WO2019179265A1 - 一种苯氧羧酸类除草剂的制备方法 - Google Patents
一种苯氧羧酸类除草剂的制备方法 Download PDFInfo
- Publication number
- WO2019179265A1 WO2019179265A1 PCT/CN2019/075306 CN2019075306W WO2019179265A1 WO 2019179265 A1 WO2019179265 A1 WO 2019179265A1 CN 2019075306 W CN2019075306 W CN 2019075306W WO 2019179265 A1 WO2019179265 A1 WO 2019179265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- acid
- reaction
- phenol
- carbon atoms
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/31—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/09—Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/307—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
Definitions
- the invention relates to the technical field of organic synthesis, in particular to a preparation method of a phenoxycarboxylic acid herbicide.
- Phenoxycarboxylic acid herbicides are an important class of herbicides. They are widely used in agriculture because of their high herbicidal speed and wide herbicidal spectrum.
- the necessary conditions for the structure of the phenoxycarboxylic acid active compound include: a benzene ring, an oxygen atom substitution on the ring; an aliphatic chain and a carboxyl group connected to the oxygen atom; and a different substituent on the benzene ring, wherein the second The 4-substituted compound has the highest activity.
- Different herbicide species can be formed due to structural differences in groups such as benzene ring substituents; acids and esters having such herbicides are used in agricultural production.
- Such herbicides include phenoxycarboxylic acid compounds having the following structural formula:
- R 1 is an alkylene group or a secondary alkyl group having 1 to 3 carbon atoms
- R 2 is H, an alkyl group having 3 to 10 carbon atoms or a cycloalkyl group
- R 3 is H, Cl or CH 3 .
- the preparation method of the above-mentioned commonly used phenoxycarboxylic acid herbicide mainly comprises the following two steps: (1) using phenol as a main raw material to obtain chlorophenol by chlorination; 2) The chlorophenol is condensed with chlorocarboxylic acid under alkaline conditions, and the obtained reaction solution is acidified and filtered to obtain an acid in the phenoxycarboxylic acid herbicide wet material, and dried to obtain a phenoxycarboxylic acid. herbicide.
- the chlorinated phenol produced in the step (1) has an extremely unpleasant pungent odor, resulting in a very poor environment at the production site and poor chlorination selectivity.
- step (2) dichlorophenol or polychlorophenol in the chlorinated phenol will undergo condensation between the two molecules, resulting in a highly toxic substance, dioxin, which is extremely difficult to degrade, not only producing a large amount of chlorinated
- the hazardous waste of phenol and chlorophenoxycarboxylic acid, and the production of phenoxycarboxylic acid herbicide products also contain dioxins, which poses great risks to the health of the environment and production personnel, and the quality of the products is poor. .
- dioxin will enter the plant, air, soil and water sources with the use of phenoxycarboxylic acid herbicides and their derivatives, and will become more serious environmental and health hazards as the food chain is enriched.
- the technical problem to be solved by the present invention is to provide a method for preparing a phenoxycarboxylic acid herbicide, which can improve product quality and an operating environment at a production site.
- the invention provides a preparation method of a phenoxycarboxylic acid herbicide, comprising the following steps:
- the chlorocarboxylic acid ester has the formula ClR 1 COOR, wherein R 1 is selected from an alkylene group or a secondary alkyl group having 1 to 3 carbon atoms, and R is selected from an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms;
- the first catalyst is selected from the group consisting of Lewis The acid
- the second catalyst is selected from the group consisting of a thioether compound having 5 to 22 carbon atoms, a thiazole compound having 5 to 22 carbon atoms, an isothiazole compound having 5 to 22 carbon atoms, or a carbon number. a thiophene compound of 5 to 22;
- R 1 is selected from an alkylene group or a secondary alkyl group having 1 to 3 carbon atoms
- R 3 is H, Cl or CH 3 .
- the basic substance is sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium carbonate or potassium carbonate.
- the basic substance is sodium hydroxide, potassium hydroxide, sodium hydrogencarbonate or potassium hydrogencarbonate, and the molar ratio of the phenol or o-cresol to the basic substance is 1: (1 to 1.08). );
- the basic substance is calcium hydroxide, magnesium hydroxide, sodium carbonate or potassium carbonate, and the molar ratio of the phenol or o-cresol to the basic substance is 1: (0.5 to 0.54).
- the condensation reaction is carried out in an organic solvent which is benzene, toluene or xylene.
- the organic solvent is used in an amount of from 1 to 5 times the weight of phenol or o-cresol.
- the molar ratio of the phenol or o-cresol to the chlorocarboxylic acid ester is 1: (1 to 1.08), and the temperature of the condensation reaction is 60 to 120 °C.
- the chlorinating agent is chlorine gas, thionyl chloride or sulfuryl chloride.
- the molar ratio of the phenoxycarboxylate to the chlorinating agent is 1: (1.98 to 2.4), and in the step S3, R 3 is Cl;
- the molar ratio of the phenoxycarboxylate to the chlorinating agent is 1: (0.99 to 1.2), and in the step S3, R 3 is H or CH 3 .
- the first catalyst is used in an amount of 0.05% to 1.0% by weight based on the phenoxycarboxylate
- the second catalyst is used in an amount of 0.05% to 1.0% by weight based on the phenoxycarboxylate.
- the temperature of the selective chlorination reaction is -20 to 100 °C.
- the invention uses phenol to synthesize phenoxycarboxylate by condensation, then selectively chlorinates to synthesize chlorophenoxycarboxylate, and finally acidifies to synthesize phenoxycarboxylic acid herbicide.
- the invention effectively avoids the production and use of chlorinated phenol with unpleasant odor, fundamentally eliminates the production of highly toxic dioxins, and greatly improves product quality and production.
- On-site operating environment Experiments show that the content of the obtained phenoxycarboxylic acid herbicide product is ⁇ 98.5%, and the total yield is ⁇ 98%.
- the invention adopts phenol as a raw material, obtains high-quality phenoxycarboxylic acid herbicide by condensation, selective chlorination and acid hydrolysis, and the method of the invention effectively avoids the loss of active ingredients and improves the yield of the product. .
- the invention effectively eliminates the production of high COD and high-salt wastewater by the innovation of the process route, and the output of waste salt (metal chloride) is reduced by more than 50%, and the output of the three wastes is extremely large. Reduced, the cost of three waste treatment has dropped significantly.
- Figure 1 is a nuclear magnetic resonance spectrum of 2,4-dichlorophenoxyacetic acid obtained in Example 1 of the present invention.
- the invention provides a preparation method of a phenoxycarboxylic acid herbicide, comprising the following steps:
- the chlorocarboxylic acid ester has the formula ClR 1 COOR, wherein R 1 is selected from an alkylene group or a secondary alkyl group having 1 to 3 carbon atoms, and R is selected from an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms;
- the first catalyst is selected from the group consisting of Lewis The acid
- the second catalyst is selected from the group consisting of a thioether compound having 5 to 22 carbon atoms, a thiazole compound having 5 to 22 carbon atoms, an isothiazole compound having 5 to 22 carbon atoms, or a carbon number. a thiophene compound of 5 to 22;
- R 1 is selected from an alkylene group or a secondary alkyl group having 1 to 3 carbon atoms
- R 3 is H, Cl or CH 3 .
- the preparation method of the phenoxycarboxylic acid herbicide provided by the invention can improve the operating environment at the production site, and has the advantages of good product quality, high yield, and less waste.
- a phenol is used as a main raw material, a certain proportion of a basic substance is added thereto, and a chlorocarboxylic acid ester is added at a certain temperature to react to obtain a phenoxycarboxylate.
- the phenol described in the present invention means phenol or o-cresol.
- the chlorocarboxylic acid ester is methyl chloroacetate, ethyl chloroacetate, isopropyl chloroacetate, n-butyl chloroacetate, isobutyl chloroacetate, isooctyl chloroacetate, N-butyl chloropropionate, n-decyl chloropropionate, ethyl chlorobutyrate or isooctyl chlorobutyrate.
- the present invention uses the above phenol and a chlorocarboxylic acid ester ClR 1 COOR to form a phenoxycarboxylate by condensation, and the phenoxycarboxylate refers to a substance having the following structure:
- the present invention performs a condensation reaction in the presence of a basic substance to obtain a chloride and a phenoxycarboxylate;
- the basic substance is preferably sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide or sodium hydrogencarbonate. , potassium bicarbonate, sodium carbonate or potassium carbonate.
- the condensation reaction can be carried out in an organic solvent, the reaction system being relatively uniform; the organic solvent is preferably benzene, toluene or xylene.
- the organic solvent is preferably benzene, toluene or xylene.
- a certain proportion of alkali and an organic solvent are added to the phenol, and the water is heated and refluxed to a water content of ⁇ 0.5%, and then the chlorocarboxylic acid ester is added dropwise at a certain temperature, and the temperature is lowered at this temperature.
- the reaction was kept for 0.5 h, filtered under reduced temperature, and an appropriate amount of the above solvent was added to wash the filter cake, and dried to obtain a metal chloride and a crude phenoxycarboxylate containing a solvent, and the solvent was distilled off to obtain a phenoxycarboxylate product.
- the molar ratio of the phenol to the basic substance may be 1: (1 to 1.08), preferably 1: (1) 1.04), more preferably 1: (1.02 ⁇ 1.04);
- the basic substance is calcium hydroxide, magnesium hydroxide, sodium carbonate or potassium carbonate, the molar ratio of phenol to basic substance can be 1: (0.5 ⁇ 0.54) It is preferably 1: (0.5 to 0.52), more preferably 1: (0.51 to 0.52).
- the organic solvent is used in an amount of usually 1 to 5 times, preferably 1.5 to 2.5 times, based on the weight of the phenol.
- the molar ratio of the phenol to the chlorocarboxylic acid ester may be 1: (1 to 1.08), preferably 1: (1 to 1.04), more preferably 1: (1.02 to 1.04).
- the temperature of the condensation reaction may be from 60 to 120 ° C, preferably from 60 to 100 ° C, more preferably from 80 to 100 ° C.
- the resulting condensation liquid is filtered, and conventionally washed and dried to obtain a crude product; wherein the filtration temperature is usually from 30 to 50 °C.
- the first embodiment of the present invention adds a certain proportion of the first catalyst and the second catalyst, and then a certain amount of the chlorinating agent is added to the selective chlorination reaction at a certain temperature, and the thermal insulation reaction is completed after 0.5. h, chlorophenoxycarboxylate was obtained.
- the first catalyst is a Lewis acid.
- a substance which generally accepts an electron pair is a Lewis acid; the Lewis acid catalyst of the present invention generally employs: (1) a chloride containing Mg, Fe, Al, Zn, Ti or Sn; (2) containing Mg, Fe, Al. An oxide of Zn, Ti or Sn; (3) a fluoride such as BF 3 , SbF 5 or the like; (4) an acetic acid compound such as Pb(OAc) 2 , Zn(OAc) 2 or the like.
- the first catalyst includes, but is not limited to, SnCl 4 , MgCl 2 , FeCl 3 , AlCl 3 , ZnCl 2 , TiCl 4 , BF 3 , SbF 5 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , Pb. (OAc) 2 , Zn(OAc) 2 or Al 2 O(OAc) 4 , preferably MgCl 2 , FeCl 3 , ZnCl 2 , SbF 5 , TiO 2 , Pb(OAc) 2 , more preferably FeCl 3 , TiO 2 , Pb(OAc) 2 .
- the second catalyst is a thioether compound having 5 to 22 carbon atoms, a thiazole compound having 5 to 22 carbon atoms, an isothiazole compound having 5 to 22 carbon atoms, or carbon.
- a thiophene compound having 5 to 22 atoms preferably a thioether having 5 to 22 carbon atoms, a thiazole, an isothiazole, a thiophene or a halogenated derivative thereof, including but not limited to t-butyl methyl sulfide and t-butyl Thioether, phenyl sulfide, 4,4'-dichlorophenyl sulfide, 2-methylphenyl sulfide, 2,4,6-trimethylphenyl sulfide, 4,4'-thiobis (6 -tert-Butyl-3-methylphenol), thiazole, 2-ethylthiazole, 2,5-dichlorothiazole, 4-methylthiazole,
- the first catalyst and/or the second catalyst may also be present in a supported form, that is, a supported catalyst; a preferred catalyst carrier is silica gel (the main component is silica), and the catalyst passes through The impregnation method is supported on the catalyst support.
- the loading rates of the first catalyst and the second catalyst are 10% to 20% and 5% to 15%, respectively.
- the catalyst and the product are separated by distillation in the embodiment in which the unsupported catalyst is partially used to obtain a chlorophenoxycarboxylate; and in the embodiment in which part of the first catalyst and the second catalyst are both supported,
- the separation of the catalyst from the chlorophenoxycarboxylate can be achieved directly by filtration without the need for distillation.
- the chlorine can be separated without even filtering.
- Phenoxycarboxylate which makes the separation of the catalyst and product simple and easy, while improving the efficiency of the catalyst, saving a lot of energy, and is particularly suitable for continuous operation.
- the first catalyst may be used in an amount of from 0.05% to 1.0%, preferably from 0.25% to 1.0%, more preferably from 0.5% to 1.0% by weight of the phenoxycarboxylate.
- the second catalyst may be used in an amount of from 0.05% to 1.0%, preferably from 0.2% to 0.8%, more preferably from 0.3% to 0.5% by weight based on the phenoxycarboxylate.
- the amount of the active ingredient in the supported catalyst is from 0.05% to 1.0%, preferably from 0.25% to 1.0%, more preferably from 0.5% to 1.0% by weight based on the weight of the phenoxycarboxylate.
- the amount of the active ingredient in the supported catalyst is from 0.05% to 1.0%, preferably from 0.2% to 0.8%, more preferably from 0.3% to 0.5% by weight based on the weight of the phenoxycarboxylate.
- the chlorinating agent of the present invention is preferably chlorine gas, thionyl chloride or sulfuryl chloride, more preferably chlorine gas or sulfuryl chloride.
- the present invention selectively chlorinates on the benzene ring of the synthesized phenoxycarboxylate to obtain a chlorophenoxycarboxylate.
- the selective chlorination reaction temperature of the present invention may be from -20 to 100 ° C, preferably from -20 to 60 ° C, more preferably from -20 to 20 ° C.
- the chlorophenoxycarboxylate of the present invention means a substance having the following structure:
- the molar ratio of the phenoxycarboxylate to the chlorinating agent of the present invention can be selected as follows: when the phenoxycarboxylate is of the formula II-1 and the target product is of the formula III-2, it is molar with the chlorinating agent.
- the ratio is 1: (1.98 to 2.4), preferably 1: (2 to 2.2), more preferably 1: (2.02 to 2.06); when the phenoxycarboxylate is of the formula II-1 and the target product is the formula III-1,
- the molar ratio thereof to the chlorinating agent is 1: (0.99 to 1.2), preferably 1: (1 to 1.1), more preferably 1: (1.01 to 1.03); when the phenoxycarboxylate is of the formula II-2,
- the molar ratio to the chlorinating agent is 1: (0.99 to 1.2), preferably 1: (1 to 1.1), more preferably 1: (1.01 to 1.03).
- the phenoxycarboxylate is selectively chlorinated to obtain a chlorophenoxycarboxylate. Then, the chlorophenoxycarboxylate is subjected to an acid hydrolysis reaction to obtain a phenoxycarboxylic acid herbicide represented by Formula I. Further, the produced hydrogen chloride can be recovered for the acid hydrolysis reaction of the phenoxycarboxylate to directly obtain the phenoxycarboxylic acid and the alcohol.
- a certain amount of acid is added to the chlorocarboxylic acid ester, and the acid is reacted at a certain temperature for 2 to 4 hours, and the alcohol formed by the reaction is distilled off. After the reaction is completed, the temperature is lowered to room temperature, filtered, and a small amount is added. The filter cake is washed with water, and the filter cake is dried to obtain a phenoxycarboxylic acid herbicide.
- the acid of the present invention may be a sulfonic acid such as hydrochloric acid, phosphoric acid, sulfuric acid or sulfonic acid XSO 3 H, wherein X is an alkyl group having 1 to 18 carbon atoms, an aryl group, an alkyl group substituted by a halogen or an aromatic group. base.
- the acid hydrolysis of the present invention preferably uses a non-oxidizing, high-boiling, water-soluble phosphoric acid or sulfonic acid as a catalyst to ensure product quality and recycling of the catalyst; compared to the process using solid acid as a catalyst, not only Speeding up the reaction can also reduce the difficulty of separation of the product and the catalyst.
- the acid concentration of the acid used for the acid hydrolysis of the chlorophenoxycarboxylate may be 5% to 35%; the amount of the acid used is 0.4 to 1 by weight of the chlorophenoxycarboxylate. Times.
- the acid hydrolysis reaction temperature may be from 60 to 120 ° C, preferably from 80 to 100 ° C.
- the phenoxycarboxylic acid herbicide obtained by the acid hydrolysis of the present invention has the structure of the formula I, specifically refers to a substance having the following structure:
- the experiment shows that the content of the phenoxycarboxylic acid herbicide obtained in the embodiment of the invention is ⁇ 98.5%, the total yield is ⁇ 98%, and the water washing water and the filtrate are combined and reused.
- the method of the invention effectively avoids the loss of active ingredients and improves the yield of the product.
- the following are the various target products and impurities (mass content) in some embodiments of the invention:
- Table 1 shows the target products and impurities in some embodiments of the invention
- the preparation method of the phenoxycarboxylic acid herbicide provided by the invention avoids the production and use of the chlorophenol, and can fundamentally eliminate the formation of highly toxic dioxins, greatly improving product quality and production.
- the environment of the site while increasing the yield.
- the invention effectively eliminates the production of high COD and high-salt wastewater by the innovation of the process route, and the output of waste salt (metal chloride) is reduced by more than 50%, and the output of the three wastes is extremely large. Reduced, the cost of three waste treatment has dropped significantly, which is conducive to industrialization.
- Fig. 1 is a 1 H NMR (DMSO-d6) spectrum; the content is 98.8%. The total yield was 98.0% based on phenol.
- n-butyl chloropropionate is reacted, the reaction is kept at this temperature for 0.5 h, the temperature is lowered to 50 ° C, filtered, and the filter cake is washed with an appropriate amount of toluene, followed by drying to obtain sodium chloride and toluene containing 2 - crude n-butyl phenoxypropionate, toluene was distilled off, and 230.26 g of n-butyl 2-phenoxypropionate was obtained at a content of 96.0%.
- n-nonyl 2-phenoxypropionate obtained by distillation, 2.06 g of 99% pure magnesium chloride and 0.47 g of 99% pure 2,4,5-tri-tert-butylisothiazole were added, and 170.45 g was introduced at -20 °C.
- the chlorine gas with a purity of 99% is reacted, the reaction is kept at this temperature for 0.5 h, and the fraction of 165-175 ° C is distilled at a pressure of 1 kPa to obtain 2-(2,4-dichlorophenoxy)propionic acid.
- the n-decyl ester was 374.49 g, and the content was 98.89%.
- the stage reactor maintains the temperature of -20 ° C when the second and third stage reactors also have materials, and the reaction material finally overflows from the system by the third stage reactor to obtain isooctyl 4-chlorophenoxyacetate, and the load Due to the high density, the type catalyst does not flow out of the system with the material.
- the materials in the first, second and third stage reactors are filtered and combined with isooctyl 4-chlorophenoxyacetate overflowing from the third stage reactor to obtain 4-chlorophenoxyacetic acid. Isooctyl ester 2980.8 g, content 99.12%.
- the reaction is kept at this temperature for 0.5 h, the temperature is lowered to 30 ° C, filtered, and an appropriate amount of xylene is added to wash the filter cake, followed by drying to obtain potassium chloride and
- the crude ethyl o-toluoxybutyrate containing xylene was distilled, and xylene was distilled off, and 230.35 g of o-toluoxybutyric acid ethyl ester was obtained, and the content was 96.0%.
- n-butyl chloropropionate is reacted, the reaction is kept at this temperature for 0.5 h, the temperature is lowered to 50 ° C, filtered, and the filter cake is washed with an appropriate amount of toluene, followed by drying to obtain sodium chloride and toluene containing 2 - crude n-butyl phenoxypropionate, toluene was distilled off, and 2302.6 g of n-butyl 2-phenoxypropionate was obtained in an amount of 96.0%.
- the materials in the first, second and third stage reactors are combined with the n-butyl 2-(4-chlorophenoxy)propionate overflowed from the third-stage reactor. 2571.0 g of n-butyl 2-(4-chlorophenoxy)propionate, content 98.96%.
- the content of the phenoxycarboxylic acid herbicide product obtained in the examples of the present invention is ⁇ 98.5%, the total yield is ⁇ 98%, and the water washing water and the filtrate are combined and reused.
- the invention uses phenol to synthesize phenoxycarboxylate by condensation, then selectively chlorinates to synthesize chlorophenoxycarboxylate, and finally acidifies to synthesize phenoxycarboxylic acid herbicide.
- the invention effectively avoids the production and use of the chlorinated phenol with unpleasant odor, fundamentally eliminates the production of highly toxic dioxins, and greatly improves the product quality and the operating environment at the production site.
- the invention effectively eliminates the production of high COD and high-salt wastewater, and the output of waste salt (metal chloride) is reduced by more than 50%, which greatly reduces the treatment amount of the three wastes, the difficulty of treating the three wastes, and the treatment cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
一种苯氧羧酸类除草剂的制备方法,包括:S1、将苯酚或邻甲酚在碱性物质作用下,与氯代羧酸酯进行缩合反应,得到苯氧羧酸酯;所述氯代羧酸酯通式为ClR1COOR,R1为C1~3的亚烷基或次烷基,R为C1~10的烷基或C3~10的环烷基;S2、将所述苯氧羧酸酯在第一催化剂和第二催化剂作用下,与氯化剂进行选择性氯化,得到氯代苯氧羧酸酯;所述第一催化剂选自路易斯酸,第二催化剂为C5~22的硫醚类化合物、噻唑类化合物、异噻唑类化合物或噻吩类化合物;S3、将所述氯代苯氧羧酸酯进行酸解反应,得到式I所示的苯氧羧酸类除草剂,R3为H、Cl或CH3。本发明能改善产品品质和生产现场的操作环境,三废少。(I)
Description
本申请要求于2018年03月19日提交中国专利局、申请号为201810226592.7、发明名称为“一种苯氧羧酸类除草剂的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及有机合成技术领域,尤其是涉及一种苯氧羧酸类除草剂的制备方法。
苯氧羧酸类除草剂是一类重要除草剂,由于其除草速度较快、除草谱较宽等优点,在农业上应用广泛。苯氧羧酸类活性化合物结构的必备条件包括:一个苯环、环上一个氧原子取代;与氧原子相连的脂肪链及一个羧基;苯环上含有不同的取代基,其中以第2、4位取代的化合物活性最高。由于苯环取代基等基团的结构差异,可形成不同的除草剂品种;农业生产中使用较多的有此类除草剂的酸和酯类。这类除草剂包括具有以下结构通式的苯氧羧酸类化合物:
式a中,R
1为碳原子数为1~3的亚烷基或次烷基,R
2为H、碳原子数为3~10的烷基或环烷基,R
3为H、Cl或CH
3。
现有的被普遍采用的上述苯氧羧酸类除草剂(R
2为H)的制备方法主要有以下两个步骤:(1)以酚为主要原料,经氯化制得氯代酚;(2)氯代酚在碱性条件下与氯代羧酸进行缩合反应,所得反应液经过酸化、过滤,得到苯氧羧酸类除草剂湿料中酸类,烘干后得苯氧羧酸类除草剂。
上述方法中,第(1)步产出的氯代酚具有极难闻的刺激性气味,导致生产现场环境极差,而且氯化选择性较差。而第(2)步中,氯代酚中的二氯酚或多氯酚会发生两分子间的缩合,从而产生极难降解的剧毒性物质-二噁英,不仅会产生大量含有氯代酚、氯代苯氧羧酸的危废,而且产出的苯氧羧酸类除草剂产品中也含有二噁英,这给环境和生产人员的健康带来了极大的风险,产 品品质差。此外,二噁英还会随着苯氧羧酸类除草剂及其衍生产品的使用进入植物体、空气、土壤和水源,并随着食物链富集,进而造成更加严重的环境和健康危害。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种苯氧羧酸类除草剂的制备方法,该方法能改善产品品质和生产现场的操作环境。
本发明提供一种苯氧羧酸类除草剂的制备方法,包括以下步骤:
S1、将苯酚或邻甲酚在碱性物质存在的条件下,与氯代羧酸酯进行缩合反应,得到苯氧羧酸酯;
所述氯代羧酸酯的通式为ClR
1COOR,其中R
1选自碳原子数为1~3的亚烷基或次烷基,R选自碳原子数为1~10的烷基或碳原子数为3~10的环烷基;
S2、将所述苯氧羧酸酯在第一催化剂和第二催化剂存在的条件下,与氯化剂进行选择性氯化,得到氯代苯氧羧酸酯;所述第一催化剂选自路易斯酸,所述第二催化剂选自碳原子数为5~22的硫醚类化合物、碳原子数为5~22的噻唑类化合物、碳原子数为5~22的异噻唑类化合物或碳原子数为5~22的噻吩类化合物;
S3、将所述氯代苯氧羧酸酯进行酸解反应,得到式I所示的苯氧羧酸类除草剂;
式I中,R
1选自碳原子数为1~3的亚烷基或次烷基,R
3为H、Cl或CH
3。
优选地,S1步骤中,所述碱性物质为氢氧化钠、氢氧化钾、氢氧化钙、氢氧化镁、碳酸氢钠、碳酸氢钾、碳酸钠或碳酸钾。
优选地,S1步骤中,所述碱性物质为氢氧化钠、氢氧化钾、碳酸氢钠或碳酸氢钾,所述苯酚或邻甲酚与碱性物质的摩尔比为1:(1~1.08);
或者,所述碱性物质为氢氧化钙、氢氧化镁、碳酸钠或碳酸钾,所述苯酚或邻甲酚与碱性物质的摩尔比为1:(0.5~0.54)。
优选地,S1步骤中,所述缩合反应在有机溶剂中进行,所述有机溶剂为苯、甲苯或二甲苯。
优选地,S1步骤中,所述有机溶剂的用量为苯酚或邻甲酚重量的1~5倍。
优选地,S1步骤中,所述苯酚或邻甲酚与氯代羧酸酯的摩尔比为1:(1~1.08),所述缩合反应的温度为60~120℃。
优选地,S2步骤中,所述氯化剂为氯气、亚硫酰氯或硫酰氯。
优选地,S2步骤中,所述苯氧羧酸酯与氯化剂的摩尔比为1:(1.98~2.4),S3步骤中R
3为Cl;
或者,所述苯氧羧酸酯与氯化剂的摩尔比为1:(0.99~1.2),S3步骤中R
3为H或CH
3。
优选地,S2步骤中,所述第一催化剂的用量为苯氧羧酸酯重量的0.05%~1.0%,所述第二催化剂的用量为苯氧羧酸酯重量的0.05%~1.0%。
优选地,S2步骤中,所述选择性氯化反应的温度为-20~100℃。
本发明使用酚经缩合合成苯氧羧酸酯,然后选择性氯化合成氯代苯氧羧酸酯,最后酸解合成苯氧羧酸类除草剂。与现有合成技术相比,本发明有效的避免了具有难闻气味的氯代酚的生产和使用,从根本上杜绝了剧毒的二噁英的产生,极大的改善了产品品质和生产现场的操作环境。实验显示,所得苯氧羧酸类除草剂产品含量≥98.5%,总收率≥98%。本发明以酚为原料,经缩合、选择性氯化和酸解,得到了高品质的苯氧羧酸类除草剂,本发明的方法有效地避免了有效成分的损失,提高了产品的收率。
此外,本发明通过对工艺路线的创新,有效杜绝了高COD、高盐废水的产生,同时废盐(金属氯化物)的产出量减少了50%以上,三废产出有了极大幅度的降低,三废处理成本大幅下降。
图1为本发明实施例1所得2,4-二氯苯氧乙酸的核磁共振氢谱图。
本发明提供了一种苯氧羧酸类除草剂的制备方法,包括以下步骤:
S1、将苯酚或邻甲酚在碱性物质存在的条件下,与氯代羧酸酯进行缩合反 应,得到苯氧羧酸酯;
所述氯代羧酸酯的通式为ClR
1COOR,其中R
1选自碳原子数为1~3的亚烷基或次烷基,R选自碳原子数为1~10的烷基或碳原子数为3~10的环烷基;
S2、将所述苯氧羧酸酯在第一催化剂和第二催化剂存在的条件下,与氯化剂进行选择性氯化,得到氯代苯氧羧酸酯;所述第一催化剂选自路易斯酸,所述第二催化剂选自碳原子数为5~22的硫醚类化合物、碳原子数为5~22的噻唑类化合物、碳原子数为5~22的异噻唑类化合物或碳原子数为5~22的噻吩类化合物;
S3、将所述氯代苯氧羧酸酯进行酸解反应,得到式I所示的苯氧羧酸类除草剂;
式I中,R
1选自碳原子数为1~3的亚烷基或次烷基,R
3为H、Cl或CH
3。
本发明提供的苯氧羧酸类除草剂的制备方法能改善生产现场的操作环境,并且具有产品品质好、收率高、三废少等优点。
本发明实施例以酚为主要原料,向其中投入一定比例的碱性物质,于一定温度下加入氯代羧酸酯使之反应,得到苯氧羧酸酯。其中,本发明所述的酚是指苯酚或邻甲酚。
本发明所述氯代羧酸酯的通式为ClR
1COOR,式中R
1选自碳原子数为1~3的亚烷基或次烷基,具体的,R
1=CH
2、CH(CH
3)或(CH
2)
3。R选自碳原子数为1~10的烷基或碳原子数为3~10的环烷基,优选选自碳原子数为1~4的烷基。在本发明的实施例中,所述氯代羧酸酯为氯乙酸甲酯、氯乙酸乙酯、氯乙酸异丙酯、氯乙酸正丁酯、氯乙酸异丁酯、氯乙酸异辛酯、氯丙酸正丁酯、氯丙酸正癸酯、氯丁酸乙酯或氯丁酸异辛酯。
本发明使用上述酚与氯代羧酸酯ClR
1COOR,经缩合合成苯氧羧酸酯,所述苯氧羧酸酯是指具有以下结构的物质:
本发明在碱性物质存在的条件下进行缩合反应,得到氯化物和苯氧羧酸酯;所述碱性物质优选为氢氧化钠、氢氧化钾、氢氧化钙、氢氧化镁、碳酸氢钠、碳酸氢钾、碳酸钠或碳酸钾。
在本发明的一些实施例中,所述缩合反应可以在有机溶剂中进行,反应体系相对均匀;所述有机溶剂优选为苯、甲苯或二甲苯。本发明实施例向酚中投入一定比例的碱和有机溶剂,升温回流脱水至水分质量含量≤0.5%,再于一定温度下向其中滴加氯代羧酸酯,滴加完毕后于此温度下保温反应0.5h,降温过滤,并加入适量的上述溶剂,洗涤滤饼,烘干得到金属氯化物和含有溶剂的苯氧羧酸酯粗品,可蒸馏回收溶剂,同时得到苯氧羧酸酯产物。
其中,当所述碱性物质为氢氧化钠、氢氧化钾、碳酸氢钠或碳酸氢钾时,酚与碱性物质的摩尔比可为1:(1~1.08),优选1:(1~1.04),更优选1:(1.02~1.04);当所述碱性物质为氢氧化钙、氢氧化镁、碳酸钠或碳酸钾,酚与碱性物质的摩尔比可为1:(0.5~0.54),优选1:(0.5~0.52),更优选1:(0.51~0.52)。反应过程中,所述有机溶剂的用量一般为酚重量的1~5倍,优选1.5~2.5倍。
在本发明中,酚与氯代羧酸酯的摩尔比可为1:(1~1.08),优选1:(1~1.04),更优选1:(1.02~1.04)。所述缩合反应的温度可为60~120℃,优选60~100℃,更优选80~100℃。所得缩合液经过滤,以及常规洗涤和烘干得粗品;其中过滤温度一般为30~50℃。
得到苯氧羧酸酯后,本发明实施例向其中加入一定比例的第一催化剂和第二催化剂,然后于一定温度下加入一定量的氯化剂进行选择性氯化反应,加入完毕保温反应0.5h,得到氯代苯氧羧酸酯。
在本发明中,所述第一催化剂为路易斯酸。通常可接受一个电子对的物质就是路易斯酸;本发明所述路易斯酸催化剂一般采用:(1)含Mg、Fe、Al、Zn、Ti或Sn的氯化物;(2)含Mg、Fe、Al、Zn、Ti或Sn的氧化物;(3)氟化物,如BF
3、SbF
5等;(4)乙酸类化合物,如Pb(OAc)
2、Zn(OAc)
2等。 具体的,所述第一催化剂包括但不仅限于SnCl
4、MgCl
2、FeCl
3、AlCl
3、ZnCl
2、TiCl
4、BF
3、SbF
5、Al
2O
3、Fe
2O
3、TiO
2、Pb(OAc)
2、Zn(OAc)
2或Al
2O(OAc)
4,优选为MgCl
2、FeCl
3、ZnCl
2、SbF
5、TiO
2、Pb(OAc)
2,更优选为FeCl
3、TiO
2、Pb(OAc)
2。
在本发明中,所述第二催化剂为碳原子数为5~22的硫醚类化合物、碳原子数为5~22的噻唑类化合物、碳原子数为5~22的异噻唑类化合物或碳原子数为5~22的噻吩类化合物,优选为碳原子数为5~22的硫醚、噻唑、异噻唑、噻吩或它们的卤代衍生物,包括但不仅限于叔丁基甲基硫醚、叔丁基硫醚、苯硫醚、4,4'-二氯苯硫醚、2-甲基苯硫醚、2,4,6-三甲基苯硫醚、4,4'-硫代双(6-叔丁基-3-甲基苯酚)、噻唑、2-乙基噻唑、2,5-二氯噻唑、4-甲基噻唑、2-叔丁基噻唑、异噻唑、4,5-二甲基异噻唑、5-氯异噻唑、2,4,5-三叔丁基异噻唑、噻吩、2-甲基噻吩、2,5-二甲基噻吩、3-氯噻吩、3,4-二氯噻吩、2,3,4-三氯噻吩,其中优选叔丁基硫醚、2,4,6-三甲基苯硫醚、4,4'-硫代双(6-叔丁基-3-甲基苯酚)、2-乙基噻唑、2,5-二氯噻唑、2,4,5-三叔丁基异噻唑、4,5-二甲基异噻唑、3,4-二氯噻吩、2,3,4-三氯噻吩,更优选叔丁基硫醚、4,4'-硫代双(6-叔丁基-3-甲基苯酚)、2,4,5-三叔丁基异噻唑、2,3,4-三氯噻吩。
在本发明的实施例中,所述第一催化剂和/或第二催化剂也可以以负载的形式存在,即为负载型催化剂;优选的催化剂载体是硅胶(主要成分为二氧化硅),催化剂通过浸渍法负载至催化剂载体上。第一催化剂和第二催化剂的负载率分别为10%~20%、5%~15%。
在本发明中,部分使用非负载型催化剂的实施例中通过蒸馏分离催化剂和产品从而得到氯代苯氧羧酸酯;而在部分第一催化剂和第二催化剂均为负载型的实施例中,可以不需蒸馏而直接通过过滤实现催化剂与氯代苯氧羧酸酯的分离,特别的,当将第一催化剂和第二催化剂固定于反应器内时,甚至不需要过滤即可分离得到氯代苯氧羧酸酯,这使得催化剂和产物的分离变得简单易行,同时提高了催化剂的使用效率,节省了大量能耗,而且特别适合进行连续化操作。
在本发明的实施例中,所述第一催化剂的用量可为苯氧羧酸酯重量的0.05%~1.0%,优选为0.25%~1.0%,更优选为0.5%~1.0%。所述第二催化剂的 用量可为苯氧羧酸酯重量的0.05%~1.0%,优选为0.2%~0.8%,更优选为0.3%~0.5%。当第一催化剂以负载型催化剂的形式存在时,负载型催化剂中有效成分的用量为苯氧羧酸酯重量的0.05%~1.0%,优选为0.25%~1.0%,更优选为0.5%~1.0%,此处负载型催化剂中的有效成分是指负载于载体上的第一催化剂,第一催化剂的有效成分用量=负载型第一催化剂的使用量×负载率。当第二催化剂以负载型催化剂的形式存在时,负载型催化剂中有效成分的用量为苯氧羧酸酯重量的0.05%~1.0%,优选为0.2%~0.8%,更优选为0.3%~0.5%,此处负载型催化剂中的有效成分是指负载于载体上的第二催化剂,第二催化剂的有效成分用量=负载型第二催化剂的使用量×负载率。
本发明所述氯化剂优选为氯气、亚硫酰氯或硫酰氯,更优选为氯气或硫酰氯。本发明在所合成的苯氧羧酸酯的苯环上选择性氯化,得到氯代苯氧羧酸酯。本发明所述选择性氯化反应温度可为-20~100℃,优选-20~60℃,更优选-20~20℃。本发明所述氯代苯氧羧酸酯是指具有以下结构的物质:
本发明所述苯氧羧酸酯与氯化剂的摩尔比可按以下选取:当苯氧羧酸酯为式II-1且目标产物为式III-2式时,其与氯化剂的摩尔比为1:(1.98~2.4),优选1:(2~2.2),更优选1:(2.02~2.06);当苯氧羧酸酯为式II-1且目标产物为式III-1时,其与氯化剂的摩尔比为1:(0.99~1.2),优选1:(1~1.1),更优选1:(1.01~1.03);当苯氧羧酸酯为式II-2时,其与氯化剂的摩尔比为1:(0.99~1.2),优选1:(1~1.1),更优选1:(1.01~1.03)。
本发明实施例中苯氧羧酸酯选择性氯化,得到氯代苯氧羧酸酯。然后,将所述氯代苯氧羧酸酯进行酸解反应,得到式I所示的苯氧羧酸类除草剂。并且,所产生的氯化氢可回收用于苯氧羧酸酯酸解反应,直接得到苯氧羧酸和醇。
本发明实施例向所述氯代羧酸酯中加入一定量的酸,于一定温度下酸解反应2h~4h,同时蒸出反应生成的醇,反应完毕后降温至室温,过滤,并加入少量水洗涤滤饼,滤饼烘干得苯氧羧酸类除草剂。
本发明所述的酸可以是盐酸、磷酸、硫酸或磺酸XSO
3H等磺酸类物质,其中X为碳原子数为1~18的烷基、芳基、被卤素取代的烷基或芳基。另外,本发明酸解优选采用无氧化性、高沸点的易溶于水的磷酸、磺酸作为催化剂,保证了产品品质和催化剂的循环使用;相较于使用固体酸作为催化剂的工艺,不仅能加快反应速度,还可降低产品和催化剂的分离难度。
在本发明的实施例中,所述氯代苯氧羧酸酯酸解所用酸的质量浓度可为5%~35%;酸的折百用量为氯代苯氧羧酸酯重量的0.4~1倍。在本发明中,所述酸解反应温度可为60~120℃,优选80~100℃。本发明酸解所得苯氧羧酸类除草剂具有式I结构,具体是指具有下式结构的物质:
实验显示,本发明实施例所得苯氧羧酸类除草剂产品含量≥98.5%,总收率≥98%,水洗水和滤液合并回用。与现有技术相比,本发明的方法有效地避免了有效成分的损失,提高了产品的收率。以下是本发明一些实施例中各目标产物和杂质情况(质量含量):
表1本发明一些实施例中各目标产物和杂质情况
综上所述,本发明提供的苯氧羧酸类除草剂的制备方法避免了氯代酚的生产和使用,可从根本上杜绝剧毒的二噁英的生成,极大地改善产品品质和生产场所的环境,同时提高收率。此外,本发明通过对工艺路线的创新,有效杜绝了高COD、高盐废水的产生,同时废盐(金属氯化物)的产出量减少了50%以上,三废产出有了极大幅度的降低,三废处理成本大幅下降,利于工业化推广。
为了进一步说明本发明,以下结合实施例对本发明提供的苯氧羧酸类除草剂的制备方法进行详细描述。
以下实施例中,所涉及的原料均为市售。
实施例1
向95.06g纯度99%的苯酚中,加入42.83g纯度99%的氢氧化钠和142.59g二甲苯,升温回流脱水至水分≤0.5%,于90℃下向其中滴加入116.20g纯度99%的氯乙酸甲酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至40℃,过滤,并加入适量的二甲苯洗涤滤饼,之后烘干得氯化钠和含二甲苯的苯氧乙酸甲酯粗品,蒸馏回收二甲苯,同时得苯氧乙酸甲酯172.02g,含量96.1%。
向蒸馏所得苯氧乙酸甲酯中,加入1.72g纯度99%的四氯化锡和0.60g纯度99%的2,5-二氯噻唑,于60℃下加入279.41g纯度99%的硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集115~125℃的馏分,得2,4-二氯苯氧乙酸甲酯234.12g,含量99.18%。
向所得2,4-二氯苯氧乙酸甲酯中加入780.40g浓度30%的盐酸,于110℃下酸解反应4h,同时蒸出反应生成的醇,反应完毕后降温至室温,过滤,并 加少量水洗涤滤饼,滤饼烘干,得2,4-二氯苯氧乙酸219.46g,其结构检测谱图参见图1,图1为
1HNMR(DMSO-d6)谱图;含量98.8%,总收率以苯酚计98.0%。
比较例1
向95.06g纯度99%的苯酚中,加入42.83g纯度99%的氢氧化钠和142.59g二甲苯,升温回流脱水至水分≤0.5%,于90℃下向其中滴加入116.20g纯度99%的氯乙酸甲酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至40℃,过滤,并加入适量的二甲苯洗涤滤饼,之后烘干得氯化钠和含二甲苯的苯氧乙酸甲酯粗品,蒸馏回收二甲苯,同时得苯氧乙酸甲酯172.02g,含量96.1%。
向蒸馏所得苯氧乙酸甲酯中,加入1.72g纯度99%的四氯化锡,于60℃下加入279.41g纯度99%的硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集115~125℃的馏分,得2,4-二氯苯氧乙酸甲酯210.71g,含量99.03%。
向所得2,4-二氯苯氧乙酸甲酯中加入702.36g浓度30%的盐酸,于110℃下酸解反应4h,同时蒸出反应生成的醇,反应完毕后降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得2,4-二氯苯氧乙酸197.34g,含量98.7%,总收率以苯酚计88.0%。
比较例2
向95.06g纯度99%的苯酚中,加入42.83g纯度99%的氢氧化钠和142.59g二甲苯,升温回流脱水至水分≤0.5%,于90℃下向其中滴加入116.20g纯度99%的氯乙酸甲酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至40℃,过滤,并加入适量的二甲苯洗涤滤饼,之后烘干得氯化钠和含二甲苯的苯氧乙酸甲酯粗品,蒸馏回收二甲苯,同时得苯氧乙酸甲酯172.02g,含量96.1%。
向蒸馏所得苯氧乙酸甲酯中,加入0.60g纯度99%的2,5-二氯噻唑,于60℃下加入279.41g纯度99%的硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集115~125℃的馏分,得2,4-二氯苯氧乙酸甲酯189.64g,含量98.89%。
向所得2,4-二氯苯氧乙酸甲酯中加入632.12g浓度30%的盐酸,于110℃下酸解反应4h,同时蒸出反应生成的醇,反应完毕后降温至室温,过滤,并 加少量水洗涤滤饼,滤饼烘干,得2,4-二氯苯氧乙酸179.28g,含量98.4%,总收率以苯酚计79.18%。
比较例3
向95.06g纯度99%的苯酚中,加入42.83g纯度99%的氢氧化钠和142.59g二甲苯,升温回流脱水至水分≤0.5%,于90℃下向其中滴加入116.20g纯度99%的氯乙酸甲酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至40℃,过滤,并加入适量的二甲苯洗涤滤饼,之后烘干得氯化钠和含二甲苯的苯氧乙酸甲酯粗品,蒸馏回收二甲苯,同时得苯氧乙酸甲酯172.02g,含量96.1%。
于60℃下向蒸馏所得苯氧乙酸甲酯中加入279.41g纯度99%的硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集115~125℃的馏分,得2,4-二氯苯氧乙酸甲酯170.87g,含量98.76%。
向所得2,4-二氯苯氧乙酸甲酯中加入568.91g浓度30%的盐酸,于110℃下酸解反应4h,同时蒸出反应生成的醇,反应完毕后降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得2,4-二氯苯氧乙酸159.87g,含量98.5%,总收率以苯酚计71.24%。
实施例2
向109.23g纯度99%的邻甲酚中,加入69.80g纯度99%的碳酸钾和109.23g甲苯,升温回流脱水至水分≤0.5%,于120℃下向其中滴加入152.14g纯度99%的氯乙酸正丁酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至30℃,过滤,并加入适量的甲苯洗涤滤饼,之后烘干得氯化钾和含有甲苯的邻甲苯氧乙酸正丁酯粗品,蒸馏回收甲苯,同时得邻甲苯氧乙酸正丁酯230.89g,含量95.9%。
向蒸馏所得邻甲苯氧乙酸正丁酯中,加入1.15g负载率为10%的氯化铁/硅胶负载型催化剂和15.4g负载率为15%的叔丁基甲基硫醚/硅胶负载型催化剂,于40℃下滴加入118.46g纯度99%的亚硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,过滤,得4-氯-2-甲基苯氧乙酸正丁酯256.98g,含量99.01%。
向所得4-氯-2-甲基苯氧乙酸正丁酯中加入1370.55g浓度15%的盐酸,于70℃下酸解反应4h,同时蒸出反应生成的醇,反应完毕后降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得4-氯-2-甲基苯氧乙酸200.79g,含量98.5%, 总收率以邻甲酚计98.62%。
实施例3
向95.06g纯度99%的苯酚中,加入91.65g纯度99%的碳酸氢钠和427.77g甲苯,升温回流脱水至水分≤0.5%,于80℃下向其中滴加入179.62g纯度99%的2-氯丙酸正丁酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至50℃,过滤,并加入适量的甲苯洗涤滤饼,之后烘干得氯化钠和含有甲苯的2-苯氧基丙酸正丁酯粗品,蒸馏回收甲苯,同时得2-苯氧基丙酸正丁酯230.26g,含量96.0%。
向蒸馏所得2-苯氧基丙酸正丁酯中,加入1.73g纯度99%的氧化铝和0.12g纯度99%的叔丁基硫醚,于100℃下通入76.89g纯度99%的氯气使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集130~140℃的馏分,得2-(4-氯苯氧基)丙酸正丁酯257.60g,含量98.77%。
向所得2-(4-氯苯氧基)丙酸正丁酯中加入721.28g浓度25%的磷酸,于80℃下酸解反应3h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得2-(4-氯苯氧基)丙酸199.92g,含量98.6%,总收率以苯酚计98.29%。
实施例4
向95.06g纯度99%的苯酚中,加入31.22g纯度99%的氢氧化镁和285.18g苯,升温回流脱水至水分≤0.5%,于100℃下向其中滴加入266.42g纯度99%的2-氯丙酸正癸酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至40℃,过滤,并加入适量的苯洗涤滤饼,之后烘干得氯化镁和含有苯的2-苯氧基丙酸正癸酯粗品,蒸馏回收苯,同时得2-苯氧基丙酸正癸酯316.21g,含量96.1%。
向蒸馏所得2-苯氧基丙酸正癸酯中,加入2.06g纯度99%的氯化镁和0.47g纯度99%的2,4,5-三叔丁基异噻唑,于-20℃下通入170.45g纯度99%的氯气使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集165~175℃的馏分,得2-(2,4-二氯苯氧基)丙酸正癸酯374.49g,含量98.89%。
向所得2-(2,4-二氯苯氧基)丙酸正癸酯中加入1497.97g浓度10%的三氟甲磺酸,于100℃下酸解反应2h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得2-(2,4-二氯苯氧基)正癸酸 233.55g,含量98.8%,总收率以苯酚计98.15%。
实施例5
向950.6g纯度99%的苯酚中,加入556.7g纯度99%的碳酸钠和2376.5g二甲苯,升温回流脱水至水分≤0.5%,于60℃下向其中滴加入2171.8g纯度99%的氯乙酸异辛酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至40℃,过滤,并加入适量的二甲苯洗涤滤饼,之后烘干得氯化钠和含有二甲苯的苯氧乙酸异辛酯粗品,蒸馏回收二甲苯,同时得苯氧乙酸异辛酯2728.6g,含量96.2%。
在三级串联连续反应器(每个容积为200ml)内分别加入45.5g负载率为20%的氯化锌/硅胶负载型催化剂和9.1g负载率为5%的4,4’-二氯苯硫醚/硅胶负载型催化剂,向第一级反应器内加入54.57g蒸馏所得苯氧乙酸异辛酯,搅拌,然后于-20℃下匀速加入27.34g 99%的硫酰氯,待硫酰氯加完后接着按比例匀速加入2674.0g蒸馏所得苯氧乙酸异辛酯和1339.9g 99%的硫酰氯,随着物料从第一级反应器的加入,物料不断溢流进入第二级反应器和第三级反应器,在第二、第三级反应器也有物料时保持其温度为-20℃,反应物料最后由第三级反应器溢流出系统,得到4-氯苯氧乙酸异辛酯,而负载型催化剂由于密度较大,不会随物料流出系统。待所有物料加入完毕保温30min,将第一、二、三级反应器中的物料过滤与由第三级反应器溢流出的4-氯苯氧乙酸异辛酯合并,得4-氯苯氧乙酸异辛酯2980.8g,含量99.12%。
向所得4-氯苯氧乙酸异辛酯中加入8942.5g浓度20%的磷酸,于120℃下酸解反应3h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得4-氯苯氧乙酸1857.9g,含量98.9%,总收率以苯酚计98.45%。
实施例6
向109.23g纯度99%的邻甲酚中,加入64.20g含量90%的氢氧化钾固体和546.16g二甲苯,升温回流脱水至水分≤0.5%,于70℃下向其中滴加入156.71g纯度99%的4-氯丁酸乙酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至30℃,过滤,并加入适量的二甲苯洗涤滤饼,之后烘干得氯化钾和含有二甲苯的邻甲苯氧丁酸乙酯粗品,蒸馏回收二甲苯,同时得邻甲苯氧丁 酸乙酯230.35g,含量96.0%。
向蒸馏所得邻甲苯氧丁酸乙酯中,加入0.35g纯度99%的氧化铁和1.96g纯度99%的2,4,6-三甲基苯硫醚,于0℃下通入78.40g纯度99%的氯气使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集130~140℃的馏分,得4-氯-2-甲基苯氧丁酸乙酯255.82g,含量99.29%。
向所得4-氯-2-甲基苯氧丁酸乙酯中加入2046.53g浓度5%的十八烷基磺酸,于85℃下酸解反应2h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得4-氯-2-甲基苯氧丁酸227.83g,含量98.7%,总收率以邻甲酚计98.34%。
实施例7
向109.23g纯度99%的邻甲酚中,加入105.18g纯度99%的碳酸氢钾和218.46g甲苯,升温回流脱水至水分≤0.5%,于90℃下向其中滴加入246.66g纯度99%的4-氯丁酸异辛酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至50℃,过滤,并加入适量的甲苯洗涤滤饼,之后烘干得氯化钾和含有甲苯的邻甲苯氧丁酸异辛酯粗品,蒸馏回收甲苯,同时得邻甲苯氧丁酸异辛酯318.89g,含量95.8%。
向蒸馏所得邻甲苯氧丁酸异辛酯中,加入1.75g纯度99%的二氧化钛和0.80g纯度99%的2-乙基噻唑,于50℃下通入85.67g纯度99%的氯气使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集160~170℃的馏分,得4-氯-2-甲基苯氧丁酸异辛酯340.17g,含量99.08%。
向所得4-氯-2-甲基苯氧丁酸异辛酯中加入680.33g浓度35%的磷酸,于95℃下酸解反应3h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得4-氯-2-甲基苯氧丁酸227.67g,含量98.5%,总收率以邻甲酚计98.03%。
实施例8
向95.06g纯度99%的苯酚中,加入40.42g纯度99%氢氧化钙和332.71g甲苯,升温回流脱水至水分≤0.5%,于80℃下向其中滴加入118.40g纯度99%的氯乙酸甲酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至30℃,过滤,并加入适量的甲苯洗涤滤饼,之后烘干得氯化钙和含有甲苯的苯氧乙酸 甲酯粗品,蒸馏回收甲苯,同时得苯氧乙酸甲酯172.34g,含量95.9%。
向蒸馏所得苯氧乙酸甲酯中,加入0.09g纯度99%的醋酸铅和1.29g纯度99%的2,3,4-三氯噻吩,于20℃下滴加入118.34g纯度99%的亚硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集110~120℃的馏分,得4-氯苯氧乙酸甲酯200.87g,含量98.84%。
向所得4-氯苯氧乙酸甲酯中加入401.74g浓度25%的硫酸,于80℃下酸解反应2h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得4-氯苯氧乙酸186.31g,含量98.6%,总收率以苯酚计98.44%。
实施例9
向95.06g纯度99%的苯酚中,加入116.88g浓度48%的氢氧化钾溶液和190.12g苯,升温回流脱水至水分≤0.5%,于110℃下向其中滴加入137.97g纯度99%的氯乙酸异丙酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至40℃,过滤,并加入适量的苯洗涤滤饼,之后烘干得氯化钾和含有苯的苯氧乙酸异丙酯粗品,蒸馏回收苯,同时得苯氧乙酸异丙酯200.48g,含量96.1%。
向蒸馏所得苯氧乙酸异丙酯中,加入0.70g纯度99%的四氯化钛和2.00g纯度99%的3,4-二氯噻吩,于70℃下滴加入273.29g纯度99%的硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集125~135℃的馏分,得2,4-二氯苯氧乙酸异丙酯261.91g,含量98.94%。
向所得2,4-二氯苯氧乙酸异丙酯中加入2095.26g浓度10%的盐酸,于60℃下酸解反应4h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得2,4-二氯苯氧乙酸219.49g,含量98.8%,总收率以苯酚计98.12%。
实施例10
向109.23g纯度99%的邻甲酚中,加入127.50g浓度32%的氢氧化钠溶液和436.93g甲苯,升温回流脱水至水分≤0.5%,于100℃下向其中滴加入155.18g纯度99%的氯乙酸异丁酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至50℃,过滤,并加入适量的甲苯洗涤滤饼,之后烘干得氯化钠和含有甲苯的邻甲苯氧乙酸异丁酯粗品,蒸馏回收甲苯,同时得邻甲苯氧乙酸异丁酯 229.29g,含量96.3%。
向蒸馏所得邻甲苯氧乙酸异丁酯中,加入0.57g纯度99%的氯化铝和1.03g纯度99%的4,4’-硫代双(6-叔丁基-3-甲基苯酚),于80℃下滴加入139.49g纯度99%的硫酰氯使之反应,加入完毕于此温度下保温反应0.5h,于1kPa压力下蒸馏并收集130~140℃的馏分,得4-氯-2-甲基苯氧乙酸异丁酯255.69g,含量99.09%。
向所得4-氯-2-甲基苯氧乙酸异丁酯中加入1150.59g浓度20%的盐酸,于90℃下酸解反应4h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得4-氯-2-甲基苯氧乙酸198.67g,含量99.0%,总收率以邻甲酚计98.03%。
实施例11
向950.6g纯度99%的苯酚中,加入916.5g纯度99%的碳酸氢钠和4277.7g甲苯,升温回流脱水至水分≤0.5%,于80℃下向其中滴加入1796.2g纯度99%的2-氯丙酸正丁酯使之反应,滴加完毕于此温度下保温反应0.5h,降温至50℃,过滤,并加入适量的甲苯洗涤滤饼,之后烘干得氯化钠和含有甲苯的2-苯氧基丙酸正丁酯粗品,蒸馏回收甲苯,同时得2-苯氧基丙酸正丁酯2302.6g,含量96.0%。
在三级串联连续反应器(每个容积为100ml)内分别加入26.9g负载率为15%的二氧化钛/硅胶负载型催化剂和40.3g负载率为10%的2-甲基噻吩/硅胶负载型催化剂,向第一级反应器内加入30.0g蒸馏所得2-苯氧基丙酸正丁酯,搅拌,然后于100℃下匀速加入10.0g 99%的氯气,待氯气加完后接着按比例匀速加入2272.6g所得2-苯氧基丙酸正丁酯和758.9g 99%的氯气,随着物料从第一级反应器的加入,物料不断溢流进入第二级反应器和第三级反应器,在第二、第三级反应器也有物料时保持其温度为100℃,反应物料最后由第三级反应器溢流出系统,得到2-(4-氯苯氧基)丙酸正丁酯,而负载型催化剂由于密度较大,不会随物料流出系统。待所有物料加入完毕保温30min,将第一、二、三级反应器中的物料过滤与由第三级反应器溢流出的2-(4-氯苯氧基)丙酸正丁酯合并,得2-(4-氯苯氧基)丙酸正丁酯2571.0g,含量98.96%。
向所得2-(4-氯苯氧基)丙酸正丁酯中加入7212.8g浓度25%的磷酸,于 80℃下酸解反应3h,同时蒸出反应生成的醇,反应完毕降温至室温,过滤,并加少量水洗涤滤饼,滤饼烘干,得2-(4-氯苯氧基)丙酸1999.2g,含量98.5%,总收率以苯酚计98.2%。
由以上实施例可知,本发明实施例所得苯氧羧酸类除草剂产品含量≥98.5%,总收率≥98%,水洗水和滤液合并回用。
本发明实施例中一些目标产物和杂质情况如下:
表2本发明实施例中一些目标产物和杂质情况
本发明使用酚经缩合合成苯氧羧酸酯,然后选择性氯化合成氯代苯氧羧酸酯,最后酸解合成苯氧羧酸类除草剂。本发明有效地避免了具有难闻气味的氯代酚的生产和使用,从根本上杜绝了剧毒的二噁英的产生,极大的改善了产品品质和生产现场的操作环境。并且,本发明有效杜绝了高COD、高盐废水的产生,同时废盐(金属氯化物)的产出量减少了50%以上,极大地降低了三废处理量、三废处理难度和处理成本。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
- 一种苯氧羧酸类除草剂的制备方法,包括以下步骤:S1、将苯酚或邻甲酚在碱性物质存在的条件下,与氯代羧酸酯进行缩合反应,得到苯氧羧酸酯;所述氯代羧酸酯的通式为ClR 1COOR,其中R 1选自碳原子数为1~3的亚烷基或次烷基,R选自碳原子数为1~10的烷基或碳原子数为3~10的环烷基;S2、将所述苯氧羧酸酯在第一催化剂和第二催化剂存在的条件下,与氯化剂进行选择性氯化,得到氯代苯氧羧酸酯;所述第一催化剂选自路易斯酸,所述第二催化剂选自碳原子数为5~22的硫醚类化合物、碳原子数为5~22的噻唑类化合物、碳原子数为5~22的异噻唑类化合物或碳原子数为5~22的噻吩类化合物;S3、将所述氯代苯氧羧酸酯进行酸解反应,得到式I所示的苯氧羧酸类除草剂;式I中,R 1选自碳原子数为1~3的亚烷基或次烷基,R 3为H、Cl或CH 3。
- 根据权利要求1所述的制备方法,其特征在于,S1步骤中,所述碱性物质为氢氧化钠、氢氧化钾、氢氧化钙、氢氧化镁、碳酸氢钠、碳酸氢钾、碳酸钠或碳酸钾。
- 根据权利要求2所述的制备方法,其特征在于,S1步骤中,所述碱性物质为氢氧化钠、氢氧化钾、碳酸氢钠或碳酸氢钾,所述苯酚或邻甲酚与碱性物质的摩尔比为1:(1~1.08);或者,所述碱性物质为氢氧化钙、氢氧化镁、碳酸钠或碳酸钾,所述苯酚或邻甲酚与碱性物质的摩尔比为1:(0.5~0.54)。
- 根据权利要求1所述的制备方法,其特征在于,S1步骤中,所述缩合反应在有机溶剂中进行,所述有机溶剂为苯、甲苯或二甲苯。
- 根据权利要求4所述的制备方法,其特征在于,S1步骤中,所述有机 溶剂的用量为苯酚或邻甲酚重量的1~5倍。
- 根据权利要求1所述的制备方法,其特征在于,S1步骤中,所述苯酚或邻甲酚与氯代羧酸酯的摩尔比为1:(1~1.08),所述缩合反应的温度为60~120℃。
- 根据权利要求1所述的制备方法,其特征在于,S2步骤中,所述氯化剂为氯气、亚硫酰氯或硫酰氯。
- 根据权利要求7所述的制备方法,其特征在于,S2步骤中,所述苯氧羧酸酯与氯化剂的摩尔比为1:(1.98~2.4),S3步骤中R 3为Cl;或者,所述苯氧羧酸酯与氯化剂的摩尔比为1:(0.99~1.2),S3步骤中R 3为H或CH 3。
- 根据权利要求1所述的制备方法,其特征在于,S2步骤中,所述第一催化剂的用量为苯氧羧酸酯重量的0.05%~1.0%,所述第二催化剂的用量为苯氧羧酸酯重量的0.05%~1.0%。
- 根据权利要求7~9中任一项所述的制备方法,其特征在于,S2步骤中,所述选择性氯化反应的温度为-20~100℃。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810226592.7A CN108947822A (zh) | 2018-03-19 | 2018-03-19 | 一种苯氧羧酸类除草剂的制备方法 |
CN201810226592.7 | 2018-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019179265A1 true WO2019179265A1 (zh) | 2019-09-26 |
Family
ID=64495265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/075306 WO2019179265A1 (zh) | 2018-03-19 | 2019-02-18 | 一种苯氧羧酸类除草剂的制备方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108947822A (zh) |
AR (1) | AR115273A1 (zh) |
WO (1) | WO2019179265A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114904575A (zh) * | 2022-06-28 | 2022-08-16 | 万华化学集团股份有限公司 | 一种催化剂和制备方法及3,6-二烷氧基-2,7-二甲基-4-辛烯二醛的制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108947822A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
CN108947794A (zh) | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
CN113173844B (zh) * | 2021-05-11 | 2023-04-14 | 宁夏格瑞精细化工有限公司 | 一种2-甲基-4-氯苯氧乙酸的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920757A (en) * | 1971-08-25 | 1975-11-18 | Dow Chemical Co | Chlorination with sulfuryl chloride |
CN106278862A (zh) * | 2016-08-04 | 2017-01-04 | 山东省化工研究院 | 一种2,4‑二氯苯氧乙酸的合成新工艺 |
CN108947822A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
CN108947794A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
CN108947838A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种2,4-二氯苯氧乙酸及其盐的制备方法 |
CN108947792A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106242971B (zh) * | 2016-08-04 | 2019-06-25 | 山东省化工研究院 | 一种氯乙酸酯水相合成技术及其制备2,4-d酯的新方法 |
-
2018
- 2018-03-19 CN CN201810226592.7A patent/CN108947822A/zh not_active Withdrawn
-
2019
- 2019-02-18 WO PCT/CN2019/075306 patent/WO2019179265A1/zh active Application Filing
- 2019-03-19 AR ARP190100680A patent/AR115273A1/es unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920757A (en) * | 1971-08-25 | 1975-11-18 | Dow Chemical Co | Chlorination with sulfuryl chloride |
CN106278862A (zh) * | 2016-08-04 | 2017-01-04 | 山东省化工研究院 | 一种2,4‑二氯苯氧乙酸的合成新工艺 |
CN108947822A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
CN108947794A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
CN108947838A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种2,4-二氯苯氧乙酸及其盐的制备方法 |
CN108947792A (zh) * | 2018-03-19 | 2018-12-07 | 山东润博生物科技有限公司 | 一种苯氧羧酸类除草剂的制备方法 |
Non-Patent Citations (1)
Title |
---|
WATSON, W.D.: "Regioselective Para Chlorination of Activated Aromatic Compounds", J. ORG. CHEM., vol. 50, no. 12, 31 December 1985 (1985-12-31), pages 2145 - 2148, XP002047199, doi:10.1021/jo00212a029 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114904575A (zh) * | 2022-06-28 | 2022-08-16 | 万华化学集团股份有限公司 | 一种催化剂和制备方法及3,6-二烷氧基-2,7-二甲基-4-辛烯二醛的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108947822A (zh) | 2018-12-07 |
AR115273A1 (es) | 2020-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019179265A1 (zh) | 一种苯氧羧酸类除草剂的制备方法 | |
WO2019179267A1 (zh) | 一种苯氧羧酸类除草剂的制备方法 | |
RU2616608C2 (ru) | Способ получения производных 4,4-дифтор-3,4-дигидроизохинолина | |
SE447651B (sv) | Sett att framstella 2-/4-(p-klorbensoyl)fenoxi/-2-metyl-propionsyra samt dess isopropylester | |
WO2019179287A2 (zh) | 一种2,4-二氯苯氧乙酸及其盐的制备方法 | |
NO158338B (no) | Anordning til drift av en gripekran for en lastebro til lasting eller lossing av et skip. | |
CN109503380A (zh) | 4-烷氧基乙酰乙酸酯类化合物的合成方法 | |
DE2149070B2 (de) | Phenoxyalkylcarbonsaeurederivate und deren salze, verfahren zu deren herstellung und arzneimittel | |
CN108947792A (zh) | 一种苯氧羧酸类除草剂的制备方法 | |
CN108503544A (zh) | 2,4-二氯苯氧乙酸的制备方法 | |
US3362988A (en) | Alkanoylnaphthyloxy-carboxylic acids | |
WO2020001047A2 (zh) | 一种苯氧羧酸类除草剂的制备方法 | |
WO2019179288A2 (zh) | 一种氯代苯氧羧酸酯的制备方法 | |
JPS5913749A (ja) | 4−トリフルオロメチル−4′−ニトロジフエニルエ−テル類の製造法 | |
US4393008A (en) | 2-Cyano-2-(3-phenoxy-phenyl)-propionic acid amide and preparation thereof | |
JP4290847B2 (ja) | ポリプレニル系化合物の精製方法 | |
CN108947814A (zh) | 一种苯氧羧酸酯类除草剂的制备方法 | |
US4289909A (en) | Process for preparing 1-dichloroacyl-4-substituted phenoxy benzene and intermediates therefor | |
WO2019179286A2 (zh) | 一种苯氧乙酸酯的制备方法 | |
US11078150B2 (en) | Preparation method for chlorophenoxycarboxylate | |
CN114621122B (zh) | 环磺酮代谢物的制备方法 | |
CA1241336A (en) | Process for the preparation of arylalkanoic acids by oxidative rearrangement of arylalkanones | |
CN117466730A (zh) | 一种苯氧羧酸盐类除草剂的制备方法 | |
CN109081826B (zh) | 氧化剂ibx的制备方法 | |
Schiessler et al. | Oxidation of a methylene group with hypochlorite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19771195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19771195 Country of ref document: EP Kind code of ref document: A1 |