WO2019176768A1 - スラリー貯留撹拌装置およびスラリーの撹拌方法 - Google Patents

スラリー貯留撹拌装置およびスラリーの撹拌方法 Download PDF

Info

Publication number
WO2019176768A1
WO2019176768A1 PCT/JP2019/009330 JP2019009330W WO2019176768A1 WO 2019176768 A1 WO2019176768 A1 WO 2019176768A1 JP 2019009330 W JP2019009330 W JP 2019009330W WO 2019176768 A1 WO2019176768 A1 WO 2019176768A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
container
nozzle
circulation path
pump
Prior art date
Application number
PCT/JP2019/009330
Other languages
English (en)
French (fr)
Inventor
章博 前田
西村 和則
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201980017005.6A priority Critical patent/CN111818992B/zh
Priority to US16/979,724 priority patent/US11833480B2/en
Priority to JP2019540105A priority patent/JP6660609B2/ja
Publication of WO2019176768A1 publication Critical patent/WO2019176768A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/211Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being surrounded by guiding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2112Level of material in a container or the position or shape of the upper surface of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/02Maintaining the aggregation state of the mixed materials
    • B01F23/023Preventing sedimentation, conglomeration or agglomeration of solid ingredients during or after mixing by maintaining mixed ingredients in movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving

Definitions

  • the present invention relates to a slurry storing and stirring device for storing slurry while stirring and a slurry stirring method.
  • a slurry in which a powder and a solvent are mixed is well known.
  • a slurry obtained by mixing magnetic powder and a solvent such as oil is used in wet forming, and a magnetic powder and a solvent such as water are used in dry forming.
  • a mixed slurry is used.
  • mixed media such as alumina balls, zirconia balls, and iron balls are mixed into the slurry due to wear when mixed for a long time to obtain a uniform slurry. was there.
  • specific gravity of the particles is several times larger than the specific gravity of the solvent, there is a problem that when mixing is stopped, the particles in the slurry are settled in the container and easily separated into a particle phase and a solvent phase. .
  • Patent Document 1 a slurry containing ceramic powder particles stored in a container is circulated by a pump, and injected into the liquid level of the slurry from an upper nozzle in a circulation path. It describes that it is a mixing method with little contamination.
  • Patent Document 2 it is described that mixing of a powder such as metal or ceramics and a liquid that does not substantially dissolve the powder is performed by a jet mixer (jet mixer).
  • Patent Documents 3 and 4 describe a jet mixer used for stirring and mixing.
  • FIG. 6 shows a configuration example of a slurry stirring device.
  • the stirring device 110 has a bowl-shaped rotating blade 134 in the center of a container 130 for storing slurry, and rotates the rotating blade 134 to stir the slurry.
  • Patent Document 1 has a problem that air tends to be entrained in the slurry during mixing.
  • a jet mixer like patent document 2 to 4 there exists a problem which is easy to involve air in a slurry. That is, when a binder such as PVA (polyvinyl alcohol) or PVB (polyvinyl butyral) is included, the slurry entrained with air is foamed, and when it is spray-dried, it tends to be a granule having a low bulk density. Molded bodies obtained by dry molding using such granules tend to be low in density and weak in strength.
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • the flow of the slurry in the container is dominant in the rotating direction of the rotating blades for stirring the slurry, and the flow in the vertical direction in the container is small.
  • the fine particles are easy to float on the liquid surface, and further improvement is necessary to obtain a uniform slurry. Further, when the slurry injection and the rotor blades are stopped, the separation between the powder and the solvent becomes more prominent.
  • the present invention provides a slurry storage and agitation device capable of sufficiently flowing the slurry by simple means even when there is a variation in the amount of slurry in the slurry storage container, excellent in agitation, and suppressing foaming. It aims at providing the stirring method of a slurry.
  • the present invention constitutes a container capable of storing a slurry containing particles and a solvent, one end connected to the container, and the other end constituting a first circulation path of the slurry extending into the inner space of the container.
  • Position below the nozzle Discharge port for the related slurry storage stirring device comprising a.
  • the sub pipe is branched from the main pipe between the pump and the nozzle.
  • one end of the main conduit is connected to the bottom of the container, and the other end of the main conduit extends from the top of the container toward the bottom of the inner space.
  • the lower side of the inner space of the container is preferably a conical reduced diameter portion having an inner bottom surface whose cross-sectional area decreases downward.
  • the inclination angle of the inner bottom surface of the reduced diameter portion is preferably 25 ° to 50 ° with respect to the vertical direction.
  • the tip of the sub-pipe is arranged so that the slurry discharge direction from the discharge port turns the slurry in the circumferential direction of the inner bottom surface of the container.
  • one end of the main pipeline is connected to the apex position of the conical reduced diameter portion of the container.
  • the nozzle is a jet mixer
  • the jet mixer has an inlet for slurry discharged from the pump, an outlet, and a suction port for taking in the slurry in the container. It is preferable that the slurry fed from the nozzle to the inlet of the nozzle and the slurry taken in from the suction port are mixed, and the mixed slurry can be ejected from the ejection port.
  • the lower part of the container has a delivery line for sending the slurry out of the container.
  • the slurry preferably contains a binder.
  • the present invention is a slurry stirring method in which a slurry containing particles and a solvent is stored in a container, and the slurry is sucked and pressurized by a pump and returned to the container through a nozzle and circulated.
  • a first circulation path including a main pipeline that connects the container and a nozzle immersed in the slurry via the pump, and a branch from the pump, or between the pump and the nozzle
  • a step of preparing a second circulation path that includes a sub-pipe having a discharge port that is branched from the main pipe and has a vertical position at the tip of the nozzle and located below the nozzle; a process of storing slurry in the container; Circulating and stirring the slurry through the first circulation path, sending the slurry out of the container through a delivery line connected to the container;
  • the present invention relates to a slurry stirring method for discharging and stirring the slurry from a discharge port.
  • the liquid level of the slurry for switching the circulation path of the slurry is set above the nozzle.
  • the nozzle is a jet mixer
  • the jet mixer has an inlet for slurry discharged from the pump, an outlet, and an inlet for taking in the slurry in the container. It is preferable that the slurry fed from the pump to the inlet of the nozzle and the slurry taken in from the suction port are mixed and the mixed slurry is ejected from the ejection port.
  • the flow rate of the slurry in the circulation path is preferably 3.3 to 8.3 per second.
  • the slurry can be sufficiently fluidized by a simple means, excellent in agitation, and while suppressing foaming of the slurry, into the solvent. It is possible to provide a slurry storing and stirring device and a slurry stirring method in which non-uniform dispersion of the particles is less likely to occur.
  • FIG. 1 is a view showing a structure of a slurry storing and stirring apparatus according to an embodiment of the present invention.
  • FIG. 1 a part of the container is shown in a cut state so that the internal structure can be easily understood.
  • FIG. 2 shows an arrangement example of nozzles in the slurry storing and stirring apparatus according to one embodiment of the present invention.
  • the structure of the nozzle used for the slurry storage stirring apparatus which concerns on one Embodiment of this invention at FIG.3, FIG4 and FIG.5 is shown.
  • the arrows in the figure schematically show the flow of slurry generated in the container. Parts having the same function are denoted by the same reference numerals in the figure.
  • main parts are mainly described so that the gist of the invention can be easily understood, and details are omitted as appropriate.
  • a container 20 capable of storing a slurry (not shown) containing particles and a solvent, a nozzle 30 having a slurry outlet, and sucks the slurry in the container 20.
  • a pump 40 that pressurizes and feeds to the nozzle 30; pipes 50 and 51 that constitute a circulation path of the slurry; a valve 53 that switches the circulation path; and a sensor that detects the height of the slurry liquid level in the container (not shown). )).
  • the slurry is connected to the container 20 at one end, the first circulation path including the pipe 50 having the other end extending into the inner space of the container 20 and the nozzle 30 attached to the tip. It is circulated through a second circulation path that includes a pipeline 51 that branches off from the pipeline 50 and extends into the inner space of the container 20.
  • the pump 40 is provided in the first circulation path between one end and the other end of the pipe line 50 so as to be able to suck and pressurize the slurry.
  • the pump 40 sucks and pressurizes the slurry from the container 20 and pressurizes the container 20. Return inside.
  • the branched pipe 51 is a single pipe, but it may be a pipe that branches into a plurality of branches after branching.
  • the pipeline 50 may be referred to as a main pipeline and the pipeline 51 may be referred to as a secondary pipeline.
  • the sub pipe 51 is branched from the main pipe 50 between the pump 40 and the nozzle 30.
  • the present invention is not limited to this, and the sub pipe 51 branches from the pump 40. May extend into the inner space of the container 20.
  • the valve 53 for switching the circulation path may be provided in the pump.
  • the level of slurry in the container 20 is detected by a sensor, and the circulation path of the slurry is switched by a valve 53 based on the level information from the sensor.
  • the valve 53 of the present embodiment is provided on the branch end side of the sub-pipe 51 and can switch the distribution of the slurry to one or both of the first circulation path and the second circulation path.
  • the first circulation path is selected when the slurry level is higher than the nozzle 30 and the slurry is ejected from the nozzle 30 immersed in the slurry in the container 20. The slurry is stirred.
  • the second circulation path is selected when the liquid level of the slurry is the same as that of the nozzle 30 or below the nozzle 30.
  • the sub pipe 51 is provided with a discharge port 52 whose vertical position is below the nozzle 30 at the tip opposite to the branch end from the main pipe 50. By discharging the slurry from the discharge port 52, the slurry remaining in the lower part in the container 20 is stirred.
  • the circulation path of the slurry not only the first circulation path but also the second circulation path can be employed when the liquid level of the slurry is above the nozzle 30.
  • a container 20 shown in FIG. 1 has a cylindrical portion 23 having a cylindrical shape on the upper side in the Z direction (vertical direction), a conical shape on the lower side, and a reduced diameter portion 21 whose cross-sectional area gradually decreases downward.
  • the inner bottom surface 22 has an inclination angle ⁇ 1.
  • the inclination angle ⁇ 1 is preferably 25 ° to 50 ° with respect to the vertical direction in consideration of stirring of the slurry.
  • the inclination angle ⁇ 1 of the inner bottom surface 22 is more preferably 25 ° to 40 °.
  • the container 20 has a support leg for standing at the installation location with its lower part positioned above the installation surface.
  • the container 20 may have a double structure in which an inner cylinder for storing slurry and an outer cylinder on the outer periphery thereof are provided. By controlling and circulating the liquid temperature of a heat medium such as water or oil between the inner cylinder and the outer cylinder, the temperature of the stored slurry can be adjusted to prevent evaporation of the solvent.
  • the material of the portion in contact with the slurry of the container 20 is preferably formed of a metal material such as stainless steel from the viewpoint of wear resistance and corrosion resistance.
  • the ceiling of the container 20 has a lid structure that can be opened and closed so that the solvent and powder constituting the slurry can be supplied.
  • a pipe 50a which is connected to a pump 40 provided in the outer space and is part of the main pipe 50 extending in the vertical direction from the upper side to the lower inner bottom surface in the inner space of the container 20 is provided on the ceiling.
  • the pipe line 50b which is a part of the main pipe line 50, is introduced into the inner space of the container 20 from a substantially central portion of the ceiling. It is not a thing.
  • One end of the pipe line 50b is connected to the vicinity of the bottom of the container 20, and the pipe line 50a in the inner space of the container 20 and the pipe line 50b in the outer space of the container 20 are connected via a pump 40 to form a slurry.
  • the circulation path is configured.
  • a secondary pipe 51 is branched from the main pipe 50 between the pump 40 and the nozzle 30 in the main pipe 50, and a valve 53 for switching slurry distribution is attached.
  • a valve 53 for example, a pinch valve can be used.
  • the slurry circulation path can be switched by interposing a pinch valve in each of the main pipe line 50 and the sub pipe line 51 and opening and closing the flow path based on the level information from the sensor.
  • the pipe line 50b is connected to the apex position of the conical inner bottom surface at the bottom of the container 20. Since the slurry is sucked and circulated from there, it is possible to prevent the particles from flowing along the inner bottom surface 22 of the container 20 and collecting at the bottom even if the particles settle.
  • the container 20 is connected with a delivery line 70 via a valve 54 provided in the line 50b.
  • the slurry is sent out of the container through the delivery line 70.
  • the delivery line 70 is preferably connected to another pump and communicated with a device such as a molding machine or a dryer in a subsequent process.
  • a plurality of nozzles 30 are connected to the lower end of the conduit 50a in the container 20.
  • the nozzle 30 is disposed such that the jet outlet side is inclined downward from the XY plane (horizontal direction) and the jet outlet of the nozzle 30 is directed toward the inner bottom surface 22 of the container 20.
  • the nozzle 30 and the inner bottom surface 22 of the container 20 are brought close to each other, and the slurry ejected from the nozzle 30 collides with the inner bottom surface 22 of the container 20 to increase the effect of stirring the slurry by generating turbulent flow. it can.
  • the nozzle 30 is preferably attached to the conduit 50a so that the angle ⁇ 2 with respect to the horizontal direction is 15 ° to 45 °.
  • the angle ⁇ 2 of the nozzle 30 and the inclination angle ⁇ 1 of the inner bottom surface 22 of the container 20 are appropriately set to form a slurry flow along the inner bottom surface 22 of the container 20, and the slurry is swirled in the vertical direction and the circumferential direction to be stirred. By doing so, it can suppress that a slurry isolate
  • the angle ⁇ 2 of the nozzle 30 is more preferably 20 ° to 40 °.
  • the number of nozzles 30 is not particularly limited, but is the number that can be attached to the pipe 50 a of the nozzle 30, and the capacity of the container 20 (slurry amount), the flow rate of slurry from the pump 40, and the nozzle 30 can be ejected. It is preferable to set appropriately considering the balance with the flow rate of the slurry and the state of stirring.
  • the number of nozzles 30 is preferably 3 or more, and more preferably 4 or more.
  • FIG. 2 is a view of the nozzle portion of the slurry storage and agitation apparatus shown in FIG. 1 as viewed from above the container 20 (inclination angle is not reflected).
  • a pipe line 50a is disposed on the central axis of the container 20, and four nozzles 30 are radially attached to the lower end thereof. Each is connected to the pipe line 50a at equal intervals with an angle of 90 ° when viewed from the vertical direction.
  • the slurry is ejected in a plurality of directions in the container 20.
  • the agitation region is divided and the energy required for the agitation performed by the nozzle 30 is also shared, so it is advantageous to provide a plurality of nozzles rather than one.
  • the intervals of the nozzles 30 may be unevenly arranged depending on the slurry stirring state in the container 20. Further, the nozzle 30 may rotate about the pipe line 50a as a rotation axis.
  • FIGS. 3 to 5 show examples of the structure of the nozzle used in the slurry storing and stirring apparatus.
  • a flow path that reduces the cross-sectional area of the flow path and accelerates the flow is referred to as a nozzle, and a flow path that decelerates the flow is referred to as a diffuser.
  • the nozzle 30 in the present invention has a structure in which a nozzle portion and a diffuser portion are combined. Including.
  • FIG. 3 to FIG. 5 show a jet mixer as a nozzle 30 including a nozzle portion and a diffuser portion.
  • a jet mixer as a nozzle 30 including a nozzle portion and a diffuser portion.
  • Each of them has a structure in which a nozzle portion and a diffuser portion are arranged in series via an open space, and has a suction port 33 for taking in the slurry in the container between the inlet 31 and the outlet 32.
  • the slurry from the inflow port 31 and the slurry from the suction port 33 are mixed and ejected from the ejection port 32.
  • Such a nozzle 30 is called an ejector or a jet nozzle and is commercially available.
  • the nozzle (acceleration) portion is referred to as an acceleration channel
  • the diffuser (deceleration) portion is referred to as a deceleration channel.
  • the nozzle 30 shown in FIG. 3 has a first acceleration flow path 35a between the inlet 31 and the suction port 33, a suction port 33, and a jet as nozzle portions where the cross-sectional area of the flow path decreases in the flow direction.
  • This is a jet mixer having a second acceleration flow path 35 b between the outlet 32.
  • the first acceleration channel 35 a and the second acceleration channel 35 b are continuous via the suction chamber 36, and the suction chamber 36 is a partially open space connected to the outside through the suction port 33.
  • the slurry S1 from the inflow port 31 is ejected from the first acceleration channel 35a toward the second acceleration channel 35b having an opening wider than the cross-sectional area thereof.
  • the flow of the slurry S1 causes a pressure drop in the suction chamber 36, and the slurry S2 around the nozzle 30 is drawn into the suction chamber 36.
  • the slurry S1 flows into the second acceleration channel 35b while being mixed with the sucked slurry S2, and is ejected from the ejection port 32 at a high speed.
  • the slurry in the container 20 is agitated by the flow of slurry generated by the ejection from the ejection port 32 of the nozzle 30 and the suction into the suction port 33.
  • the nozzle 30 shown in FIG. 4 is a jet mixer having substantially the same configuration as the nozzle 30 of FIG. 3, but has a deceleration channel 37 in which the cross-sectional area of the channel increases before the second acceleration channel 35b. .
  • the flow rates of the slurries S1 and S2 flowing into the deceleration flow path 37 are reduced, the energy acts to increase the pressure. Therefore, such a nozzle 30 has a high concentration of slurry or slurry when oil is used as a solvent. Suitable for use in stirring.
  • Fig. 5 shows another aspect of the jet mixer.
  • a deceleration channel 37 is held at the tip of the first acceleration channel 35a via a plurality of connecting portions.
  • the suction port 33 is an open space between the first acceleration channel 35a and the deceleration channel 37 except for the connecting portion.
  • the deceleration channel 37 has a wider opening than the first acceleration channel 35a, and when the slurry S1 from the inlet 31 is ejected from the first acceleration channel 35a toward the deceleration channel 37, the pressure generated thereby. Due to the decrease, the slurry S2 around the nozzle 30 is drawn into the deceleration flow path 37.
  • the slurries S1 and S2 are mixed while proceeding through the deceleration flow path 37, and the mixed slurry is spouted at the total speed of the flow rate of the slurry S1 flowing into the suction port 33 and the flow rate of the slurry S2 drawn from the suction port 33. Erupted from. Further, the amount of the mixed slurry ejected from the ejection port 32 is three to six times that of the slurry S1.
  • the solvent used for the slurry in the present invention is not particularly limited, such as general water or alcohol such as isopropyl alcohol, oil such as mineral oil, synthetic oil, vegetable oil, etc., but the nozzle 30 described with reference to FIGS. Since the swirling energy of the slurry in the container 20 can be increased to increase the stirring force, when the slurry having a slurry concentration exceeding 60% by mass is handled, the slurry is stirred using oil having a high viscosity as a solvent. It is suitable for.
  • the powder is not particularly limited.
  • ceramic powder such as Al 2 O 3 and ZrO 2
  • magnetic powder such as soft ferrite and hard ferrite
  • magnetic powder such as SmCo magnet and NdFeB magnet
  • Fe—Si alloy Fe—Cr
  • Alloy Fe-Cr-Si alloy, Fe-Al alloy, Fe-Al-Si alloy, Fe-Al-Cr alloy, Fe-Al-Cr-Si alloy, Fe-Ni alloy
  • Fe-MB alloy M is composed of metal particles having a large specific gravity, such as magnetic powder of at least one of Si, Cr, Al, and Ni
  • a non-magnetic metal powder such as stainless steel or super steel. May be.
  • the powder is obtained by an atomization method such as a pulverization method, gas atomization, or water atomization, and is a powder having an average particle diameter defined by a median diameter d50 of about 0.5 ⁇ m to 200 ⁇ m. According to the present invention, even a fine powder having an average particle diameter of 10 ⁇ m or less can provide a uniform slurry with high dispersibility.
  • the type of the binder is not particularly limited, and various organic binders such as polyethylene, polyvinyl alcohol, and acrylic resin can be used.
  • the pump 40 sucks the slurry in the container 20 and returns the slurry to the container 20, and it is preferable to use a diaphragm pump or a centrifugal pump.
  • the slurry is preferably circulated by the pump 40 at a flow rate of 200 to 500 liters per minute and a flow rate in the circulation path of 3.3 to 8.3 m per second.
  • a solvent such as water is supplied into the container 20 from the ceiling side of the container 20.
  • the first circulation path is selected by the valve 53, the pump 40 provided near the container 20 is operated, the solvent stored in the container 20 is sucked through the pipe line 50b, and the pipe line 50a and the nozzle 30 are connected. Then, it is sent out into the container 20 and circulated.
  • the solvent may be supplied using the first circulation path of the main pipeline 50 until it can be circulated, and is preferably supplied to such an extent that the nozzle 30 is immersed.
  • the powder and binder While circulating the solvent using the first circulation path, the powder and binder are introduced from the ceiling side of the container 20, and if necessary, the solvent is further added to uniformly distribute the particles in the solvent at a predetermined concentration. A slurry can be obtained. The slurry is stored in the container 20 while maintaining the stirring state. It is also possible to temporarily switch the slurry circulation path to the second circulation path and intermittently stir using the first circulation path.
  • the closed valve 54 is opened to the delivery line 70 side while maintaining the circulation and stirring of the slurry in the container 20.
  • a part of the slurry passes through the delivery line 70 and is sent to a device such as a molding machine or a dryer in the subsequent process.
  • the pipe may be branched into a plurality of routes at the branching portion and connected to a plurality of devices, or the slurry is returned to the container 20 when it is desired to temporarily stop the supply of the slurry to the devices in the subsequent process. May be selected.
  • the liquid level of the slurry in the container 20 decreases.
  • the atmospheric gas such as air in the container 20 is drawn in from the suction port 33, so that the slurry is foamed.
  • the level information of the slurry liquid level is detected by a sensor and the ejection of the slurry from the nozzle 30 is stopped before the slurry liquid level falls below the nozzle 30.
  • the first circulation path may be selected and the slurry may be ejected from the corresponding nozzle 30 to maintain stirring.
  • the slurry may be distributed to the second circulation path in addition to the first circulation path, and the slurry may be ejected from the nozzle 30 and stirred, and the slurry may be discharged from the discharge port 52 and stirred.
  • the liquid level of the slurry is the same as or lower than the nozzle 30 (position spaced apart from the nozzle 30 by a predetermined distance above), and remains in the lower part of the container 20 after the stirring of the slurry by the nozzle 30 is stopped.
  • Stirring of the slurry (hereinafter sometimes referred to as “remaining slurry”) is preferably performed by the slurry discharged from the discharge port 52 of the sub-pipe 51 constituting the second circulation path.
  • the nozzle 30 having the slurry ejection port 32 is used as the first slurry stirring means, and the sub-pipe 51 is used as the second slurry stirring means. Even if the amount of slurry fluctuates and the slurry liquid level falls below the nozzle 30, the vertical position of the discharge port 52 at the lower end of the sub-pipe 51 is below the jet port 32 of the nozzle 30, and the container 20. The remaining slurry in the container 20 can be agitated by the slurry pressurized by the pump 40 and discharged from the discharge port 52 of the sub-line 51. It is also preferable to adjust the discharge direction of the slurry from the sub-pipe 51 so that the slurry is swirled in the circumferential direction of the inner bottom surface 22 of the container 20. Even if the ejection of the slurry from the nozzle 30 is stopped, stirring of the slurry in the container 20 can be maintained by the slurry discharged from the discharge port 52, and particles can be prevented from settling.
  • the switching between the first circulation path to the nozzle 30 and the second circulation path to the discharge port 52 may be performed by the valve 53 based on information of a sensor that detects the level of the liquid level of the slurry in the container 20. Thereby, after the ejection of the slurry from the nozzle 30 is stopped, the circulation path of the slurry is quickly switched and the stirring of the slurry in the container is maintained.
  • the slurry may be stirred using only the second circulation path.
  • the mode of discharging the slurry from the discharge port 52 in the second circulation path after stopping the ejection of the slurry from the nozzle 30 in the first circulation path has been described, but the present invention is limited to this. Instead, the slurry may be ejected from the discharge port 52 in the second circulation path while the slurry is ejected from the nozzle 30 in the first circulation path, and then the ejection of the slurry from the nozzle 30 may be stopped. .
  • the container 20 is composed of a cylindrical portion 23 and a reduced diameter portion 21, the diameter of the cylindrical portion 23 is ⁇ 1100 mm, and the conical reduced diameter portion 21 has an inclination angle ⁇ 1 of 30 °.
  • the height from the virtual vertex to the ceiling that determines the inclination angle ⁇ 1 is approximately 1350 mm.
  • the nozzle 30 is shown in FIG. 5 which is commercially available, and the material is SUS316 in consideration of wear resistance.
  • the interval between the nozzle 32 and the inner bottom surface 22 of the container 20 is about 90 mm
  • the connection position between the nozzle 30 and the pipe line 50a is approximately from the virtual vertex that determines the inclination angle ⁇ 1 of the conical reduced diameter portion 21.
  • the discharge port of the sub-pipe 51 was set to about 150 mm from the virtual vertex, and the discharge direction of the slurry was adjusted so that the slurry was swung in the circumferential direction of the inner bottom surface 22 of the container 20.
  • Magnetic powder obtained by an atomizing method of Fe—Al—Cr alloy having an average particle diameter d50 of 10 ⁇ m was used as a powder with ion-exchanged water as a solvent. While ion-exchanged water is stored in the container 20 and the water is circulated by the pump 40, the total amount of water in the container 20 is 150 liters, the magnetic powder of Fe—Al—Cr alloy is 1000 kg, and PVA (Kuraray Co., Ltd.) is used as a binder. 100 kg of PVA PVA-205 (manufactured by solid content 10%) was added to prepare an 80% by weight slurry.
  • the slurry in the container 20 was circulated at 300 liters per minute using the first circulation path by the pump 40, and the slurry was sent out at a speed of 5 m per second.
  • the slurry in the container 20 was stirred by the turbulent flow formed by the slurry ejected from the ejection port 32 of the nozzle 30 and the slurry taken into the suction port 33 of the nozzle 30.
  • the slurry storage and stirring device 1 was continuously operated for 3 days, but particles and water were not separated in the container 20, and no precipitation or deposition of particles in the lower part of the container 20 was observed.
  • the slurry was stirred while removing the slurry in the container 20 from the delivery line 70 at the bottom of the container 20.
  • the slurry circulation path is switched until the liquid level of the slurry reaches the upper end of the nozzle 30 to select the second circulation path, and the ejection of the slurry from the nozzle 30 is stopped, and the slurry is discharged from the discharge port 52 of the sub pipe 51. Was discharged. Even after switching the circulation path, stirring of the remaining slurry was continued, and no precipitation or deposition of magnetic powder in the lower part of the container 20 was observed.
  • the delivery line 70 is connected to a spray dryer, which is a wind dryer, the slurry is sprayed by the spray dryer, and the slurry is instantly dried with hot air adjusted to 240 ° C. to form granules granulated from the lower part of the apparatus. It was collected. The obtained granules had a small difference in bulk density, and uniform granules could be obtained.
  • a spray dryer which is a wind dryer
  • SYMBOLS 1 Slurry storage stirring apparatus 20
  • Container 21 Reduced diameter part 22
  • Inner bottom face 23 Cylindrical part 30
  • Nozzle 31 Inlet 32
  • Inlet 33 Inlet 35a First acceleration channel 35b Second acceleration channel 36
  • Suction chamber 37 Deceleration channel 40
  • Pump 40a Pump 60b Pressure pump 50, 50a, 50b Pipe 51 Pipe 52 Discharge port 53, 54 Valve 70 Delivery pipe S1, S2 Slurry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)

Abstract

スラリー貯蔵容器内のスラリーの量に変動があっても、スラリーを簡便な手段で十分に流動させることができて、撹拌性に優れ、泡立ちを抑えることができるスラリー貯留撹拌装置とスラリーの撹拌方法を提供することを目的とする。粒子と溶媒とを含むスラリーを貯留可能な容器と、一端は前記容器に接続し、他端は前記容器の内空間に伸びる前記スラリーの第1循環経路を構成する主管路と、前記主管路の他端に取り付けられたノズルと、前記主管路の一端と他端との間の前記第1循環経路内に設けられ、前記スラリーの吸込み及び加圧が可能なポンプと、前記ポンプから分岐するか、又は前記ポンプと前記ノズルとの間で前記主管路から分岐して前記容器の内空間に伸びる前記スラリーの第2循環経路を構成する副管路と、前記第1循環経路及び第2循環経路のうちの一方又は両方への前記スラリーの分配の切り替えが可能なバルブと、前記副管路の分岐端とは反対側の先端に設けられた鉛直方向での位置が前記ノズルより下側に位置する吐出口とを備えるスラリー貯留撹拌装置に関する。

Description

スラリー貯留撹拌装置およびスラリーの撹拌方法
 本発明は、スラリーを撹拌しながら貯留するスラリー貯留撹拌装置およびスラリーの撹拌方法に関するものである。
 様々な分野の製造工程における中間段階の形態の一つとして、粉末と溶媒とを混合したスラリーがよく知られている。例えば、磁心や磁石の原料となる磁性粉末を乾式成形や湿式成形する際に、湿式成形では磁性粉末と油等の溶媒とを混合したスラリーを使用し、乾式成形では磁性粉末と水等の溶媒とを混合したスラリーを使用する。
 粉末と溶媒との混合で一般的に用いられるボールミルでは、均一なスラリーを得るため長時間の混合を行うと、アルミナ製ボールやジルコニア製ボール、鉄製ボールといった混合媒体が磨耗によってスラリーに混入する問題があった。また粒子の比重が溶媒の比重と比べて数倍以上大きい場合には、混合を停止すると容器内においてスラリー中の粒子が沈降して粒子の相と溶媒の相とに分離しやすい問題があった。
 このような問題に対して特許文献1では、容器に貯留されたセラミック粉末の粒子を含むスラリーをポンプで循環させ、循環の経路において上方のノズルからスラリーの液面へ噴射することで、不純物の混入が少ない混合方法とすることが記載されている。
 また特許文献2では金属やセラミックス等の粉末と、前記粉末を実質的に溶解しない液体との混合をジェットミキサー(ジェット混合器)で行うことが記載されている。また特許文献3や特許文献4には撹拌、混合に利用されるジェット混合器について記載がある。
 また特許文献5では、磁石の湿式成形にて、成形機に供給するまでスラリーを撹拌装置の容器内にて撹拌しながら貯留することで磁性粒子と溶媒とに分離してしまうのを抑制し、それによって分散性の高いスラリーを成形機側へ供給することが記載されている。図6にスラリーの撹拌装置の構成例を示す。撹拌装置110はスラリーを貯留する容器130の中央に錨状の回転翼134を有していて、回転翼134を回転させてスラリーを撹拌する。
特開昭59-225729号公報 特開昭63-126533号公報 国際公開第2010/135365号 国際公開第2008/034783号 特開2008-218515号公報
 しかしながら特許文献1の方法は混合の際にスラリーに空気を巻き込みやすい問題がある。また特許文献2から4のようにジェット混合器を用いる場合もまた、スラリーに空気を巻き込みやすい問題がある。すなわち、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)などのバインダーを含む場合、空気を巻き込んだスラリーは泡立っていて、それを噴霧乾燥すると嵩密度が低い顆粒となり易い。そのような顆粒を使用して乾式成形により得られる成形体は、密度が低くて強度が弱いものとなる傾向があった。
 また特許文献5の方法では、容器内のスラリーの流動はスラリー撹拌用の回転翼の回転方向に支配的で容器内の上下方向の流動が少ないため、比重が大きい粒子ほど容器の下部に堆積し易く、また微細な粒子は液面に浮き上がり易くて、均一なスラリーを得るのに更なる改善が必要であった。更にスラリーの噴射や回転翼が停止すると、粉末と溶媒との分離が一層顕著になるため、その対策も求められていた。
 本発明は、スラリー貯蔵容器内のスラリーの量に変動があっても、スラリーを簡便な手段で十分に流動させることができて、撹拌性に優れ、泡立ちを抑えることができるスラリー貯留撹拌装置とスラリーの撹拌方法を提供することを目的とする。
 本発明は、一実施形態において、粒子と溶媒とを含むスラリーを貯留可能な容器と、一端は前記容器に接続し、他端は前記容器の内空間に伸びる前記スラリーの第1循環経路を構成する主管路と、前記主管路の他端に取り付けられたノズルと、前記主管路の一端と他端との間の前記第1循環経路内に設けられ、前記スラリーの吸込み及び加圧が可能なポンプと、前記ポンプから分岐するか、又は前記ポンプと前記ノズルとの間で前記主管路から分岐して前記容器の内空間に伸びる前記スラリーの第2循環経路を構成する副管路と、前記第1循環経路及び第2循環経路のうちの一方又は両方への前記スラリーの分配の切り替えが可能なバルブと、前記副管路の分岐端とは反対側の先端に設けられた鉛直方向での位置が前記ノズルより下側に位置する吐出口とを備えるスラリー貯留撹拌装置に関する。
 一実施形態において、前記容器内のスラリーの液面のレベルを検出するセンサを有し、前記センサからのスラリー液面のレベル情報に基づいてバルブを切り替え可能であることが好ましい。
 一実施形態において、前記副管路は、前記ポンプと前記ノズルとの間の前記主管路から分岐することが好ましい。
 一実施形態において、前記主管路の一端は前記容器の底部に接続し、前記主管路の他端は前記容器の上部から前記内空間の底面に向かって伸びていることが好ましい。
 一実施形態において、前記容器の内空間の下側は、下方に向かって断面積が縮小する内底面を有する円錐形状の縮径部であることが好ましい。
 一実施形態において、前記縮径部の内底面の傾斜角度は、鉛直方向に対して25°~50°であることが好ましい。
 一実施形態において、前記吐出口からのスラリー吐出方向が、前記スラリーを前記容器の内底面の周方向に旋回させるように、前記副管路の先端が配置されていることが好ましい。
 一実施形態において、前記主管路の一端は前記容器の円錐形状の縮径部の頂点位置に接続されていることが好ましい。
 一実施形態において、前記ノズルをジェット混合器とし、前記ジェット混合器は前記ポンプから送り出されるスラリーの流入口と、噴出口と、前記容器内のスラリーを取り込む吸込口を有していて、前記ポンプから前記ノズルの流入口へ送り出されたスラリーと、前記吸込口から取り込まれたスラリーとが混合され、混合スラリーを前記噴出口から噴出可能であることが好ましい。
 一実施形態において、前記容器の下部にスラリーを容器外へ送出する送出管路を有することが好ましい。
 一実施形態において、前記スラリーがバインダーを含むことが好ましい。
 本発明は、別の実施形態において、粒子と溶媒とを含むスラリーを容器に貯留しながら、前記スラリーをポンプで吸込み加圧してノズルを通じて容器内へ戻して循環させるスラリーの撹拌方法であって、スラリーの循環経路として、前記ポンプを介して前記容器と前記スラリーに浸漬するノズルとを繋ぐ主管路を含む第1循環経路と、前記ポンプから分岐するか、または前記ポンプと前記ノズルとの間の主管路から分岐しその先端に鉛直方向での位置が前記ノズルより下側にある吐出口を有する副管路を含む第2循環経路とを準備する工程、前記容器内にスラリーを貯留する工程、前記第1循環経路を通じて前記スラリーを循環及び撹拌させる工程、前記容器に接続された送出管路を通じて前記スラリーを前記容器外へと送出する工程、前記容器内のスラリーの液面のレベルをセンサで検出する工程、及び前記センサからのスラリー液面のレベル情報に基づいて前記スラリーの循環経路を切り替える工程を含み、前記スラリーの液面が設定されたレベルよりも上側であると検出される場合、前記第1循環経路および前記第2循環経路のうちの一方又は両方を選択してこれに対応する前記ノズル及び吐出口の一方又は両方から前記スラリーを噴出又は吐出させて撹拌し、前記スラリーの液面が設定されたレベルと同じか、又はそれよりも下側であると検出される場合、前記第2循環経路を選択して前記副管路の吐出口から前記スラリーを吐出して撹拌するスラリーの撹拌方法に関する。
 別の実施形態において、前記スラリーの循環経路を切り替える前記スラリーの液面レベルが、前記ノズルよりも上側に設定されていることが好ましい。
 別の実施形態において、前記ノズルをジェット混合器とし、前記ジェット混合器は前記ポンプから送り出されるスラリーの流入口と、噴出口と、前記容器内のスラリーを取り込む吸込口を有していて、前記ポンプから前記ノズルの流入口へ送り出されたスラリーと、前記吸込口から取り込まれたスラリーとを混合して、混合スラリーを前記噴出口から噴出することが好ましい。
 別の実施形態において、前記循環経路における前記スラリーの流速が、毎秒3.3~8.3であることが好ましい。
 本発明によれば、スラリー貯蔵容器内のスラリーの量が変動したとしても、スラリーを簡便な手段で十分に流動させることができて、撹拌性に優れ、スラリーの泡立ちを抑えながら、溶媒中への粒子の分散の不均一が生じ難いスラリー貯留撹拌装置とスラリーの撹拌方法を提供することが出来る。
本発明の一実施形態に係るスラリー貯留撹拌装置の構造を示す図である。 本発明の一実施形態に係るスラリー貯留撹拌装置におけるノズルの配置例を示す図である。 本発明の一実施形態に係るスラリー貯留撹拌装置に使用するノズルの構造を説明するための図である。 本発明の一実施形態に係るスラリー貯留撹拌装置に使用するノズルの構造を説明するための図である。 本発明の一実施形態に係るスラリー貯留撹拌装置に使用するノズルの他の構造を説明するための図である。 従来のスラリー貯留撹拌装置の構成を説明するための図である。
 以下、本発明の一実施形態に係るスラリー貯留撹拌装置とスラリー撹拌方法について具体的に説明するが、本発明はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論可能である。
 図1は、本発明の一実施形態に係るスラリー貯留撹拌装置の構造を示す図である。図1においては内部構造が分かり易いように容器の一部を切断した状態として示している。図2に本発明の一実施形態に係るスラリー貯留撹拌装置におけるノズルの配置例を示す。また図3、図4及び図5に本発明の一実施形態に係るスラリー貯留撹拌装置に使用するノズルの構造を示す。図中の矢印は容器内で生じるスラリーの流れを模式的に示したものである。なお同一の機能をもつ部分には、図中、同一の符号を付している。また説明に使用した図面は発明の要旨の理解が容易なように要部を主に記載し、細部については適宜省略するなどしている。
 図1に示したスラリー貯留撹拌装置1は、粒子と溶媒とを含むスラリー(図示せず)を貯留可能な容器20と、スラリーの噴出口を有するノズル30と、容器20内のスラリーを吸込み、加圧して前記ノズル30へ送り出すポンプ40と、スラリーの循環経路を構成する管路50、51と、循環経路を切り替えるバルブ53と、容器中のスラリー液面の高さを検出するセンサ(図示せず)を備えている。
 スラリーは、一端が容器20に接続し、他端が容器20の内空間に伸びその先端にノズル30が取り付けられた管路50を含む第1循環経路と、ポンプ40とノズル30との間で管路50から分岐して容器20の内空間に伸びる管路51を含む第2循環経路とを通じて循環される。ポンプ40は、管路50の一端と他端との間の第1循環経路内にスラリーの吸込み及び加圧が可能なように設けられており、容器20からスラリーを吸込み、加圧して容器20内へ戻す。図示した例では分岐した管路51を単一としているが、分岐の後、複数に枝分かれする管路であっても良い。以降、管路50を主管路と呼び、管路51を副管路と呼ぶ場合がある。また、図1中では、副管路51がポンプ40とノズル30との間で主管路50から分岐する態様を示しているが、これに限定されず、副管路51はポンプ40から分岐して容器20の内空間に伸びていてもよい。この場合、循環経路を切り替えるバルブ53はポンプ内に設けてもよい。
 容器20内のスラリーの液面のレベルをセンサで検出し、前記センサからのレベル情報に基づいてスラリーの循環経路をバルブ53で切り替える。本実施形態のバルブ53は、副管路51の分岐端側に設けられており、第1循環経路及び第2循環経路のうちの一方又は両方へのスラリーの分配の切り替えが可能である。本実施形態において、スラリーの循環経路は、スラリーの液面がノズル30よりも上側では第1循環経路が選択され、容器20内のスラリーに浸漬されたノズル30からスラリーを噴出し、容器20内のスラリーを撹拌する。
 一方、スラリーの液面がノズル30と同じか、又はノズル30よりも下側では第2循環経路が選択される。副管路51には、主管路50からの分岐端とは反対側の先端に鉛直方向での位置がノズル30より下側に位置する吐出口52が設けられている。吐出口52からスラリーを吐出することで、容器20内の下部に残るスラリーを撹拌する。
 なお、スラリーの循環経路として、スラリーの液面がノズル30よりも上側では、第1循環経路だけでなく第2循環経路も併せて採用することができる。第1循環経路におけるノズル30からのスラリーの噴出と、第2循環経路における吐出口52からのスラリーの吐出とにより、スラリーの乱流を効率的に発生させてスラリーの均一化を図ることができる。
 図1に示す容器20は、Z方向(鉛直方向)の上側が円筒形状の円筒部23であって、下側が円錐形状で、下方へ向かって次第に断面積が縮小する縮径部21となっていて、傾斜角度θ1をもった内底面22を有している。傾斜角度θ1はスラリーの撹拌を考慮すれば鉛直方向に対して25°~50°であるのが好ましい。内底面22の傾斜角度θ1は25°~40°であることが更に好ましい。容器20は、その下部を設置面よりも上方に位置させて設置場所に立設するための支持脚を有している。
 容器20は、スラリーを貯留する内筒とその外周に外筒を設けた二重構造としても良い。内筒と外筒との間に、水や油などの熱媒体を液温管理し循環させることで、貯留するスラリーの温度調整を行い、溶媒の蒸散を防ぐことが出来る。容器20のスラリーと接する部分の材質は耐摩耗性、耐腐食性の観点からステンレス系等の金属材料で形成するのが好ましい。
 容器20の天井の少なくとも一部は、スラリーを構成する溶媒や粉末を供給可能なように開閉可能な蓋構造となっているのが好ましい。また天井には外空間に設けられたポンプ40と接続し、容器20の内空間にて上側から下方の内底面に向かって鉛直方向に伸びる主管路50の一部である管路50aが設けられている。なお図示した例では天井の略中央部から主管路50の一部である管路50bを容器20の内空間に導入するが、導入位置は容器20の上部側であれば良く、特に限定されるものではない。管路50bの一端は容器20の底部近傍に接続していて、容器20の内空間にある管路50a、及び容器20の外空間にある管路50bはポンプ40を介して接続されていてスラリーの循環経路を構成する。
 主管路50におけるポンプ40とノズル30との間で副管路51が主管路50から分岐し、スラリーの分配を切り替えるバルブ53が取り付けられている。バルブ53は例えばピンチバルブなどを使用することが出来る。主管路50と副管路51のそれぞれにピンチバルブを介在させて、センサからのレベル情報に基づいて流れの通路を開閉することで、スラリーの循環経路を切り替えることが出来る。
 図示した例では、容器20の下部であって円錐形状の内底面の頂点位置に管路50bを接続している。そこからスラリーを吸込んで循環させるため、粒子が沈降しても容器20の内底面22に沿って流れて、底部に溜まるのを防ぐことが出来る。
 また、容器20には、管路50bに設けられたバルブ54を介して送出管路70が接続されている。送出管路70を通じてスラリーを容器外へ送出する。送出管路70は他のポンプと接続して後工程の成形機や乾燥機等の機器と連通させるのが好ましい。
 容器20内の管路50aの下端には複数のノズル30が接続されている。ノズル30は噴出口側がXY平面(水平方向)よりも下側に傾斜し、ノズル30の噴出口が容器20の内底面22に向かうように配置されている。ノズル30の噴出口と容器20の内底面22を近接させ、ノズル30から噴出されるスラリーを容器20の内底面22に衝突させることで乱流を生じさせてスラリーを撹拌する効果を高めることができる。
 ノズル30は、水平方向に対する角度θ2が15°~45°であるように管路50aに取り付けられるのが好ましい。ノズル30の角度θ2、容器20の内底面22の傾斜角度θ1を適宜設定して、容器20の内底面22に沿ったスラリーの流動を形成し、上下方向や周方向にスラリーを旋回させて撹拌することで、スラリーが粒子と溶媒とに分離してしまうのを抑制し、それによって高い分散性を維持して、後工程に供給することが出来る。この角度θ1、θ2が所定の角度外であると、ノズル30から噴出されるスラリーのエネルギーが減衰してスラリーの流動が不十分となって撹拌が不均一となる場合がある。ノズル30の角度θ2は20°~40°であることが更に好ましい。
 ノズル30の数は特に限定は無いが、ノズル30の管路50aに取り付け可能な数であるとともに、容器20の容量(スラリー量)や、ポンプ40からのスラリーの流量とノズル30から噴出可能なスラリーの流量とのバランスや、撹拌の状態を考慮して適宜設定するのが好ましい。例えば、ノズル30は3個以上であることが好ましく、4個以上であることが更に好ましい。
 図2は、図1で示したスラリー貯留撹拌装置のノズル部を容器20の鉛直上方から見た図(傾斜角度は反映されていない)である。容器20の中心軸上に管路50aが配置され、その下端に4つのノズル30が放射状に取り付けられている。それぞれは鉛直方向から見て90°の角度をもって均等間隔で管路50aと接続している。複数のノズル30を設けることで、容器20内の複数の方向にスラリーが噴出される。それによって撹拌領域が分割され、ノズル30が担う撹拌に必要なエネルギーも分担されるので、一つよりも複数のノズルを設けるのが有利となる。なお、容器20内のスラリー撹拌状態に応じてノズル30の間隔を不均等に配置しても良い。また、ノズル30は管路50aを回転軸として回転してもよい。
 図3から図5にスラリー貯留撹拌装置に使用するノズルの構造例を示す。
 一般的には、流路の断面積を減少させ流れを加速させる流路をノズルとし、流れを減速させる流路をディフューザーと称するが、本発明におけるノズル30はノズル部分とディフューザー部分を複合する構造も含む。
 例えば図3から図5にノズル部分とディフューザー部分とを含むノズル30としてジェット混合器を示す。それらはいずれもノズル部分とディフューザー部分とが開放空間を介して直列に並んだ構造を有し、流入口31と噴出口32との間に容器内のスラリーを取り込む吸込口33を有していて、前記流入口31からのスラリーと前記吸込口33からのスラリーとを混合し、噴出口32から噴出可能な構造を有している。このようなノズル30はエジェクターやジェットノズルと呼ばれ市販されている。尚、以降の説明では、ノズル30の内部構成において、ノズル(加速)部分を加速流路、ディフューザー(減速)部分を減速流路と呼ぶ。
 図3に示したノズル30は、流れの進行方向に流路の断面積が減少するノズル部分として、流入口31と吸込口33との間の第1加速流路35aと、吸込口33と噴出口32との間の第2加速流路35bとを有するジェット混合器である。
 第1加速流路35aと第2加速流路35bとは吸込室36を介して連続し、吸込室36は吸込口33で外部と繋がる部分開放空間となっている。流入口31からのスラリーS1が第1加速流路35aから、その断面積よりも広い開口を有する第2加速流路35bに向かって噴出される。スラリーS1の流れによって吸込室36内に圧力低下が生じて、ノズル30の周囲のスラリーS2が吸込室36へ引き込まれる。スラリーS1は吸引されたスラリーS2とともに混合しながら第2加速流路35bへ流れ込み、噴出口32から高速で噴出される。容器20内のスラリーは、ノズル30の噴出口32からの噴出と吸込口33への吸込みによって生じるスラリーの流れによって撹拌される。
 図4に示したノズル30は、図3のノズル30と略同じ構成のジェット混合器だが、第2加速流路35bの先に流路の断面積が増加する減速流路37を有している。減速流路37へ流れ込むスラリーS1、S2は流速が低下するものの、そのエネルギーは圧力を増すように作用するので、このようなノズル30は濃度の高いスラリーや、溶媒に油を用いる場合のスラリーの撹拌に使用するのに好適である。
 図5にジェット混合器の他の態様を示す。第1加速流路35aの先には複数の連結部を介して減速流路37が保持されている。第1加速流路35aと減速流路37との間が連結部を除き開口した開放空間で吸込口33となっている。
 減速流路37は第1加速流路35aよりも広い開口を有し、流入口31からのスラリーS1が第1加速流路35aから減速流路37に向かって噴出されると、それにより生じる圧力低下によってノズル30の周囲のスラリーS2が減速流路37に引き込まれるようになる。スラリーS1、S2は減速流路37内を進みながら混合され、吸込口33へ流れ込むスラリーS1の流速と吸込口33から引き込まれるスラリーS2の流速との合計速度で、混合されたスラリーが噴出口32から噴出される。また噴出口32から噴出される混合されたスラリーの液量はスラリーS1の3倍から6倍にもなる。
 本発明においてスラリーに用いる溶媒は、一般的な水やイソプロピルアルコールなどのアルコール系や鉱物油、合成油、植物油等の油など特に限定は無いが、図3から図5を用いて説明したノズル30は、容器20内のスラリーの旋回エネルギーを増して撹拌力を高めることが出来るため、スラリー濃度が60質量%を超えるようなスラリーを扱う場合や、溶媒に粘度の高い油を用いたスラリーの撹拌に好適である。
 また粉末も特に限定は無く、例えば、AlやZrOなどのセラミックス粉末、ソフトフェライト、ハードフェライトの磁性粉末や、SmCo磁石やNdFeB磁石等の磁性粉末、Fe-Si合金、Fe-Cr合金、Fe-Cr-Si合金、Fe-Al合金、Fe-Al-Si合金、Fe-Al-Cr合金、Fe-Al-Cr-Si合金、Fe-Ni合金、Fe-M-B系合金(Mは少なくともSi,Cr,Al及びNiの少なくとも1種)の結晶質あるいは非晶質の合金の磁性粉末、ステンレス鋼や超鋼などの非磁性金属粉末など比重の大きな金属粒子からなるものであっても良い。
 粉末は、例えば粉砕法やガスアトマイズや水アトマイズ等のアトマイズ法で得られるもので、メジアン径d50で規定される平均粒径が0.5μmから200μm程度の粉末である。本発明によれば、平均粒径が10μm以下の微粉末であっても分散性が高く均一なスラリーを得ることが出来る。
 バインダーの種類は、特に限定されないが、例えば、ポリエチレン、ポリビニルアルコール、アクリル樹脂等の各種有機バインダーを用いることができる。
 ポンプ40は容器20内のスラリーを吸込み容器20内へスラリーを戻すもので、ダイヤフラムポンプや遠心ポンプを使用するのが好ましい。ポンプ40により毎分200~500リットルの流量と、循環経路での流速を毎秒3.3~8.3mとしてスラリーを循環させるのが好ましい。
 次にスラリー貯留撹拌装置1によるスラリーの撹拌方法の一例を説明する。まず容器20内に、例えば水などの溶媒を容器20の天井側から供給する。バルブ53で第1循環経路を選択し、容器20の近くに設けたポンプ40を作動させて、管路50bを介して容器20内に貯められた溶媒を吸引し、管路50aとノズル30を経て容器20内へ送出して循環させる。溶媒は主管路50の第1循環経路を使って循環可能な状態となるまで供給すればよく、好ましくはノズル30が浸漬する程度まで供給するのが好ましい。
 第1循環経路を使って溶媒を循環させながら、容器20の天井側から粉末やバインダーを投入し、必要ならさらに溶媒を加えることで、所定の濃度で、溶媒中への粒子の分散が均一なスラリーを得ることが出来る。スラリーは撹拌状態を維持しながら容器20内に貯留される。なお、スラリーの循環経路を一時的に第2循環経路に切り替え、第1循環経路を使った撹拌を断続させることも可能である。
 後工程である成形や乾燥等の操業を行なうときは、容器20のスラリーの循環、撹拌状態を維持したままで、閉じられていたバルブ54を送出管路70側へ開放する。スラリーの一部は送出管路70を通って、後工程の成形機や乾燥機等の機器へ送出される。スラリー貯留撹拌装置1と後工程の機器との接続管路の途中に分岐部を設けても良い。例えば分岐部で管路を複数のルートに分岐させ複数の機器と接続しても良いし、後工程の機器へのスラリーの供給を一時的に止めたい場合に、スラリーを容器20内に戻すルートを選択できるようにしても良い。
 送出管路70を通じてスラリーを後工程の機器へ送出が進むに従い、容器20内のスラリーの液面が低下する。スラリーの液面がノズル30よりも下がると、吸込口33から容器20内の空気等の雰囲気ガスを巻き込むため、スラリーが泡立つことになる。これを防ぐために、スラリー液面のレベル情報をセンサで検出して、スラリーの液面がノズル30より下回らないうちに、ノズル30からのスラリーの噴出を停止するのが好ましい。
 一方、センサにより、スラリーの液面がノズル30よりも上側であると検出される場合、第1循環経路を選択してこれに対応するノズル30からスラリーを噴出させて撹拌を維持すればよい。この場合、第1循環経路に加えて第2循環経路にもスラリーを分配し、ノズル30からスラリーを噴出させて撹拌させるとともに、吐出口52からスラリーを吐出して撹拌させてもよい。
 スラリーの液面がノズル30(から所定距離上方に離間した位置)と同じか、又はそれよりも下側であると検出され、ノズル30によるスラリーの撹拌が停止した以降、容器20の下部に残るスラリー(以下残スラリーと呼ぶ場合がある)の撹拌は、第2循環経路を構成する副管路51の吐出口52から吐出するスラリーにより行うのが好ましい。
 つまり、スラリーの噴出口32を有するノズル30を第1のスラリー撹拌手段とし、副管路51を第2のスラリー撹拌手段とする。スラリーの量が変動し、スラリー液面がノズル30より下がったとしても、副管路51の下端の吐出口52の鉛直方向での位置をノズル30の噴出口32よりも下側で、容器20の底部に近いところにあるようにすれば、容器20内の残スラリーをポンプ40で加圧されて副管路51の吐出口52から吐出されたスラリーによって撹拌することが出来る。スラリーを容器20の内底面22の周方向に旋回させるように、副管路51からのスラリーの吐出方向を調整するのも好ましい。ノズル30からスラリーの噴出を止めても、吐出口52から吐出するスラリーによって容器20内のスラリーの撹拌を維持できて粒子が沈降するのを防止できる。
 なおノズル30への第1循環経路と吐出口52への第2循環経路との切り替えは、容器20内のスラリーの液面のレベルを検出するセンサの情報に基づいてバルブ53で行えば良い。それによってノズル30からのスラリーの噴出が停止した後、速やかにスラリーの循環経路が切り替えられて容器内のスラリーの撹拌が維持される。
 また容器20内で貯留、撹拌するスラリー量が少量であれば第2循環経路だけを使ってスラリーの撹拌を行ってもよい。
 循環経路の切り替えについて、第1循環経路にあるノズル30からのスラリーの噴出を停止させてから、第2循環経路にある吐出口52からのスラリーの吐出する態様を説明してきたものの、これに限定されず、第1循環経路にあるノズル30からスラリーを噴出させながら、第2循環経路にある吐出口52からスラリーを吐出し、その後、ノズル30からのスラリーの噴出を停止するようにしてもよい。
 図1に示すスラリー貯留撹拌装置と同じ構造の装置を作製した。容器20は円筒部23と縮径部21とで構成されていて、円筒部23の直径をφ1100mmとし、円錐形状の縮径部21は傾斜角度θ1を30°とした。傾斜角度θ1を決める仮想頂点から天井までの高さはおよそ1350mmである。ノズル30は市販されている図5で示したもので、材質は耐摩耗性を考慮してSUS316としている。それを容器20の天井の略中央部から下側に伸びる管路50aの先端に、鉛直方向から見て90°の角度をもって放射状に、かつ夫々のノズル30を鉛直方向と直交する平面(水平方向)に対して下側に30°の角度となるように4つ取り付けている。また、ノズル30の噴出口32と容器20の内底面22との間隔をおよそ90mmとし、ノズル30と管路50aとの接続位置は円錐形状の縮径部21の傾斜角度θ1決める仮想頂点からおよそ450mmとし、副管路51の吐出口52を前記仮想頂点からおよそ150mmなるようにするとともに、スラリーを容器20の内底面22の周方向に旋回させるようにスラリーの吐出方向を調整した。
 イオン交換水を溶媒とし、粉末として平均粒径d50が10μmのFe-Al-Cr合金のアトマイズ法で得られた磁性粉末を用いた。容器20内にイオン交換水を貯め、水をポンプ40で循環させながら、容器20に水の総量を150リットルとし、Fe-Al-Cr合金の磁性粉末を1000kgと、バインダーとしてPVA(株式会社クラレ製ポバールPVA-205;固形分10%)を100kg投入して80質量%濃度のスラリーを作製した。
 ポンプ40によって、容器20内のスラリーを毎分300リットルで第1循環経路を使って循環させ、スラリーを毎秒5mの速度で送り出した。ノズル30の噴出口32から噴出するスラリーと、ノズル30の吸込口33からへ取り込まれるスラリーによって形成される乱流によって容器20内のスラリーを撹拌した。
 スラリー貯留撹拌装置1を3日間、継続して稼動したが、容器20内で粒子と水とが分離することなく、容器20の下部への粒子の沈殿、堆積は認められなかった。
 容器20の底部の送出管路70から容器20内のスラリーを抜きながらスラリーの撹拌を行った。スラリーの液面がノズル30の上端に至るまでにスラリーの循環経路を切り替えて第2循環経路を選択し、ノズル30からのスラリーの噴出を停止するとともに、副管路51の吐出口52からスラリーを吐出させた。循環経路を切り替えた後も残スラリーの撹拌が継続され、容器20の下部への磁性粉末の沈殿、堆積は認められなかった。
 送出管路70を風力乾燥機であるスプレードライヤーと接続し、スラリーをスプレードライヤーにより噴霧し、240℃に温度調整された熱風でスラリーを瞬時に乾燥させて、装置下部から粒状になった顆粒を回収した。得られた顆粒は嵩密度差が小さく、均一な顆粒を得ることが出来た。
 また比較のため、スラリーの液面がノズル30よりも低下してもスラリーの循環経路を切り替えず第1循環経路のままとし、ノズル30からのスラリーの噴出を継続させた。ノズル30による空気の巻き込みでスラリーに著しい泡立ちが発生した。
1 スラリー貯留撹拌装置
20 容器
21 縮径部
22 内底面
23 円筒部
30 ノズル
31 流入口
32 噴出口
33 吸込口
35a 第1加速流路
35b 第2加速流路
36 吸込室
37 減速流路
40 ポンプ
40a 揚水ポンプ
40b 圧力ポンプ
50、50a、50b 管路
51 管路
52 吐出口
53、54 バルブ
70 送出管路
S1、S2 スラリー
 

Claims (15)

  1.  粒子と溶媒とを含むスラリーを貯留可能な容器と、
     一端は前記容器に接続し、他端は前記容器の内空間に伸びる前記スラリーの第1循環経路を構成する主管路と、
     前記主管路の他端に取り付けられたノズルと、
     前記主管路の一端と他端との間の前記第1循環経路内に設けられ、前記スラリーの吸込み及び加圧が可能なポンプと、
     前記ポンプから分岐するか、又は前記ポンプと前記ノズルとの間で前記主管路から分岐して前記容器の内空間に伸びる前記スラリーの第2循環経路を構成する副管路と、
     前記第1循環経路及び第2循環経路のうちの一方又は両方への前記スラリーの分配の切り替えが可能なバルブと、
     前記副管路の分岐端とは反対側の先端に設けられた鉛直方向での位置が前記ノズルより下側に位置する吐出口と
     を備えるスラリー貯留撹拌装置。
  2.  請求項1に記載のスラリー貯留撹拌装置であって、
     前記容器内のスラリーの液面のレベルを検出するセンサを有し、
     前記センサからのスラリー液面のレベル情報に基づいて前記バルブを切り替え可能なスラリー貯留撹拌装置。
  3.  請求項1または2に記載のスラリー貯留撹拌装置であって、
     前記副管路は、前記ポンプと前記ノズルとの間の前記主管路から分岐するスラリー貯留撹拌装置。
  4.  請求項1から3のいずれかに記載のスラリー貯留撹拌装置であって、
     前記主管路の一端は前記容器の底部に接続し、前記主管路の他端は前記容器の上部から前記内空間の底面に向かって伸びているスラリー貯留撹拌装置。
  5.  請求項1から4のいずれかに記載のスラリー貯留撹拌装置であって、
     前記容器の内空間の下側は、下方に向かって断面積が縮小する内底面を有する円錐形状の縮径部であるスラリー貯留撹拌装置。
  6.  請求項5に記載のスラリー貯留撹拌装置であって、
     前記縮径部の内底面の傾斜角度は、鉛直方向に対して25°~50°であるスラリー貯留撹拌装置。
  7.  請求項5または6に記載のスラリー貯留撹拌装置であって、
     前記吐出口からのスラリー吐出方向が、前記スラリーを前記容器の内底面の周方向に旋回させるように、前記副管路の先端が配置されたスラリー貯留撹拌装置。
  8.  請求項5から7のいずれかに記載のスラリー貯留撹拌装置であって、
     前記主管路の一端は前記容器の円錐形状の縮径部の頂点位置に接続されているスラリー貯留撹拌装置。
  9.  請求項1から8のいずれかに記載のスラリー貯留撹拌装置であって、
     前記ノズルをジェット混合器とし、前記ジェット混合器は前記ポンプから送り出されるスラリーの流入口と、噴出口と、前記容器内のスラリーを取り込む吸込口を有していて、
     前記ポンプから前記ノズルの流入口へ送り出されたスラリーと、前記吸込口から取り込まれたスラリーとが混合され、混合スラリーを前記噴出口から噴出可能なスラリー貯留撹拌装置。
  10.  請求項1から9のいずれかに記載のスラリー貯留撹拌装置であって、
     前記容器の下部にスラリーを容器外へ送出する送出管路を有するスラリー貯留撹拌装置。
  11.  請求項1から10のいずれかに記載のスラリー貯留撹拌装置であって、
     前記スラリーがバインダーを含むスラリー貯留撹拌装置。
  12.  粒子と溶媒とを含むスラリーを容器に貯留しながら、前記スラリーをポンプで吸込み加圧してノズルを通じて容器内へ戻して循環させるスラリーの撹拌方法であって、
     スラリーの循環経路として、前記ポンプを介して前記容器と前記スラリーに浸漬するノズルとを繋ぐ主管路を含む第1循環経路と、前記ポンプから分岐するか、または前記ポンプと前記ノズルとの間の主管路から分岐しその先端に鉛直方向での位置が前記ノズルより下側にある吐出口を有する副管路を含む第2循環経路とを準備する工程、
     前記容器内にスラリーを貯留する工程、
     前記第1循環経路を通じて前記スラリーを循環及び撹拌させる工程、
     前記容器に接続された送出管路を通じて前記スラリーを前記容器外へと送出する工程、
     前記容器内のスラリーの液面のレベルをセンサで検出する工程、及び
     前記センサからのスラリー液面のレベル情報に基づいて前記スラリーの循環経路を切り替える工程
     を含み、
     前記スラリーの液面が設定されたレベルよりも上側であると検出される場合、前記第1循環経路および前記第2循環経路のうちの一方又は両方を選択してこれに対応する前記ノズル及び吐出口の一方又は両方から前記スラリーを噴出又は吐出させて撹拌し、
     前記スラリーの液面が設定されたレベルと同じか、又はそれよりも下側であると検出される場合、前記第2循環経路を選択して前記副管路の吐出口から前記スラリーを吐出して撹拌するスラリーの撹拌方法。
  13.  請求項12に記載のスラリーの撹拌方法であって、
     前記スラリーの循環経路を切り替える前記スラリーの液面レベルが、前記ノズルよりも上側に設定されているスラリーの撹拌方法。
  14.  請求項12または13に記載のスラリーの撹拌方法であって、
     前記ノズルをジェット混合器とし、前記ジェット混合器は前記ポンプから送り出されるスラリーの流入口と、噴出口と、前記容器内のスラリーを取り込む吸込口を有していて、
     前記ポンプから前記ノズルの流入口へ送り出されたスラリーと、前記吸込口から取り込まれたスラリーとを混合して、混合スラリーを前記噴出口から噴出するスラリーの撹拌方法。
  15.  請求項12から14のいずれかに記載のスラリーの撹拌方法であって、
     前記循環経路における前記スラリーの流速が、毎秒3.3~8.3であるスラリーの撹拌方法。
     
PCT/JP2019/009330 2018-03-15 2019-03-08 スラリー貯留撹拌装置およびスラリーの撹拌方法 WO2019176768A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980017005.6A CN111818992B (zh) 2018-03-15 2019-03-08 浆料贮存搅拌装置及浆料的搅拌方法
US16/979,724 US11833480B2 (en) 2018-03-15 2019-03-08 Slurry storage and stirring device and slurry stirring method
JP2019540105A JP6660609B2 (ja) 2018-03-15 2019-03-08 スラリー貯留撹拌装置およびスラリーの撹拌方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048013 2018-03-15
JP2018-048013 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176768A1 true WO2019176768A1 (ja) 2019-09-19

Family

ID=67907105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009330 WO2019176768A1 (ja) 2018-03-15 2019-03-08 スラリー貯留撹拌装置およびスラリーの撹拌方法

Country Status (4)

Country Link
US (1) US11833480B2 (ja)
JP (1) JP6660609B2 (ja)
CN (1) CN111818992B (ja)
WO (1) WO2019176768A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007528A (zh) * 2020-07-17 2020-12-01 崔兆杰 一种固液速溶混合装置及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337807B (zh) * 2022-08-31 2024-04-30 浙江省建德市正发碳酸钙有限公司 纳米碳酸钙用压滤存浆桶
EP4357013A1 (de) * 2022-10-20 2024-04-24 BAUER MAT Slurry Handling Systems Zweigniederlassung der BAUER Maschinen GmbH Verfahren und kolloidalmischer zur kolloidalen aufbereitung einer suspension

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771628A (en) * 1980-10-20 1982-05-04 Osaka Gas Co Ltd Mixer
JPS61204028A (ja) * 1983-11-22 1986-09-10 フアウ・エル・テ−・ゲゼルシヤフト・フユア・フエアフア−レンステヒニツシエ・エントヴイツクルング・ミツト・ベシユレンクテル・ハフツング 粒子を含む液体用の混合装置、沈殿装置又は類似の装置
US6065860A (en) * 1993-07-23 2000-05-23 Fuchsbichler; Kevin Johan Recirculation apparatus and method for dissolving particulate solids in a liquid
JP2002177809A (ja) * 2000-12-13 2002-06-25 Sugino Mach Ltd 噴流衝合装置
JP2003144882A (ja) * 2001-11-12 2003-05-20 Ikeuchi:Kk 水中噴射ノズルおよび該ノズルを備えた水流発生装置
US20070258318A1 (en) * 2006-05-08 2007-11-08 Douglas Lamon Method And Apparatus For Reservoir Mixing
JP2014144926A (ja) * 2013-01-29 2014-08-14 Mitsubishi Chemicals Corp 易重合性化合物の貯蔵タンク及び貯蔵方法
US20150266206A1 (en) * 2014-03-20 2015-09-24 Annix Systems Ltd Colloidal Mixing Method for Slurries

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US626950A (en) * 1899-06-13 Island
US3846079A (en) * 1970-05-19 1974-11-05 Inst Francais Du Petrole Vertical reaction vessel for effecting reaction of liquid and gaseous reactants by liquid-gas contact
US4045004A (en) * 1976-10-01 1977-08-30 Berger Henry F Chemical mixing and pumping apparatus
JPS59225729A (ja) 1983-06-02 1984-12-18 Matsushita Electric Ind Co Ltd セラミツク粉末材料の湿式混合方法
DE3342016C2 (de) * 1983-11-22 1986-11-13 VLT Gesellschaft für verfahrenstechnische Entwicklung mbH, 7000 Stuttgart Vorrichtung zum Mischen und Absetzen von partikelhaltigen Flüssigkeiten
JPS63126533A (ja) 1986-11-14 1988-05-30 Mitsubishi Metal Corp 混合粉末の製造方法
TW479841U (en) * 1998-06-17 2002-03-11 United Microelectronics Corp Polishing slurry supply apparatus
US6306020B1 (en) * 2000-03-10 2001-10-23 The United States Of America As Represented By The Department Of Energy Multi-stage slurry system used for grinding and polishing materials
WO2004092323A1 (de) * 2003-04-15 2004-10-28 Xaver Lipp Vorrichtung zum einspritzen einer im wesentlichen flüssigen substanz in einen behälter, sowie behälter mit einer solchen vorrichtung
DE102006045088A1 (de) 2006-09-21 2008-03-27 Basf Ag Verfahren zum Durchmischen einer in einem im wesentlichen abgeschlossenen Behälter befindlichen Flüssigkeit oder Mischung aus einer Flüssigkeit und einem feinteiligen Feststoff
JP4840192B2 (ja) 2007-02-28 2011-12-21 Tdk株式会社 磁石の製造装置及び製造方法
CN101439274B (zh) * 2008-12-12 2010-08-11 河北工业大学 一种液体混合容器
CN101508486B (zh) * 2009-03-24 2011-11-09 安阳艾尔旺新能源环境有限公司 厌氧反应器立体液流搅拌装置
NO2432865T3 (ja) 2009-05-20 2018-09-22
US9486819B2 (en) * 2010-01-27 2016-11-08 Vaughan Company, Inc. System having foam busting nozzle and sub-surface mixing nozzle
CN102493147B (zh) * 2011-11-29 2014-04-02 天津工业大学 浓碱浓度在线检测控制系统
CN205995293U (zh) * 2016-08-30 2017-03-08 安徽巨成精细化工有限公司 一种配料罐液位显示误差消除装置
CN206778203U (zh) * 2017-05-19 2017-12-22 浙江欣苗化工有限公司 一种无搅拌桨的涂料搅拌机
US11746276B2 (en) * 2018-10-11 2023-09-05 Saudi Arabian Oil Company Conditioning drilling fluid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771628A (en) * 1980-10-20 1982-05-04 Osaka Gas Co Ltd Mixer
JPS61204028A (ja) * 1983-11-22 1986-09-10 フアウ・エル・テ−・ゲゼルシヤフト・フユア・フエアフア−レンステヒニツシエ・エントヴイツクルング・ミツト・ベシユレンクテル・ハフツング 粒子を含む液体用の混合装置、沈殿装置又は類似の装置
US6065860A (en) * 1993-07-23 2000-05-23 Fuchsbichler; Kevin Johan Recirculation apparatus and method for dissolving particulate solids in a liquid
JP2002177809A (ja) * 2000-12-13 2002-06-25 Sugino Mach Ltd 噴流衝合装置
JP2003144882A (ja) * 2001-11-12 2003-05-20 Ikeuchi:Kk 水中噴射ノズルおよび該ノズルを備えた水流発生装置
US20070258318A1 (en) * 2006-05-08 2007-11-08 Douglas Lamon Method And Apparatus For Reservoir Mixing
JP2014144926A (ja) * 2013-01-29 2014-08-14 Mitsubishi Chemicals Corp 易重合性化合物の貯蔵タンク及び貯蔵方法
US20150266206A1 (en) * 2014-03-20 2015-09-24 Annix Systems Ltd Colloidal Mixing Method for Slurries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007528A (zh) * 2020-07-17 2020-12-01 崔兆杰 一种固液速溶混合装置及其应用

Also Published As

Publication number Publication date
CN111818992A (zh) 2020-10-23
US11833480B2 (en) 2023-12-05
JPWO2019176768A1 (ja) 2020-04-23
CN111818992B (zh) 2022-10-14
JP6660609B2 (ja) 2020-03-11
US20210039058A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2019176768A1 (ja) スラリー貯留撹拌装置およびスラリーの撹拌方法
KR101797195B1 (ko) 제트 밀
WO2014017511A1 (ja) 流体微粒化装置及び流体微粒化方法
JP2019504759A (ja) 粒子へのコーティング又は造粒に用いられる流動層装置及び方法
JP2009156509A (ja) 回転翼式攪拌装置および回転翼式攪拌装置による原料の乾燥方法
JP2011255268A (ja) 微粒子製造装置
JP2013227157A (ja) 空気式固形材移送ポンプ
EP2906354B1 (en) Fluidized bed coating apparatus
JP2005291530A (ja) 噴霧乾燥装置、粉体の乾燥方法およびフェライト粒の製造方法
US5230735A (en) Apparatus for coating powder particles
JP2009154146A (ja) 微粒化装置および微粒化方法
US10661238B2 (en) Continuous particle manufacturing device
JP5910933B2 (ja) 湿式ブラスト加工用ノズルおよびそのノズルを備えたブラスト加工装置
US8960027B2 (en) Method for classifying powder
CN108115578A (zh) 一种旋流式喷射结构及其喷枪
JP6526502B2 (ja) 連続式粒子製造装置
JP2004097852A (ja) 流動層装置
JP5910935B2 (ja) 乾式および湿式のブラスト加工を行うためのノズルおよびそのノズルを備えたブラスト加工装置
JP2020050900A (ja) 磁性合金の粉末の製造方法
JPH01215354A (ja) 粉砕およびコーティング装置
RU2361652C1 (ru) Смеситель с вентиляторным колесом
JPH09103668A (ja) 粉粒体処理装置
JP2000126568A (ja) 粉体分散処理方法とその装置及び粉体処理装置
RU105595U1 (ru) Смеситель жидкостей
WO2017002694A1 (ja) 連続式粒子製造装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540105

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766715

Country of ref document: EP

Kind code of ref document: A1