WO2019181368A1 - 光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置 - Google Patents

光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置 Download PDF

Info

Publication number
WO2019181368A1
WO2019181368A1 PCT/JP2019/006859 JP2019006859W WO2019181368A1 WO 2019181368 A1 WO2019181368 A1 WO 2019181368A1 JP 2019006859 W JP2019006859 W JP 2019006859W WO 2019181368 A1 WO2019181368 A1 WO 2019181368A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sheet
resin
laminate
scatterer
Prior art date
Application number
PCT/JP2019/006859
Other languages
English (en)
French (fr)
Inventor
隆志 北本
拡 織田
ショケット アヒメット
渡辺 浩之
一 斎藤
吉田 武司
Original Assignee
日華化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日華化学株式会社 filed Critical 日華化学株式会社
Priority to JP2020507458A priority Critical patent/JP7061184B2/ja
Priority to CN201980020540.7A priority patent/CN111868576A/zh
Publication of WO2019181368A1 publication Critical patent/WO2019181368A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a light scatterer, a composition for forming a light scatterer, a sheet-like laminate, a projection screen, a light diffusion sheet, and a lighting device with a built-in light enhancer.
  • Reflective screens which are projected from the projector and projected on the screen and viewed from the projector side, and transmissive screens viewed from the back, are used in various fields such as advertising media for home theater, digital signage, events, etc. Yes.
  • a screen for example, a screen having a layer that contains bubbles in a substrate and reflects incident light is known.
  • Patent Document 1 discloses a technique in which a polyester resin foam sheet containing oriented elliptical bubbles having an average cell diameter of 12 ⁇ m or less is used as a reflective sheet on which an image is projected.
  • Patent Document 2 (A) cyclic olefin-based resin: 90 to 99.9 parts by weight, and (B) organic crosslinked particles: 10 to 0.1 parts by weight (however, the sum of (A) and (B)) There contains 100 parts by weight), total light transmittance of 0% or more, the refractive index n a of the cyclic olefin resin (a), the difference between the refractive index n B of the organic crosslinked particles (B) The absolute value of
  • a screen diffuser is disclosed.
  • Patent Document 3 discloses a screen technology in which internal voids are formed perpendicular to the fiber axis direction using incompatible two-component blend polymer fibers.
  • Patent Document 4 discloses a technique in which a light scattering sheet containing a plurality of bubbles in a resin is applied as a projection screen.
  • Patent Document 5 a film containing a thermoplastic resin having a total light transmittance of 30 to 80% and a total light reflectance of 20 to 70% is capable of exhibiting a function of visually recognizing both reflected light and transmitted light.
  • a possible translucent projection screen technique is disclosed.
  • Patent Document 6 a through hole having an opening diameter of 0.1 to 8 mm that penetrates at a minimum distance of 0.1 to 5 mm between holes is formed in the thickness direction of a film layer containing a thermoplastic resin.
  • a screen technology with a total light transmittance of 30 to 80% and a total light reflectance of 20 to 70% is disclosed.
  • the present invention has been made in view of the above technical problems, and is a light scatterer capable of projecting a clear and bright image, a light scatterer forming composition capable of forming the same, and a light scatterer. It aims at providing the sheet-like laminated body using this, a projection screen, a light-diffusion sheet, and the illuminating device with a built-in light enhancer.
  • the present invention provides a light scatterer in which hollow particles and light scattering particles are dispersed in a resin medium having a refractive index lower than that of the light scattering particles.
  • the light scattering particles are preferably diamond.
  • the pore diameter of the hollow particles is preferably 0.78 ⁇ m or more and 300 ⁇ m or less.
  • the present invention also provides a composition for forming a light scatterer comprising a hollow particle precursor, light scattering particles and a resin, wherein the refractive index of the light scattering particles is higher than the refractive index of the resin.
  • the sheet-like laminate of the present invention includes a base material and a light scattering layer made of the above-described light scatterer provided on the base material.
  • the projection screen of the present invention includes the above-described light scatterer or sheet-like laminate.
  • the light diffusion sheet of the present invention includes a light scattering layer made of the above-described light scatterer.
  • the lighting device with a built-in light enhancer of the present invention includes a light enhancer including the above-described light scatterer or sheet-like laminate and a light source.
  • a light scatterer capable of projecting a clear and bright image
  • a composition for forming a light scatterer capable of forming the same a sheet-shaped laminate using the light scatterer, a projection screen,
  • An illumination device with a light diffusion sheet and a light enhancer can be provided.
  • the light scatterer of this embodiment contains a resin medium, hollow particles dispersed in the resin medium, and light scattering particles dispersed in the resin medium.
  • the refractive index of the resin medium is lower than the refractive index of the light scattering particles.
  • FIG. 1 is a schematic cross-sectional view showing a light scatterer of the present embodiment.
  • a light scatterer 5 shown in FIG. 1 contains a resin medium 3 and hollow particles 1 and light scattering particles 2 dispersed in the resin medium 3.
  • the resin medium contains at least a resin as a constituent component, and the resin functions as, for example, a matrix resin that fixes the hollow particles and the light scattering particles in the light scattering body.
  • the resin medium may be formed from a resin composition containing a resin.
  • the resin examples include thermoplastic resins and thermosetting resins. Specifically, polycarbonate resins, polyurethane resins, polyacryl resins, polystyrene resins, polyolefin resins, vinyl resins, polyester resins, polyether resins, fluororesins, Examples include polysulfone resins, polyether ether ketone resins, polyamide resins, polyimide resins, melamine resins, phenol resins, epoxy resins, silicone resins, cellulose resins, and silicone-modified acrylic resins. When these resins are used, a difference in refractive index from the light scattering particles is easily obtained, and the visibility tends to be further improved.
  • the resin medium preferably contains a polyurethane resin, a polyacrylic resin or a silicone-modified acrylic resin, and more preferably contains a silicone-modified acrylic resin, from the viewpoint of preventing aggregation of the light scattering particles contained in the light scatterer.
  • the resin medium may contain one kind of resin alone, or may contain two or more kinds.
  • the resin composition may contain components other than the resin.
  • other components include anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, preservatives, light stabilizers, ultraviolet absorbers, antioxidants, polymerization inhibitors, Silicone antifoaming agent, leveling agent, thickener, suspending agent, anti-sagging agent, flame retardant, fluorescent whitening agent, viscosity stabilizer, pH regulator, organic / inorganic pigment / dye additives, additive aids , Antistatic agents, matting agents and the like.
  • the above surfactants are preferably included.
  • anionic surfactants or nonionic surfactants are preferable, alkylbenzene sulfonate, polyoxyethylene alkylphenyl ether sulfate, styrenated phenol alkylene oxide adduct sulfate, alkylnaphthalene sulfonate.
  • anionic surfactants such as naphthalene sulfonic acid formaldehyde condensate salt, alkyl diphenyl ether disulfonate; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sorbitan fatty acid partial ester, polyoxyethylene glycerin fatty acid partial ester , Polyoxyethylene glycol fatty acid ester, polyoxyethylene polyoxypropylene block polymer, polyethylene glycol Nonionic surfactants such as (styrylphenyl) ether are more preferred, styrenated phenol alkylene oxide adduct sulfate salts, alkyl naphthalene sulfonate salts or naphthalene sulfonic acid formaldehyde condensate salts are more preferred, and styrenated phenol alkylene oxide adducts. Sulfuric acid ester salts or naphthalenes, al
  • the refractive index of the resin medium is preferably 1.28 or more and less than 1.80, more preferably 1.30 or more and 1.60 or less, and further preferably 1.40 or more and 1.60 or less. .
  • the refractive index indicates a measured value of a sodium lamp at a wavelength of 589.3 nm.
  • the content of the resin medium in the light scatterer is preferably 40 to 95% by mass and more preferably 50 to 90% by mass based on the total amount of the light scatterer from the viewpoint of dispersibility of the particles.
  • the hollow particles have a hollow structure and have pores surrounded by a thin layer.
  • a hollow polymer having pores or the like may be used as it is, or a precursor that forms the hollow particles may be formed by processing such as heating.
  • a treatment such as heating include thermal expansion microcapsules.
  • the pore diameter of the hollow particles is preferably 0.78 to 300 ⁇ m, more preferably 0.9 to 100 ⁇ m, and still more preferably 0.9 to 30 ⁇ m from the viewpoint of visibility.
  • the pore diameter can be measured with a scanning microscope, and the pore diameter (diameter) of each particle is measured for arbitrary 50 or more hollow particles, and they are obtained by arithmetic averaging.
  • the shape of the hole diameter is not a perfect circle in the observation photograph (figure), it is measured as the diameter of the maximum inscribed circle of the cross section of the hole diameter.
  • Examples of the material of the thin layer of the hollow particles include inorganic substances such as silicon oxide, glass, titanium oxide, and aluminum oxide; and organic substances such as phenol resin, epoxy resin, acrylic resin, styrene resin, and urea resin.
  • organic resin such as an acrylic resin, a styrene resin, or a urea resin is preferable, and an acrylic resin or a styrene resin is more preferable.
  • a hollow polymer is a capsule in which a gas such as air is enclosed.
  • the material of the hollow polymer include inorganic substances such as silicon oxide, glass, titanium oxide, and aluminum oxide; organic substances such as phenol resin, epoxy resin, acrylic resin, styrene resin, and urea resin.
  • the thermal expansion microcapsule is a structure in which a heat-expandable gas is encapsulated in the core, and hollow particles having a hollow structure are formed by expansion of the heat-expandable gas encapsulated by heating.
  • the gas inside the core include hydrocarbons having a low boiling point.
  • the material of the thin layer constituting the thermal expansion microcapsule include inorganic substances such as silicon oxide, glass, titanium oxide, and aluminum oxide; organic substances such as phenol resin, epoxy resin, acrylic resin, styrene resin, and urea resin. It is done.
  • the thickness of the thin layer of hollow particles is preferably 1.0 nm to 10 ⁇ m from the viewpoint of visibility and structural stability of the hollow particles.
  • the thickness of the thin layer is preferably 1.0 nm to 1 ⁇ m. It is measured with a scanning electron microscope, and a thin layer of each particle is measured for arbitrary 50 or more hollow particles, and they are obtained by arithmetic averaging. In addition, when the thickness of the thin layer is not constant in the observation photograph (figure), the maximum value and the minimum value of the thin layer are measured and averaged.
  • the content of the hollow particles is preferably 3 to 50% by mass and more preferably 5 to 40% by mass based on the total amount of the light scatterer from the viewpoint of visibility.
  • the light scattering particles may be those having a refractive index higher than that of the resin medium.
  • components constituting the light scattering particles include diamond; zirconium oxide, titanium oxide, barium titanate, strontium titanate, aluminum oxide, zinc oxide, copper oxide, cesium oxide, chromium oxide, niobium oxide, cerium oxide, and oxide.
  • Metal oxides such as indium tin and tantalum oxide; metals such as aluminum, nickel, cobalt, iron, titanium, chromium, zinc, tungsten, mercury, platinum, molybdenum; polycarbonate resin, polyurethane resin, polyacrylic resin, polystyrene resin, polyvinyl Alcohol resin, polyolefin resin, polyvinyl olefin resin, cycloolefin resin, polyester resin, polyether resin, fluorine resin, polysulfone resin, polyether ether ketone resin, polyamide resin, polyimide Resins, melamine resins, phenol resins, epoxy resins, may be silicone resins, cellulose resins, resins such as silicone-modified acrylic resin.
  • those having a refractive index of 1.8 or more are preferred, those having a refractive index of 2.0 or more are more preferred, and those having a refractive index of 2.2 or more are more preferred.
  • the upper limit of a refractive index is not specifically limited, For example, it can be 4.0 or less.
  • Those having a refractive index of 1.8 or more include diamond; zirconium oxide, titanium oxide, barium titanate, strontium titanate, zinc oxide, copper oxide, cesium oxide, chromium oxide, niobium oxide, cerium oxide, indium tin oxide, and oxide.
  • Metal oxides such as tantalum; metals such as nickel, cobalt, iron, titanium, chromium, zinc, tungsten, mercury, platinum, and molybdenum are included.
  • Those having a refractive index of 2.0 or more include diamond; zirconium oxide, titanium oxide, barium titanate, strontium titanate, zinc oxide, copper oxide, cesium oxide, chromium oxide, niobium oxide, cerium oxide, indium tin oxide, and oxide.
  • Metal oxides such as tantalum; metals such as cobalt, iron, titanium, chromium, zinc, tungsten, mercury, platinum, and molybdenum are included.
  • diamond, metal oxide, and metal are preferable from the viewpoint of effectively scattering light, and diamond is more preferable from the viewpoint of visibility and high viewing angle.
  • the light scattering particles may contain these components alone or may contain two or more kinds.
  • diamonds there are many kinds of diamonds depending on the production method and purification method, and any of them can be used.
  • natural diamond synthetic diamond such as high pressure synthetic diamond, detonation synthetic diamond, vapor phase growth diamond and the like can be mentioned.
  • diamond is classified into two types of crystal morphological structure, single crystal diamond and polycrystalline diamond, and can be used alone or in combination.
  • the median diameter of the light scattering particles is preferably 40 nm to 10 ⁇ m, more preferably 70 nm to 1.0 ⁇ m from the viewpoint of visibility.
  • the light scattering particles may be one kind or two or more kinds having different median diameters.
  • the median diameter means a 50% median diameter based on the volume of the particle, and is measured using a laser diffraction scattering type particle size distribution analyzer (for example, LA-960 manufactured by Horiba, Ltd.).
  • the shape of the light scattering particle is not particularly limited.
  • sphere-like, substantially spherical-like, spheroid-like, crush-like, irregular-like, cube-like, rectangular parallelepiped-like, plate-like, pyramid-like, conical-like, flake-like It may be like.
  • a spherical shape, a substantially spherical shape, and a spheroid shape are preferable.
  • the content of the light scattering particles is preferably 1 to 25% by mass, more preferably 2 to 20% by mass, based on the total amount of the light scatterer, from the viewpoint of visibility.
  • the mass ratio of the light scattering particles to the hollow particles is preferably 0.05 or more and 0.80 or less, and more preferably 0.15 or more and 0.60 or less. preferable.
  • the refractive index of the light scattering particles is preferably 0.2 or greater, more preferably 0.4 or greater, and even more preferably 0.6 or greater than the refractive index of the resin medium.
  • the upper limit of the difference in refractive index between the light scattering particles and the resin medium is not particularly limited, but can be, for example, 2 or less.
  • the light scatterer of this embodiment is preferably in the form of a sheet.
  • the thickness is not particularly limited, but is preferably from 0.1 to 500 ⁇ m, more preferably from 0.5 to 80 ⁇ m, from the viewpoint of further improving visibility and economical efficiency.
  • the thickness of the light scatterer is measured using a micrometer (trade name: MDH-25M, manufactured by Mitutoyo Corporation).
  • the light scatterer of this embodiment includes, for example, a step of applying a composition for forming a light scatterer, which will be described later, a step of drying or curing a coating film, and a dried or cured product on a release substrate. And a step of peeling from the material.
  • composition for forming light scatterers contains a hollow particle precursor, light-scattering particle
  • the light scatterer-forming composition of the present embodiment can contain a resin composition.
  • the resin composition As the resin composition, the same resin composition as that for forming the resin medium in the light scatterer of the present embodiment described above can be used.
  • the resin composition includes a polymerizable monomer (for example, a monomer mixture) that can form the resin instead of or in combination with the above-described resin, and, if necessary, a polymerization initiator. It may be.
  • a polymerizable monomer for example, a monomer mixture
  • a polymerization initiator e.g., a polymerization initiator.
  • the resin contained in the resin composition is the above-mentioned resin or a raw material thereof, a light scatterer with excellent visibility is easily obtained because of excellent particle dispersibility.
  • a commercially available solution (resin solution) obtained by diluting or dispersing the above resin with a solvent may be used.
  • Polymerizable monomers include (meth) acrylic acid; (meth) ethyl acrylate, methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobutyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxy (Meth) acrylic acid ester compounds such as propyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; alkene compounds such as ethylene, propylene, butene, hexene, butadiene and isobrene; halogenated alkenes such as chloroethylene and dichloroethylene Compounds; cycloalkene compounds such as cyclohexene; styrene; epoxy compounds such as ethylene oxide and propylene oxide; and silane compounds such as ⁇ -methacryloxypropylalkoxysilane.
  • the polymerizable monomer may be the above resin having a polymeriz
  • polymerization initiator examples include thermal radical polymerization initiators such as azo compounds and peroxides; thermal cationic polymerization initiators such as benzene acid sulfonic acid ester compounds and alkylsulfonium salts; photopolymerization initiators such as benzoin compounds and acetophenone compounds. Is mentioned.
  • the content of the resin composition as a solid content is preferably 22 to 98.5% by mass and more preferably 30 to 96% by mass based on the total amount of the light scatterer-forming composition from the viewpoint of dispersibility.
  • a hollow particle precursor in the composition for forming a light scatterer a hollow polymer having pores or the like may be used, or a precursor that forms hollow particles by a treatment such as heating may be used.
  • a hollow particle precursor the thing similar to what was demonstrated in the hollow particle of this embodiment mentioned above can be used.
  • the total content of the hollow particle precursor in the light scatterer forming composition is preferably 1.1 to 69.0% by mass based on the total amount of the light scatterer forming composition. 9 to 56.0% by mass is more preferable.
  • the same light scattering particles as those of the above-described embodiment can be used.
  • the total content of light scattering particles in the composition for forming light scatterers is preferably 0.4 to 9.0% by mass, based on the total amount of the composition for forming light scatterers, and 0.7% More preferred is 7.5% by mass.
  • the composition for forming a light scatterer includes, as necessary, inorganic particles other than light scattering particles, organic particles other than light scattering particles, metal particles other than light scattering particles, metal oxide particles other than light scattering particles, a solvent, Polymerization initiator, anionic surfactant, cationic surfactant, nonionic surfactant, amphoteric surfactant, preservative, light stabilizer, UV absorber, antioxidant, polymerization inhibitor, silicone defoamer , Leveling agents, thickeners, anti-settling agents, anti-sagging agents, flame retardants, fluorescent brighteners, viscosity stabilizers, pH regulators, various organic / inorganic pigment / dye additives, additive aids, antistatic agents , Matting agents and the like.
  • the above surfactants are preferably included.
  • anionic surfactants or nonionic surfactants are preferable, alkylbenzene sulfonate, polyoxyethylene alkylphenyl ether sulfate, styrenated phenol alkylene oxide adduct sulfate, alkylnaphthalene sulfonate.
  • anionic surfactants such as naphthalene sulfonic acid formaldehyde condensate salt, alkyl diphenyl ether disulfonate; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sorbitan fatty acid partial ester, polyoxyethylene glycerin fatty acid partial ester , Polyoxyethylene glycol fatty acid ester, polyoxyethylene polyoxypropylene block polymer, polyethylene glycol Nonionic surfactants such as (styrylphenyl) ether are more preferred, styrenated phenol alkylene oxide adduct sulfate salts, alkyl naphthalene sulfonate salts or naphthalene sulfonic acid formaldehyde condensate salts are more preferred, and styrenated phenol alkylene oxide adducts. Sulfuric acid ester salts or naphthalenes, al
  • the solvent examples include aliphatic hydrocarbon solvents such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, nonane, octane, isooctane, and decane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, cumene, and ethylbenzene.
  • aliphatic hydrocarbon solvents such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, nonane, octane, isooctane, and decane
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, cumene, and ethylbenzene.
  • Solvents diethyl ether, diisopropyl ether, methyl tert-butyl ether, methyl cellosolve, cellosolve, butyl cellosolve, methyl carbitol, carbitol, butyl carbitol, diethyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tetrahydrofuran, 1 Ether solvents such as 1,3-dioxane, 1,4-dioxane; dimethyl ketone, ethyl methyl ketone, diethyl ketone, methyl ester Ketone solvents such as butyl ketone, diisopropyl ketone, diisobutyl ketone and cyclohexanone; carbonate solvents such as dimethyl carbonate, diethyl carbonate and ethylene carbonate; methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl
  • the method for producing the composition for forming a light scatterer is not particularly limited, and examples thereof include a method in which a hollow particle precursor and light scattering particles are added to a resin composition and dispersed.
  • Examples of the method for dispersing the hollow particle precursor and the light scattering particles include conventionally known mixing and dispersion methods. In order to more reliably disperse the hollow particle precursor and the light scattering particles, it is preferable to perform a dispersion treatment using a disperser.
  • Dispersers include, for example, mixers such as dispersers, homomixers, planetary mixers (PRIMIX “Filmix”), revolving mixers (Shinky “Awatori Netaro”, etc.); homogenizers (M Technique Co., Ltd.) "Clairemix”); paint conditioner (manufactured by Red Devil), ball mill, sand mill (such as “Dynomill” manufactured by Shinmaru Enterprises), attritor, pearl mill (such as “DCP mill” manufactured by Eirich), coball mill, etc.
  • mixers such as dispersers, homomixers, planetary mixers (PRIMIX “Filmix”), revolving mixers (Shinky “Awatori Netaro”, etc.); homogenizers (M Technique Co., Ltd.) "Clairemix”); paint conditioner (manufactured by Red Devil), ball mill, sand mill (such as “Dynomill” manufactured by Shinmaru Enterprises), attritor, pearl mill (such as “D
  • Media type disperser Wet jet mill (Genus PY, Genus, Starburst, Nanomizer, Nanomizer, etc.); Medialess disperser (Clea SS-5, M Technique) "" MICROS “manufactured by Nara Machinery Co., Ltd.); Roll mill, and the like.
  • FIGS. 2 and 3 are schematic cross-sectional views showing an embodiment of a sheet-like laminate.
  • the sheet-like laminate 6 of the present embodiment shown in FIGS. 2 and 3 includes a base material 4 and a light scattering layer made of the light scatterer 5 of the present embodiment provided on the base material 4.
  • FIG. 2 is a diagram showing a case where the particle diameters of the hollow particles 1 and the light scattering particles 2 are smaller than the thickness of the light scattering body 5, and FIG. It is a figure which shows the case where it is larger than thickness.
  • the hollow particles 1 and / or the light scattering particles 2 may protrude out of the resin medium 3.
  • the substrate is not particularly limited as long as it does not impair the optical properties of the sheet-like laminate.
  • glass such as soda-lime glass, lead glass, borosilicate glass; polyester resin , Polycarbonate resin, polyolefin resin, polyacrylic resin, cellulose resin, polyvinyl resin, etc .; quartz; aluminum oxide, titanium oxide, niobium oxide, tantalum oxide, indium tin oxide, zinc oxide, zirconium oxide, cerium oxide
  • Metal oxides such as steel, carbon steel, chromium-molybdenum steel, alloys such as aluminum alloys, stainless alloys, copper alloys, titanium alloys; gold, silver, copper, zinc, iron, aluminum, platinum, lead, palladium, etc.
  • Plant fibers such as cotton and hemp
  • animals such as silk, wool, alpaca, Angola, cashmere, mohair Wei
  • rayon, polyacetates, Promix nylon, polyester, polyacrylic, polyvinyl chloride, synthetic fibers such as polyurethane
  • glass fibers metal fibers, inorganic fibers such as carbon fibers.
  • a transparent substrate When used as a transmission screen, a transparent substrate is preferable.
  • the transparent substrate include glass and plastic.
  • the thickness of the substrate is not particularly limited, but is preferably 1 ⁇ m to 50 mm, more preferably 20 ⁇ m to 30 mm from the viewpoint of strength and economy.
  • the light scattering layer is made of the light scatterer of the present embodiment described above, and can be formed using the light scatterer forming composition.
  • the thickness of the light scattering layer is preferably from 0.1 to 500 ⁇ m, more preferably from 0.5 to 80 ⁇ m, from the viewpoint of excellent visibility and economy.
  • the thickness of the light scattering layer is measured using a micrometer (trade name: MDH-25M, manufactured by Mitutoyo Corporation).
  • a known hard coat layer, antistatic layer, anti-fingerprint film layer, or matte layer for increasing the strength of the film can be provided on at least one outermost surface.
  • An adhesive layer may be provided by applying an adhesive to the substrate side of the sheet-like laminate.
  • the sheet-like laminate of the present embodiment can be used in either a reflection type or a transmission type when projecting a projection image.
  • the substrate is not particularly limited as long as the optical properties are not impaired.
  • the sheet-like laminate of the present embodiment is added with an appropriate amount of a flame retardant such as antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, melamine cyanurate, best boron, or sofa to the light scatterer forming composition.
  • a flame retardant such as antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, melamine cyanurate, best boron, or sofa to the light scatterer forming composition.
  • a flame retardant such as antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, melamine cyanurate, best boron, or sofa to the light scatterer forming composition.
  • a flame retardant such as antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, melamine cyanurate, best boron, or sofa
  • the sheet-like laminate of the present embodiment includes, for example, a step of applying a light scatterer-forming composition containing a resin composition, a hollow particle precursor, and light scattering particles on a substrate, and drying or coating the coating film. And a step of curing.
  • Another method includes a method of laminating a sheet-like light scatterer on a substrate.
  • the application method of the composition for forming a light scatterer is not particularly limited, and can be appropriately selected according to the shape of the release substrate or the substrate.
  • a slide bead method, a slide curtain method, an extrusion method, a slot Examples include a die method, a gravure roll method, an air knife method, a blade coating method, and a rod bar coating method.
  • a method of heating with a hot air dryer or an infrared dryer can be used.
  • the resin composition is a water-based emulsion
  • the water dispersed in the emulsion can be heated with a hot air dryer, an infrared dryer or the like to evaporate the water contained in the coating film and cure the resin.
  • the resin composition contains a monomer and a polymerization initiator
  • ultraviolet rays electron beams, infrared rays, visible rays, X-rays, ⁇
  • a coating film can be hardened by irradiating active energy rays such as rays, ⁇ rays, heavy particle rays and the like to polymerize and polymerize monomers.
  • the thickness of the coating film of the composition for forming a light scatterer is such that the thickness of the light scatterer after drying (for example, the thickness of the light scatterer 5) is 0.1 to
  • the thickness is preferably 500 ⁇ m, and more preferably 0.5 to 80 ⁇ m.
  • the sheet-like light scatterer can be obtained by peeling the light scatterer from the release substrate.
  • peeling does not specifically limit as a method to peel from a peeling base material, For example, seal peeling, physical peeling, release agent addition, etc. are mentioned.
  • the projection screen of this embodiment includes the light scatterer of this embodiment described above or the sheet-like laminate of this embodiment described above.
  • the projection screen of this embodiment may be a transmissive screen that can recognize an image from the side that is transmissive to the light source, or may be a reflective screen that can recognize the image from the side that is reflected to the light source.
  • the projection screen of the present embodiment can be composed of a light scatterer alone or a sheet-like laminate alone. However, when projecting an image by a projection source, the light scatterer or the sheet-like laminate is placed in space. It preferably has a function capable of being fixed.
  • a fixing bracket can be attached to the entire upper part or a part of the sheet-like laminate. Further, it is preferable that the fixing function is such that the sheet-like laminate can be kept flat without bending so that the image is not blurred or distorted.
  • the projection screen of the present embodiment preferably has a storage means that can store the sheet-like laminate in a roll shape.
  • An example of the storage means is a winding type storage device.
  • the image projecting portion of the sheet-like laminate can be protected, and storage properties, storage properties, portability, transportability, and the like can be improved.
  • the projection screen of the present embodiment may have a heavy object at the bottom of the sheet-like laminate in order to suppress the occurrence of deflection or distortion of the projection surface due to wind or vibration.
  • a force of 1 kg to 500 kg as a heavy object it becomes easy to maintain the flatness of the image projection surface and eliminate the distortion of the projection image.
  • the projection screen of the present embodiment may be one in which a light scatterer or a sheet-like laminate is provided on a substrate having a curved surface.
  • the light scatterer or the sheet-like laminate may be adhered or adhered to the curved substrate, and the light scatterer is formed by directly applying the above-described composition for forming a light scatterer to the curved substrate surface. May be.
  • the light scatterer or sheet-like laminate of the present embodiment can be used as a light diffusion sheet that can weaken the directivity of light.
  • the light-scattering body or sheet-like laminated body of this embodiment can be used as a composite light-scattering sheet which further amplifies a light-scattering effect by forming on another light-diffusion sheet.
  • a composite light scattering sheet which further amplifies a light-scattering effect by forming on another light-diffusion sheet.
  • Illumination light can be uniformly scattered indoors and outdoors.
  • the light enhancer for illumination can be configured using the light scatterer or sheet-like laminate of the present embodiment.
  • a light scatterer or a sheet-like laminate as a light enhancer for illumination, light can be efficiently scattered with a very simple structure.
  • the sheet-like laminate or projection screen of this embodiment can also be used as a vehicle member.
  • a sheet-like laminate or a projection screen can be adhered to the surfaces of the side and rear windows to give an image display function to the side and rear windows.
  • the sheet-like laminate or projection screen of this embodiment can also be used for building members.
  • a sheet-like laminate or a projection screen can be pasted on a transparent window material, and an image can be projected by a projector, which can be used as a store advertisement or information provision.
  • a material and a base material for preparing a composition for forming a light scatterer were prepared as follows.
  • Acrylic resin composition EK-61 (manufactured by Seiden Chemical Co., Ltd., non-volatile component: 39.2%), refractive index: 1.49.
  • Urethane resin composition Evaphanol HA-170 (manufactured by Nikka Chemical Co., Ltd., non-volatile content: 36.5% by mass, refractive index: 1.50.
  • Silicone-modified acrylic resin MX-9010 (Mitsubishi Chemical Corporation, non-volatile component: 49.6%), refractive index: 1.45 [Hollow particle precursor] Hollow polymer: Ropaque SN-1055 (manufactured by Dow Coating Materials, nonvolatile component: 26.5%), median diameter: 1.7 ⁇ m, thin layer thickness: 350 nm, material: styrene resin, thermal expansion microcapsule: Expandel053 -40 (Nippon Philite, non-volatile component: 100%), median diameter: 14 ⁇ m, material: acrylic resin [light scattering particles] Diamond 1: (RZ, single crystal diamond, median diameter: 200 nm, refractive index: 2.42) Diamond 2: (RZ, polycrystalline diamond, median diameter: 500 nm, refractive index: 2.42) Titanium oxide: (manufactured by Sakai Chemical Industry Co., Ltd., model number: SA-1, median diameter: 150 nm, refractive index: 2.52) [S
  • composition 1 for forming light scatterers Preparation of composition 1 for forming light scatterers
  • a homomixer ROBOMICS (fmodel), manufactured by Primix.
  • filtration was carried out with a # 2000 gutter to obtain a diamond dispersed resin composition. No agglomerates were found in the cocoons.
  • 22.0 g of a hollow polymer was added to the diamond dispersion resin composition, and an ultrasonic dispersion treatment was performed for 5 minutes using an ultrasonic dispersion apparatus (manufactured by ASONE). As a result, a composition 1 for forming a light scatterer was obtained.
  • composition 2 for forming light scatterers Light scattering was performed in the same manner as in the composition 1 for forming a light scatterer, except that 1.7 g of diamond 1, 85.8 g of EK-61, and 12.5 g of hollow polymer were added to a stainless steel pot. Body forming composition 2 was prepared. In addition, the aggregate was not seen in the cocoon.
  • composition 4 for forming light scatterers Composition 1 for forming a light scatterer, except that 1.5 g of diamond 1, 0.2 g of diamond 2, 76.5 g of EK-61, and 22.0 g of hollow polymer were added to a stainless steel pot. In the same manner as above, a light scatterer-forming composition 4 was prepared. In addition, the aggregate was not seen in the cocoon.
  • composition 5 for forming light scatterers A composition 1 for forming a light scatterer, except that 1.8 g of diamond 1, 91.4 g of EK-61, and 6.8 g of thermally expanded microcapsules were added to the stainless steel pot instead of hollow polymer. In the same manner as above, a composition 5 for forming a light scatterer was prepared. In addition, the aggregate was not seen in the cocoon.
  • composition 7 (Preparation of light scatterer-forming composition 7) Same as composition 1 for light scatterer formation, except that titanium oxide was added to the stainless steel pot in place of diamond 1 so that 1.5 g of titanium oxide, 76.5 g of EK-61, and 22.0 g of hollow polymer were added. Thus, a light scatterer-forming composition 7 was prepared. In addition, the aggregate was not seen in the cocoon.
  • the light scatterer was the same as the light scatterer-forming composition 1 except that diamond 1 was not added to the stainless steel pot, and EK-61 was added to 63.0 g and the hollow polymer to 37.0 g.
  • a forming composition 9 was prepared. In addition, the aggregate was not seen in the cocoon.
  • a light scatterer was prepared in the same manner as in the composition 1 for forming a light scatterer, except that diamond 1 was added to a stainless steel pot to 1.7 g and EK-61 to 98.3 g, and a hollow polymer was not added.
  • a forming composition 10 was prepared. In addition, the aggregate was not seen in the cocoon.
  • compositions of the light scatterer forming compositions 1 to 14 are summarized in Table 1.
  • Example 1 ⁇ Production of sheet-like laminate> (Example 1) On one side of the substrate, the light-scattering body composition 1 using a slide bead coating apparatus to a solid concentration of 40 g / m 2 (the Mitsui electrical Seiki tabletop coater, TC-3 type) coating did. Then, it put into 100 degreeC oven for 2 minutes, it was made to dry, and the sheet-like laminated body in which the light-scattering layer which consists of a light-scattering body was provided on the base material was produced.
  • the light scattering layer had a thickness of 14.2 ⁇ m, the pore diameter of the hollow particles was 1.0 ⁇ m, and the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • the hollow diameter of the hollow particles and the thickness of the thin layer are arbitrarily set by the scanning electron microscope (manufactured by JEOL Ltd., JSM-6010LA) so that 50 to less than 60 hollow particles enter the field of view.
  • the projected range was calculated based on the captured image data.
  • Image data is taken into the image analysis software “Particle Analysis” (manufactured by Nippon Steel & Sumikin Technology Co., Ltd.), and the average value when measured as the diameter of the largest inscribed circle of the cross section of the hole diameter of 50 hollow particles Calculated as Moreover, the thickness of the thin layer in 50 hollow particles was measured, and those arithmetic average was made into the thickness of the thin layer. In the image data, when the thickness of the thin layer was not constant, the maximum value and the minimum value of the thickness of the thin layer were measured and averaged.
  • Example 2 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer-forming composition was applied so that the solid concentration was 60 g / m 2 .
  • the thickness of the light scattering layer was 19.6 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 3 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer-forming composition was applied so that the solid content concentration was 80 g / m 2 .
  • the thickness of the light scattering layer was 28.1 ⁇ m, the pore diameter of the hollow particles was 1.0 ⁇ m, and the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 4 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 2 was used instead of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 13.8 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 5 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 3 was used in place of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 14.0 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 6 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 4 was used in place of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 14.1 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 7 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer-forming composition 5 was used in place of the light scatterer-forming composition 1.
  • the thickness of the light scattering layer was 27.4 ⁇ m
  • the pore diameter of the hollow particles was 26.6 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.40 ⁇ m.
  • Example 8 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 6 was used in place of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 27.0 ⁇ m
  • the pore diameter of the hollow particles was 26.2 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.40 ⁇ m.
  • Example 9 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 7 was used in place of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 14.3 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 10 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 8 was used in place of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 13.8 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 1 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 9 was used instead of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 14.1 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.35 ⁇ m.
  • Example 2 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer-forming composition 10 was used instead of the light scatterer-forming composition 1.
  • the thickness of the light scatterer was 14.3 ⁇ m.
  • Example 17 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 11 was used in place of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 14.2 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.40 ⁇ m.
  • Example 18 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer-forming composition 12 was used in place of the light scatterer-forming composition 1.
  • the thickness of the light scattering layer was 14.1 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.40 ⁇ m.
  • Example 19 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 13 was used in place of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 13.8 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.40 ⁇ m.
  • Example 20 A sheet-like laminate was produced in the same manner as in Example 1 except that the light scatterer forming composition 14 was used instead of the light scatterer forming composition 1.
  • the thickness of the light scattering layer was 14.0 ⁇ m
  • the pore diameter of the hollow particles was 1.0 ⁇ m
  • the thickness of the thin layer of the hollow particles was 0.40 ⁇ m.
  • the brightness of the sheet-like laminate was measured by the following procedure using a variable angle photometer (Nippon Denshoku Industries Co., Ltd., product number: GC5000).
  • the incident angle of the light source was set to 20 degrees, and the transmitted light intensity in the 20-degree direction when nothing was placed on the measurement stage was set to 100.
  • the sheet-like laminate was placed on the measurement stage, and the L * value of transmission at 0 degree was measured while maintaining the incident angle of the light source at 20 degrees, and this was used as the brightness.
  • the L * value was 1.30 or more as acceptable.
  • the brightness of the sheet-like laminate was measured by the following procedure using a variable angle photometer (Nippon Denshoku Industries Co., Ltd., product number: GC5000).
  • the incident angle of the light source was set to 20 degrees, and the reflected light intensity in the 20-degree direction with a standard white plate placed on the measurement stage was set to 100.
  • the sheet-like laminate was placed on the measurement stage instead of the standard white plate, and the L * value of reflection at 0 degree was measured with the incident angle of the light source kept at 20 degrees, and this was taken as the brightness.
  • the L * value was 10 or more.
  • the sheet-like laminates of Examples 1 to 10 and 17 to 20 are shown to have high image brightness in both the reflection mode and the transmission mode, and are useful as projection screens for projectors. It turns out that it is. Further, it was found that the sheet-like laminates of Examples 1 to 10 and 17 to 20 can obtain high image quality in both the reflection mode and the transmission mode. Furthermore, the sheet-like laminates of Examples 17 to 20 can suppress the aggregation of light scatterer particles, have an excellent appearance of the sheet-like laminate, and obtain high image quality even when an image is projected. I found out that
  • Example 11 curved transparent screen
  • Slight tackiness was imparted by applying an adhesive (trade name “Gel Poly”) to the base material surface of each sheet-like laminate obtained in Examples 1 to 10.
  • a sheet-like laminate was attached to a transparent acrylic semi-cylinder (thickness 5 mm, diameter 500 mm, fan angle 45 °, length 400 mm) so that there were no bubbles at the interface, and a curved transparent screen was produced.
  • the curved transparent screen could be used as a transmissive transparent screen or a reflective transparent screen.
  • Example 12 Light diffusion sheet
  • the performance of the sheet-like laminate 6 was evaluated using the evaluation apparatus shown in FIG. 4 includes a light source 10, a transparent optical stage 11 arranged perpendicular to the light emission optical axis of the light source 10, and an optical goniometer 12 having a photodetector 13.
  • the substrate 4 side of the sheet-like laminate 6 is fixed to the transparent optical stage 11, and light is irradiated from the light scatterer 5 side of the sheet-like laminate 6 from the light source 10 and transmitted through the sheet-like laminate 6. Measurement was performed by detecting the intensity of light with the photodetector 13. The result is shown in FIG.
  • a simple LED illumination tester using white LEDs (manufactured by OptoSupply, Xeon3Emitter, maximum power consumption 3.2 W, maximum applied voltage 5 V, maximum forward current 800 mA, color temperature 6,500 K) is used.
  • the sheet-like laminate was evaluated as a light diffusion sheet.
  • the sheet-like laminate of Example 2 is fixed on the substrate side on a transparent stage arranged perpendicular to the light emission optical axis of the LED light source and irradiated with light.
  • the distribution of light scattered on the sheet-shaped laminate is measured with a photodetector (Hamamatsu Photonics PIN Photo-Fidel S1223, aperture diameter 1 mm) installed in an optical goniometer (Nikka Densaku Co., Ltd.).
  • a photodetector Hamamatsu Photonics PIN Photo-Fidel S1223, aperture diameter 1 mm
  • an optical goniometer Nikka Densaku Co., Ltd.
  • a sine wave of 1,000 Hz was applied to the light source, and the output signal of the photodetector was detected by using a lock-in amplifier (LI5640 manufactured by NF Circuit Block) to detect the signal from which noise was removed. .
  • Example 13 Composite light diffusion sheet
  • a composite light diffusion sheet 15 in which a light scatterer 5 was formed on a commercially available light diffusion sheet 14 was produced.
  • the light scatterer-forming composition 2 was applied to one side of a light diffusion sheet (Scotchical light diffusion film, manufactured by 3M). Coating was performed in the same manner as in Example 1 except that the thickness of the light scattering layer was 2.3 ⁇ m, and a composite light diffusion sheet was produced. According to such a composite light diffusion sheet, the light scattering high rate can be increased.
  • Example 14 Composite light diffusion sheet
  • Example 15 Composite light diffusion sheet
  • a composite light diffusing sheet was produced in the same manner as in Example 13 except that the thickness of the light scattering layer was 8.3 ⁇ m.
  • Example 5 The scotchical light diffusion film (manufactured by 3M) used in Example 13 was evaluated as a composite light diffusion sheet in which no light scattering layer was formed. was used as a comparative example.
  • Light diffusivity is one of the measurement methods defined in German Industrial Standard DIN 5036. Specifically, light is incident on one surface of a resin base material at an incident angle of 0 degrees, and light emitted from the opposite surface is measured. The luminance L ( ⁇ ) in the direction of the emission angle ⁇ ( ⁇ 5 °, ⁇ 20 °, ⁇ 70 °) is measured, and the measured value is substituted into the following formula (1) to calculate the diffusivity of the resin base material. The higher the value, the wider the light diffuses.
  • Light diffusivity D ⁇ (B 70 + B 20 ) / 2> / B 5 ⁇ 100 (1)
  • Example 16 Enhancer for lighting
  • the illuminating device 23 includes a box-shaped white acrylic plate 20, a transparent acrylic plate 21 covering the opening, and a cylindrical LED light source 22 installed inside these. Evaluation was made by comparing the case where the sheet-like laminate 6 was pasted on the entire inner surface of the white acrylic plate with the case where the sheet-like laminate 6 was not pasted. Specifically, the sheet-shaped laminate of Example 2 was attached to the entire inner surface (made of a white acrylic plate) of a lighting device having a length of 20 cm, a width of 40 cm, and a depth of 20 cm with an adhesive.
  • a straight tube LED (RL-BAR30DLC, manufactured by Root Earl Co., Ltd.) was used as the light source, and the opening was closed with a transparent acrylic plate.
  • the illuminance was measured with an illuminometer (manufactured by Hioki Electric Co., Ltd., FT3424) at a position 30 cm from the projection surface of the lighting device, when the sheet-like laminate was attached and when it was not attached. The results are shown in Table 4.
  • Example 2 As is clear from Table 4, it was found that the sheet-like laminate of Example 2 was able to obtain an effect of increasing the illuminance by about 1.61 times as a light enhancer for illumination.
  • SYMBOLS 1 Hollow particle, 2 ... Light scattering particle, 3 ... Resin medium, 4 ... Base material, 5 ... Light scattering body, 6 ... Sheet-like laminated body, 10 ... Light source, 11 ... Transparent optical stage, 12 ... Optical goniometer, DESCRIPTION OF SYMBOLS 13 ... Photodetector, 14 ... Light diffusion sheet, 15 ... Composite light diffusion sheet, 20 ... White acrylic board, 21 ... Transparent acrylic board, 22 ... Cylindrical LED light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

本発明の光散乱体5は、樹脂を含む樹脂媒体3と、樹脂媒体3中に分散している、中空粒子1及び光散乱粒子2を含有する。樹脂媒体3の屈折率は、光散乱粒子2の屈折率よりも低い。

Description

光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置
 本発明は、光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置に関する。
 プロジェクターより投射された映像をスクリーンに投影してプロジェクター側から視認する反射型スクリーンや、背面から視認する透過型スクリーンは、ホームシアター、デジタルサイネージ、イベント等の広告媒体等、様々な分野で使用されている。
 このようなスクリーンとしては、例えば、基材の中に気泡を含有させ、入射した光を反射させる層を備えるスクリーンが知られている。
 特許文献1には、平均気泡径が12μm以下の配向性楕円気泡を含有したポリエステル樹脂発泡体シートを画像が投影される反射シートとして用いた技術が開示されている。
 特許文献2には、(A)環状オレフィン系樹脂:90~99.9重量部、および、(B)有機架橋粒子:10~0.1重量部(ただし、(A)と(B)の合計が100重量部)を含有し、全光線透過率が0%以上であり、前記環状オレフィン系樹脂(A)の屈折率nと、前記有機架橋粒子(B)の屈折率nとの差の絶対値|n-n|が0.04以上であり、かつ、前記有機架橋粒子(B)の平均粒子径が2.0μm以上である樹脂組成物からなることを特徴とするプロジェクター透過スクリーン用拡散板が開示されている。
 特許文献3には、非相溶である2成分のブレンドポリマー繊維を用い、繊維軸方向に垂直に内部空隙を形成させたスクリーン技術が開示されている。
 特許文献4には、樹脂中に複数の気泡を含んだ光散乱シートを投影用スクリーンとして適用した技術が開示されている。
 特許文献5では、全光線透過率が30~80%、全光線反射率が20~70%である熱可塑性樹脂を含有するフィルムにより、反射光でも透過光でも映像視認の機能を発揮することができる半透明な投影スクリーン技術が開示されている。
 特許文献6では、熱可塑性樹脂を含有するフィルム層の厚さ方向に孔と孔との間の最短距離0.1~5mmの間隔で貫通する開口径0.1~8mmの貫通孔を空けることで、全光線透過率が30~80%、全光線反射率が20~70%であるスクリーン技術が開示されている。
特開2009-175522号公報 特開2008-64951号公報 特開2006-243453号公報 特開2006-23342号公報 特開2003-330120号公報 特開2004-62143号公報
 しかしながら、本発明者等による検討の結果、特許文献1~6のスクリーンでは、投影画像の鮮明性と明るさが不十分で、視認性が十分ではないことが明らかとなった。
 本発明は上記の技術的課題に鑑みてなされたものであり、鮮明かつ明るい画像を投影することができる光散乱体及びそれを形成することができる光散乱体形成用組成物、並びに光散乱体を用いたシート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、以下に示す発明を完成するに至った。
 本発明は、中空粒子と光散乱粒子とを、当該光散乱粒子よりも屈折率が低い樹脂媒体中に分散してなる光散乱体を提供する。
 光散乱粒子はダイヤモンドであることが好ましい。
 中空粒子の空孔径は0.78μm以上300μm以下であることが好ましい。
 本発明はまた、中空粒子前駆体、光散乱粒子及び樹脂を含み、光散乱粒子の屈折率が樹脂の屈折率よりも高い光散乱体形成用組成物を提供する。
 本発明のシート状積層体は、基材と、該基材上に設けられた上述の光散乱体からなる光散乱層とを備える。
 本発明の投影スクリーンは、上述の光散乱体又はシート状積層体を備える。
 本発明の光拡散シートは、上述の光散乱体からなる光散乱層を備える。
 本発明の光エンハンサー内蔵照明装置は、上述の光散乱体又はシート状積層体を備える光エンハンサーと光源とを備える。
 本発明によれば、鮮明かつ明るい画像を投影することができる光散乱体及びそれを形成することができる光散乱体形成用組成物、並びに光散乱体を用いたシート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置を提供することができる。
本発明の一実施形態に係る光散乱体を示す模式断面図である。 本発明の一実施形態に係るシート状積層体を示す模式断面図である。 本発明の一実施形態に係るシート状積層体を示す模式断面図である。 本発明に一実施形態に係るシート状積層体の光散乱測定の配置図である。 本発明の一実施形態に係るシート状積層体の光散乱強度の角度分布図である。 本発明の一実施形態に係る複合光拡散シートを示す模式断面図である。 本発明の一実施形態に係る光エンハンサー内蔵照明装置を示す模式断面図である。
 以下、本発明の一実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
[光散乱体]
 本実施形態の光散乱体は、樹脂媒体と、当該樹脂媒体中に分散している中空粒子と、当該樹脂媒体中に分散している光散乱粒子とを含有する。樹脂媒体の屈折率は、光散乱粒子の屈折率よりも低い。
 図1は、本実施形態の光散乱体を示す模式断面図である。図1に示される光散乱体5は、樹脂媒体3と、樹脂媒体3中に分散している中空粒子1及び光散乱粒子2とを含有する。
 まず樹脂媒体について説明する。樹脂媒体は、構成成分として、少なくとも樹脂を含有しており、当該樹脂は、例えば、光散乱体中で中空粒子と光散乱粒子を固定するマトリックス樹脂として機能する。
 樹脂媒体は、樹脂を含む樹脂用組成物から形成されるものであってもよい。
 樹脂としては、熱可塑性樹脂及び熱硬化性樹脂が挙げられ、具体的には、ポリカーボネート樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、ビニル樹脂、ポリエステル樹脂、ポリエーテル樹脂、フッ素樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミド樹脂、ポリイミド樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、セルロース樹脂、シリコーン変性アクリル樹脂等が挙げられる。これらの樹脂を用いる場合、光散乱粒子との屈折率差が得られやすく、視認性に更に優れる傾向がある。樹脂媒体は、光散乱体に含まれる光散乱粒子の凝集防止の観点から、ポリウレタン樹脂、ポリアクリル樹脂又はシリコーン変性アクリル樹脂を含有することが好ましく、シリコーン変性アクリル樹脂を含有することがより好ましい。樹脂媒体は、1種の樹脂を単独で含有してよく、2種以上を含有してもよい。
 樹脂用組成物は、樹脂以外の他の成分を含有してよい。他の成分としては、例えば、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、防腐剤、光安定剤、紫外線吸収剤、酸化防止剤、重合禁止剤、シリコーン消泡剤、レベリング剤、増粘剤、沈殿防止剤、垂れ防止剤、難燃剤、蛍光増白剤、粘度安定剤、pH調節剤、有機・無機顔料・染料の各種添加剤、添加助剤、帯電防止剤、艶消し剤等が挙げられる。これらの中で、光散乱体に含まれる光散乱粒子等の凝集防止の観点から、上記各界面活性剤を含むことが好ましい。界面活性剤としては、アニオン性界面活性剤又はノニオン性界面活性剤が好ましく、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、スチレン化フェノールアルキレンオキシド付加物硫酸エステル塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸ホルムアルデヒド縮合物塩、アルキルジフェニルエーテルジスルホン酸塩等のアニオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンソルビタン脂肪酸部分エステル、ポリオキシエチレングリセリン脂肪酸部分エステル、ポリオキシエチレングリコール脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリエチレングリコールモノ(スチリルフェニル)エーテル等のノニオン界面活性剤がより好ましく、スチレン化フェノールアルキレンオキシド付加物硫酸エステル塩、アルキルナフタレンスルホン酸塩又はナフタレンスルホン酸ホルムアルデヒド縮合物塩が更に好ましく、スチレン化フェノールアルキレンオキシド付加物硫酸エステル塩又はナフタレンスルホン酸ホルムアルデヒド縮合物塩が特に好ましい。
 樹脂媒体の屈折率は、1.28以上1.80未満であることが好ましく、1.30以上1.60以下であることがより好ましく、1.40以上1.60以下であることが更に好ましい。本明細書において屈折率は、ナトリウムランプの波長589.3nmでの計測値を指す。
 光散乱体中の樹脂媒体の含有量は、粒子の分散性の観点から、光散乱体の全量を基準として、40~95質量%が好ましく、50~90質量%がより好ましい。
 中空粒子は、中空構造を持つものであり、薄層により囲まれた空孔を有する。
 中空粒子としては、空孔を有する中空ポリマー等をそのまま用いてもよく、加熱等の処理によって中空粒子を形成する前駆体を処理して形成してもよい。加熱等の処理によって中空粒子を形成する前駆体としては、例えば、熱膨張マイクロカプセルが挙げられる。
 中空粒子の空孔径は、視認性の観点から、0.78~300μmが好ましく、0.9~100μmがより好ましく、0.9~30μmが更により好ましい。空孔径は、走査型顕微鏡で測定することができ、任意の50個以上の中空粒子について各粒子の空孔径(直径)を測定し、それらを算術平均して求める。なお、観察写真(図)中、空孔径の形状が真円状でない場合には、その空孔径の断面の最大の内接円の直径として測定する。
 中空粒子の薄層の材質としては、例えば、酸化シリコン、ガラス、酸化チタン、酸化アルミニウム等の無機物質;フェノール樹脂、エポキシ樹脂、アクリル樹脂、スチレン樹脂、尿素樹脂等の有機物質が挙げられる。これらの中で、視認性の観点から、アクリル樹脂、スチレン樹脂、尿素樹脂等の有機樹脂が好ましく、アクリル樹脂又はスチレン樹脂がより好ましい。
 中空ポリマーとはその中に空気等の気体が封じ込められているカプセルである。中空ポリマーの材質としては酸化シリコン、ガラス、酸化チタン、酸化アルミニウム等の無機物質;フェノール樹脂、エポキシ樹脂、アクリル樹脂、スチレン樹脂、尿素樹脂等の有機物質等が挙げられる。
 熱膨張マイクロカプセルはコア内部に熱膨張性気体を内包した構造体であり、加熱により内包された熱膨張性の気体が膨張することによって、中空構造を有する中空粒子が形成される。コア内部の気体としては、低沸点の炭化水素等が挙げられる。熱膨張マイクロカプセルを構成する薄層の材質としては、酸化シリコン、ガラス、酸化チタン、酸化アルミニウム等の無機物質;フェノール樹脂、エポキシ樹脂、アクリル樹脂、スチレン樹脂、尿素樹脂等の有機物質等が挙げられる。
 中空粒子の薄層の厚さは、視認性及び中空粒子の構造安定性の観点から、1.0nm~10μmが好ましい。また、薄層の材質が酸化チタン、酸化アルミニウムの場合、薄層の厚さは、1.0nm~1μmが好ましい。走査型電子顕微鏡で測定され、任意の50個以上の中空粒子について各粒子の薄層を測定し、それらを算術平均して求める。なお、観察写真(図)中、薄層の厚さが一定でない場合には、その薄層の最大値と最小値を測定して平均としたものとする。
 中空粒子の含有量は、視認性の観点から、光散乱体の全量を基準として、3~50質量%が好ましく、5~40質量%がより好ましい。
 光散乱粒子は、樹脂媒体の屈折率よりも屈折率が高いものであればよい。光散乱粒子を構成する成分としては、例えば、ダイヤモンド;酸化ジルコニウム、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、酸化アルミニウム、酸化亜鉛、酸化銅、酸化セシウム、酸化クロム、酸化ニオブ、酸化セリウム、酸化インジウムスズ、酸化タンタル等の金属酸化物;アルミニウム、ニッケル、コバルト、鉄、チタン、クロム、亜鉛、タングステン、水銀、プラチナ、モリブデン等の金属;ポリカーボネート樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリオレフィン樹脂、ポリビニルオレフィン樹脂、シクロオレフィン樹脂、ポリエステル樹脂、ポリエーテル樹脂、フッ素樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミド樹脂、ポリイミド樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、セルロース樹脂、シリコーン変性アクリル樹脂等の樹脂等であってよい。
 これらの中で、屈折率1.8以上のものが好ましく、屈折率2.0以上のものがより好ましく、屈折率2.2以上のものが更に好ましい。屈折率の上限は特に限定されないが、例えば、4.0以下とすることができる。
 屈折率1.8以上のものとしては、ダイヤモンド;酸化ジルコニウム、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、酸化亜鉛、酸化銅、酸化セシウム、酸化クロム、酸化ニオブ、酸化セリウム、酸化インジウムスズ、酸化タンタル等の金属酸化物;ニッケル、コバルト、鉄、チタン、クロム、亜鉛、タングステン、水銀、プラチナ、モリブデン等の金属が挙げられる。屈折率2.0以上のものとしては、ダイヤモンド;酸化ジルコニウム、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、酸化亜鉛、酸化銅、酸化セシウム、酸化クロム、酸化ニオブ、酸化セリウム、酸化インジウムスズ、酸化タンタル等の金属酸化物;コバルト、鉄、チタン、クロム、亜鉛、タングステン、水銀、プラチナ、モリブデン等の金属が挙げられる。これらの中で、光を効果的に散乱させる観点から、ダイヤモンド、金属酸化物、金属が好ましく、視認性及び高視野角の観点から、ダイヤモンドがより好ましい。光散乱粒子は、これらの成分を単独で含有してよく、2種以上を含有してもよい。また、光散乱粒子として、同一の構成成分からなる1種の粒子を用いてよく、構成成分の異なる複数種の粒子を用いてよい。
 ダイヤモンドとしては、製造方法や精製方法により、多種存在するが、いずれも用いることができる。例えば、天然ダイヤモンド;高圧合成ダイヤモンド、爆轟合成ダイヤモンド、気相成長ダイヤモンド等の合成ダイヤモンド等が挙げられる。
 また、ダイヤモンドは、結晶の形態構造として、単結晶ダイヤモンド、多結晶ダイヤモンドの2つに分類され、単独、もしくは混合して用いることができる。
 光散乱粒子のメジアン径は、視認性の観点から、40nm~10μmが好ましく、70nm~1.0μmがより好ましい。光散乱粒子は1種又はメジアン径が異なる2種以上を用いてもよい。本明細書においてメジアン径とは、粒子の体積基準での50%メジアン径を言い、レーザー回折散乱方式の粒度分布計(例えば、堀場製作所製、LA-960)を用いて測定される。
 光散乱粒子の形状は、特に限定されず、例えば、球体様、略球様、回転楕円体様、破砕様、不定形様、立方体様、直方体様、板様、角錐様、円錐様、燐片様等であってよい。視認性の観点から、球体様、略球様、回転楕円体様が好ましい。
 光散乱粒子の含有量は、視認性の観点から、光散乱体の全量を基準として、1~25質量%であることが好ましく、2~20質量%がより好ましい。
 中空粒子に対する光散乱粒子の質量比(光散乱粒子の質量/中空粒子の質量)は、視認性の観点から、0.05以上0.80以下が好ましく、0.15以上0.60以下がより好ましい。
 光散乱粒子の屈折率は、樹脂媒体の屈折率よりも、0.2以上大きいことが好ましく、0.4以上大きいことがより好ましく、0.6以上大きいことが更に好ましい。光散乱粒子と樹脂媒体の屈折率の差の上限は、特に限定されないが、例えば2以下とすることができる。
 本実施形態の光散乱体は、シート状であることが好ましい。その厚さは特に限定されないが、視認性に更に優れる観点及び経済性に優れる観点から、0.1~500μmが好ましく、0.5~80μmがより好ましい。なお、本明細書における光散乱体の厚さは、マイクロメーター(ミツトヨ社製、商品名:MDH-25M)を用いて測定される。
 本実施形態の光散乱体は、例えば、剥離基材上に、後述する光散乱体形成用組成物を塗布する工程と、塗膜を乾燥又は硬化する工程と、乾燥物又は硬化物を剥離基材から剥離する工程と、を備える方法によって製造することができる。
[光散乱体形成用組成物]
 本実施形態の光散乱体形成用組成物は、中空粒子前駆体、光散乱粒子及び樹脂を含む。
 本実施形態の光散乱体形成用組成物は樹脂用組成物を含有することができる。
 樹脂用組成物は、上述した本実施形態の光散乱体における樹脂媒体を形成するための樹脂用組成物と同様のものを用いることができる。また、樹脂用組成物は、上述した樹脂に代えて又は併用して、当該樹脂を形成することができる重合性モノマー(例えば、モノマー混合物)と、必要に応じて、重合開始剤等を含むものであってもよい。樹脂用組成物に含有される樹脂が上述の樹脂又はその原料である場合、粒子の分散性に優れるため、視認性に優れる光散乱体が得られやすい。なお、本実施形態では、上述の樹脂を溶媒で希釈又は分散した溶液(樹脂溶液)として市販されているものを使用してよい。
 重合性モノマーとしては、(メタ)アクリル酸;(メタ)アクリル酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソブチル、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸エステル系化合物;エチレン、プロピレン、ブテン、ヘキセン、ブタジエン、イソブレン等のアルケン化合物;クロロエチレン、ジクロロエチレン等のハロゲン化アルケン化合物;シクロヘキセン等のシクロアルケン化合物;スチレン;エチレンオキシド、プロピレンオキシド等のエポキシ化合物;γ-メタクリロキシプロピルアルコキシシラン等のシラン化合物が挙げられる。重合性モノマーは、重合性の官能基を有する上記樹脂であってもよい。
 重合開始剤としては、アゾ化合物、過酸化物等の熱ラジカル重合開始剤;ベンゼン酸スルホン酸エステル化合物、アルキルスルホニウム塩等の熱カチオン重合開始剤;ベンゾイン化合物、アセトフェノン化合物等の光重合開始剤等が挙げられる。
 樹脂用組成物の固形分としての含有量は、分散性の観点から、光散乱体形成用組成物全量を基準として、22~98.5質量%が好ましく、30~96質量%がより好ましい。
 光散乱体形成用組成物における中空粒子前駆体としては、空孔を有する中空ポリマー等を用いてもよく、加熱等の処理によって中空粒子を形成する前駆体を用いてもよい。中空粒子前駆体としては、上述した本実施形態の中空粒子において説明したものと同様のものを用いることができる。
 光散乱体形成用組成物における中空粒子前駆体の合計含有量は、分散性の観点から、光散乱体形成用組成物全量を基準として、1.1~69.0質量%が好ましく、2.9~56.0質量%がより好ましい。
 光散乱体形成用組成物における光散乱粒子としては、上述した本実施形態の光散乱粒子と同様のものを用いることができる。
 光散乱体形成用組成物における光散乱粒子の合計含有量は、分散性の観点から、光散乱体形成用組成物全量を基準として、0.4~9.0質量%が好ましく、0.7~7.5質量%がより好ましい。
 光散乱体形成用組成物は、必要に応じて、光散乱粒子以外の無機粒子、光散乱粒子以外の有機粒子、光散乱粒子以外の金属粒子、光散乱粒子以外の金属酸化物粒子、溶剤、重合開始剤、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、防腐剤、光安定剤、紫外線吸収剤、酸化防止剤、重合禁止剤、シリコーン消泡剤、レベリング剤、増粘剤、沈殿防止剤、垂れ防止剤、難燃剤、蛍光増白剤、粘度安定剤、pH調節剤、有機・無機顔料・染料の各種添加剤、添加助剤、帯電防止剤、艶消し剤等を含むことができる。これらの中で、光散乱体に含まれる光散乱粒子等の凝集防止の観点から、上記各界面活性剤を含むことが好ましい。界面活性剤としては、アニオン性界面活性剤又はノニオン性界面活性剤が好ましく、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、スチレン化フェノールアルキレンオキシド付加物硫酸エステル塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸ホルムアルデヒド縮合物塩、アルキルジフェニルエーテルジスルホン酸塩等のアニオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンソルビタン脂肪酸部分エステル、ポリオキシエチレングリセリン脂肪酸部分エステル、ポリオキシエチレングリコール脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリエチレングリコールモノ(スチリルフェニル)エーテル等のノニオン界面活性剤がより好ましく、スチレン化フェノールアルキレンオキシド付加物硫酸エステル塩、アルキルナフタレンスルホン酸塩又はナフタレンスルホン酸ホルムアルデヒド縮合物塩が更に好ましく、スチレン化フェノールアルキレンオキシド付加物硫酸エステル塩又はナフタレンスルホン酸ホルムアルデヒド縮合物塩が特に好ましい。
 溶剤としては、例えば、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ノナン、オクタン、イソオクタン、デカン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、クメン、エチルベンゼン等の芳香族炭化水素系溶剤;ジエチルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテル、メチルセロソルブ、セロソルブ、ブチルセロソルブ、メチルカルビトール、カルビトール、ブチルカルビトール、ジエチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン等のエーテル系溶剤;ジメチルケトン、エチルメチルケトン、ジエチルケトン、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン系溶剤;ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート等の炭酸エステル系溶剤;メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、シクロヘキサノール、ジアセトンアルコール、3-メトキシ-3-メチル-1-ブタノール、エチレングリコール、プロピレングリコール等のアルコール系溶剤;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-3-メチル-1-ブチルアセテート等のエステル系溶剤;アセトニトリル等のニトリル系溶剤、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、アルコキシ-N-イソプロピル-プロピオンアミド、ヒドロキシアルキルアミド等の脂肪族アミド系溶剤;N-メチル-2-ピロリドン、N-エチル-ピロリドン等の脂環族アミド系溶剤;水等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 光散乱体形成用組成物の製造方法は、特に限定されないが、例えば、樹脂用組成物に、中空粒子前駆体及び光散乱粒子を添加し、分散させる方法が挙げられる。
 中空粒子前駆体及び光散乱粒子を分散させる方法としては、例えば、従来公知の混合、分散方法等が挙げられる。中空粒子前駆体及び光散乱粒子をより確実に分散させるためには、分散機を用いて分散処理を行うことが好ましい。
 分散機としては、例えば、ディスパ、ホモミキサー、プラネタリーミキサー(PRIMIX社「フィルミックス」)、自転公転ミキサー(シンキー社製「あわとり練太郎」等)等のミキサー類;ホモジナイザ(エム・テクニック社製「クレアミックス」);ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等);メディアレス分散機(エム・テクニック社製「クレアSS―5」、奈良機械社製「MICROS」等);その他ロールミル等が挙げられる。
<シート状積層体>
 図2、3は、シート状積層体の一実施形態を示す模式断面図である。図2、3に示される本実施形態のシート状積層体6は、基材4と、該基材4上に設けられた上記本実施形態の光散乱体5からなる光散乱層とを備える。なお、図2は、中空粒子1と光散乱粒子2の粒径が光散乱体5の厚さよりも小さい場合を示す図であり、図3は、中空粒子1の粒径が光散乱体5の厚さよりも大きい場合を示す図である。図3に示すように、中空粒子1及び/又は光散乱粒子2は、樹脂媒体3の外に飛び出していてもよい。
 基材は、シート状積層体の光学特性を阻害するものでなければ特に限定されるものではないが、具体的には、ソーダ石灰ガラス、鉛ガラス、ほうけい酸ガラス等のガラス;ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂、セルロース系樹脂、ポリビニル系樹脂等のプラスチック;石英;酸化アルミニウム、酸化チタン、酸化ニオブ、酸化タンタル、酸化インジウウムスズ、酸化亜鉛、酸化ジルコニウム、酸化セリウム等の金属酸化物;鉄鋼、炭素鋼、クロム-モリブデン鋼、アルミ合金、ステンレス合金、銅合金、チタン合金等の合金;金、銀、銅、亜鉛、鉄、アルミニウム、白金、鉛、パラジウム等の金属;綿、麻等の植物繊維;絹、羊毛、アルパカ、アンゴラ、カシミヤ、モヘア等の動物繊維;レーヨン、ポリアセテート、プロミックス、ナイロン、ポリエステル、ポリアクリル、ポリ塩化ビニル、ポリウレタン等の合成繊維;ガラス繊維、金属繊維、炭素繊維等の無機繊維等が挙げられる。
 透過型スクリーンとして使用する場合は、透明な基材が好ましい。透明な基材の具体例としては、ガラス、プラスチック等が挙げられる。
 基材の厚みは、特に限定されないが、強度及び経済性の観点から、1μm~50mmが好ましく、20μm~30mmがより好ましい。
 光散乱層は、上述した本実施形態の光散乱体からなり、光散乱体形成用組成物を用いて形成することができる。
 光散乱層の厚さは、視認性及び経済性に優れる観点から、0.1~500μmが好ましく、0.5~80μmがより好ましい。光散乱層の厚さは、マイクロメーター(ミツトヨ社製、商品名:MDH-25M)を用いて測定される。
 本実施形態のシート状積層体は、少なくとも一方の最表面に、膜の強度を挙げるための公知のハードコート層、帯電防止層、指紋防止フィルム層、又は艶消し層を設けることができる。
 シート状積層体の基材側に粘着剤を塗布して、粘着層を設けてもよい。
 本実施形態のシート状積層体は、投影画像を投影するときには反射型及び透過型のいずれにおいても用いることができる。なお、透過型の場合、基材は光学特性を害しなければ、特に限定されない。
 本実施形態のシート状積層体は、光散乱体形成用組成物に、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、メラミンシアヌレート、ベストボロン、ソウファ等の難燃剤を適量添加し、基材として、難燃性の塩化ビニル、難燃性ポリエチテンレテフタレートフィルム、ポリフェニレンサルファイドフィルム、アラミドフィルム、難燃性ポリカーボネートフィルム等を採用することで、難燃性に優れたシート状積層体にすることができる。
 本実施形態のシート状積層体は、例えば、基材上に、樹脂用組成物、中空粒子前駆体及び光散乱粒子を含む光散乱体形成用組成物を塗布する工程と、塗膜を乾燥又は硬化する工程と、を備える方法によって製造することができる。また、別の方法として、基材上に、シート状の光散乱体をラミネートする工程とを備える方法が挙げられる。
 光散乱体形成用組成物の塗布方法は、特に限定されないが、剥離基材又は基材の形状に応じて適宜選択することができ、例えば、スライドビード方式、スライドカーテン方式、エクストルージョン方式、スロットダイ方式、グラビアロール方式、エアーナイフ方式、ブレードコーティング方式、ロッドバーコーティング方式等が挙げられる。
 形成された塗膜を乾燥又は硬化する方法としては、温風乾燥機や赤外線乾燥機等で加熱する方法を用いることができる。樹脂用組成物が水系エマルジョンの場合、エマルジョン分散している水分を温風乾燥機や赤外線乾燥機等で加熱して、塗膜に含まれる水分を蒸発させて樹脂を硬化することができる。樹脂用組成物がモノマー及び重合開始剤を含む場合は、必要に応じて、塗膜を加熱して塗膜中の溶剤を除去した後に、紫外線、電子線、赤外線、可視光線、X線、α線、γ線、重粒子線等の活性エネルギー線を照射してモノマーを重合し、高分子化することにより、塗膜を硬化することができる。
 光散乱体形成用組成物の塗膜の厚さは、視認性及び経済性の観点から、乾燥後の光散乱体の厚さ(例えば、光散乱体5の厚さ)が、0.1~500μmとなる厚さであることが好ましく、0.5~80μmとなる厚さであることがより好ましい。
 光散乱体が剥離基材上に形成された場合、光散乱体を剥離基材から剥がすことで、シート状の光散乱体を得ることもできる。剥離基材からはがす方法としては、特に限定されないが、例えば、シール剥離、物理的剥離、剥離剤添加等が挙げられる。
 剥離基材上に形成されたシート状の光散乱体を、基材上にラミネートする方法としては、光学粘着剤や光学接着剤による接合や熱溶融接合等が挙げられる。
<投影スクリーン>
 本実施形態の投影スクリーンは、上述した本実施形態の光散乱体、又は、上述した本実施形態のシート状積層体を備える。本実施形態の投影スクリーンは、光源に対し透過する側から画像を認識できる透過型スクリーンとしてもよく、光源に対し反射する側から画像を認識できる反射型スクリーンとしてもよい。
 本実施形態の投影スクリーンは、光散乱体単独、又は、シート状積層体単独で構成することが可能であるが、投影源により画像を投影する際、光散乱体又はシート状積層体を空間に固定できる機能を有していることが好ましい。
 具体的には、シート状積層体の上部全体又は一部に固定金具を取り付けることができる。また、固定機能は、画像にボケや歪がでないように、シート状積層体がたわみなく平面に維持できるものが好ましい。
 本実施形態の投影スクリーンは、シート状積層体をロール状に収納できる収納手段を有していることが好ましい。収納手段としては、巻取り型収納装置が挙げられる。この場合、投影スクリーンを使用しないときにシート状積層体の画像投影部を保護することができ、収納性、保管性、携帯性、搬送性等を向上させることができる。
 本実施形態の投影スクリーンは、風や振動等により、投影面のたわみや歪が発生することを抑制するために、シート状積層体の下部に重量物を有していてもよい。重量物として、1kg重以上500kg重以下の力を掛けることによって、画像投影面の平坦性を維持し、投影画像の歪みを無くすことが容易となる。
 本実施形態の投影スクリーンは、曲面を有する基材上に、光散乱体又はシート状積層体が設けられたものであってもよい。この場合、曲面基材に、光散乱体又はシート状積層体を接着又は密着させてもよく、上述した光散乱体形成用組成物を曲面基材表面に直接塗布することにより光散乱体を形成してもよい。
 この場合、曲面画像や立体画像の投影、立体曲面への投影に適した、透過型曲面透明スクリーン又は反射型曲面透明スクリーンを構成することができる。
 本実施形態の光散乱体又はシート状積層体を、光の指向性を弱めることができる光拡散シートとして使用することができる。
 また、本実施形態の光散乱体又はシート状積層体を、別の光拡散シート上に形成させることで光散乱効果をさらに増幅させる複合光散乱シートとして使用することができる。例えばLED(発光ダイオード)やLD(レーザーダイオード)を光源とした照明の場合、複合光散乱シートを用いることで、光を有効に散乱させ、使用するに相応しい角度に散乱角を広げることができ、屋内や屋外において、一様に照明光を散乱させることができる。
 本実施形態の光散乱体又はシート状積層体を使用して、照明の光エンハンサーを構成することができる。光散乱体又はシート状積層体を照明用の光エンハンサーとして使用することで、極めて単純な構造で、効率良く光散乱させることができる。
 本実施形態のシート状積層体又は投影スクリーンを車両用部材に使用することもできる。一例として、サイドおよびリアウィンドウ表面にシート状積層体又は投影スクリーンを接着させ、サイドおよびリアウィンドウへの画像表示機能を付与させることが出来る。
 本実施形態のシート状積層体又は投影スクリーンを建築用部材に使用することもできる。一例として、透明な窓材にシート状積層体又は投影スクリーンを貼り付け、プロジェクターにて画像を投影し、店舗の広告や情報提供として使用することができる。
 以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例により何ら制限されるものではない。
 下記のとおり、光散乱体形成用組成物を調製するための材料及び基材を準備した。
[樹脂組成物]
アクリル樹脂組成物:EK-61(サイデン化学(株)製、不揮発成分:39.2%)、屈折率:1.49。
ウレタン樹脂組成物:エバファノールHA-170(日華化学(株)製、不揮発分36.5質量%、屈折率1.50。
シリコーン変性アクリル樹脂:MX-9012(三菱ケミカル(株)製、不揮発成分:49.6%)、屈折率:1.45
[中空粒子前駆体]
・中空ポリマー:ローペイクSN-1055(ダウコーティングマテリアルズ社製、不揮発成分:26.5%)、メジアン径:1.7μm、薄層の厚み:350nm、材質:スチレン樹脂
・熱膨張マイクロカプセル:Expancel053-40(日本フィライト社製、不揮発成分:100%)、メジアン径:14μm、材質:アクリル樹脂
[光散乱粒子]
・ダイヤモンド1:(RZ社製、単結晶ダイヤモンド、メジアン径:200nm、屈折率:2.42)
・ダイヤモンド2:(RZ社製、多結晶ダイヤモンド、メジアン径:500nm、屈折率:2.42)
・酸化チタン:(堺化学社製、型番:SA-1、メジアン径:150nm、屈折率:2.52)
[界面活性剤]
界面活性剤1:ペンタスチレン化フェノールエチレンオキシド3モルプロピレンオキシド9モル付加物硫酸エステルアンモニウム塩の50.0質量%水溶液
界面活性剤2:トリスチレン化フェノールプロピレンオキシド100モル付加物の50.0質量%水溶液
界面活性剤3:β-ナフタレンスルホン酸ホルマリン縮合物のNa塩の50.0質量%水溶液(商品名:デモールNL、花王(株)製)
[基材]
ポリエステル樹脂:PETフィルム(東洋紡社製、A4300、厚さ100μm)
<光散乱体形成用組成物の調製>
(光散乱体形成用組成物1の調製)
 200mlステンポットに、ダイヤモンド1を1.5g及びEK-61を76.5gとなるように加え、ホモミキサー(ROBOMICS(fmodel)、プライミクス社製)を用いて4000rpmで30分間、混合・分散処理を行った後、#2000紗にてろ過を行い、ダイヤモンド分散樹脂組成物を得た。紗に凝集物は見られなかった。次いで、上記ダイヤモンド分散樹脂組成物に中空ポリマーを22.0g加えて、超音波分散装置(アズワン社製)を用いて、5分間超音波分散処理を行った。これにより光散乱体形成用組成物1を得た。
(光散乱体形成用組成物2の調製)
 ステンレスポットに、ダイヤモンド1を1.7g、EK-61を85.8g、及び中空ポリマーを12.5gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物2を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物3の調製)
 ステンレスポットに、ダイヤモンド1を1.3g、EK-61を61.7g、及び中空ポリマーを37.0gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物3を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物4の調製)
 ステンレスポットに、ダイヤモンド1を1.5g、ダイヤモンド2を0.2g、EK-61を76.5g、及び中空ポリマーを22.0gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物4を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物5の調製)
 ステンレスポットに、ダイヤモンド1を1.8g、EK-61を91.4g、及び中空ポリマーに代えて熱膨張マイクロカプセルを6.8gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物5を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物6の調製)
 ステンレスポットに、ダイヤモンド1を1.6g、ダイヤモンド2を0.2g、EK-61を91.4g、及び中空ポリマーに代えて熱膨張マイクロカプセルを6.8gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物6を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物7の調製)
 ステンレスポットに、ダイヤモンド1に代えて酸化チタンを1.5g、EK-61を76.5g、及び中空ポリマーを22.0gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物7を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物8の調製)
 ステンレスポットに、ダイヤモンド1を1.5g、EK-61に代えてHA-170を82.2g、及び中空ポリマーを22.0gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物8を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物9の調製)
 ステンレスポットに、ダイヤモンド1を加えず、EK-61を63.0g、及び中空ポリマーを37.0gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物9を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物10の調製)
 ステンレスポットに、ダイヤモンド1を1.7g、及びEK-61を98.3gとなるように加え、中空ポリマーを加えなかったこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物10を調製した。なお、紗に凝集物は見られなかった。
(光散乱体形成用組成物11の調製)
 ステンレスポットに、ダイヤモンド1を1.25g、ダイヤモンド2を0.13g、MX-9012を50.77g、中空ポリマーを18.53g、及びイオン交換水を29.32gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物11を調製した。なお、ろ過の際に紗に凝集物は見られなかった。
(光散乱体形成用組成物12の調製)
 ステンレスポットに、ダイヤモンド1を1.25g、ダイヤモンド2を0.13g、MX-9012を47.80g、中空ポリマーを18.57g、界面活性剤1を3.00g、及びイオン交換水を29.25gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物12を調製した。なお、ろ過の際に紗に凝集物は見られなかった。
(光散乱体形成用組成物13の調製)
 ステンレスポットに、ダイヤモンド1を1.25g、ダイヤモンド2を0.13g、MX-9012を47.80g、中空ポリマーを18.57g、界面活性剤2を3.00g、及びイオン交換水を29.25gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物13を調製した。なお、ろ過の際に紗に凝集物は見られなかった。
(光散乱体形成用組成物14の調製)
 ステンレスポットに、ダイヤモンド1を1.25g、ダイヤモンド2を0.13g、MX-9012を47.80g、中空ポリマーを18.57g、界面活性剤3を3.00g、及びイオン交換水を29.25gとなるように加えたこと以外は光散乱体形成用組成物1と同様にして、光散乱体形成用組成物14を調製した。なお、ろ過の際に紗に凝集物は見られなかった。
 光散乱体形成用組成物1~14の組成をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
<シート状積層体の作製>
(実施例1)
 基材の片面に、光散乱体形成用組成物1を、固形分濃度が40g/mになるようにスライドビード塗布装置(三井電気精機製の卓上コーター、TC-3型)を用いて塗布した。その後、100℃のオーブンの中に2分間入れて乾燥させ、基材上に光散乱体からなる光散乱層が設けられたシート状積層体を作製した。光散乱層は、厚さが14.2μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
 中空粒子の空孔径及び薄層の厚さは、走査型電子顕微鏡(日本電子株式会社製、JSM-6010LA)で中空粒子が50個以上60個未満で視野に入るように観察倍率を任意に設定し、映し出された範囲を撮影した画像データに基づいて算出した。画像データを画像解析ソフト「粒子解析」(日鉄住金テクノロジー株式会社製)に取り込み、50個の中空粒子における空孔径の断面の最大の内接円の直径として測定したときの平均値を空孔径として算出した。また、50個の中空粒子における薄層の厚さを測定し、それらの算術平均を薄層の厚さとした。なお、画像データ中、薄層の厚さが一定でない場合には、その薄層の厚さの最大値と最小値を測定して平均としたものとした。
(実施例2)
 光散乱体形成用組成物の固形分濃度を60g/mになるように塗布した以外は実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは19.6μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(実施例3)
 光散乱体形成用組成物の固形分濃度を80g/mになるように塗布した以外は実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは28.1μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(実施例4)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物2を用いたこと以外は実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは13.8μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(実施例5)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物3を用いたこと以外は実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは14.0μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(実施例6)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物4を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは14.1μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(実施例7)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物5を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは27.4μmであり、中空粒子の空孔径は26.6μmであり、中空粒子の薄層の厚みは0.40μmであった。
(実施例8)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物6を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは27.0μmであり、中空粒子の空孔径は26.2μmであり、中空粒子の薄層の厚みは0.40μmであった。
(実施例9)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物7を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは14.3μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(実施例10)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物8を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは13.8μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(比較例1)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物9を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは14.1μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.35μmであった。
(比較例2)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物10を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。なお、光散乱体の厚さは14.3μmであった。
(実施例17)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物11を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは14.2μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.40μmであった。
(実施例18)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物12を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは14.1μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.40μmであった。
(実施例19)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物13を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは13.8μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.40μmであった。
(実施例20)
 光散乱体形成用組成物1に代えて光散乱体形成用組成物14を用いたこと以外は、実施例1と同様にして、シート状積層体を作製した。光散乱層の厚さは14.0μmであり、中空粒子の空孔径は1.0μmであり、中空粒子の薄層の厚みは0.40μmであった。
<シート状積層体の評価>
 実施例1~10、17~20及び比較例1~2のシート状積層体について、L(明度)を下記の方法にしたがって測定した。また、プロジェクターにより映像を投影した時のプロジェクター側から見た映像及びプロジェクター側と反対側から見た映像について、鮮明性の評価を行なった。また、シート状積層体の外観評価を行った。その結果を表2に示す。
<透過の明度L(透過モード)>
 変角光度計(日本電色工業(株)製、品番:GC5000)を用いてシート状積層体の明度を以下の手順で測定した。光源の入射角を20度にセットし、測定ステージに何も置かない状態での20度方向への透過光強度を100とした。シート状積層体を測定ステージに置いて光源の入射角を20度のまま、0度の透過のL値を測定し、それを明度とした。L値は1.30以上を合格とした。
<反射の明度L(反射モード)>
 変角光度計(日本電色工業(株)製、品番:GC5000)を用いてシート状積層体の明度を以下の手順で測定した。光源の入射角を20度にセットし、測定ステージに標準白色板を置いた状態での20度方向への反射光強度を100とした。次に標準白色板の代わりにシート状積層体を測定ステージに置いて光源の入射角を20度のまま、0度の反射のL値を測定し、それを明度とした。L値は10以上を合格とした。
<(1)プロジェクター側と反対側から見た映像の鮮明性(透過モード)>
 デジタルプロジェクター(エプソン社製、商品名:EH-TW-410)で映像をシート状積層体に投影し、プロジェクター側と反対側から、各シート状積層体に投影された映像を目視し、映像の鮮明性を、以下の基準により4段階で評価した。1及び2を合格とした。
(基準)
水準1:投射された映像の輪郭が極めてはっきりと見える。
水準2:投影された映像の輪郭が十分見える。
水準3:投射された映像の輪郭が薄くて見えにくい。
水準4:投射された映像の輪郭がぼやけて見えない。
<(2)プロジェクター側から見た映像の鮮明性(反射モード)>
 デジタルプロジェクター(エプソン社製、商品名:EH-TW-410)で映像をシート状積層体に投影し、プロジェクター側から、各シート状積層体に投影された映像を目視し、映像の鮮明性を、以下の基準により4段階で評価した。1及び2を合格とした。
(基準)
水準1:投射された映像の輪郭が極めてはっきりと見える。
水準2:投影された映像の輪郭が十分見える。
水準3:投射された映像の輪郭が薄くて見えにくい。
水準4:投射された映像の輪郭がぼやけて見えない。
<(3)外観評価(凝集物)>
 作製したシート状積層体をB5サイズに裁断し、そのシート状積層体表面を目視にて観察して、目視できた凝集物の数を確認し、以下の基準により5段階で評価した。ここで凝集物とは、一塊のものをいい、何個かの凝集物が目視で一つに見える場合は1個として計数した。その結果を表2に示す。なお、1~4を合格とした。
1:シート状積層体表面に凝集物が全く見られない(凝集物の数が0個)。
2:シート状積層体表面に凝集物が極僅か見られる(凝集物の数が1~3個)。
3:シート状積層体表面に凝集物が少し見られる(凝集物の数が4~10個)。
4:シート状積層体表面に凝集物が見られる(凝集物の数が11~20個)。
5:シート状積層体表面に凝集物がかなり見られる(凝集物の数が21個以上)。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかであるように、実施例1~10、17~20のシート状積層体は、反射モードにおいても透過モードにおいても映像の明度が高いことが示され、プロジェクター用の投影スクリーンとして有用であることが分かる。また、実施例1~10、17~20のシート状積層体は、反射モードとしても透過モードとしても高い画質を得ることができることが分かった。さらに、実施例17~20のシート状積層体は、光散乱体粒子の凝集物を抑えることができ、シート状積層体の外観が優れ、且つ画像を投影した際にも、高画質を得ることができることが分かった。
(実施例11:曲面型透明スクリーン)
 実施例1~10で得られた各シート状積層体の基材面に、粘着剤(商品名「ゲルポリ」)を塗布することにより、微粘着性を付与した。透明アクリル製の半円筒(厚さ5mm、直径500mm、扇角45°、縦400mm)にシート状積層体を、界面に気泡のないように貼り付け、曲面型透明スクリーンを作製した。曲面型透明スクリーンは、透過型透明スクリーンとしても、反射型透明スクリーンとしても利用することができた。
(実施例12:光拡散シート)
 図4に示す評価装置を用いて、シート状積層体6の性能を評価した。図4に示す評価装置は、光源10と、光源10の光放出光軸に対し垂直に配置された透明光学ステージ11と、光検出器13を有する光学ゴニオメーター12とを備える。透明光学ステージ11に、シート状積層体6の基材4側を固定し、光源10から、シート状積層体6の光散乱体5側から光を照射して、シート状積層体6を透過した光の強度を光検出器13により検出することにより測定を行った。その結果を図5に示す。
 具体的には、白色LED(OptoSupply社製、Xeon3Emitter、最大消費電力3.2W、最大印可電圧5V、最大順方向電流800mA、色温度6,500K)を使用した簡易LED照明試験器を使用し、シート状積層体を光拡散シートとして性能評価した。LED光源の光放出光軸に対し垂直に配置する透明ステージに実施例2のシート状積層体を基材側で固定し、光を照射する。シート状積層体に散乱された光の分布を光学ゴニオメーター(ニッカ電測社製)に設置された光検出器(浜松フォトニクス製PINフォトファイオード S1223、アパーチャー径1mm)で光強度分布を計測するが、迷光除去のために、光源に1,000Hzの正弦波を印加し、光検出器の出力信号をロックインアンプ(NF回路ブロック社製 LI5640)を使用し、ノイズ除去された信号を検出した。
(比較例3:光拡散シート)
 透明ポリエステルフィルム(東洋紡製、厚さ75μm)について、実施例12と同様の方法で、光拡散シートとしての評価を実施した。その結果を図5に示す。
(比較例4:光拡散シート)
 スコッチカル光拡散フィルム(3M社製、厚さ75μm)について、実施例12と同様の方法で、光拡散シートとしての評価を実施した。その結果を図5に示す。
 図5に示すように、強度が50%(0.5)になる測定角度の2倍したものを散乱角とした場合、比較例3では、散乱角は約12°であり、比較例4では、散乱角は約27°であるのに対して、実施例12のシート状積層体では、散乱角が73°に達することが明らかとなった。
(実施例13:複合光拡散シート)
 図6に示すように、市販の光拡散シート14上に光散乱体5が形成された複合光拡散シート15を作製した。
 具体的には、光拡散シート(スコッチカル光拡散フィルム、3M社製)の片面に光散乱体形成用組成物2を塗布した。塗布は、光散乱層の厚みを2.3μmとした以外は、実施例1と同様にして実施し、複合光拡散シートを作製した。このような複合光拡散シートによれば、光散乱高率を高めることができる。
(実施例14:複合光拡散シート)
 光散乱層の厚みを5.4μmとした以外は、実施例13と同様に実施し、複合光拡散シートを作製した。
(実施例15:複合光拡散シート)
 光散乱層の厚みを8.3μmとした以外は、実施例13と同様に実施し、複合光拡散シートを作製した。
(比較例5)
 実施例13に使用したスコッチカル光拡散フィルム(3M社製)に光散乱層を形成しなかったものを複合光拡散シートとして評価した。
を比較例とした。
 塗布面からLED照明を照射し、実施例13~15及び比較例5の複合光拡散シートの光学特性を評価した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 光拡散率とは、ドイツ工業規格DIN5036で定めた測定方法の一つで、具体的には、樹脂基材の一方の面に入射角0度で光を入射し、反対面から出射した光の出射角θ(±5°,±20°,±70°)方向の輝度L(θ)を測定し、測定値を下記数式(1)に代入することより、樹脂基材の拡散率を算出することができ、値が高いほどより広く光が拡散することを意味する。
光拡散率D=<(B70+B20)/2>/B×100 …(1)
θ=Iθ/cosθ
θ=測定角度θにおける強度
 表3から明らかであるように、実施例13~15の複合光拡散シートによれば、光拡散率が向上することが分かった。
(実施例16:照明用エンハンサー)
 図7に示す照明装置23を用いて、光エンハンサーとしてのシート状積層体6を評価した。照明装置23は、箱状の白色アクリル板20と、その開口部を覆う透明アクリル板21と、これらの内部に設置された円筒型LED光源22とを備える。白色アクリル板の内側全面にシート状積層体6を貼り付けた場合と、貼り付けない場合とを比較することにより評価した。
 具体的には、縦20cm、横40cm、奥行き20cmの照明装置の内側全面(白色アクリル板製)に、実施例2のシート状積層体を粘着剤で貼り付けた。光源としては直管形LED(ルートアール社製、RL―BAR30DLC)を使用し、開口部は透明アクリル板にて閉じた。この照明装置の投影面から30cmの位置で照度を、シート状積層体を貼り付けた場合と貼り付けていない場合について、照度計(日置電機製、FT3424)にて計測した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかであるように、実施例2のシート状積層体は、照明用光エンハンサーとして、約1.61倍の照度の上昇効果を得られることが分かった。
 1…中空粒子、2…光散乱粒子、3…樹脂媒体、4…基材、5…光散乱体、6…シート状積層体、10…光源、11…透明光学ステージ、12…光学ゴニオメーター、13…光検出器、14…光拡散シート、15…複合光拡散シート、20…白色アクリル板、21…透明アクリル板、22…円筒型LED光源。

Claims (8)

  1.  中空粒子と光散乱粒子とを、当該光散乱粒子よりも屈折率が低い樹脂媒体中に分散してなる光散乱体。
  2.  前記光散乱粒子がダイヤモンドである、請求項1に記載の光散乱体。
  3.  前記中空粒子の空孔径が0.78μm以上300μm以下である、請求項1又は2に記載の光散乱体。
  4.  中空粒子前駆体、光散乱粒子及び樹脂を含み、光散乱粒子の屈折率が樹脂の屈折率よりも高い光散乱体形成用組成物。
  5.  基材と、該基材上に設けられた請求項1~3のいずれか一項に記載の光散乱体からなる光散乱層とを備えるシート状積層体。
  6.  請求項1~3のいずれか一項に記載の光散乱体、又は請求項5に記載のシート状積層体を備える投影スクリーン。
  7.  請求項1~3のいずれか一項に記載の光散乱体からなる光散乱層を備える光拡散シート。
  8.  請求項1~3のいずれか一項に記載の光散乱体、又は請求項5に記載のシート状積層体を備える光エンハンサーと、光源とを備える光エンハンサー内蔵照明装置。
PCT/JP2019/006859 2018-03-23 2019-02-22 光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置 WO2019181368A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020507458A JP7061184B2 (ja) 2018-03-23 2019-02-22 光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置
CN201980020540.7A CN111868576A (zh) 2018-03-23 2019-02-22 光散射体、光散射体形成用组合物、片状层叠体、投影屏幕、光扩散片及内藏光增强器的照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-056156 2018-03-23
JP2018056156 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181368A1 true WO2019181368A1 (ja) 2019-09-26

Family

ID=67986491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006859 WO2019181368A1 (ja) 2018-03-23 2019-02-22 光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置

Country Status (4)

Country Link
JP (1) JP7061184B2 (ja)
CN (1) CN111868576A (ja)
TW (1) TW201940902A (ja)
WO (1) WO2019181368A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075292A1 (ja) * 2020-10-05 2022-04-14 シャープ株式会社 波長変換素子および発光システム
WO2023085240A1 (ja) * 2021-11-09 2023-05-19 リンテック株式会社 プロジェクションスクリーン用ハードコートフィルムおよびプロジェクションスクリーン

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173546A (ja) * 2003-11-18 2005-06-30 Toray Ind Inc 光反射フィルムおよびそれを用いた面光源
JP2006023342A (ja) * 2004-07-06 2006-01-26 Seiko Instruments Inc 投影用スクリーン及びこれを用いた画像投影システム
JP2006330149A (ja) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd 光学シート用シート、光学シート及びバックライトユニット
JP2010505145A (ja) * 2006-09-29 2010-02-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 不織シートを含む拡散反射体
US20150103513A1 (en) * 2012-06-05 2015-04-16 Arkema France Optical reflection films
WO2017094581A1 (ja) * 2015-12-01 2017-06-08 旭硝子株式会社 透明スクリーンシート、透明スクリーン、および映像表示システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313579A1 (en) 2011-12-20 2014-10-23 3M Innovative Properties Company High contrast projection screen
JP6599666B2 (ja) * 2015-07-09 2019-10-30 セントラル硝子株式会社 光散乱性被膜を有する透明スクリーン及び光散乱性被膜形成用塗布液

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173546A (ja) * 2003-11-18 2005-06-30 Toray Ind Inc 光反射フィルムおよびそれを用いた面光源
JP2006023342A (ja) * 2004-07-06 2006-01-26 Seiko Instruments Inc 投影用スクリーン及びこれを用いた画像投影システム
JP2006330149A (ja) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd 光学シート用シート、光学シート及びバックライトユニット
JP2010505145A (ja) * 2006-09-29 2010-02-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 不織シートを含む拡散反射体
US20150103513A1 (en) * 2012-06-05 2015-04-16 Arkema France Optical reflection films
WO2017094581A1 (ja) * 2015-12-01 2017-06-08 旭硝子株式会社 透明スクリーンシート、透明スクリーン、および映像表示システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075292A1 (ja) * 2020-10-05 2022-04-14 シャープ株式会社 波長変換素子および発光システム
WO2023085240A1 (ja) * 2021-11-09 2023-05-19 リンテック株式会社 プロジェクションスクリーン用ハードコートフィルムおよびプロジェクションスクリーン

Also Published As

Publication number Publication date
CN111868576A (zh) 2020-10-30
JP7061184B2 (ja) 2022-04-27
TW201940902A (zh) 2019-10-16
JPWO2019181368A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6487605B2 (ja) 太陽−空模倣照明システムのための層状パネル構造
TW201038979A (en) Light diffusing element, polarizing plate with light diffusing element, liquid crystal display using both, and manufacturing method for light diffusing element
JP2007072431A (ja) 光拡散フィルム
JP2009227860A (ja) 粘着剤組成物及び該粘着剤組成物を用いた近赤外線吸収フィルター
US20190072694A1 (en) Light diffusion film, coating agent for forming light diffusion film and method for manufacturing same, projection screen and method for manufacturing same
JP2004533656A (ja) 光拡散フィルム
WO2019181368A1 (ja) 光散乱体、光散乱体形成用組成物、シート状積層体、投影スクリーン、光拡散シート及び光エンハンサー内蔵照明装置
JP2017021295A (ja) 量子ドットシート、バックライト及び液晶表示装置
JP4782865B2 (ja) バックライト装置
JP2012068273A (ja) 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置、ならびに光拡散素子の製造方法
KR102106883B1 (ko) 빔 프로젝터 스크린 형성용 도료 조성물 및 빔 프로젝터용 스크린
TW201116893A (en) A transmissive liquid crystal display device
US20090086317A1 (en) Reflective Screen
JP2010211010A (ja) 光拡散フィルム、それらを用いたバックライトユニット及び液晶表示装置
JP2012083745A (ja) 光拡散素子
JP2012199176A (ja) 光学シート及び面光源装置
JP2011013537A (ja) スクリーンおよびプロジェクションシステム
KR20160094885A (ko) 색변환 필름 및 이를 포함하는 백라이트 유닛
JP6475849B2 (ja) 光拡散透過シート及び複合粒子の製造方法
JP2017019971A (ja) 量子ドットシート、バックライト及び液晶表示装置
JP2005025142A (ja) 光拡散シート、その製造方法及びスクリーン
CN100489653C (zh) 屏幕及其制备方法
JP2006209101A (ja) 波長選択吸収フィルター
JP2013140703A (ja) 放出光拡散層及びそれを用いた導光装置
JP2013089543A (ja) 導光板及びそれを用いた面状発光体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771127

Country of ref document: EP

Kind code of ref document: A1