WO2019176609A1 - 粒子センサおよび電子機器 - Google Patents

粒子センサおよび電子機器 Download PDF

Info

Publication number
WO2019176609A1
WO2019176609A1 PCT/JP2019/008285 JP2019008285W WO2019176609A1 WO 2019176609 A1 WO2019176609 A1 WO 2019176609A1 JP 2019008285 W JP2019008285 W JP 2019008285W WO 2019176609 A1 WO2019176609 A1 WO 2019176609A1
Authority
WO
WIPO (PCT)
Prior art keywords
outside air
particle sensor
flow path
light
intake port
Prior art date
Application number
PCT/JP2019/008285
Other languages
English (en)
French (fr)
Inventor
勇司 広瀬
山村 聡
肇 河合
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019176609A1 publication Critical patent/WO2019176609A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present invention relates to a particle sensor and an electronic device, and more particularly, to a particle sensor and an electronic device that perform intake and exhaust of outside air using a blower fan.
  • Such a particle sensor includes a light emitting element and a light receiving element, and is configured to take in a gas containing particles to be measured into the sensor.
  • the gas taken in is irradiated with light from the light emitting element, the scattered light is received by the light receiving element, and the presence or absence and the amount of particles contained in the gas are detected by the scattered light.
  • the particles to be detected are, for example, dust, pollen, smoke, etc. floating in the atmosphere.
  • an airflow generator for taking outside air into the sensor is required.
  • this airflow generating device a device that uses the convection generated by the temperature difference of the gas by warming the outside air with a heater arranged in the vicinity of the intake port has been proposed.
  • the convection using the temperature difference it is necessary to provide a detection region immediately above the heater, and the degree of freedom in designing the particle sensor is low.
  • the outside air is taken in by convection, there is a problem that the flow velocity of the gas is easily changed depending on the use environment and the flow velocity in the detection region is not stable.
  • Patent Document 1 In order to solve the problem of taking in outside air using such convection, a device using a blower fan as an airflow generating device has been proposed (see, for example, Patent Document 1).
  • outside air is taken into a particle detection sensor using a blower fan, a detection region is provided in a flow path having a large fluid resistance, the flow rate of outside air passing through the detection region is suppressed, and turbulent flow generation is suppressed.
  • the particle detection accuracy is improved.
  • the present invention was devised to solve such problems, and an object thereof is to provide a particle sensor and an electronic apparatus that can stabilize the flow velocity in the detection region and save space.
  • the particle sensor of the present invention includes an intake port for taking in outside air, an outside air flow path through which the outside air flows, an exhaust port for discharging the outside air, and an external port from the intake port toward the exhaust port.
  • a blower fan that flows the outside air in an air flow path, a light emitting unit that emits irradiation light toward a detection area provided in the outside air flow path, and a part of the irradiation light scattered by particles in the detection area
  • a light receiving portion that receives light as incident light, and the outside air flow path is formed linearly from the intake port to the detection region.
  • the outside air flow path includes a cylindrical portion at least partially from the intake port to the detection region.
  • the diameter of the cylindrical portion is larger than the spot diameter of the irradiation light irradiated on the detection region.
  • the intake port and the exhaust port are formed on the same surface of the housing.
  • the blower fan is disposed in a region where the light emitting unit, the light receiving unit, and the air inlet do not overlap in a plan view.
  • the blower fan, the light emitting unit, a case unit that accommodates the light receiving unit, and an upper surface cover unit in which the intake port and the exhaust port are formed the case unit includes A locking portion for locking the upper surface lid is provided.
  • a lower surface cover portion that covers the lower surface of the case portion is provided, and a bottom space formed between the case portion and the lower surface cover portion forms a part of the outside air flow path. ing.
  • an electronic apparatus includes the particle sensor according to any one of the above, and includes an output unit that outputs a detection result of the light receiving unit as a particle concentration.
  • FIG. 1 is an external perspective view schematically showing a particle sensor 1 of Embodiment 1.
  • FIG. 1 is an exploded perspective view showing an outline of a particle sensor 1.
  • FIG. It is a figure which shows the upper surface cover part 10 typically, Fig.3 (a) is a perspective view, FIG.3 (b) is a top view.
  • Fig.4 (a) is a perspective view, FIG.4 (b) is a top view.
  • Fig.5 (a) is a perspective view, FIG.5 (b) is a top view.
  • 4 is a plan view schematically showing a method for detecting particles inside the case portion 20.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the particle sensor 1 of Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view of the particle sensor 1 at the AA line position in FIG.
  • FIG. 9A shows the result of simulating the flow velocity of the outside air inside the particle sensor 1
  • FIG. 9A shows the result in a cross section along the flow path
  • FIG. 9B shows the result in the plane near the detection area DA. It is an enlarged view shown.
  • FIG. 1 is an external perspective view schematically showing the particle sensor 1 of the present embodiment.
  • FIG. 2 is an exploded perspective view showing an outline of the particle sensor 1.
  • the particle sensor 1 includes an upper surface lid portion 10, a case portion 20, a lower surface lid portion 30, and a blower fan 40. As shown in FIG. 1, the upper surface lid portion 10 and the lower surface lid portion 30 are assembled to the upper surface and the lower surface of the case portion 20, respectively, and the blower fan 40 is accommodated in the case portion 20. Further, the particle sensor 1 includes a connector portion (not shown) for electrical connection with the outside, and by connecting a harness to the connector portion, it is possible to supply electric power from the outside and send / receive electrical signals to / from the outside. .
  • the upper surface lid portion 10 is a member constituting the upper exterior of the particle sensor 1 and is attached so as to cover the upper portion of the case portion 20.
  • the material which comprises the upper surface cover part 10 is not specifically limited, It is preferable to use resin from a viewpoint of weight reduction and a moldability.
  • An air inlet 12 and an air outlet 13 are formed on the top surface 11 of the top cover 10, and a part of the blower fan 40 is exposed from the air outlet 13. Further, on the surface of the upper surface lid 10 that faces the case 20, walls and spaces that divide each area are formed.
  • the top surface 11 is a substantially flat surface that constitutes the uppermost surface of the particle sensor 1, and a substantially rectangular shape is shown in FIG.
  • An intake port 12 and an exhaust port 13 are formed at predetermined positions on the top surface 11.
  • the air inlet 12 is an opening for taking outside air into the particle sensor 1, and is formed on the top surface 11 immediately above the in-case flow path 25.
  • the exhaust port 13 is an opening for discharging outside air that has passed through the inside of the particle sensor 1, and is formed immediately above the blower fan 40.
  • the case part 20 is a housing part that accommodates and holds each part of the particle sensor 1.
  • the material which comprises the case part 20 is not specifically limited, It is preferable to use resin from a viewpoint of weight reduction and a moldability.
  • a light emitting unit 21 and a light receiving unit 23 are housed inside the case unit 20, and an in-case flow path 25 is formed immediately below the intake port 12.
  • a space for accommodating the blower fan 40 is formed in a region immediately below the exhaust port 13.
  • a structure such as a partition wall is provided inside the case portion 20, and a space for storing and holding other members, an optical trap structure, an outside air flow path, and the like are integrally formed of resin. Details of the internal structure of the case portion 20 will be described later.
  • the lower surface cover part 30 is a member constituting the lower exterior of the particle sensor 1 and is attached so as to cover the lower part of the case part 20.
  • the material which comprises the lower surface cover part 30 is not limited, In order to shield the electromagnetic waves to the electronic component and electronic circuit which were accommodated in the case part 20, the shield case which bent the metal plate-shaped member should be used. Is preferred.
  • the blower fan 40 is a blower device that rotates by supplying electric power and blows air, and is rotationally controlled according to a control signal to adjust the blower amount.
  • the side of the blower fan 40 that sends out the gas is exposed to the exhaust port 13, and the side that sucks in the gas is disposed toward the case portion 20 and the lower surface lid portion 30. .
  • a light emitting part 21 and a light receiving part 23 are accommodated in the case part 20, and an in-case flow path 25 is formed immediately below the intake port 12.
  • the particle sensor 1 light is emitted from the light emitting unit 21 toward the flow path 25 in the case, and a part of the light scattered by particles contained in the outside air passing through the flow path 25 in the case is detected by the light receiving unit 23. And detect particles. Details of particle detection by the light emitting unit 21 and the light receiving unit 23 will be described later.
  • FIG. 3 is a diagram schematically showing the upper surface lid 10, FIG. 3 (a) is a perspective view, and FIG. 3 (b) is a top view.
  • An outer peripheral wall 11a is erected downward so as to surround the outer periphery of the top surface 11 of the upper surface lid portion 10, and a protruding portion 14 that protrudes further downward is formed on a part of the outer peripheral wall 11a.
  • the protruding portion 14 is formed at a position corresponding to a groove formed on the outer wall of the case portion 20, and is for fitting in the groove of the case portion 20 for positioning.
  • a locking opening 15 is formed at a predetermined position near the outer periphery of the top surface 11, and the outer peripheral wall 11 a is partially exposed from the locking opening 15.
  • the intake port 12 has a substantially circular opening, and the periphery of the opening is a tapered portion 12 a inclined from the top surface 11.
  • the tapered portion 12a may have a truncated cone shape inclined at a constant angle, or may have a shape whose inclination changes with a constant curvature.
  • FIG. 4 is a diagram schematically showing the case portion 20 and the inside thereof, FIG. 4 (a) is a perspective view, and FIG. 4 (b) is a top view.
  • the case unit 20 includes a light emitting unit 21, a light projecting lens 22, a light receiving unit 23, and a light receiving lens 24. Further, the case portion 20 is integrally formed with a case inner passage 25, a fan lower recess 26, a fan lower passage 27, a locking portion 28, a case lower side wall 29, and a locking claw 29a.
  • the light emitting unit 21 is a member that emits light of a predetermined wavelength toward the detection region in accordance with power and a control signal.
  • the light projecting lens 22 condenses the light emitted from the light emitting unit 21 as irradiation light on the detection region.
  • the light receiving unit 23 that is an optical member outputs a current value or a voltage value when light having a predetermined wavelength is incident. It is a member to do.
  • the light receiving lens 24 is an optical member that collects light from the detection region direction and causes the light to enter the light receiving unit 23.
  • the in-case flow path 25 is an opening formed in the bottom surface 20a of the case portion 20, and is located directly below the intake port 12 so as to communicate the front side and the back side of the bottom surface 20a.
  • the shape of the in-case flow path 25 is not particularly limited, but a circular shape having the same diameter as the opening of the intake port 12 is preferable in order to suppress the turbulent flow and stabilize the flow velocity.
  • the fan lower recessed part 26 is a recessed part provided in the lower part of the space which accommodates the ventilation fan 40, and is for ensuring a space between the ventilation fan 40 and the bottom face 20a even in the state where the ventilation fan 40 is accommodated.
  • the fan lower flow path 27 is an opening formed in the bottom surface 20a in the fan lower recess 26, and is located directly below the blower fan 40 so as to communicate the front side and the back side of the bottom surface 20a.
  • the locking portion 28 has a snap-fit structure formed in the vicinity of the outer peripheral side wall of the case portion 20, and is composed of an elastic piece and a claw extending upward, for example.
  • the locking portion 28 is provided at a position corresponding to the locking opening 15 of the upper surface lid portion 10, and the locking portion 28 is engaged with the case portion 20 by fitting the upper surface lid portion 10 to the case opening 20. 15 and the top cover 10 is locked to the case 20. Due to the simple structure of the locking portion 28 and the locking opening 15, the upper surface lid portion 10 and the case portion 20 can be easily fitted to improve the sealing performance at the upper surface lid portion 10.
  • the case lower side wall 29 is a wall portion standing below the bottom surface 20a.
  • the shape of the case lower side portion 29 corresponds to the outer shape of the lower surface lid portion 30. Since the case lower side wall 29 is formed so as to protrude from the back surface of the bottom surface 20 a, a space is secured between the bottom surface 20 a and the lower surface lid 30.
  • the locking claw 29 a is a claw-shaped protrusion formed on the outer periphery of the case lower side wall 29, and is a part for locking the lower surface lid 30.
  • FIG. 5 is a diagram schematically showing the lower surface cover 30, FIG. 5 (a) is a perspective view, and FIG. 5 (b) is a top view.
  • the lower surface cover 30 is a member obtained by cutting a substantially flat metal plate into a predetermined shape and bending it, and includes a main bottom surface 31, a bent side surface 32, a locking opening 33, and protrusions 34a and 34b.
  • the central region of the metal plate is the main bottom surface 31, and the bent side surface 32 is erected by bending the metal plate located on the outer periphery of the main bottom surface 31.
  • the shape of the main bottom surface 31 constitutes the outer shape of the lower surface lid 30, and the bent side surface 32 is provided at a shape and position along the outer periphery of the case lower side wall 29.
  • a locking opening 33 is formed in the bent side surface 32 at a position corresponding to the locking claw 29a.
  • the locking claw 29 a is inserted into the locking opening 33 and the lower surface lid portion 30 is locked to the case portion 20.
  • the protrusions 34 a and 34 b are formed at positions corresponding to the grooves formed on the outer wall of the case portion 20, and are used for positioning by fitting into the grooves of the case portion 20.
  • FIG. 6 is a plan view schematically showing a method for detecting particles inside the case portion 20.
  • a light emitting element 21 a included in the light emitting part 21, a light projecting lens 22, a light receiving element 23 a included in the light receiving part 23, and a light receiving lens 24 are arranged.
  • the optical axis of the irradiation light L1 irradiated from the light emitting element 21a through the light projecting lens 22 and the optical axis of the incident light L2 received by the light receiving element 23a through the light receiving lens 24 are arranged so as to be substantially orthogonal to each other.
  • the periphery of the in-case flow path 25 is shown partially enlarged. A region where the incident light L2 can reach the light receiving element 23a through the light receiving lens 24 and a region where the irradiation light L1 is irradiated are overlapped with each other to be a detection region DA where particles can be detected.
  • the light emitting element 21a is a light source that emits light of a predetermined wavelength according to electric power, and examples thereof include an LED (Light Emitting Diode) element and an LED.
  • the wavelength of light emitted from the light emitting element 21a is preferably in a band that can be satisfactorily detected by the light receiving element 23a.
  • the light receiving element 23a receives light of a predetermined wavelength and converts an optical signal into an electric signal, and examples thereof include a photodiode and a phototransistor.
  • the optical axis of the irradiation light L ⁇ b> 1 from the light emitting element 21 a toward the light projecting lens 22 and the detection area DA is shown along the long side direction of the case portion 20. It is provided in the middle left and right direction.
  • the optical axis of the incident light L2 from the detection area DA toward the light receiving lens 24 and the light receiving element 23a is provided in the vertical direction in the drawing along the short side direction of the case portion 20. Therefore, the optical axis of the irradiation light L ⁇ b> 1 and the optical axis of the incident light L ⁇ b> 2 are arranged so as to intersect the L shape in the planar direction in the case portion 20.
  • the blower fan 40 is accommodated in the case portion 20 on the diagonal side with respect to the detection area DA. Therefore, the two side surfaces of the blower fan 40 are along the side wall of the case portion 20, and the light emitting unit 21 and the light receiving unit 23 are disposed in the vicinity of the other two side surfaces. Therefore, the blower fan 40 is disposed in a region where the light emitting unit 21, the light receiving unit 23, and the air inlet 12 do not overlap in plan view. Thereby, the area which arrange
  • a substantially cylindrical in-case flow path 25 is formed immediately below the intake port 12, and outside air taken in from the intake port 12 flows into the exhaust port 13 by the blower fan 40. It is sent and discharged.
  • the detection area DA is set near the center of the in-case flow path 25. Further, the central axis of the in-case flow path 25 is substantially orthogonal to the optical axis of the irradiation light L1 and the optical axis of the incident light L2.
  • FIG. 7 is a block diagram showing an electrical configuration of the particle sensor 1 of the present embodiment.
  • the particle sensor 1 of the present embodiment includes a sensor unit 100 and a signal processing unit 200, and measures the particle concentration of ambient air particles based on scattered light from particles located in the detection area DA of the sensor unit 100.
  • the sensor unit 100 includes a light emitting element 21 a of the light emitting unit 21 and a light receiving element 23 a of the light receiving unit 23, and includes a light projecting lens 22 and a light receiving lens 24.
  • the signal processing unit 200 includes an I / V conversion unit 201, an amplification unit 202, an A / D conversion unit 203, a calculation unit 204, a storage unit 205, and a control unit 206.
  • the I / V conversion unit 201 is a circuit unit that is electrically connected to the light receiving unit 23 and converts a current signal generated by the light receiving element 23a into a voltage value.
  • the amplification unit 202 is a circuit unit that is electrically connected to the I / V conversion unit 201 and amplifies the voltage value converted by the I / V conversion unit 201.
  • the A / D conversion unit 203 is a circuit unit that is electrically connected to the amplification unit 202 and converts a voltage value that is an analog signal output from the amplification unit 202 into a digital signal.
  • the calculation unit 204 is an information processing device that calculates the digital signal converted by the A / D conversion unit 203 by a predetermined calculation method.
  • the storage unit 205 is a device that stores a program for the calculation unit 204 to perform calculation processing and a calculation result of the calculation unit 204.
  • the control unit 206 performs drive control of the light emitting unit 21 and the blower fan 40 according to the calculation result of the calculation unit 204 and the control signal from the outside.
  • the detection area DA of the sensor unit 100 is irradiated with the irradiation light L1 from the light emitting element 21a.
  • the irradiation light L1 is scattered by the particles, and a part of the scattered light enters the light receiving element 23a as the incident light L2.
  • an electrical signal is generated according to the amount of incident light L2 (eg, current).
  • the larger the particle diameter the larger the area where the irradiation light L1 is scattered by the particles, the greater the amount of scattered light and incident light L2, and the larger the current value generated in the light receiving element 23a.
  • the I / V conversion unit 201 converts the current signal output from the light receiving unit 23 into a voltage signal, and the amplifying unit 202 amplifies the signal to a predetermined band.
  • the A / D conversion unit 203 generates digital data by converting a voltage signal that is an analog signal amplified by the amplification unit 202 into a digital signal. Specifically, the A / D conversion unit 203 samples and quantizes a voltage signal that is an output signal from the light receiving unit 23, and generates time-series digital data.
  • the calculation unit 204 calculates the particle diameter and the particle concentration using the digital data converted by the A / D conversion unit 203. Specifically, digital data is smoothed using a known integration processing method, moving average method, median filter method, etc., and subjected to known approximation processing such as linear approximation, polynomial approximation, etc., and particle diameter and particle concentration. Convert to digital data.
  • the calculation result in the calculation unit 204 is output to the outside of the particle sensor 1 through a harness connected to the connector unit.
  • FIG. 8 is a cross-sectional view of the particle sensor 1 taken along the line AA in FIG. 4 (b).
  • the cylindrical portion 12 b in the particle sensor 1 of the present embodiment, from the air inlet 12, the cylindrical portion 12 b, the in-case passage 25, the bottom space 34, the fan lower passage 27, the fan lower recess 26, and the blower fan 40.
  • the constructed outside air flow path is formed up to the exhaust port 13.
  • the cylindrical portion 12 b is a substantially cylindrical portion formed on the back surface side of the air inlet 12, and is formed integrally with the top surface 11.
  • the bottom space 34 is a space formed between the bottom surface 20 a of the case portion 20 and the main bottom surface 31 of the lower surface lid portion 30.
  • the plurality of arrows shown in the drawing schematically indicate the flow of outside air taken into the outside air flow path.
  • FIG. 9 shows the result of simulating the flow rate of the outside air inside the particle sensor 1
  • FIG. 9A shows the result in a cross section along the flow path
  • FIG. 9B shows the plane near the detection area DA. It is an enlarged view which shows the result.
  • 9 (a) and 9 (b) the area represented by gradation indicates the flow velocity distribution of the outside air from the air inlet 12 toward the bottom cover 30.
  • FIGS. 9A and 9B in the vicinity of the central axis of the intake port 12, the flow rate is stabilized in the direction of the lower surface lid 30 and the outside air flows.
  • the detection area DA is set in a space between the cylindrical portion 12b and the flow path 25 in the case. Therefore, the outside air flow path through which outside air flows is formed in a straight line from the inlet 12 to the detection area DA. Thereby, the disturbance of the flow velocity caused by the bending of the flow path can be suppressed, the flow velocity in the detection region can be stabilized, and space saving can be achieved.
  • the outside air flow path from the intake port 12 to the detection area DA is configured by the cylindrical portion 12b, it becomes easy to suppress and stabilize the flow velocity disturbance.
  • the cylindrical shape of the cylindrical portion 12b and the in-case flow path 25 has a diameter larger than the spot diameter of the irradiation light irradiated to the detection area DA. Thereby, the flow velocity in the detection area DA located directly below the cylindrical portion 12b can be further stabilized.
  • the detection area DA is more preferably located in the vicinity of the cylindrical central axis of the cylindrical portion 12b and the in-case flow path 25.
  • the air inlet 12 and the air outlet 13 are formed on the same top surface 11 constituting the casing.
  • the particle sensor 1 can be mounted on the electronic device in an arrangement in which only the same surface on which the air inlet 12 and the air outlet 13 are formed is exposed to the outside air. Therefore, there are fewer restrictions for disposing the particle sensor 1 than in the case where a suction surface and a disposal surface are provided separately, and the degree of freedom in designing electronic equipment can be improved.
  • the outside air channel can be arranged three-dimensionally. Therefore, the area of the outside air flow path in the plane where the light projecting optical system and the light receiving optical system are arranged can be minimized, the size of the particle sensor 1 can be reduced, and the degree of design freedom can be improved.
  • the flow rate of the outside air in the detection area DA can be stabilized and space saving can be achieved.
  • Embodiment 2 of the present invention will be described. The description overlapping with that of the first embodiment is omitted.
  • a structure is not particularly disposed in the bottom space 34, and substantially the entire area of the main bottom surface 31 is used as an outside air flow path.
  • a structure is arranged in the bottom space 34 and an outside air flow path is designed in the bottom space 34.
  • a structure such as a columnar structure or a wall structure is integrally formed on the back side of the bottom surface 20a of the case portion 20.
  • the intake port 12 and the exhaust port 13 are formed on the top surface 11.
  • the intake port 12 or the exhaust port 13 may be formed on another surface.
  • the blower fan 40 may be accommodated in the bottom space 34 and the exhaust port 13 may be formed in the main bottom surface 31.
  • the exhaust port 13 may be formed on a side surface different from the top surface 11 and the main bottom surface 31.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】検知領域での流速を安定化し、省スペース化を図ることができる粒子センサおよび電子機器を提供する。 【解決手段】外気を取り入れる吸気口(12)と、外気が流れる外気流路(25)と、外気を排出する排気口(13)と、吸気口(12)から排気口(13)に向けて外気流路(25)中において外気を流す送風ファン(40)と、外気流路(25)中に設けられた検知領域に向けて照射光を発する発光部(21a)と、検知領域で粒子によって散乱された照射光の一部を入射光として受光する受光部(23a)とを備え、外気流路は、吸気口(12)から検知領域(DA)に至るまで直線状に形成されている粒子センサ。

Description

粒子センサおよび電子機器
 本発明は、粒子センサおよび電子機器に関し、特に送風ファンを用いて外気の吸気および排気を行う粒子センサおよび電子機器に関する。
 近年、微粒子等の粒子を検出する粒子センサとして、光センサが提案されている。このような粒子センサは、発光素子と受光素子を備えており、測定対象の粒子を含む気体をセンサ内部に取り込む構成となっている。つまり、取り込んだ気体に対して発光素子からの光を照射し、その散乱光を受光素子に受光させ、散乱光によって気体に含まれる粒子の有無やその量を検出するようになっている。検出対象の粒子は、例えば、大気中に浮遊する埃、花粉、煙等である。
 粒子センサでは、センサ内部に外気を取り込むための気流発生装置が必要となる。この気流発生装置としては、吸気口の近傍に配置したヒータで外気を温め、気体の温度差によって生じる対流を利用するものが提案されていた。しかし、温度差を利用した対流では、ヒータの直上に検知領域を設ける必要があり、粒子センサの設計自由度が低かった。また、対流による外気の取り込みでは、使用環境等によって気体の流速が変化しやすく、検知領域での流速が安定しないという問題があった。
 このような対流を用いた外気取り込みの課題を解決するため、気流発生装置として送風ファンを用いたものも提案されている(例えば特許文献1等を参照)。特許文献1では、送風ファンを用いて外気を粒子検出センサ内に取り込み、流体抵抗の大きい流路内に検知領域を設けて、検知領域を通過する外気の流速を抑制し、乱流発生を抑制して粒子検出精度を向上させている。
特開2017-181153号公報
 しかし、特許文献1の粒子検出センサでは、外気の流路を二つに分けて流速を抑制するため、装置内に流路を複数設ける必要があり省スペース化と小型化が困難であった。また、検知領域を設ける流路の流体抵抗を大きくするために、複雑な形状の流路を内部に配置する必要があり、設計自由度の向上や省スペース化が困難であった。さらに、流路形状が複雑なため検知領域での流速を安定させることが困難であった。
 本発明はかかる問題点を解決すべく創案されたもので、その目的は、検知領域での流速を安定化し、省スペース化を図ることができる粒子センサおよび電子機器を提供することにある。
 上記課題を解決するため本発明の粒子センサは、外気を取り入れる吸気口と、前記外気が流れる外気流路と、前記外気を排出する排気口と、前記吸気口から前記排気口に向けて前記外気流路中において前記外気を流す送風ファンと、前記外気流路中に設けられた検知領域に向けて照射光を発する発光部と、前記検知領域で粒子によって散乱された前記照射光の一部を入射光として受光する受光部とを備え、前記外気流路は、前記吸気口から前記検知領域に至るまで直線状に形成されていることを特徴とする。
 これにより、吸気口から検知領域まで直線状の外気流路を外気が流れるため、流路の曲がりで生じる流速の乱れを抑制して検知領域での流速を安定化することができる。また、吸気口から検知領域まで外気流路を直線状に設けることで、省スペース化を図ることもできる。
 また、本発明の一実施態様では、前記外気流路は、前記吸気口から前記検知領域に至るまで少なくとも一部に円筒状部を備える。
 また、本発明の一実施態様では、前記円筒状部の直径は、前記検知領域に照射される前記照射光のスポット径よりも大きい。
 また、本発明の一実施態様では、前記吸気口と前記排気口が、筐体の同一面に形成されている。
 また、本発明の一実施態様では、前記送風ファンは、前記発光部、前記受光部および前記吸気口とは平面視において重ならない領域に配置されている。
 また、本発明の一実施態様では、前記送風ファンと前記発光部と前記受光部を収容するケース部と、前記吸気口および前記排気口が形成された上面蓋部を備え、前記ケース部には、前記上面蓋部を係止する係止部が設けられている。
 また、本発明の一実施態様では、前記ケース部の下面を覆う下面蓋部を備え、前記ケース部と前記下面蓋部の間に形成される底面空間が前記外気流路の一部を構成している。
 また、上記課題を解決するため本発明の電子機器は、上記の何れか一つに記載の粒子センサを備え、前記受光部での検出結果を粒子濃度として出力する出力部を備えたことを特徴とする。
 本発明によれば、検知領域での流速を安定化し、省スペース化を図ることができる粒子センサおよび電子機器を提供することができる。
実施形態1の粒子センサ1を模式的に示す外観斜視図である。 粒子センサ1の概要を示す分解斜視図である。 上面蓋部10を模式的に示す図であり、図3(a)は斜視図であり、図3(b)は上面図である。 ケース部20とその内部を模式的に示す図であり、図4(a)は斜視図であり、図4(b)は上面図である。 下面蓋部30を模式的に示す図であり、図5(a)は斜視図であり、図5(b)は上面図である。 ケース部20の内部における粒子の検出方法を模式的に示す平面図である。 実施形態1の粒子センサ1の電気的構成を示すブロック図である。 図4(b)中のA-A線位置での粒子センサ1の断面図である。 粒子センサ1内部での外気の流速をシミュレーションした結果であり、図9(a)は流路に沿った断面での結果を示し、図9(b)は検知領域DA付近の平面での結果を示す拡大図である。
 <実施形態1>
 以下、本発明の実施形態1について、図面を参照して説明する。図面等の説明において上下や左右の表現を用いる場合、図中での上下や左右を示すものであり、粒子センサ1の使用時における上下や左右を限定するものではない。図1は、本実施形態の粒子センサ1を模式的に示す外観斜視図である。図2は、粒子センサ1の概要を示す分解斜視図である。
 粒子センサ1は、上面蓋部10と、ケース部20と、下面蓋部30と、送風ファン40を備えている。図1に示すように、ケース部20の上面と下面にはそれぞれ上面蓋部10と下面蓋部30が組み付けられており、送風ファン40がケース部20に収容されている。また、粒子センサ1は外部との電気的接続を行うコネクタ部を備え(図示省略)、コネクタ部にハーネスを接続することで外部から電力の供給や外部との電気信号の授受をすることができる。
 上面蓋部10は、粒子センサ1の上部外装を構成する部材であり、ケース部20の上部を覆って取り付けられる。上面蓋部10を構成する材料は特に限定されないが、軽量化と成形性の観点から樹脂を用いることが好ましい。また、上面蓋部10の天面11には、吸気口12と排気口13が形成されており、排気口13から送風ファン40の一部が露出している。また、上面蓋部10のケース部20と対向する面には、各エリアを区切る壁部や空間が形成されている。
 天面11は、粒子センサ1の最上面を構成する略平坦な面であり、図1では略矩形状のものを示している。天面11の所定位置には吸気口12と排気口13が形成されている。吸気口12は、粒子センサ1の内部に外気を取り入れるための開口であり、天面11のうち、ケース内流路25の直上に形成されている。排気口13は、粒子センサ1の内部を通過した外気を排出する開口部であり、送風ファン40の直上に形成されている。
 ケース部20は、粒子センサ1の各部を収容し保持する筐体部分である。ケース部20を構成する材料は特に限定されないが、軽量化と成形性の観点から樹脂を用いることが好ましい。ケース部20の内部には発光部21と受光部23が収容されるとともに、吸気口12の直下にはケース内流路25が構成されている。また、排気口13の直下領域には送風ファン40を収容するスペースが形成されている。また、ケース部20の内部には隔壁等の構造物が設けられており、他の部材を収容して保持する空間や光トラップ構造、外気の流路などが樹脂で一体成形されている。ケース部20の内部構造についての詳細は、後述する。
 下面蓋部30は、粒子センサ1の下部外装を構成する部材であり、ケース部20の下部を覆って取り付けられる。下面蓋部30を構成する材料は限定されないが、ケース部20内に収容された電子部品や電子回路への電磁波を遮蔽するためには、金属製の板状部材を折り曲げたシールドケースを用いることが好ましい。
 送風ファン40は、電力の供給を受けて回転し送風する送風装置であり、制御信号に応じて回転制御されて送風量を調整する。図1,2に示した例では、送風ファン40の気体を送り出す側は排気口13に露出しており、気体を吸引する側はケース部20および下面蓋部30方向に向けて配置されている。
 図2に示したように、ケース部20の内部には発光部21と受光部23が収容されており、吸気口12の直下にはケース内流路25が形成されている。粒子センサ1では、発光部21からケース内流路25方向に光を照射し、ケース内流路25内を通過する外気に含まれる粒子によって散乱した光の一部を受光部23で検知することで、粒子を検知する。発光部21と受光部23による粒子の検出については詳細を後述する。
 図3は、上面蓋部10を模式的に示す図であり、図3(a)は斜視図であり、図3(b)は上面図である。上面蓋部10の天面11の外周を囲んで外周壁11aが下方に立設されており、外周壁11aの一部にはさらに下方に突出した突出部14が形成されている。突出部14は、ケース部20の外壁に形成された溝に対応した位置に形成されており、ケース部20の溝に嵌って位置決めをするためのものである。また、天面11の外周近傍には、所定の位置に係止開口部15が形成されており、係止開口部15から外周壁11aが部分的に露出している。
 吸気口12は略円形の開口部を備え、開口部の周囲は天面11から傾斜したテーパー部12aとされている。テーパー部12aは、一定の角度で傾斜した円錐台形状であってもよく、一定曲率で傾斜が変化する形状であってもよい。吸気口12の開口部周辺にテーパー部12aを設けることで、吸気口12の直下に位置するケース内流路25で乱流が生じることを抑制することができる。また、吸気口12の下方には、開口部と同一径の円筒形状の壁部が形成されている。
 図4は、ケース部20とその内部を模式的に示す図であり、図4(a)は斜視図であり、図4(b)は上面図である。ケース部20には、発光部21、投光レンズ22、受光部23、受光レンズ24が配置されている。また、ケース部20にはケース内流路25、ファン下凹部26、ファン下流路27、係止部28、ケース下側壁29、係止爪29aが一体に形成されている。
 発光部21は、電力と制御信号に応じて所定波長の光を検知領域に向けて発光する部材である。投光レンズ22は、発光部21が発光した光を照射光として検知領域に集光するために光学部材である受光部23は、所定波長の光が入射することで電流値または電圧値を出力する部材である。受光レンズ24は、検知領域方向からの光を集光して受光部23に入射させる光学部材である。
 ケース内流路25は、ケース部20の底面20aに形成された開口部であり、吸気口12の直下に位置して底面20aの表側と裏側を連通させている。ケース内流路25の形状は特に限定されないが、吸気口12の開口部と同一径の円形とすることが、乱流を抑制して流速を安定化するためには好ましい。
 ファン下凹部26は、送風ファン40を収容する空間の下部に設けられた凹部であり、送風ファン40を収容した状態でも送風ファン40と底面20aとの間に空間を確保するためのものである。ファン下流路27は、ファン下凹部26内の底面20aに形成された開口部であり、送風ファン40の直下に位置して底面20aの表側と裏側を連通させている。
 係止部28は、ケース部20の外周側壁近傍に形成されたスナップフィット構造であり、例えば上方に伸びた弾性片と爪で構成されている。係止部28は、上面蓋部10の係止開口部15に対応した位置に設けられており、上面蓋部10をケース部20に嵌合させることで、係止部28が係止開口部15に挿入されて上面蓋部10がケース部20に係止される。係止部28と係止開口部15との簡便な構造によって、上面蓋部10とケース部20とを容易に嵌合して、上面蓋部10での密閉性を高めることができる。
 ケース下側壁29は、底面20aよりも下方に立設された壁部である。ケース下側部29の形状は、下面蓋部30の外形に対応したものとされている。底面20aの裏面からケース下側壁29が突出して形成されていることで、底面20aと下面蓋部30との間に空間が確保される。係止爪29aは、ケース下側壁29の外周に形成された爪状の突起であり、下面蓋部30を係止するための部分である。
 図5は、下面蓋部30を模式的に示す図であり、図5(a)は斜視図であり、図5(b)は上面図である。下面蓋部30は、略平坦な金属板を所定形状に切断して折り曲げた部材であり、主底面31、折曲側面32、係止開口部33、突出部34a,34bを備えている。金属板の中央領域が主底面31であり、主底面31の外周に位置する金属板を折り曲げて折曲側面32が立設されている。主底面31の形状は、下面蓋部30の外形を構成しており、折曲側面32はケース下側壁29の外周に沿った形状と位置に設けられている。
 折曲側面32には、係止爪29aに対応する位置に係止開口部33が形成されている。下面蓋部30をケース部20に嵌合させることで、係止爪29aが係止開口部33に挿入されて下面蓋部30がケース部20に係止される。係止爪29aと係止開口部33との簡便な構造によって、下面蓋部30とケース部20とを容易に嵌合して、下面蓋部30での密閉性を高めることができる。突出部34a,34bは、ケース部20の外壁に形成された溝に対応した位置に形成されており、ケース部20の溝に嵌って位置決めをするためのものである。
 図6は、ケース部20の内部における粒子の検出方法を模式的に示す平面図である。ケース部20内には、発光部21に含まれる発光素子21aと、投光レンズ22と、受光部23に含まれる受光素子23aと、受光レンズ24が配置されている。発光素子21aから投光レンズ22を介して照射される照射光L1の光軸と、受光素子23aが受光レンズ24を介して受光する入射光L2の光軸とは、互いに略直交するように配置されている。図6中では、ケース内流路25周辺を部分的に拡大して示している。受光レンズ24を介して受光素子23aまで入射光L2が到達できる領域と、照射光L1が照射される領域との重なっている領域が、粒子を検知できる検知領域DAとなる。
 発光素子21aは、電力に応じて所定波長の光を発光する光源であり、例えばLED(Light Emitting Diode)素子やLEDが挙げられる。発光素子21aが発光する波長は受光素子23aで良好に検出できる帯域のものが好ましく、例えば赤外光が挙げられる。受光素子23aは、所定波長の光を受光して光信号を電気信号に変換するものであり、例えばフォトダイオードやフォトトランジスタ等が挙げられる。
 図6に示したように、本実施形態の粒子センサ1では、発光素子21aから投光レンズ22と検知領域DAに向かう照射光L1の光軸は、ケース部20の長辺方向に沿って図中左右方向に設けられている。また、検知領域DAから受光レンズ24と受光素子23aに向かう入射光L2の光軸は、ケース部20の短辺方向に沿って図中上下方向に設けられている。したがって、照射光L1の光軸と入射光L2の光軸は、ケース部20内の平面方向においてL字形状に交差して配置されている。
 また送風ファン40は、ケース部20内において検知領域DAとは対角側に収容されている。よって送風ファン40の2つの側面はケース部20の側壁に沿っており、他の2つの側面近傍には、発光部21と受光部23が配置されている。したがって送風ファン40は、発光部21、受光部23および吸気口12とは平面視において重ならない領域に配置されている。これにより、送風ファン40と投光光学系および受光光学系を配置する面積を最小化し、省スペース化を図ることができる。
 図2に示したように、吸気口12の直下には略円筒状のケース内流路25が構成されており、吸気口12から取り込まれた外気が流入し、送風ファン40により排気口13へと送られて排出される。検知領域DAは、ケース内流路25の略中心近傍に設定されている。また、ケース内流路25の中心軸は、照射光L1の光軸および入射光L2の光軸と略直交している。
 図7は、本実施形態の粒子センサ1の電気的構成を示すブロック図である。本実施形態の粒子センサ1は、センサ部100と、信号処理部200を備え、センサ部100の検知領域DAに位置する粒子からの散乱光に基づいて、周辺空気粒子の粒子濃度を測定する。センサ部100は、発光部21の発光素子21aと、受光部23の受光素子23aとを備え、投光レンズ22および受光レンズ24を備えている。信号処理部200は、I/V変換部201、増幅部202、A/D変換部203、演算部204、記憶部205、制御部206を備えている。
 I/V変換部201は、受光部23に電気的に接続され、受光素子23aで生じた電流信号を電圧値に変換する回路部である。増幅部202は、I/V変換部201に電気的に接続され、I/V変換部201で変換された電圧値を増幅する回路部である。A/D変換部203は、増幅部202に電気的に接続され、増幅部202から出力されたアナログ信号である電圧値をデジタル信号に変換する回路部である。演算部204は、A/D変換部203で変換されたデジタル信号を所定の演算手法によって演算する情報処理装置である。記憶部205は、演算部204が演算処理を行うためのプログラムや、演算部204の演算結果を記憶しておく装置である。制御部206は、演算部204の演算結果や外部からの制御信号に応じて発光部21や送風ファン40の駆動制御を行う。
 粒子センサ1では送風ファン40が動作すると、吸気口12から外気がケース内流路25に流入し、外気に含まれている粒子が検知領域DAを通過する。センサ部100の検知領域DAには発光素子21aから照射光L1が照射されており、粒子によって照射光L1が散乱されて散乱光の一部が入射光L2として受光素子23aに入射する。受光素子23aでは、入射光L2の光量に応じて電気信号が生じる(例えば電流)。このとき、粒子の径が大きいほど、照射光L1が粒子によって散乱される面積が大きく、散乱光と入射光L2の光量も大きくなり、受光素子23aで生じる電流値も大きくなる。
 I/V変換部201では、受光部23から出力された電流信号を電圧信号に変換し、増幅部202が所定の帯域に増幅する。A/D変換部203は、増幅部202で増幅されたアナログ信号である電圧信号をデジタル信号に変換することで、デジタルデータを生成する。具体的には、A/D変換部203は、受光部23からの出力信号である電圧信号をサンプリングおよび量子化し、時系列のデジタルデータを生成する。
 演算部204は、A/D変換部203が変換したデジタルデータを用いて粒子径と粒子濃度を算出する。具体的には、公知の積算処理法、移動平均法、メディアンフィルタ法等を用いて、デジタルデータを平滑化処理し、線形近似、多項式近似等、公知の近似処理を施して粒子径と粒子濃度のデジタルデータに変換する。演算部204での演算結果は、コネクタ部に接続されたハーネスを介して粒子センサ1の外部に出力される。
 図8は、図4(b)中のA-A線位置での粒子センサ1の断面図である。図8に示したように本実施形態の粒子センサ1では、吸気口12から、円筒状部12b、ケース内流路25、底面空間34、ファン下流路27、ファン下凹部26、送風ファン40で構成される外気流路が排気口13にまで形成されている。円筒状部12bは、吸気口12の裏面側に形成された略円筒状の部分であり、天面11と一体に成形されている。底面空間34は、ケース部20の底面20aと、下面蓋部30の主底面31との間に形成された空間である。図中に示した複数の矢印は、外気流路に取り込まれた外気の流れを模式的に示すものである。
 図9は、粒子センサ1内部での外気の流速をシミュレーションした結果であり、図9(a)は流路に沿った断面での結果を示し、図9(b)は検知領域DA付近の平面での結果を示す拡大図である。図9(a)(b)においてグラデーションにより表現された領域は吸気口12から下面蓋部30方向に向かう外気の流速分布を示している。図9(a)(b)に示したように、吸気口12の中心軸近傍では、下面蓋部30方向に流速が安定して外気が流れている。
 本実施形態の粒子センサ1において、検知領域DAは、円筒状部12bとケース内流路25との間の空間に設定されている。したがって、外気の流れる外気流路は、吸気口12から検知領域DAに至るまで直線状に形成されている。これにより、流路の曲がりで生じる流速の乱れを抑制して検知領域での流速を安定化し、省スペース化を図ることができる。
 また、吸気口12から検知領域DAに至るまでの外気流路が円筒状部12bで構成されていることで、流速の乱れを抑制して安定化することが容易となる。さらに、円筒状部12bとケース内流路25の円筒形状は、直径が検知領域DAに照射される照射光のスポット径よりも大きい。これにより、円筒状部12bの直下に位置する検知領域DAでの流速をさらに安定化することができる。また検知領域DAは、円筒状部12bとケース内流路25の円筒形状の中心軸近傍に位置することがさらに好ましい。
 また本実施形態の粒子センサ1では、吸気口12と排気口13が筐体を構成する同一の天面11に形成されている。これにより、吸気口12と排気口13が形成された同一面のみを外気に露出させる配置で、粒子センサ1を電子機器に搭載することができる。よって、吸気する面と廃棄する面を別に設ける場合よりも粒子センサ1を配置するための制約が少なくなり、電子機器の設計自由度を向上できる。
 また、底面空間34が、ケース部20と下面蓋部30の間に形成されて外気流路の一部を構成していることで、外気流路を3次元的に配置することができる。これにより、投光光学系と受光光学系を配置した面内における外気流路の面積を最小化でき、粒子センサ1の小型化を図るとともに、設計自由度を向上することができる。
 以上に述べたように、本実施形態の粒子センサ1およびそれを用いた電子機器では、検知領域DAでの外気の流速を安定化し、省スペース化を図ることができる。
 <実施形態2>
 次に、本発明の実施形態2について説明する。実施形態1と重複する内容は説明を省略する。実施形態1では、底面空間34に特に構造物を配置せず、主底面31の略全域を外気流路として用いた。本実施形態では、底面空間34内に構造物を配置して、底面空間34内において外気流路をデザインする。
 具体的には、ケース部20の底面20a裏側に、柱状構造や壁構造などの構造物を一体成形しておく。これらの構造物を底面空間34に適切に配置することで、底面空間34内での外気の流れかたや流体抵抗を変化させ、外気流路全体や検知領域DAでの気体の流速を調整して安定化を図ることができる。
 <実施形態3>
 次に、本発明の実施形態3について説明する。実施形態1と重複する内容は説明を省略する。実施形態1では、天面11に吸気口12と排気口13を形成した例を示したが、吸気口12または排気口13を他の面に形成するとしてもよい。例えば、送風ファン40を底面空間34内に収容し、主底面31に排気口13を形成するとしてもよい。また、天面11および主底面31とは異なる側面に排気口13を形成するとしてもよい。
 なお、今回開示した実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
L1…照射光
L2…入射光
1…粒子センサ
10…上面蓋部
20…ケース部
100…センサ部
30…下面蓋部
40…送風ファン
11…天面
11a…外周壁
12…吸気口
12a…テーパー部
12b…円筒状部
13…排気口
14…突出部
15…係止開口部
20a…底面
21…発光部
21a…発光素子
22…投光レンズ
23…受光部
23a…受光素子
24…受光レンズ
25…ケース内流路
26…ファン下凹部
27…ファン下流路
28…係止部
29…ケース下側壁
29a…係止爪
31…主底面
32…折曲側面
33…係止開口部
34…底面空間
34a…突出部
200…信号処理部
201…I/V変換部
202…増幅部
203…A/D変換部
204…演算部
205…記憶部
206…制御部

Claims (8)

  1.  外気を取り入れる吸気口と、
     前記外気が流れる外気流路と、
     前記外気を排出する排気口と、
     前記吸気口から前記排気口に向けて前記外気流路中において前記外気を流す送風ファンと、
     前記外気流路中に設けられた検知領域に向けて照射光を発する発光部と、
     前記検知領域で粒子によって散乱された前記照射光の一部を入射光として受光する受光部とを備え、
     前記外気流路は、前記吸気口から前記検知領域に至るまで直線状に形成されていることを特徴とする粒子センサ。
  2.  請求項1に記載の粒子センサであって、
     前記外気流路は、前記吸気口から前記検知領域に至るまで少なくとも一部に円筒状部を備えることを特徴とする粒子センサ。
  3.  請求項2に記載の粒子センサであって、
     前記円筒状部の直径は、前記検知領域に照射される前記照射光のスポット径よりも大きいことを特徴とする粒子センサ。
  4.  請求項1から3の何れか一つに記載の粒子センサであって、
     前記吸気口と前記排気口が、筐体の同一面に形成されていることを特徴とする粒子センサ。
  5.  請求項1から4の何れか一つに記載の粒子センサであって、
     前記送風ファンは、前記発光部、前記受光部および前記吸気口とは平面視において重ならない領域に配置されていることを特徴とする粒子センサ。
  6.  請求項1から5の何れか一つに記載の粒子センサであって、
     前記送風ファンと前記発光部と前記受光部を収容するケース部と、
     前記吸気口および前記排気口が形成された上面蓋部を備え、
     前記ケース部には、前記上面蓋部を係止する係止部が設けられていることを特徴とする粒子センサ。
  7.  請求項6に記載の粒子センサであって、
     前記ケース部の下面を覆う下面蓋部を備え、
     前記ケース部と前記下面蓋部の間に形成される底面空間が前記外気流路の一部を構成していることを特徴とする粒子センサ。
  8.  請求項1から7の何れか一つに記載の粒子センサを備え、
     前記受光部での検出結果を粒子濃度として出力する出力部を備えたことを特徴とする電子機器。
PCT/JP2019/008285 2018-03-15 2019-03-04 粒子センサおよび電子機器 WO2019176609A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-047779 2018-03-15
JP2018047779A JP6835021B2 (ja) 2018-03-15 2018-03-15 粒子センサおよび電子機器

Publications (1)

Publication Number Publication Date
WO2019176609A1 true WO2019176609A1 (ja) 2019-09-19

Family

ID=67907696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008285 WO2019176609A1 (ja) 2018-03-15 2019-03-04 粒子センサおよび電子機器

Country Status (2)

Country Link
JP (1) JP6835021B2 (ja)
WO (1) WO2019176609A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771806B (zh) * 2020-11-18 2022-07-21 財團法人工業技術研究院 微粒感測裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259848A (ja) * 1991-02-15 1992-09-16 Matsushita Electric Works Ltd 浮遊微粒子検知装置
JPH06109633A (ja) * 1992-09-25 1994-04-22 Matsushita Electric Works Ltd 空気汚染検出装置
JPH08206540A (ja) * 1995-02-06 1996-08-13 Rion Co Ltd 空気清浄器
CN204302153U (zh) * 2014-10-20 2015-04-29 崔海林 颗粒物传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259848A (ja) * 1991-02-15 1992-09-16 Matsushita Electric Works Ltd 浮遊微粒子検知装置
JPH06109633A (ja) * 1992-09-25 1994-04-22 Matsushita Electric Works Ltd 空気汚染検出装置
JPH08206540A (ja) * 1995-02-06 1996-08-13 Rion Co Ltd 空気清浄器
CN204302153U (zh) * 2014-10-20 2015-04-29 崔海林 颗粒物传感器

Also Published As

Publication number Publication date
JP2019158722A (ja) 2019-09-19
JP6835021B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
CN109791104B (zh) 颗粒物传感器装置
US20200011779A1 (en) Highly integrated optical particle counter (opc)
JP6688966B2 (ja) 粒子検出センサ
JP6455470B2 (ja) 粒子センサ、及びそれを備えた電子機器
DK2685437T3 (en) Fire sensor
CN210166360U (zh) 车用空气质量检测装置
CN107923848B (zh) 气体浓度检测装置
WO2018045768A1 (zh) 家用电器、粉尘传感器及其标定方法、标定装置
CN111630365B (zh) 粒子检测传感器
US10962462B2 (en) Particulate matter-sensing sensor assembly
WO2019176609A1 (ja) 粒子センサおよび電子機器
JP6753424B2 (ja) 粒子センサおよび電子機器
KR20240125531A (ko) 입자 검출 센서 및 입자 검출 장치
JP6127280B1 (ja) 粒子検出センサ
CN210199939U (zh) 一种烟雾传感器
JP6945177B2 (ja) 煙感知装置、コンセント、照明器具及びパワーコンディショナー
JP7110852B2 (ja) 粒子センサおよび電子機器
JP5534696B2 (ja) 光電式煙感知器
JP5512165B2 (ja) 警報器
JP2010039937A (ja) 煙感知器
JP7128664B2 (ja) 感知器
JP7164326B2 (ja) 感知器
JP4466308B2 (ja) 微粒子測定装置
CN117242505A (zh) 火灾侦测装置
JP2010271894A (ja) 煙検知式警報器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766705

Country of ref document: EP

Kind code of ref document: A1