 31CL.
  • the proportional valve 33CL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32CL, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33CL operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32CL. Can be supplied to the pilot port of.
  • the proportional valve 33CR functions as a control valve for machine control.
  • the proportional valve 33CR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32CR, and is configured so that the flow path area of the pipeline can be changed.
  • the proportional valve 33CR operates in response to a control command output by the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32CR. Can be supplied to the pilot port of.
  • the operating pressure sensor 29C detects the operating state of the lever device 26C by the operator as a pressure, and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content in the left-right direction with respect to the lever device 26C.
  • the controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the left side of the control valve 173 via the proportional valve 31CL and the shuttle valve 32CL regardless of the left turning operation of the lever device 26C by the operator. Can be made to. Further, the controller 30 transfers the hydraulic oil discharged from the pilot pump 15 to the pilot on the right side of the control valve 173 via the proportional valve 31CR and the shuttle valve 32CR regardless of the right turning operation of the lever device 26C by the operator. It can be supplied to the port. That is, the controller 30 can automatically control the turning operation of the upper turning body 3 in the left-right direction. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation is performed on the specific operating device 26.
  • the operation of the proportional valves 33CL and 33CR for forcibly stopping the operation of the upper swivel body 3 when the swivel operation is performed by the operator is performed by the operator as a boom raising operation or a boom lowering operation.
  • the operation is the same as the operation of the proportional valves 33AL and 33AR for forcibly stopping the operation of the boom 4, and duplicate description will be omitted.
  • the excavator 100 may further have a configuration for automatically opening and closing the arm 5 and a configuration for automatically moving the lower traveling body 1 forward and backward.
  • the components related to the operation system of the arm cylinder 8 are the components related to the operation system of the traveling hydraulic motor 1L, and the components related to the operation of the traveling hydraulic motor 1R are the components related to the operation system of the boom cylinder 7. It may be configured in the same manner as the parts and the like (FIGS. 4A to 4C).
  • FIG. 5 is a diagram schematically showing an example of a component related to a sediment load detecting function in the shovel 100 according to the first embodiment.
  • the controller 30 includes the earth and sand load processing unit 60 as a functional unit related to the function of detecting the load of the earth and sand excavated by the bucket 6.
  • the earth and sand load processing unit 60 includes a load weight calculation unit 61, a maximum load capacity detection unit 62, an additional load capacity calculation unit 63, and a remaining load capacity calculation unit 64.
  • the excavator 100 controls the attachment at the excavation position and excavates the earth and sand by the bucket 6 (excavation operation).
  • the excavator 100 swivels the upper swivel body 3 and moves the bucket 6 from the excavation position to the soil discharge position (swivel operation).
  • a dump truck carrier is placed below the discharge position.
  • the excavator 100 loads the earth and sand in the bucket 6 onto the loading platform of the dump truck by controlling the attachment and discharging the earth and sand in the bucket 6 at the earth discharge position (earth and sand operation).
  • the excavator 100 swivels the upper swivel body 3 and moves the bucket 6 from the soil discharge position to the excavation position (swivel operation). By repeating these operations, the excavator 100 loads the excavated earth and sand onto the loading platform of the dump truck.
  • the load weight calculation unit 61 calculates the weight of the earth and sand (load) in the bucket 6 when the excavator 100 performs a specified operation.
  • the defined operation is a start requirement for starting the calculation of the earth and sand weight, for example, raising the boom 4 to a predetermined angle, turning the upper swivel body 3 and elapses for a predetermined time.
  • the earth and sand weight is calculated, for example, by balancing the torque around the base of the boom 4. Specifically, the thrust of the boom cylinder 7 increases due to the earth and sand in the bucket 6, and the torque around the root of the boom 4 calculated from the thrust of the boom cylinder 7 also increases. The increase in torque matches the torque calculated from the sediment weight and the center of gravity of the sediment. In this way, the load weight calculation unit 61 can calculate the sediment weight based on the thrust of the boom cylinder 7 (measured values of the boom rod pressure sensor S7R and the boom bottom pressure sensor S7B) and the center of gravity of the sediment.
  • the center of gravity of earth and sand is, for example, experimentally obtained in advance and stored in the controller 30.
  • the earth and sand weight may be calculated based on the thrust of the arm cylinder 8 (measured values of the arm rod pressure sensor S8R and the arm bottom pressure sensor S8B), and the measurement of the bucket cylinder 9 (bucket rod pressure sensor S9R and bucket bottom pressure sensor S9B).
  • the sediment weight may be calculated based on the thrust of the value). Further, the sediment weight may be calculated based on the turning torque (measured values of the hydraulic sensors 21 and 22) of the turning hydraulic motor 2A when turning the upper turning body 3.
  • the maximum load capacity detection unit 62 detects the maximum load capacity of the dump truck to be loaded with earth and sand. For example, the maximum load capacity detection unit 62 identifies a dump truck to be loaded with earth and sand based on the image captured by the image pickup device S6. Next, the maximum load capacity detection unit 62 detects the maximum load capacity of the dump truck based on the image of the specified dump truck. For example, the maximum load capacity detecting unit 62 determines the vehicle type (size, etc.) of the dump truck based on the image of the specified dump truck. The maximum load capacity detecting unit 62 has a table in which the vehicle type and the maximum load capacity are associated with each other, and obtains the maximum load capacity of the dump truck based on the vehicle type and the table determined from the image. The input device 42 inputs the maximum load capacity of the dump truck, the vehicle type, and the like, and the maximum load capacity detection unit 62 may obtain the maximum load capacity of the dump truck based on the input information of the input device 42.
  • the additional load capacity calculation unit 63 calculates the weight of earth and sand loaded on the dump truck. That is, each time the earth and sand in the bucket 6 is discharged to the loading platform of the dump truck, the additional load capacity calculation unit 63 adds the earth and sand weight in the bucket 6 calculated by the load weight calculation unit 61 to dump.
  • the additional load capacity (total weight) which is the total weight of the earth and sand loaded on the truck bed, is calculated. If the dump truck to be loaded with earth and sand becomes a new dump truck, the additional load capacity will be reset.
  • the remaining load capacity calculation unit 64 calculates the difference between the maximum load capacity of the dump truck detected by the maximum load capacity detection unit 62 and the current additional load capacity calculated by the additional load capacity calculation unit 63 as the remaining load capacity.
  • the remaining load capacity is the remaining weight of earth and sand that can be loaded on the dump truck.
  • the display device 40 was calculated by the sediment weight in the bucket 6 calculated by the load weight calculation unit 61, the maximum load capacity of the dump truck detected by the maximum load capacity detection unit 62, and the additional load capacity calculation unit 63.
  • the additional load capacity of the dump truck (total weight of sediment loaded on the loading platform) and the remaining load capacity of the dump truck calculated by the remaining load capacity calculation unit 64 (remaining weight of sediment that can be loaded) may be displayed. ..
  • the display device 40 may be configured to warn when the additional load capacity exceeds the maximum load capacity. Further, when the calculated sediment weight in the bucket 6 exceeds the remaining load capacity, the display device 40 may be configured to give a warning.
  • the warning is not limited to the case where it is displayed on the display device 40, and may be a voice output by the voice output device 43. As a result, it is possible to prevent the earth and sand from being loaded in excess of the maximum load capacity of the dump truck.
  • FIG. 6 is a diagram illustrating a deep excavation / loading operation in the excavator 100.
  • the operator performs a boom lowering operation. Then, the operator positions the tip of the bucket 6 so as to come to a desired height position with respect to the excavation target, and gradually closes the bucket 6 from the open state as shown in FIG. 6 (B). At this time, the excavated soil enters the bucket 6.
  • the operator raises the boom 4 with the upper edge of the bucket 6 substantially horizontal, and raises the bucket 6 to the position shown in FIG. 6 (C). At this time, the operator may perform an operation of raising the boom 4 and closing the arm 5.
  • the operator raises the boom 4 until the bottom of the bucket 6 reaches a desired height from the ground.
  • the desired height is, for example, a height equal to or higher than the height of the dump truck DT (see FIG. 6E described later).
  • the operator subsequently or simultaneously swivels the upper swivel body 3 as indicated by the arrow AR1 and moves the bucket 6 to a position where the soil is to be discharged.
  • the operation of the excavator at this time is referred to as a boom-up turning operation, and this operation section is referred to as a boom-up turning operation section.
  • the operator When the operator completes the boom raising and turning operation, the operator then opens the arm 5 and the bucket 6 as shown in FIG. 6 (E) to discharge the soil in the bucket 6.
  • the operation of the shovel 100 at this time is referred to as a dump operation, and this operation section is referred to as a dump operation section.
  • the operator may open only the bucket 6 and discharge the soil.
  • the operator When the operator completes the dump operation, the operator then turns the upper swivel body 3 as shown by the arrow AR2 as shown in FIG. 6 (F), and moves the bucket 6 directly above the excavation position. At this time, at the same time as turning, the boom 4 is lowered to lower the bucket 6 from the excavation target to a desired height.
  • the operation of the excavator at this time is referred to as a boom lowering turning operation, and this operation section is referred to as a boom lowering turning operation section.
  • FIG. 7A and 7B are views for explaining the parameters of the excavator 100, FIG. 7A shows a side view, and FIG. 7B shows a front view.
  • the center of gravity of the earth and sand (load) loaded on the bucket 6 is defined as the earth and sand center of gravity Gl.
  • the position of the center of gravity Gl of the earth and sand with respect to the bucket 6 is, for example, experimentally obtained in advance and stored in the controller 30.
  • the weight of the earth and sand loaded on the bucket 6 is defined as the earth and sand weight Wl.
  • the angle formed by the straight line connecting the fulcrums at both ends of the boom 4 with respect to the swivel plane of the upper swivel body 3 is defined as the boom angle ⁇ 1.
  • the boom angle ⁇ 1 is detected by the boom angle sensor S1.
  • the angle formed by the straight line connecting the fulcrums at both ends of the arm 5 with respect to the straight line connecting the fulcrums at both ends of the boom 4 is defined as the arm angle ⁇ 2.
  • the arm angle ⁇ 2 is detected by the arm angle sensor S2.
  • the angle formed by the straight line connecting the fulcrum of the bucket 6 and the center of gravity Gl of the earth and sand with respect to the straight line connecting the fulcrums at both ends of the arm 5 is defined as the bucket angle ⁇ 3.
  • the bucket angle ⁇ 3 is detected by the bucket angle sensor S3.
  • the tilt angle of the shovel 100 in the front-rear direction is defined as the pitch angle ⁇ p.
  • the tilt angle of the shovel 100 in the left-right direction is defined as the roll angle ⁇ r.
  • the pitch angle ⁇ p and the roll angle ⁇ r are detected by the airframe tilt sensor S4.
  • the load weight calculation unit 61 estimates the sediment weight based on, for example, the torque around the foot pin of the boom 4 when raising the boom 4 after the end of the excavation operation section (see (B) and (C) in FIG. 6). ..
  • the excavator 100 may perform an opening / closing operation of the arm 5 (an operation of closing the arm 5 in the example of FIG. 6) together with the raising operation of the boom 4.
  • the distance from the upper turning body 3 to the bucket 6 becomes long (in other words, the turning radius becomes large), so that the turning moment also becomes large.
  • a large turning driving force is required and the turning time becomes long.
  • the turning operation after excavation usually closes the arm 5 so as to reduce the turning moment.
  • the arm 5 is further opened to perform a turning operation. In this way, the arm 5 is opened and closed according to the work content even during the boom raising and turning operation after excavation. Therefore, a moment associated with the opening / closing operation of the arm 5 is also applied to the boom 4.
  • FIG. 8 is a schematic view of the attachment of the excavator 100 showing the relationship between the opening / closing operation of the arm 5 and the torque around the foot pin of the boom 4.
  • r x be the horizontal distance from the foot pin of the boom 4 to the connecting pin of the boom 4 and the arm 5, and let r z be the vertical distance. Further, the horizontal component of the centrifugal force Fa is defined as Fax, and the vertical component of the centrifugal force Fa is defined as Faz .
  • the torque ⁇ a generated around the foot pin of the boom 4 due to the opening and closing of the arm 5 can be expressed by the following equation (2).
  • FIG. 9 is a block diagram illustrating the processing of the load weight calculation unit 61 in the excavator 100 according to the first embodiment.
  • the load weight calculation unit 61 includes a torque calculation unit 71, an inertial force calculation unit 72, a centrifugal force calculation unit 73, an arm centrifugal force calculation unit 74, a resting torque calculation unit 76, and a weight conversion unit 77. It has an inclination correction unit 78 and.
  • the torque calculation unit 71 calculates the torque (detection torque) around the foot pin of the boom 4. It is calculated based on the pressure of the hydraulic oil of the boom cylinder 7 (boom rod pressure sensor S7R, boom bottom pressure sensor S7B).
  • the inertial force calculation unit 72 calculates the torque (inertia term torque) around the foot pin of the boom 4 due to the inertial force.
  • the inertial term torque is calculated based on the angular acceleration around the foot pin of the boom 4 and the moment of inertia of the boom 4.
  • the angular acceleration and moment of inertia around the foot pin of the boom 4 are calculated based on the output of the attitude sensor.
  • the centrifugal force calculation unit 73 calculates the torque (centrifugal term torque) around the foot pin of the boom 4 due to the Coriolis force and the centrifugal force.
  • the centrifugal torque is calculated based on the angular velocity around the foot pin of the boom 4 and the weight of the boom 4.
  • the angular velocity around the foot pin of the boom 4 is calculated based on the output of the attitude sensor.
  • the weight of the boom 4 is known.
  • the arm centrifugal force calculation unit 74 calculates the torque around the foot pin of the boom 4 (arm centrifugal force torque ⁇ a ) due to the centrifugal force when the arm 5 is opened and closed.
  • the arm centrifugal force torque ⁇ a is calculated based on the output of the attitude sensor and the above equations (1) and (2).
  • the stationary torque calculation unit 76 is based on the detection torque of the torque calculation unit 71, the inertial term torque of the inertial force calculation unit 72, the centrifugal term torque of the centrifugal force calculation unit 73, and the arm centrifugal force torque of the arm centrifugal force calculation unit 74.
  • the static torque ⁇ W which is the torque around the foot pin of the boom 4 when the attachment is stationary, is calculated.
  • the equation of the torque around the foot pin of the boom 4 is shown in the equation (3).
  • ⁇ on the left side of the equation (3) indicates the detected torque
  • the first term on the right side indicates the inertial term torque
  • the second term on the right side indicates the centrifugal term torque
  • the third term on the right side indicates the arm centrifugal force torque.
  • ⁇ a is shown
  • the fourth term on the right side shows the static torque ⁇ W.
  • the static torque ⁇ W can be calculated by subtracting the inertial term torque, the centrifugal term torque and the arm centrifugal force torque ⁇ a from the detected torque ⁇ .
  • the first embodiment it is possible to compensate for the influence caused by the rotational operation around the pin such as the boom.
  • a torque ⁇ a is generated around the foot pin of the boom 4 in the boom raising direction due to the opening / closing operation of the arm 5. Therefore, the torque calculated by the torque calculation unit 71 is smaller than that in the case where the arm 5 is not closed.
  • the load weight calculation unit 61 of the first embodiment can accurately calculate the static torque ⁇ W by compensating with the arm centrifugal force torque ⁇ a calculated by the arm centrifugal force calculation unit 74.
  • the weight conversion unit 77 calculates the earth and sand weight Wl based on the static torque ⁇ W compensated by the arm centrifugal force torque ⁇ a .
  • the earth and sand weight Wl can be calculated, for example, by dividing the torque obtained by subtracting the torque when the earth and sand are not loaded on the bucket 6 from the static torque ⁇ W by the horizontal distance from the foot pin of the boom 4 to the center of gravity of the earth and sand. ..
  • the tilt correction unit 78 makes corrections according to the posture of the excavator 100.
  • the posture of the attachment with the boom angle ⁇ 1 detected when the shovel 100 is on an inclined surface having a pitch angle ⁇ p is the posture of the attachment at the boom angle ( ⁇ 1 + ⁇ p) when the shovel 100 is on a flat surface. , Will be equal. That is, by correcting the detected boom angle ⁇ 1 with the pitch angle ⁇ p, the sediment weight is compensated by the posture of the shovel 100.
  • the thrust F of the boom cylinder 7 has a vertical component and a horizontal component when the shovel 100 is viewed from the front. Therefore, by correcting the thrust F of the boom cylinder 7 by the roll angle ⁇ r, that is, by setting the vertical component Fcos ⁇ r, the sediment weight is compensated by the posture of the shovel 100.
  • the weight of excavated earth and sand can be detected. Further, for example, the pressure of the actuator fluctuates during the attachment operation such as the boom raising operation.
  • the torque at rest is calculated from the detected torque around the pin by compensating for the inertial force due to the attachment operation, the Coriolis force, and the centrifugal force around the pin. be able to. Further, the sediment weight can be calculated based on the calculated torque at rest, and the detection accuracy of the sediment weight can be improved.
  • the sediment weight can be compensated based on the posture (pitch angle, roll angle) of the shovel 100. Thereby, even if the ground contact surface of the excavator is an inclined surface, the sediment weight can be suitably detected.
  • the weight of earth and sand loaded on the dump truck can be calculated. This makes it possible to prevent the dump truck from being overloaded.
  • the load capacity of a dump truck is checked by a truck scale or the like before going out from the work site to a public road. If the load capacity exceeds the maximum load capacity, the dump truck needs to return to the position of the excavator 100 to reduce the load of earth and sand. Therefore, the operational efficiency of the dump truck is lowered. Insufficient loading of dump trucks increases the total number of dump trucks that carry earth and sand, and reduces the operational efficiency of dump trucks.
  • the earth and sand can be loaded on the dump truck while preventing overloading, so that the operational efficiency of the dump truck can be improved.
  • the display device 40 displays the sediment weight in the bucket 6, the maximum load capacity of the dump truck, the additional load capacity, and the remaining load capacity. As a result, the perator boarding the excavator 100 can load the earth and sand on the dump truck by performing the work while referring to these displays.
  • the load weight calculation unit 61 is provided with an arm centrifugal force calculation unit 74, and has been described as compensating for the torque around the foot pin of the boom 4 due to the centrifugal force when the arm 5 is opened and closed. do not have.
  • the load weight calculation unit 61 may include an arm inertial force calculation unit (not shown) that calculates the torque around the foot pin of the boom 4 due to acceleration / deceleration (inertia force) of opening and closing the arm 5.
  • the load weight calculation unit 61 may compensate for the torque around the foot pin of the boom 4 due to the inertial force when the arm 5 is opened and closed. Further, the load weight calculation unit 61 may compensate with both the torque due to the centrifugal force due to the opening and closing of the arm 5 and the torque due to the inertial force.
  • the excavator (working machine) 100 according to the first embodiment includes a bucket 6 as an end attachment, and measures the weight of earth and sand (transported object) transported by the bucket 6.
  • the method for measuring the weight of earth and sand applied to the excavator (working machine) 100 according to the first embodiment may be applied to other working machines. That is, the weight of earth and sand applied to the excavator 100 according to the first embodiment for a work machine having an end attachment used for transporting a transported object such as a bucket, a lifting magnet, a grapple, a fork, or a harvester including a chainsaw.
  • a measurement method may be applied.
  • the boom 4 may be applied to a work machine having a lifting magnet as an end attachment.
  • a work machine having a lifting magnet as an end attachment.
  • iron scraps and the like located away from the work machine are attracted by the lifting magnet, and then the boom 4 is raised and the arm 5 is closed to raise the upper part.
  • the upper swivel body 3 is swiveled in a state where the distance from the center of rotation of the swivel body 3 to the iron scraps and the like (conveyed objects) attracted to the lifting magnet is shortened. Even in such an operation in which the boom 4 raising operation and the arm 5 closing operation are performed at the same time, the weight of the conveyed object can be suitably calculated.
  • FIG. 10 is a block diagram illustrating the processing of the load weight calculation unit 61 in the excavator 100 according to the second embodiment.
  • the load weight calculation unit 61 includes a torque calculation unit 71, an inertial force calculation unit 72, a centrifugal force calculation unit 73, an arm inertial force calculation unit 75, a resting torque calculation unit 76, and a weight conversion unit 77. It has an inclination correction unit 78 and.
  • the torque calculation unit 71 calculates the torque (detection torque) around the foot pin of the boom 4.
  • the inertial force calculation unit 72 calculates the torque (inertia term torque) around the foot pin of the boom 4 due to the inertial force.
  • the centrifugal force calculation unit 73 calculates the torque (centrifugal term torque) around the foot pin of the boom 4 due to the Coriolis force and the centrifugal force.
  • the torque calculation unit 71, the inertial force calculation unit 72, and the centrifugal force calculation unit 73 are the same as the torque calculation unit 71, the inertial force calculation unit 72, and the centrifugal force calculation unit 73 of the load weight calculation unit 61 shown in FIG. Yes, duplicate explanations are omitted.
  • the arm inertial force calculation unit 75 calculates the torque (arm inertial force torque) around the foot pin of the boom 4 due to the acceleration / deceleration (inertia force) of opening and closing the arm 5.
  • the arm inertial force torque is calculated based on the output of the attitude sensor.
  • the stationary torque calculation unit 76 is based on the detection torque of the torque calculation unit 71, the inertial term torque of the inertial force calculation unit 72, the centrifugal term torque of the centrifugal force calculation unit 73, and the arm inertial force torque of the arm inertial force calculation unit 75.
  • the static torque ⁇ W which is the torque around the foot pin of the boom 4 when the attachment is stationary, is calculated.
  • the equation of the torque around the foot pin of the boom 4 is shown in the above-mentioned equation (3).
  • ⁇ on the left side of the equation (3) indicates the detected torque
  • the first term on the right side indicates the inertial term torque
  • the second term on the right side indicates the centrifugal term torque
  • the third term on the right side indicates the arm inertial force torque.
  • ⁇ a is shown
  • the fourth term on the right side shows the static torque ⁇ W.
  • the static torque ⁇ W can be calculated by subtracting the inertial term torque, the centrifugal term torque and the arm inertial force torque ⁇ a from the detected torque ⁇ .
  • the load weight calculation unit 61 of the second embodiment can accurately calculate the static torque ⁇ W by compensating with the arm inertial force torque ⁇ a calculated by the arm inertial force calculation unit 75.
  • the weight conversion unit 77 calculates the sediment weight Wl based on the static torque ⁇ W compensated by the arm inertial force torque ⁇ a . Further, the inclination correction unit 78 makes corrections according to the posture of the excavator 100.
  • the weight conversion unit 77 and the inclination correction unit 78 are the same as the weight conversion unit 77 and the inclination correction unit shown in FIG. 9, and overlapping description will be omitted.
  • the weight of excavated earth and sand can be detected. Further, for example, the pressure of the actuator fluctuates during the attachment operation such as the boom raising operation.
  • the torque at rest is calculated from the detected torque around the pin by compensating for the inertial force due to the attachment operation, the Coriolis force, and the centrifugal force around the pin. be able to. Further, the sediment weight can be calculated based on the calculated torque at rest, and the detection accuracy of the sediment weight can be improved.
  • the sediment weight can be compensated based on the posture (pitch angle, roll angle) of the shovel 100. Thereby, even if the ground contact surface of the excavator is an inclined surface, the sediment weight can be suitably detected.
  • the weight of earth and sand loaded on the dump truck can be calculated. This makes it possible to prevent the dump truck from being overloaded.
  • the load capacity of a dump truck is checked by a truck scale or the like before going out from the work site to a public road. If the load capacity exceeds the maximum load capacity, the dump truck needs to return to the position of the excavator 100 to reduce the load of earth and sand. Therefore, the operational efficiency of the dump truck is lowered. Insufficient loading of dump trucks increases the total number of dump trucks that carry earth and sand, and reduces the operational efficiency of dump trucks.
  • the earth and sand can be loaded on the dump truck while preventing overloading, so that the operational efficiency of the dump truck can be improved.
  • the display device 40 displays the sediment weight in the bucket 6, the maximum load capacity of the dump truck, the additional load capacity, and the remaining load capacity. As a result, the perator boarding the excavator 100 can load the earth and sand on the dump truck by performing the work while referring to these displays.
  • the load weight calculation unit 61 shown in FIG. 9 compensates for the torque due to the centrifugal force due to the opening and closing of the arm 5, and the load weight calculation unit 61 shown in FIG. 10 compensates for the torque due to the inertial force due to the opening and closing of the arm 5.
  • the load weight calculation unit 61 may be configured to compensate based on at least one of the torque due to the centrifugal force due to the opening and closing of the arm 5 and the torque due to the inertial force due to the opening and closing of the arm 5.
  • the load weight calculation unit 61 includes a torque calculation unit 71, an inertial force calculation unit 72, a centrifugal force calculation unit 73, an arm centrifugal force calculation unit 74, an arm inertial force calculation unit 75, and a stationary torque. It may have a calculation unit 76, a weight conversion unit 77, and an inclination correction unit 78.
  • the stationary torque calculation unit 76 includes the detection torque of the torque calculation unit 71, the inertial term torque of the inertial force calculation unit 72, the centrifugal term torque of the centrifugal force calculation unit 73, and the arm centrifugal force torque of the arm centrifugal force calculation unit 74.
  • the static torque ⁇ W which is the torque around the foot pin of the boom 4 when the attachment is stationary, is calculated.
  • ⁇ a in the above-mentioned equation (3) may be a torque that is a combination of the arm centrifugal force torque and the arm inertial force torque. This makes it possible to further improve the detection accuracy of the sediment weight.
  • the excavator (working machine) 100 according to the second embodiment is provided with a bucket 6 as an end attachment, and measures the weight of earth and sand (transported object) transported by the bucket 6.
  • the method for measuring the weight of earth and sand applied to the excavator (working machine) 100 according to the second embodiment may be applied to other working machines. That is, the weight of earth and sand applied to the excavator 100 according to the second embodiment for a work machine having an end attachment used for transporting a transported object such as a bucket, a lifting magnet, a grapple, a fork, or a harvester including a chainsaw.
  • a measurement method may be applied.
  • the boom 4 may be applied to a work machine having a lifting magnet as an end attachment.
  • a work machine having a lifting magnet as an end attachment.
  • iron scraps and the like located away from the work machine are attracted by the lifting magnet, and then the boom 4 is raised and the arm 5 is closed to raise the upper part.
  • the upper swivel body 3 is swiveled in a state where the distance from the center of rotation of the swivel body 3 to the iron scraps and the like (conveyed objects) attracted to the lifting magnet is shortened. Even in such an operation in which the boom 4 raising operation and the arm 5 closing operation are performed at the same time, the weight of the conveyed object can be suitably calculated.
  • the end attachment such as a lifting magnet or the transported object is a heavy object
  • the influence of the inertial force of the arm becomes large when the conveyed object far from the work machine is brought to the front of the work machine. Even in such work, the weight of the transported object can be preferably calculated.
  • FIG. 7A and 7B are views for explaining the parameters of the excavator 100, FIG. 7A shows a side view, and FIG. 7B shows a front view.
  • the center of gravity of the earth and sand (load) loaded on the bucket 6 is defined as the earth and sand center of gravity Gl.
  • the position of the center of gravity Gl of the earth and sand with respect to the bucket 6 is, for example, experimentally obtained in advance and stored in the controller 30.
  • the weight of the earth and sand loaded on the bucket 6 is defined as the earth and sand weight Wl.
  • the angle formed by the straight line connecting the fulcrums at both ends of the boom 4 with respect to the swivel plane of the upper swivel body 3 is defined as the boom angle ⁇ 1.
  • the boom angle ⁇ 1 is detected by the boom angle sensor S1.
  • the angle formed by the straight line connecting the fulcrums at both ends of the arm 5 with respect to the straight line connecting the fulcrums at both ends of the boom 4 is defined as the arm angle ⁇ 2.
  • the arm angle ⁇ 2 is detected by the arm angle sensor S2.
  • the angle formed by the straight line connecting the fulcrum of the bucket 6 and the center of gravity Gl of the earth and sand with respect to the straight line connecting the fulcrums at both ends of the arm 5 is defined as the bucket angle ⁇ 3.
  • the bucket angle ⁇ 3 is detected by the bucket angle sensor S3.
  • the tilt angle of the shovel 100 in the front-rear direction is defined as the pitch angle ⁇ p.
  • the tilt angle of the shovel 100 in the left-right direction is defined as the roll angle ⁇ r.
  • the pitch angle ⁇ p and the roll angle ⁇ r are detected by the airframe tilt sensor S4.
  • the load weight calculation unit 61 estimates the sediment weight based on, for example, the torque around the foot pin of the boom 4 when raising the boom 4 after the end of the excavation operation section (see (B) and (C) in FIG. 6). ..
  • the excavator 100 may perform an opening / closing operation of the arm 5 (an operation of closing the arm 5 in the example of FIG. 6) together with the raising operation of the boom 4.
  • the distance from the upper turning body 3 to the bucket 6 becomes long (in other words, the turning radius becomes large), so that the turning moment also becomes large.
  • a large turning driving force is required and the turning time becomes long.
  • the turning operation after excavation usually closes the arm 5 so as to reduce the turning moment.
  • the arm 5 is further opened to perform a turning operation. In this way, the arm 5 is opened and closed according to the work content even during the boom raising and turning operation after excavation. Therefore, a moment associated with the opening / closing operation of the arm 5 is also applied to the boom 4.
  • FIG. 11A is a schematic view of the attachment of the excavator 100 showing the relationship between the opening / closing operation of the arm 5 and the torque around the foot pin of the boom 4.
  • FIG. 11B is a schematic view of the attachment of the excavator 100 showing the relationship between the opening / closing operation of the bucket 6 and the torque around the foot pin of the boom 4.
  • the earth and sand weight m is a tentative value calculated based on the thrust of the boom cylinder 7.
  • the torque calculation unit 71 has a boom based on the thrust of the boom cylinder 7 (value calculated from the measured values of the boom rod pressure sensor S7R and the boom bottom pressure sensor S7B).
  • the detected torque ⁇ around the foot pin of 4 is calculated.
  • the stationary torque calculation unit 76 includes the detected torque ⁇ , the item J based on the inertial force calculated by the inertial force calculation unit 72 (see FIG. 12), and the centrifugal force calculation unit 73 (see FIG. 12).
  • the static torque ⁇ W is calculated based on the term h due to the centrifugal force calculated by) and the equation (8) described later.
  • the stationary torque calculation unit 76 calculates the static torque ⁇ W without using the arm centrifugal force torque ⁇ a and the bucket centrifugal force torque ⁇ b . Therefore, the earth and sand weight m is a tentative value calculated based on the thrust of the boom cylinder 7.
  • is an attachment angle, and includes a boom angle, an arm angle, and a bucket angle.
  • the horizontal distance from the foot pin of the boom 4 to the connecting pin between the boom 4 and the arm 5 is r armx
  • the vertical distance is r armz
  • the horizontal component of the centrifugal force Fa is defined as Fax
  • the vertical component of the centrifugal force Fa is defined as Faz .
  • the torque ⁇ a generated around the foot pin of the boom 4 due to the opening and closing of the arm 5 can be expressed by the following equation (5).
  • the horizontal distance from the foot pin of the boom 4 to the connecting pin between the arm 5 and the bucket 6 is r bktx
  • the vertical distance is r bktz
  • the horizontal component of the centrifugal force F b is F bx
  • the vertical component of the centrifugal force F b is F bz .
  • the torque ⁇ b generated around the foot pin of the boom 4 due to the opening and closing of the bucket 6 can be expressed by the following equation (7).
  • the opening and closing of the bucket 6 generates a torque ⁇ b around the foot pin of the boom 4. Therefore, in the method of estimating the sediment weight based on the torque around the foot pin during the boom raising operation, it is required to suitably compensate for the sediment weight.
  • FIG. 12 is a block diagram illustrating the processing of the load weight calculation unit 61 in the excavator 100 according to the third embodiment.
  • the load weight calculation unit 61 includes a torque calculation unit 71, an inertial force calculation unit 72, a centrifugal force calculation unit 73, an arm centrifugal force calculation unit 74, a bucket centrifugal force calculation unit 79A, and a stationary torque calculation unit 76. And a weight conversion unit 77 and an inclination correction unit 78.
  • the torque calculation unit 71 calculates the torque (detection torque ⁇ ) around the foot pin of the boom 4.
  • the detected torque ⁇ is calculated based on the pressure of the hydraulic oil of the boom cylinder 7 (boom rod pressure sensor S7R, boom bottom pressure sensor S7B).
  • the inertial force calculation unit 72 calculates the torque (inertia term torque) around the foot pin of the boom 4 due to the inertial force.
  • the inertial term torque is calculated based on the angular acceleration around the foot pin of the boom 4 and the moment of inertia of the boom 4.
  • the angular acceleration and moment of inertia around the foot pin of the boom 4 are calculated based on the output of the attitude sensor.
  • the centrifugal force calculation unit 73 calculates the torque (centrifugal term torque) around the foot pin of the boom 4 due to the Coriolis force and the centrifugal force.
  • the centrifugal torque is calculated based on the angular velocity around the foot pin of the boom 4 and the weight of the boom 4.
  • the angular velocity around the foot pin of the boom 4 is calculated based on the output of the attitude sensor.
  • the weight of the boom 4 is known.
  • the arm centrifugal force calculation unit 74 calculates the torque around the foot pin of the boom 4 (arm centrifugal force torque ⁇ a ) due to the centrifugal force when the arm 5 is opened and closed.
  • the arm centrifugal force torque ⁇ a is calculated based on the output of the attitude sensor and the above equations (4) and (5).
  • the bucket centrifugal force calculation unit 79A calculates the torque (bucket centrifugal force torque ⁇ b ) around the foot pin of the boom 4 due to the centrifugal force when the bucket 6 is opened and closed.
  • the bucket centrifugal force torque ⁇ b is calculated based on the output of the attitude sensor and the above equations (6) and (7).
  • the stationary torque calculation unit 76 includes the detection torque ⁇ of the torque calculation unit 71, the inertial term torque of the inertial force calculation unit 72, the centrifugal term torque of the centrifugal force calculation unit 73, the arm centrifugal force torque of the arm centrifugal force calculation unit 74, and the bucket. Based on the bucket centrifugal force torque of the centrifugal force calculation unit 79A, the static torque ⁇ W , which is the torque around the foot pin of the boom 4 when the attachment is stationary, is calculated. Here, the equation of the torque around the foot pin of the boom 4 is shown in the equation (8).
  • ⁇ on the left side of the equation (8) indicates the detected torque
  • the first term on the right side indicates the inertial term torque
  • the second term on the right side indicates the centrifugal term torque
  • the third term on the right side indicates the arm centrifugal force torque.
  • the fourth term on the right side indicates the bucket centrifugal force torque ⁇ b
  • the fifth term on the right side indicates the static torque ⁇ W.
  • the static torque ⁇ W can be calculated by subtracting the inertial term torque, the centrifugal term torque, the arm centrifugal force torque ⁇ a , and the bucket centrifugal force torque ⁇ b from the detected torque ⁇ . ..
  • the static torque ⁇ W can be calculated by subtracting the inertial term torque, the centrifugal term torque, the arm centrifugal force torque ⁇ a , and the bucket centrifugal force torque ⁇ b from the detected torque ⁇ . ..
  • the load weight calculation unit 61 of the third embodiment can accurately calculate the static torque ⁇ W by compensating with the arm centrifugal force torque ⁇ a calculated by the arm centrifugal force calculation unit 74. Further, when the bucket 6 is closed during the boom raising operation, as shown in FIG. 11B, a torque ⁇ b is generated around the foot pin of the boom 4 in the boom lowering direction due to the opening / closing operation of the bucket 6. Therefore, the torque calculated by the torque calculation unit 71 is larger than that in the case where the bucket 6 is not closed.
  • the load weight calculation unit 61 of the third embodiment can accurately calculate the static torque ⁇ W by compensating with the bucket centrifugal force torque ⁇ b calculated by the bucket centrifugal force calculation unit 79A.
  • the weight conversion unit 77 calculates the earth and sand weight Wl based on the static torque ⁇ W compensated by the arm centrifugal force torque ⁇ a and the bucket centrifugal force torque ⁇ b .
  • the earth and sand weight Wl can be calculated, for example, by dividing the torque obtained by subtracting the torque when the earth and sand are not loaded on the bucket 6 from the static torque ⁇ W by the horizontal distance from the foot pin of the boom 4 to the center of gravity of the earth and sand. ..
  • the tilt correction unit 78 makes corrections according to the posture of the excavator 100.
  • the posture of the attachment with the boom angle ⁇ 1 detected when the shovel 100 is on an inclined surface having a pitch angle ⁇ p is the posture of the attachment at the boom angle ( ⁇ 1 + ⁇ p) when the shovel 100 is on a flat surface. , Will be equal. That is, by correcting the detected boom angle ⁇ 1 with the pitch angle ⁇ p, the sediment weight is compensated by the posture of the shovel 100.
  • the thrust F of the boom cylinder 7 has a vertical component and a horizontal component when the shovel 100 is viewed from the front. Therefore, by correcting the thrust F of the boom cylinder 7 by the roll angle ⁇ r, that is, by setting the vertical component Fcos ⁇ r, the sediment weight is compensated by the posture of the shovel 100.
  • the weight of excavated earth and sand can be detected. Further, for example, the pressure of the actuator fluctuates during the attachment operation such as the boom raising operation.
  • the torque at rest is calculated from the detected torque around the pin by compensating for the inertial force due to the attachment operation, the Coriolis force, and the centrifugal force around the pin. be able to. Further, the sediment weight can be calculated based on the calculated torque at rest, and the detection accuracy of the sediment weight can be improved.
  • the sediment weight can be compensated based on the posture (pitch angle, roll angle) of the shovel 100. Thereby, even if the ground contact surface of the excavator is an inclined surface, the sediment weight can be suitably detected.
  • the weight of earth and sand loaded on the dump truck can be calculated. This makes it possible to prevent the dump truck from being overloaded.
  • the load capacity of a dump truck is checked by a truck scale or the like before going out from the work site to a public road. If the load capacity exceeds the maximum load capacity, the dump truck needs to return to the position of the excavator 100 to reduce the load of earth and sand. Therefore, the operational efficiency of the dump truck is lowered. Insufficient loading of dump trucks increases the total number of dump trucks that carry earth and sand, and reduces the operational efficiency of dump trucks.
  • the earth and sand can be loaded on the dump truck while preventing overloading, so that the operational efficiency of the dump truck can be improved.
  • the display device 40 displays the sediment weight in the bucket 6, the maximum load capacity of the dump truck, the additional load capacity, and the remaining load capacity. As a result, the perator boarding the excavator 100 can load the earth and sand on the dump truck by performing the work while referring to these displays.
  • the load weight calculation unit 61 includes an arm centrifugal force calculation unit 74, and obtains torque (arm centrifugal force torque ⁇ a ) around the foot pin of the boom 4 due to the centrifugal force when the arm 5 is opened and closed by the arm cylinder 8. It has been calculated and described as compensating the static torque ⁇ W with the arm centrifugal force torque ⁇ a , but the present invention is not limited to this. Even if the load weight calculation unit 61 includes an arm inertial force calculation unit (not shown) that calculates the torque around the foot pin of the boom 4 (arm inertial force torque) due to acceleration / deceleration (inertia force) of opening and closing of the arm 5. good.
  • the load weight calculation unit 61 may compensate the static torque ⁇ W with the arm inertial force torque. Further, the load weight calculation unit 61 may compensate the static torque ⁇ W with both the arm centrifugal force torque ⁇ a and the arm inertial force torque ⁇ a.
  • the load weight calculation unit 61 includes a bucket centrifugal force calculation unit 79A, and obtains torque (bucket centrifugal force torque ⁇ b ) around the foot pin of the boom 4 due to the centrifugal force when the bucket 6 is opened and closed by the bucket cylinder 9. It has been calculated and described as compensating the static torque ⁇ W with the bucket centrifugal force torque ⁇ b , but the present invention is not limited to this. Even if the load weight calculation unit 61 includes a bucket inertial force calculation unit (not shown) that calculates the torque (bucket inertial force torque) around the foot pin of the boom 4 due to the acceleration / deceleration (inertia force) of opening and closing the bucket 6. good.
  • the load weight calculation unit 61 may compensate the static torque ⁇ W with the bucket inertial force torque. Further, the load weight calculation unit 61 may compensate the static torque ⁇ W with both the bucket centrifugal force torque ⁇ b and the bucket inertial force torque ⁇ b.
  • FIG. 13 is a side view of the work machine 100A according to the fourth embodiment.
  • the end attachment of the work machine 100A according to the fourth embodiment is changed from the bucket 6 to the grapple 6A as compared with the excavator (work machine) 100 according to the first to third embodiments shown in FIG. Other configurations are the same, and duplicate description will be omitted.
  • the work machine 100A according to the fourth embodiment grips a long conveyed object W such as a log material (wood) with a grapple 6A and conveys the conveyed object W.
  • the conveyed object W conveyed by the work machine 100A is loaded into, for example, a dump truck (not shown).
  • the bucket cylinder (end attachment cylinder) 9 is used to rotate (tilt) the grapple 6A.
  • the grapple 6A includes a claw (grip portion) 6Aa that can be opened and closed, a grapple opening / closing cylinder 6Ab that opens and closes the claw 6Aa, and a rotary hydraulic motor 6Ac that rotates the claw 6Aa by a rotating shaft 6Ad.
  • control valve 17 has a control valve (not shown) corresponding to the grapple opening / closing cylinder 6Ab and a control valve (not shown) corresponding to the rotary hydraulic motor 6Ac.
  • the hydraulic oil supplied from the main pump 14 is configured to be able to be supplied to the grapple opening / closing cylinder 6Ab and the rotary hydraulic motor 6Ac, which are hydraulic actuators, according to the operating state of the operating device 26.
  • the grapple rotation angle sensor S10 is attached to the grapple 6A and detects the rotation angle of the grip portion of the grapple 6A around the rotation shaft 6Ad.
  • the grapple rotation angle sensor S10 may include, for example, a gyro sensor, a resolver, a rotary encoder, and the like.
  • the detection signal corresponding to the rotation angle of the grapple 6A by the grapple rotation angle sensor S10 is taken into the controller 30.
  • 14A and 14B are diagrams illustrating an example of the operation of the work machine 100A according to the fourth embodiment.
  • the long conveyed object W is gripped by the claw 6Aa of the grapple 6A.
  • the claw 6Aa of the grapple 6A grips the conveyed object W at a position different from the center of gravity G of the conveyed object W, in other words, the conveyed object is offset to one end side of the conveyed object W. It is assumed that W is gripped.
  • the work machine 100A performs an operation of rotating the grip portion of the grapple 6A around the rotation shaft 6Ad (see the arrow).
  • the conveyed object W is in the direction in which the conveyed object W gripped by the grip portion of the grapple 6A comes out (the axis of the conveyed object W). In the direction), the centrifugal force Fc is received.
  • the centrifugal force F c received by the conveyed object W is applied to the attachment of the work machine 100A.
  • FIG. 15 is a schematic view of the attachment of the shovel 100 showing the relationship between the rotational operation of the grip portion of the grapple 6A and the torque around the foot pin of the boom 4.
  • the centrifugal force when the grip portion of the grapple 6A is rotated around the rotation shaft 6Ad is defined as the centrifugal force Fc.
  • the centrifugal force F c has components in the X direction, the Y direction, and the Z direction.
  • the X direction is a horizontal direction and a direction in which the attachment expands and contracts.
  • the Y direction is a horizontal direction and a direction orthogonal to the X direction.
  • the Z direction is the vertical direction.
  • the horizontal component of the centrifugal force F c in the X direction is F cx
  • the vertical component of the centrifugal force F c in the Z direction is F cz .
  • the centrifugal force F c received by the conveyed object W is the connecting pin between the arm 5 and the grapple 6A. It also works in position (see the hatched arrow).
  • the torque ⁇ c is generated around the foot pin of the boom 4 due to the rotation operation of the grip portion of the grapple 6A. Therefore, in the method of estimating the weight of the transported object based on the torque around the foot pin during the boom raising operation, it is required to preferably compensate the weight of the transported object.
  • the rotary hydraulic motor 6Ac rotates the grip portion of the grapple 6A to centrifuge.
  • a force F c is generated.
  • the vertical component F cz in the Z direction of the centrifugal force F c becomes zero.
  • the centrifugal force F c faces the Y direction due to the rotational operation of the grip portion of the grapple 6A
  • the horizontal component F cx in the X direction becomes zero, and the torque ⁇ c calculated by the equation (9) also becomes zero.
  • the grip portion of the grapple 6A is rotated by the rotary hydraulic motor 6Ac.
  • the horizontal component F cx in the X direction of the centrifugal force F c becomes zero.
  • the vertical component F cz in the Z direction becomes zero, and the torque ⁇ c calculated by the equation (9) also becomes zero.
  • FIG. 16 is a block diagram illustrating the processing of the load weight calculation unit 61 in the work machine 100A according to the fourth embodiment.
  • the load weight calculation unit 61 includes a torque calculation unit 71, an inertial force calculation unit 72, a centrifugal force calculation unit 73, an arm centrifugal force calculation unit 74, and a bucket centrifugal force calculation unit (end attachment centrifugal force calculation unit) 79A. It has a grip portion centrifugal force calculation unit 79B, a stationary torque calculation unit 76, a weight conversion unit 77, and an inclination correction unit 78.
  • the torque calculation unit 71, the inertial force calculation unit 72, the centrifugal force calculation unit 73, the arm centrifugal force calculation unit 74, and the tilt correction unit 78 are the same as in the case shown in FIG. 12, and overlapping description will be omitted.
  • the bucket centrifugal force calculation unit 79A calculates the torque (bucket centrifugal force torque (end attachment centrifugal force torque) ⁇ b ) around the foot pin of the boom 4 due to the centrifugal force when the grapple 6A is rotated in the tilt direction.
  • the bucket centrifugal force torque ⁇ b is calculated based on the output of the attitude sensor and the above equations (6) and (7).
  • the grip portion centrifugal force calculation unit 79B calculates the torque around the foot pin of the boom 4 (grip portion centrifugal force torque ⁇ c ) due to the centrifugal force when the grapple 6A is rotated around the rotation axis 6Ad.
  • the grip centrifugal force torque ⁇ c is calculated based on the output of the posture sensor and the above equation (9).
  • the stationary torque calculation unit 76 includes the detection torque of the torque calculation unit 71, the inertial term torque of the inertial force calculation unit 72, the centrifugal term torque of the centrifugal force calculation unit 73, the arm centrifugal force torque of the arm centrifugal force calculation unit 74, and the bucket centrifugal force.
  • the static torque ⁇ W which is the torque around the foot pin of the boom 4 when the attachment is stationary, is calculated.
  • the equation of the torque around the foot pin of the boom 4 is shown in the equation (10).
  • ⁇ on the left side of the equation (10) indicates the detected torque
  • the first term on the right side indicates the inertial term torque
  • the second term on the right side indicates the centrifugal term torque
  • the third term on the right side indicates the arm centrifugal force torque.
  • the fourth term on the right side indicates the bucket centrifugal force torque ⁇ b
  • the fifth term on the right side indicates the grip centrifugal force torque ⁇ c
  • the sixth term on the right side indicates the static torque ⁇ W.
  • the static torque is obtained by subtracting the inertial term torque, the centrifugal term torque, the arm centrifugal force torque ⁇ a , the bucket centrifugal force torque ⁇ b , and the grip portion centrifugal force torque ⁇ c from the detected torque ⁇ .
  • ⁇ W can be calculated.
  • the load weight calculation unit 61 of the work machine 100A according to the fourth embodiment can compensate for the influence caused by the rotational operation around the pin such as the boom.
  • the conveying operation is performed with the tilting operation of the grapple 6A and the rotating operation of the grip portion during the boom raising operation. Therefore, in the load weight calculation unit 61 of the fourth embodiment, the bucket centrifugal force torque ⁇ b calculated by the bucket centrifugal force calculation unit 79A and the grip portion centrifugal force torque ⁇ c calculated by the grip unit centrifugal force calculation unit 79B are used. By compensating, the static torque ⁇ W can be calculated accurately.
  • the weight conversion unit 77 calculates the weight of the transported object based on the static torque ⁇ W compensated by the arm centrifugal force torque ⁇ a , the bucket centrifugal force torque ⁇ b , and the grip portion centrifugal force torque ⁇ c .
  • the weight of the conveyed object W gripped by the grapple 6A can be detected. Further, according to the work machine 100A according to the fourth embodiment, the conveyed object is based on the static torque ⁇ W compensated by the arm centrifugal force torque ⁇ a , the bucket centrifugal force torque ⁇ b , and the grip portion centrifugal force torque ⁇ c . The weight can be calculated, and the detection accuracy of the weight of the transported object can be improved.
  • the posture (pitch) of the work machine 100A even when the ground plane of the work machine 100A is not a flat surface.
  • the weight of the transported object can be compensated based on the angle (angle, roll angle). Thereby, even if the ground contact surface of the work machine 100A is an inclined surface, the weight of the conveyed object can be suitably detected.
  • the weight of the transported object loaded on the dump truck can be calculated as in the excavator 100 according to the fourth embodiment.
  • the transported material can be loaded on the dump truck while preventing the dump truck from being overloaded, so that the operational efficiency of the dump truck can be improved.
  • the display device 40 displays the weight of the transported object gripped by the grapple 6A, the maximum load capacity of the dump truck, the additional load capacity, and the remaining load capacity. As a result, the perator boarding the excavator 100 can load the transported object on the dump truck by performing the work while referring to these displays.
  • the load weight calculation unit 61 includes an arm centrifugal force calculation unit 74, and obtains torque (arm centrifugal force torque ⁇ a ) around the foot pin of the boom 4 due to the centrifugal force when the arm 5 is opened and closed by the arm cylinder 8. It has been calculated and described as compensating the static torque ⁇ W with the arm centrifugal force torque ⁇ a , but the present invention is not limited to this. Even if the load weight calculation unit 61 includes an arm inertial force calculation unit (not shown) that calculates the torque around the foot pin of the boom 4 (arm inertial force torque) due to acceleration / deceleration (inertia force) of opening and closing of the arm 5. good.
  • the load weight calculation unit 61 may compensate the static torque ⁇ W with the arm inertial force torque. Further, the load weight calculation unit 61 may compensate the static torque ⁇ W with both the arm centrifugal force torque ⁇ a and the arm inertial force torque ⁇ a.
  • the load weight calculation unit 61 includes a bucket centrifugal force calculation unit 79A, and torque (bucket centrifugal force) around the foot pin of the boom 4 due to the centrifugal force when the grapple 6A is opened and closed by the bucket cylinder (end attachment cylinder) 9.
  • the torque (end attachment centrifugal force torque) ⁇ b ) has been calculated, and the bucket centrifugal force torque ⁇ b has been described as compensating for the static torque ⁇ W , but the present invention is not limited to this.
  • the load weight calculation unit 61 calculates the torque around the foot pin of the boom 4 (bucket inertial force torque (end attachment inertial force torque)) due to acceleration / deceleration (inertia force) of opening and closing of the grapple 6A. Attachment inertial force calculation unit (not shown) may be provided.
  • the load weight calculation unit 61 may compensate the static torque ⁇ W with the bucket inertial force torque. Further, the load weight calculation unit 61 may compensate the static torque ⁇ W with both the bucket centrifugal force torque ⁇ b and the bucket inertial force torque ⁇ b.
  • the load weight calculation unit 61 includes a grip portion centrifugal force calculation unit 79B, and the foot pin of the boom 4 due to the centrifugal force when the grip portion of the grapple 6A is rotated by the rotary hydraulic motor (grip portion rotation mechanism) 6Ac. It has been described that the rotational torque (grip centrifugal force torque ⁇ c ) is calculated and the static torque ⁇ W is compensated by the grip centrifugal force torque ⁇ c , but the present invention is not limited to this.
  • the load weight calculation unit 61 calculates the torque around the foot pin of the boom 4 (inertial force torque of the grip portion) due to acceleration / deceleration (inertial force) when the grip portion of the grapple 6A is rotated.
  • the load weight calculation unit 61 may compensate the static torque ⁇ W with the grip portion inertial force torque. Further, the load weight calculation unit 61 may compensate the static torque ⁇ W with both the grip portion centrifugal force torque ⁇ c and the grip portion inertial force torque ⁇ c.
  • the method for measuring the weight of the conveyed object applied to the excavator 100 according to the third embodiment and the work machine 100A according to the fourth embodiment may be applied to other work machines. That is, the excavator 100 and the fourth embodiment according to the third embodiment are applied to a work machine having an end attachment used for transporting a transported object such as a bucket, a lifting magnet, a grapple, a fork, or a harvester including a chainsaw.
  • the method for measuring the weight of the conveyed object applied to the work machine 100A may be applied.
  • the earth and sand load processing unit 60 has been described as being provided as a function in the controller 30 of the excavator 100 or the work machine 100A, but the present invention is not limited to this.
  • a control device for a work machine (not shown) provided separately from the controller 30 may be provided with a function of a sediment load processing unit 60 (load weight calculation unit 61).
  • FIG. 17 is a diagram showing a configuration example of the loading support system SYS.
  • the loading support system SYS includes a shovel 100, a mobile body 200 having a support device 210 provided on the dump truck DT, a management device 300, and a support device 400, and can communicate via a communication network 900. It may be configured.
  • the support device 210 is a mobile terminal device, and is, for example, a computer such as a notebook PC, a tablet PC, or a smartphone installed in a dump truck DT.
  • the management device 300 is a fixed terminal device, for example, a computer installed in a management center or the like outside the work site.
  • the management device 300 may be a portable computer (for example, a portable terminal device such as a notebook PC, a tablet PC, or a smartphone).
  • the support device 400 is a mobile terminal device, and is, for example, a computer such as a notebook PC, a tablet PC, or a smartphone carried by a worker or the like at a work site.
  • the controller 30 of the excavator 100 may transmit the calculated earth and sand weight or the like to the management device 300 via the communication device T1 and the communication network 900.
  • the management device 300 can manage the weight of the load such as earth and sand loaded on the dump truck DT by the excavator 100.
  • the controller 30 of the excavator 100 may transmit to the support device 210 provided in the dump truck DT via the communication device T1 and the communication network 900.
  • the excavator 100 may be remotely controlled via the communication network 900.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

精度よく積載物の重量を算出する作業機械及び作業機械用の制御装置を提供する。 少なくとも、ブーム、該ブームの先端に取り付けられたアーム、該アームの先端に取り付けられたエンドアタッチメントを有し、上部旋回体に取り付けられるアタッチメントと、制御装置と、を備え、前記制御装置は、前記アームの遠心力及び前記アームの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償し、補償された前記トルクに基づいて、前記アタッチメントが搬送する搬送物の重量を算出する、作業機械。

Description

作業機械及び作業機械用の制御装置
 本開示は、作業機械に関する。
 例えば、上部旋回体とブームとの相対的角度を検出する角度センサの測定値と、ブームとアームとの相対的角度を検出する角度センサの測定値と、ブームシリンダに供給される作動油の圧力を検出する圧力センサの測定値と、アームシリンダに供給される作動油の圧力を検出する圧力センサの測定値と、に基づいて、バケット内の土砂重量を算出するショベルが開示されている(特許文献1参照)。
特開2002-4337号公報
 しかしながら、例えば、ブーム上げ動作時等のアタッチメント動作中には、アクチュエータの圧力が変動する。このため、バケット内の土砂重量が一定の場合であっても、外乱により算出される土砂重量が変動するおそれがある。
 そこで、上記課題に鑑み、精度よく積載物の重量を算出する作業機械及び作業機械用の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の一実施形態では、少なくとも、ブーム、該ブームの先端に取り付けられたアーム、該アームの先端に取り付けられたエンドアタッチメントを有し、上部旋回体に取り付けられるアタッチメントと、制御装置と、を備え、前記制御装置は、前記アームの遠心力及び前記アームの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償し、補償された前記トルクに基づいて、前記アタッチメントが搬送する搬送物の重量を算出する、作業機械が提供される。
 上述の実施形態によれば、精度よく積載物の重量を算出する作業機械及び作業機械用の制御装置を提供することができる。
第1実施形態に係る掘削機としてのショベルの側面図である。 第1実施形態に係るショベルの構成の一例を概略的に示す図である。 第1実施形態に係るショベルの油圧システムの構成の一例を概略的に示す図である。 第1実施形態に係るショベルの油圧システムのうちの操作系に関する構成部分の一例を概略的に示す図である。 第1実施形態に係るショベルの油圧システムのうちの操作系に関する構成部分の一例を概略的に示す図である。 第1実施形態に係るショベルの油圧システムのうちの操作系に関する構成部分の一例を概略的に示す図である。 第1実施形態に係るショベルのうちの土砂荷重検出機能に関する構成部分の一例を概略的に示す図である。 ショベルにおける深掘り掘削・積込み動作を説明する図である。 ショベルのパラメータを説明する図である。 ショベルのパラメータを説明する図である。 アームの開閉動作とブームのフートピン回りのトルクとの関係を示すショベルのアタッチメントの模式図である。 第1実施形態に係るショベルにおける積載物重量算出部の処理を説明するブロック線図である。 第2実施形態に係るショベルにおける積載物重量算出部の処理を説明するブロック線図である。 アームの開閉動作及びバケットの開閉動作とブームのフートピン回りのトルクとの関係を示すショベルのアタッチメントの模式図である。 アームの開閉動作及びバケットの開閉動作とブームのフートピン回りのトルクとの関係を示すショベルのアタッチメントの模式図である。 第3実施形態に係るショベルにおける積載物重量算出部の処理を説明するブロック線図である。 第3実施形態に係る作業機械の側面図である。 第3実施形態に係る作業機械の動作の一例を説明する図である。 第3実施形態に係る作業機械の動作の一例を説明する図である。 グラップルの把持部の回転動作とブームのフートピン回りのトルクとの関係を示すショベルのアタッチメントの模式図である。 第4実施形態に係る作業機械における積載物重量算出部の処理を説明するブロック線図である。 積込支援システムの構成例を示す図である。
 以下、図面を参照して発明を実施するための形態について説明する。
 [ショベルの概要]
 最初に、図1を参照して、第1実施形態に係るショベル(作業機械)100の概要について説明する。
 図1は、第1実施形態に係る掘削機としてのショベル100の側面図である。
 尚、図1では、ショベル100は、施工対象の上り傾斜面ESに面する水平面に位置すると共に、後述する目標施工面の一例である上り法面BS(つまり、上り傾斜面ESに対する施工後の法面形状)が併せて記載されている。なお、施工対象の上り傾斜面ESには、目標施工面である上り法面BSの法線方向を示す円筒体(図示せず)が設けられている。
 第1実施形態に係るショベル100は、下部走行体1と、旋回機構2を介して旋回自在に下部走行体1に搭載される上部旋回体3と、アタッチメント(作業機)を構成するブーム4、アーム5、及び、バケット6と、キャビン10を備える。
 下部走行体1は、左右一対のクローラが走行油圧モータ1L,1R(後述する図2参照)でそれぞれ油圧駆動されることにより、ショベル100を走行させる。つまり、一対の走行油圧モータ1L,1R(走行モータの一例)は、被駆動部としての下部走行体1(クローラ)を駆動する。
 上部旋回体3は、旋回油圧モータ2A(後述する図2参照)で駆動されることにより、下部走行体1に対して旋回する。つまり、旋回油圧モータ2Aは、被駆動部としての上部旋回体3を駆動する旋回駆動部であり、上部旋回体3の向きを変化させることができる。
 尚、上部旋回体3は、旋回油圧モータ2Aの代わりに、電動機(以下、「旋回用電動機」)により電気駆動されてもよい。つまり、旋回用電動機は、旋回油圧モータ2Aと同様、非駆動部としての上部旋回体3を駆動する旋回駆動部であり、上部旋回体3の向きを変化させることができる。
 ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、エンドアタッチメントとしてのバケット6が上下回動可能に枢着される。ブーム4、アーム5、及びバケット6は、それぞれ、油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。
 尚、バケット6は、エンドアタッチメントの一例であり、アーム5の先端には、作業内容等に応じて、バケット6の代わりに、他のエンドアタッチメント、例えば、法面用バケット、浚渫用バケット、ブレーカ、リフティングマグネット、グラップル、フォーク、チェーンソーを含むハーベスタ等が取り付けられてもよい。
 キャビン10は、オペレータが搭乗する運転室であり、上部旋回体3の前部左側に搭載される。
 [ショベルの構成]
 次に、図1に加えて、図2を参照して、第1実施形態に係るショベル100の具体的な構成について説明する。
 図2は、第1実施形態に係るショベル100の構成の一例を概略的に示す図である。
 尚、図2において、機械的動力系、作動油ライン、パイロットライン、及び電気制御系は、それぞれ、二重線、実線、破線、及び点線で示されている。
 第1実施形態に係るショベル100の駆動系は、エンジン11と、レギュレータ13と、メインポンプ14と、コントロールバルブ17を含む。また、第1実施形態に係るショベル100の油圧駆動系は、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のそれぞれを油圧駆動する走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等の油圧アクチュエータを含む。
 エンジン11は、油圧駆動系におけるメイン動力源であり、例えば、上部旋回体3の後部に搭載される。具体的には、エンジン11は、後述するコントローラ30による直接或いは間接的な制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。
 レギュレータ13は、メインポンプ14の吐出量を制御する。例えば、レギュレータ13は、コントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(傾転角)を調節する。レギュレータ13は、例えば、後述の如く、レギュレータ13L,13Rを含む。
 メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、高圧油圧ラインを通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、上述の如く、コントローラ30による制御下で、レギュレータ13により斜板の傾転角が調節されることでピストンのストローク長が調整され、吐出流量(吐出圧)が制御される。メインポンプ14は、例えば、後述の如く、メインポンプ14L,14Rを含む。
 コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載され、オペレータによる操作装置26に対する操作に応じて、油圧駆動系の制御を行う油圧制御装置である。コントロールバルブ17は、上述の如く、高圧油圧ラインを介してメインポンプ14と接続され、メインポンプ14から供給される作動油を、操作装置26の操作状態に応じて、油圧アクチュエータ(走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9)に選択的に供給する。具体的には、コントロールバルブ17は、メインポンプ14から油圧アクチュエータのそれぞれに供給される作動油の流量と流れる方向を制御する制御弁171~176を含む。より具体的には、制御弁171は、走行油圧モータ1Lに対応し、制御弁172は、走行油圧モータ1Rに対応し、制御弁173は、旋回油圧モータ2Aに対応する。また、制御弁174は、バケットシリンダ9に対応し、制御弁175は、ブームシリンダ7に対応し、制御弁176は、アームシリンダ8に対応する。また、制御弁175は、例えば、後述の如く、制御弁175L,175Rを含み、制御弁176は、例えば、後述の如く、制御弁176L,176Rを含む。制御弁171~176の詳細は、後述する。
 第1実施形態に係るショベル100の操作系は、パイロットポンプ15と、操作装置26を含む。また、ショベル100の操作系は、後述するコントローラ30によるマシンコントロール機能に関する構成として、シャトル弁32を含む。
 パイロットポンプ15は、例えば、上部旋回体3の後部に搭載され、パイロットラインを介して操作装置26にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。
 操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各種動作要素(下部走行体1、上部旋回体3、ブーム4、アーム5、バケット6等)の操作を行うための操作入力手段である。換言すれば、操作装置26は、オペレータがそれぞれの動作要素を駆動する油圧アクチュエータ(即ち、走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、バケットシリンダ9等)の操作を行うための操作入力手段である。操作装置26は、その二次側のパイロットラインを通じて直接的に、或いは、二次側のパイロットラインに設けられる後述のシャトル弁32を介して間接的に、コントロールバルブ17にそれぞれ接続される。これにより、コントロールバルブ17には、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に応じたパイロット圧が入力されうる。そのため、コントロールバルブ17は、操作装置26における操作状態に応じて、それぞれの油圧アクチュエータを駆動することができる。操作装置26は、例えば、アーム5(アームシリンダ8)を操作するレバー装置を含む。また、操作装置26は、例えば、ブーム4(ブームシリンダ7)、バケット6(バケットシリンダ9)、上部旋回体3(旋回油圧モータ2A)のそれぞれを操作するレバー装置26A~26Cを含む(図4A~図4C参照)。また、操作装置26は、例えば、下部走行体1の左右一対のクローラ(走行油圧モータ1L,1R)のそれぞれを操作するレバー装置やペダル装置を含む。
 シャトル弁32は、2つの入口ポートと1つの出口ポートを有し、2つの入口ポートに入力されたパイロット圧のうちの高い方のパイロット圧を有する作動油を出口ポートに出力させる。シャトル弁32は、2つの入口ポートのうちの一方が操作装置26に接続され、他方が比例弁31に接続される。シャトル弁32の出口ポートは、パイロットラインを通じて、コントロールバルブ17内の対応する制御弁のパイロットポートに接続されている(詳細は、図4A~図4C参参照)。そのため、シャトル弁32は、操作装置26が生成するパイロット圧と比例弁31が生成するパイロット圧のうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。つまり、後述するコントローラ30は、操作装置26から出力される二次側のパイロット圧よりも高いパイロット圧を比例弁31から出力させることにより、オペレータによる操作装置26の操作に依らず、対応する制御弁を制御し、各種動作要素の動作を制御することができる。シャトル弁32は、例えば、後述の如く、シャトル弁32AL,32AR,32BL,32BR,32CL,32CRを含む。
 尚、操作装置26(左操作レバー、右操作レバー、左走行レバー、及び右走行レバー)は、パイロット圧を出力する油圧パイロット式ではなく、電気信号を出力する電気式であってもよい。この場合、操作装置26からの電気信号は、コントローラ30に入力され、コントローラ30は、入力される電気信号に応じて、コントロールバルブ17内の各制御弁171~176を制御することにより、操作装置26に対する操作内容に応じた、各種油圧アクチュエータの動作を実現する。例えば、コントロールバルブ17内の制御弁171~176は、コントローラ30からの指令により駆動する電磁ソレノイド式スプール弁であってよい。また、例えば、パイロットポンプ15と各制御弁171~176のパイロットポートとの間には、コントローラ30からの電気信号に応じて動作する電磁弁が配置されてもよい。この場合、電気式の操作装置26を用いた手動操作が行われると、コントローラ30は、その操作量(例えば、レバー操作量)に対応する電気信号によって、当該電磁弁を制御しパイロット圧を増減させることで、操作装置26に対する操作内容に合わせて、各制御弁171~176を動作させることができる。
 第1実施形態に係るショベル100の制御系は、コントローラ30と、吐出圧センサ28と、操作圧センサ29と、比例弁31と、表示装置40と、入力装置42と、音声出力装置43と、記憶装置47と、ブーム角度センサS1と、アーム角度センサS2と、バケット角度センサS3と、機体傾斜センサS4と、旋回状態センサS5と、撮像装置S6と、測位装置P1と、通信装置T1を含む。
 コントローラ30(制御装置の一例)は、例えば、キャビン10内に設けられ、ショベル100の駆動制御を行う。コントローラ30は、その機能が任意のハードウェア、ソフトウェア、或いは、その組み合わせにより実現されてよい。例えば、コントローラ30は、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、不揮発性の補助記憶装置と、各種入出力インターフェース等を含むマイクロコンピュータを中心に構成される。コントローラ30は、例えば、ROMや不揮発性の補助記憶装置に格納される各種プログラムをCPU上で実行することにより各種機能を実現する。
 例えば、コントローラ30は、オペレータ等の所定操作により予め設定される作業モード等に基づき、目標回転数を設定し、エンジン11を一定回転させる駆動制御を行う。
 また、例えば、コントローラ30は、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。
 また、例えば、コントローラ30は、例えば、オペレータによる操作装置26を通じたショベル100の手動操作をガイド(案内)するマシンガイダンス機能に関する制御を行う。また、コントローラ30は、例えば、オペレータによる操作装置26を通じたショベル100の手動操作を自動的に支援するマシンコントロール機能に関する制御を行う。つまり、コントローラ30は、マシンガイダンス機能及びマシンコントロール機能に関する機能部として、マシンガイダンス部50を含む。また、コントローラ30は、後述する土砂荷重処理部60を含む。
 尚、コントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、コントローラ30の機能は、複数のコントローラにより分散される態様で実現されてもよい。例えば、マシンガイダンス機能及びマシンコントロール機能は、専用のコントローラ(制御装置)により実現されてもよい。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出する。吐出圧センサ28により検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28は、例えば、後述の如く、吐出圧センサ28L,28Rを含む。
 操作圧センサ29は、上述の如く、操作装置26の二次側のパイロット圧、即ち、操作装置26におけるそれぞれの動作要素(即ち、油圧アクチュエータ)に関する操作状態(例えば、操作方向や操作量等の操作内容)に対応するパイロット圧を検出する。操作圧センサ29による操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に対応するパイロット圧の検出信号は、コントローラ30に取り込まれる。操作圧センサ29は、例えば、後述の如く、操作圧センサ29A~29Cを含む。
 尚、操作圧センサ29の代わりに、操作装置26におけるそれぞれの動作要素に関する操作状態を検出可能な他のセンサ、例えば、レバー装置26A~26C等の操作量(傾倒量)や傾倒方向を検出可能なエンコーダやポテンショメータ等が設けられてもよい。
 比例弁31は、パイロットポンプ15とシャトル弁32とを接続するパイロットラインに設けられ、その流路面積(作動油が通流可能な断面積)を変更できるように構成される。比例弁31は、コントローラ30から入力される制御指令に応じて動作する。これにより、コントローラ30は、オペレータにより操作装置26(具体的には、レバー装置26A~26C)が操作されていない場合であっても、パイロットポンプ15から吐出される作動油を、比例弁31及びシャトル弁32を介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。比例弁31は、例えば、後述の如く、比例弁31AL,31AR,31BL,31BR,31CL,31CRを含む。
 表示装置40は、キャビン10内の着座したオペレータから視認し易い場所に設けられ、コントローラ30による制御下で、各種情報画像を表示する。表示装置40は、CAN(Controller Area Network)等の車載通信ネットワークを介してコントローラ30に接続されていてもよいし、一対一の専用線を介してコントローラ30に接続されていてもよい。
 入力装置42は、キャビン10内の着座したオペレータから手が届く範囲に設けられ、オペレータによる各種操作入力を受け付け、操作入力に応じた信号をコントローラ30に出力する。入力装置42は、各種情報画像を表示する表示装置のディスプレイに実装されるタッチパネル、レバー装置26A~26Cのレバー部の先端に設けられるノブスイッチ、表示装置40の周囲に設置されるボタンスイッチ、レバー、トグル、回転ダイヤル等を含む。入力装置42に対する操作内容に対応する信号は、コントローラ30に取り込まれる。
 音声出力装置43は、例えば、キャビン10内に設けられ、コントローラ30と接続され、コントローラ30による制御下で、音声を出力する。音声出力装置43は、例えば、スピーカやブザー等である。音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力する。
 記憶装置47は、例えば、キャビン10内に設けられ、コントローラ30による制御下で、各種情報を記憶する。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。記憶装置47は、ショベル100の動作中に各種機器が出力する情報を記憶してもよく、ショベル100の動作が開始される前に各種機器を介して取得する情報を記憶してもよい。記憶装置47は、例えば、通信装置T1等を介して取得される、或いは、入力装置42等を通じて設定される目標施工面に関するデータを記憶していてもよい。当該目標施工面は、ショベル100のオペレータにより設定(保存)されてもよいし、施工管理者等により設定されてもよい。
 ブーム角度センサS1は、ブーム4に取り付けられ、ブーム4の上部旋回体3に対する俯仰角度(以下、「ブーム角度」)、例えば、側面視において、上部旋回体3の旋回平面に対してブーム4の両端の支点を結ぶ直線が成す角度を検出する。ブーム角度センサS1は、例えば、ロータリエンコーダ、加速度センサ、6軸センサ、IMU(Inertial Measurement Unit:慣性計測装置)等を含んでよい。また、ブーム角度センサS1は、可変抵抗器を利用したポテンショメータ、ブーム角度に対応する油圧シリンダ(ブームシリンダ7)のストローク量を検出するシリンダセンサ等を含んでもよい。以下、アーム角度センサS2、バケット角度センサS3についても同様である。ブーム角度センサS1によるブーム角度に対応する検出信号は、コントローラ30に取り込まれる。
 アーム角度センサS2は、アーム5に取り付けられ、アーム5のブーム4に対する回動角度(以下、「アーム角度」)、例えば、側面視において、ブーム4の両端の支点を結ぶ直線に対してアーム5の両端の支点を結ぶ直線が成す角度を検出する。アーム角度センサS2によるアーム角度に対応する検出信号は、コントローラ30に取り込まれる。
 バケット角度センサS3は、バケット6に取り付けられ、バケット6のアーム5に対する回動角度(以下、「バケット角度」)、例えば、側面視において、アーム5の両端の支点を結ぶ直線に対してバケット6の支点と先端(刃先)とを結ぶ直線が成す角度を検出する。バケット角度センサS3によるバケット角度に対応する検出信号は、コントローラ30に取り込まれる。
 機体傾斜センサS4は、水平面に対する機体(上部旋回体3或いは下部走行体1)の傾斜状態を検出する。機体傾斜センサS4は、例えば、上部旋回体3に取り付けられ、ショベル100(即ち、上部旋回体3)の前後方向及び左右方向の2軸回りの傾斜角度(以下、「前後傾斜角」及び「左右傾斜角」)を検出する。機体傾斜センサS4は、例えば、ロータリエンコーダ、加速度センサ、6軸センサ、IMU等を含んでよい。機体傾斜センサS4による傾斜角度(前後傾斜角及び左右傾斜角)に対応する検出信号は、コントローラ30に取り込まれる。
 旋回状態センサS5は、上部旋回体3の旋回状態に関する検出情報を出力する。旋回状態センサS5は、例えば、上部旋回体3の旋回角速度及び旋回角度を検出する。旋回状態センサS5は、例えば、ジャイロセンサ、レゾルバ、ロータリエンコーダ等を含んでよい。旋回状態センサS5による上部旋回体3の旋回角度や旋回角速度に対応する検出信号は、コントローラ30に取り込まれる。ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回状態センサS5は姿勢センサに含まれる。姿勢センサによりバケット6の爪先位置だけでなく、ブーム角度、ブーム角速度、ブーム角加速度など検出される。
 空間認識装置としての撮像装置S6は、ショベル100の周辺を撮像する。撮像装置S6は、ショベル100の前方を撮像するカメラS6F、ショベル100の左方を撮像するカメラS6L、ショベル100の右方を撮像するカメラS6R、及び、ショベル100の後方を撮像するカメラS6Bを含む。
 カメラS6Fは、例えば、キャビン10の天井、即ち、キャビン10の内部に取り付けられている。また、カメラS6Fは、キャビン10の屋根、ブーム4の側面等、キャビン10の外部に取り付けられていてもよい。カメラS6Lは、上部旋回体3の上面左端に取り付けられ、カメラS6Rは、上部旋回体3の上面右端に取り付けられ、カメラS6Bは、上部旋回体3の上面後端に取り付けられている。
 撮像装置S6(カメラS6F,S6B,S6L,S6R)は、それぞれ、例えば、非常に広い画角を有する単眼の広角カメラである。また、撮像装置S6は、ステレオカメラや距離画像カメラ等であってもよい。撮像装置S6による撮像画像は、表示装置40を介してコントローラ30に取り込まれる。
 空間認識装置としての撮像装置S6は、物体検知装置として機能してもよい。この場合、撮像装置S6は、ショベル100の周囲に存在する物体を検知してよい。検知対象の物体には、例えば、人、動物、車両、建設機械、建造物、穴等が含まれうる。また、撮像装置S6は、撮像装置S6又はショベル100から認識された物体までの距離を算出してもよい。物体検知装置としての撮像装置S6には、例えば、ステレオカメラ、距離画像センサ等が含まれうる。そして、空間認識装置は、例えば、CCDやCMOS等の撮像素子を有する単眼カメラであり、撮像した画像を表示装置40に出力する。また、空間認識装置は、空間認識装置又はショベル100から認識された物体までの距離を算出するように構成されていてもよい。また、撮像装置S6に加えて、空間認識装置として、例えば、超音波センサ、ミリ波レーダ、LIDAR、赤外線センサ等の他の物体検知装置が設けられてもよい。空間認識装置80としてミリ波レーダ、超音波センサ、又はレーザレーダ等を利用する場合には、多数の信号(レーザ光等)を物体に発信し、その反射信号を受信することで、反射信号から物体の距離及び方向を検出してもよい。
 尚、撮像装置S6は、直接、コントローラ30と通信可能に接続されてもよい。
 ブームシリンダ7にはブームロッド圧センサS7R及びブームボトム圧センサS7Bが取り付けられている。アームシリンダ8にはアームロッド圧センサS8R及びアームボトム圧センサS8Bが取り付けられている。バケットシリンダ9にはバケットロッド圧センサS9R及びバケットボトム圧センサS9Bが取り付けられている。ブームロッド圧センサS7R、ブームボトム圧センサS7B、アームロッド圧センサS8R、アームボトム圧センサS8B、バケットロッド圧センサS9R及びバケットボトム圧センサS9Bは、集合的に「シリンダ圧センサ」とも称される。
 ブームロッド圧センサS7Rはブームシリンダ7のロッド側油室の圧力(以下、「ブームロッド圧」とする。)を検出し、ブームボトム圧センサS7Bはブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出する。アームロッド圧センサS8Rはアームシリンダ8のロッド側油室の圧力(以下、「アームロッド圧」とする。)を検出し、アームボトム圧センサS8Bはアームシリンダ8のボトム側油室の圧力(以下、「アームボトム圧」とする。)を検出する。バケットロッド圧センサS9Rはバケットシリンダ9のロッド側油室の圧力(以下、「バケットロッド圧」とする。)を検出し、バケットボトム圧センサS9Bはバケットシリンダ9のボトム側油室の圧力(以下、「バケットボトム圧」とする。)を検出する。
 測位装置P1は、上部旋回体3の位置及び向きを測定する。測位装置P1は、例えば、GNSS(Global Navigation Satellite System)コンパスであり、上部旋回体3の位置及び向きを検出し、上部旋回体3の位置及び向きに対応する検出信号は、コントローラ30に取り込まれる。また、測位装置P1の機能のうちの上部旋回体3の向きを検出する機能は、上部旋回体3に取り付けられた方位センサにより代替されてもよい。
 通信装置T1は、基地局を末端とする移動体通信網、衛星通信網、インターネット網等を含む所定のネットワークを通じて外部機器と通信を行う。通信装置T1は、例えば、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の移動体通信規格に対応する移動体通信モジュールや、衛星通信網に接続するための衛星通信モジュール等である。
 マシンガイダンス部50は、例えば、マシンガイダンス機能に関するショベル100の制御を実行する。マシンガイダンス部50は、例えば、目標施工面とアタッチメントの先端部、具体的には、エンドアタッチメントの作業部位との距離等の作業情報を、表示装置40や音声出力装置43等を通じて、オペレータに伝える。目標施工面に関するデータは、例えば、上述の如く、記憶装置47に予め記憶されている。目標施工面に関するデータは、例えば、基準座標系で表現されている。基準座標系は、例えば、世界測地系である。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向に、Y軸を東経90度の方向に、そして、Z軸を北極の方向にとる三次元直交XYZ座標系である。オペレータは、施工現場の任意の点を基準点と定め、入力装置42を通じて、基準点との相対的な位置関係により目標施工面を設定してよい。バケット6の作業部位は、例えば、バケット6の爪先、バケット6の背面等である。また、エンドアタッチメントとして、バケット6の代わりに、例えば、ブレーカが採用される場合、ブレーカの先端部が作業部位に相当する。マシンガイダンス部50は、表示装置40、音声出力装置43等を通じて、作業情報をオペレータに通知し、オペレータによる操作装置26を通じたショベル100の操作をガイドする。
 また、マシンガイダンス部50は、例えば、マシンコントロール機能に関するショベル100の制御を実行する。マシンガイダンス部50は、例えば、オペレータが手動で掘削操作を行っているときに、目標施工面とバケット6の先端位置とが一致するように、ブーム4、アーム5、及び、バケット6の少なくとも一つを自動的に動作させてもよい。
 マシンガイダンス部50は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回状態センサS5、撮像装置S6、測位装置P1、通信装置T1及び入力装置42等から情報を取得する。そして、マシンガイダンス部50は、例えば、取得した情報に基づき、バケット6と目標施工面との間の距離を算出し、音声出力装置43からの音声及び表示装置40に表示される画像により、バケット6と目標施工面との間の距離の程度をオペレータに通知したり、アタッチメントの先端部(具体的には、バケット6の爪先や背面等の作業部位)が目標施工面に一致するように、アタッチメントの動作を自動的に制御したりする。マシンガイダンス部50は、当該マシンガイダンス機能及びマシンコントロール機能に関する詳細な機能構成として、位置算出部51と、距離算出部52と、情報伝達部53と、自動制御部54と、旋回角度算出部55と、相対角度算出部56と、を含む。
 位置算出部51は、所定の測位対象の位置を算出する。例えば、位置算出部51は、アタッチメントの先端部、具体的には、バケット6の爪先や背面等の作業部位の基準座標系における座標点を算出する。具体的には、位置算出部51は、ブーム4、アーム5、及びバケット6のそれぞれの俯仰角度(ブーム角度、アーム角度、及びバケット角度)からバケット6の作業部位の座標点を算出する。
 距離算出部52は、2つの測位対象間の距離を算出する。例えば、距離算出部52は、アタッチメントの先端部、具体的には、バケット6爪先や背面等の作業部位と目標施工面との間の距離を算出する。また、距離算出部52は、バケット6の作業部位としての背面と目標施工面との間の角度(相対角度)を算出してもよい。
 情報伝達部53は、表示装置40や音声出力装置43等の所定の通知手段を通じて、各種情報をショベル100のオペレータに伝達(通知)する。情報伝達部53は、距離算出部52により算出された各種距離等の大きさ(程度)をショベル100のオペレータに通知する。例えば、表示装置40による視覚情報及び音声出力装置43による聴覚情報の少なくとも一方を用いて、バケット6の先端部と目標施工面との間の距離(の大きさ)をオペレータに伝える。また、情報伝達部53は、表示装置40による視覚情報及び音声出力装置43による聴覚情報の少なくとも一方を用いて、バケット6の作業部位としての背面と目標施工面との間の相対角度(の大きさ)をオペレータに伝えてもよい。
 具体的には、情報伝達部53は、音声出力装置43による断続音を用いて、バケット6の作業部位と目標施工面との間の距離(例えば、鉛直距離)の大きさをオペレータに伝える。この場合、情報伝達部53は、鉛直距離が小さくなるほど、断続音の間隔を短くし、鉛直距離が大きくなるほど、断続音の感覚を長くしてよい。また、情報伝達部53は、連続音を用いてもよく、音の高低、強弱等を変化させながら、鉛直距離の大きさの違いを表すようにしてもよい。また、情報伝達部53は、バケット6の先端部が目標施工面よりも低い位置になった、つまり、目標施工面を超えてしまった場合、音声出力装置43を通じて警報を発してもよい。当該警報は、例えば、断続音より顕著に大きい連続音である。
 また、情報伝達部53は、アタッチメントの先端部、具体的には、バケット6の作業部位と目標施工面との間の距離の大きさやバケット6の背面と目標施工面との間の相対角度の大きさ等を作業情報として表示装置40に表示させてもよい。表示装置40は、コントローラ30による制御下で、例えば、撮像装置S6から受信した画像データと共に、情報伝達部53から受信した作業情報を表示する。情報伝達部53は、例えば、アナログメータの画像やバーグラフインジケータの画像等を用いて、鉛直距離の大きさをオペレータに伝えるようにしてもよい。
 自動制御部54は、アクチュエータを自動的に動作させることでオペレータによる操作装置26を通じたショベル100の手動操作を自動的に支援する。具体的には、自動制御部54は、後述の如く、複数の油圧アクチュエータ(具体的には、旋回油圧モータ2A、ブームシリンダ7、及びバケットシリンダ9)に対応する制御弁(具体的には、制御弁173、制御弁175L,175R、及び制御弁174)に作用するパイロット圧を個別に且つ自動的に調整することができる。これにより、自動制御部54は、それぞれの油圧アクチュエータを自動的に動作させることができる。自動制御部54によるマシンコントロール機能に関する制御は、例えば、入力装置42に含まれる所定のスイッチが押下された場合に実行されてよい。当該所定のスイッチは、例えば、マシンコントロールスイッチ(以下、「MC(Machine Control)スイッチ」)であり、ノブスイッチとして操作装置26(例えば、アーム5の操作に対応するレバー装置)のオペレータによる把持部の先端に配置されていてもよい。以下、MCスイッチが押下されている場合に、マシンコントロール機能が有効である前提で説明を進める。
 例えば、自動制御部54は、MCスイッチ等が押下されている場合、掘削作業や整形作業を支援するために、アームシリンダ8の動作に合わせて、ブームシリンダ7及びバケットシリンダ9の少なくとも一方を自動的に伸縮させる。具体的には、自動制御部54は、オペレータが手動でアーム5の閉じ操作(以下、「アーム閉じ操作」)を行っている場合に、目標施工面とバケット6の爪先や背面等の作業部位の位置とが一致するようにブームシリンダ7及びバケットシリンダ9の少なくとも一方を自動的に伸縮させる。この場合、オペレータは、例えば、アーム5の操作に対応するレバー装置をアーム閉じ操作するだけで、バケット6の爪先等を目標施工面に一致させながら、アーム5を閉じることができる。
 また、自動制御部54は、MCスイッチ等が押下されている場合、上部旋回体3を目標施工面に正対させるために旋回油圧モータ2A(アクチュエータの一例)を自動的に回転させてもよい。以下、コントローラ30(自動制御部54)による上部旋回体3を目標施工面に正対させる制御を「正対制御」と称する。これにより、オペレータ等は、所定のスイッチを押下するだけで、或いは、当該スイッチが押下された状態で、旋回操作に対応する後述のレバー装置26Cを操作するだけで、上部旋回体3を目標施工面に正対させることができる。また、オペレータは、MCスイッチを押下するだけで、上部旋回体3を目標施工面に正対させ且つ上述の目標施工面の掘削作業等に関するマシンコントロール機能を開始させることができる。
 例えば、ショベル100の上部旋回体3が目標施工面に正対している状態は、アタッチメントの動作に従い、アタッチメントの先端部(例えば、バケット6の作業部位としての爪先や背面等)を目標施工面(上り法面BS)の傾斜方向に沿って移動させることが可能な状態である。具体的には、ショベル100の上部旋回体3が目標施工面に正対している状態は、ショベル100の旋回平面に鉛直なアタッチメントの稼動面(アタッチメント稼動面)が、円筒体に対応する目標施工面の法線を含む状態(換言すれば、当該法線に沿う状態)である。
 ショベル100のアタッチメント稼動面が円筒体に対応する目標施工面の法線を含む状態にない場合、アタッチメントの先端部は、目標施工面を傾斜方向に移動させることができない。そのため、結果として、ショベル100は、目標施工面を適切に施工できない。これに対して、自動制御部54は、自動的に旋回油圧モータ2Aを回転させることで、上部旋回体3を正対させることができる。これにより、ショベル100は、目標施工面を適切に施工することができる。
 自動制御部54は、正対制御において、例えば、バケット6の爪先の左端の座標点と目標施工面との間の左端鉛直距離(以下、単に「左端鉛直距離」)と、バケット6の爪先の右端の座標点と目標施工面との間の右端鉛直距離(以下、単に「右端鉛直距離」)とが等しくなった場合に、ショベルが目標施工面に正対していると判断する。また、自動制御部54は、左端鉛直距離と右端鉛直距離とが等しくなった場合(即ち、左端鉛直距離と右端鉛直距離との差がゼロになった場合)ではなく、その差が所定値以下になった場合に、ショベル100が目標施工面に正対していると判断してもよい。
 また、自動制御部54は、正対制御において、例えば、左端鉛直距離と右端鉛直距離との差に基づき、旋回油圧モータ2Aを動作させてもよい。具体的には、MCスイッチ等の所定のスイッチが押下された状態で旋回操作に対応するレバー装置26Cが操作されると、上部旋回体3を目標施工面に正対させる方向にレバー装置26Cが操作されたか否かを判断する。例えば、バケット6の爪先と目標施工面(上り法面BS)との間の鉛直距離が大きくなる方向にレバー装置26Cが操作された場合、自動制御部54は、正対制御を実行しない。一方で、バケット6の爪先と目標施工面(上り法面BS)との間の鉛直距離が小さくなる方向に旋回操作レバーが操作された場合、自動制御部54は、正対制御を実行する。その結果、自動制御部54は、左端鉛直距離と右端鉛直距離との差が小さくなるように旋回油圧モータ2Aを動作させることができる。その後、自動制御部54は、その差が所定値以下或いはゼロになると、旋回油圧モータ2Aを停止させる。また、自動制御部54は、その差が所定値以下或いはゼロとなる旋回角度を目標角度として設定し、その目標角度と現在の旋回角度(具体的には、旋回状態センサS5の検出信号に基づく検出値)との角度差がゼロになるように、旋回油圧モータ2Aの動作制御を行ってもよい。この場合、旋回角度は、例えば、基準方向に対する上部旋回体3の前後軸の角度である。
 尚、上述の如く、旋回油圧モータ2Aの代わりに、旋回用電動機がショベル100に搭載される場合、自動制御部54は、旋回用電動機(アクチュエータの一例)を制御対象として、正対制御を行う。
 旋回角度算出部55は、上部旋回体3の旋回角度を算出する。これにより、コントローラ30は、上部旋回体3の現在の向きを特定することができる。旋回角度算出部55は、例えば、測位装置P1に含まれるGNSSコンパスの出力信号に基づき、基準方向に対する上部旋回体3の前後軸の角度を旋回角度として算出する。また、旋回角度算出部55は、旋回状態センサS5の検出信号に基づき、旋回角度を算出してもよい。また、施工現場に基準点が設定されている場合、旋回角度算出部55は、旋回軸から基準点を見た方向を基準方向としてもよい。
 旋回角度は、基準方向に対するアタッチメント稼動面が延びる方向を示す。アタッチメント稼動面は、例えば、アタッチメントを縦断する仮想平面であり、旋回平面に垂直となるように配置される。旋回平面は、例えば、旋回軸に垂直な旋回フレームの底面を含む仮想平面である。コントローラ30(マシンガイダンス部50)は、例えば、アタッチメント稼動面が目標施工面の法線を含んでいると判断した場合に、上部旋回体3が目標施工面に正対していると判断する。
 相対角度算出部56は、上部旋回体3を目標施工面に正対させるために必要な旋回角度(相対角度)を算出する。相対角度は、例えば、上部旋回体3を目標施工面に正対させたときの上部旋回体3の前後軸の方向と、上部旋回体3の前後軸の現在の方向との間に形成される相対的な角度である。相対角度算出部56は、例えば、記憶装置47に記憶されている目標施工面に関するデータと、旋回角度算出部55により算出された旋回角度とに基づき、相対角度を算出する。
 自動制御部54は、MCスイッチ等の所定のスイッチが押下された状態で旋回操作に対応するレバー装置26Cが操作されると、上部旋回体3を目標施工面に正対させる方向に旋回操作されたか否かを判断する。自動制御部54は、上部旋回体3を目標施工面に正対させる方向に旋回操作されたと判断した場合、相対角度算出部56により算出された相対角度を目標角度として設定する。そして、自動制御部54は、レバー装置26Cが操作された後の旋回角度の変化が目標角度に達した場合、上部旋回体3が目標施工面に正対したと判断し、旋回油圧モータ2Aの動きを停止させてよい。これにより、自動制御部54は、図2に示す構成を前提として、上部旋回体3を目標施工面に正対させることができる。上記正対制御の実施例では目標施工面に対する正対制御の事例を示したが、これに限られることはない。例えば、仮置きの土砂をダンプトラックに積み込む際の掬い取り動作においても、目標体積に相当する目標掘削軌道を生成し、目標掘削軌道に対してアタッチメントが向かい合うように旋回動作の正対制御をおこなってもよい。この場合、掬い取り動作の都度、目標掘削軌道は変更される。このため、ダンプトラックへの排土後は、新たに変更された目標掘削軌道に対して正対制御される。
 また、旋回油圧モータ2Aは、第1ポート2A1及び第2ポート2A2を有している。油圧センサ21は、旋回油圧モータ2Aの第1ポート2A1の作動油の圧力を検出する。油圧センサ22は、旋回油圧モータ2Aの第2ポート2A2の作動油の圧力を検出する。油圧センサ21,22により検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。
 また、第1ポート2A1は、リリーフ弁23を介して作動油タンクと接続される。リリーフ弁23は、第1ポート2A1側の圧力が所定のリリーフ圧に達した場合に開き、第1ポート2A1側の作動油を作動油タンクに排出する。同様に、第2ポート2A2は、リリーフ弁24を介して作動油タンクと接続される。リリーフ弁24は、第2ポート2A2側の圧力が所定のリリーフ圧に達した場合に開き、第2ポート2A2側の作動油を作動油タンクに排出する。
 [ショベルの油圧システム]
 次に、図3を参照して、第1実施形態に係るショベル100の油圧システムについて説明する。
 図3は、第1実施形態に係るショベル100の油圧システムの構成の一例を概略的に示す図である。
 尚、図3において、機械的動力系、作動油ライン、パイロットライン、及び電気制御系は、図2等の場合と同様、それぞれ、二重線、実線、破線、及び点線で示されている。
 当該油圧回路により実現される油圧システムは、エンジン11により駆動されるメインポンプ14L,14Rのそれぞれから、センタバイパス油路C1L,C1R、パラレル油路C2L,C2Rを経て作動油タンクまで作動油を循環させる。
 センタバイパス油路C1Lは、メインポンプ14Lを起点として、コントロールバルブ17内に配置される制御弁171,173,175L,176Lを順に通過し、作動油タンクに至る。
 センタバイパス油路C1Rは、メインポンプ14Rを起点として、コントロールバルブ17内に配置される制御弁172,174,175R,176Rを順に通過し、作動油タンクに至る。
 制御弁171は、メインポンプ14Lから吐出される作動油を走行油圧モータ1Lへ供給し、且つ、走行油圧モータ1Lが吐出する作動油を作動油タンクに排出させるスプール弁である。
 制御弁172は、メインポンプ14Rから吐出される作動油を走行油圧モータ1Rへ供給し、且つ、走行油圧モータ1Rが吐出する作動油を作動油タンクへ排出させるスプール弁である。
 制御弁173は、メインポンプ14Lから吐出される作動油を旋回油圧モータ2Aへ供給し、且つ、旋回油圧モータ2Aが吐出する作動油を作動油タンクへ排出させるスプール弁である。
 制御弁174は、メインポンプ14Rから吐出される作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出させるスプール弁である。
 制御弁175L,175Rは、それぞれ、メインポンプ14L,14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出させるスプール弁である。
 制御弁176L,176Rは、メインポンプ14L,14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出させる。
 制御弁171,172,173,174,175L,175R,176L,176Rは、それぞれ、パイロットポートに作用するパイロット圧に応じて、油圧アクチュエータに給排される作動油の流量を調整したり、流れる方向を切り換えたりする。
 パラレル油路C2Lは、センタバイパス油路C1Lと並列的に、制御弁171,173,175L,176Lにメインポンプ14Lの作動油を供給する。具体的には、パラレル油路C2Lは、制御弁171の上流側でセンタバイパス油路C1Lから分岐し、制御弁171,173,175L,176Rのそれぞれに並列してメインポンプ14Lの作動油を供給可能に構成される。これにより、パラレル油路C2Lは、制御弁171,173,175Lの何れかによってセンタバイパス油路C1Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 パラレル油路C2Rは、センタバイパス油路C1Rと並列的に、制御弁172,174,175R,176Rにメインポンプ14Rの作動油を供給する。具体的には、パラレル油路C2Rは、制御弁172の上流側でセンタバイパス油路C1Rから分岐し、制御弁172,174,175R,176Rのそれぞれに並列してメインポンプ14Rの作動油を供給可能に構成される。パラレル油路C2Rは、制御弁172,174,175Rの何れかによってセンタバイパス油路C1Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 レギュレータ13L,13Rは、それぞれ、コントローラ30による制御下で、メインポンプ14L,14Rの斜板の傾転角を調節することによって、メインポンプ14L,14Rの吐出量を調節する。
 吐出圧センサ28Lは、メインポンプ14Lの吐出圧を検出し、検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28Rについても同様である。これにより、コントローラ30は、メインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御することができる。
 センタバイパス油路C1L,C1Rには、最も下流にある制御弁176L,176Rのそれぞれと作動油タンクとの間には、ネガティブコントロール絞り(以下、「ネガコン絞り」)18L,18Rが設けられる。これにより、メインポンプ14L,14Rにより吐出された作動油の流れは、ネガコン絞り18L,18Rで制限される。そして、ネガコン絞り18L,18Rは、レギュレータ13L,13Rを制御するための制御圧(以下、「ネガコン圧」)を発生させる。
 ネガコン圧センサ19L,19Rは、ネガコン圧を検出し、検出されたネガコン圧に対応する検出信号は、コントローラ30に取り込まれる。
 コントローラ30は、吐出圧センサ28L,28Rにより検出されるメインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御し、メインポンプ14L,14Rの吐出量を調節してよい。例えば、コントローラ30は、メインポンプ14Lの吐出圧の増大に応じて、レギュレータ13Lを制御し、メインポンプ14Lの斜板傾転角を調節することにより、吐出量を減少させてよい。レギュレータ13Rについても同様である。これにより、コントローラ30は、吐出圧と吐出量との積で表されるメインポンプ14L,14Rの吸収馬力がエンジン11の出力馬力を超えないように、メインポンプ14L,14Rの全馬力制御を行うことができる。
 また、コントローラ30は、ネガコン圧センサ19L,19Rにより検出されるネガコン圧に応じて、レギュレータ13L,13Rを制御することにより、メインポンプ14L,14Rの吐出量を調節してよい。例えば、コントローラ30は、ネガコン圧が大きいほどメインポンプ14L,14Rの吐出量を減少させ、ネガコン圧が小さいほどメインポンプ14L,14Rの吐出量を増大させる。
 具体的には、ショベル100における油圧アクチュエータが何れも操作されていない待機状態(図3に示す状態)の場合、メインポンプ14L,14Rから吐出される作動油は、センタバイパス油路C1L,C1Rを通ってネガコン絞り18L,18Rに至る。そして、メインポンプ14L,14Rから吐出される作動油の流れは、ネガコン絞り18L,18Rの上流で発生するネガコン圧を増大させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を許容最小吐出量まで減少させ、吐出した作動油がセンタバイパス油路C1L,C1Rを通過する際の圧力損失(ポンピングロス)を抑制する。
 一方、何れかの油圧アクチュエータが操作装置26を通じて操作された場合、メインポンプ14L,14Rから吐出される作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、メインポンプ14L,14Rから吐出される作動油の流れは、ネガコン絞り18L,18Rに至る量を減少或いは消失させ、ネガコン絞り18L,18Rの上流で発生するネガコン圧を低下させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータを確実に駆動させることができる。
 [ショベルのマシンコントロール機能に関する構成の詳細]
 次に、図4Aから図4Cを参照して、ショベル100のマシンコントロール機能に関する構成の詳細について説明する。
 図4から図4Cは、第1実施形態に係るショベル100の油圧システムのうちの操作系に関する構成部分の一例を概略的に示す図である。具体的には、図4Aは、ブームシリンダ7を油圧制御する制御弁175L,175Rにパイロット圧を作用させるパイロット回路の一例を示す図である。また、図4Bは、バケットシリンダ9を油圧制御する制御弁174にパイロット圧を作用させるパイロット回路の一例を示す図である。また、図4Cは、旋回油圧モータ2Aを油圧制御する制御弁173にパイロット圧を作用させるパイロット回路の一例を示す図である。
 また、例えば、図4Aに示すように、レバー装置26Aは、オペレータ等がブーム4に対応するブームシリンダ7を操作するために用いられる。レバー装置26Aは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。
 シャトル弁32ALは、二つの入口ポートが、それぞれ、ブーム4の上げ方向の操作(以下、「ブーム上げ操作」)に対応するレバー装置26Aの二次側のパイロットラインと、比例弁31ALの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに接続される。
 シャトル弁32ARは、二つの入口ポートが、それぞれ、ブーム4の下げ方向の操作(以下、「ブーム下げ操作」)に対応するレバー装置26Aの二次側のパイロットラインと、比例弁31ARの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Rの右側のパイロットポートに接続される。
 つまり、レバー装置26Aは、シャトル弁32AL,32ARを介して、操作内容(例えば、操作方向及び操作量)に応じたパイロット圧を制御弁175L,175Rのパイロットポートに作用させる。具体的には、レバー装置26Aは、ブーム上げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32ALの一方の入口ポートに出力し、シャトル弁32ALを介して、制御弁175Lの右側のパイロットポートと制御弁175Rの左側のパイロットポートに作用させる。また、レバー装置26Aは、ブーム下げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32ARの一方の入口ポートに出力し、シャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに作用させる。
 比例弁31ALは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ALは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ALの他方の入口ポートに出力する。これにより、比例弁31ALは、シャトル弁32ALを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに作用するパイロット圧を調整することができる。
 比例弁31ARは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ARは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ARの他方の入口ポートに出力する。これにより、比例弁31ARは、シャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに作用するパイロット圧を調整することができる。
 つまり、比例弁31AL,31ARは、レバー装置26Aの操作状態に依らず、制御弁175L、175Rを任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
 比例弁33ALは、比例弁31ALと同様に、マシンコントロール用制御弁として機能する。比例弁33ALは、操作装置26とシャトル弁32ALとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。第1実施形態では、比例弁33ALは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32ALを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 同様に、比例弁33ARは、マシンコントロール用制御弁として機能する。比例弁33ARは、操作装置26とシャトル弁32ARとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。第1実施形態では、比例弁33ARは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32ARを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 操作圧センサ29Aは、オペレータによるレバー装置26Aに対する操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Aに対する操作内容を把握できる。
 コントローラ30は、オペレータによるレバー装置26Aに対するブーム上げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AL及びシャトル弁32ALを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Aに対するブーム下げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AR及びシャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに供給できる。即ち、コントローラ30は、ブーム4の上げ下げの動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 比例弁33ALは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15からレバー装置26A、比例弁33AL、及びシャトル弁32ALを介して制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33ARは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15からレバー装置26A、比例弁33AR、及びシャトル弁32ARを介して制御弁175Rの右側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33AL、33ARは、制御弁175L、175Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるブーム上げ操作が行われている場合であっても、必要に応じて、制御弁175の上げ側のパイロットポート(制御弁175Lの左側パイロットポート及び制御弁175Rの右側パイロットポート)に作用するパイロット圧を減圧し、ブーム4の閉じ動作を強制的に停止させることができる。操作者によるブーム下げ操作が行われているときにブーム4の下げ動作を強制的に停止させる場合についても同様である。
 或いは、コントローラ30は、操作者によるブーム上げ操作が行われている場合であっても、必要に応じて、比例弁31ARを制御し、制御弁175の上げ側のパイロットポートの反対側にある、制御弁175の下げ側のパイロットポート(制御弁175Rの右側パイロットポート)に作用するパイロット圧を増大させ、制御弁175を強制的に中立位置に戻すことで、ブーム4の上げ動作を強制的に停止させてもよい。この場合、比例弁33ALは省略されてもよい。操作者によるブーム下げ操作が行われている場合にブーム4の下げ動作を強制的に停止させる場合についても同様である。
 図4Bに示すように、レバー装置26Bは、オペレータ等がバケット6に対応するバケットシリンダ9を操作するために用いられる。レバー装置26Bは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。
 シャトル弁32BLは、二つの入口ポートが、それぞれ、バケット6の閉じ方向の操作(以下、「バケット閉じ操作」)に対応するレバー装置26Bの二次側のパイロットラインと、比例弁31BLの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の左側のパイロットポートに接続される。
 シャトル弁32BRは、二つの入口ポートが、それぞれ、バケット6の開き方向の操作(以下、「バケット開き操作」)に対応するレバー装置26Bの二次側のパイロットラインと、比例弁31BRの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の右側のパイロットポートに接続される。
 つまり、レバー装置26Bは、シャトル弁32BL,32BRを介して、操作内容に応じたパイロット圧を制御弁174のパイロットポートに作用させる。具体的には、レバー装置26Bは、バケット閉じ操作された場合に、操作量に応じたパイロット圧をシャトル弁32BLの一方の入口ポートに出力し、シャトル弁32BLを介して、制御弁174の左側のパイロットポートに作用させる。また、レバー装置26Bは、バケット開き操作された場合に、操作量に応じたパイロット圧をシャトル弁32BRの一方の入口ポートに出力し、シャトル弁32BRを介して、制御弁174の右側のパイロットポートに作用させる。
 比例弁31BLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31BLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BLの他方のパイロットポートに出力する。これにより、比例弁31BLは、シャトル弁32BLを介して、制御弁174の左側のパイロットポートに作用するパイロット圧を調整することができる。
 比例弁31BRは、コントローラ30が出力する制御電流に応じて動作する。具体的には、比例弁31BRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BRの他方のパイロットポートに出力する。これにより、比例弁31BRは、シャトル弁32BRを介して、制御弁174の右側のパイロットポートに作用するパイロット圧を調整することができる。
 つまり、比例弁31BL,31BRは、レバー装置26Bの操作状態に依らず、制御弁174を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
 比例弁33BLは、比例弁31BLと同様に、マシンコントロール用制御弁として機能する。比例弁33BLは、操作装置26とシャトル弁32BLとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。第1実施形態では、比例弁33BLは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32BLを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 同様に、比例弁33BRは、マシンコントロール用制御弁として機能する。比例弁33BRは、操作装置26とシャトル弁32BRとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。第1実施形態では、比例弁33BRは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32BRを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 操作圧センサ29Bは、オペレータによるレバー装置26Bに対する操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Bの操作内容を把握できる。
 コントローラ30は、オペレータによるレバー装置26Bに対するバケット閉じ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BL及びシャトル弁32BLを介して、制御弁174の左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Bに対するバケット開き操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BR及びシャトル弁32BRを介して、制御弁174の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、バケット6の開閉動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 なお、操作者によるバケット閉じ操作又はバケット開き操作が行われている場合にバケット6の動作を強制的に停止させる比例弁33BL,33BRの操作は、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる比例弁33AL,33ARの操作と同様であり、重複する説明を省略する。
 また、例えば、図4Cに示すように、レバー装置26Cは、オペレータ等が上部旋回体3(旋回機構2)に対応する旋回油圧モータ2Aを操作するために用いられる。レバー装置26Cは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。
 シャトル弁32CLは、二つの入口ポートが、それぞれ、上部旋回体3の左方向の旋回操作(以下、「左旋回操作」)に対応するレバー装置26Cの二次側のパイロットラインと、比例弁31CLの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の左側のパイロットポートに接続される。
 シャトル弁32CRは、二つの入口ポートが、それぞれ、上部旋回体3の右方向の旋回操作(以下、「右旋回操作」)に対応するレバー装置26Cの二次側のパイロットラインと、比例弁31CRの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の右側のパイロットポートに接続される。
 つまり、レバー装置26Cは、シャトル弁32CL,32CRを介して、左右方向への操作内容に応じたパイロット圧を制御弁173のパイロットポートに作用させる。具体的には、レバー装置26Cは、左旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32CLの一方の入口ポートに出力し、シャトル弁32CLを介して、制御弁173の左側のパイロットポートに作用させる。また、レバー装置26Cは、右旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32CRの一方の入口ポートに出力し、シャトル弁32CRを介して、制御弁173の右側のパイロットポートに作用させる。
 比例弁31CLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31CLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CLの他方のパイロットポートに出力する。これにより、比例弁31CLは、シャトル弁32CLを介して、制御弁173の左側のパイロットポートに作用するパイロット圧を調整することができる。
 比例弁31CRは、コントローラ30が出力する制御電流に応じて動作する。具体的には、比例弁31CRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CRの他方のパイロットポートに出力する。これにより、比例弁31CRは、シャトル弁32CRを介して、制御弁173の右側のパイロットポートに作用するパイロット圧を調整することができる。
 つまり、比例弁31CL,31CRは、レバー装置26Cの操作状態に依らず、制御弁173を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。
 比例弁33CLは、比例弁31CLと同様に、マシンコントロール用制御弁として機能する。比例弁33CLは、操作装置26とシャトル弁32CLとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。第1実施形態では、比例弁33CLは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32CLを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 同様に、比例弁33CRは、マシンコントロール用制御弁として機能する。比例弁33CRは、操作装置26とシャトル弁32CRとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。第1実施形態では、比例弁33CRは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32CRを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。
 操作圧センサ29Cは、オペレータによるレバー装置26Cに対する操作状態を圧力として検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Cに対する左右方向への操作内容を把握できる。
 コントローラ30は、オペレータによるレバー装置26Cに対する左旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CL及びシャトル弁32CLを介して、制御弁173の左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Cに対する右旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CR及びシャトル弁32CRを介して、制御弁173の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、上部旋回体3の左右方向への旋回動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 なお、操作者による旋回操作が行われている場合に上部旋回体3の動作を強制的に停止させる比例弁33CL,33CRの操作は、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる比例弁33AL,33ARの操作と同様であり、重複する説明を省略する。
 尚、ショベル100は、更に、アーム5を自動的に開閉させる構成、及び、下部走行体1を自動的に前進・後進させる構成を備えていてもよい。この場合、油圧システムのうち、アームシリンダ8の操作系に関する構成部分、走行油圧モータ1Lの操作系に関する構成部分、及び、走行油圧モータ1Rの操作に関する構成部分は、ブームシリンダ7の操作系に関する構成部分等(図4A~図4C)と同様に構成されてよい。
 [ショベルの土砂荷重検出機能に関する構成の詳細]
 次に、図5を参照して、第1実施形態に係るショベル100の土砂荷重検出機能に関する構成の詳細について説明する。図5は、第1実施形態に係るショベル100のうちの土砂荷重検出機能に関する構成部分の一例を概略的に示す図である。
 図3で前述したように、コントローラ30は、バケット6で掘削した土砂の荷重を検出する機能に関する機能部として、土砂荷重処理部60を含む。
 土砂荷重処理部60は、積載物重量算出部61と、最大積載量検出部62と、加算積載量算出部63と、残積載量算出部64と、を有する。
 ここで、第1実施形態に係るショベル100によるダンプトラックへの土砂(積載物)の積み込み作業の動作の一例について説明する。
 まず、ショベル100は、掘削位置において、アタッチメントを制御してバケット6により土砂を掘削する(掘削動作)。次に、ショベル100は、上部旋回体3を旋回させ、バケット6を掘削位置から放土位置へと移動する(旋回動作)。放土位置の下方には、ダンプトラックの荷台が配置されている。次に、ショベル100は、放土位置において、アタッチメントを制御してバケット6内の土砂を放土することにより、バケット6内の土砂をダンプトラックの荷台へと積み込む(放土動作)。次に、ショベル100は、上部旋回体3を旋回させ、バケット6を放土位置から掘削位置へと移動する(旋回動作)。これらの動作を繰り返すことにより、ショベル100は、掘削した土砂をダンプトラックの荷台へと積み込む。
 積載物重量算出部61は、ショベル100が規定動作を行うと、バケット6内の土砂(積載物)の重量を算出する。ここで、規定動作とは、土砂重量の算出を開始するための開始要件であり、例えば、ブーム4を所定の角度まで上げる、上部旋回体3を旋回させ所定時間経過する等である。
 土砂重量は、例えば、ブーム4の根元回りのトルクの釣り合いで算出される。具体的には、バケット6内の土砂によってブームシリンダ7の推力が増加し、ブームシリンダ7の推力から算出されるブーム4の根元回りのトルクも増加する。トルクの増加分と、土砂重量及び土砂重心から計算されるトルクとが、一致する。このように、積載物重量算出部61は、ブームシリンダ7の推力(ブームロッド圧センサS7R、ブームボトム圧センサS7Bの測定値)及び土砂重心に基づいて、土砂重量を算出することができる。なお、土砂重心は、例えば、実験的に予め求めてコントローラ30に記憶させておく。なお、ブームシリンダ7の推力に基づいて土砂重量を算出する例を説明したが、土砂重量の算出方法はこれに限られるものではない。アームシリンダ8の推力(アームロッド圧センサS8R、アームボトム圧センサS8Bの測定値)に基づいて土砂重量を算出してもよく、バケットシリンダ9(バケットロッド圧センサS9R、バケットボトム圧センサS9Bの測定値)の推力に基づいて土砂重量を算出してもよい。また、上部旋回体3を旋回させる際の旋回油圧モータ2Aの旋回トルク(油圧センサ21,22の測定値)に基づいて土砂重量を算出してもよい。
 最大積載量検出部62は、土砂を積載する対象のダンプトラックの最大積載量を検出する。例えば、最大積載量検出部62は、撮像装置S6で撮像された画像に基づいて、土砂を積載する対象のダンプトラックを特定する。次に、最大積載量検出部62は、特定されたダンプトラックの画像に基づいて、ダンプトラックの最大積載量を検出する。例えば、最大積載量検出部62は、特定されたダンプトラックの画像に基づいて、ダンプトラックの車種(サイズ等)を判定する。最大積載量検出部62は、車種と最大積載量とを対応付けしたテーブルを有しており、画像から判定した車種及びテーブルに基づいて、ダンプトラックの最大積載量を求める。なお、入力装置42によってダンプトラックの最大積載量、車種等が入力され、最大積載量検出部62は、入力装置42の入力情報に基づいて、ダンプトラックの最大積載量を求めてもよい。
 加算積載量算出部63は、ダンプトラックに積載された土砂重量を算出する。即ち、バケット6内の土砂がダンプトラックの荷台に放土されるごとに、加算積載量算出部63は、積載物重量算出部61で算出されたバケット6内の土砂重量を加算して、ダンプトラックの荷台に積載された土砂重量の合計である加算積載量(合計重量)を算出する。なお、土砂を積載する対象のダンプトラックが新しいダンプトラックとなった場合には、加算積載量はリセットされる。
 残積載量算出部64は、最大積載量検出部62で検出したダンプトラックの最大積載量と、加算積載量算出部63で算出した現在の加算積載量との差を残積載量として算出する。残積載量とは、ダンプトラックに積載可能な土砂の残りの重量である。
 表示装置40には、積載物重量算出部61で算出されたバケット6内の土砂重量、最大積載量検出部62で検出されたダンプトラックの最大積載量、加算積載量算出部63で算出されたダンプトラックの加算積載量(荷台に積載された土砂重量の合計)、残積載量算出部64で算出されたダンプトラックの残積載量(積載可能な土砂の残りの重量)が表示されてもよい。
 なお、加算積載量が最大積載量を超えた場合、表示装置40に警告が出るように構成されていてもよい。また、算出されたバケット6内の土砂重量が残積載量を超える場合、表示装置40に警告が出るように構成されていてもよい。なお、警告は、表示装置40に表示される場合に限られず、音声出力装置43による音声出力であってもよい。これにより、ダンプトラックの最大積載量を超えて土砂が積載されることを防止することができる。
[ショベルの掘削。積み込み動作]
 次に、ショベル100の動作の一例について、図6を用いて説明する。図6は、ショベル100における深掘り掘削・積込み動作を説明する図である。
 まず、図6(A)に示すように、オペレータは、ブーム下げ操作を行う。そして、オペレータは、バケット6の先端が掘削対象に関して所望の高さ位置に来るにように位置決めし、図6(B)に示すようにバケット6を開いた状態から徐々に閉じる。このとき掘削土は、バケット6内に入る。
 次に、オペレータは、バケット6の上縁を略水平にした状態で、ブーム4を上げてバケット6を図6(C)に示す位置まで上げる。この際、オペレータは、ブーム4を上げるとともに、アーム5を閉じる操作を行ってもよい。
 そして、オペレータは、図6(D)に示すように、バケット6の底部が地面から所望の高さとなるまでブーム4を上げる。所望の高さは例えばダンプトラックDT(後述する図6(E)参照)の高さ以上の高さである。オペレータは、これに続いて、あるいは同時に、上部旋回体3を矢印AR1で示すように旋回させ、排土する位置までバケット6を移動させる。このときのショベルの動作をブーム上げ旋回動作と称し、この動作区間をブーム上げ旋回動作区間と称する。
 オペレータは、ブーム上げ旋回動作を完了させると、次に、図6(E)に示すようにアーム5及びバケット6を開いて、バケット6内の土を排出する。このときのショベル100の動作をダンプ動作と称し、この動作区間をダンプ動作区間と称する。ダンプ動作では、オペレータはバケット6のみを開いて排土してもよい。
 オペレータは、ダンプ動作を完了させると、次に、図6(F)に示すように、上部旋回体3を矢印AR2で示すように旋回させ、バケット6を掘削位置の真上に移動させる。このとき、旋回と同時にブーム4を下げてバケット6を掘削対象から所望の高さのところまで下降させる。このときのショベルの動作をブーム下げ旋回動作と称し、この動作区間をブーム下げ旋回動作区間と称する。
 オペレータは、「掘削動作」、「ブーム上げ旋回動作」、「ダンプ動作」、及び「ブーム下げ旋回動作」で構成されるサイクルを繰り返しながら、深掘り掘削・積込み動作を進めていく。
 [第1実施形態に係るショベル100における土砂重量算出方法]
 次に、図7から図9を用いて、第1実施形態に係るショベル100の積載物重量算出部61におけるバケット6内の土砂(積載物)の重量を算出する方法について説明する。
 図7A及び図7Bは、ショベル100のパラメータを説明する図であり、図7Aは側面図、図7Bは正面図を示す。
 図7Aに示すように、バケット6に積載された土砂(積載物)の重心を土砂重心Glとする。なお、バケット6に対する土砂重心Glの位置は、例えば、実験的に予め求めてコントローラ30に記憶させておく。バケット6に積載された土砂の重量を土砂重量Wlとする。上部旋回体3の旋回平面に対してブーム4の両端の支点を結ぶ直線が成す角度をブーム角度θ1とする。なお、ブーム角度θ1は、ブーム角度センサS1によって検出される。ブーム4の両端の支点を結ぶ直線に対してアーム5の両端の支点を結ぶ直線が成す角度をアーム角度θ2とする。なお、アーム角度θ2は、アーム角度センサS2によって検出される。アーム5の両端の支点を結ぶ直線に対してバケット6の支点と土砂重心Glとを結ぶ直線が成す角度をバケット角度θ3とする。なお、バケット角度θ3は、バケット角度センサS3によって検出される。また、ショベル100の前後方向の傾斜角度をピッチ角θpとする。また、図7Bに示すように、ショベル100の左右方向の傾斜角度をロール角θrとする。なお、ピッチ角θp及びロール角θrは、機体傾斜センサS4によって検出される。
 積載物重量算出部61は、例えば、掘削動作区間終了後にブーム4を上げる際(図6の(B)及び(C)参照)のブーム4のフートピン回りのトルクに基づいて、土砂重量を推定する。ここで、ショベル100は、ブーム4の上げ動作とともに、アーム5の開閉動作(図6の例ではアーム5を閉じる動作)を行うことがある。例えば、アーム5を開いた状態で旋回動作を行う場合、上部旋回体3からバケット6までの距離が長くなる(換言すれば、旋回半径が大きくなる)ため、旋回モーメントも大きくなる。このように、アーム5を開いた状態で旋回動作を行うと、大きな旋回駆動力が必要となり、旋回時間も長くなる。このため、掘削した土砂を地面へ排土する場合、通常、掘削後の旋回動作は旋回モーメントを小さくするように、アーム5を閉じる動作を行う。一方、掘削した土砂をダンプトラックへ排土する場合、ダンプトラックとの当接を避けるため、掘削後、アーム5を更に開きつつ旋回動作を行う。このように、掘削後のブーム上げ旋回動作中も、アーム5は作業内容に応じて開閉動作される。このため、アーム5の開閉動作に伴うモーメントがブーム4へも加わる。
 アーム5の開閉動作によるブーム4のフートピン回りのトルクについて、図8を用いて説明する。図8は、アーム5の開閉動作とブーム4のフートピン回りのトルクとの関係を示すショベル100のアタッチメントの模式図である。
 ここで、バケット6に積載される土砂重量をmとする。ブーム4とアーム5との連結ピン(アーム5の回転中心)から土砂重心までの距離をrとする。アーム5の回転角速度をωとする。アーム5の開閉による遠心力Fは以下の式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ブーム4のフートピンから、ブーム4とアーム5との連結ピンまでの水平方向距離をrとし、垂直方向距離をrとする。また、遠心力Fの水平方向成分をFaxとし、遠心力Fの垂直方向成分をFazとする。アーム5の開閉によりブーム4のフートピン回りに生じるトルクτは、以下の式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 このように、ブーム上げ動作中にアーム5の開閉動作が伴うと、アーム5の開閉によりブーム4のフートピン回りにトルクτが生じる。このため、ブーム上げ動作時のフートピン回りのトルクに基づいて土砂重量を推定する方法では、好適に土砂重量を補償することが求められている。
 図9は、第1実施形態に係るショベル100における積載物重量算出部61の処理を説明するブロック線図である。積載物重量算出部61は、トルク算出部71と、慣性力算出部72と、遠心力算出部73と、アーム遠心力算出部74と、静止時トルク算出部76と、重量換算部77と、傾斜補正部78と、を有している。
 トルク算出部71は、ブーム4のフートピン回りのトルク(検出トルク)を算出する。ブームシリンダ7の作動油の圧力(ブームロッド圧センサS7R、ブームボトム圧センサS7B)に基づいて算出される。
 慣性力算出部72は、慣性力によるブーム4のフートピン回りのトルク(慣性項トルク)を算出する。慣性項トルクは、ブーム4のフートピン周りの角加速度とブーム4の慣性モーメントに基づいて算出される。ブーム4のフートピン周りの角加速度や慣性モーメントは姿勢センサの出力に基づいて算出される。
 遠心力算出部73は、コリオリ及び遠心力によるブーム4のフートピン回りのトルク(遠心項トルク)を算出する。遠心項トルクは、ブーム4のフートピン周りの角速度とブーム4の重量に基づいて算出される。ブーム4のフートピン周りの角速度は姿勢センサの出力に基づいて算出される。ブーム4の重量は既知である。
 アーム遠心力算出部74は、アーム5を開閉させた際の遠心力によるブーム4のフートピン回りのトルク(アーム遠心力トルクτ)を算出する。なお、アーム遠心力トルクτは、姿勢センサの出力及び前述の式(1)及び式(2)に基づいて算出される。
 静止時トルク算出部76は、トルク算出部71の検出トルク、慣性力算出部72の慣性項トルク、遠心力算出部73の遠心項トルク及びアーム遠心力算出部74のアーム遠心力トルクに基づいて、アタッチメント静止時におけるブーム4のフートピン回りのトルクである静止トルクτを算出する。ここで、ブーム4のフートピン回りのトルクの式を式(3)に示す。なお、式(3)の左辺のτは検出トルクを示し、右辺の第1項は慣性項トルクを示し、右辺の第2項は遠心項トルクを示し、右辺の第3項はアーム遠心力トルクτを示し、右辺の第4項は静止トルクτを示す。
Figure JPOXMLDOC01-appb-M000003
 式(3)に示すように、検出トルクτから慣性項トルク、遠心項トルク及びアーム遠心力トルクτを減算することにより、静止トルクτを算出することができる。これにより、第1実施形態では、ブーム等のピン周りの回動動作により生じる影響を補償することができる。例えば、図8に示すように、ブーム上げ動作中にアーム5の閉じ動作が伴うと、アーム5の開閉動作によりブーム4のフートピン回りにブーム上げの向きにトルクτが生じる。このため、トルク算出部71で算出されるトルクは、アーム5の閉じ動作が伴わない場合と比較して小さくなる。第1実施形態の積載物重量算出部61では、アーム遠心力算出部74で算出したアーム遠心力トルクτで補償することにより、精度よく静止トルクτを算出することができる。
 重量換算部77は、アーム遠心力トルクτで補償された静止トルクτに基づいて、土砂重量Wlを算出する。土砂重量Wlは、例えば、静止トルクτからバケット6に土砂が積載されていないときのトルクを引いたトルクを、ブーム4のフートピンから土砂重心までの水平距離で割ることで算出することができる。
 傾斜補正部78は、ショベル100の姿勢による補整を行う。
 ここで、ショベル100がピッチ角θpの傾斜面にいる場合であって検出したブーム角度θ1のアタッチメントの姿勢は、ショベル100が平坦面にいる場合であってブーム角度(θ1+θp)におけるアタッチメントの姿勢は、等しくなる。即ち、検出したブーム角度θ1をピッチ角θpで補正することにより、土砂重量をショベル100の姿勢により補償する。
 また、ショベル100がロール角θrの傾斜面にいる場合、ブームシリンダ7の推力Fは、ショベル100を正面視した際、鉛直方向成分と水平方向成分を有する。このため、ブームシリンダ7の推力Fをロール角θrで補正する、即ち、鉛直方向成分Fcosθrとすることにより、土砂重量をショベル100の姿勢により補償する。
 以上、第1実施形態に係るショベル100によれば、掘削された土砂重量を検出することができる。また、例えば、ブーム上げ動作時等のアタッチメント動作中には、アクチュエータの圧力が変動する。これに対し、第1実施形態に係るショベル100によれば、検出したピン周りのトルクから、アタッチメント動作による慣性力、コリオリ及びピン周りの遠心力を補償することで、静止時のトルクを算出することができる。また、算出した静止時のトルクに基づいて、土砂重量を算出することができ、土砂重量の検出精度を向上させることができる。
 また、ショベル100の接地面が平坦面でない場合であっても、ショベル100の姿勢(ピッチ角、ロール角)に基づいて、土砂重量を補償することができる。これにより、ショベルの接地面が傾斜面であっても、好適に土砂重量を検出することができる。
 また、ダンプトラックに積載された土砂重量を算出することができる。これにより、ダンプトラックの過積載を防止することができる。例えば、作業現場から公道へ出る前にトラックスケール等によりダンプトラックの積載量がチェックされる。積載量が最大積載量を超えている場合、ダンプトラックはショベル100の位置まで戻り、積載している土砂を減らす作業が必要である。このため、ダンプトラックの運用効率が低下する。また、ダンプトラックの積載不足は、土砂を運搬するダンプトラックの延べ台数を増加させ、ダンプトラックの運用効率が低下する。これに対し、第1実施形態に係るショベル100によれば、過積載を防止しつつ、土砂をダンプトラックに積載することができるので、ダンプトラックの運用効率を向上させることができる。
 また、表示装置40には、バケット6内の土砂重量、ダンプトラックの最大積載量、加算積載量、残積載量が表示される。これにより、ショベル100に搭乗するペレータは、これらの表示を参照しながら作業を行うことにより、ダンプトラックに土砂を積載することができる。
 以上、ショベル100の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
 積載物重量算出部61は、アーム遠心力算出部74を備え、アーム5を開閉させた際の遠心力によるブーム4のフートピン回りのトルクを補償するものとして説明したが、これに限られるものではない。積載物重量算出部61は、アーム5の開閉の加減速(慣性力)によるブーム4のフートピン回りのトルクを算出するアーム慣性力算出部(図示せず)を備えてもよい。積載物重量算出部61は、アーム5を開閉させた際の慣性力によるブーム4のフートピン回りのトルクを補償してもよい。また、積載物重量算出部61は、アーム5の開閉による遠心力によるトルク及び慣性力によるトルクの両方で補償してもよい。
 第1実施形態に係るショベル(作業機械)100は、エンドアタッチメントとしてバケット6を備え、バケット6で搬送される土砂(搬送物)の重量を計測する。ここで、第1実施形態に係るショベル(作業機械)100に適用される土砂重量の計測方法は、他の作業機械に適用してもよい。即ち、バケット、リフティングマグネット、グラップル、フォーク、または、チェーンソーを含むハーベスタ等の搬送物を搬送する際に用いるエンドアタッチメントを有する作業機械に、第1実施形態に係るショベル100に適用される土砂重量の計測方法を適用してもよい。
 例えば、エンドアタッチメントとしてリフティングマグネットを有する作業機械において適用してもよい。例えば、ブーム4を下げアーム5を開いた状態で、作業機械から離れた位置の鉄屑等(搬送物)をリフティングマグネットで吸着した後、ブーム4を上げるとともに、アーム5を閉じることで、上部旋回体3の回転中心からリフティングマグネットに吸着された鉄屑等(搬送物)との距離を短くした状態で、上部旋回体3を旋回させる。このような、ブーム4の上げ動作とアーム5の閉じ動作が同時に行われる作業においても、好適に搬送物の重量を算出することができる。
 [第2実施形態に係るショベル100における土砂重量算出方法]
 また、第2実施形態に係るショベル100の積載物重量算出部61について、図10を用いて説明する。図10は、第2実施形態に係るショベル100における積載物重量算出部61の処理を説明するブロック線図である。積載物重量算出部61は、トルク算出部71と、慣性力算出部72と、遠心力算出部73と、アーム慣性力算出部75と、静止時トルク算出部76と、重量換算部77と、傾斜補正部78と、を有している。
トルク算出部71は、ブーム4のフートピン回りのトルク(検出トルク)を算出する。慣性力算出部72は、慣性力によるブーム4のフートピン回りのトルク(慣性項トルク)を算出する。遠心力算出部73は、コリオリ及び遠心力によるブーム4のフートピン回りのトルク(遠心項トルク)を算出する。なお、トルク算出部71、慣性力算出部72、遠心力算出部73は、図9に示す積載物重量算出部61のトルク算出部71、慣性力算出部72、遠心力算出部73と同様であり、重複する説明を省略する。
 アーム慣性力算出部75は、アーム5を開閉の加減速(慣性力)によるブーム4のフートピン回りのトルク(アーム慣性力トルク)を算出する。なお、アーム慣性力トルクは、姿勢センサの出力に基づいて算出される。
 静止時トルク算出部76は、トルク算出部71の検出トルク、慣性力算出部72の慣性項トルク、遠心力算出部73の遠心項トルク及びアーム慣性力算出部75のアーム慣性力トルクに基づいて、アタッチメント静止時におけるブーム4のフートピン回りのトルクである静止トルクτを算出する。ここで、ブーム4のフートピン回りのトルクの式を前述した式(3)に示す。なお、式(3)の左辺のτは検出トルクを示し、右辺の第1項は慣性項トルクを示し、右辺の第2項は遠心項トルクを示し、右辺の第3項はアーム慣性力トルクτを示し、右辺の第4項は静止トルクτを示す。
 式(3)に示すように、検出トルクτから慣性項トルク、遠心項トルク及びアーム慣性力トルクτを減算することにより、静止トルクτを算出することができる。これにより、第2実施形態では、ブーム等のピン周りの回動動作により生じる影響を補償することができる。例えば、図8に示すように、ブーム上げ動作中にアーム5の閉じ動作が伴うと、アーム5の開閉動作によりブーム4のフートピン回りにアーム慣性力トルクτが生じる。このため、トルク算出部71で算出されるトルクは、アーム5の閉じ動作が伴わない場合と比較して変化する。特に、バケット6で搬送される土砂重量が重い場合に、ショベル100からみて遠い位置から手前の位置に移動させた際、慣性力の影響が大きくなる。第2実施形態の積載物重量算出部61では、アーム慣性力算出部75で算出したアーム慣性力トルクτで補償することにより、精度よく静止トルクτを算出することができる。
 重量換算部77は、アーム慣性力トルクτで補償された静止トルクτに基づいて、土砂重量Wlを算出する。また、傾斜補正部78は、ショベル100の姿勢による補整を行う。なお、重量換算部77及び傾斜補正部78は、図9に示す重量換算部77及び傾斜補正部と同様であり、重複する説明を省略する。
 以上、第2実施形態に係るショベル100によれば、掘削された土砂重量を検出することができる。また、例えば、ブーム上げ動作時等のアタッチメント動作中には、アクチュエータの圧力が変動する。これに対し、第2実施形態に係るショベル100によれば、検出したピン周りのトルクから、アタッチメント動作による慣性力、コリオリ及びピン周りの遠心力を補償することで、静止時のトルクを算出することができる。また、算出した静止時のトルクに基づいて、土砂重量を算出することができ、土砂重量の検出精度を向上させることができる。
 また、ショベル100の接地面が平坦面でない場合であっても、ショベル100の姿勢(ピッチ角、ロール角)に基づいて、土砂重量を補償することができる。これにより、ショベルの接地面が傾斜面であっても、好適に土砂重量を検出することができる。
 また、ダンプトラックに積載された土砂重量を算出することができる。これにより、ダンプトラックの過積載を防止することができる。例えば、作業現場から公道へ出る前にトラックスケール等によりダンプトラックの積載量がチェックされる。積載量が最大積載量を超えている場合、ダンプトラックはショベル100の位置まで戻り、積載している土砂を減らす作業が必要である。このため、ダンプトラックの運用効率が低下する。また、ダンプトラックの積載不足は、土砂を運搬するダンプトラックの延べ台数を増加させ、ダンプトラックの運用効率が低下する。これに対し、第2実施形態に係るショベル100によれば、過積載を防止しつつ、土砂をダンプトラックに積載することができるので、ダンプトラックの運用効率を向上させることができる。
 また、表示装置40には、バケット6内の土砂重量、ダンプトラックの最大積載量、加算積載量、残積載量が表示される。これにより、ショベル100に搭乗するペレータは、これらの表示を参照しながら作業を行うことにより、ダンプトラックに土砂を積載することができる。
 以上、ショベル100の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
 図9に示す積載物重量算出部61はアーム5の開閉による遠心力によるトルクを補償し、図10に示す積載物重量算出部61はアーム5の開閉による慣性力によるトルクを補償するものとして説明したが、これに限られるものではない。積載物重量算出部61は、アーム5の開閉による遠心力によるトルク及びアーム5の開閉による慣性力によるトルクの少なくともいずれかに基づいて、補償する構成であってもよい。
 即ち、アーム5の開閉による遠心力によるトルク及びアーム5の開閉による慣性力によるトルクの両方を補償する構成であってもよい。この場合、積載物重量算出部61は、トルク算出部71と、慣性力算出部72と、遠心力算出部73と、アーム遠心力算出部74と、アーム慣性力算出部75と、静止時トルク算出部76と、重量換算部77と、傾斜補正部78と、を有していてもよい。この場合、静止時トルク算出部76は、トルク算出部71の検出トルク、慣性力算出部72の慣性項トルク、遠心力算出部73の遠心項トルク、アーム遠心力算出部74のアーム遠心力トルク及びアーム慣性力算出部75のアーム慣性力トルクに基づいて、アタッチメント静止時におけるブーム4のフートピン回りのトルクである静止トルクτを算出する。また、前述する式(3)のτは、アーム遠心力トルク及びアーム慣性力トルクを併せたトルクとしてもよい。これにより、土砂重量の検出精度を更に向上させることができる。
 第2実施形態に係るショベル(作業機械)100は、エンドアタッチメントとしてバケット6を備え、バケット6で搬送される土砂(搬送物)の重量を計測する。ここで、第2実施形態に係るショベル(作業機械)100に適用される土砂重量の計測方法は、他の作業機械に適用してもよい。即ち、バケット、リフティングマグネット、グラップル、フォーク、または、チェーンソーを含むハーベスタ等の搬送物を搬送する際に用いるエンドアタッチメントを有する作業機械に、第2実施形態に係るショベル100に適用される土砂重量の計測方法を適用してもよい。
 例えば、エンドアタッチメントとしてリフティングマグネットを有する作業機械において適用してもよい。例えば、ブーム4を下げアーム5を開いた状態で、作業機械から離れた位置の鉄屑等(搬送物)をリフティングマグネットで吸着した後、ブーム4を上げるとともに、アーム5を閉じることで、上部旋回体3の回転中心からリフティングマグネットに吸着された鉄屑等(搬送物)との距離を短くした状態で、上部旋回体3を旋回させる。このような、ブーム4の上げ動作とアーム5の閉じ動作が同時に行われる作業においても、好適に搬送物の重量を算出することができる。
 また、リフティングマグネット等のエンドアタッチメントや搬送物が重量物の場合、作業機械から遠いところの搬送物を作業機械の手前へ持ってくるときにアームの慣性力の影響が大きくなる。このような作業においても、好適に搬送物の重量を算出することができる。
 [第3実施形態に係るショベル100における土砂重量算出方法]
 次に、図7A、図7B、図11A、図11B及びから図12を用いて、第3実施形態に係るショベル100の積載物重量算出部61におけるバケット6内の土砂(積載物)の重量を算出する方法について説明する。
 図7A及び図7Bは、ショベル100のパラメータを説明する図であり、図7Aは側面図、図7Bは正面図を示す。
 図7Aに示すように、バケット6に積載された土砂(積載物)の重心を土砂重心Glとする。なお、バケット6に対する土砂重心Glの位置は、例えば、実験的に予め求めてコントローラ30に記憶させておく。バケット6に積載された土砂の重量を土砂重量Wlとする。上部旋回体3の旋回平面に対してブーム4の両端の支点を結ぶ直線が成す角度をブーム角度θ1とする。なお、ブーム角度θ1は、ブーム角度センサS1によって検出される。ブーム4の両端の支点を結ぶ直線に対してアーム5の両端の支点を結ぶ直線が成す角度をアーム角度θ2とする。なお、アーム角度θ2は、アーム角度センサS2によって検出される。アーム5の両端の支点を結ぶ直線に対してバケット6の支点と土砂重心Glとを結ぶ直線が成す角度をバケット角度θ3とする。なお、バケット角度θ3は、バケット角度センサS3によって検出される。また、ショベル100の前後方向の傾斜角度をピッチ角θpとする。また、図7Bに示すように、ショベル100の左右方向の傾斜角度をロール角θrとする。なお、ピッチ角θp及びロール角θrは、機体傾斜センサS4によって検出される。
 積載物重量算出部61は、例えば、掘削動作区間終了後にブーム4を上げる際(図6の(B)及び(C)参照)のブーム4のフートピン回りのトルクに基づいて、土砂重量を推定する。ここで、ショベル100は、ブーム4の上げ動作とともに、アーム5の開閉動作(図6の例ではアーム5を閉じる動作)を行うことがある。例えば、アーム5を開いた状態で旋回動作を行う場合、上部旋回体3からバケット6までの距離が長くなる(換言すれば、旋回半径が大きくなる)ため、旋回モーメントも大きくなる。このように、アーム5を開いた状態で旋回動作を行うと、大きな旋回駆動力が必要となり、旋回時間も長くなる。このため、掘削した土砂を地面へ排土する場合、通常、掘削後の旋回動作は旋回モーメントを小さくするように、アーム5を閉じる動作を行う。一方、掘削した土砂をダンプトラックへ排土する場合、ダンプトラックとの当接を避けるため、掘削後、アーム5を更に開きつつ旋回動作を行う。このように、掘削後のブーム上げ旋回動作中も、アーム5は作業内容に応じて開閉動作される。このため、アーム5の開閉動作に伴うモーメントがブーム4へも加わる。
 アーム5及びバケット6の開閉動作によるブーム4のフートピン回りのトルクについて、図11A及び図11Bを用いて説明する。図11Aは、アーム5の開閉動作とブーム4のフートピン回りのトルクとの関係を示すショベル100のアタッチメントの模式図である。図11Bは、バケット6の開閉動作とブーム4のフートピン回りのトルクとの関係を示すショベル100のアタッチメントの模式図である。
 まず、アーム5の開閉動作について、図11Aを用いて説明する。
 ここで、バケット6に積載される土砂重量をmとする。ブーム4とアーム5との連結ピン(アーム5の回転中心)から土砂重心までの距離をrとする。アーム5の回転角速度をωとする。アーム5の開閉による遠心力Fは以下の式(4)で表すことができる。
=mrω      ・・・(4)
 なお、土砂重量mは、ブームシリンダ7の推力に基づいて算出された仮の値である。具体的には、まず、トルク算出部71(図12参照。)は、ブームシリンダ7の推力(ブームロッド圧センサS7R及びブームボトム圧センサS7Bの測定値から算出される値)に基づいて、ブーム4のフートピン回りの検出トルクτを算出する。そして、静止時トルク算出部76(図12参照。)は、検出トルクτ、慣性力算出部72(図12参照。)により算出した慣性力による項J、及び遠心力算出部73(図12参照。)により算出した遠心力による項h、及び、後述する式(8)に基づいて、静止トルクτを算出する。この際、静止時トルク算出部76は、アーム遠心力トルクτ、及び、バケット遠心力トルクτを用いずに、静止トルクτを算出する。このため、土砂重量mは、ブームシリンダ7の推力に基づいて算出された仮の値である。なお、θは、アタッチメント角であり、ブーム角度、アーム角度、及びバケット角度を含む。
 ブーム4のフートピンから、ブーム4とアーム5との連結ピンまでの水平方向距離をrarmxとし、垂直方向距離をrarmzとする。また、遠心力Fの水平方向成分をFaxとし、遠心力Fの垂直方向成分をFazとする。アーム5の開閉によりブーム4のフートピン回りに生じるトルクτは、以下の式(5)で表すことができる。
τ=Faxarmz+Fazarmx     ・・・(5)
 このように、ブーム上げ動作中にアーム5の開閉動作が伴うと、アーム5の開閉によりブーム4のフートピン回りにトルクτが生じる。このため、ブーム上げ動作時のフートピン回りのトルクに基づいて土砂重量を推定する方法では、好適に土砂重量を補償することが求められている。
 次に、バケット6の開閉動作について、図11Bを用いて説明する。
 ここで、バケット6に積載される土砂重量をmとする。アーム5とバケット6との連結ピン(バケット6の回転中心)から土砂重心までの距離をrとする。バケット6の回転角速度をωとする。バケット6の開閉による遠心力Fは以下の式(6)で表すことができる。
=mrω      ・・・(6)
 ブーム4のフートピンから、アーム5とバケット6との連結ピンまでの水平方向距離をrbktxとし、垂直方向距離をrbktzとする。また、遠心力Fの水平方向成分をFbxとし、遠心力Fの垂直方向成分をFbzとする。バケット6の開閉によりブーム4のフートピン回りに生じるトルクτは、以下の式(7)で表すことができる。
τ=Fbxbktz+Fbzbktx     ・・・(7)
 このように、ブーム上げ動作中にバケット6の開閉動作が伴うと、バケット6の開閉によりブーム4のフートピン回りにトルクτが生じる。このため、ブーム上げ動作時のフートピン回りのトルクに基づいて土砂重量を推定する方法では、好適に土砂重量を補償することが求められている。
 図12は、第3実施形態に係るショベル100における積載物重量算出部61の処理を説明するブロック線図である。積載物重量算出部61は、トルク算出部71と、慣性力算出部72と、遠心力算出部73と、アーム遠心力算出部74と、バケット遠心力算出部79Aと、静止時トルク算出部76と、重量換算部77と、傾斜補正部78と、を有している。
 トルク算出部71は、ブーム4のフートピン回りのトルク(検出トルクτ)を算出する。検出トルクτは、ブームシリンダ7の作動油の圧力(ブームロッド圧センサS7R、ブームボトム圧センサS7B)に基づいて算出される。
 慣性力算出部72は、慣性力によるブーム4のフートピン回りのトルク(慣性項トルク)を算出する。慣性項トルクは、ブーム4のフートピン周りの角加速度とブーム4の慣性モーメントに基づいて算出される。ブーム4のフートピン周りの角加速度や慣性モーメントは姿勢センサの出力に基づいて算出される。
 遠心力算出部73は、コリオリ及び遠心力によるブーム4のフートピン回りのトルク(遠心項トルク)を算出する。遠心項トルクは、ブーム4のフートピン周りの角速度とブーム4の重量に基づいて算出される。ブーム4のフートピン周りの角速度は姿勢センサの出力に基づいて算出される。ブーム4の重量は既知である。
 アーム遠心力算出部74は、アーム5を開閉させた際の遠心力によるブーム4のフートピン回りのトルク(アーム遠心力トルクτ)を算出する。なお、アーム遠心力トルクτは、姿勢センサの出力及び前述の式(4)及び式(5)に基づいて算出される。
 バケット遠心力算出部79Aは、バケット6を開閉させた際の遠心力によるブーム4のフートピン回りのトルク(バケット遠心力トルクτ)を算出する。なお、バケット遠心力トルクτは、姿勢センサの出力及び前述の式(6)及び式(7)に基づいて算出される。
 静止時トルク算出部76は、トルク算出部71の検出トルクτ、慣性力算出部72の慣性項トルク、遠心力算出部73の遠心項トルク、アーム遠心力算出部74のアーム遠心力トルク及びバケット遠心力算出部79Aのバケット遠心力トルクに基づいて、アタッチメント静止時におけるブーム4のフートピン回りのトルクである静止トルクτを算出する。ここで、ブーム4のフートピン回りのトルクの式を式(8)に示す。なお、式(8)の左辺のτは検出トルクを示し、右辺の第1項は慣性項トルクを示し、右辺の第2項は遠心項トルクを示し、右辺の第3項はアーム遠心力トルクτを示し、右辺の第4項はバケット遠心力トルクτを示し、右辺の第5項は静止トルクτを示す。
Figure JPOXMLDOC01-appb-M000004
 式(8)に示すように、検出トルクτから慣性項トルク、遠心項トルク、アーム遠心力トルクτ、バケット遠心力トルクτを減算することにより、静止トルクτを算出することができる。これにより、第3実施形態では、ブーム等のピン周りの回動動作により生じる影響を補償することができる。例えば、図11Aに示すように、ブーム上げ動作中にアーム5の閉じ動作が伴うと、アーム5の開閉動作によりブーム4のフートピン回りにブーム上げの向きにトルクτが生じる。このため、トルク算出部71で算出されるトルクは、アーム5の閉じ動作が伴わない場合と比較して小さくなる。第3実施形態の積載物重量算出部61では、アーム遠心力算出部74で算出したアーム遠心力トルクτで補償することにより、精度よく静止トルクτを算出することができる。また、ブーム上げ動作中にバケット6の閉じ動作が伴うと、図11Bに示すように、バケット6の開閉動作によりブーム4のフートピン回りにブーム下げの向きにトルクτが生じる。このため、トルク算出部71で算出されるトルクは、バケット6の閉じ動作が伴わない場合と比較して大きくなる。第3実施形態の積載物重量算出部61では、バケット遠心力算出部79Aで算出したバケット遠心力トルクτで補償することにより、精度よく静止トルクτを算出することができる。
 重量換算部77は、アーム遠心力トルクτ及びバケット遠心力トルクτで補償された静止トルクτに基づいて、土砂重量Wlを算出する。土砂重量Wlは、例えば、静止トルクτからバケット6に土砂が積載されていないときのトルクを引いたトルクを、ブーム4のフートピンから土砂重心までの水平距離で割ることで算出することができる。
 傾斜補正部78は、ショベル100の姿勢による補整を行う。
 ここで、ショベル100がピッチ角θpの傾斜面にいる場合であって検出したブーム角度θ1のアタッチメントの姿勢は、ショベル100が平坦面にいる場合であってブーム角度(θ1+θp)におけるアタッチメントの姿勢は、等しくなる。即ち、検出したブーム角度θ1をピッチ角θpで補正することにより、土砂重量をショベル100の姿勢により補償する。
 また、ショベル100がロール角θrの傾斜面にいる場合、ブームシリンダ7の推力Fは、ショベル100を正面視した際、鉛直方向成分と水平方向成分を有する。このため、ブームシリンダ7の推力Fをロール角θrで補正する、即ち、鉛直方向成分Fcosθrとすることにより、土砂重量をショベル100の姿勢により補償する。
 以上、第3実施形態に係るショベル100によれば、掘削された土砂重量を検出することができる。また、例えば、ブーム上げ動作時等のアタッチメント動作中には、アクチュエータの圧力が変動する。これに対し、第3実施形態に係るショベル100によれば、検出したピン周りのトルクから、アタッチメント動作による慣性力、コリオリ及びピン周りの遠心力を補償することで、静止時のトルクを算出することができる。また、算出した静止時のトルクに基づいて、土砂重量を算出することができ、土砂重量の検出精度を向上させることができる。
 また、ショベル100の接地面が平坦面でない場合であっても、ショベル100の姿勢(ピッチ角、ロール角)に基づいて、土砂重量を補償することができる。これにより、ショベルの接地面が傾斜面であっても、好適に土砂重量を検出することができる。
 また、ダンプトラックに積載された土砂重量を算出することができる。これにより、ダンプトラックの過積載を防止することができる。例えば、作業現場から公道へ出る前にトラックスケール等によりダンプトラックの積載量がチェックされる。積載量が最大積載量を超えている場合、ダンプトラックはショベル100の位置まで戻り、積載している土砂を減らす作業が必要である。このため、ダンプトラックの運用効率が低下する。また、ダンプトラックの積載不足は、土砂を運搬するダンプトラックの延べ台数を増加させ、ダンプトラックの運用効率が低下する。これに対し、第3実施形態に係るショベル100によれば、過積載を防止しつつ、土砂をダンプトラックに積載することができるので、ダンプトラックの運用効率を向上させることができる。
 また、表示装置40には、バケット6内の土砂重量、ダンプトラックの最大積載量、加算積載量、残積載量が表示される。これにより、ショベル100に搭乗するペレータは、これらの表示を参照しながら作業を行うことにより、ダンプトラックに土砂を積載することができる。
 また、積載物重量算出部61は、アーム遠心力算出部74を備え、アームシリンダ8によってアーム5を開閉させた際の遠心力によるブーム4のフートピン回りのトルク(アーム遠心力トルクτ)を算出し、アーム遠心力トルクτで静止トルクτを補償するものとして説明したが、これに限られるものではない。積載物重量算出部61は、アーム5の開閉の加減速(慣性力)によるブーム4のフートピン回りのトルク(アーム慣性力トルク)を算出するアーム慣性力算出部(図示せず)を備えてもよい。積載物重量算出部61は、アーム慣性力トルクで静止トルクτを補償してもよい。また、積載物重量算出部61は、アーム遠心力トルクτ及びアーム慣性力トルクの両方で静止トルクτを補償してもよい。
 また、積載物重量算出部61は、バケット遠心力算出部79Aを備え、バケットシリンダ9によってバケット6を開閉させた際の遠心力によるブーム4のフートピン回りのトルク(バケット遠心力トルクτ)を算出し、バケット遠心力トルクτで静止トルクτを補償するものとして説明したが、これに限られるものではない。積載物重量算出部61は、バケット6の開閉の加減速(慣性力)によるブーム4のフートピン回りのトルク(バケット慣性力トルク)を算出するバケット慣性力算出部(図示せず)を備えてもよい。積載物重量算出部61は、バケット慣性力トルクで静止トルクτを補償してもよい。また、積載物重量算出部61は、バケット遠心力トルクτ及びバケット慣性力トルクの両方で静止トルクτを補償してもよい。
 [第4実施形態に係る作業機械の概要]
 最初に、図13を参照して、第4実施形態に係る作業機械100Aの概要について説明する。
 図13は、第4実施形態に係る作業機械100Aの側面図である。
 第4実施形態に係る作業機械100Aは、図1に示す第1から第3実施形態に係るショベル(作業機械)100と比較して、エンドアタッチメントがバケット6からグラップル6Aに変更されている。その他の構成は、同様であり、重複する説明を省略する。なお、第4実施形態に係る作業機械100Aは、グラップル6Aで丸太材(木材)等の長尺の搬送物Wを把持し、搬送物Wを搬送する。作業機械100Aで搬送された搬送物Wは、例えば、ダンプトラック(図示せず)に積み込まれる。
 バケットシリンダ(エンドアタッチメントシリンダ)9は、グラップル6Aを回動(チルト)させるために用いられる。また、グラップル6Aは、開閉可能な爪(把持部)6Aaと、爪6Aaを開閉させるグラップル開閉シリンダ6Abと、爪6Aaを回転軸6Adで回転させる回転油圧モータ6Acを備えている。
 また、コントロールバルブ17(図2参照)は、グラップル開閉シリンダ6Abに対応する制御弁(図示せず)と、回転油圧モータ6Acに対応する制御弁(図示せず)と、を有しており、メインポンプ14から供給される作動油を、操作装置26の操作状態に応じて、油圧アクチュエータであるグラップル開閉シリンダ6Ab及び回転油圧モータ6Acに供給することができるように構成されている。
 また、グラップル回転角度センサS10は、グラップル6Aに取り付けられ、回転軸6Ad回りのグラップル6Aの把持部の回転角度を検出する。グラップル回転角度センサS10は、例えば、ジャイロセンサ、レゾルバ、ロータリエンコーダ等を含んでよい。グラップル回転角度センサS10によるグラップル6Aの回転角度に対応する検出信号は、コントローラ30に取り込まれる。
 図14A及び図14Bは、第4実施形態に係る作業機械100Aの動作の一例を説明する図である。
 図14Aに示すように、グラップル6Aの爪6Aaで長尺の搬送物Wを把持している。ここでは、グラップル6Aの爪6Aaは、搬送物Wの重心Gとは異なる位置で搬送物Wを把持している、換言すれば、搬送物Wの一方の端部側に片寄った位置で搬送物Wを把持しているものとする。また、作業機械100Aは、グラップル6Aの把持部を回転軸6Ad回りに回転させる動作(矢印参照)を行う。
 図14Bに示すように、グラップル6Aの把持部を回転軸6Ad回りに回転させた場合、搬送物Wには、グラップル6Aの把持部で把持された搬送物Wが抜ける方向(搬送物Wの軸方向)に、遠心力Fを受ける。ここで、遠心力Fによって搬送物Wが抜け出さないようにグラップル6Aの把持部が把持していることにより、搬送物Wが受ける遠心力Fは、作業機械100Aのアタッチメントにかかる。
 次に、グラップル6Aの把持部の回転動作について、図15を用いて更に説明する。図15は、グラップル6Aの把持部の回転動作とブーム4のフートピン回りのトルクとの関係を示すショベル100のアタッチメントの模式図である。
 グラップル6Aの把持部を回転軸6Ad回りに回転させた際の遠心力を遠心力Fとする。なお、遠心力Fは、X方向、Y方向、Z方向の成分を有する。なお、X方向は、水平方向かつアタッチメントの伸縮する方向である。Y方向は、水平方向かつX方向と直交する方向である。Z方向は、鉛直方向である。ここで、黒矢印に示すように、遠心力FのX方向の水平方向成分をFcxとし、遠心力FのZ方向の垂直方向成分をFczとする。
 ここで、遠心力Fによって搬送物Wが抜け出さないようにグラップル6Aの把持部が把持していることにより、搬送物Wが受ける遠心力Fは、アーム5とグラップル6Aとの連結ピンの位置においても作用する(ハッチングを付した矢印参照)。
 ブーム4のフートピンから、アーム5とグラップル6Aとの連結ピンまでの水平方向距離をrbktxとし、垂直方向距離をrbktzとする。グラップル6Aの把持部の回転動作によりブーム4のフートピン回りに生じるトルクτは、以下の式(9)で表すことができる。
τ=Fcxbktz+Fczbktx     ・・・(9)
 このように、ブーム上げ動作中にグラップル6Aの把持部の回転動作が伴うと、グラップル6Aの把持部の回転動作によりブーム4のフートピン回りにトルクτが生じる。このため、ブーム上げ動作時のフートピン回りのトルクに基づいて搬送物重量を推定する方法では、好適に搬送物重量を補償することが求められている。
 なお、式(9)に示すように、搬送物Wが受ける遠心力Fのうち、Y方向の水平方向成分Fcyは、ブーム4のフートピン回りのトルクτに影響しない。
 例えば、バケットシリンダ(エンドアタッチメントシリンダ)9によってグラップル6Aを回動させて回転軸6Adが鉛直方向(Z方向)を向く場合において、回転油圧モータ6Acによってグラップル6Aの把持部を回転動作させることにより遠心力Fが生じる。ここで、遠心力FのZ方向の垂直方向成分Fczはゼロとなる。ここで、グラップル6Aの把持部の回転動作によって、遠心力FがY方向を向く場合、X方向の水平方向成分Fcxはゼロとなり、式(9)で算出されるトルクτもゼロとなる。
 また、例えば、バケットシリンダ(エンドアタッチメントシリンダ)9によってグラップル6Aを回動させて回転軸6Adが水平方向(X方向)を向く場合において、回転油圧モータ6Acによってグラップル6Aの把持部を回転動作させることにより遠心力Fが生じる。ここで、遠心力FのX方向の水平方向成分Fcxはゼロとなる。ここで、グラップル6Aの把持部の回転動作によって、遠心力FがY方向を向く場合、Z方向の垂直方向成分Fczはゼロとなり、式(9)で算出されるトルクτもゼロとなる。
 [第4実施形態に係る作業機械100Aにおける土砂重量算出方法]
 図16は、第4実施形態に係る作業機械100Aにおける積載物重量算出部61の処理を説明するブロック線図である。積載物重量算出部61は、トルク算出部71と、慣性力算出部72と、遠心力算出部73と、アーム遠心力算出部74と、バケット遠心力算出部(エンドアタッチメント遠心力算出部)79Aと、把持部遠心力算出部79Bと、静止時トルク算出部76と、重量換算部77と、傾斜補正部78と、を有している。
 トルク算出部71、慣性力算出部72、遠心力算出部73、アーム遠心力算出部74、傾斜補正部78は、図12に示す場合と同様であり、重複する説明を省略する。
 バケット遠心力算出部79Aは、グラップル6Aをチルト方向に回転させた際の遠心力によるブーム4のフートピン回りのトルク(バケット遠心力トルク(エンドアタッチメント遠心力トルク)τ)を算出する。なお、バケット遠心力トルクτは、姿勢センサの出力及び前述の式(6)及び式(7)に基づいて算出される。
 把持部遠心力算出部79Bは、グラップル6Aを回転軸6Ad回りに回転させた際の遠心力によるブーム4のフートピン回りのトルク(把持部遠心力トルクτ)を算出する。なお、把持部遠心力トルクτは、姿勢センサの出力及び前述の式(9)に基づいて算出される。
 静止時トルク算出部76は、トルク算出部71の検出トルク、慣性力算出部72の慣性項トルク、遠心力算出部73の遠心項トルク、アーム遠心力算出部74のアーム遠心力トルク、バケット遠心力算出部79Aのバケット遠心力トルク及び把持部遠心力算出部79Bの把持部遠心力トルクに基づいて、アタッチメント静止時におけるブーム4のフートピン回りのトルクである静止トルクτを算出する。ここで、ブーム4のフートピン回りのトルクの式を式(10)に示す。なお、式(10)の左辺のτは検出トルクを示し、右辺の第1項は慣性項トルクを示し、右辺の第2項は遠心項トルクを示し、右辺の第3項はアーム遠心力トルクτを示し、右辺の第4項はバケット遠心力トルクτを示し、右辺の第5項は把持部遠心力トルクτを示し、右辺の第6項は静止トルクτを示す。
Figure JPOXMLDOC01-appb-M000005
 式(10)に示すように、検出トルクτから慣性項トルク、遠心項トルク、アーム遠心力トルクτ、バケット遠心力トルクτ、把持部遠心力トルクτを減算することにより、静止トルクτを算出することができる。これにより、第4実施形態に係る作業機械100Aの積載物重量算出部61では、ブーム等のピン周りの回動動作により生じる影響を補償することができる。
 例えば、木材等の長尺の搬送物Wを搬送する作業機械100Aにおいて、ブーム上げ動作中に、グラップル6Aのチルト動作や、把持部の回転動作を伴って、搬送作業が行われる。このため、第4実施形態の積載物重量算出部61では、バケット遠心力算出部79Aで算出したバケット遠心力トルクτ及び把持部遠心力算出部79Bで算出した把持部遠心力トルクτを補償することにより、精度よく静止トルクτを算出することができる。
 重量換算部77は、アーム遠心力トルクτ、バケット遠心力トルクτ及び把持部遠心力トルクτで補償された静止トルクτに基づいて、搬送物重量を算出する。
 以上、第4実施形態に係る作業機械100Aによれば、グラップル6Aで把持された搬送物Wの重量を検出することができる。また、第4実施形態に係る作業機械100Aによれば、アーム遠心力トルクτ、バケット遠心力トルクτ及び把持部遠心力トルクτで補償された静止トルクτに基づいて、搬送物重量を算出することができ、搬送物重量の検出精度を向上させることができる。
 また、第4実施形態に係る作業機械100Aによれば、第4実施形態に係るショベル100と同様に、作業機械100Aの接地面が平坦面でない場合であっても、作業機械100Aの姿勢(ピッチ角、ロール角)に基づいて、搬送物重量を補償することができる。これにより、作業機械100Aの接地面が傾斜面であっても、好適に搬送物重量を検出することができる。
 また、第4実施形態に係る作業機械100Aによれば、第4実施形態に係るショベル100と同様に、ダンプトラックに積載された搬送物重量を算出することができる。これにより、ダンプトラックの過積載を防止しつつ、搬送物をダンプトラックに積載することができるので、ダンプトラックの運用効率を向上させることができる。
 また、表示装置40には、グラップル6Aで把持された搬送物重量、ダンプトラックの最大積載量、加算積載量、残積載量が表示される。これにより、ショベル100に搭乗するペレータは、これらの表示を参照しながら作業を行うことにより、ダンプトラックに搬送物を積載することができる。
 また、積載物重量算出部61は、アーム遠心力算出部74を備え、アームシリンダ8によってアーム5を開閉させた際の遠心力によるブーム4のフートピン回りのトルク(アーム遠心力トルクτ)を算出し、アーム遠心力トルクτで静止トルクτを補償するものとして説明したが、これに限られるものではない。積載物重量算出部61は、アーム5の開閉の加減速(慣性力)によるブーム4のフートピン回りのトルク(アーム慣性力トルク)を算出するアーム慣性力算出部(図示せず)を備えてもよい。積載物重量算出部61は、アーム慣性力トルクで静止トルクτを補償してもよい。また、積載物重量算出部61は、アーム遠心力トルクτ及びアーム慣性力トルクの両方で静止トルクτを補償してもよい。
 また、積載物重量算出部61は、バケット遠心力算出部79Aを備え、バケットシリンダ(エンドアタッチメントシリンダ)9によってグラップル6Aを開閉させた際の遠心力によるブーム4のフートピン回りのトルク(バケット遠心力トルク(エンドアタッチメント遠心力トルク)τ)を算出し、バケット遠心力トルクτで静止トルクτを補償するものとして説明したが、これに限られるものではない。積載物重量算出部61は、グラップル6Aの開閉の加減速(慣性力)によるブーム4のフートピン回りのトルク(バケット慣性力トルク(エンドアタッチメント慣性力トルク))を算出するバケット慣性力算出部(エンドアタッチメント慣性力算出部。図示せず)を備えてもよい。積載物重量算出部61は、バケット慣性力トルクで静止トルクτを補償してもよい。また、積載物重量算出部61は、バケット遠心力トルクτ及びバケット慣性力トルクの両方で静止トルクτを補償してもよい。
 また、積載物重量算出部61は、把持部遠心力算出部79Bを備え、回転油圧モータ(把持部回転機構)6Acによってグラップル6Aの把持部を回転動作させた際の遠心力によるブーム4のフートピン回りのトルク(把持部遠心力トルクτ)を算出し、把持部遠心力トルクτで静止トルクτを補償するものとして説明したが、これに限られるものではない。積載物重量算出部61は、グラップル6Aの把持部を回転動作させた際の加減速(慣性力)によるブーム4のフートピン回りのトルク(把持部慣性力トルク)を算出する把持部慣性力算出部(図示せず)を備えてもよい。積載物重量算出部61は、把持部慣性力トルクで静止トルクτを補償してもよい。また、積載物重量算出部61は、把持部遠心力トルクτ及び把持部慣性力トルクの両方で静止トルクτを補償してもよい。
 以上、ショベル100及び作業機械100Aの実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
 第3実施形態に係るショベル100及び第4実施形態に係る作業機械100Aに適用される搬送物重量の計測方法は、他の作業機械に適用してもよい。即ち、バケット、リフティングマグネット、グラップル、フォーク、または、チェーンソーを含むハーベスタ等の搬送物を搬送する際に用いるエンドアタッチメントを有する作業機械に、第3実施形態に係るショベル100及び第4実施形態に係る作業機械100Aに適用される搬送物重量の計測方法を適用してもよい。
 また、土砂荷重処理部60(積載物重量算出部61)は、ショベル100または作業機械100Aのコントローラ30に機能として設けられるものとして説明したが、これに限られるものではない。コントローラ30とは別に設けられた作業機械用の制御装置(図示せず)に、土砂荷重処理部60(積載物重量算出部61)の機能を備えていてもよい。
[積込支援システム]
 次に、積込支援システムSYSについて、図17を用いて説明する。図17は、積込支援システムSYSの構成例を示す図である。積込支援システムSYSは、ショベル100と、ダンプトラックDTに設けられた支援装置210を有する移動体200と、管理装置300と、支援装置400と、を備え、通信網900を介して通信可能に構成されていてもよい。
 支援装置210は、携帯端末装置であり、例えば、ダンプトラックDTに備え付けられるノートPC、タブレットPC、スマートフォン等のコンピュータである。
 管理装置300は、固定端末装置であり、例えば、作業現場外の管理センタ等に設置されるコンピュータである。なお、管理装置300は、可搬性のコンピュータ(例えば、ノートPC、タブレットPC、スマートフォン等の携帯端末装置)であってもよい。
 支援装置400は、携帯端末装置であり、例えば、作業現場にいる作業者等が携帯するノートPC、タブレットPC、スマートフォン等のコンピュータである。
 ショベル100のコントローラ30は、算出した土砂重量等を通信装置T1及び通信網900を介して管理装置300に送信してもよい。これにより、管理装置300は、ショベル100がダンプトラックDTに積載した土砂等の積載物の重量を管理することができる。また、ショベル100のコントローラ30は、通信装置T1及び通信網900を介してダンプトラックDTに設けられた支援装置210に送信してもよい。
 また、ショベル100は、通信網900を介して遠隔操作されてもよい。
 本願は、2020年12月7日に出願した日本国特許出願2020-202965号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 また、本願は、2021年3月31日に出願した日本国特許出願2021-062374号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 また、本願は、2021年3月31日に出願した日本国特許出願2021-062436号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
100   ショベル
100A  作業機械
1     下部走行体
2     旋回機構
2A    旋回油圧モータ
2A1   第1ポート
2A2   第2ポート
3     上部旋回体
4     ブーム(アタッチメント)
5     アーム(アタッチメント)
6     バケット(アタッチメント、エンドアタッチメント)
6A    グラップル(アタッチメント、エンドアタッチメント)
6Aa   爪(把持部)
6Ab   グラップル開閉シリンダ
6Ac   回転油圧モータ(把持部回転機構)
6Ad   回転軸
7     ブームシリンダ
8     アームシリンダ
9     バケットシリンダ
21,22 油圧センサ
30    コントローラ(制御装置)
40    表示装置
42    入力装置
43    音声出力装置
47    記憶装置
60    土砂荷重処理部
61    積載物重量算出部(重量算出部)
62    最大積載量検出部
63    加算積載量算出部
64    残積載量算出部
71    トルク算出部
72    慣性力算出部
73    遠心力算出部
74    アーム遠心力算出部
75    アーム慣性力算出部
76    静止時トルク算出部
77    重量換算部
78    傾斜補正部
79A    バケット遠心力算出部
79B    把持部遠心力算出部
S1    ブーム角度センサ
S2    アーム角度センサ
S3    バケット角度センサ
S4    機体傾斜センサ
S5    旋回状態センサ
S6    撮像装置
S7R   ブームロッド圧センサ
S7B   ブームボトム圧センサ
S8R   アームロッド圧センサ
S8B   アームボトム圧センサ
S9R   バケットロッド圧センサ
S9B   バケットボトム圧センサ
DT    ダンプトラック

Claims (13)

  1.  少なくとも、ブーム、該ブームの先端に取り付けられたアーム、該アームの先端に取り付けられたエンドアタッチメントを有し、上部旋回体に取り付けられるアタッチメントと、
     制御装置と、を備え、
     前記制御装置は、
     前記アームの遠心力及び前記アームの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償し、
     補償された前記トルクに基づいて、前記アタッチメントが搬送する搬送物の重量を算出する、作業機械。
  2.  前記ブームを回転させるトルクは、前記上部旋回体と前記アタッチメントとを連結するピン回りのトルクである、
    請求項1に記載の作業機械。
  3.  前記制御装置は、前記作業機械の姿勢に基づいて、前記搬送物の重量を補償する、
    請求項1または請求項2に記載の作業機械。
  4.  前記制御装置は、前記ブームの上げ動作及び前記アームの開閉動作を行う作業時におけるトルクに基づいて、前記搬送物の重量を算出する、
    請求項1乃至請求項3のいずれか1項に記載の作業機械。
  5.  前記エンドアタッチメントは、バケット、リフティングマグネット、グラップル、フォーク、または、チェーンソーを含むハーベスタである、
    請求項1乃至請求項4のいずれか1項に記載の作業機械。
  6.  少なくとも、ブーム、該ブームの先端に取り付けられたアーム、該アームの先端に取り付けられたエンドアタッチメントを有し、上部旋回体に取り付けられるアタッチメントと、
     制御装置と、を備え、
     前記制御装置は、
     前記エンドアタッチメントの遠心力及び前記エンドアタッチメントの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償し、
     補償された前記トルクに基づいて、前記アタッチメントが搬送する搬送物の重量を算出する、
    作業機械。
  7.  前記エンドアタッチメントは、前記アームの先端に回動可能に取り付けられ、
     前記制御装置は、
     前記アームに対して前記エンドアタッチメントが回動することによる前記エンドアタッチメントの遠心力及び前記エンドアタッチメントの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償する、
    請求項6に記載の作業機械。
  8.  前記エンドアタッチメントは、前記搬送物を把持する把持部と、前記把持部を回転させる把持部回転機構と、を有し、
     前記制御装置は、
     前記把持部の回転動作による前記エンドアタッチメントの遠心力及び前記エンドアタッチメントの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償する、
    請求項6または請求項7に記載の作業機械。
  9.  前記ブームを回転させるトルクは、前記上部旋回体と前記アタッチメントとを連結するピン回りのトルクである、
    請求項6乃至請求項8のいずれか1項に記載の作業機械。
  10.  前記制御装置は、前記作業機械の姿勢に基づいて、前記搬送物の重量を補償する、
    請求項6乃至請求項9のいずれか1項に記載の作業機械。
  11.  前記制御装置は、前記ブームの上げ動作及び前記エンドアタッチメントの回転動作を行う作業時におけるトルクに基づいて、前記搬送物の重量を算出する、
    請求項6乃至請求項10のいずれか1項に記載の作業機械。
  12.  少なくとも、ブーム、該ブームの先端に取り付けられたアーム、該アームの先端に取り付けられたエンドアタッチメントを有し、上部旋回体に取り付けられるアタッチメントと、を備える作業機械用の制御装置において、
     前記制御装置は、
     前記アームの遠心力及び前記アームの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償し、
     補償された前記トルクに基づいて、前記アタッチメントが搬送する搬送物の重量を算出する、作業機械用の制御装置。
  13.  少なくとも、ブーム、該ブームの先端に取り付けられたアーム、該アームの先端に取り付けられたエンドアタッチメントを有し、上部旋回体に取り付けられるアタッチメントと、を備える作業機械用の制御装置において、
     前記制御装置は、
     前記エンドアタッチメントの遠心力及び前記エンドアタッチメントの慣性力の少なくともいずれかに基づいて、前記ブームを回転させるトルクを補償し、
     補償された前記トルクに基づいて、前記アタッチメントが搬送する搬送物の重量を算出する、
    作業機械用の制御装置。
PCT/JP2021/045018 2020-12-07 2021-12-07 作業機械及び作業機械用の制御装置 WO2022124319A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180071103.5A CN116438356A (zh) 2020-12-07 2021-12-07 施工机械及施工机械用控制装置
JP2022568298A JPWO2022124319A1 (ja) 2020-12-07 2021-12-07
EP21903418.8A EP4257755A1 (en) 2020-12-07 2021-12-07 Work machine and control device for work machine
US18/316,789 US20230279634A1 (en) 2020-12-07 2023-05-12 Work machine and control device for work machine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020202965 2020-12-07
JP2020-202965 2020-12-07
JP2021-062374 2021-03-31
JP2021-062436 2021-03-31
JP2021062436 2021-03-31
JP2021062374 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/316,789 Continuation US20230279634A1 (en) 2020-12-07 2023-05-12 Work machine and control device for work machine

Publications (1)

Publication Number Publication Date
WO2022124319A1 true WO2022124319A1 (ja) 2022-06-16

Family

ID=81974512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045018 WO2022124319A1 (ja) 2020-12-07 2021-12-07 作業機械及び作業機械用の制御装置

Country Status (5)

Country Link
US (1) US20230279634A1 (ja)
EP (1) EP4257755A1 (ja)
JP (1) JPWO2022124319A1 (ja)
CN (1) CN116438356A (ja)
WO (1) WO2022124319A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252762B2 (ja) * 2019-01-08 2023-04-05 日立建機株式会社 作業機械
CN114080481B (zh) * 2019-07-17 2024-01-16 住友建机株式会社 施工机械及支援基于施工机械的作业的支援装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004337A (ja) 2000-06-15 2002-01-09 Hitachi Constr Mach Co Ltd 油圧ショベルの操作土量算出方法
JP2010089633A (ja) * 2008-10-08 2010-04-22 Caterpillar Japan Ltd 作業量モニタリングシステム
JP2011508187A (ja) * 2007-11-30 2011-03-10 キャタピラー インコーポレイテッド 回転力を補償する積載質量システム
WO2018087834A1 (ja) * 2016-11-09 2018-05-17 株式会社小松製作所 作業機械および作業機械の制御方法
JP2020202965A (ja) 2019-06-17 2020-12-24 株式会社サンセイアールアンドディ 遊技機
JP2021062374A (ja) 2015-03-23 2021-04-22 ビーエーエスエフ コーポレーション 室内空気の品質制御のための二酸化炭素吸着剤
JP2021062436A (ja) 2019-10-11 2021-04-22 セイコーエプソン株式会社 教示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004337A (ja) 2000-06-15 2002-01-09 Hitachi Constr Mach Co Ltd 油圧ショベルの操作土量算出方法
JP2011508187A (ja) * 2007-11-30 2011-03-10 キャタピラー インコーポレイテッド 回転力を補償する積載質量システム
JP2010089633A (ja) * 2008-10-08 2010-04-22 Caterpillar Japan Ltd 作業量モニタリングシステム
JP2021062374A (ja) 2015-03-23 2021-04-22 ビーエーエスエフ コーポレーション 室内空気の品質制御のための二酸化炭素吸着剤
WO2018087834A1 (ja) * 2016-11-09 2018-05-17 株式会社小松製作所 作業機械および作業機械の制御方法
JP2020202965A (ja) 2019-06-17 2020-12-24 株式会社サンセイアールアンドディ 遊技機
JP2021062436A (ja) 2019-10-11 2021-04-22 セイコーエプソン株式会社 教示方法

Also Published As

Publication number Publication date
CN116438356A (zh) 2023-07-14
JPWO2022124319A1 (ja) 2022-06-16
US20230279634A1 (en) 2023-09-07
EP4257755A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2021006349A1 (ja) ショベル
JP7242387B2 (ja) ショベル
WO2022124319A1 (ja) 作業機械及び作業機械用の制御装置
US20210262196A1 (en) Excavator and control apparatus for excavator
CN112411662B (zh) 挖土机
CN111989436B (zh) 挖土机
WO2021241526A1 (ja) ショベル及びショベル用のシステム
WO2020203851A1 (ja) ショベル
CN111433413A (zh) 挖土机
WO2022210173A1 (ja) ショベルの表示装置、ショベル
JP7289701B2 (ja) ショベル
JP7285679B2 (ja) ショベル
JP7420619B2 (ja) ショベル
JP2020165256A (ja) ショベル
CN117043421A (zh) 挖土机的显示装置、挖土机及挖土机的支援装置
JP7395403B2 (ja) 検出装置及びショベル
JP2021156078A (ja) ショベル
JP2021156080A (ja) 施工支援システム及び施工支援装置
JP2021156081A (ja) 作業機械
JP7420618B2 (ja) ショベル
WO2022210990A1 (ja) 作業機械及び作業機械の支援システム
US20240175243A1 (en) Shovel control device and shovel
JP2022152393A (ja) ショベル
JP2021025198A (ja) ショベル
JP2021188260A (ja) ショベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903418

Country of ref document: EP

Effective date: 20230707