WO2019177031A1 - 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法 - Google Patents

触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
WO2019177031A1
WO2019177031A1 PCT/JP2019/010294 JP2019010294W WO2019177031A1 WO 2019177031 A1 WO2019177031 A1 WO 2019177031A1 JP 2019010294 W JP2019010294 W JP 2019010294W WO 2019177031 A1 WO2019177031 A1 WO 2019177031A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molded body
carboxylic acid
unsaturated carboxylic
producing
Prior art date
Application number
PCT/JP2019/010294
Other languages
English (en)
French (fr)
Inventor
拓朗 渡邉
祐太 佐藤
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201980013549.5A priority Critical patent/CN111727085A/zh
Priority to SG11202008534XA priority patent/SG11202008534XA/en
Priority to JP2020506610A priority patent/JP6973618B2/ja
Priority to KR1020207028899A priority patent/KR102547450B1/ko
Publication of WO2019177031A1 publication Critical patent/WO2019177031A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst molded body containing a catalyst and cellulose nanofibers, and a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid using the same.
  • a catalyst molded body is formed into a cylindrical or cylindrical molded body having a diameter of 2 to 10 mm and a length of about 2 to 20 mm, and this is charged into a reactor. Used.
  • Patent Document 1 discloses a catalyst for synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid by vapor-phase catalytic oxidation of propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether with molecular oxygen.
  • a catalyst containing a catalyst component containing molybdenum and bismuth, and a scaly inorganic substance having an average particle diameter of 10 ⁇ m to 2 mm and an average thickness of 0.005 to 0.3 times the average particle diameter has been proposed.
  • Patent Document 2 discloses an oxide catalyst containing molybdenum, bismuth, cobalt and iron used for the production of methacrolein, in which a crystalline cellulose having a specific surface area of 0.5 m 2 / g or more is mixed with a catalyst precursor powder. An oxide catalyst obtained by molding and removing the crystalline cellulose by heat-treating the resulting molded body has been proposed.
  • An object of the present invention is to provide a catalyst molded body having high yield and high mechanical strength.
  • the present invention includes the following [1] to [13].
  • [1] A catalyst molded body containing a catalyst component capable of producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by gas phase catalytic oxidation with molecular oxygen and cellulose nanofibers having an average fiber diameter of 1 to 300 nm.
  • the mass of the catalyst molded body is M1 [g] and the mass of the cellulose nanofiber is M2 [g]
  • the cellulose nanofiber content calculated by the following formula (III) is 0.1 to 5
  • the catalyst molded body according to [1] which is mass%.
  • the catalyst component has a composition represented by the following formula (I), and propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether is vapor-phase contacted with molecular oxygen.
  • the catalyst molded article according to any one of [1] to [7], which is a catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid to be oxidized.
  • Mo, Bi, Fe, Si, NH 4 and O represent molybdenum, bismuth, iron, silicon, ammonium root and oxygen, respectively, and A was selected from the group consisting of cobalt and nickel.
  • E1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, thallium, tantalum, and zinc
  • G1 Represents at least one element selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium
  • J1 is from the group consisting of lithium, sodium, potassium, rubidium and cesium.
  • And j1 represents the molar ratio of each component.
  • j1 is the molar ratio of oxygen necessary to satisfy the valence of each component.
  • the catalyst component is a catalyst for producing an unsaturated carboxylic acid, which has a composition represented by the following formula (II) and in which (meth) acrolein is subjected to gas phase catalytic oxidation with molecular oxygen.
  • the molded catalyst according to any one of [7].
  • P a2 Mo b2 V c2 Cu d2 E2 e2 G2 f2 J2 g2 (NH 4 ) h2 O i2 (II) (In the formula (II), P, Mo, V, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, copper, ammonium root and oxygen, respectively.
  • E2 is antimony, bismuth, arsenic, germanium, zirconium. Represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium Represents at least one element selected from the group consisting of titanium, tin, thallium, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, J2 is selected from the group consisting of potassium, rubidium and cesium Represents at least one element: a2, b2, c 2, d2, e2, f2, g2, h2 and i2 represent molar ratios of the respective components.
  • i2 is a molar ratio of oxygen necessary to satisfy the valence of each component. is there.
  • [12] A method for producing an unsaturated carboxylic acid ester, wherein the unsaturated carboxylic acid produced by the method according to [10] or [11] is esterified.
  • [13] A method for producing an unsaturated carboxylic acid ester, comprising a step of producing an unsaturated carboxylic acid by the method according to [10] or [11], and a step of esterifying the unsaturated carboxylic acid.
  • a molded catalyst body having a high yield and high mechanical strength can be provided. Moreover, the manufacturing method of the unsaturated aldehyde and unsaturated carboxylic acid which can maintain a high yield for a long term can be provided.
  • the catalyst molded body of the present invention contains cellulose nanofibers having an average fiber diameter of 1 to 300 nm.
  • the catalyst molded body of the present invention is a catalyst component capable of producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by gas phase catalytic oxidation with molecular oxygen, particularly propylene, isobutylene, primary butyl alcohol, tertiary butyl.
  • Catalytic components used in the production of the corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor-phase catalytic oxidation of alcohol or methyl tertiary butyl ether with molecular oxygen, or (meth) acrolein as molecular oxygen The catalyst component used when manufacturing unsaturated carboxylic acid by vapor-phase catalytic oxidation by this is included.
  • the catalyst molded body of the present invention can achieve both high yield of the target product and high mechanical strength by containing cellulose nanofibers having a specific fiber diameter. Thereby, in the long-term continuous operation of the industrial process, since the catalyst is less powdered and cracked, the increase in the differential pressure is suppressed, and a high yield can be maintained over a long period.
  • the mechanical strength of the catalyst molded body can be evaluated by, for example, the falling powder rate measured by the following method.
  • the catalyst molded body 100g is dropped from an upper opening of a stainless steel cylinder having an inner diameter of 27.5 mm and a length of 6 m, which is installed so that the longitudinal direction is vertical and the lower opening is closed by a stainless steel plate. Fill the cylinder.
  • the cellulose nanofiber used in the present invention has an average fiber diameter of 1 to 300 nm.
  • the lower limit of the average fiber diameter is preferably 2 nm or more, and more preferably 3 nm or more.
  • the upper limit of the average fiber diameter is preferably 100 nm or less, and more preferably 50 nm or less.
  • the cellulose nanofiber refers to fibrous cellulose having an average aspect ratio of 100 or more.
  • the average aspect ratio is preferably 100 to 10,000, and more preferably 100 to 2000.
  • the average aspect ratio means the ratio between the average fiber length and the average fiber diameter of cellulose nanofibers (average fiber length / average fiber diameter).
  • the average fiber diameter and average fiber length of the cellulose nanofibers are the values determined for the dried cellulose nanofibers.
  • the average fiber diameter and average fiber length of the dried cellulose nanofibers in the present invention can be measured with a scanning electron microscope or a transmission electron microscope (with electron staining). For example, a dispersion having a cellulose nanofiber content of 0.05 to 0.1% by mass is cast on a substrate such as a Si wafer and dried, and then observed with a scanning electron microscope. An image having an arbitrary vertical and horizontal image width is assumed in the observation field, and an image is acquired by adjusting the sample and the magnification so that 20 to 100 fibers intersect the axis.
  • the part is incorporated in calculation of a fiber diameter as one fiber.
  • the length of the longest part of the fiber is defined as the fiber length.
  • the average aspect ratio in the present invention may be calculated by a method other than the above as long as it can obtain a value equivalent to that of a scanning electron microscope or a transmission electron microscope (with electron staining).
  • the dry state is a state in which the liquid is removed by a conventionally known method such as natural drying or freeze-drying and the liquid content of the cellulose nanofiber is 1% by mass or less.
  • the cellulose nanofibers used in the present invention are not particularly limited, and commercially available products or those manufactured by a known manufacturing method can be used.
  • the cellulose fiber-containing material is produced by defibration or refinement by grinding or beating with a refiner, high-pressure homogenizer, medium stirring mill, stone mill, grinder or the like. Further, it can also be produced by a known method such as the method described in JP-A-2005-42283. Moreover, it can also manufacture using microorganisms (for example, acetic acid bacteria (Acetobacter)). Furthermore, a commercially available product can be used.
  • Cellulose fiber-containing materials are used for plants (for example, wood, bamboo, hemp, jute, kenaf, crop residue, cloth, pulp, recycled pulp, waste paper), animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter) )), And those originating from microbial products are known, any of which can be used in the present invention.
  • a cellulose nanofiber derived from a plant or a microorganism is preferable, and a cellulose nanofiber derived from a plant is more preferable.
  • the cellulose nanofibers used in the present invention may be so-called modified cellulose nanofibers that have been subjected to some chemical modification, such as those described in JP2013-181167A and JP2010-216021, for example.
  • So-called unmodified cellulose nanofibers produced by the method described in Japanese Unexamined Patent Publication No. 2011-056456, or commercially available unmodified cellulose nanofibers may be used.
  • Examples of commercially available unmodified cellulose nanofibers include the bio-nanofiber “BiNFi-s” series from Sugino Machine Co., Ltd., the “Serisch” series from Daicel Finechem Co., Ltd., and the “CNF” series from Chuetsu Pulp. These cellulose nanofibers can be used alone or in combination of two or more.
  • the unsaturated aldehyde and unsaturated carboxylic acid production catalyst according to the present invention preferably has a composition represented by the following formula (I) from the viewpoint of the yield of unsaturated aldehyde and unsaturated carboxylic acid.
  • the molar ratio of each element be the value calculated
  • the molar ratio of the ammonium root is a value obtained by analyzing the catalyst component by the Kjeldahl method.
  • Mo, Bi, Fe, Si, NH 4 and O each represent molybdenum, bismuth, iron, silicon, ammonium root and oxygen, and A is at least selected from the group consisting of cobalt and nickel E1 represents one element, E1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, thallium, tantalum and zinc, and G1 represents Represents at least one element selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium, and J1 is selected from the group consisting of lithium, sodium, potassium, rubidium and cesium Represents at least one element selected.
  • ammonium root is a general term for ammonium (NH 3 ) that can be an ammonium ion (NH 4 + ) and ammonium contained in an ammonium-containing compound such as an ammonium salt.
  • the unsaturated carboxylic acid production catalyst according to the present invention preferably has a composition represented by the following formula (II) from the viewpoint of the unsaturated carboxylic acid yield.
  • P, Mo, V, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, copper, ammonium root and oxygen, respectively.
  • E2 represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron.
  • G2 is from the group consisting of iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, thallium, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum It represents at least one element selected.
  • J2 represents at least one element selected from the group consisting of potassium, rubidium and cesium.
  • a2, b2, c2, d2, e2, f2, g2, h2, and i2 represent the molar ratio of each component.
  • b2 12
  • a2 0.1 to 3
  • c2 0.01 to 3
  • d2 0.01-2
  • e2 0-3
  • f2 0-3
  • g2 0.01-3
  • h2 0-30
  • i2 is oxygen required to satisfy the valence of each component Is the molar ratio.
  • the cellulose nanofiber content in the catalyst molded body is calculated by the following formula (III) when the mass of the catalyst molded body is M1 [g] and the mass of the cellulose nanofiber is M2 [g].
  • the fiber content is preferably 0.1 to 5% by mass.
  • M1 and M2 are masses calculated from the charged amount.
  • M1 is the total mass of the catalyst molded body containing cellulose nanofibers, and is calculated from the total of the catalyst dried body, binder, and other solid contents described later.
  • Cellulose nanofiber content [mass%] (M2 / M1) ⁇ 100 (III)
  • the value of the cellulose nanofiber content is 5% by mass or less, a sufficient amount of catalyst components can be charged in the reactor, so that a high yield can be maintained over a long period of time in continuous operation. Accordingly, the catalyst life is long and the replacement frequency of the catalyst can be reduced.
  • the lower limit of the cellulose nanofiber content is more preferably 0.2% by mass or more, and further preferably 0.3% by mass or more.
  • the upper limit of the cellulose nanofiber content is more preferably 4% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less.
  • a catalyst molded object further contains a binder other than a cellulose nanofiber.
  • a binder molded object contains both a cellulose nanofiber and a binder, a moldability improves in the molding process mentioned later, and the molded object of a desired shape can be obtained stably.
  • the mass of the binder is M3 [g]
  • the binder content calculated by the following formula (IV) is preferably 0.05 to 10% by mass, and the lower limit is more preferably 0.1% by mass or more. 1% by mass or more is more preferable.
  • the upper limit is more preferably 8% by mass or less, and further preferably 5% by mass or less.
  • Binder content [% by mass] (M3 / M1) ⁇ 100 (IV)
  • the binder is not particularly limited as long as it has a function of adhering a dried catalyst or a calcined catalyst, and a water-soluble binder or a water-insoluble binder can be used.
  • a water-soluble binder or a water-insoluble binder can be used.
  • the water-soluble binder include water-soluble polymer compounds such as polyvinyl alcohol, organic binders such as water-soluble ⁇ -glucan derivatives and water-soluble ⁇ -glucan derivatives, and water-soluble silicate compounds and inorganic binders such as ammonium salts of inorganic acids. Can be mentioned. These may use 1 type and may use 2 or more types together.
  • the ⁇ -glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound with an ⁇ -type structure.
  • Specific examples of the water-soluble ⁇ -glucan derivative include amylose, glycogen, pullulan, dextrin, cyclodextrin and the like. These may use 1 type and may use 2 or more types together.
  • a ⁇ -glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound in a ⁇ -type structure.
  • water-soluble ⁇ -glucan derivatives include methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, scleroglucan and the like. Can be mentioned.
  • water-soluble silicate compounds include sodium silicate, potassium silicate, sodium metasilicate, potassium metasilicate, lithium silicate, ammonium silicate, alkyl silicate, and the like.
  • inorganic acid ammonium salt include ammonium sulfate, ammonium nitrate, ammonium phosphate, ammonium chlorite, ammonium hydrogen carbonate, ammonium thiosulfate, ammonium hyposulfite, and ammonium chlorate. These may use 1 type and may use 2 or more types together.
  • water-insoluble binder examples include organic binders such as water-insoluble ⁇ -glucan derivatives and water-insoluble ⁇ -glucan derivatives, and inorganic binders such as water-insoluble inorganic compounds and water-insoluble inert carriers. These may use 1 type and may use 2 or more types together.
  • specific examples of the water-insoluble ⁇ -glucan derivative include amylopectin.
  • Specific examples of the water-insoluble ⁇ -glucan derivative include ethyl cellulose, crystalline cellulose, curdlan, paramylon and the like. These may use 1 type and may use 2 or more types together.
  • water-insoluble inorganic compound examples include silica, alumina, silica-alumina, silicon carbide, titania, magnesia, graphite, diatomaceous earth, and the like.
  • water-insoluble inert carrier examples include ceramic balls, stainless steel, and inorganic fibers such as glass fibers, ceramic fibers, and carbon fibers. These may use 1 type and may use 2 or more types together.
  • the binder is preferably water-soluble, more preferably a water-soluble organic binder, and particularly preferably a water-soluble ⁇ -glucan derivative.
  • water-soluble means a property of dissolving 5 g or more in 100 g of water at 20 ° C.
  • the catalyst molded body of the present invention can be produced according to a known catalyst production method except that cellulose nanofibers are contained.
  • the method of incorporating cellulose nanofibers into the catalyst molded body is not particularly limited.
  • the method of adding cellulose nanofibers to the catalyst raw material solution, and the catalyst dried body in the molding step described later examples thereof include a method of adding cellulose nanofiber and molding, and a method of using these methods in combination.
  • the method for preparing the catalyst component is not particularly limited, and various methods such as a well-known precipitation method and oxide mixing method can be used as long as the component is not significantly unevenly distributed.
  • a raw material compound of the catalyst component of the unsaturated aldehyde and unsaturated carboxylic acid production catalyst is dissolved or suspended in an appropriately selected solvent, and at least molybdenum.
  • a solution or slurry containing bismuth (hereinafter also referred to as catalyst raw material liquid) is preferably prepared.
  • the raw material compound of the catalyst component of the unsaturated carboxylic acid production catalyst is dissolved or suspended in an appropriately selected solvent, and a catalyst raw material solution containing at least molybdenum and phosphorus is prepared. It is preferable to prepare.
  • the raw material compound used for the preparation of the catalyst raw material liquid is not particularly limited, and organic acid salts such as oxides, sulfates, nitrates, carbonates, hydroxides, acetates, ammonium salts, halides of the respective constituent elements of the catalyst , Oxoacids, oxoacid salts, alkali metal salts and the like can be used alone or in combination of two or more.
  • organic acid salts such as oxides, sulfates, nitrates, carbonates, hydroxides, acetates, ammonium salts, halides of the respective constituent elements of the catalyst , Oxoacids, oxoacid salts, alkali metal salts and the like can be used alone or in combination of two or more.
  • Examples of the raw material compound of molybdenum include molybdenum oxides such as molybdenum trioxide, ammonium molybdates such as ammonium paramolybdate and ammonium dim
  • Examples of bismuth raw material compounds include bismuth nitrate, bismuth oxide, bismuth acetate, and bismuth hydroxide.
  • Examples of the phosphorus raw material compound include phosphates such as phosphoric acid, phosphorus pentoxide, and ammonium phosphate.
  • Examples of the raw material compound for vanadium include ammonium vanadate, ammonium metavanadate, vanadium pentoxide, vanadium chloride, vanadyl oxalate, and the like.
  • the raw material compounds may be used alone or in combination of two or more for each element constituting the catalyst component.
  • Examples of the solvent include water, ethyl alcohol, acetone and the like, but it is preferable to use water.
  • the catalyst raw material liquid obtained in the catalyst raw material liquid preparation step is dried to obtain a dried catalyst.
  • the method for drying the catalyst raw material liquid is not particularly limited, and examples thereof include a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, and a method of evaporating to dryness. Applicable. Among these, a method of drying using a spray dryer is preferable because particles can be obtained simultaneously with drying, and the obtained particles have a spherical shape.
  • the dryer inlet temperature is preferably 100 to 500 ° C, and the lower limit is more preferably 200 ° C or more, and further preferably 220 ° C or more.
  • the upper limit is more preferably 400 ° C. or lower, and still more preferably 370 ° C. or lower.
  • the dryer outlet temperature is preferably 100 to 200 ° C, and the lower limit is more preferably 105 ° C or higher. Drying is preferably performed so that the moisture content of the resulting catalyst dried body is 0.1 to 4.5% by mass. These conditions can be appropriately selected depending on the desired shape and size of the catalyst.
  • the average particle diameter of the obtained catalyst dried body is 1 to 250 ⁇ m.
  • the average particle diameter is 1 ⁇ m or more, pores having a diameter preferable for the production of the target product are formed, and the target product can be obtained with a high yield.
  • the average particle size is 250 ⁇ m or less, the number of contact points between the catalyst dry particles per unit volume can be maintained, and sufficient mechanical strength of the catalyst can be obtained.
  • the lower limit of the average particle diameter of the dried catalyst is more preferably 5 ⁇ m or more, and the upper limit is more preferably 150 ⁇ m or less.
  • an average particle diameter means a volume average particle diameter, and is taken as the value measured with the laser type particle size distribution measuring apparatus.
  • the contact method of the sprayed droplet and hot air may be any of parallel flow, counter flow, and co-current flow (mixed flow), and in any case, it can be suitably dried.
  • the catalyst dried body obtained in the drying step is molded to obtain a catalyst molded body.
  • the dried catalyst contains cellulose nanofibers, it may be molded as it is, or may be molded after additional addition of cellulose nanofibers.
  • the dried catalyst does not contain cellulose nanofibers, cellulose nanofibers are added and molded to obtain a catalyst molded body.
  • molding after adding a cellulose nanofiber after the baking process mentioned later.
  • the dried catalyst obtained in the drying step exhibits catalyst performance, and a molded product can be used as the molded catalyst, but it is preferable because the performance as a catalyst is improved by firing.
  • the thing after a calcination is named generically as a catalyst molded object.
  • the molding method is not particularly limited, and examples thereof include known methods such as extrusion molding, tableting molding, support molding, and rolling granulation. Of these, tableting and extrusion are preferred from the viewpoint of catalyst productivity, and extrusion is more preferred from the viewpoint of forming pores advantageous for production of the desired product in the catalyst molded body.
  • the shape of the catalyst molded body is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a ring shape (cylindrical shape), a star shape, and the like, and among them, a spherical shape, a cylindrical shape, and a ring shape with high mechanical strength are preferable. .
  • the moldability is improved, and a molded body having a desired shape can be stably obtained.
  • the firing temperature is usually 200 to 600 ° C., the lower limit is preferably 300 ° C. or higher, and the upper limit is preferably 500 ° C. or lower.
  • the firing conditions are not particularly limited, the firing is usually performed under a flow of oxygen, air, or nitrogen.
  • the calcination time is appropriately set depending on the target catalyst, but is preferably 0.5 to 40 hours, and more preferably 1 to 40 hours.
  • the method for producing an unsaturated aldehyde and unsaturated carboxylic acid according to the present invention comprises propylene, isobutylene, primary, in the presence of a catalyst molded body containing the unsaturated aldehyde and unsaturated carboxylic acid production catalyst according to the present invention.
  • Butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether is subjected to gas phase catalytic oxidation with molecular oxygen. According to these methods, unsaturated aldehydes and unsaturated carboxylic acids can be produced with high yield.
  • the unsaturated aldehyde and unsaturated carboxylic acid produced correspond to propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether, respectively.
  • the unsaturated aldehyde corresponding to propylene is acrolein
  • the unsaturated carboxylic acid corresponding to propylene is acrylic acid.
  • the unsaturated aldehyde corresponding to isobutylene, primary butyl alcohol, tertiary butyl alcohol and methyl tertiary butyl ether is methacrolein
  • the unsaturated carboxylic acid corresponding to is methacrylic acid.
  • the unsaturated aldehyde and unsaturated carboxylic acid are preferably methacrolein and methacrylic acid, respectively.
  • methacrolein and methacrylic acid are produced by bringing a raw material gas containing isobutylene and molecular oxygen into contact with the molded catalyst according to the present invention.
  • a fixed bed reactor can be used. The reaction can be carried out by filling the catalyst compact in the reaction tube and supplying the raw material gas to the reactor.
  • the catalyst molded body layer may be a single layer, or a plurality of catalyst molded bodies having different activities may be divided into a plurality of layers and filled.
  • the molded catalyst may be diluted with an inert carrier and filled.
  • concentration of isobutylene in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, the lower limit is preferably 3% by volume or more, and the upper limit is more preferably 10% by volume or less.
  • the concentration of molecular oxygen in the raw material gas is preferably 0.1 to 5 mol per mol of isobutylene, the lower limit is more preferably 0.5 mol or more, and the upper limit is more preferably 3 mol or less.
  • the molecular oxygen source is preferably air from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.
  • the source gas may be obtained by diluting isobutylene and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the source gas.
  • the contact time between the raw material gas and the catalyst molded body is preferably 0.5 to 10 seconds, the lower limit is more than 1 second, and the upper limit is more preferably 6 seconds or less.
  • the reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means a gauge pressure.
  • the reaction temperature is preferably 200 to 420 ° C, the lower limit is preferably 250 ° C or higher, and the upper limit is more preferably 400 ° C or lower.
  • (meth) acrolein is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of a molded catalyst containing the unsaturated carboxylic acid production catalyst according to the present invention. According to these methods, an unsaturated carboxylic acid can be produced with a high yield.
  • the unsaturated carboxylic acid to be produced is an unsaturated carboxylic acid in which the aldehyde group of (meth) acrolein is changed to a carboxyl group, and specifically (meth) acrylic acid is obtained.
  • (Meth) acrolein indicates acrolein and methacrolein
  • (meth) acrylic acid indicates acrylic acid and methacrylic acid. From the viewpoint of the yield of the desired product, (meth) acrolein and (meth) acrylic acid are preferably methacrolein and methacrylic acid, respectively.
  • methacrylic acid is produced by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the catalyst molded body according to the present invention.
  • a fixed bed reactor can be used.
  • the reaction can be carried out by filling the catalyst compact in the reaction tube and supplying the raw material gas to the reactor.
  • the catalyst molded body layer may be a single layer, or a plurality of catalyst molded bodies having different activities may be divided into a plurality of layers and filled.
  • the molded catalyst may be diluted with an inert carrier and filled.
  • the concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, the lower limit is preferably 3% by volume or more, and the upper limit is more preferably 10% by volume or less.
  • the raw material methacrolein may contain a small amount of impurities such as lower saturated aldehydes that do not substantially affect the present reaction.
  • the concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 moles per mole of methacrolein, the lower limit is preferably 0.5 moles or more, and the upper limit is more preferably 3 moles or less.
  • the molecular oxygen source is preferably air from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.
  • the source gas may be obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the source gas. By performing the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield.
  • the concentration of water vapor in the raw material gas is preferably from 0.1 to 50% by volume, the lower limit is preferably 1% by volume or more, and the upper limit is more preferably 40% by volume or less.
  • the contact time between the source gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds.
  • the reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means a gauge pressure.
  • the reaction temperature is preferably 200 to 450 ° C, the lower limit is preferably 250 ° C or higher, and the upper limit is more preferably 400 ° C or lower.
  • the unsaturated carboxylic acid produced by the method according to the present invention is esterified. That is, the method for producing an unsaturated carboxylic acid ester according to the present invention includes a step of producing an unsaturated carboxylic acid by the method according to the present invention and a step of esterifying the unsaturated carboxylic acid.
  • unsaturated carboxylic acids obtained by gas phase catalytic oxidation of propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether, or gas phase catalytic oxidation of (meth) acrolein.
  • An unsaturated carboxylic acid ester can be obtained using an acid.
  • the alcohol to be reacted with the unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, and isobutanol.
  • Examples of the unsaturated carboxylic acid ester to be obtained include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate and the like.
  • the reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the reaction temperature is preferably 50 to 200 ° C.
  • Part means “part by mass”.
  • the falling powder rate which is an index of the mechanical strength of the catalyst molded body, was measured by the following method.
  • the catalyst molded body 100g is dropped from an upper opening of a stainless steel cylinder having an inner diameter of 27.5 mm and a length of 6 m, which is installed so that the longitudinal direction is vertical and the lower opening is closed by a stainless steel plate. Filled into a cylinder.
  • the mass of those not passing through a sieve having an opening of 1 mm was ⁇ g, and the falling powder rate was calculated by the following formula.
  • D is the number of moles of methacrolein supplied
  • E is the number of moles of methacrylic acid produced.
  • the average fiber diameter of the cellulose nanofiber was calculated from the analysis result by a scanning electron microscope. Specifically, a dispersion liquid in which pure water was dispersed so that the content of cellulose nanofibers was 0.05% by mass was cast on a wafer and dried, and observed with a scanning electron microscope. An image was acquired by assuming an axis with an arbitrary image width in the observation field and adjusting the sample and magnification so that 20 to 100 fibers intersected the axis. After obtaining the image, two random axes in the vertical and horizontal directions were drawn per image, and the fiber diameter values of 20 arbitrary fibers were read from the fibers crossing each axis.
  • composition ratio of catalyst components The molar ratio of each element was calculated
  • Cellulose nanofiber content The content of cellulose nanofibers in the catalyst molded body was calculated by the following formula (III).
  • Cellulose nanofiber content [mass%] (M2 / M1) ⁇ 100 (III)
  • the mass M1 of the catalyst molded body was the sum of the charged amounts of the catalyst dried body, hydroxypropylmethylcellulose and cellulose nanofiber.
  • the mass M2 of the cellulose nanofiber was the amount of cellulose nanofiber charged.
  • Example 1 To 500 parts of pure water, 500 parts of ammonium paramolybdate, 12.4 parts of ammonium paratungstate, 2.3 parts of potassium nitrate, 27.5 parts of antimony trioxide, and 66.0 parts of bismuth trioxide were added and heated and stirred (Part A). ). Separately, 114.4 parts of ferric nitrate, 274.7 parts of cobalt nitrate and 35.1 parts of zinc nitrate were sequentially added and dissolved in 1000 parts of pure water (solution B). The catalyst raw material liquid obtained by adding the B liquid to the A liquid is dried under the conditions of a dryer inlet temperature of 250 ° C.
  • a dried catalyst having a diameter of 46 ⁇ m was obtained.
  • the composition of the catalyst excluding oxygen in the dried catalyst is Mo 12 W 0.2 Bi 1.2 Fe 1.2 Sb 0.8 Co 4.0 Zn 0.5 K 0.1 (NH 4 ) 12 .3 .
  • a double-armed sigma blade is provided with 100 parts of the dried catalyst and 4 parts of hydroxypropylmethylcellulose and 1 part of cellulose nanofibers having an average fiber diameter of 40 nm dispersed in 45 parts of pure water. The mixture was kneaded with a batch-type kneader until it became a clay.
  • the obtained mixture was extruded using a plunger-type extruder, formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5.5 mm, and then dried at 90 ° C. for 12 hours with a hot air dryer. As a result, a molded catalyst was obtained. Table 1 shows the measurement results of the falling powder rate of the catalyst compact. Subsequently, the catalyst molded body was filled in a reaction tube and calcined at 450 ° C. for 3 hours under air flow.
  • Example 2 In Example 1, except that the amount of cellulose nanofibers dispersed in pure water was changed to 0.5 part, a catalyst molded body was produced in the same manner as in Example 1, and the falling powder rate was measured. The catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 1.
  • Example 3 In Example 1, except that the amount of cellulose nanofibers dispersed in pure water was 0.25 part, a catalyst molded body was produced in the same manner as in Example 1 and the falling powder rate was measured. The catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 1.
  • Example 1 the catalyst molded body was produced in the same manner as in Example 1 except that 45 parts of pure water was mixed instead of mixing the cellulose nanofiber dispersion into the dried catalyst, and the falling powder ratio was Then, the catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 1.
  • Example 2 In Example 1, the same procedure as in Example 1 was carried out except that the cellulose nanofiber dispersion was not mixed with the catalyst molded body, but instead 45 parts of pure water and 1 part of crystalline cellulose having an average particle diameter of 50 ⁇ m were mixed. A catalyst molded body was produced, the falling powder rate was measured, and then the catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 1.
  • Example 1 is the same as Example 1 except that the cellulose nanofiber dispersion is not mixed with the catalyst molded body, but 45 parts of pure water and 5.0 parts of crystalline cellulose having an average particle diameter of 50 ⁇ m are mixed instead. Then, the catalyst molded body was manufactured and the falling powder rate was measured, and then the catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 1.
  • Example 4 In 4000 parts of pure water, 1000 parts of molybdenum trioxide, 34 parts of ammonium metavanadate, 80 parts of 85 mass% phosphoric acid aqueous solution and 7 parts of copper nitrate are dissolved, and the temperature is raised to 95 ° C. while stirring, and the liquid temperature is 95. The mixture was stirred for 3 hours while maintaining the temperature. After cooling to 90 ° C., a solution obtained by dissolving 124 parts of cesium bicarbonate in 200 parts of pure water was added and stirred for 15 minutes while stirring using a rotary blade stirrer. Next, a solution obtained by dissolving 92 parts of ammonium carbonate in 200 parts of pure water was added, and the mixture was further stirred for 20 minutes.
  • the catalyst raw material liquid obtained as described above was dried under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spraying rotary disk of 18,000 rpm using a cocurrent flow spray dryer, and an average particle size of 25 ⁇ m.
  • a dried catalyst was obtained.
  • the composition of the catalyst excluding oxygen in the dried catalyst is P 1.2 Mo 12 V 0.5 Cu 0.05 Cs 1.1 (NH 4 ) 3.8 .
  • the catalyst molded body was filled in a reaction tube and calcined at 380 ° C. for 10 hours under air flow.
  • gas phase contact of methacrolein using a raw material gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, and 55% by volume of nitrogen under normal pressure, reaction temperature of 305 ° C., and contact time of 7.1 seconds.
  • An oxidation reaction was performed.
  • the product was collected and analyzed by gas chromatography to determine the yield of methacrylic acid. The results are shown in Table 2.
  • Example 4 a catalyst compact was produced in the same manner as in Example 4 except that 30 parts of pure water was mixed instead of mixing the cellulose nanofiber dispersion in the dried catalyst, and the falling powder ratio Then, the catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 2.
  • Example 5 the dried catalyst was not mixed with the cellulose nanofiber dispersion, but instead of 45 parts of pure water and 1 part of crystalline cellulose having an average particle size of 50 ⁇ m, the same procedure as in Example 4 was performed. A catalyst molded body was produced, the falling powder rate was measured, and then the catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 2.
  • Example 6 In Example 1, the same procedure as in Example 1 was carried out except that the cellulose nanofiber dispersion was not mixed with the catalyst molded body, but instead 45 parts of pure water and 8 parts of crystalline cellulose having an average particle diameter of 50 ⁇ m were mixed. A catalyst molded body was produced, the falling powder rate was measured, and then the catalyst molded body was calcined and the reaction was evaluated. The results are shown in Table 1.
  • Example 5 the yield of methacrylic acid was about the same as that in Example 4, but the falling powder rate was high and the mechanical strength was low. Therefore, as shown in Comparative Example 6, when the mechanical strength was about the same as that of Example 4 using a binder other than cellulose nanofibers, the yield of methacrylic acid was reduced.
  • the catalyst molded body of Example 4 has a high yield of methacrylic acid and a high mechanical strength, so that there is little powdering and cracking of the catalyst in continuous operation. Can be maintained. Accordingly, the catalyst life is long and the replacement frequency of the catalyst can be reduced.
  • a methacrylic acid ester can be obtained by esterifying the methacrylic acid obtained in the present Example.
  • a molded catalyst body having a high yield and high mechanical strength can be provided.
  • a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid capable of maintaining a high yield over a long period of time is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は高収率かつ機械的強度の高い触媒成形体を提供するものであって、該触媒成形体は、不飽和アルデヒド及び不飽和カルボン酸製造用触媒、または不飽和カルボン酸製造用触媒と、平均繊維径が1~300nmであるセルロースナノファイバーを含有する。

Description

触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
 本発明は、触媒とセルロースナノファイバーとを含有する触媒成形体、並びにこれを用いた不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法に関する。
 不飽和アルデヒドや不飽和カルボン酸の製造プロセスでは、一般に、触媒成形体は直径2~10mm、長さ2~20mm程度の円柱形または円筒形の成形体に成形され、これを反応器に充填して利用される。
 例えば特許文献1には、プロピレン、イソブチレン、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素で気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を合成するための触媒であって、モリブデンおよびビスマスを含む触媒成分と、平均粒径が10μm~2mmかつ平均厚さが平均粒径の0.005~0.3倍の鱗片状無機物とを含有する触媒が提案されている。
 特許文献2にはメタクロレインの製造に用いるモリブデン、ビスマス、コバルト及び鉄を含有する酸化物触媒であって、触媒前駆体粉末に比表面積が0.5m/g以上の結晶セルロースを混合して成形し、得られた成形体を熱処理して結晶セルロースを除去して得られた酸化物触媒が提案されている。
特開2011-224482号公報 特開2007-061763号公報
 しかしながら工業的見地からは、触媒成形体のさらなる機械的強度の改良が望まれている。本発明は、高収率かつ機械的強度の高い触媒成形体を提供することを目的とする。
 本発明は、以下の[1]から[13]である。
 [1] 分子状酸素による気相接触酸化により不飽和アルデヒド及び/又は不飽和カルボン酸を製造可能な触媒成分と、平均繊維径が1~300nmであるセルロースナノファイバーを含有する触媒成形体。
 [2] 前記触媒成形体の質量をM1[g]、前記セルロースナノファイバーの質量をM2[g]としたとき、下記式(III)により算出されるセルロースナノファイバー含有率が0.1~5質量%である、[1]に記載の触媒成形体。
  セルロースナノファイバー含有率[質量%]=(M2/M1)×100   (III)
 [3] 更にバインダーを含有する、[1]または[2]に記載の触媒成形体。
 [4] 前記バインダーが水溶性である、[3]に記載の触媒成形体。
 [5] 前記バインダーが水溶性有機バインダーである、[3]に記載の触媒成形体。
 [6] [1]~[5]のいずれか1項に記載の触媒成形体を焼成してなる、触媒成形体。
 [7] 押出成形を含む工程により製造される[1]~[6]のいずれか1項に記載の触媒成形体。
 [8] 前記触媒成分が下記式(I)で表される組成を有し、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する不飽和アルデヒド及び不飽和カルボン酸製造用触媒である、[1]~[7]のいずれか1項に記載の触媒成形体。
  Moa1Bib1Fec1d1E1e1G1f1J1g1Sih1(NHi1j1   (I)
(式(I)中、Mo、Bi、Fe、Si、NH及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素、アンモニウム根及び酸素を表し、Aは、コバルト及びニッケルからなる群より選ばれた少なくとも1種の元素を表し、E1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タリウム、タンタル及び亜鉛からなる群より選ばれた少なくとも1種の元素を表し、G1は、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも1種の元素を表し、J1は、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種の元素を表す。a1、b1、c1、d1、e1、f1、g1、h1、i1及びj1は各成分のモル比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=0.01~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20、i1=0~30であり、j1は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
 [9] 前記触媒成分が下記式(II)で表される組成を有し、(メタ)アクロレインを分子状酸素により気相接触酸化する不飽和カルボン酸製造用触媒である、[1]~[7]のいずれか1項に記載の触媒成形体。
  Pa2Mob2c2Cud2E2e2G2f2J2g2(NHh2i2   (II)
(前記式(II)中、P、Mo、V、Cu、NH及びOは、それぞれリン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を表す。E2は、アンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を表す。G2は、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を表す。J2は、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種類の元素を表す。a2、b2、c2、d2、e2、f2、g2、h2及びi2は各成分のモル比率を表し、b2=12のとき、a2=0.1~3、c2=0.01~3、d2=0.01~2、e2は0~3、f2=0~3、g2=0.01~3、h2=0~30であり、i2は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
 [10] [8]に記載の触媒成形体の存在下でプロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する、不飽和アルデヒド及び不飽和カルボン酸の製造方法。
 [11] [9]に記載の触媒成形体の存在下で(メタ)アクロレインを分子状酸素により気相接触酸化する、不飽和カルボン酸の製造方法。
 [12] [10]又は[11]に記載の方法により製造された不飽和カルボン酸をエステル化する不飽和カルボン酸エステルの製造方法。
 [13] [10]又は[11]に記載の方法により不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程を含む不飽和カルボン酸エステルの製造方法。
 本発明によれば、高収率かつ機械的強度が高い触媒成形体を提供できる。また、長期に高収率を維持できる不飽和アルデヒド及び不飽和カルボン酸の製造方法を提供できる。
 本発明の触媒成形体は平均繊維径が1~300nmであるセルロースナノファイバーを含有する。また本発明の触媒成形体は、分子状酸素による気相接触酸化により不飽和アルデヒド及び/又は不飽和カルボン酸を製造可能な触媒成分、特にプロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に用いられる触媒成分、または(メタ)アクロレインを分子状酸素により気相接触酸化して不飽和カルボン酸を製造する際に用いられる触媒成分を含む。
 本発明の触媒成形体は、特定繊維径のセルロースナノファイバーを含有することで、高い目的生成物の収率と高い機械的強度を両立できる。これにより、工業プロセスの長期連続運転において、触媒の粉化や割れが少ないため、差圧上昇が抑えられ、長期にわたり高収率を維持できる。従って触媒寿命も長く、触媒の交換頻度を減らすことができる。
 なお、触媒成形体の機械的強度は、例えば以下の方法により測定される落下粉化率によって評価できる。長手方向が鉛直になるように設置され、下側開口部がステンレス製の板で閉止された内径27.5mm、長さ6mのステンレス製円筒の上側開口部から、触媒成形体100gを落下させて円筒内に充填する。下側開口部を開いて回収した触媒成形体のうち、目開き1mmのふるいを通過しないものの質量をαgとして、落下粉化率を下記式にて算出する。落下粉化率は小さいほど機械的強度が高く、大きいほど機械的強度が低い。
  落下粉化率(%)={(100-α)/100}×100
 [セルロースナノファイバー]
 本発明で使用するセルロースナノファイバーは、平均繊維径が1~300nmである。平均繊維径の下限は2nm以上が好ましく、3nm以上がより好ましい。また平均繊維径の上限は100nm以下が好ましく、50nm以下がより好ましい。なおセルロースナノファイバーとは、平均アスペクト比が100以上である繊維状のセルロースを示す。平均アスペクト比は100~10000であることが好ましく、100~2000であることがより好ましい。平均アスペクト比は、セルロースナノファイバーの平均繊維長と平均繊維径の比(平均繊維長/平均繊維径)を意味する。
 本発明において、セルロースナノファイバーの平均繊維径及び平均繊維長は、乾燥状態のセルロースナノファイバーについて求めた値とする。本発明における乾燥状態のセルロースナノファイバーの平均繊維径及び平均繊維長は、走査電子顕微鏡あるいは透過型電子顕微鏡(電子染色あり)により測定できる。例えば、セルロースナノファイバーの含有量が0.05~0.1質量%の分散液をSiウェーハなどの基板上にキャストして乾燥させた後、走査電子顕微鏡で観察する。観察視野内に縦横任意の画像幅の軸を想定し、その軸に対し20~100本の繊維が交差するよう、試料および倍率等を調節して、画像を取得する。画像を得た後、1枚の画像当たり縦横2本の無作為な軸を引き、各軸に交錯する繊維から任意の20本について繊維径と繊維長の値を読み取っていく。このようにして、3枚の重複しない表面部分の画像を走査電子顕微鏡で撮影し、各々2本の軸に交錯する20本の繊維の繊維径と繊維長の値を読み取る。従って、20本×2軸×3枚の計120本の繊維の繊維径と繊維長の情報を得る。得られた繊維径の算術平均から平均繊維径を算出し、繊維長の算術平均から平均繊維長を算出することができる。なお、枝分かれしている繊維については、枝分かれしている部分の長さが50nm以上であれば、その部分を1本の繊維として繊維径の算出に組み込む。このとき、その繊維の最も長い部分の長さを繊維長とする。
 本発明における平均アスペクト比は、走査電子顕微鏡あるいは透過型電子顕微鏡(電子染色あり)と同等の値を得られる手法であれば、上記以外の手法で算出してもよい。なお本発明において、乾燥状態とは、自然乾燥や凍結減圧乾燥といった従来公知の方法によって液体を除去し、セルロースナノファイバーの含液率が1質量%以下となった状態である。
 本発明で使用するセルロースナノファイバーは、特に限定されず、市販品や、公知の製造方法により製造したものを用いることができる。一般的には、セルロース繊維含有材料をリファイナー、高圧ホモジナイザー、媒体攪拌ミル、石臼、グラインダー等により磨砕や叩解を行うことによって解繊または微細化して製造される。また、例えば特開2005-42283号公報に記載の方法等の公知の方法で製造することもできる。また、微生物(例えば酢酸菌(アセトバクター))を利用して製造することもできる。さらに、市販品を利用することも可能である。セルロース繊維含有材料は、植物(例えば木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、パルプ、再生パルプ、古紙)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知れているが、本発明ではそのいずれも使用できる。好ましくは植物または微生物由来のセルロースナノファイバーであり、より好ましくは植物由来のセルロースナノファイバーである。
 本発明で使用するセルロースナノファイバーは、例えば特開2013-181167号公報や特開2010-216021号公報記載のような、何らかの化学修飾を施したいわゆる変性セルロースナノファイバーを用いてもよく、例えば特開2011-056456号公報記載の方法で製造された、いわゆる未変性セルロースナノファイバーや、未変性セルロースナノファイバー市販品を用いてもよい。未変性セルロースナノファイバーの市販品としては、例えばスギノマシン株式会社のバイオナノファイバー「BiNFi-s」シリーズ、ダイセルファインケム株式会社の「セリッシュ」シリーズ及び中越パルプの「CNF」シリーズが挙げられる。これらのセルロースナノファイバーは、単独で用いることもでき、また2種類以上を混合して用いることもできる。
 [不飽和アルデヒド及び不飽和カルボン酸製造用触媒]
 本発明に係る不飽和アルデヒド及び不飽和カルボン酸製造用触媒は、下記式(I)で表される組成を有することが、不飽和アルデヒド及び不飽和カルボン酸収率の観点から好ましい。なお、各元素のモル比率は、触媒成分をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた値とする。また、アンモニウム根のモル比率は、触媒成分をケルダール法で分析することによって求めた値とする。
  Moa1Bib1Fec1d1E1e1G1f1J1g1Sih1(NHi1j1   (I)
 式(I)中、Mo、Bi、Fe、Si、NH及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素、アンモニウム根及び酸素を表し、Aは、コバルト及びニッケルからなる群より選ばれた少なくとも1種の元素を表し、E1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タリウム、タンタル及び亜鉛からなる群より選ばれた少なくとも1種の元素を表し、G1は、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも1種の元素を表し、J1は、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種の元素を表す。a1、b1、c1、d1、e1、f1、g1、h1、i1及びj1は各成分のモル比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=0.01~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20、i1=0~30であり、j1は前記各成分の価数を満足するのに必要な酸素のモル比率である。
 各成分のモル比率は、b1=0.05~2、c1=0.1~4、d1=0.1~10、e1=0~5、f1=0~3、g1=0.01~1、h1=0~10、i1=0~20がより好ましい。
 なお、本発明において「アンモニウム根」とは、アンモニウムイオン(NH )になり得るアンモニア(NH)、およびアンモニウム塩などのアンモニウム含有化合物に含まれるアンモニウムの総称である。
 [不飽和カルボン酸製造用触媒]
 本発明に係る不飽和カルボン酸製造用触媒は、下記式(II)で表される組成を有することが、不飽和カルボン酸収率の観点から好ましい。
  Pa2Mob2c2Cud2E2e2G2f2J2g2(NHh2i2   (II)
 前記式(II)中、P、Mo、V、Cu、NH及びOは、それぞれリン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を表す。E2は、アンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を表す。G2は、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を表す。J2は、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種類の元素を表す。a2、b2、c2、d2、e2、f2、g2、h2及びi2は各成分のモル比率を表し、b2=12のとき、a2=0.1~3、c2=0.01~3、d2=0.01~2、e2は0~3、f2=0~3、g2=0.01~3、h2=0~30であり、i2は前記各成分の価数を満足するのに必要な酸素のモル比率である。
 各成分のモル比率は、a2=0.5~2、c2=0.05~2、d2=0.05~1.5、e2=0.01~2、f2=0~2、g2=0.05~2、h2=0~20がより好ましい。
 [触媒成形体]
 触媒成形体におけるセルロースナノファイバーの含有量は、前記触媒成形体の質量をM1[g]、前記セルロースナノファイバーの質量をM2[g]としたとき、下記式(III)により算出されるセルロースナノファイバー含有率が0.1~5質量%であることが好ましい。なお、M1およびM2は仕込み量から算出される質量とする。例えば、M1はセルロースナノファイバーを含む触媒成形体の合計の質量であり、後述する触媒乾燥体、バインダーおよびその他の固形分の合計から算出される。
  セルロースナノファイバー含有率[質量%]=(M2/M1)×100   (III)
 セルロースナノファイバー含有率の値を0.1質量%以上とすることで、触媒成形体の機械的強度をより高めることができる。
 またセルロースナノファイバー含有率の値が5質量%以下であることにより、反応器に十分な量の触媒成分を充填することができるため、連続運転において長期にわたり高収率を維持できる。従って触媒寿命も長く、触媒の交換頻度を減らすことができる。セルロースナノファイバー含有率の下限は0.2質量%以上がより好ましく、0.3質量%以上がさらに好ましい。またセルロースナノファイバー含有率の上限は4質量%以下がより好ましく、2質量%以下がさらに好ましく、1質量%以下が特に好ましい。
 また触媒成形体は、セルロースナノファイバー以外にバインダーを更に含有することが好ましい。触媒成形体がセルロースナノファイバーとバインダーの両方を含有することにより、後述する成形工程において成形性が向上し、所望する形状の成形体を安定して得ることができる。バインダーの質量をM3[g]としたとき、下記式(IV)により算出されるバインダー含有率が0.05~10質量%であることが好ましく、下限は0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。また上限は8質量%以下がより好ましく、5質量%以下がさらに好ましい。
  バインダー含有率[質量%]=(M3/M1)×100   (IV)
 バインダーとしては、触媒乾燥体または焼成後の触媒を接着する機能を有するものであれば特に限定されず、水溶性バインダーまたは非水溶性バインダーを用いることができる。
 水溶性バインダーとしては、例えばポリビニルアルコール等の水溶性高分子化合物、水溶性αグルカン誘導体、水溶性βグルカン誘導体等の有機バインダー、及び水溶性ケイ酸化合物、無機酸のアンモニウム塩等の無機バインダーを挙げることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 本発明においてαグルカン誘導体とは、グルコースから構成される多糖類のうちグルコースがα型の構造で結合したものを示す。水溶性αグルカン誘導体としては、具体的には、アミロース、グリコーゲン、プルラン、デキストリン、シクロデキストリン等を挙げることができる。これらは一種を用いてもよく、二種以上を併用してもよい。また本発明においてβグルカン誘導体とは、グルコースから構成される多糖類のうちグルコースがβ型の構造で結合したものを示す。水溶性βグルカン誘導体としては、具体的には、メチルセルロース、カルボキシルメチルセルロース、カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース、スクレログルカン等が挙げられる。
 また水溶性ケイ酸化合物としては、具体的には、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、メタケイ酸カリウム、ケイ酸リチウム、ケイ酸アンモニウム、アルキルシリケート等を挙げることができる。無機酸のアンモニウム塩としては、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、亜塩化アンモニウム、炭酸水素アンモニウム、チオ硫酸アンモニウム、次亜硫酸アンモニウム、塩素酸塩アンモニウム等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 非水溶性バインダーとしては、例えば非水溶性αグルカン誘導体、非水溶性βグルカン誘導体等の有機バインダー、及び非水溶性無機化合物、非水溶性の不活性担体等の無機バインダーを挙げることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 非水溶性αグルカン誘導体としては、具体的にはアミロペクチン等が挙げられる。また非水溶性βグルカン誘導体としては、具体的にはエチルセルロース、結晶性セルロース、カードラン、パラミロン等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 また非水溶性無機化合物としては、具体的には、シリカ、アルミナ、シリカ-アルミナ、シリコンカーバイド、チタニア、マグネシア、グラファイト、ケイソウ土等が挙げられる。また、非水溶性の不活性担体としては、具体的には、セラミックボール、ステンレス鋼、及びガラス繊維、セラミックファイバー、炭素繊維等の無機ファイバー等を挙げることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 触媒成形体の機械的強度の観点から、バインダーは水溶性であることが好ましく、水溶性有機バインダーであることがより好ましく、水溶性βグルカン誘導体であることが特に好ましい。なお本発明において水溶性とは、20℃の水100gに5g以上溶解する性質のことを示す。
 [触媒成形体の製造方法]
 本発明の触媒成形体はセルロースナノファイバーを含有させる点を除けば、公知の触媒の製造方法に準じて製造することができる。
 なお、セルロースナノファイバーを触媒成形体に含有させる方法は特に限定されず、例えば後述する触媒原料液調製工程において、触媒原料液にセルロースナノファイバーを添加する方法、後述する成形工程において触媒乾燥体にセルロースナノファイバーを添加し成形する方法、及びこれらの方法を併用する方法等が挙げられる。
 (触媒原料液調製工程)
 本発明において、触媒成分を調製する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている沈殿法、酸化物混合法等の種々の方法を用いることができる。例えば、不飽和アルデヒド及び不飽和カルボン酸製造用触媒の製造においては、不飽和アルデヒド及び不飽和カルボン酸製造用触媒の触媒成分の原料化合物を、適宜選択した溶媒に溶解または懸濁させ、少なくともモリブデン及びビスマスを含む溶液またはスラリー(以下、触媒原料液とも示す)を調製することが好ましい。また、不飽和カルボン酸製造用触媒の製造においては、不飽和カルボン酸製造用触媒の触媒成分の原料化合物を、適宜選択した溶媒に溶解または懸濁させ、少なくともモリブデン及びリンを含む触媒原料液を調製することが好ましい。
 触媒原料液の調製に用いられる原料化合物は特に限定されず、触媒の各構成元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、酢酸塩等の有機酸塩、アンモニウム塩、ハロゲン化物、オキソ酸、オキソ酸塩、アルカリ金属塩等を単独でまたは二種以上を組み合わせて使用することができる。モリブデンの原料化合物としては、例えば、三酸化モリブデン等の酸化モリブデン類、パラモリブデン酸アンモニウムやジモリブデン酸アンモニウム等のモリブデン酸アンモニウム類、モリブデン酸、塩化モリブデン等が挙げられる。ビスマスの原料化合物としては、硝酸ビスマス、酸化ビスマス、酢酸ビスマス、水酸化ビスマス等が挙げられる。リンの原料化合物としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等のリン酸塩等が挙げられる。バナジウムの原料化合物としては、例えば、バナジン酸アンモニウム、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム、蓚酸バナジル等が挙げられる。原料化合物は、触媒成分を構成する各元素に対して1種のみを用いても2種以上を組み合わせて用いてもよい。
 前記溶媒としては、例えば、水、エチルアルコール、アセトン等が挙げられるが、水を用いることが好ましい。
 (乾燥工程)
 乾燥工程では、前記触媒原料液調製工程で得られた触媒原料液を乾燥し、触媒乾燥体を得る。触媒原料液を乾燥する方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固する方法等が適用できる。これらの中では、乾燥と同時に粒子が得られること、得られる粒子の形状が整った球形であることから、スプレー乾燥機を用いて乾燥する方法が好ましい。乾燥条件は乾燥方法により異なるが、スプレー乾燥機を用いる場合、乾燥機入口温度は100~500℃が好ましく、下限は200℃以上がより好ましく、220℃以上が更に好ましい。また上限は400℃以下がより好ましく、370℃以下が更に好ましい。乾燥機出口温度は100~200℃が好ましく、下限は105℃以上がより好ましい。乾燥は、得られる触媒乾燥体の水分含有率が0.1~4.5質量%となるように行うことが好ましい。なおこれらの条件は、所望する触媒の形状や大きさにより適宣選択することができる。
 スプレー乾燥機を用いる場合、得られる触媒乾燥体の平均粒子径が1~250μmであることが好ましい。平均粒子径が1μm以上であることにより、目的生成物の生成に好ましい径の細孔が形成され、高い収率で目的生成物が得られる。また、平均粒子径が250μm以下であることにより、単位体積当たりの触媒乾燥体粒子間の接触点の数が維持でき、十分な触媒の機械的強度が得られる。触媒乾燥体の平均粒子径の下限は5μm以上、上限は150μm以下がより好ましい。なお、平均粒子径は体積平均粒子径を意味し、レーザー式粒度分布測定装置により測定した値とする。
 また、噴霧された液滴と熱風との接触方式は、並流、向流、並向流(混合流)のいずれでもよく、いずれの場合でも好適に乾燥することができる。
 (成形工程)
 成形工程では、前記乾燥工程で得られた触媒乾燥体を成形し、触媒成形体を得る。触媒乾燥体がセルロースナノファイバーを含む場合はそのまま成形してもよく、セルロースナノファイバーを追加添加してから成形してもよい。触媒乾燥体がセルロースナノファイバーを含まない場合は、セルロースナノファイバーを添加して成形し、触媒成形体を得る。なお、成形は後述する焼成工程の後に、セルロースナノファイバーを添加してから行っても良い。
 乾燥工程で得られた触媒乾燥体は触媒性能を示し、これを成形したものを触媒成形体として用いることができるが、焼成を行うことで触媒としての性能が向上するため好ましい。本発明では焼成後のものを含めて触媒成形体と総称する。
 成形方法は特に限定されず、例えば、公知の押出成形、打錠成形、担持成形、転動造粒等の方法が挙げられる。中でも触媒の生産性の観点から打錠成形、押出成形が好ましく、触媒成形体中に目的生成物の製造に有利な細孔が形成される観点から、押出成形がより好ましい。触媒成形体の形状は特に限定されず、例えば、球状、円柱状、リング状(円筒状)、星型状等の形状が挙げられ、中でも機械的強度の高い球状、円柱状、リング状が好ましい。
 本発明の触媒成形体は、セルロースナノファイバー以外にバインダーを更に含有させることにより、成形性が向上し、所望する形状の成形体を安定して得ることができる。
 (焼成工程)
 前記乾燥工程で得られた触媒乾燥体、または前記成形工程で得られた触媒成形体を焼成することが、目的生成物の収率の観点から好ましい。焼成温度は通常200~600℃であり、下限は300℃以上、上限は500℃以下が好ましい。焼成条件は特に限定されないが、焼成は通常、酸素、空気または窒素流通下で行われる。焼成時間は目的とする触媒によって適宜設定されるが、0.5~40時間が好ましく、1~40時間がより好ましい。
 [不飽和アルデヒド及び不飽和カルボン酸の製造方法]
 本発明に係る不飽和アルデヒド及び不飽和カルボン酸の製造方法は、本発明に係る不飽和アルデヒド及び不飽和カルボン酸製造用触媒を含有する触媒成形体の存在下で、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する。これらの方法によれば、高い収率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる。
 製造される不飽和アルデヒド及び不飽和カルボン酸は、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルにそれぞれ対応したものである。たとえばプロピレンに対応する不飽和アルデヒドはアクロレインであり、プロピレンに対応する不飽和カルボン酸はアクリル酸である。イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールおよびメチル第三級ブチルエーテルに対応する不飽和アルデヒドはメタクロレインであり、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールおよびメチル第三級ブチルエーテルに対応する不飽和カルボン酸はメタクリル酸である。
 目的生成物の収率の観点から、不飽和アルデヒド及び不飽和カルボン酸は、それぞれメタクロレイン及びメタクリル酸であることが好ましい。
 以下、代表例として本発明に係る方法により製造された触媒成形体の存在下、イソブチレンを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を製造する方法について説明する。
 前記方法では、イソブチレンを及び分子状酸素を含む原料ガスと、本発明に係る触媒成形体とを接触させることでメタクロレイン及びメタクリル酸を製造する。この反応では固定床型反応器を使用することができる。反応管内に触媒成形体を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒成形体層は1層でもよく、活性の異なる複数の触媒成形体をそれぞれ複数の層に分けて充填してもよい。また、活性を制御するために触媒成形体を不活性担体により希釈し充填してもよい。
 原料ガス中のイソブチレンの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。
 原料ガス中の分子状酸素の濃度は、イソブチレン1モルに対して0.1~5モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いてもよい。
 原料ガスは、イソブチレン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。
 原料ガスと触媒成形体との接触時間は、0.5~10秒が好ましく、下限は1秒以上、上限は6秒以下がより好ましい。反応圧力は、0.1~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~420℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
 [不飽和カルボン酸の製造方法]
 本発明に係る不飽和カルボン酸の製造方法は、本発明に係る不飽和カルボン酸製造用触媒を含有する触媒成形体の存在下で、(メタ)アクロレインを分子状酸素により気相接触酸化する。これらの方法によれば、高い収率で不飽和カルボン酸を製造することができる。
 製造される不飽和カルボン酸は、(メタ)アクロレインのアルデヒド基がカルボキシル基に変化した不飽和カルボン酸であり、具体的には(メタ)アクリル酸が得られる。
 なお、「(メタ)アクロレイン」はアクロレイン及びメタクロレインを示し、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸を示す。目的生成物の収率の観点から、(メタ)アクロレイン及び(メタ)アクリル酸は、それぞれメタクロレイン及びメタクリル酸であることが好ましい。
 以下、代表例として、本発明に係る方法により製造された触媒成形体の存在下、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法について説明する。
 前記方法では、メタクロレイン及び分子状酸素を含む原料ガスと、本発明に係る触媒成形体とを接触させることでメタクリル酸を製造する。この反応では固定床型反応器を使用することができる。反応管内に触媒成形体を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒成形体層は1層でもよく、活性の異なる複数の触媒成形体をそれぞれ複数の層に分けて充填してもよい。また、活性を制御するために触媒成形体を不活性担体により希釈し充填してもよい。
 原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。原料であるメタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。
 原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4~4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いてもよい。
 原料ガスは、メタクロレイン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50容量%が好ましく、下限は1容量%以上、上限は40容量%以下がより好ましい。
 原料ガスとメタクリル酸製造用触媒との接触時間は、1.5~15秒が好ましい。反応圧力は、0.1~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
 [不飽和カルボン酸エステルの製造方法]
 本発明に係る不飽和カルボン酸エステルの製造方法は、本発明に係る方法により製造された不飽和カルボン酸をエステル化する。すなわち、本発明に係る不飽和カルボン酸エステルの製造方法は、本発明に係る方法により不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程とを含む。これらの方法によれば、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルの気相接触酸化、または(メタ)アクロレインの気相接触酸化により得られる不飽和カルボン酸を用いて、不飽和カルボン酸エステルを得ることができる。
 不飽和カルボン酸と反応させるアルコールとしては特に限定されず、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られる不飽和カルボン酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
 以下、本発明を実施例及び比較例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、「部」は「質量部」を示す。
 (落下粉化率)
 触媒成形体の機械的強度の指標である落下粉化率は以下の方法により測定した。長手方向が鉛直になるように設置され、下側開口部がステンレス製の板で閉止された内径27.5mm、長さ6mのステンレス製円筒の上側開口部から、触媒成形体100gを落下させて円筒内に充填した。下側開口部を開いて回収した触媒成形体のうち、目開き1mmのふるいを通過しないものの質量をαgとして、落下粉化率を下記式にて算出した。落下粉化率は小さいほど機械的強度が高く、大きいほど機械的強度が低い。なお、表1における落下粉化率は、同一条件で触媒成形体を10回製造し、各触媒成形体に対して測定された落下粉化率の平均値である。
  落下粉化率(%)={(100-α)/100}×100
 (原料ガス及び生成物の分析)
 原料ガスおよび生成物の分析は、ガスクロマトグラフィーを用いて行った。実施例1~3、比較例1~3において、メタクロレイン及びメタクリル酸の合計収率は次式により算出した。
  メタクロレイン及びメタクリル酸の合計収率(%)=(B+C)/A×100
 ここで、Aは供給したイソブチレンのモル数、Bは生成したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
 なお、実施例1~3、比較例1~3では原料がイソブチレンの場合のみ示しているが、第三級ブチルアルコールを原料として用いた場合においても、反応器の入口部分で速やかにイソブチレンに脱水され、イソブチレンを原料として用いた場合と同様の結果が得られる。
 また、実施例4、比較例4~6において、生成するメタクリル酸の収率は、以下のように定義される。
  メタクリル酸の収率(%)=(E/D)×100
 ここで、Dは供給したメタクロレインのモル数、Eは生成したメタクリル酸のモル数である。
 (平均繊維径)
 セルロースナノファイバーの平均繊維径は、走査電子顕微鏡による解析結果から算出した。具体的にはセルロースナノファイバーの含有量が0.05質量%となるように純水に分散させた分散液をウェーハ上にキャストして乾燥させたものを走査電子顕微鏡により観察した。観察視野内に縦横任意の画像幅の軸を想定し、その軸に対し20~100本の繊維が交差するよう、試料および倍率を調節して、画像を取得した。画像を得た後、1枚の画像当たり縦横2本の無作為な軸を引き、各軸に交錯する繊維から任意の20本について繊維径の値を読み取った。このようにして、3枚の重複しない表面部分の画像を走査電子顕微鏡で撮影し、各々2本の軸に交錯する繊維の繊維径の値を読み取り、120本の繊維の繊維径の情報を得た。得られた繊維径の算術平均から平均繊維径を有効数字2桁にて算出した。
 (触媒成分の組成比)
 各元素のモル比率は、触媒成分をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた。またアンモニウム根のモル比率は、触媒成分をケルダール法で分析することによって求めた。
 (セルロースナノファイバー含有量)
 触媒成形体におけるセルロースナノファイバーの含有量は、下記式(III)により算出した。
  セルロースナノファイバー含有率[質量%]=(M2/M1)×100   (III)
 前記式(III)において、触媒成形体の質量M1は、触媒乾燥体、ヒドロキシプロピルメチルセルロースおよびセルロースナノファイバーの仕込み量の合計とした。またセルロースナノファイバーの質量M2は、セルロースナノファイバーの仕込み量とした。
 [実施例1]
 純水1000部にパラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.4部、硝酸カリウム2.3部、三酸化アンチモン27.5部及び三酸化ビスマス66.0部を加え加熱攪拌した(A液)。別に純水1000部に硝酸第二鉄114.4部、硝酸コバルト274.7部及び硝酸亜鉛35.1部を順次加え溶解した(B液)。A液にB液を加えて得られた触媒原料液を、並流式スプレー乾燥機を用いて、乾燥機入口温度250℃、スラリー噴霧用回転円盤13,000rpmの条件で乾燥して、平均粒子径46μmの触媒乾燥体を得た。なお、該触媒乾燥体の酸素を除く触媒の組成は、Mo120.2Bi1.2Fe1.2Sb0.8Co4.0Zn0.50.1(NH12.3であった。
 前記触媒乾燥体100部に対して、ヒドロキシプロピルメチルセルロース4部と、平均繊維径40nmであるセルロースナノファイバー1部を純水45部に分散させた分散液とを、双腕型のシグマブレードを備えたバッチ式の混練機で粘土状になるまで混練し、混合物を得た。
 得られた混合物を、プランジャー式押出機を用いて押出成形し、外径5mm、内径2mm、長さ5.5mmのリング状に成形し、次いで、熱風乾燥機で、90℃で12時間乾燥することにより触媒成形体を得た。該触媒成形体の落下粉化率の測定結果を表1に示す。
 続いて触媒成形体を反応管に充填し、空気流通下に450℃で3時間焼成した。次いで、イソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%の原料ガスを用い、常圧下、反応温度340℃、接触時間3.6秒で通じてイソブチレンの気相接触酸化反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析することでメタクロレイン及びメタクリル酸の合計収率を求めた。結果を表1に示す。
 [実施例2]
 実施例1において、純水に分散させたセルロースナノファイバーの量を0.5部とした以外は、実施例1と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表1に示す。
 [実施例3]
 実施例1において、純水に分散させたセルロースナノファイバーの量を0.25部とした以外は、実施例1と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表1に示す。
 [比較例1]
 実施例1において、触媒乾燥体にセルロースナノファイバー分散液を混合せず、代わりに純水45部を混合したこと以外は、実施例1と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表1に示す。
 [比較例2]
 実施例1において、触媒成形体にセルロースナノファイバー分散液を混合せず、代わりに純水45部及び平均粒子径50μmの結晶性セルロース1部を混合したこと以外は、実施例1と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表1に示す。
 [比較例3]
 実施例1において、触媒成形体にセルロースナノファイバー分散液を混合せず、代わりに純水45部及び平均粒子径50μmの結晶性セルロース5.0部を混合したこと以外は、実施例1と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表1に示す。
 [実施例4]
 純水4000部に三酸化モリブデン1000部、メタバナジン酸アンモニウム34部、85質量%リン酸水溶液80部及び硝酸銅7部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。90℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、重炭酸セシウム124部を純水200部に溶解した溶液を添加して15分間攪拌した。次いで、炭酸アンモニウム92部を純水200部に溶解した溶液を添加し、更に20分間攪拌した。以上のようにして得られた触媒原料液を、並流式スプレー乾燥機を用いて、乾燥機入口温度300℃、スラリー噴霧用回転円盤18,000rpmの条件で乾燥して、平均粒子径25μmの触媒乾燥体を得た。なお、該触媒乾燥体の酸素を除く触媒の組成は、P1.2Mo120.5Cu0.05Cs1.1(NH3.8である。
 前記触媒乾燥体100部に対して、ヒドロキシプロピルセルメチルロース4部と、平均繊維径20nmであるセルロースナノファイバー0.5部を純水30部に分散させた分散液とを、双腕型のシグマブレードを備えたバッチ式の混練機で粘土状になるまで混練し、混合物を得た。
 得られた混合物を、プランジャー式押出機を用いて押出成形し、外径6mm、長さ5mmの円柱状に成形し、次いで、熱風乾燥機で、90℃で12時間焼成することにより触媒成形体を得た。該触媒成形体の落下粉化率の測定結果を表2に示す。
 続いて触媒成形体を反応管に充填し、空気流通下に380℃で10時間焼成した。次いでメタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の原料ガスを用い、常圧下、反応温度305℃、接触時間7.1秒で通じてメタクロレインの気相接触酸化反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析することでメタクリル酸の収率を求めた。結果を表2に示す。
 [比較例4]
 実施例4において、触媒乾燥体にセルロースナノファイバー分散液を混合せず、代わりに純水30部を混合したこと以外は、実施例4と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表2に示す。
 [比較例5]
 実施例4において、触媒乾燥体にセルロースナノファイバー分散液を混合せず、代わりに純水45部及び平均粒子径50μmの結晶性セルロース1部を混合したこと以外は、実施例4と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表2に示す。
 [比較例6]
 実施例1において、触媒成形体にセルロースナノファイバー分散液を混合せず、代わりに純水45部及び平均粒子径50μmの結晶性セルロース8部を混合したこと以外は、実施例1と同様にして触媒成形体を製造して落下粉化率を測定し、続いて該触媒成形体の焼成及び反応評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、式(I)に含まれるMo120.2Bi1.2Fe1.2Sb0.8Co4.0Zn0.50.1(NH12.3の組成比を有する触媒成分を用いた場合、触媒成形体が平均繊維径1~300nmであるセルロースナノファイバーを含有する実施例1~3は、落下粉化率が低く機械的強度の高い触媒成形体が得られ、メタクロレイン及びメタクリル酸の合計収率も高かった。一方、触媒成形体がセルロースナノファイバーを含有しない比較例1および2は、実施例1~3と同程度のメタクロレイン及びメタクリル酸の合計収率だが、落下粉化率が高く機械的強度が低かった。そこで比較例3に示すように、セルロースナノファイバー以外のバインダーにより実施例1と同程度の機械的強度とすると、メタクロレイン及びメタクリル酸の合計収率が著しく低下した。
 実施例1~3の触媒成形体は、メタクロレイン及びメタクリル酸の収率が高く、かつ機械的強度も高いため、連続運転において触媒の粉化や割れが少ないため、差圧上昇が抑えられ、長期にわたり高収率を維持できる。従って触媒寿命も長く、触媒の交換頻度を減らすことができる。
 同様に、式(II)に含まれるP1.2Mo120.5Cu0.05Cs1.1(NH3.81の組成比を有する触媒成分を用いた場合、触媒成形体が平均繊維径1~300nmであるセルロースナノファイバーを含有する実施例4は、落下粉化率が低く機械的強度の高い触媒成形体が得られ、メタクリル酸収率も高かった。一方、触媒成形体がセルロースナノファイバーを含有しない比較例4は、落下粉化率が高く機械的強度が低く、メタクリル酸収率もやや低かった。また比較例5は、実施例4と同程度のメタクリル酸収率だが、落下粉化率が高く機械的強度が低かった。そこで比較例6に示すように、セルロースナノファイバー以外のバインダーにより実施例4と同程度の機械的強度とすると、メタクリル酸の収率が低下した。
 実施例4の触媒成形体は、メタクリル酸の収率が高く、かつ機械的強度も高いため、連続運転において触媒の粉化や割れが少ないため、差圧上昇が抑えられ、長期にわたり高収率を維持できる。従って触媒寿命も長く、触媒の交換頻度を減らすことができる。
 なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。
 本発明によれば、高収率かつ機械的強度が高い触媒成形体を提供できる。このような触媒成形体を用いることにより、長期に高収率を維持できる不飽和アルデヒド及び不飽和カルボン酸の製造方法を提供できる。
 以上、本発明を実施形態及び実施例により具体的に説明したが、本発明はこれらのみに限定されるものではなく、本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2018年3月14日に出願された日本出願特願2018-046637を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1.  分子状酸素による気相接触酸化により不飽和アルデヒド及び/又は不飽和カルボン酸を製造可能な触媒成分と、平均繊維径が1~300nmであるセルロースナノファイバーを含有する触媒成形体。
  2.  前記触媒成形体の質量をM1[g]、前記セルロースナノファイバーの質量をM2[g]としたとき、下記式(III)により算出されるセルロースナノファイバー含有率が0.1~5質量%である、請求項1に記載の触媒成形体。
      セルロースナノファイバー含有率[質量%]=(M2/M1)×100   (III)
  3.  更にバインダーを含有する、請求項1または2に記載の触媒成形体。
  4.  前記バインダーが水溶性である、請求項3に記載の触媒成形体。
  5.  前記バインダーが水溶性有機バインダーである、請求項3に記載の触媒成形体。
  6.  請求項1~5のいずれか1項に記載の触媒成形体を焼成してなる、触媒成形体。
  7.  押出成形を含む工程により製造される請求項1~6のいずれか1項に記載の触媒成形体。
  8.  前記触媒成分が下記式(I)で表される組成を有し、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する不飽和アルデヒド及び不飽和カルボン酸製造用触媒である、請求項1~7のいずれか1項に記載の触媒成形体。
      Moa1Bib1Fec1d1E1e1G1f1J1g1Sih1(NHi1j1   (I)
    (式(I)中、Mo、Bi、Fe、Si、NH及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素、アンモニウム根及び酸素を表し、Aは、コバルト及びニッケルからなる群より選ばれた少なくとも1種の元素を表し、E1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タリウム、タンタル及び亜鉛からなる群より選ばれた少なくとも1種の元素を表し、G1は、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも1種の元素を表し、J1は、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種の元素を表す。a1、b1、c1、d1、e1、f1、g1、h1、i1及びj1は各成分のモル比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=0.01~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20、i1=0~30であり、j1は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
  9.  前記触媒成分が下記式(II)で表される組成を有し、(メタ)アクロレインを分子状酸素により気相接触酸化する不飽和カルボン酸製造用触媒である、請求項1~7のいずれか1項に記載の触媒成形体。
      Pa2Mob2c2Cud2E2e2G2f2J2g2(NHh2i2   (II)
    (前記式(II)中、P、Mo、V、Cu、NH及びOは、それぞれリン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を表す。E2は、アンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を表す。G2は、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を表す。J2は、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種類の元素を表す。a2、b2、c2、d2、e2、f2、g2、h2及びi2は各成分のモル比率を表し、b2=12のとき、a2=0.1~3、c2=0.01~3、d2=0.01~2、e2は0~3、f2=0~3、g2=0.01~3、h2=0~30であり、i2は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
  10.  請求項8に記載の触媒成形体の存在下でプロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する、不飽和アルデヒド及び不飽和カルボン酸の製造方法。
  11.  請求項9に記載の触媒成形体の存在下で(メタ)アクロレインを分子状酸素により気相接触酸化する、不飽和カルボン酸の製造方法。
  12.  請求項10又は11に記載の方法により製造された不飽和カルボン酸をエステル化する不飽和カルボン酸エステルの製造方法。
  13.  請求項10又は11に記載の方法により不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程を含む不飽和カルボン酸エステルの製造方法。
PCT/JP2019/010294 2018-03-14 2019-03-13 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法 WO2019177031A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980013549.5A CN111727085A (zh) 2018-03-14 2019-03-13 催化剂成型体和使用其的不饱和醛及不饱和羧酸的制造方法
SG11202008534XA SG11202008534XA (en) 2018-03-14 2019-03-13 Catalyst molded body, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same
JP2020506610A JP6973618B2 (ja) 2018-03-14 2019-03-13 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
KR1020207028899A KR102547450B1 (ko) 2018-03-14 2019-03-13 촉매 성형체, 및 이것을 이용한 불포화 알데하이드 및 불포화 카복실산의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-046637 2018-03-14
JP2018046637 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019177031A1 true WO2019177031A1 (ja) 2019-09-19

Family

ID=67906807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010294 WO2019177031A1 (ja) 2018-03-14 2019-03-13 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法

Country Status (5)

Country Link
JP (1) JP6973618B2 (ja)
KR (1) KR102547450B1 (ja)
CN (1) CN111727085A (ja)
SG (1) SG11202008534XA (ja)
WO (1) WO2019177031A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138028A (ja) * 1991-04-25 1993-06-01 Roehm Gmbh 気相酸化触媒、プロピレン、イソブチレンないしはt−ブタノールの酸化法及びイソ酪酸又はその低級エステルのオキシ脱水素化法
JP2010188276A (ja) * 2009-02-18 2010-09-02 Sumitomo Chemical Co Ltd メタクロレインおよびメタクリル酸の製造触媒
JP2011246384A (ja) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2012005992A (ja) * 2010-06-28 2012-01-12 Mitsubishi Rayon Co Ltd コーティングされたメタクリル酸合成用固体触媒の製造方法
WO2014175113A1 (ja) * 2013-04-25 2014-10-30 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、該触媒の製造方法、および該触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2015188800A (ja) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 成型触媒及びその製造方法、並びに不飽和アルデヒドの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497442B2 (ja) * 2001-01-16 2010-07-07 三菱レイヨン株式会社 メタクロレインおよびメタクリル酸の製造方法
JP4846114B2 (ja) * 2001-03-27 2011-12-28 三菱レイヨン株式会社 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法、および、該製造方法により製造した触媒を用いる不飽和アルデヒドおよび不飽和カルボン酸の合成方法
US7378367B2 (en) * 2004-03-25 2008-05-27 Nippon Shokubai Co., Ltd. Catalyst for production of acrylic acid and process for production of acrylic acid using the catalyst
JP2005336110A (ja) * 2004-05-27 2005-12-08 Mitsubishi Chemicals Corp (メタ)アクリル酸および(メタ)アクリル酸エステルの製造方法
JP4889083B2 (ja) 2005-09-01 2012-02-29 旭化成ケミカルズ株式会社 メタクロレイン製造用酸化物触媒、その触媒の製造方法及びその触媒を用いたメタクロレインの製造方法
JP5059702B2 (ja) * 2008-06-27 2012-10-31 三菱レイヨン株式会社 不飽和カルボン酸製造用触媒の製造方法
JP5473744B2 (ja) 2010-04-21 2014-04-16 三菱レイヨン株式会社 メタクリル酸製造用触媒の製造方法
AU2014256918B2 (en) * 2013-04-26 2018-04-26 Xyleco, Inc. Processing biomass to obtain hydroxylcarboxylic acids
SG11201803231UA (en) * 2015-12-01 2018-05-30 Mitsubishi Chem Corp Method for producing catalyst for (meth)acrylic acid production and method for producing (meth)acrylic acid
JP6726985B2 (ja) * 2016-03-02 2020-07-22 明成化学工業株式会社 変性セルロースナノファイバーの製造方法及び変性セルロースナノファイバーを含む高分子複合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138028A (ja) * 1991-04-25 1993-06-01 Roehm Gmbh 気相酸化触媒、プロピレン、イソブチレンないしはt−ブタノールの酸化法及びイソ酪酸又はその低級エステルのオキシ脱水素化法
JP2010188276A (ja) * 2009-02-18 2010-09-02 Sumitomo Chemical Co Ltd メタクロレインおよびメタクリル酸の製造触媒
JP2011246384A (ja) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2012005992A (ja) * 2010-06-28 2012-01-12 Mitsubishi Rayon Co Ltd コーティングされたメタクリル酸合成用固体触媒の製造方法
WO2014175113A1 (ja) * 2013-04-25 2014-10-30 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、該触媒の製造方法、および該触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2015188800A (ja) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 成型触媒及びその製造方法、並びに不飽和アルデヒドの製造方法

Also Published As

Publication number Publication date
SG11202008534XA (en) 2020-10-29
CN111727085A (zh) 2020-09-29
JPWO2019177031A1 (ja) 2021-03-11
KR102547450B1 (ko) 2023-06-23
JP6973618B2 (ja) 2021-12-01
KR20200128734A (ko) 2020-11-16

Similar Documents

Publication Publication Date Title
WO2014181839A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
KR101453134B1 (ko) 메타크릴산 제조용 촉매 및 그의 제조 방법, 및 메타크릴산의 제조 방법
JP2008155126A (ja) 金属成分含有触媒の製造方法
KR101860595B1 (ko) 메타크릴산 제조용 촉매의 제조방법
JP4806259B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP5473744B2 (ja) メタクリル酸製造用触媒の製造方法
JP6973618B2 (ja) 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP4863436B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒
JP5828260B2 (ja) 触媒の製造方法
JP3690939B2 (ja) メタクリル酸合成用触媒およびメタクリル酸の製造方法
JP4601196B2 (ja) 不飽和カルボン酸合成用触媒、その製造方法、および、その触媒を用いた不飽和カルボン酸の合成方法
JP2009213970A (ja) 不飽和カルボン酸合成用触媒の製造方法
JP2007130519A (ja) 押出成形触媒の製造方法、ならびに不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP5059702B2 (ja) 不飽和カルボン酸製造用触媒の製造方法
JP2019122960A (ja) メタクリル酸製造用触媒の製造方法、メタクリル酸の製造方法、およびメタクリル酸エステルの製造方法
JP5069151B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法
JP4464734B2 (ja) 不飽和カルボン酸合成用触媒の製造方法および不飽和カルボン酸合成用触媒、並びに、不飽和カルボン酸の合成方法
WO2022065116A1 (ja) 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
JP2011115683A (ja) メタクリル酸製造用触媒の製造方法
JP2010207803A (ja) 複合酸化物触媒
WO2020196150A1 (ja) 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2010005555A (ja) 不飽和アルデヒド及び不飽和カルボン酸製造用触媒の製造方法
JP2022082836A (ja) 触媒の製造方法
JP2009090200A (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法
JP2010188227A (ja) メタクリル酸製造用触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028899

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19767690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 520420123

Country of ref document: SA