WO2019179291A2 - 一种氯代苯氧羧酸酯的制备方法 - Google Patents

一种氯代苯氧羧酸酯的制备方法 Download PDF

Info

Publication number
WO2019179291A2
WO2019179291A2 PCT/CN2019/076287 CN2019076287W WO2019179291A2 WO 2019179291 A2 WO2019179291 A2 WO 2019179291A2 CN 2019076287 W CN2019076287 W CN 2019076287W WO 2019179291 A2 WO2019179291 A2 WO 2019179291A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chlorophenoxycarboxylate
reaction
phenoxycarboxylate
methyl
Prior art date
Application number
PCT/CN2019/076287
Other languages
English (en)
French (fr)
Inventor
孙国庆
侯永生
张利国
迟志龙
胡义山
Original Assignee
山东润博生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东润博生物科技有限公司 filed Critical 山东润博生物科技有限公司
Priority to US16/979,541 priority Critical patent/US11078150B2/en
Publication of WO2019179291A2 publication Critical patent/WO2019179291A2/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/307Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0218Sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/363Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the technical field of herbicide synthesis, in particular to a preparation method of chlorophenoxycarboxylate.
  • the preparation method of chlorophenoxycarboxylate mainly includes the following steps:
  • chlorinated phenol is obtained by chlorination.
  • the chlorinated phenol produced in this step has an extremely unpleasant pungent odor, resulting in a very poor environment at the production site and poor chlorination selectivity.
  • the esterification reaction is carried out under the action of a catalyst, and the organic solvent is azeotropically dehydrated during the reaction, and the reaction is completed by water washing and desolvation to obtain chlorophenoxycarboxylate.
  • the dioxin contained in the chlorophenoxycarboxylic acid enters the chlorophenoxycarboxylate and enters the plant, air, soil and water with the use of the chlorophenoxycarboxylate, and The food chain is enriched, which in turn causes more serious environmental hazards.
  • the above method has poor chlorination selectivity, and the post-treatment process causes loss of active ingredients, and the yield of the product is low.
  • chlorination and condensation synthesis of chlorophenoxycarboxylic acid will produce a large amount of wastewater containing hydroxycarboxylic acid and waste salt, and a large amount of chlorophenol and chlorophenoxycarboxylic acid. Waste, three waste treatment pressure, high processing costs.
  • the technical problem to be solved by the present invention is to provide a preparation method of chlorophenoxycarboxylate, which is efficient and environmentally friendly.
  • the present invention provides a method for preparing a chlorophenoxycarboxylate, comprising the following steps:
  • the phenoxycarboxylate is subjected to selective chlorination of the chlorinating agent at the 2-position and/or 4-position by the action of the catalyst A and the catalyst B to obtain a chlorophenoxycarboxylate;
  • the catalyst A is a Lewis acid
  • the catalyst B has the following structural formula:
  • R 1 'and R 2 ' are independently selected from H, C1-C4 alkyl, phenyl or substituted phenyl, and the substituent of the substituted phenyl is selected from C1-C4 alkyl, halogen, hydroxy, nitro One or more of an amino group and a cyano group;
  • the total number of carbon atoms of R 1 'and R 2 ' is 4 to 22.
  • the phenoxycarboxylate has any of the following formulas I to IV:
  • R 1 is preferably a C1-C3 alkylene group, and further preferably a methylene group (-CH 2 -), a methylmethylene group (-CH(CH 3 )-), an ethylene group (-CH) 2- CH 2 -) or propylene (-CH 2 -CH 2 -CH 2 -).
  • R is preferably a C1 to C10 alkyl group or a C3 to C10 cycloalkyl group, more preferably a C1 to C8 alkyl group or a C3 to C8 cycloalkyl group, and still more preferably a methyl group, an ethyl group or a propyl group. , isopropyl, n-butyl, isobutyl, isooctyl or cyclohexyl.
  • the catalyst A is a Lewis acid; preferably SnCl 4 , MgCl 2 , FeCl 3 , AlCl 3 , BF 3 , ZnCl 2 , TiCl 4 , SbF 5 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , Pb (OAc 2 , one or more of Zn(OAc) 2 and Al 2 O(OAc) 4 ; more preferably one of MgCl 2 , FeCl 3 , ZnCl 2 , SbF 5 , TiO 2 and Pb(OAc) 2
  • One or more kinds are further preferably one or more of FeCl 3 , TiO 2 and Pb(OAc) 2 .
  • the catalyst A is a supported catalyst.
  • the supported catalyst is preferably a catalyst supported on silica gel by an impregnation method, and the supported catalyst A preferably has a loading ratio of 10% to 20%.
  • the catalyst B has the following structural formula:
  • R 1 ' and R 2 ' are preferably independently H, a C1-C4 alkyl group, a phenyl group or a substituted phenyl group. More preferably, it is H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, phenyl or substituted phenyl. And the total number of carbon atoms of R 1 ' and R 2 ' is 4 to 22.
  • the substituent of the substituted phenyl group is preferably one or more of a C1 to C4 alkyl group, a halogen, a hydroxyl group, a nitro group, an amino group and a cyano group; more preferably a methyl group, an ethyl group, a n-propyl group or an isopropyl group. Any one or more of n-butyl, isobutyl, tert-butyl, F, Cl, Br, and OH.
  • the catalyst B is 2-methylthio-2-methylpropane, di-tert-butylsulfide, 2-mercapto-2-methylpropane, diphenylsulfide, 4,4'-dichlorodiphenylsulfide, One or more of 2-methyldiphenylsulfide, 2,4,6-trimethyldiphenylsulfide, and 4,4'-thiobis(6-tert-butyl-3-methylphenol); More preferably, it is one or more of di-tert-butylsulfide, 2,4,6-trimethyldiphenylsulfide, and 4,4'-thiobis(6-tert-butyl-3-methylphenol). .
  • the catalyst B is a supported catalyst.
  • the supported catalyst is preferably a catalyst supported on silica gel by an impregnation method, and the supported catalyst B preferably has a loading ratio of 5% to 15%.
  • the chlorination reaction also has a higher selectivity.
  • the catalysts A and B are simultaneously supported catalysts, the catalysts A and B are fixed in the reaction apparatus, and the selective chlorination can be carried out in a continuous form without performing distillation of the reaction product and the catalyst. Separation greatly increases the production capacity of the device, improves the efficiency of the catalyst, and saves a lot of energy.
  • the amount of the catalyst A used is preferably 0.05% to 1.0% by weight based on the weight of the phenoxycarboxylate, more preferably 0.25% to 1.0%, still more preferably 0.5% to 1.0%.
  • the active ingredient in the supported catalyst is used in an amount of 0.05% to 1.0% by weight, preferably 0.25% to 1.0%, more preferably 0.5% to 1.0% by weight based on the weight of the phenoxycarboxylate.
  • the amount of the catalyst B used is preferably 0.05% to 1.0% by weight based on the weight of the phenoxycarboxylate, more preferably 0.2% to 0.8%, still more preferably 0.3% to 0.5%.
  • the active ingredient in the supported catalyst is used in an amount of 0.05% to 1.0% by weight, preferably 0.2% to 0.8%, more preferably 0.3% to 0.5% by weight based on the weight of the phenoxycarboxylate.
  • the amount of the catalyst A should not be too small, otherwise the chlorination selectivity will be greatly reduced, but the excessive amount will increase the difficulty of product separation in addition to being uneconomical; the amount of the catalyst B should not be too small, otherwise the reaction will not be caused. Occurrence or slow reaction, too much use, not only uneconomical, but also lead to a decrease in selectivity, but also increase the difficulty of product separation.
  • the chlorinating agent may be a general chlorinating agent for phenol chlorination, preferably chlorine, thionyl chloride or sulfuryl chloride, more preferably chlorine or sulfuryl chloride.
  • the selective chlorination reaction at the 2-position and/or 4-position refers to a mono-substitution reaction at the 2-position, a mono-substitution reaction at the 4-position, or a double-substitution reaction at the 2-position and the 4-position.
  • the phenoxycarboxylate and the chlorinating agent The molar ratio is preferably 1: (0.98 to 1.2), more preferably 1: (1 to 1.1), still more preferably 1: (1.01 to 1.03).
  • the product is 2,4-dichlorophenoxycarboxylate, the phenoxycarboxylate and
  • the molar ratio of the chlorinating agent is preferably 1: (1.98 to 2.4), more preferably 1: (2 to 2.2), still more preferably 1: (2.02 to 2.06).
  • the amount of chlorinating agent should not be too small, otherwise the raw material will not turn high, but too much dosage will lead to the formation of more perchlorinated products, which is unfavorable to the reaction.
  • the temperature of the selective chlorination reaction is preferably -20 to 100 ° C, more preferably -20 to 60 ° C, still more preferably -20 to 20 ° C.
  • the reaction time is preferably from 0.2 to 1 h.
  • the reaction temperature can simultaneously maintain high reactivity and chlorination selectivity.
  • the present invention has three outstanding advantages when using the supported catalysts A and B.
  • the production capacity of the device is increased and a large amount of energy is saved.
  • the invention re-designs the process route, finely screens the catalyst and the chlorinating agent, and combines the Lewis acid with the specific catalyst, so that the chlorination selectivity is up to 99.5%, and the raw material unreturned content in the obtained reactant is less than 0.1. %, the total content of reaction by-products is less than 0.5%.
  • the chlorophenoxycarboxylate prepared by the invention can be directly used as a herbicide product, or can be directly added into an auxiliary agent to prepare various herbicide preparations.
  • the present invention provides a method for preparing a chlorophenoxycarboxylate, comprising the steps of: phenoxycarboxylate under the action of catalyst A and catalyst B, and chlorinating agent for 2 positions And/or a selective chlorination reaction at the 4-position to give a chlorophenoxycarboxylate;
  • the catalyst A is a Lewis acid;
  • the catalyst B has the formula: R 1 '-SR 2 '.
  • Catalysts A and B are more effective when present in a supported form.
  • the invention uses phenoxycarboxylate as raw material to synthesize chlorophenoxycarboxylate by selective chlorination under the action of a catalyst, thereby effectively improving chlorination selectivity while avoiding loss of active ingredients, and obtaining chlorobenzene
  • the content of the oxycarboxylic acid ester can reach above 98.5%, and the yield can reach more than 99%.
  • the process route has been greatly simplified, effectively avoiding the production and use of chlorinated phenol with unpleasant odor, and fundamentally eliminating the production of highly toxic dioxins. Greatly improved product quality and operating environment at the production site.
  • the mother liquor containing the active ingredient is not produced, thereby effectively avoiding the loss of the active ingredient, improving the yield of the product, and reducing the energy consumption due to the simplification of the process flow, thereby effectively preventing the generation of high COD and high salt wastewater.
  • the output of the three wastes has been greatly reduced.
  • Figure 1 is a nuclear magnetic resonance spectrum of 2,4-dichlorophenoxyacetic acid isooctyl ester obtained in Example 8 of the present invention.
  • the impurities include: methyl 4-chlorophenoxyacetate content 0.07%, methyl 2,6-dichlorophenoxyacetate content 0.03%, methyl 2,4,6-trichlorophenoxyacetate content 0.19%
  • the di-tert-butyl sulfide content is 0.011%.
  • Methylpropane, 118.96 g of 99% thionyl chloride (0.99 mol) was added dropwise at 40 ° C, the reaction was incubated for 30 min after the dropwise addition, and the fraction of 155-165 ° C was distilled under a pressure of 1 kpa to obtain 2-(2, 291.22 g of n-butyl 4-dichlorophenoxy)propionate, the content was 99.0%, and the yield was 99.01% based on n-butyl 2-(4-chlorophenoxy)propionate.
  • Fig. 1 is a nuclear magnetic resonance spectrum of isooctyl 2,4-dichlorophenoxyacetate.
  • the material overflows from the first-stage reactor into the second-stage reactor, and the temperature of the second-stage reactor is controlled to -20 ° C.
  • the reaction is added at a constant rate of 1729.38 g 99%.
  • Methyl 2-methylphenoxyacetate (9.5 mol) and 1308.15 g of 99% sulfuryl chloride (9.595 mol), as the material is added from the first-stage reactor, the material continuously overflows into the second-stage reactor and In the third-stage reactor, when the third-stage reactor also has materials, the temperature is maintained at -20 ° C, and the reaction material finally overflows from the third-stage reactor to obtain methyl 4-chloro-2-methylphenoxyacetate.
  • the supported catalyst does not flow out of the system with the material due to its high density.
  • the preparation method provided by the invention has high yield and purity, and the selectivity of the chlorination reaction is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

一种氯代苯氧羧酸酯的制备方法
本申请要求于2018年3月19日提交中国专利局、申请号为201810226024.7、发明名称为“一种氯代苯氧羧酸酯的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及除草剂合成技术领域,尤其涉及一种氯代苯氧羧酸酯的制备方法。
背景技术
目前,氯代苯氧羧酸酯的制备方法主要包括以下几步:
1)以酚为主要原料,经氯化制得氯代酚。此步产出的氯代酚具有极难闻的刺激性气味,导致生产现场环境极差,而且氯化选择性较差。
2)氯代酚在碱性条件下与氯代羧酸缩合,反应液经过酸化、过滤得到氯代苯氧羧酸湿料,烘干后得氯代苯氧羧酸。此步氯代酚中的二氯酚或多氯酚在缩合过程中,会发生两分子间的缩合,产生极难降解的剧毒物质--二噁英,而且生产的氯代苯氧羧酸中也含有二噁英,给环境和生产人员的健康带来了极大的风险。
3)以氯代苯氧羧酸、醇为原料,在催化剂作用下进行酯化反应,反应过程中使用有机溶剂共沸脱水,反应完毕经过水洗、脱溶得到氯代苯氧羧酸酯。在此步氯代苯氧羧酸中含有的二噁英会进入氯代苯氧羧酸酯,并随着氯代苯氧羧酸酯的使用进入植物体、空气、土壤和水源,并随着食物链富集,进而造成更加严重的环境危害。
上述方法氯化选择性差、后处理工艺会造成有效成分损失,产品的收率偏低。同时在使用酚为原料经氯化、缩合合成氯代苯氧羧酸时,会产出大量的含有羟基羧酸和废盐的废水,以及大量含有氯代酚、氯代苯氧羧酸的危废,三废处理压力大、处理成本高。
现有的氯代苯氧羧酸及其酯的合成工艺已经十分落后,随着环保意识、环保标准的不断提高,老旧落后的工艺已经严重制约着氯代苯氧羧酸及其酯的合成产业的良性发展和可持续发展,开发一种先进的合成工艺迫在眉睫。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种氯代苯氧羧酸酯的制备方法,高效且环保。
为解决以上技术问题,本发明提供了一种氯代苯氧羧酸酯的制备方法,包括以下步骤:
苯氧羧酸酯在催化剂A和催化剂B的作用下,和氯化剂进行2位和/或4位的选择性氯化反应,得到氯代苯氧羧酸酯;
所述催化剂A为路易斯酸;
所述催化剂B具有以下结构式:
R 1'-S-R 2';
其中,R 1'和R 2'独立的选自H、C1~C4烷基、苯基或取代苯基,所述取代苯基的取代基选自C1~C4烷基、卤素、羟基、硝基、氨基和氰基中的一个或多个;
所述R 1'和R 2'的总碳原子数为4~22个。
本发明中,所述苯氧羧酸酯具有以下式Ⅰ~式Ⅳ任一结构:
Figure PCTCN2019076287-appb-000001
其中,R 1优选为C1~C3的亚烷基,进一步的,优选为亚甲基(-CH 2-),甲基亚甲基(-CH(CH 3)-),亚乙基(-CH 2-CH 2-)或亚丙基(-CH 2-CH 2-CH 2-)。
R优选为C1~C10的烷基或C3~C10的环烷基,更优选为C1~C8的烷基或C3~C8的环烷基,进一步优选的,其为甲基、乙基、丙基、异丙基、正丁基、异丁基、异辛基或环己基。
对应的产物结构如下:
Figure PCTCN2019076287-appb-000002
所述催化剂A为路易斯酸;优选为SnCl 4、MgCl 2、FeCl 3、AlCl 3、BF 3、ZnCl 2、TiCl 4、SbF 5、Al 2O 3、Fe 2O 3、TiO 2、Pb(OAc) 2、Zn(OAc) 2和Al 2O(OAc) 4中的一种或多种;更优选为MgCl 2、FeCl 3、ZnCl 2、SbF 5、TiO 2和Pb(OAc) 2中的一种或多种,进一步优选为FeCl 3、TiO 2和Pb(OAc) 2中的一种或多种。
更优选的,所述催化剂A为负载型催化剂。所述负载型催化剂优选为通过浸渍法负载于硅胶上的催化剂,所述负载型催化剂A的负载率优选为10%~20%。
所述催化剂B具有以下结构式:
R 1'-S-R 2';
其中,R 1'和R 2'独立的优选为H、C1~C4烷基、苯基或取代苯基。更优选为H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、苯基或取代苯基。且所述R 1'和R 2'的总碳原子数为4~22个。
所述取代苯基的取代基优选为C1~C4烷基、卤素、羟基、硝基、氨基和氰基中的一个或多个;更优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、F、Cl、Br和OH中的任意一个或多个。
所述催化剂B更优选为2-甲硫基-2-甲基丙烷、二叔丁基硫、2-巯基-2-甲基丙烷、二苯硫、4,4’-二氯二苯硫、2-甲基二苯硫、2,4,6-三甲基二苯硫、4,4'-硫代双(6-叔丁基-3-甲基苯酚)中的一种或多种;更优选为二叔丁基硫、2,4,6-三甲基二苯硫、4,4'-硫代双(6-叔丁基-3-甲基苯酚)中的一种或多种。
进一步优选的,所述催化剂B为负载型催化剂。所述负载型催化剂优选为通过浸渍法负载于硅胶上的催化剂,所述负载型催化剂B的负载率优选为5%~15%。
当催化剂A和催化剂B同时为负载型催化剂时,所述氯化反应也具有较高的选择性。特别的,当催化剂A和B同时为负载型催化剂时,将催化剂A和B固定在反应装置内,可使该选择性氯化以连续化的形式进行,而不需要进行反应产物与催化剂的蒸馏分离,极大的提高了装置的生产能力,提高了催化剂的使用效率,同时节省了大量能耗。
所述催化剂A的用量优选为苯氧羧酸酯重量的0.05%~1.0%,更优选为0.25%~1.0%,进一步优选为0.5%~1.0%。当催化剂A为负载型时,负载型催化剂中有效成分的用量为苯氧羧酸酯重量的0.05%~1.0%,优选为0.25%~1.0%,更优选为0.5%~1.0%,此处负载型催化剂中的有效成分是指负载于载体上的催化剂A,催化剂A的有效成分用量=负载型催化剂A的使用量×负载率。
所述催化剂B的用量优选为苯氧羧酸酯重量的0.05%~1.0%,更优选为0.2%~0.8%,进一步优选为0.3%~0.5%。当催化剂B为负载型时,负载型催化剂中有效成分的用量为苯氧羧酸酯重量的0.05%~1.0%,优选为0.2%~0.8%,更优选为0.3%~0.5%,此处负载型催化剂中的有效成分是指负载于载体上的催化剂B,催化剂B的有效成分用量=负载型催化剂B的使用量×负载率。
所述催化剂A的用量不宜过少,否则会导致氯化选择性出现大幅下降,但用量过多除了不经济外还会增加产品分离的难度;催化剂B的用量不宜过少,否则会导致反应不发生或反应缓慢,用量过多不仅不经济还会导致选择性有所降低,同时还会增加产品分离难度。
所述氯化剂可以为苯酚氯化反应的一般氯化剂,优选为氯气、亚硫酰氯或硫酰氯,更优选为氯气或硫酰氯。
所述2位和/或4位的选择性氯化反应,指2位的单取代反应,4位的单取代反应,或2位和4位的双取代反应。
当所述选择性氯化反应为在2位或4位进行单取代反应时,如苯氧羧酸酯的结构如式Ⅰ~式Ⅳ所示,所述苯氧羧酸酯与氯化剂的摩尔比优选为1:(0.98~ 1.2),更优选为1:(1~1.1),进一步优选为1:(1.01~1.03)。
当所述选择性氯化反应为二取代反应时,如苯氧羧酸酯的结构如式Ⅰ所示,产物为2,4-二氯苯氧羧酸酯,所述苯氧羧酸酯与氯化剂的摩尔比优选为1:(1.98~2.4),更优选为1:(2~2.2),进一步优选为1:(2.02~2.06)。
氯化剂的用量不宜过少,否则会使原料的未转偏高,但是用量过多又会导致较多的过氯化产物的生成,对反应不利。
所述选择性氯化反应的温度优选为-20~100℃,更优选为-20~60℃,进一步优选为-20~20℃。所述反应的时间优选为0.2~1h。
该反应温度可以同时保持较高的反应活性和氯化选择性。
所述选择性氯化反应结束后,优选进行减压蒸馏,收集相应沸程的馏分即可得到氯代苯氧羧酸酯。
当催化剂为负载型时,直接过滤即可得到氯代苯氧羧酸酯。因此,本发明使用负载型催化剂A和B时还有三个突出的优点,一是催化剂和产品易于分离,二是催化剂可以实现循环使用,三是利于实现连续化操作,提高了催化剂的利用效率,提高了装置的生产能力,节省了大量能耗。
本发明通过对工艺路线的重新设计,对催化剂和氯化剂的精细筛选,将路易斯酸与特定催化剂复合使用,使得氯化选择性高达99.5%以上,所得反应物中原料未转含量低于0.1%,反应副产物总含量低于0.5%。
本发明制备的氯代苯氧羧酸酯的杂质及杂质含量如下表1所示:
表1本发明制备的氯代苯氧羧酸酯的杂质及杂质含量汇总
Figure PCTCN2019076287-appb-000003
Figure PCTCN2019076287-appb-000004
本发明制备的氯代苯氧羧酸酯可以直接作为除草剂产品,也可直接加入助剂做成各种除草剂制剂。
与现有技术相比,本发明提供了一种氯代苯氧羧酸酯的制备方法,包括以下步骤:苯氧羧酸酯在催化剂A和催化剂B的作用下,和氯化剂进行2位和/或4位的选择性氯化反应,得到氯代苯氧羧酸酯;所述催化剂A为路易斯酸;所述催化剂B具有以下结构式:R 1'-S-R 2'。催化剂A和B以负载型存在时效果更佳。
本发明以苯氧羧酸酯为原料,在催化剂作用下,经选择性氯化合成氯代苯氧羧酸酯,有效地提高了氯化选择性同时避免了有效成分的损失,所得氯代苯氧羧酸酯的含量可达98.5%以上,收率可达99%以上。与现有合成技术相比,工艺路线得到了极大的简化,有效的避免了具有难闻气味的氯代酚的生产和使用,从根本上杜绝了剧毒的二噁英的产生,同时极大的改善了产品品质和生产现场的操作环境。且不产生含有效成分的母液,因此有效地避免了有效成分的损失,提高了产品的得率,同时由于工艺流程的简化也降低了能耗,有效杜绝 了高COD、高盐废水的产生,三废产出得到了极大幅度的降低。
附图说明
图1为本发明实施例8所得2,4-二氯苯氧乙酸异辛酯的核磁共振氢谱图。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的氯代苯氧羧酸酯的制备方法进行详细描述。
实施例1
向500mL四口瓶中依次加入167.87g 99%的苯氧乙酸甲酯(1mol)、1.43g99%的四氯化锡和1.09g 99%的二叔丁基硫,于20℃下滴加入237.92g 99%的亚硫酰氯(1.98mol),滴加完毕保温反应30min,于1kpa压力下蒸馏并收集140~150℃的馏分,得2,4-二氯苯氧乙酸甲酯236.07g,含量98.9%,收率以苯氧乙酸甲酯计99.32%。
经检测,其中杂质包括:4-氯苯氧乙酸甲酯含量0.07%,2,6-二氯苯氧乙酸甲酯含量0.03%,2,4,6-三氯苯氧乙酸甲酯含量0.19%,二叔丁基硫含量0.011%。
比较例1
向500mL四口瓶中依次加入167.87g 99%的苯氧乙酸甲酯(1mol)、2g 99%的四氯化锡,于20℃下滴加入237.92g 99%的亚硫酰氯(1.98mol),滴加完毕保温反应30min,于1kpa压力下蒸馏并收集140~150℃的馏分,得2,4-二氯苯氧乙酸甲酯215.52g,含量98.7%,收率以苯氧乙酸甲酯计90.49%。
比较例2
向500mL四口瓶中依次加入167.87g 99%的苯氧乙酸甲酯(1mol)、2g 99%的二叔丁基硫,于20℃下滴加入237.92g 99%的亚硫酰氯(1.98mol),滴加完毕保温反应30min,于1kpa压力下蒸馏并收集140~150℃的馏分,得2,4-二氯苯氧乙酸甲酯193.95g,含量98.5%,收率以苯氧乙酸甲酯计81.27%。
实施例2
向500mL四口瓶中依次加入210.38g 99%的苯氧乙酸正丁酯(1mol)、1.58g99%的氯化锌和2.10g 99%的2,4,6-三甲基二苯硫,于-20℃下通入77.35g 99%的氯气(1.08mol),通入完毕保温反应30min,于1kpa压力下蒸馏并收集150~160℃的馏分,得4-氯苯氧乙酸正丁酯243.63g,含量98.7%,收率以苯氧 乙酸正丁酯计99.07%。
实施例3
向500mL四口瓶中依次加入196.21g 99%的苯氧丁酸甲酯(1mol)、0.29g99%的氯化铁和0.69g 99%的4,4'-硫代双(6-叔丁基-3-甲基苯酚),于30℃下滴加入275.39g 99%的硫酰氯(2.02mol),滴加完毕保温反应30min,于1kpa压力下蒸馏并收集150~160℃的馏分,得2,4-二氯苯氧丁酸甲酯263.63g,含量99.0%,收率以苯氧丁酸甲酯计99.19%。
实施例4
向500mL四口瓶中依次加入196.21g 99%的2-苯氧基丙酸乙酯(1mol)、1.08g 99%的四氯化钛和0.88g 99%的4,4’-二氯二苯硫,于0℃下通入78.78g99%的氯气(1.1mol),通入完毕保温反应30min,于1kpa压力下蒸馏并收集145~155℃的馏分,得2-(4-氯苯氧基)丙酸乙酯228.99g,含量99.2%,收率以2-苯氧基丙酸乙酯计99.33%。
实施例5
向500mL四口瓶中依次加入273.52g 99%的2-氯苯氧丁酸异丁酯(1mol)、0.14g 99%的氯化铝和0.41g 99%的2-甲硫基-2-甲基丙烷,于50℃下通入85.94g99%的氯气(1.2mol),通入完毕保温反应30min,于1kpa压力下蒸馏并收集160~170℃的馏分,得2,4-二氯苯氧丁酸异丁酯305.25g,含量99.4%,收率以2-氯苯氧丁酸异丁酯计99.41%。
实施例6
向500mL四口瓶中依次加入196.21g 99%的2-苯氧基丙酸乙酯(1mol)、0.69g 99%的二氧化钛和1.08g 99%的4,4’-二氯二苯硫,于60℃下滴加入280.85g 99%的硫酰氯(2.06mol),滴加完毕保温反应30min,于1kpa压力下蒸馏并收集150~160℃的馏分,得2-(2,4-二氯苯氧基)丙酸乙酯263.02g,含量99.3%,收率以2-苯氧基丙酸乙酯计99.26%。
实施例7
向500mL四口瓶中依次加入259.34g 99%的2-(4-氯苯氧基)丙酸正丁酯(1mol)、0.65g 99%的醋酸铅和0.13g 99%的2-巯基-2-甲基丙烷,于40℃下滴加入118.96g 99%的亚硫酰氯(0.99mol),滴加完毕保温反应30min,于1kpa 压力下蒸馏并收集155~165℃的馏分,得2-(2,4-二氯苯氧基)丙酸正丁酯291.22g,含量99.0%,收率以2-(4-氯苯氧基)丙酸正丁酯计99.01%。
实施例8
向500mL四口瓶中依次加入267.07g 99%的苯氧乙酸异辛酯(1mol)、2.67g99%的氧化铝和2.27g 99%的4,4’-硫代双(6-叔丁基-3-甲基苯酚),于100℃下通入171.88g 99%的氯气(2.4mol),滴加完毕保温反应30min,于1kpa压力下蒸馏并收集175~185℃的馏分,得2,4-二氯苯氧乙酸异辛酯333.35g,含量99.1%,收率以苯氧乙酸异辛酯计99.12%。
采用核磁共振对制备的2,4-二氯苯氧乙酸异辛酯进行检测,结果见图1,图1为2,4-二氯苯氧乙酸异辛酯的核磁共振氢谱图。
实施例9
在三级串联连续反应器(每个容积为100ml)内分别加入30.34g负载率为20%的氯化镁/硅胶负载型催化剂和6.07g负载率为5%的2-甲基二苯硫/硅胶负载型催化剂,向第一级反应器内加入91.02g 99%的2-甲基苯氧乙酸甲酯(0.5mol),搅拌,然后于100℃下匀速加入68.85g 99%的硫酰氯(0.505mol),随着硫酰氯的加入,物料由第一级反应器溢流进入第二级反应器,控制第二级反应器温度为100℃,待硫酰氯加完后接着按比例匀速加入1729.38g 99%的2-甲基苯氧乙酸甲酯(9.5mol)和1308.15g 99%的硫酰氯(9.595mol),随着物料从第一级反应器的加入,物料不断溢流进入第二级反应器和第三级反应器,待第三级反应器也有物料时保持其温度为100℃,反应物料最后由第三级反应器溢流出系统,得到4-氯-2-甲基苯氧乙酸甲酯,而负载型催化剂由于密度较大,不会随物料流出系统。待所有物料加入完毕保温30min,将第一、二、三级反应器中的物料过滤与由第三级反应器溢流出的4-氯-2-甲基苯氧乙酸甲酯合并,得4-氯-2-甲基苯氧乙酸甲酯2146.00g,含量99.4%,收率以2-甲基苯氧乙酸甲酯计99.37%。
实施例10
向500mL四口瓶中依次加入309.59g 99%的2-甲基苯氧丁酸异辛酯(1mol)、1.55g负载率为10%的氧化铁/硅胶负载型催化剂和20.67g负载率为15%的2-甲硫基-2-甲基丙烷/硅胶负载型催化剂,于40℃下滴加入140.42g 99% 的硫酰氯(1.03mol),滴加完毕保温反应30min,过滤得4-氯-2-甲基苯氧丁酸异辛酯341.38g,含量99.4%,收率以2-甲基苯氧丁酸异辛酯计99.53%。
实施例11
在三级串联连续反应器(每个容积为100ml)内分别加入21.24g负载率为15%的二氧化钛/硅胶负载型催化剂和31.86g负载率为10%的二叔丁基硫/硅胶负载型催化剂,向第一级反应器内加入91.02g 99%的2-甲基苯氧乙酸甲酯(0.5mol),搅拌,然后于-20℃下匀速加入68.85g 99%的硫酰氯(0.505mol),随着硫酰氯的加入,物料由第一级反应器溢流进入第二级反应器,控制第二级反应器温度为-20℃,待硫酰氯加完后接着按比例匀速加入1729.38g 99%的2-甲基苯氧乙酸甲酯(9.5mol)和1308.15g 99%的硫酰氯(9.595mol),随着物料从第一级反应器的加入,物料不断溢流进入第二级反应器和第三级反应器,待第三级反应器也有物料时保持其温度为-20℃,反应物料最后由第三级反应器溢流出系统,得到4-氯-2-甲基苯氧乙酸甲酯,而负载型催化剂由于密度较大,不会随物料流出系统。待所有物料加入完毕保温30min,将第一、二、三级反应器中的物料过滤与由第三级反应器溢流出的4-氯-2-甲基苯氧乙酸甲酯合并,得4-氯-2-甲基苯氧乙酸甲酯2145.14g,含量99.1%,收率以2-甲基苯氧乙酸甲酯计99.13%。
由上述实施例可知,本发明提供的制备方法具有较高的收率和纯度,氯化反应的选择性较高。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种氯代苯氧羧酸酯的制备方法,包括以下步骤:
    苯氧羧酸酯在催化剂A和催化剂B的作用下,和氯化剂进行2位和/或4位的选择性氯化反应,得到氯代苯氧羧酸酯;
    所述催化剂A为路易斯酸;
    所述催化剂B具有以下结构式:
    R 1'-S-R 2';
    其中,R 1'和R 2'独立的选自H、C1~C4烷基、苯基或取代苯基,所述取代苯基的取代基选自C1~C4烷基、卤素、羟基、硝基、氨基和氰基中的一个或多个;
    所述R 1'和R 2'的总碳原子数为4~22个。
  2. 根据权利要求1所述的制备方法,其特征在于,所述苯氧羧酸酯具有以下式Ⅰ~式Ⅳ任一结构:
    Figure PCTCN2019076287-appb-100001
    其中,
    R 1为C1~C3的亚烷基;
    R为C1~C10的烷基或C3~C10的环烷基。
  3. 根据权利要求2所述的制备方法,其特征在于,所述R 1为-CH 2-,-CH(CH 3)-,-(CH 2) 2-或-(CH 2) 3-;R为甲基、乙基、丙基、异丙基、正丁基、异丁基、异辛基或环己基。
  4. 根据权利要求1所述的制备方法,其特征在于,所述催化剂A为SnCl 4、MgCl 2、FeCl 3、AlCl 3、BF 3、ZnCl 2、TiCl 4、SbF 5、Al 2O 3、Fe 2O 3、TiO 2、Pb(OAc) 2、Zn(OAc) 2和Al 2O(OAc) 4中的一种或多种。
  5. 根据权利要求1所述的制备方法,其特征在于,所述催化剂B为2-甲硫基-2-甲基丙烷、二叔丁基硫、2-巯基-2-甲基丙烷、二苯硫、4,4’-二氯二苯硫、2-甲基二苯硫、2,4,6-三甲基二苯硫、4,4'-硫代双(6-叔丁基-3-甲基苯酚)中的一种或多种。
  6. 根据权利要求1所述的制备方法,其特征在于,所述催化剂A的用量为苯氧羧酸酯重量的0.05%~1.0%;所述催化剂B的用量为苯氧羧酸酯重量的0.05%~1.0%。
  7. 根据权利要求1所述的制备方法,其特征在于,所述反应温度为-20~100℃。
  8. 根据权利要求1所述的制备方法,其特征在于,所述选择性氯化反应结束后,进行减压蒸馏,得到氯代苯氧羧酸酯。
  9. 根据权利要求1所述的制备方法,其特征在于,所述催化剂A和/或催化剂B为负载型催化剂。
  10. 根据权利要求9所述的制备方法,其特征在于,所述选择性氯化反应结束后,直接进行过滤,得到氯代苯氧羧酸酯。
PCT/CN2019/076287 2018-03-19 2019-02-27 一种氯代苯氧羧酸酯的制备方法 WO2019179291A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/979,541 US11078150B2 (en) 2018-03-19 2019-02-27 Preparation method for chlorophenoxycarboxylate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810226024.7A CN108947820A (zh) 2018-03-19 2018-03-19 一种氯代苯氧羧酸酯的制备方法
CN201810226024.7 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019179291A2 true WO2019179291A2 (zh) 2019-09-26

Family

ID=64495239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076287 WO2019179291A2 (zh) 2018-03-19 2019-02-27 一种氯代苯氧羧酸酯的制备方法

Country Status (4)

Country Link
US (1) US11078150B2 (zh)
CN (2) CN108947820A (zh)
AR (1) AR115274A1 (zh)
WO (1) WO2019179291A2 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326882A (en) * 1978-08-28 1982-04-27 Ppg Industries, Inc. Trichlorophenoxy alkanoic acid free of chlorinated dibenzo-p-dioxins
DE3049541A1 (de) 1980-12-31 1982-07-29 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von 2,4-dichlor- bzw. 2-methyl-4-chlorphenoxyessigsaeure
JPWO2009001670A1 (ja) 2007-06-05 2010-08-26 帝人株式会社 ポリカーボネート樹脂組成物
CN102336654A (zh) * 2011-07-14 2012-02-01 大连化工研究设计院 苯氧乙酸及其衍生物的氯化方法
CN103772200A (zh) * 2012-10-24 2014-05-07 南通泰禾化工有限公司 一种2,4-二氯苯氧乙酸异辛酯的制备方法
CN106892808A (zh) * 2017-02-28 2017-06-27 山东润博生物科技有限公司 一种2,4‑二氯苯氧乙酸的制备方法
CN108947840A (zh) * 2018-03-19 2018-12-07 山东润博生物科技有限公司 一种氯代苯氧羧酸酯的制备方法

Also Published As

Publication number Publication date
US20210002201A1 (en) 2021-01-07
CN108947820A (zh) 2018-12-07
CN117645540A (zh) 2024-03-05
US11078150B2 (en) 2021-08-03
AR115274A1 (es) 2020-12-16

Similar Documents

Publication Publication Date Title
US20130090508A1 (en) Method for Preparing 1-Octene by Oligomerization of Ethylene
CN103553881B (zh) 联苯二酚类化合物的制备方法
CN102212082B (zh) 瑞舒伐他汀钙中间体及制备方法
CN104844556A (zh) 管式反应器连续制备碳酸亚乙烯酯的方法
WO2019179265A1 (zh) 一种苯氧羧酸类除草剂的制备方法
CN103641722A (zh) 一种邻硝基溴苄的生产方法
CN103420801A (zh) 制备五氟苯酚的方法
WO2019179287A2 (zh) 一种2,4-二氯苯氧乙酸及其盐的制备方法
WO2019179288A2 (zh) 一种氯代苯氧羧酸酯的制备方法
WO2019179291A2 (zh) 一种氯代苯氧羧酸酯的制备方法
CN107473948A (zh) 一种由乙酰乙酸乙酯制备3,5‑二氯‑2‑戊酮的合成方法
CN109305897B (zh) 一种高产率1,3-二苯基丙二酮类化合物的生产工艺
Fleck et al. Stability of DDT and related compounds
WO2020001047A2 (zh) 一种苯氧羧酸类除草剂的制备方法
CN103360202A (zh) 一种六氟苯和一氯五氟苯的制备方法
CN105367436A (zh) 一种n,n-二甲基苯甲酸酯类化合物的制备方法
WO2019179286A2 (zh) 一种苯氧乙酸酯的制备方法
CN109111370A (zh) 一种3,5-二溴-2-氨基苯甲酸的制备方法
CN108314646A (zh) 一种高分散双金属纳米材料制备泌尿生殖系统用药物中间体的方法
CN113121317B (zh) 一种1,4-二氯-2-(氯甲基)-5-乙氧基苯的合成方法
CN108947837A (zh) 一种2,4-二氯苯氧乙酸酯的制备方法
CN115403458B (zh) 一种环丙基甲基酮的制备方法
CN106008221B (zh) 一种邻硝基氯苄的合成方法
CN116947596B (zh) 一种六氟丁二烯的制备方法
CN108947821A (zh) 一种氯代苯氧羧酸酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772274

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772274

Country of ref document: EP

Kind code of ref document: A2