WO2019179049A1 - 触控偏光结构及柔性显示装置 - Google Patents

触控偏光结构及柔性显示装置 Download PDF

Info

Publication number
WO2019179049A1
WO2019179049A1 PCT/CN2018/104031 CN2018104031W WO2019179049A1 WO 2019179049 A1 WO2019179049 A1 WO 2019179049A1 CN 2018104031 W CN2018104031 W CN 2018104031W WO 2019179049 A1 WO2019179049 A1 WO 2019179049A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
touch
disposed
liquid crystal
substrate
Prior art date
Application number
PCT/CN2018/104031
Other languages
English (en)
French (fr)
Inventor
陈慧
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/088,246 priority Critical patent/US20200166799A1/en
Publication of WO2019179049A1 publication Critical patent/WO2019179049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch polarizing structure and a flexible display device.
  • the flat panel display device has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • the existing flat panel display devices mainly include a liquid crystal display (LCD) and an organic light emitting display (OLED).
  • the OLED display device has the advantages of self-illumination, high backlight, high contrast, thin thickness, wide viewing angle, fast response, flexible panel, wide temperature range, simple structure and simple process. It is recognized as the mainstream technology of the next generation display, and has been favored by major display manufacturers.
  • the OLED display device generally includes a substrate, an anode disposed on the substrate, a hole injection layer disposed on the anode, a hole transport layer disposed on the hole injection layer, and a light-emitting layer disposed on the hole transport layer.
  • the OLED display device generally uses an indium tin oxide (ITO) electrode and a metal electrode as an anode and a cathode, respectively, and electrons and holes are injected from the cathode and the anode to the electron injection layer and the hole injection layer, respectively, under a certain voltage.
  • ITO indium tin oxide
  • the electrons and holes migrate to the light-emitting layer through the electron transport layer and the hole transport layer, respectively, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • the existing OLED display needs to have a circular polarizer disposed above the OLED display, and at the same time, the OLED display has a touch sensing function, and needs to be disposed above the OLED display. Touch layer.
  • the flexible display requires that the display screen and its membrane have good bending resistance, and reducing the thickness of the film is an important means to improve the bending performance.
  • the circular polarizer and the touch layer need to be as thin as possible to reduce the stress on the OLED display when bending.
  • the thickness of the circular polarizer that has been mass-produced is about 100 microns, and the thickness of the touch layer is about 50 microns.
  • the circular polarizer and the touch layer are combined to make a touch.
  • the control of the polarized structure has become a trend, and this combination can greatly reduce the sum of the thicknesses of the two, and can be adapted to the pursuit of a greater degree of bending of the flexible display panel.
  • An object of the present invention is to provide a touch polarizing structure with a thin thickness, which can effectively reduce the stress on the flexible display device during bending and improve product quality when applied to a flexible display device.
  • Another object of the present invention is to provide a flexible display device which is thinner in thickness, less subject to stress during bending, and high in product quality.
  • the present invention firstly provides a touch polarizing structure, comprising: a touch layer and a circular polarizer disposed on one side of the touch layer;
  • the touch layer includes a substrate and a touch electrode layer disposed on one side of the substrate;
  • the circular polarizer includes a linear polarizing layer and a quarter-wave retarder disposed on a side of the substrate away from the touch electrode layer and disposed in a direction away from the substrate;
  • the linear polarizing layer includes a substrate away from the substrate a first alignment layer and a first liquid crystal layer disposed in sequence;
  • the quarter-wave retarder includes a second alignment layer and a second liquid crystal layer disposed in a direction away from the substrate.
  • the circular polarizer further includes a first transparent optical adhesive layer disposed between the first liquid crystal layer and the second alignment layer.
  • the circular polarizer further includes a half-wave retarder disposed between the linear polarizing layer and the quarter-wave retarder; the half-wave retarder includes a first step disposed away from the substrate a third alignment layer and a third liquid crystal layer;
  • the circular polarizer further includes a fourth transparent optical adhesive layer disposed between the first liquid crystal layer and the third alignment layer, and a fifth transparent optical adhesive layer disposed between the third liquid crystal layer and the second alignment layer.
  • the touch polarizing structure further includes a second transparent optical adhesive layer disposed on a side of the circular polarizer away from the touch layer;
  • the touch layer further includes a passivation layer disposed on a side of the substrate on which the touch electrode layer is disposed and covering the touch electrode layer.
  • the touch polarizing structure further includes a third transparent optical adhesive layer disposed on a side of the touch layer away from the circular polarizer.
  • the first alignment layer, the first liquid crystal layer, the second alignment layer, the second liquid crystal layer, the third alignment layer, and the third liquid crystal layer are all formed by coating.
  • the present invention also provides a flexible display device, including a flexible display panel and a touch polarizing structure disposed on a display surface of the flexible display panel;
  • the touch polarizing structure includes: a touch layer, a circular polarizer disposed on one side of the touch layer, and a second transparent optical adhesive layer disposed on a side of the circular polarizer away from the touch layer;
  • the touch layer includes a base And a touch electrode layer disposed on one side of the substrate;
  • the circular polarizer includes a linear polarizing layer and a quarter wavelength disposed on a side of the substrate away from the touch electrode layer and arranged in a direction away from the substrate a retardation sheet;
  • the linear polarization layer includes a first alignment layer and a first liquid crystal layer disposed in a direction away from the substrate;
  • the quarter-wave retardation sheet includes a second alignment layer disposed in a direction away from the substrate a layer and a second liquid crystal layer;
  • the touch polarizing structure is pasted on the display surface of the flexible display panel by the second transparent optical adhesive layer.
  • the circular polarizer further includes a first transparent optical adhesive layer disposed between the first liquid crystal layer and the second alignment layer.
  • the circular polarizer further includes a half-wave retarder disposed between the linear polarizing layer and the quarter-wave retarder; the half-wave retarder includes a first step disposed away from the substrate a third alignment layer and a third liquid crystal layer;
  • the circular polarizer further includes a fourth transparent optical adhesive layer disposed between the first liquid crystal layer and the third alignment layer, and a fifth transparent optical adhesive layer disposed between the third liquid crystal layer and the second alignment layer.
  • the touch layer further includes a passivation layer disposed on a side of the substrate with the touch electrode layer and covering the touch electrode layer;
  • the touch polarized structure further includes a side of the touch layer away from the circular polarizer a third transparent optical adhesive layer;
  • the flexible display device further includes a package cover disposed on a side of the third transparent optical adhesive layer away from the flexible display panel.
  • the invention further provides a touch polarizing structure, comprising: a touch layer and a circular polarizer disposed on one side of the touch layer;
  • the touch layer includes a substrate and a touch electrode layer disposed on one side of the substrate;
  • the circular polarizer includes a linear polarizing layer and a quarter-wave retarder disposed on a side of the substrate away from the touch electrode layer and disposed in a direction away from the substrate;
  • the linear polarizing layer includes a substrate away from the substrate a first alignment layer and a first liquid crystal layer disposed in sequence;
  • the quarter-wave retarder comprises a second alignment layer and a second liquid crystal layer disposed in a direction away from the substrate;
  • the circular polarizer further comprises a half-wave retarder disposed between the linear polarizing layer and the quarter-wave retarder; the one-half retarder comprises sequentially disposed away from the substrate a third alignment layer and a third liquid crystal layer;
  • the circular polarizer further includes a fourth transparent optical adhesive layer disposed between the first liquid crystal layer and the third alignment layer, and a fifth transparent optical adhesive layer disposed between the third liquid crystal layer and the second alignment layer;
  • the touch polarizing structure further includes a second transparent optical adhesive layer disposed on a side of the circular polarizer away from the touch layer;
  • the touch layer further includes a passivation layer disposed on a side of the substrate provided with the touch electrode layer and covering the touch electrode layer;
  • the first alignment layer, the first liquid crystal layer, the second alignment layer, the second liquid crystal layer, the third alignment layer and the third liquid crystal layer are all formed by coating.
  • the touch-sensitive polarizing structure includes a touch layer and a circular polarizer.
  • the touch layer includes a substrate and a touch electrode layer disposed on one side of the substrate, and the circular polarizer is disposed on the substrate.
  • a linear polarizing layer and a quarter-wave retarder disposed on one side of the touch electrode layer and in a direction away from the substrate, or a linear polarizing layer, a half-wave retarder, and a quarter-wave retarder.
  • the linear polarizing layer, the quarter-wave retarder, and the half-wave retarder each comprise an alignment layer and a liquid crystal layer, and the alignment layer and the liquid crystal layer are all formed by coating.
  • the touch polarizing structure is disposed on the display surface of the flexible display panel.
  • the thickness of the touch polarizing structure is thin, and the thickness of the flexible display device is greatly reduced under the premise of reducing the external reflected light and the touch display function. It can effectively reduce the stress on the flexible display device during bending and improve product quality.
  • the circular polarizer produced by the coating method can achieve a transmittance of more than 40% and a degree of polarization of over 95%.
  • the coating and drying of the liquid crystal layer and the alignment layer can be separately performed, and then the touch layer is adhered to prevent the high temperature of the process such as drying and drying of the circular polarizer from affecting the power of the touch layer. Sex, with good reliability.
  • the flexible display device provided by the invention has a thin thickness, is less stressed when bent, and has high product quality.
  • FIG. 1 is a schematic structural view of a first embodiment of a touch polarized structure of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a touch polarization structure according to the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of a touch polarization structure according to the present invention.
  • FIG. 4 is a schematic structural view of a first embodiment of a flexible display device according to the present invention.
  • FIG. 5 is a schematic structural view of a second embodiment of a flexible display device according to the present invention.
  • Figure 6 is a schematic view showing the structure of a third embodiment of the flexible display device of the present invention.
  • a first embodiment of a touch-polarization structure of the present invention includes a touch layer 10 and a touch layer 10 .
  • the touch layer 10 includes a substrate 11 and a touch electrode layer 12 disposed on a side of the substrate 11;
  • the circular polarizer 20 includes a linear polarizing layer 21 and a quarter-wave retarder 22 disposed on a side of the substrate 11 away from the touch electrode layer 12 and disposed in a direction away from the substrate 11;
  • the linear polarizing layer 21 includes a first alignment layer 211 and a first liquid crystal layer 212 which are sequentially disposed in a direction away from the substrate 11;
  • the quarter-wave retardation sheet 22 includes a second alignment layer 221 which is sequentially disposed in a direction away from the substrate 11.
  • a second liquid crystal layer 222 is sequentially disposed in a direction away from the substrate 11.
  • the material of the substrate 11 may be selected from the flexible materials commonly used in the touch layer substrate in the prior art, and includes, for example, a cyclic olefin polymer (COP) and polyethylene terephthalate (PET). Polymer material inside.
  • COP cyclic olefin polymer
  • PET polyethylene terephthalate
  • the first alignment layer 211 is subjected to an alignment process such that the liquid crystal in the first liquid crystal layer 212 forms a specific tilt angle on the first alignment layer 211, so that the first alignment layer 211 and the first liquid crystal layer 212 are
  • the linear polarizing layer 21 has a linear polarizing function
  • the second alignment layer 221 is also subjected to an alignment treatment, so that the liquid crystal in the second liquid crystal layer 222 is different from the liquid crystal in the first liquid crystal layer 212 on the second alignment layer 221.
  • the inclination angle of the quarter-wave retarder 22 composed of the second alignment layer 221 and the second liquid crystal layer 222 has a function of optical retardation, thereby further including the linear polarization layer 21 and the quarter-wave retardation film 22
  • the circular polarizer 20 can have a function of preventing reflected light.
  • the circular polarizer 20 further includes a first transparent optical adhesive layer 23 disposed between the first liquid crystal layer 212 and the second alignment layer 221, and the first transparent optical adhesive layer 23 is used for dividing the quarter.
  • the one-wavelength retarder 22 and the linear polarizing layer 21 are bonded and fixed together.
  • first transparent optical adhesive layer 23 may be a pressure sensitive adhesive (PSA).
  • PSA pressure sensitive adhesive
  • the first alignment layer 211, the first liquid crystal layer 212, the second alignment layer 221, and the second liquid crystal layer 222 are all formed by coating.
  • the sum of the thicknesses of the linear polarizing layer 21 and the quarter-wave retarder 22 is smaller than the sum of the thicknesses of the linear non-liquid crystal coated circular polarizer and the quarter-wave retarder.
  • the sum of the thicknesses of the linear polarizing layer 21 and the quarter-wave retarder 22 is less than 4 micrometers.
  • the thickness of the first transparent optical adhesive layer 23, the thickness of the first liquid crystal layer 212, and the thickness of the second liquid crystal layer 222 are all on the same order of magnitude.
  • the first transparent optical adhesive layer 23 has a thickness of less than 1 micrometer, that is, preferably the circular polarizer 20 has a thickness of less than 5 micrometers.
  • the touch layer 10 further includes a passivation layer 13 disposed on a side of the substrate 11 on which the touch electrode layer 12 is disposed and covering the touch electrode layer 12, and the passivation layer 13 is used for touch control.
  • the electrode layer 12 is protected.
  • the touch polarizing structure further includes a second transparent optical adhesive layer 30 disposed on a side of the circular polarizer 20 away from the touch layer 10, and the second transparent transparent structure is used when the touch polarizing structure is applied to the flexible display device.
  • the optical adhesive layer 30 affixes the touch polarizing structure to the display surface of the flexible display panel, thereby preventing the light outside the flexible display device from being reflected and displayed on the display surface.
  • the second transparent optical adhesive layer 30 may also be a pressure sensitive adhesive.
  • the circular polarizer 20 is directly disposed on the side of the substrate 11 of the touch layer 10 away from the touch electrode layer 12, that is, the circular polarizer 20 and the touch layer 10 share a base.
  • the material 11 and thus the circular polarizer 20 need not be provided with a structure for supporting, so that the thickness of the entire touch polarizing structure is greatly reduced, and at the same time, due to the first alignment layer 211, the first liquid crystal layer 212, and the second
  • the alignment layer 221 and the second liquid crystal layer 222 are both formed by coating, and the thickness of each layer structure can be easily controlled to be very thin, and the thickness of the first transparent optical adhesive layer 23 using the pressure sensitive adhesive is also easily controlled.
  • the thickness of the circular polarizer 20 is very thin, further reducing the thickness of the touch polarizing structure as a whole, so that the overall thickness of the touch polarizing structure of the present invention can reach 50 to 60 micrometers, compared to In the prior art, the structure of the circular polarizer and the touch layer is separated, and the thickness of the touch polarizing structure of the present invention can be reduced by about 150 micrometers, and the circular polarizer and the touch layer are combined in the prior art. Making touch polarized junctions together The thickness of the touch polarizing structure of the present invention can be reduced by about 15 micrometers, the thickness of the touch polarizing structure is greatly reduced, and the thickness of the flexible display device is reduced when the touch polarizing structure is applied to the flexible display device.
  • the earth reduces the stress on the flexible display device during bending and improves product quality.
  • the circular polarizer 20 obtained by the first alignment layer 211, the first liquid crystal layer 212, the second alignment layer 221 and the second liquid crystal layer 222 by coating can achieve a single transmittance. 40% or more, the degree of polarization is over 95%, and at the same time, the coating and drying of the first alignment layer 211, the first liquid crystal layer 212, the second alignment layer 221, and the second liquid crystal layer 222 can be separately performed during the preparation process, and then The touch layer 10 is further adhered to prevent the high temperature of the process such as drying and drying of the circular polarizer 20 from affecting the electrical properties of the touch layer 10, and has good reliability.
  • the embodiment 2 is a second embodiment of the touch polarizing structure of the present invention.
  • the embodiment is different from the first embodiment in that the circular polarizer 20 further includes an online polarizing layer 21 and a quarter.
  • the one-half-wavelength retardation plate 24 between the wavelength retardation plates 22; the one-half-wavelength retardation plate 24 includes a third alignment layer 241 and a third liquid crystal layer 242 which are sequentially disposed in a direction away from the substrate 11.
  • the third alignment layer 241 is subjected to an alignment process such that the liquid crystal in the third liquid crystal layer 242 forms a specific tilt angle on the third alignment layer 241, so that the third alignment layer 241 and the third liquid crystal layer 242 are
  • the constituent half-wave retarder 24 has a function of optical retardation, thereby enabling the circular polarizer 20 including the linear polarizing layer 21, the quarter-wave retarder 22, and the half-wave retarder 24 to have reflection prevention.
  • the function of light is a function of optical retardation
  • the circular polarizer 20 further includes a fourth transparent optical adhesive layer 25 disposed between the first liquid crystal layer 212 and the third alignment layer 241, and a third liquid crystal layer 242 and a second alignment layer 221 A fifth transparent optical adhesive layer 26 therebetween.
  • the fourth transparent optical adhesive layer 25 is used for bonding and fixing the linear polarizing layer 21 and the half-wave retarder 24, and the fifth transparent optical adhesive layer 26 is used for the quarter-wave retarder 22 It is attached and fixed to the one-half-wavelength retarder 24.
  • the fourth transparent optical adhesive layer 25 and the fifth transparent optical adhesive layer 26 may also be pressure sensitive adhesives.
  • the third alignment layer 241 and the third liquid crystal layer 242 are also formed by coating.
  • the thickness of the fourth transparent optical adhesive layer 25, the thickness of the fifth transparent optical adhesive layer 26, the thickness of the first liquid crystal layer 212, the thickness of the second liquid crystal layer 222, and the thickness of the third liquid crystal layer 242 are all On the same order of magnitude.
  • the thickness of the fourth transparent optical adhesive layer 25 and the thickness of the fifth transparent optical adhesive layer 26 are all less than 1 micrometer.
  • the third embodiment of the present invention is different from the above-mentioned first embodiment.
  • the touch polarization structure further includes the touch layer 10 disposed away from the circular polarizer.
  • the third transparent optical adhesive layer 40 on the 20 side is the same as the first embodiment, and details are not described herein again.
  • the third transparent optical adhesive layer 40 is also a pressure sensitive adhesive.
  • the third transparent optical adhesive layer 40 is used for bonding the flexible display device after being disposed on the flexible display panel of the flexible display device to complete the packaging of the flexible display device.
  • the package cover can be a flexible encapsulation layer or a glass cover.
  • the ultraviolet (UV) curing adhesive used in the prior art for attaching the package cover can be replaced, thereby eliminating the need for separate
  • the step of forming the ultraviolet curable adhesive and curing the ultraviolet curable adhesive by ultraviolet light after packaging saves the production process and is beneficial to improving the product yield.
  • a first embodiment of the flexible display device of the present invention includes a flexible display panel 1 and a touch polarizing structure 2 disposed on the display surface of the flexible display panel 1;
  • the touch polarizing structure 2 includes a touch layer 10, a circular polarizer 20 disposed on one side of the touch layer 10, and a second transparent optical adhesive layer 30 disposed on a side of the circular polarizer 20 away from the touch layer 10;
  • the touch layer 10 includes a substrate 11 and a touch electrode layer 12 disposed on a side of the substrate 11 .
  • the circular polarizer 20 is disposed on a side of the substrate 11 away from the touch electrode layer 12 and away from the substrate.
  • a line polarizing layer 21 and a quarter-wave retarder 22 are sequentially disposed in a direction of 11;
  • the line polarizing layer 21 includes a first alignment layer 211 and a first liquid crystal layer 212 which are sequentially disposed in a direction away from the substrate 11;
  • the quarter-wave retarder 22 includes a second alignment layer 221 and a second liquid crystal layer 222 disposed in a direction away from the substrate 11;
  • the touch polarizing structure 2 is pasted on the display surface of the flexible display panel 1 by the second transparent optical adhesive layer 30.
  • the flexible display panel 1 is a flexible OLED display panel.
  • the flexible display panel 1 can also be other types of flexible display panels that need to be provided with a circular polarizing layer and a touch layer, such as the flexible display panel. 1 can also be a flexible liquid crystal display panel.
  • the material of the substrate 11 may be selected from the flexible materials commonly used in the touch layer substrate in the prior art, for example, a polymer material including a cycloolefin polymer and polyethylene terephthalate. .
  • the first alignment layer 211 is subjected to an alignment process such that the liquid crystal in the first liquid crystal layer 212 forms a specific tilt angle on the first alignment layer 211, so that the first alignment layer 211 and the first liquid crystal layer 212 are
  • the linear polarizing layer 21 has a linear polarizing function
  • the second alignment layer 221 is also subjected to an alignment treatment, so that the liquid crystal in the second liquid crystal layer 222 is different from the liquid crystal in the first liquid crystal layer 212 on the second alignment layer 221.
  • the inclination angle of the quarter-wave retarder 22 composed of the second alignment layer 221 and the second liquid crystal layer 222 has a function of optical retardation, thereby further including the linear polarization layer 21 and the quarter-wave retardation film 22
  • the circular polarizer 20 can have a function of preventing reflected light.
  • the circular polarizer 20 further includes a first transparent optical adhesive layer 23 disposed between the first liquid crystal layer 212 and the second alignment layer 221; the first transparent optical adhesive layer 23 is used for dividing the quarter.
  • the one-wavelength retarder 22 and the linear polarizing layer 21 are bonded and fixed together.
  • first transparent optical adhesive layer 23 may be a pressure sensitive adhesive.
  • the first alignment layer 211, the first liquid crystal layer 212, the second alignment layer 221, and the second liquid crystal layer 222 are all formed by coating.
  • the sum of the thicknesses of the linear polarizing layer 21 and the quarter-wave retarder 22 is smaller than the sum of the thicknesses of the linear non-liquid crystal coated circular polarizer and the quarter-wave retarder.
  • the sum of the thicknesses of the linear polarizing layer 21 and the quarter-wave retarder 22 is less than 4 micrometers.
  • the thickness of the first transparent optical adhesive layer 23, the thickness of the first liquid crystal layer 212, and the thickness of the second liquid crystal layer 222 are all on the same order of magnitude.
  • the first transparent optical adhesive layer 23 has a thickness of less than 1 micrometer, that is, preferably the circular polarizer 20 has a thickness of less than 5 micrometers.
  • the touch layer 10 further includes a passivation layer 13 disposed on a side of the substrate 11 on which the touch electrode layer 12 is disposed and covering the touch electrode layer 12, and the passivation layer 13 is used for touch control.
  • the electrode layer 12 is protected.
  • the second transparent optical adhesive layer 30 may be a pressure sensitive adhesive.
  • the circular polarizer 20 is directly disposed on the side of the substrate 11 of the touch layer 10 away from the touch electrode layer 12, that is, the circular polarizer 20 and the touch layer 10 share a base. Therefore, the thickness of the entire touch-sensitive polarizing structure 2 is greatly reduced, and at the same time, due to the first alignment layer 211, the first liquid crystal layer 212, and the first The two alignment layers 221 and the second liquid crystal layer 222 are both formed by coating, and the thickness of each layer structure can be easily controlled to be thin, and the thickness of the first transparent optical adhesive layer 23 using the pressure sensitive adhesive is also easily controlled.
  • the thickness of the circular polarizer 20 is very thin, and the thickness of the touch polarizing structure 2 is further reduced, so that the thickness of the touch polarizing structure 2 of the present invention can be as large as 50 to 60 micrometers.
  • the thickness of the touch polarizing structure 2 of the present invention can be reduced by about 150 micrometers, and the circular polarizer is already compared with the prior art.
  • the thickness of the touch polarizing structure 2 in the present invention can be reduced by about 15 micrometers, the thickness of the touch polarizing structure 2 is greatly reduced, and the thickness of the flexible display device is greatly reduced, thereby greatly reducing the flexible display of the present invention.
  • the stress on the device during bending increases the quality of the product.
  • the circular polarizer 20 obtained by the first alignment layer 211, the first liquid crystal layer 212, the second alignment layer 221 and the second liquid crystal layer 222 by coating can achieve a single transmittance.
  • the degree of polarization is over 95%, and at the same time, the coating and drying of the first alignment layer 211, the first liquid crystal layer 212, the second alignment layer 221, and the second liquid crystal layer 222 can be separately performed during the preparation process, and then The touch layer 10 is further adhered to prevent the high temperature of the process such as drying and drying of the circular polarizer 20 from affecting the electrical properties of the touch layer 10, and has good reliability.
  • FIG. 5 is a second embodiment of the flexible display device of the present invention.
  • the second embodiment is different from the first embodiment in that the circular polarizer 20 further includes an online polarizing layer 21 and a quarter.
  • the one-half-wave retardation plate 24 between the one-wavelength retardation plates 22; the one-half-wavelength retardation plate 24 includes a third alignment layer 241 and a third liquid crystal layer 242 which are sequentially disposed in a direction away from the substrate 11.
  • the third alignment layer 241 is subjected to an alignment process such that the liquid crystal in the third liquid crystal layer 242 forms a specific tilt angle on the third alignment layer 241, so that the third alignment layer 241 and the third liquid crystal layer 242 are
  • the constituent half-wave retarder 24 has a function of optical retardation, thereby enabling the circular polarizer 20 including the linear polarizing layer 21, the quarter-wave retarder 22, and the half-wave retarder 24 to have reflection prevention.
  • the function of light is a function of optical retardation
  • the circular polarizer 20 further includes a fourth transparent optical adhesive layer 25 disposed between the first liquid crystal layer 212 and the third alignment layer 241, and a third liquid crystal layer 242 and a second alignment layer 221 A fifth transparent optical adhesive layer 26 therebetween.
  • the fourth transparent optical adhesive layer 25 is used for bonding and fixing the linear polarizing layer 21 and the half-wave retarder 24, and the fifth transparent optical adhesive layer 26 is used for the quarter-wave retarder 22 It is attached and fixed to the one-half-wavelength retarder 24.
  • the fourth transparent optical adhesive layer 25 and the fifth transparent optical adhesive layer 26 may also be pressure sensitive adhesives.
  • the third alignment layer 241 and the third liquid crystal layer 242 are also formed by coating.
  • the thickness of the fourth transparent optical adhesive layer 25, the thickness of the fifth transparent optical adhesive layer 26, the thickness of the first liquid crystal layer 212, the thickness of the second liquid crystal layer 222, and the thickness of the third liquid crystal layer 242 are all On the same order of magnitude.
  • the thickness of the fourth transparent optical adhesive layer 25 and the thickness of the fifth transparent optical adhesive layer 26 are all less than 1 micrometer.
  • a third embodiment of the flexible display device of the present invention is different from the first embodiment in that the touch polarizing structure 2 further includes a touch layer 10 disposed on the touch layer 10 away from the circle. a third transparent optical adhesive layer 40 on one side of the polarizer 20; the flexible display device further includes a package cover 3 disposed on a side of the third transparent optical adhesive layer 40 away from the flexible display panel 1 , and all of the same as the first embodiment The same, no longer repeat here.
  • the package cover 3 is a flexible encapsulation layer or a glass cover; the third transparent optical adhesive layer 40 is also a pressure sensitive adhesive.
  • the ultraviolet curing adhesive used in the prior art for attaching the package cover can be replaced, thereby eliminating the need to separately form the ultraviolet curing adhesive and using the ultraviolet after packaging.
  • the step of curing the UV-curable adhesive to save the production process is beneficial to improving the yield of the product.
  • the touch polarizing structure of the present invention includes a touch layer and a circular polarizer.
  • the touch layer includes a substrate and a touch electrode layer disposed on one side of the substrate, and the circular polarizer includes a substrate disposed away from the touch.
  • a linear polarizing layer and a quarter-wave retarder disposed on one side of the electrode layer and in a direction away from the substrate, or a linear polarizing layer, a half-wave retarder, and a quarter-wave retarder, linearly polarized
  • the layer, the quarter-wave retarder, and the half-wave retarder each comprise an alignment layer and a liquid crystal layer.
  • the touch polarization structure is disposed on the display surface of the flexible display panel, and the thickness of the touch polarization structure Thin, under the premise of reducing external reflected light and touch display function, the thickness of the flexible display device is greatly reduced, and the stress on the flexible display device during bending can be effectively reduced, and the product quality can be improved.
  • the flexible display device of the present invention has a thin thickness, is less stressed when bent, and has high product quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种触控偏光结构及柔性显示装置。该触控偏光结构包括触控层(10)及圆偏光片(20),触控层(10)包括基材(11)以及设于基材(11)一侧的触控电极层(12),圆偏光片(20)包括设于基材(11)远离触控电极层(12)一侧且沿远离基材(11)的方向依次设置的线偏光层(21)及四分之一波长延迟片(22),或者线偏光层(21)、二分之一波长延迟片(24)及四分之一波长延迟片(22),线偏光层(21)、四分之一波长延迟片(22)、二分之一波长延迟片(24)均包括一层配向层及一层液晶层,该触控偏光结构设置在柔性显示面板的显示面,该触控偏光结构的厚度薄,在实现了减少外部的反射光及触控显示功能的前提下,大大降低了柔性显示装置整体的厚度,能够有效地降低柔性显示装置在弯折时所受的应力,提升产品品质。

Description

触控偏光结构及柔性显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种触控偏光结构及柔性显示装置。
背景技术
平板显示器件具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有的平板显示器件主要包括液晶显示器件(Liquid Crystal Display,LCD)及有机电致发光显示器件(Organic Light Emitting Display,OLED)。
OLED显示器件由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异特性,一致被公认为是下一代显示的主流技术,得到了各大显示器厂家的青睐。OLED显示器件通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层及设于电子注入层上的阴极,其发光机理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。具体的,OLED显示器件通常采用氧化铟锡(ITO)电极和金属电极分别作为阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子注入层和空穴注入层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
现有的OLED显示器,为了减少外界光反射并提高其显示的色饱和度,需要在OLED显示器的上方设置圆偏光片,同时,使OLED显示器具有触控感应功能,还需要在OLED显示器的上方设置触控层。柔性显示要求显示屏及其膜材具有良好的耐弯折性能,而降低膜材的厚度是提高其弯折性能的重要手段。为使OLED显示器能够进行柔性显示,圆偏光片与触控层需要尽可能减薄厚度,以降低OLED显示器在弯折时受到的应力。已经量产的圆偏光片的厚度在100微米左右,触控层的厚度在50微米左右,为了进一步地降低两者的厚度以适应柔性显示,将圆偏光片及触控层结合在一起制作触控偏光结构已经成为了趋势,这种结合可以使两者的厚度之和大大降低,可以适应之后人们对柔性显示面板弯折程度更大的追求。
发明内容
本发明的目的在于提供一种触控偏光结构,厚度较薄,在应用于柔性显示装置时能够有效地降低柔性显示装置在弯折时所受的应力,提升产品品质。
本发明的另一目的在于提供一种柔性显示装置,厚度较薄,在弯折时所受的应力较小,产品品质高。
为实现上述目的,本发明首先提供一种触控偏光结构,包括:触控层及设于触控层一侧的圆偏光片;
所述触控层包括基材以及设于基材一侧的触控电极层;
所述圆偏光片包括设于基材远离触控电极层一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片;所述线偏光层包括沿远离基材的方向依次设置的第一配向层及第一液晶层;所述四分之一波长延迟片包括沿远离基材的方向依次设置的第二配向层及第二液晶层。
所述圆偏光片还包括设于第一液晶层及第二配向层之间的第一透明光学胶层。
所述圆偏光片还包括设置在线偏光层与四分之一波长延迟片之间的二分之一波长延迟片;所述二分之一波长延迟片包括沿远离基材的方向依次设置的第三配向层及第三液晶层;
所述圆偏光片还包括设于第一液晶层及第三配向层之间的第四透明光学胶层、以及设于第三液晶层及第二配向层之间的第五透明光学胶层。
所述触控偏光结构还包括设于圆偏光片远离触控层一侧的第二透明光学胶层;
所述触控层还包括设于基材设有触控电极层的一侧且覆盖触控电极层的钝化层。
所述触控偏光结构还包括设于触控层远离圆偏光片一侧的第三透明光学胶层。
所述第一配向层、第一液晶层、第二配向层、第二液晶层、第三配向层及第三液晶层均采用涂布的方式制作。
本发明还提供一种柔性显示装置,包括柔性显示面板及设于柔性显示面板的显示面上的触控偏光结构;
所述触控偏光结构包括:触控层、设于触控层一侧的圆偏光片及设于圆偏光片远离触控层一侧的第二透明光学胶层;所述触控层包括基材以及设于基材一侧的触控电极层;所述圆偏光片包括设于基材远离触控电极层 一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片;所述线偏光层包括沿远离基材的方向依次设置的第一配向层及第一液晶层;所述四分之一波长延迟片包括沿远离基材的方向依次设置的第二配向层及第二液晶层;
所述触控偏光结构通过所述第二透明光学胶层粘贴在柔性显示面板的显示面上。
所述圆偏光片还包括设于第一液晶层及第二配向层之间的第一透明光学胶层。
所述圆偏光片还包括设置在线偏光层与四分之一波长延迟片之间的二分之一波长延迟片;所述二分之一波长延迟片包括沿远离基材的方向依次设置的第三配向层及第三液晶层;
所述圆偏光片还包括设于第一液晶层及第三配向层之间的第四透明光学胶层、以及设于第三液晶层及第二配向层之间的第五透明光学胶层。
所述触控层还包括设于基材设有触控电极层的一侧且覆盖触控电极层的钝化层;所述触控偏光结构还包括设于触控层远离圆偏光片一侧的第三透明光学胶层;
所述柔性显示装置还包括设置在第三透明光学胶层远离柔性显示面板一侧的封装盖板。
本发明还提供一种触控偏光结构,包括:触控层及设于触控层一侧的圆偏光片;
所述触控层包括基材以及设于基材一侧的触控电极层;
所述圆偏光片包括设于基材远离触控电极层一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片;所述线偏光层包括沿远离基材的方向依次设置的第一配向层及第一液晶层;所述四分之一波长延迟片包括沿远离基材的方向依次设置的第二配向层及第二液晶层;
其中,所述圆偏光片还包括设置在线偏光层与四分之一波长延迟片之间的二分之一波长延迟片;所述二分之一波长延迟片包括沿远离基材的方向依次设置的第三配向层及第三液晶层;
所述圆偏光片还包括设于第一液晶层及第三配向层之间的第四透明光学胶层、以及设于第三液晶层及第二配向层之间的第五透明光学胶层;
其中,所述触控偏光结构还包括设于圆偏光片远离触控层一侧的第二透明光学胶层;
所述触控层还包括设于基材设有触控电极层的一侧且覆盖触控电极层的钝化层;
其中,所述第一配向层、第一液晶层、第二配向层、第二液晶层、第三配向层及第三液晶层均采用涂布的方式制作。
本发明的有益效果:本发明提供的触控偏光结构包括触控层及圆偏光片,触控层包括基材以及设于基材一侧的触控电极层,圆偏光片包括设于基材远离触控电极层一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片,或者线偏光层、二分之一波长延迟片及四分之一波长延迟片,线偏光层、四分之一波长延迟片、二分之一波长延迟片均包括一层配向层及一层液晶层,配向层及液晶层均采用涂布的方式制作。该触控偏光结构设置在柔性显示面板的显示面,该触控偏光结构的厚度薄,在实现了减少外部的反射光及触控显示功能的前提下,大大降低了柔性显示装置整体的厚度,能够有效地降低柔性显示装置在弯折时所受的应力,提升产品品质。同时在光学性能上采用涂布的方式制作的圆偏光片单体透过率可达到40%以上,偏振度达到95%以上。在制备过程中液晶层及配向层的涂布及干燥可以单独完成,之后再与触控层进行贴合,避免圆偏光片在制作时干燥、烘干等制程工艺的高温影响触控层的电性,具有很好的可靠性。本发明提供的柔性显示装置,厚度较薄,在弯折时所受的应力较小,产品品质高。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的触控偏光结构的第一实施例的结构示意图;
图2为本发明的触控偏光结构的第二实施例的结构示意图;
图3为本发明的触控偏光结构的第三实施例的结构示意图;
图4为本发明的柔性显示装置的第一实施例的结构示意图;
图5为本发明的柔性显示装置的第二实施例的结构示意图;
图6为本发明的柔性显示装置的第三实施例的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明提供一种触控偏光结构,请参阅图1,为本发明的触控偏光结构 的第一实施例,本发明的触控偏光结构的第一实施例包括:触控层10及设于触控层10一侧的圆偏光片20;
所述触控层10包括基材11以及设于基材11一侧的触控电极层12;
所述圆偏光片20包括设于基材11远离触控电极层12一侧且沿远离基材11的方向依次设置的线偏光层21及四分之一波长延迟片22;所述线偏光层21包括沿远离基材11的方向依次设置的第一配向层211及第一液晶层212;所述四分之一波长延迟片22包括沿远离基材11的方向依次设置的第二配向层221及第二液晶层222。
具体地,所述基材11的材料选择现有技术中的触控层基材常选用的柔性材料即可,例如包括环烯烃聚合物(COP)、聚对苯二甲酸乙二酯(PET)在内的高分子材料。
具体地,所述第一配向层211经过配向处理,使第一液晶层212中的液晶在第一配向层211上形成特定的倾角,从而使由第一配向层211及第一液晶层212所组成的线偏光层21具有线偏光功能,所述第二配向层221也经过配向处理,使第二液晶层222中的液晶在第二配向层221上形成不同于第一液晶层212中的液晶的倾角,从而使由第二配向层221及第二液晶层222所组成的四分之一波长延迟片22具有光延迟的功能,进而使包括线偏光层21及四分之一波长延迟片22的圆偏光片20能够具有防止反射光的功能。
具体地,所述圆偏光片20还包括设于第一液晶层212及第二配向层221之间的第一透明光学胶层23,所述第一透明光学胶层23用于将四分之一波长延迟片22及线偏光层21贴合固定在一起。
进一步地,所述第一透明光学胶层23可以为压敏胶(PSA)。
具体地,所述第一配向层211、第一液晶层212、第二配向层221及第二液晶层222均采用涂布的方式制作。
具体地,所述线偏光层21与四分之一波长延迟片22的厚度之和小于传统的非液晶涂布圆偏光片中线偏光层与四分之一波长延迟片的厚度之和。优选地,所述线偏光层21与四分之一波长延迟片22的厚度之和小于4微米。
具体地,所述第一透明光学胶层23的厚度、第一液晶层212的厚度、第二液晶层222的厚度均在同一个数量级上。优选地,所述第一透明光学胶层23的厚度小于1微米,也即优选所述圆偏光片20的厚度小于5微米。
具体地,所述触控层10还包括设于基材11设有触控电极层12的一侧且覆盖触控电极层12的钝化层13,所述钝化层13用于对触控电极层12进 行保护。
具体地,所述触控偏光结构还包括设于圆偏光片20远离触控层10一侧的第二透明光学胶层30,在触控偏光结构应用于柔性显示装置时,利用该第二透明光学胶层30将所述触控偏光结构粘贴在柔性显示面板的显示面,即可实现防止柔性显示装置外部的光线在其显示面发生反射以及触控显示的功能。
进一步地,所述第二透明光学胶层30也可以为压敏胶。
需要说明的是,本发明中,由于将圆偏光片20直接设置在触控层10的基材11远离触控电极层12的一侧,也即圆偏光片20与触控层10共用一个基材11,因而圆偏光片20内不需要设置用于支撑的结构,因此触控偏光结构整体的厚度大大降低,与此同时,由于所述第一配向层211、第一液晶层212、第二配向层221及第二液晶层222均采用涂布的方式制作,各层结构的厚度均能够很容易控制得很薄,并且采用压敏胶的第一透明光学胶层23的厚度也容易控制得很薄,使该圆偏光片20的厚度很薄,进一步地使触控偏光结构整体的厚度降低,使本发明的触控偏光结构总体的厚度可达到50至60微米的范围内,相较于现有技术中圆偏光片及触控层分离的结构,本发明的触控偏光结构的厚度能够减少150微米左右,而相较于现有技术中已有将圆偏光片及触控层结合在一起制作触控偏光结构,本发明的触控偏光结构的厚度能够降低15微米左右,大大降低了触控偏光结构的厚度,进而使该触控偏光结构应用于柔性显示装置时,使得柔性显示装置整体的厚度降低,极大地降低了柔性显示装置在弯折时所受的应力,提升产品品质。同时,在光学性能上,采用涂布的方式制作第一配向层211、第一液晶层212、第二配向层221及第二液晶层222而得到的圆偏光片20单体透过率可达到40%以上,偏振度达到95%以上,同时,在制备过程中第一配向层211、第一液晶层212、第二配向层221及第二液晶层222的涂布及干燥可以单独完成,之后再与触控层10进行贴合,避免圆偏光片20在制作时干燥、烘干等制程工艺的高温影响触控层10的电性,具有很好的可靠性。
请参阅图2,为本发明的触控偏光结构的第二实施例,该实施例与上述第一实施例的区别在于,所述圆偏光片20还包括设置在线偏光层21与四分之一波长延迟片22之间的二分之一波长延迟片24;所述二分之一波长延迟片24包括沿远离基材11的方向依次设置的第三配向层241及第三液晶层242。
具体地,所述第三配向层241经过配向处理,使第三液晶层242中的 液晶在第三配向层241上形成特定的倾角,从而使由第三配向层241及第三液晶层242所组成的二分之一波长延迟片24具有光延迟的功能,进而使包括线偏光层21、四分之一波长延迟片22、二分之一波长延迟片24的圆偏光片20能够具有防止反射光的功能。
进一步地,所述圆偏光片20还包括设于第一液晶层212及第三配向层241之间的第四透明光学胶层25、以及设于第三液晶层242及第二配向层221之间的第五透明光学胶层26。所述第四透明光学胶层25用于将线偏光层21与二分之一波长延迟片24贴合固定在一起,而第五透明光学胶层26用于将四分之一波长延迟片22与二分之一波长延迟片24贴合固定在一起。
进一步地,所述第四透明光学胶层25及第五透明光学胶层26也可以为压敏胶。
具体地,所述第三配向层241及第三液晶层242也均采用涂布的方式制作。
具体地,所述第四透明光学胶层25的厚度、第五透明光学胶层26的厚度、第一液晶层212的厚度、第二液晶层222的厚度、第三液晶层242的厚度均在同一个数量级上。优选地,所述第四透明光学胶层25的厚度、第五透明光学胶层26的厚度均小于1微米。
其余均与第一实施例相同,在此不再赘述。
请参阅图3,为本发明的触控偏光结构的第三实施例,该实施例与上述第一实施例的区别在于,所述触控偏光结构还包括设于触控层10远离圆偏光片20一侧的第三透明光学胶层40,其他均与第一实施例相同,在此不再赘述。
具体的,所述第三透明光学胶层40也为压敏胶。
需要说明的是,该第三透明光学胶层40用于在触控偏光结构设置在柔性显示装置的柔性显示面板上之后,与一封装盖板进行粘接,完成对柔性显示装置的封装,该封装盖板可为柔性封装层或玻璃盖板,通过设置该第三透明光学胶层40,可以取代现有技术中用于粘贴封装盖板的紫外光(UV)固化胶,因此能够省去单独形成紫外光固化胶及在封装后利用紫外光对紫外光固化胶进行固化的步骤,节约生产制程,有利于提升产品良率。
基于同一发明构思,本发明还提供一种柔性显示装置,请参阅图4,为本发明的柔性显示装置的第一实施例,本发明的柔性显示装置的第一实施例包括柔性显示面板1及设于柔性显示面板1的显示面上的触控偏光结构2;
所述触控偏光结构2包括:触控层10、设于触控层10一侧的圆偏光片20及设于圆偏光片20远离触控层10一侧的第二透明光学胶层30;所述触 控层10包括基材11以及设于基材11一侧的触控电极层12;所述圆偏光片20包括设于基材11远离触控电极层12一侧且沿远离基材11的方向依次设置的线偏光层21及四分之一波长延迟片22;所述线偏光层21包括沿远离基材11的方向依次设置的第一配向层211及第一液晶层212;所述四分之一波长延迟片22包括沿远离基材11的方向依次设置的第二配向层221及第二液晶层222;
所述触控偏光结构2通过所述第二透明光学胶层30粘贴在柔性显示面板1的显示面上。
具体地,所述柔性显示面板1为柔性OLED显示面板,当然,所述柔性显示面板1也可为其他各类型的需要设置圆偏光层及触控层的柔性显示面板,例如所述柔性显示面板1也可为柔性液晶显示面板。
具体地,所述基材11的材料选择现有技术中的触控层基材常选用的柔性材料即可,例如包括环烯烃聚合物、聚对苯二甲酸乙二酯在内的高分子材料。
具体地,所述第一配向层211经过配向处理,使第一液晶层212中的液晶在第一配向层211上形成特定的倾角,从而使由第一配向层211及第一液晶层212所组成的线偏光层21具有线偏光功能,所述第二配向层221也经过配向处理,使第二液晶层222中的液晶在第二配向层221上形成不同于第一液晶层212中的液晶的倾角,从而使由第二配向层221及第二液晶层222所组成的四分之一波长延迟片22具有光延迟的功能,进而使包括线偏光层21及四分之一波长延迟片22的圆偏光片20能够具有防止反射光的功能。
具体地,所述圆偏光片20还包括设于第一液晶层212及第二配向层221之间的第一透明光学胶层23;所述第一透明光学胶层23用于将四分之一波长延迟片22及线偏光层21贴合固定在一起。
进一步地,所述第一透明光学胶层23可以为压敏胶。
具体地,所述第一配向层211、第一液晶层212、第二配向层221及第二液晶层222均采用涂布的方式制作。
具体地,所述线偏光层21与四分之一波长延迟片22的厚度之和小于传统的非液晶涂布圆偏光片中线偏光层与四分之一波长延迟片的厚度之和。优选地,所述线偏光层21与四分之一波长延迟片22的厚度之和小于4微米。
具体地,所述第一透明光学胶层23的厚度、第一液晶层212的厚度、第二液晶层222的厚度均在同一个数量级上。优选地,所述第一透明光学 胶层23的厚度小于1微米,也即优选所述圆偏光片20的厚度小于5微米。
具体地,所述触控层10还包括设于基材11设有触控电极层12的一侧且覆盖触控电极层12的钝化层13,所述钝化层13用于对触控电极层12进行保护。
具体地,所述第二透明光学胶层30可以为压敏胶。
需要说明的是,本发明中,由于将圆偏光片20直接设置在触控层10的基材11远离触控电极层12的一侧,也即圆偏光片20与触控层10共用一个基材11,因而圆偏光片20内不需要设置用于支撑的结构,因此触控偏光结构2整体的厚度大大降低,与此同时,由于所述第一配向层211、第一液晶层212、第二配向层221及第二液晶层222均采用涂布的方式制作,各层结构的厚度均能够很容易控制得很薄,并且采用压敏胶的第一透明光学胶层23的厚度也容易控制得很薄,使该圆偏光片20的厚度很薄,进一步地使触控偏光结构2整体的厚度降低,使本发明中的触控偏光结构2总体的厚度可达到50至60微米的范围内,相较于现有技术中圆偏光片及触控层分离的结构,本发明中的触控偏光结构2的厚度能够减少150微米左右,而相较于现有技术中已有将圆偏光片及触控层结合在一起制作触控偏光结构,本发明中的触控偏光结构2的厚度能够降低15微米左右,大大降低了触控偏光结构2的厚度,进而使柔性显示装置的厚度大大降低,极大地降低了本发明的柔性显示装置在弯折时所受的应力,提升产品品质。同时,在光学性能上,采用涂布的方式制作第一配向层211、第一液晶层212、第二配向层221及第二液晶层222而得到的圆偏光片20单体透过率可达到40%以上,偏振度达到95%以上,同时,在制备过程中第一配向层211、第一液晶层212、第二配向层221及第二液晶层222的涂布及干燥可以单独完成,之后再与触控层10进行贴合,避免圆偏光片20在制作时干燥、烘干等制程工艺的高温影响触控层10的电性,具有很好的可靠性。
请参阅图5,为本发明的柔性显示装置的第二实施例,该第二实施例与上述第一实施例的区别在于,所述圆偏光片20还包括设置在线偏光层21与四分之一波长延迟片22之间的二分之一波长延迟片24;所述二分之一波长延迟片24包括沿远离基材11的方向依次设置的第三配向层241及第三液晶层242。
具体地,所述第三配向层241经过配向处理,使第三液晶层242中的液晶在第三配向层241上形成特定的倾角,从而使由第三配向层241及第三液晶层242所组成的二分之一波长延迟片24具有光延迟的功能,进而使包括线偏光层21、四分之一波长延迟片22、二分之一波长延迟片24的圆 偏光片20能够具有防止反射光的功能。
进一步地,所述圆偏光片20还包括设于第一液晶层212及第三配向层241之间的第四透明光学胶层25、以及设于第三液晶层242及第二配向层221之间的第五透明光学胶层26。所述第四透明光学胶层25用于将线偏光层21与二分之一波长延迟片24贴合固定在一起,而第五透明光学胶层26用于将四分之一波长延迟片22与二分之一波长延迟片24贴合固定在一起。
进一步地,所述第四透明光学胶层25及第五透明光学胶层26也可以为压敏胶。
具体地,所述第三配向层241及第三液晶层242也均采用涂布的方式制作。具体地,所述第四透明光学胶层25的厚度、第五透明光学胶层26的厚度、第一液晶层212的厚度、第二液晶层222的厚度、第三液晶层242的厚度均在同一个数量级上。优选地,所述第四透明光学胶层25的厚度、第五透明光学胶层26的厚度均小于1微米。
其余均与第一实施例相同,在此不再赘述。
请参阅图6,为本发明的柔性显示装置的第三实施例,该第三实施例与上述第一实施例的区别在于,所述触控偏光结构2还包括设于触控层10远离圆偏光片20一侧的第三透明光学胶层40;所述柔性显示装置还包括设置在第三透明光学胶层40远离柔性显示面板1一侧的封装盖板3,其他均与第一实施例相同,在此不再赘述。
具体地,所述封装盖板3为柔性封装层或玻璃盖板;所述第三透明光学胶层40也为压敏胶。
需要说明的是,通过设置该第三透明光学胶层40,可以取代现有技术中用于粘贴封装盖板的紫外光固化胶,因此能够省去单独形成紫外光固化胶及在封装后利用紫外光对紫外光固化胶进行固化的步骤,节约生产制程,有利于提升产品良率。
综上所述,本发明的触控偏光结构包括触控层及圆偏光片,触控层包括基材以及设于基材一侧的触控电极层,圆偏光片包括设于基材远离触控电极层一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片,或者线偏光层、二分之一波长延迟片及四分之一波长延迟片,线偏光层、四分之一波长延迟片、二分之一波长延迟片均包括一层配向层及一层液晶层,该触控偏光结构设置在柔性显示面板的显示面,该触控偏光结构的厚度薄,在实现了减少外部的反射光及触控显示功能的前提下,大大降低了柔性显示装置整体的厚度,能够有效地降低柔性显示装置在弯折时所受的应力,提升产品品质。本发明的柔性显示装置,厚度较薄,在弯折时 所受的应力较小,产品品质高。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (11)

  1. 一种触控偏光结构,包括:触控层及设于触控层一侧的圆偏光片;
    所述触控层包括基材以及设于基材一侧的触控电极层;
    所述圆偏光片包括设于基材远离触控电极层一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片;所述线偏光层包括沿远离基材的方向依次设置的第一配向层及第一液晶层;所述四分之一波长延迟片包括沿远离基材的方向依次设置的第二配向层及第二液晶层。
  2. 如权利要求1所述的触控偏光结构,其中,所述圆偏光片还包括设于第一液晶层及第二配向层之间的第一透明光学胶层。
  3. 如权利要求1所述的触控偏光结构,其中,所述圆偏光片还包括设置在线偏光层与四分之一波长延迟片之间的二分之一波长延迟片;所述二分之一波长延迟片包括沿远离基材的方向依次设置的第三配向层及第三液晶层;
    所述圆偏光片还包括设于第一液晶层及第三配向层之间的第四透明光学胶层、以及设于第三液晶层及第二配向层之间的第五透明光学胶层。
  4. 如权利要求1所述的触控偏光结构,还包括设于圆偏光片远离触控层一侧的第二透明光学胶层;
    所述触控层还包括设于基材设有触控电极层的一侧且覆盖触控电极层的钝化层。
  5. 如权利要求4所述的触控偏光结构,还包括设于触控层远离圆偏光片一侧的第三透明光学胶层。
  6. 如权利要求3所述的触控偏光结构,其中,所述第一配向层、第一液晶层、第二配向层、第二液晶层、第三配向层及第三液晶层均采用涂布的方式制作。
  7. 一种柔性显示装置,包括柔性显示面板及设于柔性显示面板的显示面上的触控偏光结构;
    所述触控偏光结构包括:触控层、设于触控层一侧的圆偏光片及设于圆偏光片远离触控层一侧的第二透明光学胶层;所述触控层包括基材以及设于基材一侧的触控电极层;所述圆偏光片包括设于基材远离触控电极层一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片;所述线偏光层包括沿远离基材的方向依次设置的第一配向层及第一液晶层;所述四分之一波长延迟片包括沿远离基材的方向依次设置的第二配向层及 第二液晶层;
    所述触控偏光结构通过所述第二透明光学胶层粘贴在柔性显示面板的显示面上。
  8. 如权利要求7所述的柔性显示装置,其中,所述圆偏光片还包括设于第一液晶层及第二配向层之间的第一透明光学胶层。
  9. 如权利要求7所述的柔性显示装置,其中,所述圆偏光片还包括设置在线偏光层与四分之一波长延迟片之间的二分之一波长延迟片;所述二分之一波长延迟片包括沿远离基材的方向依次设置的第三配向层及第三液晶层;
    所述圆偏光片还包括设于第一液晶层及第三配向层之间的第四透明光学胶层、以及设于第三液晶层及第二配向层之间的第五透明光学胶层。
  10. 如权利要求7所述的柔性显示装置,其中,所述触控层还包括设于基材设有触控电极层的一侧且覆盖触控电极层的钝化层;所述触控偏光结构还包括设于触控层远离圆偏光片一侧的第三透明光学胶层;
    所述柔性显示装置还包括设置在第三透明光学胶层远离柔性显示面板一侧的封装盖板。
  11. 一种触控偏光结构,包括:触控层及设于触控层一侧的圆偏光片;
    所述触控层包括基材以及设于基材一侧的触控电极层;
    所述圆偏光片包括设于基材远离触控电极层一侧且沿远离基材的方向依次设置的线偏光层及四分之一波长延迟片;所述线偏光层包括沿远离基材的方向依次设置的第一配向层及第一液晶层;所述四分之一波长延迟片包括沿远离基材的方向依次设置的第二配向层及第二液晶层;
    其中,所述圆偏光片还包括设置在线偏光层与四分之一波长延迟片之间的二分之一波长延迟片;所述二分之一波长延迟片包括沿远离基材的方向依次设置的第三配向层及第三液晶层;
    所述圆偏光片还包括设于第一液晶层及第三配向层之间的第四透明光学胶层、以及设于第三液晶层及第二配向层之间的第五透明光学胶层;
    其中,所述触控偏光结构还包括设于圆偏光片远离触控层一侧的第二透明光学胶层;
    所述触控层还包括设于基材设有触控电极层的一侧且覆盖触控电极层的钝化层;
    其中,所述第一配向层、第一液晶层、第二配向层、第二液晶层、第三配向层及第三液晶层均采用涂布的方式制作。
PCT/CN2018/104031 2018-03-21 2018-09-04 触控偏光结构及柔性显示装置 WO2019179049A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/088,246 US20200166799A1 (en) 2018-03-21 2018-09-04 Touch polarizing structure and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810237041.0 2018-03-21
CN201810237041.0A CN108334241A (zh) 2018-03-21 2018-03-21 触控偏光结构及柔性显示装置

Publications (1)

Publication Number Publication Date
WO2019179049A1 true WO2019179049A1 (zh) 2019-09-26

Family

ID=62931112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104031 WO2019179049A1 (zh) 2018-03-21 2018-09-04 触控偏光结构及柔性显示装置

Country Status (3)

Country Link
US (1) US20200166799A1 (zh)
CN (1) CN108334241A (zh)
WO (1) WO2019179049A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334241A (zh) * 2018-03-21 2018-07-27 武汉华星光电半导体显示技术有限公司 触控偏光结构及柔性显示装置
CN109659340B (zh) * 2018-12-12 2021-01-01 武汉华星光电半导体显示技术有限公司 显示面板以及显示面板的制备方法
CN109614012A (zh) * 2019-01-25 2019-04-12 武汉华星光电半导体显示技术有限公司 偏光触控构件及制备方法、柔性显示装置
CN110085751B (zh) * 2019-04-19 2020-08-11 武汉华星光电半导体显示技术有限公司 有机发光二极管装置以及其形成方法
CN110085138A (zh) * 2019-04-22 2019-08-02 武汉华星光电半导体显示技术有限公司 一种oled显示模组
CN110423020B (zh) * 2019-07-29 2021-09-17 恩利克(浙江)智能装备有限公司 具有圆偏光功能的可折叠超薄玻璃保护盖板及制作方法
CN110646992B (zh) * 2019-09-26 2020-12-29 中国科学院长春光学精密机械与物理研究所 一种双周期复合液晶偏振光栅
CN111192907A (zh) * 2020-01-08 2020-05-22 武汉华星光电半导体显示技术有限公司 一种oled显示面板及显示装置
CN111768696A (zh) * 2020-06-12 2020-10-13 武汉华星光电半导体显示技术有限公司 折叠显示面板及折叠显示面板的制备方法
CN113488519A (zh) * 2021-06-29 2021-10-08 京东方科技集团股份有限公司 显示装置及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207425A (zh) * 2012-01-11 2013-07-17 远东新世纪股份有限公司 位相差膜的制法
CN105137637A (zh) * 2015-09-23 2015-12-09 武汉华星光电技术有限公司 液晶显示组件、液晶显示装置及终端
CN106783923A (zh) * 2016-12-27 2017-05-31 武汉华星光电技术有限公司 触控显示器及电子设备
CN106952941A (zh) * 2017-05-26 2017-07-14 上海天马有机发光显示技术有限公司 一种显示面板、制作方法及电子设备
CN108172121A (zh) * 2017-12-12 2018-06-15 武汉华星光电半导体显示技术有限公司 一种功能膜层的制备方法
CN108334241A (zh) * 2018-03-21 2018-07-27 武汉华星光电半导体显示技术有限公司 触控偏光结构及柔性显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179381A (ja) * 2014-03-19 2015-10-08 株式会社東芝 入力装置、表示装置及び端末装置
CN106164755B (zh) * 2014-04-07 2019-05-07 富士胶片株式会社 液晶显示装置
CN105739160B (zh) * 2014-12-09 2022-06-14 宸盛光电有限公司 触控偏光结构及触控显示装置
JP6340378B2 (ja) * 2015-05-11 2018-06-06 富士フイルム株式会社 導電性積層体の製造方法、導電性積層体、タッチセンサー
JP6640847B2 (ja) * 2015-05-29 2020-02-05 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置
WO2017018036A1 (ja) * 2015-07-28 2017-02-02 アルプス電気株式会社 積層構造体、積層構造体の製造方法および画像表示装置
CN106527790B (zh) * 2016-10-31 2020-06-30 上海天马微电子有限公司 显示面板、显示装置及显示面板的制造方法
CN106354341B (zh) * 2016-11-11 2019-07-09 上海天马微电子有限公司 一种触控显示面板
CN106383614B (zh) * 2016-11-14 2019-12-24 上海天马微电子有限公司 一种触控显示面板
CN106710449A (zh) * 2016-12-09 2017-05-24 京东方科技集团股份有限公司 一种柔性显示模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207425A (zh) * 2012-01-11 2013-07-17 远东新世纪股份有限公司 位相差膜的制法
CN105137637A (zh) * 2015-09-23 2015-12-09 武汉华星光电技术有限公司 液晶显示组件、液晶显示装置及终端
CN106783923A (zh) * 2016-12-27 2017-05-31 武汉华星光电技术有限公司 触控显示器及电子设备
CN106952941A (zh) * 2017-05-26 2017-07-14 上海天马有机发光显示技术有限公司 一种显示面板、制作方法及电子设备
CN108172121A (zh) * 2017-12-12 2018-06-15 武汉华星光电半导体显示技术有限公司 一种功能膜层的制备方法
CN108334241A (zh) * 2018-03-21 2018-07-27 武汉华星光电半导体显示技术有限公司 触控偏光结构及柔性显示装置

Also Published As

Publication number Publication date
US20200166799A1 (en) 2020-05-28
CN108334241A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2019179049A1 (zh) 触控偏光结构及柔性显示装置
US9983713B2 (en) Touch display and method for manufacturing the same
TWI481927B (zh) The manufacturing method of touch panel integration
US9431630B2 (en) Package structure for flexible organic light emitting diode device, method for packaging the same and flexible display device
US9395471B2 (en) Display device
US11402954B2 (en) Flexible touch control display module
WO2019037220A1 (zh) 柔性盖板及其制作方法、柔性oled显示装置
US10527878B2 (en) Display panel and method for manufacturing the same
CN108666357B (zh) 一种显示面板、其制作方法及显示装置
US9698372B2 (en) OLED touch control display device and manufacture method thereof
US8975812B2 (en) Polarization structure, method of manufacturing a polarization structure and organic light emitting display device having a polarization structure
US9224973B2 (en) Flexible organic light emitting display device
WO2016086540A1 (zh) Oled触控显示装置及其制造方法
US20160343791A1 (en) Double side oled display device and manufacture method thereof
US10495912B2 (en) Method of manufacturing liquid crystal display panel and liquid crystal display panel manufactured by the same
WO2019179431A1 (zh) 热转印基板、触控显示面板及其制造方法、显示装置
KR101890774B1 (ko) 유기전계발광 표시장치
US9224979B2 (en) Display device and manufacturing method of the same
CN109802049B (zh) 显示面板及其制备方法、显示装置
CN109659340B (zh) 显示面板以及显示面板的制备方法
WO2020107726A1 (zh) 显示装置及其制造方法
KR20190098876A (ko) 편광유닛, 이의 제조방법 및 상기 편광유닛을 포함하는 표시장치
TW201939140A (zh) 觸控顯示裝置
WO2019205435A1 (zh) Oled显示装置
WO2019075796A1 (zh) 一种集成偏光片和触控功能的盖板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910447

Country of ref document: EP

Kind code of ref document: A1