WO2019181788A1 - 正極用化合物 - Google Patents

正極用化合物 Download PDF

Info

Publication number
WO2019181788A1
WO2019181788A1 PCT/JP2019/010859 JP2019010859W WO2019181788A1 WO 2019181788 A1 WO2019181788 A1 WO 2019181788A1 JP 2019010859 W JP2019010859 W JP 2019010859W WO 2019181788 A1 WO2019181788 A1 WO 2019181788A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
nickel
compound
coating layer
composite hydroxide
Prior art date
Application number
PCT/JP2019/010859
Other languages
English (en)
French (fr)
Inventor
田中 聡
直也 花村
未来夫 畑
Original Assignee
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田中化学研究所 filed Critical 株式会社田中化学研究所
Priority to CN201980020408.6A priority Critical patent/CN111868975B/zh
Priority to KR1020207028057A priority patent/KR20200133347A/ko
Priority to JP2020507755A priority patent/JP7290626B2/ja
Publication of WO2019181788A1 publication Critical patent/WO2019181788A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a compound for a positive electrode of a storage battery, and particularly relates to a compound for a positive electrode having high strength and having an excellent capacity retention rate after being left at a high temperature.
  • a coating layer having a metal element may be formed on the surface of a metal hydroxide that is a nucleus.
  • a metal hydroxide that is a nucleus For example, surface-modified nickel hydroxide in which the surface of nickel hydroxide, which is a nucleus, is coated with cobalt oxide has been proposed as a positive electrode active material for alkaline storage batteries that has a high positive electrode utilization rate and improved cycle characteristics (Patent Literature). 1).
  • nickel hydroxide hydroxide is introduced by adding a solution mainly composed of palladium chloride and hydrochloric acid while stirring nickel hydroxide fine particles in an electroless plating bath. It has been proposed to form a coating layer of electroless plating by supporting a palladium catalyst on the surface of fine particles and simultaneously performing electroless plating (Patent Document 2).
  • the electroless plating coating layer is composed of a nickel-phosphorus composite coating.
  • the electroless plating coating layer contains a large amount of phosphorus element.
  • the phosphorus element may hinder the performance improvement of the storage battery, in particular, the capacity maintenance ratio.
  • Patent Document 2 there is still room for improvement in the capacity maintenance ratio after leaving at high temperature.
  • the positive electrode compound of the storage battery is required to have durability, that is, mechanical strength in order to stably exhibit performance over a long period of time.
  • an object of the present invention is to provide a positive electrode compound which has an excellent capacity retention ratio after standing at high temperature and has high strength.
  • An aspect of the present invention is a secondary particle in which primary particles are aggregated, and a coating containing a core containing nickel composite hydroxide and a nickel element having a cobalt element on the surface of the core and having a cobalt element of 500 ppm or less and a phosphorus element of 10 ppm or less
  • a nickel element content in the coating layer is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core, and an average crushing strength of the secondary particles is 45.
  • It is a positive electrode compound having a pressure of 0 MPa or more.
  • the average crushing strength of the positive electrode compound means a value measured by “Micro compression tester MCT-510” manufactured by Shimadzu Corporation.
  • An aspect of the present invention is a positive electrode compound in which the nucleus includes at least one metal element selected from the group consisting of cobalt, zinc, manganese, lithium, magnesium, aluminum, zirconium, yttrium, ytterbium, and tungsten.
  • An aspect of the present invention is a positive electrode compound in which the coating layer containing nickel element has an average primary particle size of 10 nm to 100 nm.
  • the average primary particle diameter of the nickel element in the coating layer is selected from ten images of primary particles selected from an image obtained by observing the coating layer with a field emission scanning electron microscope (FE-SEM). Means the average value of the values measured for the longest diameter parts.
  • the aspect of the present invention is a positive electrode compound further containing a palladium compound.
  • An aspect of the present invention is a positive electrode compound for a positive electrode active material of an alkaline storage battery.
  • the nucleus is represented by the general formula (1).
  • M represents at least one metal element selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, yttrium and ytterbium. It is a compound for positive electrodes represented.
  • An aspect of the present invention is a compound for a positive electrode that is a precursor for a positive electrode active material of a non-aqueous electrolyte secondary battery.
  • the nucleus is represented by the general formula (3).
  • Ni (1-z) P z (OH) 2 + c (3) (In the formula: 0 ⁇ z ⁇ 0.7, 0 ⁇ c ⁇ 0.28, P is at least one selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten. It is a compound for positive electrodes represented by this.
  • An aspect of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery using the positive electrode compound as a precursor.
  • a nucleus containing nickel composite hydroxide, and a coating layer containing nickel element having a cobalt element of 500 ppm or less and a phosphorus element of 10 ppm or less on the surface of the nucleus When the content of the nickel element is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the nucleus, a positive electrode compound having an excellent capacity retention rate after being left at a high temperature can be obtained. Moreover, since the average crushing strength of the secondary particles is 45.0 MPa or more, a positive electrode compound having high strength can be obtained.
  • the average primary particle diameter of the nickel element in the coating layer is 10 nm or more and 100 nm or less, whereby the surface of the coating layer is smoothed and the average crushing strength of the positive electrode compound is further improved. be able to.
  • the positive electrode compound of the present invention is a secondary particle in which primary particles are aggregated, and includes a nucleus containing a nickel composite hydroxide, a nickel element having a cobalt element of 500 ppm or less and a phosphorus element of 10 ppm or less on the surface of the nucleus.
  • the shape of the compound for positive electrode of the present invention in the form of particles is not particularly limited, and examples thereof include a substantially spherical shape.
  • the positive electrode compound of the present invention is a secondary particle formed by aggregating a plurality of primary particles.
  • the average crushing strength of the positive electrode compound of the present invention is 45.0 MPa or more. This excellent average crushing strength is considered to be due to the fact that the surface of the coating layer is smoothed by the fine nickel element in the coating layer.
  • the average crushing strength of the positive electrode compound is not particularly limited as long as it is 45.0 MPa or higher, and higher average crushing strength is more preferable. For example, 50.0 MPa or higher is more preferable, and 55.0 MPa or higher is particularly preferable.
  • the upper limit value of the average crushing strength of the positive electrode compound is not particularly limited, but is, for example, 100 MPa in that it can be efficiently produced.
  • the particle size distribution of the positive electrode compound is not particularly limited.
  • the lower limit value of the secondary particle diameter D50 (hereinafter sometimes simply referred to as “D50”) having a cumulative volume percentage of 50% by volume obtains high temperature resistance. From the viewpoint, 2.0 ⁇ m is preferable, 2.5 ⁇ m is more preferable, and 3.0 ⁇ m is particularly preferable.
  • the upper limit value of D50 of the positive electrode compound is preferably 30.0 ⁇ m, and particularly preferably 25.0 ⁇ m, from the viewpoint of the balance between improving the density and securing the contact surface with the electrolytic solution. The above lower limit value and upper limit value can be arbitrarily combined.
  • composition of the core of the positive electrode compound is not particularly limited as long as it contains nickel hydroxide, but if necessary, in addition to nickel, cobalt, zinc, manganese, lithium, magnesium, aluminum,
  • a hydroxide containing at least one metal element selected from the group consisting of zirconium, yttrium, ytterbium, and tungsten may be used.
  • the positive electrode compound of the present invention can be used, for example, as a positive electrode active material for an alkaline storage battery, as a positive electrode active material for a nonaqueous electrolyte secondary battery, or as a positive electrode active material precursor for a nonaqueous electrolyte secondary battery.
  • the positive electrode compound of the present invention When the positive electrode compound of the present invention is applied as a positive electrode active material for alkaline storage batteries, the following general formula (1) Ni (1-x) M x (OH) 2 + a (1) (In the formula: 0 ⁇ x ⁇ 0.2, 0 ⁇ a ⁇ 0.2, M represents at least one metal element selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, yttrium and ytterbium. The compound for positive electrodes represented by this can be mentioned.
  • the positive electrode compound of the present invention When the positive electrode compound of the present invention is applied for the positive electrode active material of a non-aqueous electrolyte secondary battery, the following general formula (2) Li [Li y (Ni (1-b) N b ) 1-y ] O 2 (2) (In the formula: 0 ⁇ b ⁇ 0.7, 0 ⁇ y ⁇ 0.50, N is at least one metal selected from the group consisting of cobalt, manganese, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten. And a positive electrode compound represented by the following formula:
  • a positive electrode compound for a positive electrode active material of a nonaqueous electrolyte secondary battery is prepared by adding a lithium ion to a nickel composite hydroxide and firing it to nucleate (for example, a nucleus represented by the general formula (2)). Then, the obtained core contains a nickel element having a cobalt element of 500 ppm or less and a phosphorus element of 10 ppm or less and a nickel element content of 5 to 20 parts by mass with respect to 100 parts by mass of the nucleus. It can be obtained by forming a layer.
  • the positive electrode compound of the present invention when applied as a positive electrode active material precursor of a nonaqueous electrolyte secondary battery, the following general formula (3) Ni (1-z) P z (OH) 2 + c (3) (In the formula: 0 ⁇ z ⁇ 0.7, 0 ⁇ c ⁇ 0.28, P is at least one selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten. And a positive electrode compound represented by the following formula:
  • Lithium ions are further added to the positive electrode compound of the present invention which is a nickel-containing coated nickel composite hydroxide (for example, a nickel-containing coated nickel composite hydroxide having a nucleus represented by the general formula (3)), By baking, the positive electrode active material of a non-aqueous electrolyte secondary battery can be obtained.
  • the non-aqueous electrolyte secondary battery include a lithium ion secondary battery.
  • the surface of the nucleus described above is coated with a coating layer containing a nickel element having a cobalt element of 500 ppm or less and a phosphorus element of 10 ppm or less. Content of the said cobalt element and phosphorus element is content in a coating layer.
  • the capacity retention rate after being allowed to stand at a high temperature is improved by being coated with the coating layer.
  • the content of cobalt element is not particularly limited as long as it is 500 ppm or less, but is preferably 200 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less, from the viewpoint of more reliably improving the capacity retention rate after standing at high temperature. 10 ppm or less is particularly preferable.
  • the phosphorus element content is not particularly limited as long as it is 10 ppm or less, but it is more preferably 5 ppm or less, and particularly preferably 2 ppm or less from the viewpoint of more reliably improving the capacity retention rate after standing at high temperature. From the above, the main component of the coating layer containing nickel element is nickel element.
  • the composition of the coating layer containing nickel element is 500 ppm or less for cobalt element and 10 ppm or less for phosphorus element, and is mainly composed of nickel element.
  • the content of nickel in the coating layer is, for example, preferably 99% by mass or more, more preferably 99.9% by mass or more, particularly 100% by mass from the viewpoint of more reliably improving the capacity retention rate after standing at high temperature. preferable.
  • the content of nickel element in the coating layer is in the range of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the nucleus.
  • the content of the nickel element in the coating layer is not particularly limited as long as it is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the nucleus, but from the viewpoint of further improving the capacity retention rate after standing at high temperature. 7 parts by mass or more and 15 parts by mass or less are particularly preferable with respect to parts by mass.
  • the nickel element of the coating layer is particulate.
  • the surface of the core containing nickel composite hydroxide is covered with the nickel particles overlapping.
  • the shape of each nickel element of a coating layer is not specifically limited, For example, it is a substantially spherical shape.
  • the average primary particle diameter of the nickel element in the coating layer is not particularly limited, but is preferably in the range of 10 nm to 100 nm.
  • the average primary particle diameter of the nickel element in the coating layer is 10 nm or more and 100 nm or less, so that the nickel element is refined, the surface of the coating layer is smoothed, and the average crushing strength of the positive electrode compound is further improved. Can be made.
  • the average primary particle diameter of nickel element in the coating layer is more preferably 20 nm or more and 80 nm or less, and particularly preferably 30 nm or more and 70 nm or less. Note that the coating layer containing nickel element may cover the entire surface of the nucleus containing nickel composite hydroxide, or may cover a partial region of the surface of the nucleus containing nickel composite hydroxide.
  • the average thickness of the coating layer is not particularly limited, and for example, the lower limit is preferably 20 nm, particularly preferably 70 nm, from the viewpoint of more reliably improving the average crushing strength.
  • the upper limit is preferably 200 nm, and particularly preferably 100 nm, from the viewpoint of reliably maintaining the excellent battery characteristics of the positive electrode compound, where the nucleus contributes mainly to the battery characteristics of the positive electrode compound.
  • the positive electrode compound of the present invention uses a palladium catalyst for its production. Therefore, the positive electrode compound of the present invention contains a trace amount of a palladium compound. Content of the palladium element in the compound for positive electrodes is 1 ppm or more and 100 ppm or less, for example.
  • the BET specific surface area of the positive electrode compound of the present invention is not particularly limited.
  • the lower limit is preferably 0.1 m 2 / g from the viewpoint of the balance between improving the density and securing the contact surface with the electrolytic solution. 0.3 m 2 / g is particularly preferable.
  • the upper limit is preferably 50.0m 2 / g, 40.0m 2 / g is particularly preferred. The above lower limit value and upper limit value can be arbitrarily combined.
  • the tap density of the positive electrode compound of the present invention is not particularly limited, but for example, 1.5 g / cm 3 or more is preferable from the viewpoint of improving the filling degree when used as a positive electrode active material, and 1.7 g / cm 3. The above is particularly preferable.
  • the bulk density of the positive electrode compound of the present invention is not particularly limited, for example, 0.8 g / cm 3 or more is preferable from the viewpoint of improving the filling degree when used as a positive electrode active material, and 1.0 g / cm 3 or more. Is particularly preferred.
  • nickel composite hydroxide particles serving as a nucleus are prepared.
  • nickel composite hydroxide particles are prepared by a coprecipitation method using a nickel salt solution (eg, sulfate solution) or nickel and other metal elements (eg, cobalt, zinc, manganese, lithium, magnesium, aluminum).
  • a nickel salt solution eg, sulfate solution
  • nickel and other metal elements eg, cobalt, zinc, manganese, lithium, magnesium, aluminum
  • Niobium, yttrium, ytterbium and / or tungsten salt solution (eg, sulfate solution) and complexing agent are reacted to form nickel composite hydroxide particles (eg, nickel hydroxide particles, nickel and other metals)
  • nickel composite hydroxide particles eg, nickel hydroxide particles, nickel and other metals
  • an element eg, hydroxide particles containing cobalt, zinc, manganese, lithium, magnesium, aluminum, zirconium, yttrium, ytterbium and / or tungsten
  • a suspension is obtained.
  • a solvent for the suspension for example, water is used.
  • the complexing agent is not particularly limited as long as it can form a complex with nickel and ions of other metal elements in an aqueous solution.
  • an ammonium ion supplier ammonium sulfate, ammonium chloride, ammonium carbonate
  • Ammonium fluoride, etc. hydrazine
  • ethylenediaminetetraacetic acid nitrilotriacetic acid
  • uracil diacetic acid glycine
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the temperature of the reaction vessel is controlled within a range of, for example, 10 ° C. to 80 ° C., preferably 20 to 70 ° C.
  • the pH value in the reaction vessel is controlled based on the liquid temperature of 25 ° C., for example, pH 9 to pH 13
  • the substance in the reaction vessel is appropriately agitated while controlling preferably within the range of pH 11-13.
  • separate the formed nickel composite hydroxide particle can be mentioned, for example.
  • a palladium-based catalyst and a surfactant are supplied to the nickel composite hydroxide particles obtained as described above, and the palladium-based catalyst is supported on the surface of the nickel composite hydroxide particles.
  • nickel composite hydroxide particles carrying a palladium-based catalyst are immersed in a plating solution mainly containing nickel that does not contain phosphorus element, and further hydrazine-based additive is added to perform electroless plating, Nickel is plated on the surface of the nickel composite hydroxide particles.
  • the thickness and / or the composition of the plating solution is adjusted so that the content of nickel element in the coating layer is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core.
  • a plating film is formed on the surface of the composite hydroxide particles.
  • the average primary particle diameter of nickel element in the coating layer is in the range of 10 nm to 100 nm.
  • the average primary particle diameter of the nickel element of the coating layer becomes coarser than 100 nm, the surface of the coating layer is roughened, and 45.0 MPa or more The average crushing strength cannot be obtained.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer containing the positive electrode compound of the present invention formed on the surface of the positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material that is the compound for positive electrodes of the present invention, a binder (binder), and a conductive additive as necessary.
  • a conductive support agent if it can be used for a livestock battery (secondary battery), for example, Acetylene black (AB), metallic cobalt, cobalt oxide, etc. can be used.
  • the binder is not particularly limited, but polymer resins such as polyvinylidene fluoride (PVdF), butadiene rubber (BR), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), polytetrafluoroethylene (PTFE), and the like, and these combinations can be mentioned.
  • network, a foam metal, for example, foam nickel, a mesh metal fiber sintered compact, a metal plating resin board etc. can be mentioned.
  • a positive electrode active material slurry is prepared by mixing the positive electrode compound of the present invention, a conductive additive, a binder, and water.
  • the positive electrode active material slurry is filled into a positive electrode current collector by a known filling method, dried, and then rolled and fixed with a press or the like to obtain a positive electrode.
  • the positive electrode compound of the present invention when used as a precursor of the positive electrode active material of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, the positive electrode compound of the present invention includes lithium carbonate, lithium hydroxide and the like. Lithium compound is added to obtain a mixture of a lithium compound and a positive electrode compound, and the resulting mixture is subjected to primary firing (calcination temperature is, for example, 600 ° C. to 900 ° C., and firing time is, for example, 5 hours to 20 hours) Further, by performing secondary firing (baking temperature is, for example, 700 ° C. or higher and 1000 ° C.
  • the positive electrode active of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is obtained.
  • a substance can be obtained.
  • the positive electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery has a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector using the positive electrode compound of the present invention as a precursor.
  • the positive electrode active material layer has a positive electrode active material using the positive electrode compound of the present invention as a precursor, a binder (binder), and, if necessary, a conductive additive.
  • the positive electrode current collector, the binder, and the conductive assistant the same ones as described above can be used.
  • a positive electrode active material As a method for producing a positive electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, for example, first, a positive electrode active material, a conductive additive, a binder, and N using the positive electrode compound of the present invention as a precursor are firstly used. -Methyl-2-prolidone (NMP) is mixed to prepare a positive electrode active material slurry. Next, the positive electrode active material slurry is filled into a positive electrode current collector by a known filling method, dried, and then rolled and fixed with a press or the like to obtain a positive electrode.
  • NMP -Methyl-2-prolidone
  • a storage battery for example, alkaline storage battery, non-aqueous electrolyte secondary battery, etc.
  • alkaline storage battery non-aqueous electrolyte secondary battery, etc.
  • the mixture was continuously stirred by a propeller stirrer with a stirring blade speed of 520 rpm and a stirring blade of 250 mm.
  • the produced hydroxide was taken out from the overflow pipe of the reaction tank.
  • the extracted hydroxide was subjected to water washing, dehydration, and drying to obtain nickel composite hydroxide particles as cores.
  • the composition of the obtained nickel composite hydroxide particles has a nickel element content of 92.1 parts by mass, a cobalt element content of 1.12 parts by mass, and a zinc element content of 6.77 parts by mass. This was confirmed with an inductively coupled plasma optical emission spectrometer.
  • the nickel composite hydroxide particles prepared as described above are directly subjected to electroless pure nickel plating treatment, and a nickel composite hydroxide having a nickel plating film as a coating layer, that is, nickel-containing coated nickel composite hydroxide.
  • a nickel composite hydroxide having a nickel plating film was produced as follows.
  • the base particles were stirred with a cationic surfactant for 10 minutes in order to modify the base particle surface. Then, after washing with filtered water, the mixture was stirred with a palladium ion catalyst solution for 10 minutes to adsorb palladium ions on the surface of the substrate particles. Thereafter, after washing with filtered water, the mixture was stirred for 10 minutes with a reducing solution to support the palladium catalyst on the surface of the substrate particles. Then, after washing with filtered water, the substrate particles having a palladium catalyst supported on the surface thereof were pre-stirred for 1 minute in a nickel sulfate solution heated to 80 ° C.
  • the composition of the nickel sulfate solution was nickel salt 0.30 mol / L, citrate 1 mol / L, and carbonate 1.7 mol / L. Thereafter, hydrazine monohydrate was added to the nickel sulfate solution in an amount of 0.4 mol / L. After the start of the reaction, the substrate particles carrying the palladium catalyst on the surface are stirred for 5 minutes or longer in a nickel sulfate solution containing hydrazine monohydrate, and a nickel plating film is formed on the surface of the nickel composite hydroxide particles. Then, a coating layer containing nickel element was formed.
  • the nickel composite hydroxide particles on which the coating layer containing nickel element was formed were washed with filtered water and dried at 80 ° C. In this way, nickel-containing coated nickel composite hydroxide particles, which are positive electrode compounds according to the present invention, were obtained. In addition, the content of nickel element in the coating layer with respect to 100 parts by mass of the nickel composite hydroxide particles was adjusted by adjusting the amount of nickel sulfate solution input.
  • Nickel composite hydroxide particles serving as a nucleus were obtained in the same manner as in the above example. Thereafter, nickel composite hydroxide particles serving as nuclei were charged into an aqueous alkali solution in a reaction bath maintained at pH 9.0 with sodium hydroxide at a liquid temperature of 50 ° C. After the addition, an aqueous cobalt sulfate solution having a concentration of 90 g / L was added dropwise while stirring the solution. During this time, an aqueous solution of sodium hydroxide is appropriately added dropwise, and the reaction bath is maintained at pH 9.0 on the basis of a liquid temperature of 50 ° C.
  • nickel composite hydroxide particles for 1 hour, so that cobalt hydroxide is deposited on the surface of the nickel composite hydroxide particles (core).
  • Cobalt hydroxide-coated nickel composite hydroxide particles having a coating layer made of were obtained.
  • content of the coated cobalt was 2.55 mass parts with respect to 100 mass parts of nickel composite hydroxide particles.
  • Nickel composite hydroxide particles serving as nuclei were obtained in the same manner as in the above examples. Thereafter, electroless nickel plating was applied to nickel composite hydroxide particles having an average particle diameter of 10 ⁇ m. As the electroless plating bath, one having the following composition was used. Nickel sulfate 22.0g / L Glycine 33.3g / L Sodium hypophosphite 23.3g / L Sodium hydroxide 12.3g / L Surfactant 10mL / L pH 9.5
  • a 3 L plating bath satisfying the above conditions was built at 60 ° C., and 50 g of nickel composite hydroxide particles were directly charged. That is, no pretreatment steps such as an immersion degreasing step, a surface adjustment step, and an etching step were performed.
  • propeller stirring is carried out for 10 minutes at a speed of 500 revolutions per minute, and 20 mL of a solution mainly composed of palladium chloride and hydrochloric acid (activator, palladium chloride concentration 2 g / L) is added thereto. I put it in. With this addition, foaming began instantaneously, and palladium ion reduction and nickel plating began to progress.
  • Nickel element of coating layer with respect to 100 parts by mass of nickel composite hydroxide particles of Examples 1 to 3 content of cobalt element of coating layer with respect to 100 parts by mass of nickel composite hydroxide particles of Comparative Example 1, comparative example
  • the nickel element content of the coating layer with respect to 100 parts by mass of 2 to 4 nickel composite hydroxide particles is shown in Table 1 below.
  • the evaluation items are as follows.
  • Composition analysis The composition analysis of the nickel composite hydroxide powders obtained in Examples 1 to 3 and Comparative Examples 2 to 4 was conducted by dissolving the obtained powders in hydrochloric acid or aqua regia and then inductively coupled plasma emission. An analysis apparatus (Perkin Elmer Japan Co., Ltd., 7300 DV) was used.
  • MCT-510 manufactured by Shimadzu Corporation
  • the nickel composite hydroxide particles as the core and the coating layer containing nickel element are formed.
  • the nickel composite hydroxide particles as the core and the final product As for the cross section of the nickel-containing coated nickel composite hydroxide particles, the composition was analyzed by energy dispersive X-ray analysis (EDX) at substantially equal intervals from the center to the surface. That is, as shown in Table 2 below, in the nucleus, there is no significant change in the amount of nickel in the nucleus center portion and the nucleus surface portion, whereas in the nickel-containing coated nickel composite hydroxide particles, the particle center portion and the particle surface portion.
  • EDX energy dispersive X-ray analysis
  • Examples 1 to 3 and Comparative Examples 2 to 4 since no cobalt element was added in forming the coating layer, Examples 1 to 3 and Comparative Examples 2 to 4 contain cobalt in the coating layer. It can be judged that there is no amount (0 ppm).
  • the surface of the nickel composite hydroxide particles has a coating layer containing nickel element in which cobalt element is 0 ppm and phosphorus element is 2 ppm or less, and the content of nickel element in the coating layer is nickel.
  • the average crushing strength of the secondary particles is 55.3 Mpa or more, 90 ° C., on the sixth day.
  • the capacity retention rate was 77.7% or more. Therefore, in Examples 1 to 3, it was possible to obtain a positive electrode compound having an excellent capacity retention rate after being left at a high temperature and having a high average crushing strength.
  • Example 1 in which the content of nickel element in the coating layer is 10 parts by mass with respect to 100 parts by mass of the nickel composite hydroxide particles, the capacity retention ratio after standing at high temperature and the average crushing strength of the secondary particles are further increased. Improved.
  • Examples 1 to 3 it was confirmed that the capacity retention ratio after standing at high temperature was improved as the average crushing strength of the positive electrode compound was improved. Further, in Examples 1 to 3, the average primary particle diameter of the coating layer containing nickel element was refined to 58 nm to 83 nm as compared with Comparative Examples 2 to 4.
  • Comparative Example 1 which is a nickel composite hydroxide particle coated with CoOOH, the average crushing strength of the secondary particles was 44.7 Mpa, 90 ° C., and the capacity retention rate on the sixth day was only 70.0%. . Therefore, in Comparative Example 1, it was not possible to obtain a good capacity retention rate and a high average crushing strength after standing at high temperature.
  • Comparative Examples 2 to 4 in which the covering layer containing nickel element contains 1570 ppm to 2327 ppm of phosphorus element, the capacity retention ratio after standing at high temperature is 67.0% to 75.2%, and the average crushing strength of secondary particles is 20 .2 Mpa to 33.9 Mpa, both of which were greatly reduced. In particular, in Comparative Example 2 containing 2327 ppm of phosphorus element, the average crushing strength was significantly reduced.
  • the mixed raw material solution and the aqueous ammonium sulfate solution are continuously added as a complexing agent to the reaction vessel, and water is added so that the pH of the solution in the reaction vessel becomes pH 11.3 based on the liquid temperature of 40 ° C.
  • a sodium oxide aqueous solution was dropped at an appropriate time to obtain nickel cobalt manganese composite hydroxide particles which are nickel composite hydroxide particles.
  • the obtained nickel composite hydroxide particles were filtered, washed with water, and dried at 105 ° C. to obtain a nickel composite hydroxide dry powder of Comparative Example 6.
  • Example 4 Method for Producing Compound for Positive Electrode of Example 4
  • the nickel composite hydroxide particles of Comparative Example 6 prepared as described above were further directly subjected to electroless pure nickel plating treatment to obtain the coating layer of Example 4
  • a nickel composite hydroxide having a nickel plating film (a nickel cobalt manganese composite hydroxide having a nickel plating film as a coating layer), that is, a nickel-containing coated nickel composite hydroxide was produced. More specifically, a nickel composite hydroxide having a nickel plating film was produced as follows.
  • the base particles were stirred for 10 minutes in order to modify the base particle surface. Then, after washing with filtered water, the mixture was stirred with a palladium ion catalyst solution for 10 minutes to adsorb palladium ions on the surface of the substrate particles. Thereafter, after washing with filtered water, the mixture was stirred for 10 minutes with a reducing solution to support the palladium catalyst on the surface of the substrate particles. Then, after washing with filtered water, the substrate particles having a palladium catalyst supported on the surface thereof were pre-stirred for 1 minute in a nickel sulfate solution heated to 80 ° C.
  • the composition of the nickel sulfate solution was nickel salt 0.30 mol / L, citrate 1 mol / L, and carbonate 1.7 mol / L. Thereafter, hydrazine monohydrate was added to the nickel sulfate solution in an amount of 0.4 mol / L. After the start of the reaction, the substrate particles carrying the palladium catalyst on the surface are stirred for 5 minutes or longer in a nickel sulfate solution containing hydrazine monohydrate, and a nickel plating film is formed on the surface of the nickel composite hydroxide particles. Then, a coating layer containing nickel element was formed.
  • nickel composite hydroxide particles on which the coating layer containing nickel element was formed were washed with filtered water and dried at 80 ° C. In this way, nickel-containing coated nickel composite hydroxide particles, which are positive electrode compounds according to the present invention, were obtained. In addition, content (10 mass parts) of the nickel element of the coating layer with respect to 100 mass parts of nickel composite hydroxide particles was adjusted by adjusting the input amount of the nickel sulfate solution.
  • Li / (Ni + Co + Mn) 1.03 of the nickel-containing coated nickel composite hydroxide dry powder and lithium carbonate powder of Example 4 obtained as described above
  • primary firing was performed at 740 ° C. for 8.4 hours in an air atmosphere to obtain a lithium-nickel-containing coated nickel composite oxide as a primary fired powder.
  • the primary calcined powder was pulverized and second calcined at 940 ° C. for 8.4 hours in an air atmosphere to obtain the lithium-nickel-containing coated nickel composite oxide of Example 5 as a secondary calcined powder.
  • the evaluation items are as follows.
  • Composition analysis The composition analysis of the positive electrode compound powder obtained in Example 5 and Comparative Example 5 was carried out by dissolving the obtained powder in hydrochloric acid or aqua regia and then using an inductively coupled plasma emission spectrometer (Perkin Co., Ltd.). Elmer Japan Co., Ltd., 7300 DV) was used.
  • MCT-510 Average crush strength Measured by Shimadzu micro compression tester MCT-510.
  • the battery was charged up to 4.2 V under the condition of 0.2 C at an environmental temperature of 25 ° C. and then discharged to 3.0 V under the condition of 0.2 C.
  • the discharge capacity at this time is assumed to be 3.
  • the battery was charged under CV conditions up to 4.2 V under the condition of 0.2 C at an environmental temperature of 25 ° C., and then left for another 2 weeks under an environment of 60 ° C. After standing for 2 weeks, the temperature was returned to 25 ° C. and discharged to 3.0 V under the condition of 0.2C.
  • the discharge capacity at this time is assumed to be 4.
  • the battery was charged up to 4.2 V under the condition of 0.2 C at an environmental temperature of 25 ° C. and then discharged to 3.0 V under the condition of 0.2 C.
  • the discharge capacity at this time is set to 5.
  • the self-discharge rate and the capacity recovery rate at 60 ° C. storage are shown in the following equations.
  • Capacity retention rate (%) 500th cycle discharge capacity (mAh / g) / 1st cycle discharge capacity (mAh / g) ⁇ 100 (5)
  • Average primary particle diameter of the coating layer containing nickel element The average primary particle diameter of the coating layer containing nickel element of the positive electrode compound powder of Example 4 was coated with a field emission scanning electron microscope (FE-SEM). From the image of observing the layer, 10 primary particles present independently were selected at random, and the site of the longest diameter of the selected primary particles was measured, and the average value was defined as the average primary particle size. .
  • Composition analysis of the lithium-nickel-containing coated nickel composite oxide powder of Example 5 revealed that the molar ratio of Li: Ni: Co: Mn was 1.011: 0.575: 0.170: 0.255. there were.
  • the composition analysis of the lithium-nickel cobalt manganese composite oxide powder of Comparative Example 5 was performed, the molar ratio of Li: Ni: Co: Mn was 1.022: 0.499: 0.200: 0.301. It was.
  • the average crushing strength 45.9 Mpa of the nickel-containing coated nickel composite hydroxide of Example 4 is compared to the nickel composite hydroxide of Comparative Example 6 having an average crushing strength of 65.0 Mpa. Particle strength decreased.
  • the lithium-nickel-containing coated nickel composite oxide of Example 5 is an oxide obtained by calcining lithium of the nickel-containing coated nickel cobalt manganese composite hydroxide of Example 4 and has an average crushing strength of 64.3 Mpa. Compared to the lithium-nickel composite oxide of Example 5, the average crushing strength of Example 5 was 79.7 Mpa, and the particle strength was improved.
  • the particles of Comparative Example 5 were compared with the lithium-nickel cobalt manganese composite oxide having a self-discharge rate and a capacity recovery rate of 32.1% and 79.1% when stored at 60 ° C. for 2 weeks, respectively.
  • the high-strength lithium-nickel-containing coated nickel composite oxide of Example 5 has excellent characteristics such as a self-discharge rate and a capacity recovery rate of 31.2% and 80.6%, respectively, when stored at 60 ° C. for 2 weeks. It was.
  • the lithium of Example 5 having a higher particle strength than the lithium-nickel composite oxide of Comparative Example 5 having a self-discharge rate and a capacity recovery rate of 39.1% and 68.5%, respectively, when stored at 60 ° C. for 4 weeks.
  • the nickel-containing coated nickel composite oxide had excellent characteristics of self-discharge rate and capacity recovery rate of 36.6% and 70.6% when stored at 60 ° C. for 4 weeks, respectively.
  • the lithium-nickel content of Example 5 has a higher particle strength than the lithium-nickel composite oxide having a capacity retention rate of 66.9% at 500 cycles in the condition of 60 ° C. in Comparative Example 5
  • the coated nickel composite oxide had a capacity retention rate as high as 70.4% in a capacity retention rate of 500 cycles at 60 ° C.
  • the average primary particle diameter of the coating layer containing nickel element in Example 4 was refined to 50 nm to 90 nm.
  • the positive electrode compound of the present invention has the above-mentioned structure of the coating layer, it has an excellent capacity retention rate after standing at high temperature and has a high strength, and therefore can be used in the field of a wide range of storage batteries.
  • the utility value is high as a positive electrode active material, a positive electrode active material of a non-aqueous electrolyte secondary battery, and a positive electrode active material precursor of a non-aqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明の目的は、高温放置後における容量維持率に優れ、高強度を有する正極用化合物を提供することにある。 一次粒子が凝集した二次粒子であり、ニッケル複合水酸化物を含む核と、前記核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有する正極用化合物であり、前記被覆層のニッケル元素の含有量が、核100質量部に対して5質量部以上20質量部以下、前記二次粒子の平均圧壊強度が45.0MPa以上である正極用化合物。

Description

正極用化合物
 本発明は、蓄電池の正極用化合物に関し、特に、高強度を有し、高温放置後において優れた容量維持率を有する正極用化合物に関するものである。
 蓄電池の正極用化合物の高性能化のために、核である金属水酸化物の表面に金属元素を有する被覆層を形成することがある。例えば、高い正極利用率と、サイクル特性を向上させたアルカリ蓄電池用正極活物質として、核である水酸化ニッケルの表面をコバルト酸化物で被覆した表面修飾水酸化ニッケルが提案されている(特許文献1)。
 しかし、特許文献1の水酸化ニッケルの表面をコバルト酸化物で被覆した正極活物質では、25℃では良好な利用率とサイクル特性が得られるものの、高温放置後における容量維持率に改善の余地があった。
 また、水酸化ニッケル表面に金属被覆層を形成する方法として、水酸化ニッケル微粒子を無電解めっき浴中で撹拌しながら、塩化パラジウムおよび塩酸を主成分とする溶液を投入することにより、水酸化ニッケル微粒子の表面にパラジウム触媒を担持させると同時に無電解めっきを行うことで、無電解めっきの被覆層を形成することが提案されている(特許文献2)。特許文献2では、無電解めっきの被覆層は、ニッケル-リンの複合被膜からなるものである。
 このように、特許文献2では、無電解めっきの被覆層にはリン元素が多く含有されている。しかし、リン元素は蓄電池の性能向上、特に、容量維持率を阻害する場合があり、特許文献2では、やはり、高温放置後における容量維持率に改善の余地があった。
 また、蓄電池の正極用化合物には、長期間に渡って安定して性能を発揮するために、耐久性、すなわち、機械的強度も要求される。
特開2001-52695号公報 特開2004-315946号公報
 上記事情に鑑み、本発明の目的は、高温放置後における容量維持率に優れ、高強度を有する正極用化合物を提供することにある。
 本発明の態様は、一次粒子が凝集した二次粒子であり、ニッケル複合水酸化物を含む核と、前記核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有する正極用化合物であり、前記被覆層のニッケル元素の含有量が、前記核100質量部に対して5質量部以上20質量部以下、前記二次粒子の平均圧壊強度が45.0MPa以上である正極用化合物である。本明細書では、正極用化合物の平均圧壊強度は、株式会社島津製作所製「微小圧縮試験機MCT-510」にて測定した値を意味する。
 本発明の態様は、前記核が、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された金属元素を少なくとも1種含む正極用化合物である。
 本発明の態様は、前記ニッケル元素を含む被覆層の平均一次粒子径が、10nm以上100nm以下である正極用化合物である。本明細書では、被覆層のニッケル元素の平均一次粒子径は、電界放出形走査電子顕微鏡(FE-SEM)にて被覆層を観察した画像から一次粒子を10個選択し、選択した上記一次粒子の最長直径の部位を、それぞれ測定した値の平均値を意味する。
 本発明の態様は、さらに、パラジウム化合物を含む正極用化合物である。
 本発明の態様は、アルカリ蓄電池の正極活物質用である正極用化合物である。
 本発明の態様は、前記核が、一般式(1)
Ni(1-x)(OH)2+a   (1)
(式中:0<x≦0.2、0≦a≦0.2、Mは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、イットリウム及びイッテルビウムからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物である。
 本発明の態様は、非水系電解質二次電池の正極活物質の前駆体用である正極用化合物である。
 本発明の態様は、前記核が、一般式(3)
Ni(1-z)(OH)2+c   (3)
(式中:0<z≦0.7、0≦c≦0.28、Pは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物である。
 本発明の態様は、上記正極用化合物を前駆体として用いた、非水系電解質二次電池用正極活物質である。
 本発明の態様によれば、ニッケル複合水酸化物を含む核と、核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有し、被覆層のニッケル元素の含有量が、核100質量部に対して5質量部以上20質量部以下であることにより、高温放置後における容量維持率に優れた正極用化合物を得ることができる。また、前記二次粒子の平均圧壊強度が45.0MPa以上なので、高強度を有する正極用化合物を得ることができる。
 本発明の態様によれば、被覆層のニッケル元素の平均一次粒子径が、10nm以上100nm以下であることにより、被覆層の表面が平滑化されて、正極用化合物の平均圧壊強度をさらに向上させることができる。
 以下に、本発明の正極用化合物について、詳細を説明する。本発明の正極用化合物は、一次粒子が凝集した二次粒子であり、ニッケル複合水酸化物を含む核と、前記核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有する正極用化合物であり、前記被覆層のニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下、前記二次粒子の平均圧壊強度が45.0MPa以上である。従って、本発明の正極用化合物は、コア・シェル構造を有した粒子であり、ニッケルを含む複合水酸化物粒子の核とニッケルを含む被覆層を有する、ニッケル含有被覆ニッケル複合水酸化物となっている。
 粒子状である本発明の正極用化合物の形状は、特に限定されず、例えば、略球形を挙げることができる。
 本発明の正極用化合物は、複数の一次粒子が凝集して形成された二次粒子である。本発明の正極用化合物の平均圧壊強度は、45.0MPa以上である。この優れた平均圧壊強度は、被覆層のニッケル元素が微細化されていることにより、被覆層の表面が平滑化されていることに起因していると考えられる。正極用化合物の平均圧壊強度は、45.0MPa以上であれば、特に限定されず、高い平均圧壊強度ほど好ましいが、例えば、50.0MPa以上がより好ましく、55.0MPa以上が特に好ましい。正極用化合物の平均圧壊強度の上限値は、特に限定されないが、例えば、効率的に製造可能である点で、100MPaである。
 正極用化合物の粒度分布は、特に限定されないが、例えば、累積体積百分率が50体積%の二次粒子径D50(以下、単に「D50」ということがある。)の下限値は、高温耐性を得る点から、2.0μmが好ましく、2.5μmがより好ましく、3.0μmが特に好ましい。一方で、正極用化合物のD50の上限値は、密度の向上と電解液との接触面を確保することのバランスの点から、30.0μmが好ましく、25.0μmが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 正極用化合物の核の組成としては、ニッケル水酸化物を含む組成であれば、特に限定されないが、必要に応じて、ニッケルの他に、さらに、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を含む水酸化物でもよい。
 本発明の正極用化合物は、例えば、アルカリ蓄電池の正極活物質用、非水系電解質二次電池の正極活物質用、非水系電解質二次電池の正極活物質の前駆体用として用いることができる。
 本発明の正極用化合物が、アルカリ蓄電池の正極活物質用として適用される場合、核の組成として下記一般式(1)
Ni(1-x)(OH)2+a   (1)
(式中:0<x≦0.2、0≦a≦0.2、Mは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、イットリウム及びイッテルビウムからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物を挙げることができる。
 本発明の正極用化合物が、非水系電解質二次電池の正極活物質用として適用される場合、核の組成として下記一般式(2)
Li[Li(Ni(1-b)1-y]O   (2)
(式中:0<b≦0.7、0≦y≦0.50、Nは、コバルト、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物を挙げることができる。
 非水系電解質二次電池の正極活物質用の正極用化合物は、ニッケル複合水酸化物にリチウムイオンを添加して焼成することで核(例えば、一般式(2)で表される核)を調製し、得られた核に、コバルト元素が500ppm以下及びリン元素が10ppm以下であり且つニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下であるニッケル元素を含む被覆層を形成することで、得ることができる。
 また、本発明の正極用化合物が、非水系電解質二次電池の正極活物質の前駆体用として適用される場合、核の組成として下記一般式(3)
Ni(1-z)(OH)2+c   (3)
(式中:0<z≦0.7、0≦c≦0.28、Pは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物を挙げることができる。
 ニッケル含有被覆ニッケル複合水酸化物である本発明の正極用化合物(例えば、一般式(3)で表される核を有するニッケル含有被覆ニッケル複合水酸化物)に、さらにリチウムイオンを添加して、焼成することで、非水系電解質二次電池の正極活物質を得ることができる。上記から、非水系電解質二次電池としては、例えば、リチウムイオン二次電池を挙げることができる。
 本発明の正極用化合物では、上記した核の表面は、コバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層で被覆されている。上記コバルト元素及びリン元素の含有量は、被覆層中における含有量である。本発明の正極用化合物では、上記被覆層で被覆されていることで、高温放置後(例えば、90℃程度)における容量維持率が向上する。コバルト元素の含有量は500ppm以下であれば、特に限定されないが、高温放置後における容量維持率をより確実に向上させる点から、200ppm以下が好ましく、100ppm以下がより好ましく、50ppm以下がさらに好ましく、10ppm以下が特に好ましい。リン元素の含有量は、10ppm以下であれば、特に限定されないが、高温放置後における容量維持率をより確実に向上させる点から、5ppm以下がより好ましく、2ppm以下が特に好ましい。上記から、ニッケル元素を含む被覆層の主成分は、ニッケル元素である。
 上記の通り、ニッケル元素を含む被覆層の組成は、コバルト元素が500ppm以下及びリン元素が10ppm以下であり、主にニッケル元素からなる。被覆層中におけるニッケルの含有量は、例えば、高温放置後における容量維持率をより確実に向上させる点から、99質量%以上が好ましく、99.9質量%以上がより好ましく、100質量%が特に好ましい。
 また、被覆層のニッケル元素の含有量は、核100質量部に対して5質量部以上20質量部以下の範囲である。被覆層のニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下であることにより、高温放置後においても優れた容量維持率を得ることができる。被覆層のニッケル元素の含有量は、核100質量部に対して5質量部以上20質量部以下であれば、特に限定されないが、高温放置後における容量維持率をさらに向上させる点から、核100質量部に対して7質量部以上15質量部以下が特に好ましい。
 被覆層のニッケル元素は、粒子状である。ニッケル粒子が重なり合った状態で、ニッケル複合水酸化物を含む核表面を被覆している。被覆層の各ニッケル元素の形状は、特に限定されず、例えば、略球形である。
 被覆層のニッケル元素の平均一次粒子径は、特に限定されないが、10nm以上100nm以下の範囲であることが好ましい。被覆層のニッケル元素の平均一次粒子径が10nm以上100nm以下であることにより、ニッケル元素が微細化されているので、被覆層の表面が平滑化されて、正極用化合物の平均圧壊強度をさらに向上させることができる。被覆層のニッケル元素の平均一次粒子径は、20nm以上80nm以下がより好ましく、30nm以上70nm以下が特に好ましい。なお、ニッケル元素を含む被覆層は、ニッケル複合水酸化物を含む核の表面全体を被覆してもよく、ニッケル複合水酸化物を含む核の表面の一部領域を被覆していてもよい。
 また、被覆層の平均厚さは、特に限定されず、例えば、その下限値は、平均圧壊強度をより確実に向上させる点から20nmが好ましく、70nmが特に好ましい。一方で、その上限値は、主に核が正極用化合物の電池特性の発揮に寄与するところ、正極用化合物の優れた電池特性を確実に維持する点から200nmが好ましく、100nmが特に好ましい。
 後述するように、本発明の正極用化合物では、その製造にあたり、パラジウム触媒を使用する。従って、本発明の正極用化合物では、微量のパラジウム化合物が含まれる。正極用化合物中におけるパラジウム元素の含有量は、例えば、1ppm以上100ppm以下である。
 本発明の正極用化合物のBET比表面積は、特に限定されないが、例えば、密度の向上と電解液との接触面を確保することのバランスの点から、下限値は0.1m/gが好ましく、0.3m/gが特に好ましい。一方で、その上限値は50.0m/gが好ましく、40.0m/gが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 本発明の正極用化合物のタップ密度は、特に限定されないが、例えば、正極活物質として使用した際における充填度の向上の点から、1.5g/cm以上が好ましく、1.7g/cm以上が特に好ましい。
 本発明の正極用化合物のバルク密度は、特に限定されないが、例えば、正極活物質として使用した際における充填度の向上の点から0.8g/cm以上が好ましく、1.0g/cm以上が特に好ましい。
 次に、本発明の正極用化合物の製造方法例について説明する。
 上記製造方法としては、例えば、まず、核となる、ニッケル複合水酸化物粒子を調製する。ニッケル複合水酸化物粒子の調製方法は、まず、共沈法により、ニッケルの塩溶液(例えば、硫酸塩溶液)またはニッケルと他の金属元素(例えば、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及び/またはタングステン)の塩溶液(例えば、硫酸塩溶液)と錯化剤とを反応させて、ニッケル複合水酸化物粒子(例えば、水酸化ニッケル粒子、ニッケルと他の金属元素(例えば、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及び/またはタングステン)とを含む水酸化物粒子)を調製して、ニッケル複合水酸化物粒子を含むスラリー状の懸濁物を得る。懸濁物の溶媒としては、例えば、水が使用される。
 上記錯化剤としては、水溶液中で、ニッケル及び上記他の金属元素のイオンと錯体を形成可能なものであれば、特に限定されず、例えば、アンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。なお、沈殿に際しては、水溶液のpH値を調整するため、必要に応じて、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)を添加してもよい。
 上記塩溶液に加えて、錯化剤を反応槽に連続して供給すると、ニッケル及び上記他の金属元素が反応し、ニッケル複合水酸化物粒子が調製される。反応に際しては、反応槽の温度を、例えば、10℃~80℃、好ましくは20~70℃の範囲内で制御し、反応槽内のpH値を液温25℃基準で、例えば、pH9~pH13、好ましくはpH11~13の範囲内で制御しつつ、反応槽内の物質を、適宜、撹拌する。反応槽としては、例えば、形成されたニッケル複合水酸化物粒子を分離するためにオーバーフローさせる、連続式を挙げることができる。
 次に、上記のようにして得られた、核となるニッケル複合水酸化物粒子に、パラジウム系触媒と界面活性剤を供給して、ニッケル複合水酸化物粒子表面にパラジウム系触媒を担持させる。その後、パラジウム系触媒を担持させたニッケル複合水酸化物粒子を、リン元素が含まれず主にニッケルからなるめっき液に浸漬させ、さらにヒドラジン系の添加剤を投入して無電解めっきを行って、ニッケル複合水酸化物粒子表面にニッケルをめっきする。無電解めっきにあたっては、被覆層のニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下となるように、膜厚及び/又はめっき液の組成を調整して、ニッケル複合水酸化物粒子表面にめっき膜を形成する。これにより、コバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層を形成できる。
 上記した無電解めっきを用いた被覆層の形成方法では、被覆層のニッケル元素の平均一次粒子径が10nm以上100nm以下の範囲となる。なお、ニッケル複合水酸化物粒子表面にパラジウム系触媒を担持させないと、被覆層のニッケル元素の平均一次粒子径が100nm超に粗大化し、被覆層の表面が粗面化されて、45.0MPa以上の平均圧壊強度が得られない。
 次に、本発明の正極用化合物を用いた正極について説明する。以下に、本発明の正極用化合物をニッケル水素二次電池等のアルカリ蓄電池の正極として用いる場合について説明する。正極は、正極集電体と、正極集電体表面に形成された、本発明の正極用化合物を含有する正極活物質層を備える。正極活物質層は、本発明の正極用化合物である正極活物質と、バインダー(結着剤)と、必要に応じて導電助剤とを有する。導電助剤としては、例えば、畜電池(二次電池)のために使用できるものであれば、特に限定されないが、アセチレンブラック(AB)、金属コバルト、酸化コバルト等を用いることができる。バインダーとしては、特に限定されないが、ポリマー樹脂、例えば、ポリフッ化ビニリデン(PVdF)、ブタジエンゴム(BR)、ポリビニルアルコール(PVA)、及びカルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)等、並びにこれらの組み合わせを挙げることができる。正極集電体としては、特に限定されないが、パンチングメタル、エキスパンドメタル、金網、発泡金属、例えば発泡ニッケル、網状金属繊維焼結体、金属めっき樹脂板などを挙げることができる。
 ニッケル水素二次電池等のアルカリ蓄電池の正極の製造方法としては、例えば、先ず、本発明の正極用化合物と導電助剤と結着剤と水とを混合して正極活物質スラリーを調製する。次いで、上記正極活物質スラリーを正極集電体に、公知の充填方法で充填して乾燥後、プレス等にて圧延・固着することで正極を得ることができる。
 また、本発明の正極用化合物をリチウムイオン二次電池等の非水電解質二次電池の正極活物質の前駆体として用いる場合には、本発明の正極用化合物に炭酸リチウム、水酸化リチウム等のリチウム化合物を添加して、リチウム化合物と正極用化合物の混合物を得、得られた混合物を一次焼成(焼成温度は、例えば、600℃~900℃、焼成時間は、例えば、5時間~20時間)、さらに二次焼成(焼成温度は、例えば、700℃以上1000℃以下、焼成時間は、例えば、1~20時間)することで、リチウムイオン二次電池等の非水電解質二次電池の正極活物質を得ることができる。リチウムイオン二次電池等の非水電解質二次電池の正極は、正極集電体と、正極集電体表面に形成された、本発明の正極用化合物を前駆体として用いた正極活物質層を備える。正極活物質層は、本発明の正極用化合物を前駆体として用いた正極活物質と、バインダー(結着剤)と、必要に応じて導電助剤とを有する。正極集電体、バインダー、導電助剤としては、上記と同様のものを用いることができる。
 リチウムイオン二次電池等の非水電解質二次電池の正極の製造方法としては、例えば、先ず、本発明の正極用化合物を前駆体として用いた正極活物質と導電助剤と結着剤とN-メチル-2-プロリドン(NMP)とを混合して正極活物質スラリーを調製する。次いで、上記正極活物質スラリーを正極集電体に、公知の充填方法で充填して乾燥後、プレス等にて圧延・固着することで正極を得ることができる。
 上記のようにして得られた正極活物質を用いた正極と、負極集電体と負極集電体表面に形成された負極活物質を含む負極活物質層を備える負極と、所定の電解質と、セパレータとを、公知の方法で搭載することで蓄電池(例えば、アルカリ蓄電池、非水系電解質二次電池等)を組み上げることができる。
 次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。
 実施例1~3の正極用化合物の製造方法
 ニッケル複合水酸化物粒子の調製
 攪拌機付きの反応槽に、硫酸ニッケルと硫酸コバルトと硫酸亜鉛とを所定比(ニッケル:コバルト:亜鉛=92.1:1.12:6.77の質量比)で溶解した水溶液に、硫酸アンモニウム水溶液と水酸化ナトリウム水溶液を滴下して反応容積500Lの反応槽内で反応温度45.0℃、液温40℃基準で反応pH12.1に維持しながら、攪拌回転数520rpmで攪拌羽根が250mmのプロペラの攪拌機により連続的に攪拌した。生成した水酸化物は反応槽のオーバーフロー管からオーバーフローさせて取り出した。取り出した水酸化物に、水洗、脱水、乾燥の各処理を施して、核となるニッケル複合水酸化物粒子を得た。得られたニッケル複合水酸化物粒子の組成は、ニッケル元素の含有量が92.1質量部、コバルト元素の含有量が1.12質量部、亜鉛元素の含有量が6.77質量部であることを誘導結合プラズマ発光分析装置にて確認した。
 上記のようにして調製したニッケル複合水酸化物粒子に、直接、無電解純ニッケルめっき処理を施して、被覆層としてニッケルめっき膜を有するニッケル複合水酸化物、すなわち、ニッケル含有被覆ニッケル複合水酸化物を製造した。より詳細には、以下の通りに、ニッケルめっき膜を有するニッケル複合水酸化物を製造した。
 まず、粒子径10μmのニッケル複合水酸化物粒子を基材粒子として、基材粒子表面を改質するために、基材粒子をカチオン系界面活性剤で、10分間撹拌処理した。その後、ろ過水洗してから、パラジウムイオン触媒溶液で、10分間撹拌処理して、基材粒子表面にパラジウムイオンを吸着させた。その後、ろ過水洗してから、還元溶液で、10分間撹拌処理して、基材粒子表面にパラジウム触媒を担持させた。その後、ろ過水洗してから、80℃に加温した硫酸ニッケル溶液中にて、表面にパラジウム触媒を担持させた基材粒子を1分間予備撹拌した。なお、硫酸ニッケル溶液の組成は、ニッケル塩0.30mol/L、クエン酸塩1mol/L、炭酸塩1.7mol/Lとした。その後、ヒドラジン一水和物を0.4mol/Lの量で硫酸ニッケル溶液に投入した。反応開始後、表面にパラジウム触媒を担持させた基材粒子を、5分間以上、ヒドラジン一水和物を投入した硫酸ニッケル溶液中にて撹拌して、ニッケル複合水酸化物粒子表面にニッケルめっき膜を形成させていき、ニッケル元素を含む被覆層を形成させた。撹拌後、ニッケル元素を含む被覆層を形成させたニッケル複合水酸化物粒子をろ過水洗し、80℃で乾燥させた。このようにして、本発明に係る正極用化合物であるニッケル含有被覆ニッケル複合水酸化物粒子を得た。なお、ニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量は、硫酸ニッケル液の投入量を調節することで調整した。
 比較例1の正極用化合物の製造方法
 上記実施例と同様にして、核となるニッケル複合水酸化物粒子を得た。その後、核となるニッケル複合水酸化物粒子を、水酸化ナトリウムにて液温50℃基準でpH9.0に維持した反応浴中のアルカリ水溶液に投入した。投入後、該溶液を撹拌しながら、濃度90g/Lの硫酸コバルト水溶液を滴下した。この間、水酸化ナトリウム水溶液を適宜滴下して、液温50℃基準で反応浴をpH9.0に維持しながら1時間保持することで、ニッケル複合水酸化物粒子(核)の表面に水酸化コバルトからなる被覆層を形成させた、水酸化コバルト被覆ニッケル複合水酸化物粒子を得た。なお、被覆されたコバルトの含有量は、ニッケル複合水酸化物粒子100質量部に対して2.55質量部であった。
 その後、容積が25Lのハイスピードミキサー(深江パウテック株式会社製、型式FMD-25J)に、得られた水酸化コバルト被覆ニッケル複合水酸化物粒子を7Kg投入した。その後、空気を撹拌混合装置の導入口から撹拌混合装置内へ導入し排気口から排気しながら、撹拌混合装置底部の主攪拌羽を回転数200rpmで、撹拌混合装置側壁の副攪拌羽を1200rpmで、それぞれ回転させて水酸化コバルト被覆ニッケル複合水酸化物粒子を混合した。混合を継続しながら、加熱ジャケットで加熱させて撹拌混合装置内のサンプルの温度がほぼ90℃となった後、撹拌混合装置内に48質量%水酸化ナトリウム水溶液0.4Lを、約2分間、噴霧装置から噴霧した。噴霧終了後、約30分間は撹拌混合装置内の温度は約120℃まで昇温し、粒子の表面の色が薄いピンク色から黒色に変化した。その後、撹拌混合装置内の温度を室温に戻し、生成物粒子を取り出し、取り出した生成物粒子を水で洗浄した後、空気中で加熱乾燥した。このようにして比較例1の正極用化合物であるCoOOH被覆ニッケル複合水酸化物粒子を得た。
 比較例2~4の正極用化合物の製造方法
 上記実施例と同様にして、核となるニッケル複合水酸化物粒子を得た。その後、平均粒径10μmのニッケル複合水酸化物粒子に対して、無電解ニッケルめっきを施した。無電解めっき浴としては、以下に示す組成を有するものを用いた。
硫酸ニッケル22.0g/L
グリシン33.3g/L
次亜リン酸ナトリウム23.3g/L
水酸化ナトリウム12.3g/L
界面活性剤10mL/L
pH9.5
 以上の条件を満たす3Lのめっき浴を60℃で建浴し、ニッケル複合水酸化物粒子50gを、直接、投入した。すなわち、浸漬脱脂工程、表面調整工程及びエッチング工程などの前処理工程は、一切行わなかった。ニッケル複合水酸化物粒子を投入した後、毎分500回転の速度でプロペラ撹拌を10分間行い、そこへ塩化パラジウム及び塩酸を主成分とする溶液(アクチベーター、塩化パラジウム濃度2g/L)を20mL投入した。この投入とともに、瞬時に発泡が始まり、パラジウムイオンの還元およびニッケルめっきが進行し始めた。発泡が終了するまでの約30分間、毎分500回転の速度でプロペラ撹拌を継続し、発泡終了後、撹拌を停止した。吸引ろ過器を用いてろ過した後、水洗を3回繰り返した後、80℃で1時間、温風で乾燥した。このようにして、比較例2~4の正極用化合物である、ニッケル-リン複合めっき膜で被覆されたニッケル複合水酸化物粒子を得た。なお、ニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量は、硫酸ニッケル液の投入量を調節することで調整した。
 実施例1~3のニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量、比較例1のニッケル複合水酸化物粒子100質量部に対する被覆層のコバルト元素の含有量、比較例2~4のニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量について、下記表1に示す。
 評価項目は以下の通りである。
 (1)組成分析
 実施例1~3及び比較例2~4で得られたニッケル複合水酸化物粉末の組成分析は、得られた粉末を塩酸もしくは王水に溶解させた後、誘導結合プラズマ発光分析装置(株式会社パーキンエルマージャパン製、7300DV)を用いて行った。
 (2)平均圧壊強度
 株式会社島津製作所製「微小圧縮試験機MCT-510」にて測定した。
 実施例1~3及び比較例2~4で得られたニッケル複合水酸化物粉末について、株式会社島津製作所製「微小圧縮試験機MCT-510」を用いて、任意に選んだ二次粒子1個に対して試験圧力(負荷)をかけ、二次粒子の変位量を測定した。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出した。この操作を計10回行い、圧壊強度の10回平均値から平均圧壊強度を算出した。
St=2.8×P/(π×d×d) (d:二次粒子径)(A)
 (3)容量維持率(90℃で6日間放置)
 ニッケル水素電池について、0.2Cの深放電試験を実施した後に、無負荷接続状態にて90℃で6日間の自然放置することにより、ニッケル水素電池を放電した。深放電までの0.2Cで充電したときの放電容量に対する、深放電後2CY目の0.2Cで充電したときの放電容量を容量維持率とした。
 (4)ニッケル元素を含む被覆層の平均一次粒子径
 ニッケル元素を含む被覆層の平均一次粒子径は、電界放出形走査電子顕微鏡(FE-SEM)にて被覆層を観察した画像から、独立して存在している一次粒子をランダムに10個選択し、選択した上記一次粒子の最長直径の部位を、それぞれ測定し、その平均値を平均一次粒子径とした。
 実施例1~3及び比較例2~4において、核であるニッケル複合水酸化物粒子にニッケル元素を含む被覆層が形成されていることは、核であるニッケル複合水酸化物粒子及び最終生成物であるニッケル含有被覆ニッケル複合水酸化物粒子の断面について、その中心部から表面部にわたって略等間隔に、それぞれ、エネルギー分散型X線分析(EDX)にて組成分析することで確認した。すなわち、下記表2に示すように、核では、核中心部と核表面部でニッケル量に大きな変化がないのに対し、ニッケル含有被覆ニッケル複合水酸化物粒子では、粒子中心部と粒子表面部とでニッケル量に大きな変化があり、粒子表面部が粒子中心部よりもニッケル量が顕著に大きい(表2の下線で示すニッケル量)。このことから、核であるニッケル複合水酸化物粒子にニッケル元素を含む被覆層が形成されていることが確認できた。
 評価結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、実施例1~3及び比較例2~4では、被覆層の形成にあたり、コバルト元素を添加していないことから、実施例1~3及び比較例2~4では、被覆層のコバルトの含有量は無し(0ppm)、と判断できる。
 上記表1に示すように、ニッケル複合水酸化物粒子の表面にコバルト元素が0ppm及びリン元素が2ppm以下であるニッケル元素を含む被覆層を有し、該被覆層のニッケル元素の含有量がニッケル複合水酸化物粒子100質量部に対して5.0質量部以上10質量部以下である実施例1~3では、二次粒子の平均圧壊強度が55.3Mpa以上、90℃、6日目における容量維持率が77.7%以上であった。従って、実施例1~3では、高温放置後における容量維持率に優れ、高い平均圧壊強度を有する正極用化合物を得ることができた。特に、被覆層のニッケル元素の含有量がニッケル複合水酸化物粒子100質量部に対して10質量部である実施例1では、高温放置後における容量維持率と二次粒子の平均圧壊強度がさらに向上した。
 また、実施例1~3から、の正極用化合物の平均圧壊強度の向上に伴い、高温放置後における容量維持率の向上する傾向が確認できた。さらに、実施例1~3は比較例2~4と比較して、ニッケル元素を含む被覆層の平均一次粒子径が58nm~83nmに微細化されていた。
 一方で、CoOOH被覆されたニッケル複合水酸化物粒子である比較例1では、二次粒子の平均圧壊強度が44.7Mpa、90℃、6日目における容量維持率が70.0%にとどまった。従って、比較例1では、高温放置後における良好な容量維持率と高い平均圧壊強度を得ることができなかった。
 また、ニッケル元素を含む被覆層中にリン元素が1570ppm~2327ppm含まれる比較例2~4では、高温放置後における容量維持率67.0%~75.2%、二次粒子の平均圧壊強度20.2Mpa~33.9Mpaと、いずれも大きく低減してしまった。特に、リン元素が2327ppm含まれる比較例2では、平均圧壊強度の低下が著しかった。
 次に、実施例4、5、比較例5、6の正極用化合物の製造方法について説明する。
 比較例6の正極用化合物の製造方法
  攪拌機およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加した。硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.50:0.20:0.30となるように混合して、混合原料液を調製した。次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが液温40℃基準でpH11.3になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケル複合水酸化物粒子であるニッケルコバルトマンガン複合水酸化物粒子を得た。得られたニッケル複合水酸化物粒子を、濾過後水洗し、105℃で乾燥することにより、比較例6のニッケル複合水酸化物の乾燥粉末を得た。
 実施例4の正極用化合物の製造方法
 上記のようにして調製した比較例6のニッケル複合水酸化物粒子に、さらに、直接、無電解純ニッケルめっき処理を施して、実施例4の、被覆層としてニッケルめっき膜を有するニッケル複合水酸化物(被覆層としてニッケルめっき膜を有するニッケルコバルトマンガン複合水酸化物)、すなわち、ニッケル含有被覆ニッケル複合水酸化物を製造した。より詳細には、以下の通りに、ニッケルめっき膜を有するニッケル複合水酸化物を製造した。
 まず、粒子径10μmのニッケル複合水酸化物粒子を基材粒子として、基材粒子表面を改質するために、基材粒子をカチオン系界面活性剤、10分間撹拌処理した。その後、ろ過水洗してから、パラジウムイオン触媒溶液で、10分間撹拌処理して、基材粒子表面にパラジウムイオンを吸着させた。その後、ろ過水洗してから、還元溶液で、10分間撹拌処理して、基材粒子表面にパラジウム触媒を担持させた。その後、ろ過水洗してから、80℃に加温した硫酸ニッケル溶液中にて、表面にパラジウム触媒を担持させた基材粒子を1分間予備撹拌した。なお、硫酸ニッケル溶液の組成は、ニッケル塩0.30mol/L、クエン酸塩1mol/L、炭酸塩1.7mol/Lとした。その後、ヒドラジン一水和物を0.4mol/Lの量で硫酸ニッケル溶液に投入した。反応開始後、表面にパラジウム触媒を担持させた基材粒子を、5分間以上、ヒドラジン一水和物を投入した硫酸ニッケル溶液中にて撹拌して、ニッケル複合水酸化物粒子表面にニッケルめっき膜を形成させていき、ニッケル元素を含む被覆層を形成させた。撹拌後、ニッケル元素を含む被覆層を形成させたニッケル複合水酸化物粒子をろ過水洗し、80℃で乾燥させた。このようにして、本発明に係る正極用化合物であるニッケル含有被覆ニッケル複合水酸化物粒子を得た。なお、ニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量(10質量部)は、硫酸ニッケル液の投入量を調節することで調整した。
 実施例5の正極用化合物の製造方法
  以上のようにして得られた実施例4のニッケル含有被覆ニッケル複合水酸化物の乾燥粉末と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.03となるように秤量して混合した後、大気雰囲気下740℃で8.4時間一次焼成して、リチウム-ニッケル含有被覆ニッケル複合酸化物を一次焼成粉末として得た。その後、一次焼成粉末を粉砕し、大気雰囲気下940℃で8.4時間二次焼成して、実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物を二次焼成粉末として得た。
 比較例5の正極用化合物の製造方法
 比較例6のニッケル複合水酸化物の乾燥粉末と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.03となるように秤量して混合した後、大気雰囲気下740℃で8.4時間一次焼成して、リチウム-ニッケル複合酸化物を一次焼成粉末として得た。その後、一次焼成粉末を粉砕し、大気雰囲気下940℃で8.4時間二次焼成して、比較例5のリチウム-ニッケル複合酸化物を二次焼成粉末として得た。
 評価項目は以下の通りである。
 (1)組成分析
 実施例5及び比較例5で得られた正極用化合物粉末の組成分析は、得られた粉末を塩酸もしくは王水に溶解させた後、誘導結合プラズマ発光分析装置(株式会社パーキンエルマージャパン社製、7300DV)を用いて行った。
 (2)平均圧壊強度
 島津微小圧縮試験機MCT-510にて測定した。
実施例4、5及び比較例5、6で得られたニッケル複合水酸化物粉末について、株式会社島津製作所製「微小圧縮試験機MCT-510」を用いて、任意に選んだ二次粒子1個に対して試験圧力(負荷)をかけ、二次粒子の変位量を測定した。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出した。この操作を計10回行い、圧壊強度の10回平均値から平均圧壊強度を算出した。
        St=2.8×P/(π×d×d)  (d:二次粒子径)(A)
 (3)60℃保存における自己放電率、容量回復率
 実施例5、比較例5の正極用化合物粉末を用いて作製したラミネートセル型電池を用いて、25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、0.2Cの条件で3.0Vまで放電した。このときの放電容量を1.とする。25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、60℃環境下で2週間放置した。2週間放置終了後25℃環境温度に戻し、0.2Cの条件で3.0Vまで放電した。このときの放電容量を2.とする。次に、25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、0.2Cの条件で3.0Vまで放電した。このときの放電容量を3.とする。25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、60℃環境下でさらに2週間放置した。2週間放置終了後25℃環境温度に戻し、0.2Cの条件で3.0Vまで放電した。このときの放電容量を4.とする。次に、25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、0.2Cの条件で3.0Vまで放電した。このときの放電容量を5.とする。
 60℃保存における自己放電率と容量回復率を次式に示す。
(a)2週間放置後の自己放電率、容量回復率
 自己放電率(%)=(1.-2.)×100
 容量回復率(%)=(3./1.)×100
(b)4週間放置後の自己放電率、容量回復率
 自己放電率(%)=(1.-4.)×100
 容量回復率(%)=(5./1.)×100
 (4)60℃条件におけるサイクル特性
 実施例5、比較例5の正極用化合物粉末を用いて作製したラミネートセル型電池を用いて、60℃環境温度で2Cの条件で4.2VまでCC条件で充電した後、2Cの条件で3.0Vまで放電した。この充放電操作を500サイクル行った。1サイクル目に放電した容量に対する500サイクル目に放電した容量の割合を容量維持率とした。
容量維持率(%)=500サイクル目放電容量(mAh/g)/1サイクル目放電容量(mAh/g)×100
 (5)ニッケル元素を含む被覆層の平均一次粒子径
 実施例4の正極用化合物粉末のニッケル元素を含む被覆層の平均一次粒子径は、電界放出形走査電子顕微鏡(FE-SEM)にて被覆層を観察した画像から、独立して存在している一次粒子をランダムに10個選択し、選択した上記一次粒子の最長直径の部位を、それぞれ測定し、その平均値を平均一次粒子径とした。
 評価結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
  実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物粉末の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.011:0.575:0.170:0.255であった。比較例5のリチウム-ニッケルコバルトマンガン複合酸化物末の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.022:0.499:0.200:0.301であった。
 上記表3に示すように、実施例4のニッケル含有被覆ニッケル複合水酸化物の平均圧壊強度45.9Mpaは、比較例6の平均圧壊強度が65.0Mpaであるニッケル複合水酸化物に比べて粒子強度が低下した。しかし、実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、実施例4のニッケル含有被覆ニッケルコバルトマンガン複合水酸化物をリチウム焼成した酸化物であり、平均圧壊強度が64.3Mpaである比較例5のリチウム-ニッケル複合酸化物に比べ、実施例5の平均圧壊強度は79.7Mpaと粒子強度が向上した。
 上記表3に示すように、比較例5の60℃2週間保存における自己放電率、容量回復率がそれぞれ32.1%、79.1%であるリチウム-ニッケルコバルトマンガン複合酸化物に比べ、粒子強度が高い実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、60℃2週間保存における自己放電率、容量回復率がそれぞれ31.2%、80.6%と優れた特性を有していた。また、比較例5の60℃4週間保存における自己放電率、容量回復率がそれぞれ39.1%、68.5%であるリチウム-ニッケル複合酸化物に比べ、粒子強度が高い実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、60℃4週間保存における自己放電率、容量回復率がそれぞれ36.6%、70.6%と優れた特性を有していた。
 上記表3に示すように、比較例5の60℃条件における500サイクルの容量維持率が66.9%であるリチウム-ニッケル複合酸化物に比べ、粒子強度が高い実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、60℃条件における500サイクルの容量維持率が70.4%と高い容量維持率を有していた。
 さらに、実施例4のニッケル元素を含む被覆層の平均一次粒子径が50nm~90nmに微細化されていた。
 本発明の正極用化合物は、上記被覆層の構造を有することにより、高温放置後における容量維持率に優れ、高強度を有するので、広汎な蓄電池の分野で利用可能であり、例えば、アルカリ蓄電池の正極活物質用、非水系電解質二次電池の正極活物質用、非水系電解質二次電池の正極活物質の前駆体用として利用価値が高い。

Claims (9)

  1.  一次粒子が凝集した二次粒子であり、ニッケル複合水酸化物を含む核と、前記核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有する正極用化合物であり、
    前記被覆層のニッケル元素の含有量が、前記核100質量部に対して5質量部以上20質量部以下、
    前記二次粒子の平均圧壊強度が45.0MPa以上である正極用化合物。
  2.  前記核が、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された金属元素を少なくとも1種含む請求項1に記載の正極用化合物。
  3.  前記ニッケル元素を含む被覆層の平均一次粒子径が、10nm以上100nm以下である請求項1または2に記載の正極用化合物。
  4.  さらに、パラジウム化合物を含む請求項1乃至3のいずれか1項に記載の正極用化合物。
  5.  アルカリ蓄電池の正極活物質用である請求項1乃至4のいずれか1項に記載の正極用化合物。
  6.  前記核が、一般式(1)
    Ni(1-x)(OH)2+a   (1)
    (式中:0<x≦0.2、0≦a≦0.2、Mは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、イットリウム及びイッテルビウムからなる群から選択された少なくとも1種の金属元素を示す。)で表される請求項5に記載の正極用化合物。
  7.  非水系電解質二次電池の正極活物質の前駆体用である請求項1乃至4のいずれか1項に記載の正極用化合物。
  8.  前記核が、一般式(3)
    Ni(1-z)(OH)2+c   (3)
    (式中:0<z≦0.7、0≦c≦0.28、Pは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される請求項7に記載の正極用化合物。
  9.  請求項7または8に記載の正極用化合物を前駆体として用いた、非水系電解質二次電池用正極活物質。
PCT/JP2019/010859 2018-03-20 2019-03-15 正極用化合物 WO2019181788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980020408.6A CN111868975B (zh) 2018-03-20 2019-03-15 正极用化合物
KR1020207028057A KR20200133347A (ko) 2018-03-20 2019-03-15 양극용 화합물
JP2020507755A JP7290626B2 (ja) 2018-03-20 2019-03-15 正極用化合物及び正極活物質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053308 2018-03-20
JP2018-053308 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181788A1 true WO2019181788A1 (ja) 2019-09-26

Family

ID=67987177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010859 WO2019181788A1 (ja) 2018-03-20 2019-03-15 正極用化合物

Country Status (4)

Country Link
JP (1) JP7290626B2 (ja)
KR (1) KR20200133347A (ja)
CN (1) CN111868975B (ja)
WO (1) WO2019181788A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256138A1 (ja) * 2020-06-18 2021-12-23 株式会社田中化学研究所 コバルト被覆ニッケル含有水酸化物粒子
WO2021256139A1 (ja) * 2020-06-18 2021-12-23 株式会社田中化学研究所 コバルト被覆ニッケル含有水酸化物粒子
WO2024014557A1 (ja) * 2022-07-15 2024-01-18 住友化学株式会社 金属複合化合物及びリチウム二次電池用正極活物質の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230157787A (ko) * 2022-05-10 2023-11-17 주식회사 엘지화학 양극 활물질의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982323A (ja) * 1995-09-18 1997-03-28 L Tec Asia Service:Kk 電池用水酸化ニッケルおよびそれを用いたアルカリ電池
JPH117954A (ja) * 1997-06-18 1999-01-12 Sumitomo Metal Mining Co Ltd 正極材料用メタル被覆水酸化ニッケルおよびその製造方法
JP2000294236A (ja) * 1999-04-07 2000-10-20 Kiyokawa Mekki Kogyo Kk ニッケル電極およびその製造方法
WO2016068263A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2016126622A1 (en) * 2015-02-05 2016-08-11 Basf Corporation Nickel hydroxide positive electrode for alkaline rechargeable battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842164A (ja) * 1981-09-08 1983-03-11 Fuji Elelctrochem Co Ltd 密閉式アルカリ電池およびその製造方法
JPS63148551A (ja) * 1986-12-11 1988-06-21 Matsushita Electric Ind Co Ltd アルカリ電池用正極の製造法
TW445664B (en) * 1999-07-21 2001-07-11 Chung Shan Inst Of Science Nickel-nickel hydroxide electrode and its fabric method
JP2001052695A (ja) 1999-08-10 2001-02-23 Tanaka Chemical Corp アルカリ蓄電池用正極活物質の製造方法
JP3871653B2 (ja) 2003-04-18 2007-01-24 清川メッキ工業株式会社 導電性微粒子の製造方法
CN100444433C (zh) * 2006-12-27 2008-12-17 河南师范大学 一种球形氢氧化镍表面金属化的方法
JP5664930B2 (ja) * 2012-06-29 2015-02-04 トヨタ自動車株式会社 非水電解質二次電池
CN104538604B (zh) * 2015-01-20 2017-03-22 河北工业大学 一种镍锰酸锂正极材料的表面改性方法
CN105990566B (zh) * 2015-02-03 2019-02-22 微宏动力系统(湖州)有限公司 氧化镍复合负极材料及其制备方法
CN104779389B (zh) * 2015-05-06 2017-01-11 深圳市玖创科技有限公司 一种高容量钴酸锂正极材料的制备方法
CN104795562A (zh) * 2015-05-06 2015-07-22 田东 一种改性三元正极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982323A (ja) * 1995-09-18 1997-03-28 L Tec Asia Service:Kk 電池用水酸化ニッケルおよびそれを用いたアルカリ電池
JPH117954A (ja) * 1997-06-18 1999-01-12 Sumitomo Metal Mining Co Ltd 正極材料用メタル被覆水酸化ニッケルおよびその製造方法
JP2000294236A (ja) * 1999-04-07 2000-10-20 Kiyokawa Mekki Kogyo Kk ニッケル電極およびその製造方法
WO2016068263A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2016126622A1 (en) * 2015-02-05 2016-08-11 Basf Corporation Nickel hydroxide positive electrode for alkaline rechargeable battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256138A1 (ja) * 2020-06-18 2021-12-23 株式会社田中化学研究所 コバルト被覆ニッケル含有水酸化物粒子
WO2021256139A1 (ja) * 2020-06-18 2021-12-23 株式会社田中化学研究所 コバルト被覆ニッケル含有水酸化物粒子
JP2021195297A (ja) * 2020-06-18 2021-12-27 株式会社田中化学研究所 コバルト被覆ニッケル含有水酸化物粒子
CN115768729A (zh) * 2020-06-18 2023-03-07 株式会社田中化学研究所 钴包覆含镍氢氧化物粒子
WO2024014557A1 (ja) * 2022-07-15 2024-01-18 住友化学株式会社 金属複合化合物及びリチウム二次電池用正極活物質の製造方法

Also Published As

Publication number Publication date
KR20200133347A (ko) 2020-11-27
JPWO2019181788A1 (ja) 2021-03-25
CN111868975A (zh) 2020-10-30
JP7290626B2 (ja) 2023-06-13
CN111868975B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
JP7290626B2 (ja) 正極用化合物及び正極活物質の製造方法
JP5137414B2 (ja) 非水電解液二次電池用正極活物質およびその製造方法、ならびに、該正極活物質を用いた非水電解液二次電池
CN103563137B (zh) 过渡金属复合氢氧化物及其制法、正极活性物质的制法
CN103459321B (zh) Li-Ni复合氧化物颗粒粉末及其制造方法、以及非水电解质二次电池
JP5877817B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP2020064849A (ja) リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
CN109873129B (zh) 复合正极活性材料及其制备方法和正极及电池
KR20130084668A (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
JP6303279B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
EP0721229B1 (en) Alkaline storage battery and method of producing Ni/Co hydroxide active mass for positive electrode
JP2017191738A (ja) 非水電解質二次電池用の正極活物質粒子
WO2020044795A1 (ja) 二次電池用正極活物質粒子及び二次電池用正極活物質粒子の製造方法
JP2023041746A (ja) リチウム二次電池用正極活物質組成物及びこれを含むリチウム二次電池
CN110863245A (zh) 三元正极材料及其制备方法、锂离子电池和电动汽车
CN114583141A (zh) 一种三层结构的前驱体材料及其制备方法、正极材料
JP5700282B2 (ja) アルカリ蓄電池
CN107251284B (zh) 用于碱性可充电电池的镍氢氧化物正极
KR102015425B1 (ko) 표면 코팅층이 형성된 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지 및 그 제조방법
JP2019501503A (ja) アルカリ充電式電池のためのニッケル水酸化物複合材料
JP2022180552A (ja) アルカリ蓄電池用正極活物質及びアルカリ蓄電池用正極活物質の製造方法
JP2017043496A (ja) リチウム遷移金属複合酸化物及びその製造方法
JP7290625B2 (ja) 正極用化合物及び正極活物質の製造方法
JP2009140820A (ja) リチウム二次電池用の正極活物質の製造方法
JP5309479B2 (ja) アルカリ蓄電池
CN116632186A (zh) 一种具有熵梯度的镍基正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028057

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19770291

Country of ref document: EP

Kind code of ref document: A1