WO2019178737A1 - 一种电感元件及制造方法 - Google Patents

一种电感元件及制造方法 Download PDF

Info

Publication number
WO2019178737A1
WO2019178737A1 PCT/CN2018/079597 CN2018079597W WO2019178737A1 WO 2019178737 A1 WO2019178737 A1 WO 2019178737A1 CN 2018079597 W CN2018079597 W CN 2018079597W WO 2019178737 A1 WO2019178737 A1 WO 2019178737A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic core
flat coil
core
layer
Prior art date
Application number
PCT/CN2018/079597
Other languages
English (en)
French (fr)
Inventor
夏胜程
李有云
余鑫树
肖更新
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Priority to PCT/CN2018/079597 priority Critical patent/WO2019178737A1/zh
Priority to US15/973,516 priority patent/US11309117B2/en
Publication of WO2019178737A1 publication Critical patent/WO2019178737A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/061Winding flat conductive wires or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • H01F2017/046Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core helical coil made of flat wire, e.g. with smaller extension of wire cross section in the direction of the longitudinal axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the invention relates to an inductance element and a method of manufacturing the same.
  • the solder joint is prone to the phenomenon of soldering, and the solder joint is buried in the magnet, and the open circuit and short circuit are prone to occur during the pressing process.
  • the coil is first placed in the empty cavity, and then the powder is pressed for pressing. It is difficult to ensure that the coil can be in the designed position, the coil is easily offset, and the product space utilization rate is low.
  • the conventional inductor coil is made by winding a flat wire.
  • the winding method is such that the width direction of the flat wire is parallel to the axial direction of the column in the core.
  • the width of the flat wire determines the width of the flat wire.
  • the ultimate height of the product, while the width of the flat wire is generally 1.5 times the thickness, resulting in a product height that is unlikely to be too low.
  • the main object of the present invention is to provide an inductance element and a manufacturing method in view of the deficiencies of the prior art.
  • the present invention adopts the following technical solutions:
  • An inductive component comprising a magnetic core, a flat coil wound on a center pillar of the magnetic core, and a magnetic molding layer covering the magnetic core and the flat coil, and two lead-outs of the flat coil Two electrodes connected at the ends are exposed outside the magnetic molding layer, wherein the flat coils are configured such that a width direction of a flat wire forming the flat coil is perpendicular to an axial direction of the center pillar of the magnetic core, and The flat wires are stacked on the upper layer in the axial direction of the center pillar.
  • the magnetic plastic sealing layer is molded or formed by gluing.
  • the magnetic plastic sealing layer comprises magnetic powder particles, an organic adhesive, a lubricant and a curing agent
  • the material of the magnetic powder particles comprises manganese zinc, nickel zinc, carbonyl iron powder, iron nickel alloy, iron silicon, iron silicon chromium, iron silicon.
  • the organic adhesive comprising any one of an epoxy resin, a silicone resin, a furfural resin, a polyimide, a polyphenylene sulfide, and a melamine resin.
  • the lubricant comprises one or more of stearic acid, aluminum stearate, magnesium stearate, calcium stearate, and zinc stearate.
  • the curing agent is an amino group. Resin.
  • the overall shape of the magnetic core is T-shaped, rod-shaped or I-shaped.
  • cross-sectional shape of the column in the magnetic core is square, rectangular, elliptical, circular or racetrack type.
  • the magnetic core is a T-shaped magnetic core
  • the T-shaped magnetic core includes a lower blade and the magnetic core middle column connecting the lower leaves, and the flat coil is wound in the magnetic core
  • the magnetic molding layer is coated on the flat coil and the magnetic core, but at least a portion of the outer side and the bottom of the lower blade of the magnetic core are exposed to set the electrode.
  • the magnetic core is an I-shaped magnetic core
  • the I-shaped magnetic core includes an upper blade, a lower blade, and a core center column connecting the upper blade and the lower blade
  • the magnetic plastic sealing layer is coated on the flat coil and the magnetic core, at least a portion of an outer side and a bottom portion of a lower corner of the magnetic core are exposed to provide the electrode.
  • the bottom of the magnetic core is provided with two electrode slots, and a metallization layer is formed in the electrode slot, and two lead ends of the flat coil wound around the center pillar of the magnetic core are respectively Receiving, in one of the two electrode slots, the lead end is fixed in the electrode slot by spot welding; or, the electrode core is provided with two electrode slots on the side and the bottom thereof.
  • a metallization layer is formed in the electrode slot, and two electrode slots on the side surface of the magnetic core are respectively connected to the two electrode slots at the bottom of the magnetic core through the metallization layer, and are wound around the magnetic core
  • the two leading ends of the flat coil on the middle column respectively receive one of two electrode slots on the side of the magnetic core, and the lead ends are fixed in the electrode slot by spot welding .
  • a method of manufacturing the inductor component comprising the steps of:
  • the flat coil is wound in step a such that a width direction of the flat wire is perpendicular to an axial direction of the center pillar of the magnetic core, and the flat wire is stacked on an upper layer in an axial direction of the center pillar To form the flat coil.
  • the step b includes: preparing a magnetic molding compound, the magnetic powder containing the magnetic powder is passivated and insulated carbonyl iron powder, preferably, the carbonyl iron powder has a particle diameter D50 of 4 ⁇ m; the magnetic plastic sealing layer
  • the magnetic powder has a solid content of 60 to 90% by weight;
  • the organic binder is made of a silicone resin and an epoxy resin, and the content is between 10 and 40% by weight; preferably, the curing agent is an amino resin, preferably,
  • the curing agent is preferably used in an amount of 6 wt% of the silicone resin content; preferably, a total weight of 0.2 wt% magnesium stearate is further added for homogenization; and the prepared magnetic molding compound is applied to the periphery of the coil by a molding process.
  • Forming the magnetic plastic sealing layer preferably, the molding pressure is 0 to 100 MPa, and then curing the organic component in the magnetic plastic sealing layer by baking at 150 ° C / 1H; or
  • Step b includes: preparing a magnetic molding compound, wherein the magnetic powder contained in the magnetic molding layer is a passivated and insulated FeSiCr metal soft magnetic powder, preferably, the FeSiCr metal soft magnetic powder has a particle diameter D50 of 30 ⁇ m; the magnetic molding compound magnetic powder
  • the solid content is between 80 and 97% by weight; the organic binder is a silicone resin, and the content is between 3 and 20% by weight; preferably, the curing agent is an amino resin, preferably, the curing agent is used.
  • the magnetic plastic seal layer on the periphery of the coil by a molding process using a prepared magnetic molding compound, preferably, the molding pressure is 100 to 300 MPa, and then 150 ° C / 1 H Baking causes the organic components in the magnetic molding layer to cure.
  • the flat coil is configured such that a width direction of a flat wire forming the flat coil is perpendicular to an axial direction of the center pillar of the magnetic core, and the flat wire is at an axis of the center pillar
  • the upper layer is stacked so as to be different from the conventional winding method in which the width direction of the flat wire is parallel to the axial direction of the column in the magnetic core, and the width of the flat wire determines the height of the product.
  • the present invention adopts the width direction of the flat wire. Vertically perpendicular to the axial winding of the column in the core, the thickness of the flat wire determines the height of the product, and the width of the flat wire is at least 1.5 times the thickness.
  • the inductance component of the present invention can better reduce the height dimension of the product and make the product thinner. In this way, coil winding is formed on the prefabricated magnetic core, so that the coil is fixed. In the later molding/injection, the coil is not offset and deformed, and the effective space of the magnet is fully utilized, and the consistency of the product is better. .
  • the pins of the coil form the electrodes directly, which greatly reduces the risk of open circuit and the reliability of the product is higher.
  • the invention can provide a magnetic core with a magnetic permeability of, for example, between 40 and 500.
  • the pressure of the magnetic molding layer of the present invention can be appropriately reduced. For example, 0 to 300 MPa.
  • the thinning and miniaturization of the power inductor product of the present invention requires that the built-in coil has a smaller wire diameter.
  • the magnetic molding layer has a smaller molding pressure, and thus is more suitable for achieving thinning and miniaturization of the power inductor product.
  • FIG. 1 is a schematic view of a T-shaped prefabricated magnetic core according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a bottom electrode slot of a T-shaped magnetic core according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the winding of the coil of the embodiment of the present invention (T-shaped magnetic core) formed on the pre-made magnetic core;
  • FIG. 4 is a schematic view of the magnetic molding layer of the embodiment (T-shaped magnetic core) of the present invention after molding;
  • Figure 5 is a perspective view of the finished product of the embodiment (T-shaped magnetic core) of the present invention.
  • FIG. 6 is a schematic view of an I-shaped prefabricated magnetic core according to an embodiment of the present invention.
  • Figure 7 is a schematic view of a flat coil wound according to an embodiment of the present invention (I-shaped magnetic core);
  • Figure 8 is a schematic view showing the embodiment of the present invention (I-shaped magnetic core) coil winding on the prefabricated magnetic core to form a built-in winding;
  • Fig. 9 is a schematic view showing the product after molding the magnetic plastic sealing layer of the embodiment (I-shaped magnetic core) of the present invention.
  • an inductive component includes a magnetic core 100, 200, flat coils 110, 210 wound on the center pillars 105, 203 of the magnetic cores 100, 200, and The magnetic molding layers 108, 205 covering the magnetic core and the flat coils 110, 210, and the two electrodes connected to the two terminals 106, 107, 201, 202 of the flat coils 110, 210 are exposed Outside the magnetic molding layers 108, 205, wherein the flat coils 110, 210 are configured such that the width direction of the flat wires forming the flat coils 110, 210 is perpendicular to the center pillars 105, 203 of the magnetic core In the axial direction, the flat wires are stacked on the upper side in the axial direction of the center pillars 105, 203.
  • the magnetic molding layers 108, 205 are formed by molding or by gluing.
  • the magnetic molding layers 108, 205 comprise magnetic powder particles, an organic binder, a lubricant, and a curing agent.
  • the material of the magnetic powder particles may include, but is not limited to, manganese zinc, nickel zinc, carbonyl iron powder, iron nickel alloy, iron silicon, iron silicon chromium, iron silicon aluminum, molybdenum molybdenum, nano Any one or more of crystal and amorphous.
  • the organic adhesive may include, but is not limited to, any one or more of an epoxy resin, a silicone resin, a furfural resin, a polyimide, a polyphenylene sulfide, and a melamine resin.
  • the lubricant may include, but is not limited to, any one or more of stearic acid, aluminum stearate, magnesium stearate, calcium stearate, and zinc stearate.
  • the curing agent may comprise, but is not limited to, an amino resin.
  • the overall shape of the magnetic cores 100, 200 can be, but is not limited to, a T-shape, a rod or an I-shape.
  • the cross-sectional shape of the post in the magnetic core may be, but is not limited to, a square, rectangular, elliptical, circular or racetrack type.
  • the magnetic core 100 may be a T-shaped magnetic core including a lower blade 109 and the magnetic core connecting the lower blade. a column 105, the flat coil 110 is wound on the magnetic core center post 105, and the magnetic plastic sealing layer 108 is coated on the flat coil and the magnetic core, but the outer side of the lower core of the magnetic core At least a portion of the bottom portion is exposed to set the electrode.
  • the magnetic core 200 may be an I-shaped magnetic core, and the I-shaped magnetic core includes an upper leaf 207, a lower leaf 204, and a connecting upper leaf 207.
  • a magnetic core center pillar 203 between the lower blade 204, the flat coil 210 is wound around the magnetic core column 203, and the magnetic plastic sealing layer 205 is coated on the flat coil and the magnetic core Above, at least a portion of the outer side and the bottom of the lower lobe of the magnetic core are exposed to set the electrode.
  • the bottom of the magnetic core is provided with two electrode slots 103, 104, and a metallization layer is formed in the electrode slots 103, 104, which is wound around the center pillar of the magnetic core.
  • the two leading ends of the flat coil are respectively received in one of the two electrode slots 103, 104, and the leading ends are fixed in the electrode slots 103, 104 by spot welding.
  • the magnetic core has two electrode slots 101, 102, 103, 104 disposed on the side and the bottom thereof, and a metallization layer is formed in the electrode slots 101, 102, 103, and 104.
  • Two electrode slots 101, 102 on the side of the magnetic core are respectively connected to the two electrode slots 103, 104 at the bottom of the magnetic core through the metallization layer, and are wound around the center pillar of the magnetic core.
  • the two leading ends of the flat coil are respectively received in one of the two electrode slots 101, 102 on the side of the magnetic core, and the leading end is fixed in the electrode slot by spot welding.
  • a method for manufacturing the inductor component includes the following steps:
  • the flat coil is wound in step a such that a width direction of the flat wire is perpendicular to an axial direction of the center pillar of the magnetic core, and the flat wire is stacked on an upper layer in an axial direction of the center pillar To form the flat coil.
  • step b comprises: formulating a magnetic molding compound, wherein the magnetic powder contains magnetic powder of passivated and insulating treated carbonyl iron powder, preferably, the carbonyl iron powder has a particle diameter D50 of 4 ⁇ m;
  • the magnetic powder layer has a magnetic powder solid content of 60 to 90% by weight;
  • the organic binder is made of a silicone resin and an epoxy resin, and the content is between 10 and 40% by weight; preferably, the curing agent is an amino resin.
  • the curing agent is preferably used in an amount of 6 wt% of the silicone resin content; preferably, a total weight of 0.2 wt% magnesium stearate is further added for homogenization; and the prepared magnetic molding compound is used in the molding process.
  • the magnetic molding layer is formed on the periphery of the coil, preferably, the molding pressure is 0 to 100 MPa, and then the organic component in the magnetic molding layer is cured by baking at 150 ° C / 1H.
  • the step b comprises: preparing a magnetic molding compound, wherein the magnetic powder contained in the magnetic molding layer is a passivated and insulated FeSiCr metal soft magnetic powder, and preferably, the FeSiCr metal soft magnetic powder has a particle diameter D50 of 30 ⁇ m; the magnetic molding material magnetic powder has a solid content of 80 to 97% by weight; the organic binder is made of a silicone resin, and the content is between 3 and 20% by weight; preferably, the curing agent is an amino resin, preferably The curing agent is used in an amount of 6 wt% of the silicone resin; the magnetic molding layer is formed on the periphery of the coil by a molding process using a prepared magnetic molding compound, preferably, the molding pressure is 100 ⁇ . 300 MPa, and then the organic component in the magnetic plastic seal layer was cured by baking at 150 ° C / 1H.
  • the magnetic molding material magnetic powder has a solid content of 80 to 97% by weight
  • the organic binder is made of a silicone resin, and the content is between
  • a small size product of 1.0*0.5*0.65 mm can be made using the method of the present invention.
  • the flat wire is wound on the center pillar of the prefabricated magnetic core by the above-described winding method to form a flat coil, and the lead is received at a predetermined position.
  • the pin is fixed in the electrode slot by spot welding.
  • the electrode slot can be on the side of the core or on the bottom of the core.
  • the magnetic molding compound can be coated on the magnetic core and the coil by molding or gluing, and the pins of the coil are exposed.
  • the magnetic plastic sealing layer may comprise magnetic powder particles, an organic adhesive, a lubricant, a curing agent and the like.
  • the material of the magnetic powder particles may be any one or more of manganese zinc, nickel zinc, carbonyl iron powder, iron nickel alloy, iron silicon, iron silicon chromium, iron silicon aluminum, molybdenum molybdenum, nano crystal, and amorphous.
  • the organic adhesive may be any one or more of an epoxy resin, a silicone resin, a furfural resin, a polyimide, a polyphenylene sulfide, and a melamine resin.
  • Lubricants include stearic acid, aluminum stearate, magnesium stearate, calcium stearate, zinc stearate, but are not limited to the types described.
  • the prefabricated magnetic core can be selected from ferrite or metal soft magnetic material according to actual production requirements and product performance, and the shape can also be arbitrarily changed.
  • Prefabricated magnetic cores can be fabricated by conventional, commonly applied, injection molding, press forming or engraving cutting processes.
  • the coil may be placed in the prefabricated magnetic core by in-situ winding on the prefabricated magnetic core to form a built-in coil winding. Another way is to make the coil first, and then place the coil on the pre-made core to form the built-in coil winding.
  • the overall shape of the prefabricated magnetic core may be T-shaped, rod-shaped or I-shaped; the cross-sectional shape of the core in the magnetic core may be square, rectangular, elliptical, circular or racetrack type.
  • the prefabricated magnetic core may be a T-shaped magnetic core, the T-shaped magnetic core includes a lower leaf and a magnetic core middle column, and the magnetic plastic sealing layer covers a part of the lower leaf (including an extension of the I-shaped base) The side of the core column and the column of the core, the outside and the bottom of the lower corner of the core are exposed.
  • the prefabricated magnetic core may also be an I-shaped magnetic core, wherein the I-shaped magnetic core includes a top leaf, a lower leaf and a magnetic core middle column, and the magnetic plastic sealing layer covers the upper and lower leaves of the magnetic core A portion and a center pillar, the outer side and the bottom of the lower corner of the magnetic core are exposed.
  • the bottom of the magnetic core of the T-shaped or I-shaped type may be provided with two electrode slots, preferably two electrode slots are arranged in parallel, a metallization layer is formed in the electrode slot, and two coils are wound around the column in the magnetic core. The terminals are respectively received in one of the two electrode slots.
  • two sides of the I-shaped or T-shaped magnetic core are provided with two electrode slots, and two electrode slots/electrode layers are disposed at the bottom of the magnetic core, and a metallization layer is formed in the electrode slots, and the core
  • the two electrode slots on the side are connected to the two electrode slots/electrode layers at the bottom of the magnetic core through a metallization layer, and the two lead ends of the flat coil wound around the column in the core respectively receive the sides of the magnetic core Within one of the two electrode slots.
  • a T-shaped magnetic core of FeSiCr material can be obtained by a one-time press forming process, preferably, a magnetic permeability of 40 to 150 and a saturation magnetic flux of 10,000 to 15,000 mT.
  • the bottom of the magnetic core is provided with two parallel electrode slots 103, 104, and two side hanging slots or electrode slots 101, 102 are disposed on the side.
  • a metallization layer is preferably formed in the electrode trench by a sputtering process.
  • Winding may be performed on the center pillar 105 of the above-described T-shaped magnetic core by a winding machine. As shown in FIG. 3, preferably, after the coil is wound around the article, the leading ends 106, 107 of the coil are received in the electrode slots 103, 104.
  • Figure 4 is a schematic view of the finished product formed by magnetic glue potting.
  • the magnetic molding layer 108 is covered by molding on the wound core.
  • the magnetic plastic sealing layer 108 covers the center pillar 105 of the magnetic core and a portion (upper surface) of the lower blade 109, and the bottom of the lower blade of the magnetic core is exposed.
  • the magnetic powder contained in the magnetic plastic sealing layer 108 is preferably carbonyl iron powder, the original powder is passivated and insulated, and the particle diameter D50 is preferably 4 ⁇ m; the magnetic molding material magnetic powder solid content is preferably between 60 and 90% by weight; the organic binder is preferably The content of the silicone resin and the epoxy resin is preferably between 10 and 40% by weight; the curing agent is preferably an amino resin, and the curing agent is preferably used in an amount of 6 wt% of the silicone resin; preferably, the total weight is also 0.2 wt% of magnesium stearate. , to be uniform.
  • a magnetic molding layer is formed on the magnetic core and the coil shown in FIG.
  • the molding pressure is preferably 0 to 100 MPa, and then preferably baked at 150 ° C / 1 H to make the plastic sealing layer
  • the organic ingredients are cured.
  • the SMD external electrode terminal 111 is formed by a final copper metallization/PVD sputtering or the like.
  • Fig. 5 is a perspective view showing the finished product of the preferred embodiment.
  • the metal soft magnetic alloy I-shaped prefabricated magnetic core can also be obtained by a powder molding process, preferably, the magnetic permeability is 40-90, the saturation magnetic flux is 10000-15000 mT, and the I-shaped magnetic core material is preferably used. Carbonyl iron powder.
  • the base of the prefabricated I-shaped magnetic core may be a rectangular body.
  • the flat coil may be wound on the center pillar 203 of the prefabricated magnetic core by a winding machine, and has two terminals 201 and 202.
  • the two terminals 201 and 202 are respectively bent and adhered to both sides of the lower blade 204 of the I-shaped magnetic core. Then, the two lead ends 201, 202 are welded to the metallized layer on the side by laser welding to form a structure as shown in FIG.
  • FIG. 8 is a schematic view showing a magnetic coil layer 205 wrapped with a flat coil.
  • Figure 9 is a schematic view of the finished product.
  • the magnetic glue layer 205 is covered by a glue on the I-shaped magnetic core on which the coil is wound.
  • the magnetic powder contained in the magnetic plastic sealing layer 205 is preferably FeSiCr metal soft magnetic powder, and the original powder is passivated and insulated, and the particle diameter D50 is 30 ⁇ m.
  • the magnetic molding material magnetic powder solid content is preferably between 80 and 97% by weight; the organic binder is preferably silicone resin, the content is preferably between 3 and 20% by weight; the curing agent is preferably an amino resin, and the curing agent is preferably used in an amount of silicone resin. 6wt%.
  • a magnetic molding layer 205 is formed on the periphery of the coil winding shown in FIG.
  • Fig. 9 is a perspective view showing the finished product of the preferred embodiment.
  • the inductive component of the present invention is suitable for electronic products such as digital cameras, mobile phones, computers, televisions, set top boxes, game machines, automotive electronics, and LED lighting.
  • the power inductor product has the advantages of thinness, miniaturization, and high reliability.

Abstract

一种电感元件及其制造方法,该电感元件包括磁芯(100,200)、卷绕在磁芯的中柱(105,203)上的扁平线圈(110,210)以及覆盖于磁芯及扁平线圈上的磁性塑封层(108,205),与扁平线圈的两个引出端(106,107,201,202)相连的两个电极暴露在磁性塑封层外,其中扁平线圈经配置使得形成扁平线圈的扁平线的宽度方向垂直于磁芯的中柱的轴向,且扁平线在中柱的轴向上层层叠置。该电感元件的扁平线圈绕制方式可以在获得同样DCR的情况下降低产品的高度尺寸,使产品更加薄型化。

Description

一种电感元件及制造方法 技术领域
本发明涉及一种电感元件及制造方法。
背景技术
随着互联网的急速发展,对IC整机技术的要求越来越高,集成化、小型化是历史发展的趋势,同时对功率型电感器总体上要求是小型化、薄型化、高频、低DCR、大电流、低EMI(电磁干扰)和低制造成本。传统工艺类型功率电感,如圆线飞叉绕制、扁平线对绕对产品的高度有一定的要求,不能充分的利用功率电感有限的空间。
对于传统线圈点焊与料架上的功率电感,焊点易出现虚焊等现象,并且焊点埋于磁体中,在压制过程中也易出现开路、短路现象。
对于传统的一体成型电感,先是将线圈至于空模穴中,再填粉进行压制,很难保证线圈能在设计的位置,线圈容易偏移,产品空间利用率低。
传统电感线圈采用扁平线对绕的方式制得,这种绕制方式是扁平线的宽度方向平行于磁芯中柱的轴向,但由于产品对DCR有一定的要求,扁平线的宽度决定了产品的极限高度,同时扁平线一般宽度最小是厚度的1.5倍,导致产品高度不可能太低。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本发明的主要目的在于针对现有技术的不足,提供一种电感元件及制造方法。
为实现上述目的,本发明采用以下技术方案:
一种电感元件,包括磁芯、卷绕在所述磁芯的中柱上的扁平线圈以及覆盖于所述磁芯及所述扁平线圈上的磁性塑封层,与所述扁平线圈的两个引出端相连的两个电极暴露在所述磁性塑封层外,其中所述扁平线圈经配置使得形成所述扁平线圈的扁平线的宽度方向垂直于所述磁芯的所述中柱 的轴向,且所述扁平线在所述中柱的轴向上层层叠置。
进一步地,所述磁性塑封层模塑成型或者以涂胶方式形成。
进一步地所述磁性塑封层包含磁粉颗粒、有机胶粘剂、润滑剂和固化剂,所述磁粉颗粒的材料包含锰锌、镍锌、羰基铁粉、铁镍合金、铁硅、铁硅铬、铁硅铝、钼坡莫、纳米晶、非晶中任意一种或多种,所述有机胶粘剂包含环氧树脂、硅树脂、糠醛树脂、聚酰亚胺、聚苯硫醚、蜜胺树脂中任意一种或多种,所述润滑剂包含硬脂酸、硬脂酸铝、硬脂酸镁、硬脂酸钙、硬脂酸锌中任意一种或多种,优选地,所述固化剂为氨基树脂。
进一步地,所述磁芯的整体形状为T字型、棒型或工字型。
进一步地,所述磁芯中柱的截面形状为正方形、长方形、椭圆形、圆形或跑道型。
进一步地,所述磁芯为T字型磁芯,所述T字型磁芯包括下叶和连接所述下叶的所述磁芯中柱,所述扁平线圈卷绕在所述磁芯中柱上,所述磁性塑封层包覆在所述扁平线圈以及所述磁芯上,但所述磁芯的下叶的外侧及底部的至少一部分暴露在外以便设置所述电极。
进一步地,所述磁芯为工字型磁芯,所述工字型磁芯含上叶、下叶和连接所述上叶与所述下叶之间的磁芯中柱,所述扁平线圈卷绕在所述磁芯中柱上,所述磁性塑封层包覆在所述扁平线圈以及所述磁芯上,所述磁芯的下叶的外侧及底部的至少一部分暴露在外以便设置所述电极。
进一步地,所述磁芯的底部设置有两个电极槽,所述电极槽内形成有金属化层,绕在所述磁芯的所述中柱上的所述扁平线圈的两个引出端分别收到所述两个电极槽中的一者内,所述引出端通过点焊的方式固定于所述电极槽内;或者,所述磁芯的侧面和底部均设置有两个电极槽,所述电极槽内形成有金属化层,所述磁芯的侧面的两个电极槽分别与所述磁芯的底部的两个电极槽通过所述金属化层相连,绕在所述磁芯的所述中柱上的所述扁平线圈的两个引出端分别收到所述磁芯的侧面的两个电极槽中的一者内,所述引出端通过点焊的方式固定于所述电极槽内。
一种所述的电感元件的制造方法,包括以下步骤:
a.预制磁芯并在所述磁芯的中柱上绕制扁平线圈,将所述扁平线圈的两个引出端分别连接到设置在所述磁芯上的两个电极上;
b.在所述磁芯及所述扁平线圈上覆盖磁性塑封层,并使与所述扁平线圈相连的所述电极暴露在所述磁性塑封层外;
其中在步骤a中卷绕所述扁平线圈时,使得扁平线的宽度方向垂直于所述磁芯的所述中柱的轴向,且所述扁平线在所述中柱的轴向上层层叠置,以形成所述扁平线圈。
进一步地,步骤b包括:配制磁性塑封料,所述磁性塑封层所含磁粉为经钝化和绝缘处理的羰基铁粉,优选地,羰基铁粉的粒径D50为4μm;所述磁性塑封层的磁粉固含量在60~90wt%之间;所述有机粘结剂采用硅树脂和环氧树脂,含量在10~40wt%之间;优选地,所述固化剂为氨基树脂,优选地,所述固化剂的用量优选为硅树脂含量的6wt%;优选地,还添加总重量0.2wt%硬脂酸镁,进行均一化;使用配制好的磁性塑封料通过模塑工艺在所述线圈的外围形成所述磁性塑封层,优选地,成型压力为0~100MPa,然后经过150℃/1H烘烤使所述磁性塑封层中的有机成分固化;或者
步骤b包括:配制磁性塑封料,所述磁性塑封层所含磁粉为经钝化和绝缘处理的FeSiCr金属软磁粉,优选地,FeSiCr金属软磁粉的粒径D50为30μm;所述磁性塑封料磁粉的固含量在80~97wt%之间;所述有机粘结剂采用硅树脂,含量在3~20wt%之间;优选地,所述固化剂为氨基树脂,优选地,所述固化剂的用量为所述硅树脂含量的6wt%;使用配制好的磁性塑封料通过模塑工艺在所述线圈的外围形成所述磁性塑封层,优选地,成型压力为100~300MPa,然后经过150℃/1H烘烤使所述磁性塑封层中的有机成分固化。
本发明具有如下有益效果:
本发明的电感元件中,扁平线圈经配置使得形成所述扁平线圈的扁平线的宽度方向垂直于所述磁芯的所述中柱的轴向,且所述扁平线在所述中柱的轴向上层层叠置,从而,区别于传统的使扁平线的宽度方向平行于磁芯中柱的轴向的绕制方式,扁平线的宽度决定了产品的高度,本发明采用使扁平线的宽度方向垂直于于磁芯中柱的轴向的绕制方式,扁平线的厚度决定产品的高度,而扁平线的宽度最小是厚度的1.5倍,在获得同样DCR的情况下,本发明的电感元件的扁平线圈绕制方法可以更好地降低产品的高度尺寸,使产品更加薄型化。以此方式,在预制磁芯上形成线圈绕制,使线圈得到固定,在后期的模压/注塑时,线圈不偏移、变形,充分发挥了磁体的有效空间,同时使产品的一致性更好。线圈的引脚直接形成电极,大大降低开路风险,产品的可靠性更高。本发明可提供磁导率较大的例如 在40~500之间的磁芯,在达到与模压一体成型电感相同的电感量情况下,本发明对于磁性塑封层模塑成型的压强可以适当减小,例如0~300MPa。本发明的功率电感产品的薄型化和小型化要求内置线圈线径更细,本发明中磁性塑封层的成型压强较小,因此更适用于实现功率电感产品的薄型化和小型化。
前述已经相当广泛地阐述了本发明的特征和技术优势,以便能够更好地理解本发明的详细描述。本发明的其它特征和优势将在以下描述。
附图说明
图1是本发明实施例的T字型预制磁芯示意图;
图2是本发明实施例的T字型磁芯底部电极槽示意图;
图3是本发明实施例(T字型磁芯)的线圈绕在预制磁芯上形成内置绕组示意图;
图4是本发明实施例(T字型磁芯)的磁性塑封层成型后的示意图;
图5是T本发明实施例(T字型磁芯)的成品外形图;
图6是本发明实施例的工字型预制磁芯示意图;
图7是本发明实施例(工字型磁芯)绕制扁平线圈示意图;
图8是本发明实施例(工字型磁芯)线圈立绕在预制磁芯上形成内置绕组的示意图;
图9是本发明实施例(工字型磁芯)的磁性塑封层成型后的产品示意图。
具体实施方式
以下通过实施例结合附图对本发明进行进一步的详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。本领域技术人员应该理解,披露的概念和具体实施例可以很容易地被使用作为基础用来修改或设计其它结构以完成本发明的相同目的。本领域技术人员也应该认识到,这种等同的构造并没有偏移本发明的精神和范围。被认为是本发明特点的新颖性特征,其结构和运作方法,以及进一步的目的和优点,从以下的描述并结合附图将被更好地理解。但是,应该深刻地认识到,提供的每个特征都仅是为了描述和说明,而不是意在限制本发明的定义。
参阅图1至图9,在一种实施例中,一种电感元件,包括磁芯100、200、卷绕在所述磁芯100、200的中柱105、203上的扁平线圈110、210 以及覆盖于所述磁芯及所述扁平线圈110、210上的磁性塑封层108、205,与所述扁平线圈110、210的两个引出端106、107、201、202相连的两个电极暴露在所述磁性塑封层108、205外,其中所述扁平线圈110、210经配置使得形成所述扁平线圈110、210的扁平线的宽度方向垂直于所述磁芯的所述中柱105、203的轴向,且所述扁平线在所述中柱105、203的轴向上层层叠置。
在优选实施例中,所述磁性塑封层108、205通过模塑成型或者以涂胶方式形成。
在优选实施例中,所述磁性塑封层108、205包含磁粉颗粒、有机胶粘剂、润滑剂和固化剂。
在进一步优选实施例中,所述磁粉颗粒的材料可以包含(但不限于)锰锌、镍锌、羰基铁粉、铁镍合金、铁硅、铁硅铬、铁硅铝、钼坡莫、纳米晶、非晶中任意一种或多种。
在进一步优选实施例中,所述有机胶粘剂可以包含(但不限于)环氧树脂、硅树脂、糠醛树脂、聚酰亚胺、聚苯硫醚、蜜胺树脂中任意一种或多种。
在进一步优选实施例中,所述润滑剂可以包含(但不限于)硬脂酸、硬脂酸铝、硬脂酸镁、硬脂酸钙、硬脂酸锌中任意一种或多种,
在进一步优选实施例中,所述固化剂可以包含(但不限于)氨基树脂。
参阅图1至图9,在优选实施例中,所述磁芯100、200的整体形状可以为(但不限于)T字型、棒型或工字型。
在优选实施例中,所述磁芯中柱的截面形状可以为(但不限于)正方形、长方形、椭圆形、圆形或跑道型。
参阅图1至图5,在一个优选实施例中,所述磁芯100可以为T字型磁芯,所述T字型磁芯包括下叶109和连接所述下叶的所述磁芯中柱105,所述扁平线圈110卷绕在所述磁芯中柱105上,所述磁性塑封层108包覆在所述扁平线圈以及所述磁芯上,但所述磁芯的下叶的外侧及底部的至少一部分暴露在外以便设置所述电极。
参阅图6至图9,在另一个优选实施例中,所述磁芯200可以为工字型磁芯,所述工字型磁芯含上叶207、下叶204和连接所述上叶207与所述下叶204之间的磁芯中柱203,所述扁平线圈210卷绕在所述磁芯中柱203上,所述磁性塑封层205包覆在所述扁平线圈以及所述磁芯上,所述 磁芯的下叶的外侧及底部的至少一部分暴露在外以便设置所述电极。
在一个优选实施例中,所述磁芯的底部设置有两个电极槽103、104,所述电极槽103、104内形成有金属化层,绕在所述磁芯的所述中柱上的所述扁平线圈的两个引出端分别收到所述两个电极槽103、104中的一者内,所述引出端通过点焊的方式固定于所述电极槽103、104内。
在另一个优选实施例中,所述磁芯的侧面和底部均设置有两个电极槽101、102、103、104,所述电极槽101、102、103、104内形成有金属化层,所述磁芯的侧面的两个电极槽101、102分别与所述磁芯的底部的两个电极槽103、104通过所述金属化层相连,绕在所述磁芯的所述中柱上的所述扁平线圈的两个引出端分别收到所述磁芯的侧面的两个电极槽101、102中的一者内,所述引出端通过点焊的方式固定于所述电极槽内。
参阅图1至图8,在另一种实施例中,一种所述的电感元件的制造方法,包括以下步骤:
a.预制磁芯并在所述磁芯的中柱上绕制扁平线圈,将所述扁平线圈的两个引出端分别连接到设置在所述磁芯上的两个电极上;
b.在所述磁芯及所述扁平线圈上覆盖磁性塑封层,并使与所述扁平线圈相连的所述电极暴露在所述磁性塑封层外;
其中在步骤a中卷绕所述扁平线圈时,使得扁平线的宽度方向垂直于所述磁芯的所述中柱的轴向,且所述扁平线在所述中柱的轴向上层层叠置,以形成所述扁平线圈。
在一些优选实施例中,步骤b包括:配制磁性塑封料,所述磁性塑封层所含磁粉为经钝化和绝缘处理的羰基铁粉,优选地,羰基铁粉的粒径D50为4μm;所述磁性塑封层的磁粉固含量在60~90wt%之间;所述有机粘结剂采用硅树脂和环氧树脂,含量在10~40wt%之间;优选地,所述固化剂为氨基树脂,优选地,所述固化剂的用量优选为硅树脂含量的6wt%;优选地,还添加总重量0.2wt%硬脂酸镁,进行均一化;使用配制好的磁性塑封料通过模塑工艺在所述线圈的外围形成所述磁性塑封层,优选地,成型压力为0~100MPa,然后经过150℃/1H烘烤使所述磁性塑封层中的有机成分固化。
在另一些优选实施例中,步骤b包括:配制磁性塑封料,所述磁性塑封层所含磁粉为经钝化和绝缘处理的FeSiCr金属软磁粉,优选地,FeSiCr金属软磁粉的粒径D50为30μm;所述磁性塑封料磁粉的固含量在80~97wt% 之间;所述有机粘结剂采用硅树脂,含量在3~20wt%之间;优选地,所述固化剂为氨基树脂,优选地,所述固化剂的用量为所述硅树脂含量的6wt%;使用配制好的磁性塑封料通过模塑工艺在所述线圈的外围形成所述磁性塑封层,优选地,成型压力为100~300MPa,然后经过150℃/1H烘烤使所述磁性塑封层中的有机成分固化。
在一些具体实施例中,采用本发明的方法,可制作1.0*0.5*0.65mm的小尺寸产品。通过前述的绕制方式将扁平线绕制在预制的磁芯的中柱上,形成扁平线圈,引脚收于规定的位置。所述引脚通过点焊的方式,固定于电极槽内。电极槽可在磁芯的侧面,也可在磁芯的底面。磁性塑封料可以通过述模塑成型或者涂胶方式覆盖于磁芯及线圈上,线圈的引脚暴露在外。其中所述磁性塑封层可包含磁粉颗粒、有机胶粘剂、润滑剂和固化剂等。所述磁粉颗粒的材料可以为锰锌、镍锌、羰基铁粉、铁镍合金、铁硅、铁硅铬、铁硅铝、钼坡莫、纳米晶、非晶中任意一种或多种。所述有机胶粘剂可以为环氧树脂、硅树脂、糠醛树脂、聚酰亚胺、聚苯硫醚、蜜胺树脂中任意一种或多种。润滑剂包括硬脂酸、硬脂酸铝、硬脂酸镁、硬脂酸钙、硬脂酸锌,但不限于所述类型。其中所述预制磁芯可根据实际制作需求及产品性能上选择铁氧体或金属软磁材质,形状上也可以任意变换。预制磁芯可由现有习知并普遍适用的注塑、压制成型或雕刻切削工艺制作完成。其中线圈在预制磁芯的安置方式可以是在预制磁芯上原位绕制形成内置线圈绕组。另一种方式是先制作线圈,然后再将线圈安置在预制磁芯上形成内置线圈绕组。
所述预制磁芯的整体形状可以为T字型、棒型或工字型;所述磁芯中柱截面形状可以为正方形、长方形、椭圆形、圆形或跑道型。
所述预制磁芯可以为T字型磁芯,所述T字型磁芯含下叶和磁芯中柱,所述磁性塑封层包覆下叶的一部分(包括工字型底座的延伸出磁芯中柱的那一面)以及所述磁芯中柱,所述磁芯的下叶的外侧及底部暴露在外。
所述预制磁芯也可以为工字型磁芯,所述工字型磁芯含上叶、下叶和磁芯中柱,所述磁性塑封层包覆所述磁芯的上叶和下叶的一部分以及中柱,所述磁芯的下叶的外侧及底部暴露在外。
T字型或工字型的磁芯底部可设置有两电极槽,优选地两电极槽平行设置,所述电极槽内形成有金属化层,绕在所述磁芯中柱上的线圈的两个引出端分别收到两电极槽中的一者内。或者,所述工字型或T字型磁芯的 侧面设置有两个电极槽,磁芯的底部设置有两个电极槽/电极层,所述电极槽内形成有金属化层,磁芯的侧面的两个电极槽通过金属化层与磁芯的底部的两个电极槽/电极层相连,绕在所述磁芯中柱上的扁平线圈的两个引出端分别收到磁芯的侧面的两个电极槽中的一者内。
实例1
如图1所示,可采用一次压制成型工艺制得FeSiCr材料的T字型磁芯,优选地,磁导率40~150,饱和磁通10000~15000mT。优选地,如图2所示,该磁芯的底部设置有两平行的电极槽103、104,侧面设置有两条挂线槽或电极槽101、102。电极槽内优选通过溅射工艺形成金属化层。
可采用绕线机在上述T字型磁芯的中柱105上进行绕线。如图3所示,优选地,线圈绕制品完成后,线圈的引出端106、107收到电极槽103、104中。
图4为磁胶灌封后成型的完成品示意图。绕好线的磁芯上通过模塑成型覆盖磁性塑封层108。磁性塑封层108包覆所述磁芯的中柱105和下叶片109的一部分(上表面),所述磁芯的下叶片的底部暴露在外。
磁性塑封层108中所含磁粉优选为羰基铁粉,原粉经钝化和绝缘处理,粒径D50优选为4μm;磁性塑封料磁粉固含量优选在60~90wt%之间;有机粘结剂优选采用硅树脂和环氧树脂,含量优选在10~40wt%之间;固化剂优选为氨基树脂,固化剂的用量优选为硅树脂含量的6wt%;优选还添加总重量0.2wt%硬脂酸镁,进行均一化。使用配制好的磁性塑封料,通过模塑工艺在图3所示的磁芯和线圈上形成磁性塑封层,成型压力优选为0~100MPa,然后优选经过150℃/1H烘烤,使塑封层中的有机成分固化。优选地,最后融铜金属化/PVD溅射等方式形成SMD用外部电极端子111。图5所示为优选实施例完成品的外形图。
实例2
如图6所示,亦可采用粉末模压工艺制得金属软磁合金工字型预制磁芯,优选地,磁导率40~90,饱和磁通10000~15000mT,工字型型磁芯材质优选羰基铁粉。
该预制工字型磁芯的底座可以为矩形体,如图7所示,可先通过绕线机形在预制磁芯的中柱203上绕制扁平线圈,其具有两个引出端201、202,两个引出端201、202分别弯折紧贴工字型磁芯的下叶片204两侧。然后,通过激光焊将两个引出端201、202焊接在侧面的金属化层,形成如图7 所示的结构。
图8为磁性涂胶层205包裹扁平线圈示意图。图9为成型的完成品示意图。绕制好线圈的工字型磁芯上通过涂胶覆盖磁性胶水层205。
磁性塑封层205中所含磁粉优选为FeSiCr金属软磁粉,原粉经钝化和绝缘处理,粒径D50为30μm。磁性塑封料磁粉固含量优选在80~97wt%之间;有机粘结剂优选采用硅树脂,含量优选在3~20wt%之间;固化剂优选为氨基树脂,固化剂的用量优选为硅树脂含量的6wt%。使用配制好的磁性塑封料,通过模塑工艺在图2C所示线圈绕组外围形成磁性塑封层205,成型压力优选为100~300MPa,然后优选经过150℃/1H烘烤使朔封层有机成分固化。优选地,最后在引出端201、202的焊点处涂上导电胶,加热固化后形成导电层206。图9所示为优选实施例完成品的外形图。
本发明的电感元件种适用于数码相机、手机、计算机、电视机、机顶盒、游戏机、汽车电子、LED照明等电子产品。所述功率电感产品具有薄型化、小型化、可靠性高的优点。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离由所附权利要求限定的实施例精神和范围的情况下,可以在本文中进行各种改变、替换和变更。此外,本发明的范围不旨在限于说明书中所述的过程、机器、制造、物质组成、手段、方法和步骤的特定实施例。本领域普通技术人员将容易理解,可以利用执行与本文所述相应实施例基本相同功能或获得与本文所述实施例基本相同结果的目前存在的或稍后要开发的上述披露、过 程、机器、制造、物质组成、手段、方法或步骤。因此,所附权利要求旨在将这些过程、机器、制造、物质组成、手段、方法或步骤包含在其范围内。

Claims (10)

  1. 一种电感元件,其特征在于,包括磁芯、卷绕在所述磁芯的中柱上的扁平线圈以及覆盖于所述磁芯及所述扁平线圈上的磁性塑封层,与所述扁平线圈的两个引出端相连的两个电极暴露在所述磁性塑封层外,其中所述扁平线圈经配置使得形成所述扁平线圈的扁平线的宽度方向垂直于所述磁芯的所述中柱的轴向,且所述扁平线在所述中柱的轴向上层层叠置。
  2. 如权利要求1所述的电感元件,其特征在于,所述磁性塑封层模塑成型或者以涂胶方式形成。
  3. 如权利要求1所述的电感元件,其特征在于,所述磁性塑封层包含磁粉颗粒、有机胶粘剂、润滑剂和固化剂,所述磁粉颗粒的材料包含锰锌、镍锌、羰基铁粉、铁镍合金、铁硅、铁硅铬、铁硅铝、钼坡莫、纳米晶、非晶中任意一种或多种,所述有机胶粘剂包含环氧树脂、硅树脂、糠醛树脂、聚酰亚胺、聚苯硫醚、蜜胺树脂中任意一种或多种,所述润滑剂包含硬脂酸、硬脂酸铝、硬脂酸镁、硬脂酸钙、硬脂酸锌中任意一种或多种,优选地,所述固化剂为氨基树脂。
  4. 如权利要求1至3任一项所述的电感元件,其特征在于,所述磁芯的整体形状为T字型、棒型或工字型。
  5. 如权利要求1至4任一项所述的电感元件,其特征在于,所述磁芯中柱的截面形状为正方形、长方形、椭圆形、圆形或跑道型。
  6. 如权利要求1至3任一项所述的电感元件,其特征在于,所述磁芯为T字型磁芯,所述T字型磁芯包括下叶和连接所述下叶的所述磁芯中柱,所述扁平线圈卷绕在所述磁芯中柱上,所述磁性塑封层包覆在所述扁平线圈以及所述磁芯上,但所述磁芯的下叶的外侧及底部的至少一部分暴露在外以便设置所述电极。
  7. 如权利要求1至3任一项所述的电感元件,其特征在于,所述磁芯为工字型磁芯,所述工字型磁芯含上叶、下叶和连接所述上叶与所述下叶之间的磁芯中柱,所述扁平线圈卷绕在所述磁芯中柱上,所述磁性塑封层包覆在所述扁平线圈以及所述磁芯上,所述磁芯的下叶的外侧及底部的至少一部分暴露在外以便设置所述电极。
  8. 如权利要求1至7任一项所述的电感元件,其特征在于,所述磁芯的底部设置有两个电极槽,所述电极槽内形成有金属化层,绕在所述磁芯的所述中柱上的所述扁平线圈的两个引出端分别收到所述两个电极槽 中的一者内,所述引出端通过点焊的方式固定于所述电极槽内;或者,所述磁芯的侧面和底部均设置有两个电极槽,所述电极槽内形成有金属化层,所述磁芯的侧面的两个电极槽分别与所述磁芯的底部的两个电极槽通过所述金属化层相连,绕在所述磁芯的所述中柱上的所述扁平线圈的两个引出端分别收到所述磁芯的侧面的两个电极槽中的一者内,所述引出端通过点焊的方式固定于所述电极槽内。
  9. 一种如权利要求1至8任一项所述的电感元件的制造方法,其特征在于,包括以下步骤:
    a.预制磁芯并在所述磁芯的中柱上绕制扁平线圈,将所述扁平线圈的两个引出端分别连接到设置在所述磁芯上的两个电极上;
    b.在所述磁芯及所述扁平线圈上覆盖磁性塑封层,并使与所述扁平线圈相连的所述电极暴露在所述磁性塑封层外;
    其中在步骤a中卷绕所述扁平线圈时,使得扁平线的宽度方向垂直于所述磁芯的所述中柱的轴向,且所述扁平线在所述中柱的轴向上层层叠置,以形成所述扁平线圈。
  10. 如权利要求9所述的电感元件的制造方法,其特征在于,步骤b包括:配制磁性塑封料,所述磁性塑封层所含磁粉为经钝化和绝缘处理的羰基铁粉,优选地,羰基铁粉的粒径D50为4μm;所述磁性塑封层的磁粉固含量在60~90wt%之间;所述有机粘结剂采用硅树脂和环氧树脂,含量在10~40wt%之间;优选地,所述固化剂为氨基树脂,优选地,所述固化剂的用量优选为硅树脂含量的6wt%;优选地,还添加总重量0.2wt%硬脂酸镁,进行均一化;使用配制好的磁性塑封料通过模塑工艺在所述线圈的外围形成所述磁性塑封层,优选地,成型压力为0~100MPa,然后经过150℃/1H烘烤使所述磁性塑封层中的有机成分固化;或者
    步骤b包括:配制磁性塑封料,所述磁性塑封层所含磁粉为经钝化和绝缘处理的FeSiCr金属软磁粉,优选地,FeSiCr金属软磁粉的粒径D50为30μm;所述磁性塑封料磁粉的固含量在80~97wt%之间;所述有机粘结剂采用硅树脂,含量在3~20wt%之间;优选地,所述固化剂为氨基树脂,优选地,所述固化剂的用量为所述硅树脂含量的6wt%;使用配制好的磁性塑封料通过模塑工艺在所述线圈的外围形成所述磁性塑封层,优选地,成型压力为100~300MPa,然后经过150℃/1H烘烤使所述磁性塑封层中的有机成分固化。
PCT/CN2018/079597 2018-03-20 2018-03-20 一种电感元件及制造方法 WO2019178737A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/079597 WO2019178737A1 (zh) 2018-03-20 2018-03-20 一种电感元件及制造方法
US15/973,516 US11309117B2 (en) 2018-03-20 2018-05-07 Inductive element and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079597 WO2019178737A1 (zh) 2018-03-20 2018-03-20 一种电感元件及制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/973,516 Continuation US11309117B2 (en) 2018-03-20 2018-05-07 Inductive element and manufacturing method

Publications (1)

Publication Number Publication Date
WO2019178737A1 true WO2019178737A1 (zh) 2019-09-26

Family

ID=67984301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079597 WO2019178737A1 (zh) 2018-03-20 2018-03-20 一种电感元件及制造方法

Country Status (2)

Country Link
US (1) US11309117B2 (zh)
WO (1) WO2019178737A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380513A (zh) * 2021-06-21 2021-09-10 深圳市铂科新材料股份有限公司 一种一体式多层线圈电感及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193968B2 (ja) * 2018-09-28 2022-12-21 太陽誘電株式会社 コイル部品及び電子機器
JP2020077795A (ja) * 2018-11-08 2020-05-21 株式会社村田製作所 表面実装インダクタ
US20200303114A1 (en) * 2019-03-22 2020-09-24 Cyntec Co., Ltd. Inductor array in a single package
US20210098184A1 (en) * 2019-09-26 2021-04-01 Murata Manufacturing Co., Ltd. Inductor and method for manufacturing the same
CN112216472A (zh) * 2020-09-07 2021-01-12 深圳顺络电子股份有限公司 一种电感排及其制作方法
WO2022116874A1 (zh) * 2020-12-04 2022-06-09 横店集团东磁股份有限公司 一种一体共烧电感及其制备方法
CN112786292A (zh) * 2020-12-29 2021-05-11 深圳顺络电子股份有限公司 贴片变压器及其制备方法
CN112863801B (zh) * 2021-01-14 2022-09-27 安徽大学 一种高磁导率、低磁损的复合材料及其制备方法
CN113793749A (zh) * 2021-09-13 2021-12-14 横店集团东磁股份有限公司 一种电感制造方法
CN114758881A (zh) * 2022-04-18 2022-07-15 宁波中科毕普拉斯新材料科技有限公司 一种片式电感的制备方法
CN117612844A (zh) * 2024-01-22 2024-02-27 江西省高新超越精密电子有限公司 一种平面变压器磁芯中柱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856037A (zh) * 2012-09-17 2013-01-02 深圳顺络电子股份有限公司 模塑成型功率电感元件及制造方法
CN103714945A (zh) * 2013-12-25 2014-04-09 黄伟嫦 一种电子元器件及其制造方法
CN103915236A (zh) * 2014-04-01 2014-07-09 黄伟嫦 一种新型电感及其制造方法
CN104240898A (zh) * 2014-09-30 2014-12-24 黄伟嫦 一种一体成型电感及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851062B2 (ja) * 2003-12-10 2012-01-11 スミダコーポレーション株式会社 インダクタンス素子の製造方法
JP4528058B2 (ja) * 2004-08-20 2010-08-18 アルプス電気株式会社 コイル封入圧粉磁心
US20080036566A1 (en) * 2006-08-09 2008-02-14 Andrzej Klesyk Electronic Component And Methods Relating To Same
TW200910390A (en) * 2007-08-24 2009-03-01 Delta Electronics Inc Embedded inductor and manufacturing method thereof
JP2018182203A (ja) * 2017-04-19 2018-11-15 株式会社村田製作所 コイル部品
US8723629B1 (en) * 2013-01-10 2014-05-13 Cyntec Co., Ltd. Magnetic device with high saturation current and low core loss
US9087634B2 (en) * 2013-03-14 2015-07-21 Sumida Corporation Method for manufacturing electronic component with coil
EP3171368B1 (en) * 2014-07-16 2019-09-11 Hitachi Metals, Ltd. Method for producing magnetic core, magnetic core, and coil component using same
US9719159B2 (en) * 2014-09-24 2017-08-01 Cyntec Co., Ltd. Mixed magnetic powders and the electronic device using the same
JP2016157751A (ja) * 2015-02-23 2016-09-01 スミダコーポレーション株式会社 電子部品
US10650951B2 (en) * 2015-05-29 2020-05-12 Ntn Corporation Magnetic element
CN106469607B (zh) * 2015-08-19 2020-10-27 胜美达集团株式会社 一种线圈元器件的制造方法及用于制造此线圈元器件的模具设备
JP6608762B2 (ja) * 2015-09-17 2019-11-20 Ntn株式会社 磁性素子
JP2018182209A (ja) * 2017-04-19 2018-11-15 株式会社村田製作所 コイル部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856037A (zh) * 2012-09-17 2013-01-02 深圳顺络电子股份有限公司 模塑成型功率电感元件及制造方法
CN103714945A (zh) * 2013-12-25 2014-04-09 黄伟嫦 一种电子元器件及其制造方法
CN103915236A (zh) * 2014-04-01 2014-07-09 黄伟嫦 一种新型电感及其制造方法
CN104240898A (zh) * 2014-09-30 2014-12-24 黄伟嫦 一种一体成型电感及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380513A (zh) * 2021-06-21 2021-09-10 深圳市铂科新材料股份有限公司 一种一体式多层线圈电感及其制备方法

Also Published As

Publication number Publication date
US20190295760A1 (en) 2019-09-26
US11309117B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2019178737A1 (zh) 一种电感元件及制造方法
US11869696B2 (en) Electronic component
US10658102B2 (en) Electronic device and manufacturing method thereof
CN102856037B (zh) 模塑成型功率电感元件及制造方法
JP3593986B2 (ja) コイル部品及びその製造方法
KR100809565B1 (ko) 자성 소자 및 자성 소자의 제조 방법
CN108389679A (zh) 一种电感元件及制造方法
US9136050B2 (en) Magnetic device and method of manufacturing the same
WO2012105489A1 (ja) 面実装インダクタと面実装インダクタの製造方法
KR102022272B1 (ko) 면실장 인덕터와 그 제조 방법
KR20140135644A (ko) 면실장 인덕터의 제조 방법
WO2021196447A1 (zh) 一种塑模成型功率电感元件及制作方法
CN202887902U (zh) 模塑成型功率电感元件
JP6522297B2 (ja) コイル部品
JP5450565B2 (ja) 面実装インダクタ
JP2013110184A (ja) 面実装インダクタの製造方法とその面実装インダクタ
US20160073509A1 (en) Power supply module and its manufacturing method
CN208240437U (zh) 一种电感元件
JP2013045928A (ja) 巻線型インダクタ及びその製造方法
WO2015098355A1 (ja) 電子部品の製造方法、電子部品
KR20160134633A (ko) 권선형 인덕터 및 그 제조 방법
KR100655418B1 (ko) 권선일체형 인덕터
KR20070054510A (ko) 인덕터 및 그의 제조 방법
JP2021052146A (ja) インダクタ及びインダクタの製造方法
KR20080022679A (ko) 표면실장형 인덕터 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911093

Country of ref document: EP

Kind code of ref document: A1