WO2019176376A1 - 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法 - Google Patents

原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法 Download PDF

Info

Publication number
WO2019176376A1
WO2019176376A1 PCT/JP2019/003973 JP2019003973W WO2019176376A1 WO 2019176376 A1 WO2019176376 A1 WO 2019176376A1 JP 2019003973 W JP2019003973 W JP 2019003973W WO 2019176376 A1 WO2019176376 A1 WO 2019176376A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
carbon steel
film
aqueous solution
nickel
Prior art date
Application number
PCT/JP2019/003973
Other languages
English (en)
French (fr)
Inventor
秀幸 細川
伊藤 剛
太田 信之
麻由 佐々木
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2019176376A1 publication Critical patent/WO2019176376A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present invention relates to a method for adhering a noble metal to a carbon steel member of a nuclear power plant and a method for suppressing the attachment of a radionuclide to a carbon steel member of a nuclear power plant, and in particular, a nuclear power plant suitable for application to a boiling water nuclear power plant.
  • the present invention relates to a method for adhering noble metals to carbon steel members and a method for suppressing radionuclide adhesion to carbon steel members of a nuclear power plant.
  • a nuclear plant for example, a boiling water nuclear plant (hereinafter referred to as a BWR plant) and a pressurized water nuclear plant (hereinafter referred to as a PWR plant) are known.
  • a BWR plant steam generated in a reactor pressure vessel (referred to as RPV) is guided to a turbine to rotate the turbine. Steam discharged from the turbine is condensed into water by the condenser. This water is supplied to the RPV through the water supply pipe as water supply.
  • the metal impurity contained in feed water is removed with the filtration desalination apparatus provided in the feed water piping.
  • main components such as RPV use stainless steel, nickel-base alloy, and the like for the water contact portion in contact with water in order to suppress corrosion.
  • Components such as the reactor purification system, residual heat removal system, reactor isolation cooling system, core spray system, and water supply system are caused by high-temperature water flowing through the water supply system from the viewpoint of reducing the required manufacturing cost of the plant.
  • carbon steel members are mainly used.
  • a part of the reactor water (cooling water present in the RPV) is purified by the reactor water purification system of the reactor purification system to positively remove metal impurities that are slightly present in the reactor water.
  • Radionuclides adhering to the outer surface of the fuel rod in the form of oxides elute as ions in the reactor water depending on the solubility of the incorporated oxide, and re-released into the reactor water as insoluble solids called clads Is done.
  • Radionuclides in the reactor water are removed by the reactor purification system.
  • the radionuclide that has not been removed there accumulates on the surface of the component in contact with the reactor water while circulating in the recirculation system together with the reactor water.
  • radiation is emitted from the surface of the component member, which causes radiation exposure of workers during regular inspection work.
  • the exposure dose of the employee is managed so that it does not exceed the prescribed value for each person. However, in recent years, this specified value has been lowered, and it has become necessary to make the exposure dose of each person as low as possible economically.
  • a decontamination method has been proposed (Japanese Patent Laid-Open No. 2000-105295).
  • Japanese Patent Laid-Open No. 8-220293 discloses that metal ions such as zinc and nickel are injected into reactor water, and zinc and It describes the deposition of nickel.
  • a method for suppressing the attachment of radionuclides to a surface of a constituent member after operation of the plant by forming a magnetite film that is a kind of ferrite film on the surface of the constituent member of a nuclear power plant after chemical decontamination This is proposed in Japanese Patent Publication No. 2006-38483. Furthermore, in JP-A-2006-38483, after a magnetite film is formed on the surface of a constituent member, the nuclear power plant is started, and the reactor water into which the noble metal has been injected is brought into contact with the magnetite film to deposit the noble metal on the magnetite film. It is described that it is adhered (see FIGS. 17 and 18).
  • Japanese Patent Application Laid-Open No. 2007-182604 discloses a film forming liquid in the range of 60 ° C. to 100 ° C. containing iron (II) ions, nickel ions, an oxidizing agent and a pH adjusting agent (for example, hydrazine) while the nuclear power plant is shut down. After chemical decontamination, it is described that a surface of a carbon steel constituent member of a nuclear power plant is brought into contact with and a nickel ferrite film is formed on this surface (see FIG. 6). The formation of the nickel ferrite film suppresses corrosion of the carbon steel constituent member and suppresses the attachment of the radionuclide to the constituent member.
  • JP 2012-247322 A discloses a film-forming solution in the range of 60 ° C. to 100 ° C. containing iron (II) ions, an oxidizing agent, and a pH adjusting agent (hydrazine) while the nuclear power plant is shut down. It is described that the plant is brought into contact with the surface of a chemically decontaminated component made of stainless steel, and a magnetite film is formed on this surface.
  • Japanese Patent Application Laid-Open No. 2012-247322 also describes that, while the operation is stopped, an aqueous solution containing a noble metal (for example, platinum) is brought into contact with the formed magnetite film to deposit the noble metal on the magnetite film.
  • a noble metal for example, platinum
  • Japanese Patent Application Laid-Open No. 2014-44190 describes a method for attaching a noble metal to a component of a nuclear power plant.
  • a noble metal for example, platinum
  • a precious metal is attached to the surface of the component member in the purification step after the reductive decontaminant decomposition step.
  • the adhesion of the radionuclide to the surface is suppressed by the adhesion of the noble metal to the surface of the constituent member.
  • the first object of the present invention is to provide a method for depositing a noble metal on a carbon steel member of a nuclear power plant capable of shortening the time required to form a nickel metal film to which the noble metal adheres on the carbon steel member, and to a carbon steel member of the nuclear power plant
  • An object of the present invention is to provide a method for suppressing the adhesion of radionuclides.
  • the second object of the present invention is to provide a method for suppressing the attachment of radionuclides to carbon steel members of a nuclear power plant that can maintain the effect of suppressing the attachment of radionuclides to carbon steel members over a longer period. It is in.
  • a feature of the first invention for achieving the first object described above is that a film forming solution containing one kind of each of an acid and a base and a nickel ion of a pH buffer solution and a furnace for a carbon steel member of a nuclear power plant are used.
  • a film forming solution containing one kind of each of an acid and a base and a nickel ion of a pH buffer solution and a furnace for a carbon steel member of a nuclear power plant are used.
  • the formation of the nickel metal film and the deposition of the noble metal are performed after the nuclear plant is shut down and before the nuclear plant is started.
  • the film forming solution contains one kind of acid buffer and base component of the pH buffer solution
  • the pH of the film forming solution is set while the film forming solution is in contact with the first surface of the carbon steel member. Value can be maintained. For this reason, it is possible to prevent a decrease in the amount of nickel metal adhering to the first surface of the carbon steel member due to a change in the pH of the film forming solution, and to increase the amount of nickel metal adhering to the first surface. Can do. As a result, the time required for forming the nickel metal film on the first surface of the carbon steel member can be shortened.
  • the pH of the film-forming solution is in the range of 3.9 to 4.2.
  • the feature of the second invention that achieves the second object described above is that the first surface in contact with the reactor water of the carbon steel member of the nuclear power plant is treated with water having a temperature in the temperature range of 130 ° C. to 330 ° C. containing oxygen. And forming a contact with the second surface of the nickel metal film to which the noble metal is attached.
  • the corrosion potential of the nickel metal film and the carbon steel member in contact with the water is lowered by the action of the noble metal adhering to the nickel metal film.
  • oxygen contained in water moves into the nickel metal film, and further, Fe 2+ moves from the carbon steel member to the nickel metal film, so that the nickel metal film adheres.
  • the first invention it is possible to reduce the time required for the formation of the nickel metal film to which the noble metal adheres to the carbon steel member, and to reduce the time required for the work of attaching the noble metal to the carbon steel member of the nuclear power plant. be able to.
  • the effect of suppressing the attachment of radionuclides to the carbon steel member of the nuclear power plant can be sustained over a longer period.
  • FIG. 1 It is a block diagram of a system. It is a flowchart which shows the procedure of the adhesion method of the noble metal to the carbon steel member of the nuclear power plant of Example 4 applied to purification system piping of the boiling water type power plant which is another suitable Example of this invention.
  • the inventors have made various studies on measures that can suppress adhesion of radionuclides to carbon steel components of a nuclear power plant, that is, carbon components.
  • the inventors made noble metal (for example, platinum) adhere to the surface of carbon steel components that contact the reactor water under the reactor water conditions. Thereafter, when nickel was adhered to the surface of the carbon steel member to which the noble metal was adhered, it was found that the amount of radionuclide adhered to the surface of the carbon steel member was significantly reduced (Japanese Patent Laid-Open No. 2016-161466). No. publication).
  • noble metal for example, platinum
  • the inventors thought that attaching noble metal and nickel to the surface of a carbon steel member would lead to suppression of adhesion of radionuclides to the surface. Accordingly, the inventors have examined a countermeasure that can further suppress the attachment of radionuclide to the surface of the carbon steel member on the premise that the noble metal and nickel are attached to the surface of the carbon steel member.
  • the inventors finally formed a nickel metal film on the surface of the carbon steel member, attached a noble metal (for example, platinum) to the surface of the nickel metal film, and contained oxygen.
  • Stable nickel ferrite in which the Ni metal content in the film is close to a constant ratio by bringing water in a temperature range of 130 ° C. or higher (preferably 130 ° C. or higher and 330 ° C. or lower) into contact with the surface of the nickel metal film. It was found that the radionuclide adhesion to the carbon steel member can be suppressed by converting the carbon steel member to the carbon steel member and covering the surface of the carbon steel member with the stable nickel ferrite film.
  • the inventors are one of the steps for suppressing the attachment of the radionuclide to the carbon steel member, that is, the work of attaching the noble metal to the surface of the carbon steel member.
  • the operation of the nuclear power plant for the fuel change operation and the maintenance inspection operation is stopped. It was recognized that it was important to carry out the precious metal deposition work in a limited period.
  • the inventors have made various studies in order to find a measure that can shorten the time required for the work of attaching the noble metal to the surface of the carbon steel member, particularly the formation of the nickel metal film on the surface of the carbon steel member. .
  • the result of this examination will be described below.
  • Formic acid that can be decomposed into water and carbon dioxide as a counter anion of nickel is used as a chemical for producing a film-forming aqueous solution used for forming a nickel metal film on the surface of a carbon steel member.
  • a nickel formate aqueous solution was used.
  • carbon steel is immersed in a nickel formate aqueous solution, as shown in formula (1), a substitution plating reaction between iron in the carbon steel and nickel ions contained in the nickel formate aqueous solution occurs, and a nickel metal film is formed on the surface of the carbon steel. It is formed.
  • nickel ions are reduced to nickel metal by the action of the reducing agent, and this nickel metal is deposited on the surface of the carbon steel.
  • nickel metal is produced by the reaction shown in Formula (2).
  • the amount of the nickel metal film formed on the test piece in the first case in which only the reaction of the formula (1) occurs was the formic acid injected with hydrazine.
  • the inventor has reached about 80% of the amount of the nickel metal film formed on the test piece in the second case in which the reaction of each of the formulas (1) and (2) occurs when the test piece is taken out from the nickel aqueous solution. Confirmed. For this reason, the inventors determined that the substitution plating reaction of formula (1) has a great influence on the formation of the nickel metal film on the carbon steel member, and that the substitution plating reaction is important.
  • the reduction reaction rate of nickel ions with hydrazine proceeds faster when a catalyst is present.
  • the catalyst does not exist, so the reduction reaction rate does not progress very fast.
  • the displacement plating reaction between the iron in the carbon steel member and the nickel ions contained in the nickel formate aqueous solution proceeds faster than the reduction reaction with hydrazine even under conditions after reductive decontamination where the use of chemicals is limited. First, displacement plating is performed.
  • FIG. 7 shows the results of the pH dependence of the nickel metal film formation amount investigated by the inventors. As is apparent from FIG.
  • the amount of the nickel metal film formed on the surface of the carbon steel member between pH 3.8 and 4.2 is such that the pH of the film-forming aqueous solution is 3.9 to 4.2 (3 Within the range of .9 to 4.2), the efficiency of the displacement plating reaction between the iron in the carbon steel member and the nickel ions contained in the film-forming aqueous solution is increased, so that the maximum amount is 80% or more. It was. For this reason, in order to form a nickel metal film on the surface of a carbon steel member, it is preferable to control the pH of the film-forming aqueous solution to be in the range of 3.9 to 4.2.
  • the pH buffer solution is a mixed solution of a weak acid and a weak base, and is not affected by dilution or addition of an acid or base from the outside, so that the hydrogen ion concentration (pH) does not change so much. It is.
  • a pH buffer solution there is a mixed solution of, for example, ammonia, which is contained in nickel formate as a weak acid, for example, and easy to handle as a weak base.
  • Each of the weak acid and the weak base is a component of the pH buffer solution.
  • each of formic acid and ammonia is a component of the pH buffer solution.
  • the pH buffer solution contains one component each of acid and base.
  • the respective concentrations of formic acid and ammonia when the pH of the film-forming aqueous solution is 4.0 are calculated.
  • the nickel concentration of nickel formate is, for example, 200 ppm
  • the formic acid concentration associated with the nickel concentration is about 400 ppm.
  • the formic acid concentration of the mixed solution needs to be at least higher than the formic acid concentration associated with nickel formate. There is.
  • the concentration of ammonia necessary to bring the pH of the aqueous film-forming solution to 4.0 can be calculated as follows.
  • the acid dissociation reaction formula and the acid dissociation equilibrium formula of formic acid are expressed as shown in Equation (3) and Equation (4), respectively.
  • K F is the acid dissociation constant of formic acid
  • [H + ] is the hydrogen ion concentration of the film-forming aqueous solution
  • [HCOO ⁇ ] is the formate ion concentration of the film-forming aqueous solution
  • [HCOOH] is the formic acid concentration of the film-forming aqueous solution. is there.
  • the total concentration of formic acid [HCOOH] T is represented by formula (5).
  • K A is the acid dissociation constant of ammonia
  • [NH 3 ] is the ammonia concentration of the film-forming aqueous solution
  • [NH 4 + ] is the ammonia ion concentration of the film-forming aqueous solution.
  • the total ammonia concentration [NH 3 ] T is represented by the formula (8).
  • the total formic acid concentration [HCOOH] T was 800 ppm (17.4 mmol / L).
  • the total ammonia concentration [NH 3 ] T when the pH of the film-forming aqueous solution is 4.0 is determined, it is 156 ppm.
  • the total ammonia concentration [NH 3 ] T in the range of the total formic acid concentration of 400 ppm to 1600 ppm when the pH of the film-forming aqueous solution is 4.0 was determined.
  • each concentration of formic acid and ammonia required for pH 3.9 to pH 4.2 may be a concentration in a region sandwiched between a one-dot chain line (pH 3.9) and a broken line (pH 4.2). I understand that.
  • the inventors include iron (II) ions, an oxidizing agent, and a pH adjusting agent (for example, hydrazine).
  • a film forming aqueous solution in a low temperature range of 60 ° C. to 100 ° C. is brought into contact with the surface of a component of a nuclear power plant to form a magnetite film on the surface of the component, and a noble metal is deposited on the magnetite film.
  • a phenomenon was observed in which the magnetite film was eluted into the reactor water by the action of precious metals.
  • Ni 0.7 Fe 2.3 O 4 is a form in which x is 0.3 in Ni 1-x Fe 2 + x O 4 .
  • Ni to 0.7 Fe 2.3 on film of O 4 is an unstable film, a noble metal, for example, when the platinum is deposited, Ni 0.7 Fe 2.3 O 4 are, by the action of the platinum, the operation of the nuclear plant It was found that it eluted in the reactor water.
  • the unstable Ni 0.7 Fe 2.3 O 4 film is formed in the low temperature range described above, many small particles of Ni 0.7 Fe 2.3 O 4 are adhered to the surface of the carbon steel member. ing. For this reason as well, a Ni 0.7 Fe 2.3 O 4 film with platinum adhering to the upper surface is eluted.
  • the inventors examined measures to prevent the elution of Fe 2+ from the carbon steel member when the noble metal is adhered to the surface of the carbon steel member.
  • the inventors have found that the elution of Fe 2+ from the carbon steel member can be prevented by covering the surface of the carbon steel member with a nickel metal film.
  • the nickel metal that covers the surface of the carbon steel member is a substance that contributes to the formation of a stable nickel ferrite film that suppresses the attachment of radionuclides to the carbon steel member, as will be described later.
  • the nickel metal film surface of the carbon steel member By forming a nickel metal film on the surface of the carbon steel member and covering the surface of the carbon steel member with this nickel metal film, the elution of Fe 2+ from the carbon steel member can be prevented, and the nickel metal film surface of the noble metal Adhesion to the carbon steel, specifically, adhesion of the noble metal to the carbon steel member could be performed in a short time. In addition, the amount of precious metal attached to the carbon steel member has also increased.
  • Formation of a nickel metal film on the surface of a carbon steel member is possible by bringing a film-forming aqueous solution containing nickel ions and a reducing agent into contact with the surface of the carbon steel member.
  • the first step in which nickel ions contained in the aqueous solution are replaced with Fe contained in the carbon steel member to form the nickel metal film on the surface of the carbon steel member, and the nickel ions are reducing agents.
  • the second process in which nickel metal is formed by the action of and a nickel metal film is formed on the surface of the carbon steel member.
  • a film-forming aqueous solution containing the aforementioned pH buffer solution for example, a mixed solution of formic acid and ammonia
  • the pH buffer solution for example, a mixed solution of formic acid and ammonia
  • the pH of the film-forming aqueous solution to be brought into contact with the carbon steel member is maintained at a set value (preferably within the range of 3.9 to 4.2, which is a preferable pH range, for example, 4.0).
  • the film-forming aqueous solution contains a pH buffer solution
  • the pH of the film-forming aqueous solution is not affected by the injection of a reducing agent (for example, hydrazine), and the film-forming aqueous solution containing the reducing agent and the pH buffer solution is used as a carbon steel member.
  • a reducing agent for example, hydrazine
  • the pH of the film-forming aqueous solution can be maintained at the set value. For this reason, it is possible to prevent a decrease in the amount of nickel metal adhering to the surface of the carbon steel member due to a change in pH of the film-forming aqueous solution, and to increase the amount of nickel metal adhering to the surface. As a result, the time required for forming the nickel metal film on the surface of the carbon steel member can be shortened.
  • the amount of nickel metal film formed on the surface of the carbon steel member can be remarkably increased by setting the pH of the film-forming aqueous solution to a pH in the range of 3.9 to 4.2 (see FIG. 7).
  • the set value of the pH of the film-forming aqueous solution can be set to a pH within the range of 3.9 to 4.2.
  • the amount of nickel metal film formed on the surface of the steel member can be further increased. As a result, the time required for forming the nickel metal film on the surface of the carbon steel member can be further shortened.
  • adhesion of the noble metal to the surface of the nickel metal film formed on the surface of the carbon steel member is possible by contacting the nickel metal film formed with an aqueous solution containing noble metal ions (for example, platinum ions) and a reducing agent. is there.
  • noble metal ions for example, platinum ions
  • a reducing agent for example, platinum ions
  • the examination result regarding the adhesion control over the long term of the radionuclide on the surface of a carbon steel member is demonstrated below.
  • the inventors have not formed an unstable Ni 0.7 Fe 2.3 O 4 film on the surface of a carbon steel member in a low temperature range of 60 ° C. to 100 ° C., but stable nickel ferrite that does not elute even by an attached noble metal.
  • Various studies were made on whether it could be used for formation.
  • NiFe 2 O 4 is nickel ferrite in which x is 0 in Ni 1-x Fe 2 + x O 4 .
  • NiFe 2 O 4 film The surface of the carbon steel member is covered with a stable nickel ferrite film (NiFe 2 O 4 film).
  • the unstable nickel ferrite eluted by the action of the noble metal adhering to the surface is nickel ferrite satisfying 0.3 ⁇ x ⁇ 1.0 in Ni 1-x Fe 2 + x O 4 , for example, Ni 0.7 Fe 2.3 O 4 .
  • Ni 0.7 Fe 2.3 O 4 is a nickel ferrite in which x is 0.3 in Ni 1-x Fe 2 + x O 4 as described above.
  • the nickel metal film of the carbon steel member in which a nickel metal film is formed on the surface and a noble metal (for example, platinum) is attached to the nickel metal film surface contains oxygen at 130 ° C. or higher (preferably 130 ° C. or higher and 330 ° C. or lower).
  • a nickel ferrite film nickel ferrite film where x is 0 in Ni 1-x Fe 2 + x O 4
  • water having a temperature in the temperature range of 130 ° C. to 330 ° C. containing oxygen contacts the nickel metal film on the carbon steel member, the temperature in the temperature range of 130 ° C. to 330 ° C.
  • Nickel in the nickel metal film reacts with oxygen and Fe 2+ transferred into the nickel metal film in a high temperature environment within a temperature range of 130 ° C. or higher and 330 ° C. or lower, and in Ni 1-x Fe 2 + x O 4 Nickel ferrite in which x is 0 is generated. This nickel ferrite film covers the surface of the carbon steel member.
  • Ni 1-x Fe 2 + x produced as described above from a nickel metal contained in a nickel metal film covering the surface of a carbon steel member in a high temperature environment within a temperature range of 130 ° C. to 330 ° C.
  • Nickel ferrite in which x is 0 in O 4 has a large crystal growth, and even if noble metal is deposited, it is stable without being eluted in water like Ni 0.7 Fe 2.3 O 4 coating, and Co-60 Inhibits uptake of radionuclides such as In Ni 1-x Fe 2 + x O 4 , the stable nickel ferrite in which x is 0, the corrosion potential of the carbon steel member and the nickel metal film is lowered by the action of noble metals such as platinum attached to the nickel metal film. To be generated.
  • the stable nickel ferrite film produced from nickel metal covering the surface of the carbon steel member in a high temperature environment within a temperature range of 130 ° C. or higher and 330 ° C. or lower has a low temperature of 60 ° C. to 100 ° C. It is possible to suppress the attachment of the radionuclide to the carbon steel member over a longer period than the Ni 0.7 Fe 2.3 O 4 film generated in the temperature range.
  • test piece A made of carbon steel to which nickel and platinum are not attached and a test piece B made of carbon steel in which a stable nickel ferrite film is formed on the surface and platinum is attached to the surface of the nickel ferrite film.
  • the test pieces A and B were installed in a closed loop circulation pipe, and simulated water simulating the reactor water in the reactor was caused to flow through the circulation pipe and circulated.
  • the circulating simulated water contains Co-60, and the temperature of the simulated water is 280 ° C.
  • Each of the test pieces A and B installed in the circulation pipe was immersed in simulated water flowing in the circulation pipe for 500 hours. After 500 hours, each of the test pieces A and B was taken out from the circulation pipe, and the amount of Co-60 adhered to each test piece was measured.
  • FIG. 9 shows the measurement results of the amount of Co-60 deposited on each test piece. As is clear from FIG. 9, in the test piece B on which a stable nickel ferrite film with platinum adhered was formed on the surface, the amount of Co-60 deposited was significantly reduced compared to the test piece A with the carbon steel surface exposed. did.
  • a method for adhering a noble metal to a carbon steel member of a nuclear power plant of Example 1, which is a preferred example of the present invention, will be described with reference to FIG. 1, FIG. 2, and FIG.
  • the adhesion method of the noble metal to the carbon steel member of the nuclear power plant of this embodiment is applied to a carbon steel purification system pipe (carbon steel member) of a boiling water nuclear power plant (BWR plant).
  • the BWR plant 1 includes a nuclear reactor 2, a turbine 9, a condenser 10, a recirculation system, a nuclear reactor purification system, a water supply system, and the like.
  • the nuclear reactor 2 has a reactor pressure vessel (hereinafter referred to as RPV) 3 in which a core 4 is built, and is formed between an outer surface of a core shroud (not shown) surrounding the core 13 in the RPV 3 and an inner surface of the RPV 3.
  • a plurality of jet pumps 5 are installed in an annular downcomer.
  • a large number of fuel assemblies (not shown) are loaded on the core 4.
  • the fuel assembly includes a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material.
  • the recirculation system has a stainless steel recirculation pipe 6 and a recirculation pump 7 installed in the recirculation pipe 6.
  • the water supply system includes a carbon steel water supply pipe 11 that connects the condenser 10 and the RPV 3, a condensate pump 12, a condensate purification device (for example, a condensate demineralizer) 13, a low-pressure feed water heater 14, and a feed pump. 15 and the high-pressure feed water heater 16 are arranged in this order from the condenser 10 toward the RPV 3.
  • a drain water recovery pipe 27 connected to the high pressure feed water heater 16 and the low pressure feed water heater 14 is connected to the condenser 10.
  • a purification system pipe 18, a regenerative heat exchanger 20, a non-regenerative heat exchanger 21, and a reactor water purification device 22 are connected in this order to a purification system pipe 18 that connects the recirculation system pipe 6 and the feed water pipe 11. It is installed.
  • the purification system pipe 18 is connected to the recirculation system pipe 6 upstream of the recirculation pump 7.
  • the nuclear reactor 2 is installed in a nuclear reactor containment vessel 26 arranged in a nuclear reactor building (not shown).
  • the cooling water in the RPV 3 (hereinafter referred to as “reactor water”) is increased in pressure by the recirculation pump 7 and jetted into the jet pump 5 through the recirculation system pipe 6.
  • the reactor water existing around the nozzle of the jet pump 5 in the downcomer is also sucked into the jet pump 5 and supplied to the reactor core 4.
  • the reactor water supplied to the reactor core 4 is heated by heat generated by fission of nuclear fuel material in the fuel rods. Part of the heated reactor water becomes steam.
  • This steam is guided from the RPV 3 through the main steam pipe 8 to the turbine 9 to rotate the turbine 9.
  • a generator (not shown) connected to the turbine 9 rotates to generate electric power.
  • the steam discharged from the turbine 9 is condensed by the condenser 10 to become water.
  • This water is supplied into the RPV 3 through the water supply pipe 11 as water supply.
  • the feed water flowing through the feed water pipe 11 is boosted by the condensate pump 12, impurities are removed by the condensate purification device 13, and further boosted by the feed water pump 15.
  • the feed water is further heated by the low pressure feed water heater 14 and the high pressure feed water heater 16 and guided into the RPV 3.
  • the extraction steam extracted from the turbine 9 by the extraction pipe 17 is supplied to the low-pressure feed water heater 14 and the high-pressure feed water heater 16 respectively, and becomes a heating source of the feed water.
  • a part of the reactor water flowing in the recirculation system pipe 6 flows into the purification system pipe 18 by the drive of the purification system pump 19 and is cooled by the regenerative heat exchanger 20 and the non-regenerative heat exchanger 21. It is purified by the water purification device 22.
  • the purified reactor water is heated by the regenerative heat exchanger 20 and returned to the RPV 3 through the purification system pipe 18 and the water supply pipe 11.
  • a film forming apparatus 30 is used, and this film forming apparatus 30 is connected to the purification system pipe 18 of the BWR plant as shown in FIG.
  • the film forming apparatus 30 includes a surge tank 32, a heater 33, circulation pumps 34 and 35, a circulation pipe 31, a nickel ion implanter 36, a reducing agent injector 41, a platinum ion implanter 46, a pH buffer solution injector 51, and a cooling device.
  • the on-off valve 67, the circulation pump 35, the valves 68, 71, 74 and 79, the surge tank 32, the circulation pump 34, the valve 84 and the on-off valve 85 are provided in the circulation pipe 31 in this order from the upstream.
  • a pipe 70 that bypasses the valve 68 is connected to the circulation pipe 31, and a valve 69 and a filter 61 are installed in the pipe 70.
  • a cation exchange resin tower 63 and a valve 75 are installed in a pipe 76 having both ends connected to the circulation pipe 31 and bypassing the valve 74.
  • a mixed bed resin tower 64 and a valve 77 are installed in a pipe 78 having both ends connected to the pipe 76 and bypassing the cation exchange resin tower 63 and the valve 75.
  • the cation exchange resin tower 63 is filled with a cation exchange resin
  • the mixed bed resin tower 64 is filled with a cation exchange resin and an anion exchange resin.
  • a valve 81 is provided in the pipe 76 between the connection point between the pipe 76 and the pipe 78 and the circulation pipe 31 on the upstream side of the cation exchange resin tower 63.
  • a valve 82 is provided in the pipe 76 between the connection point between the pipe 76 and the pipe 78 and the circulation pipe 31 on the downstream side of the cation exchange resin tower 63.
  • One end of a pipe 73 that bypasses the valve 71 is connected to the circulation pipe 31 on the upstream side of the valve 71, and the other end of the pipe 73 is connected to the pipe 78 on the upstream side of the mixed bed resin tower 64.
  • a cooler 62 and a valve 72 are installed in the pipe 73.
  • a valve 79 is installed in the circulation pipe 31 between the connection point between the circulation pipe 31 and the pipe 76 and the surge tank 32.
  • One end of the pipe 83 is connected to the pipe 78 on the downstream side of the valve 77, and the other end of the pipe 83 is connected to the circulation pipe 31 between the valve 79 and the surge tank 32.
  • the pipe 80 and the disassembling device 65 located downstream of the valve 80 are provided.
  • the decomposition device 65 is filled with, for example, an activated carbon catalyst in which ruthenium is impregnated on the surface of the activated carbon.
  • a surge tank 32 is installed in the circulation pipe 31 between the valve 79 and the circulation pump 34.
  • a heater 33 is disposed in the surge tank 32.
  • a pipe 87 provided with a valve 86 and an ejector 66 is connected to the circulation pipe 31 between the valve 84 and the circulation pump 34, and further connected to the surge tank 32.
  • the ejector 66 is provided with a hopper (not shown) for supplying oxalic acid (reducing decontamination agent) used for reducing and dissolving contaminants on the inner surface of the recirculation system pipe 6 into the surge tank 32.
  • the nickel ion implanter 36 includes a chemical tank 37, an injection pump 38 and an injection pipe 39.
  • the chemical tank 37 is connected to the circulation pipe 31 by an injection pipe 39 having an injection pump 38 and a valve 40.
  • a nickel formate aqueous solution (aqueous solution containing nickel ions) prepared by dissolving nickel formate (Ni (HCOO) 2 .2H 2 O) in water is filled in the chemical tank 37.
  • a platinum ion implantation apparatus (noble metal ion implantation apparatus) 46 includes a chemical tank 47, an injection pump 48, and an injection pipe 49.
  • the chemical tank 47 is connected to the circulation pipe 31 by an injection pipe 49 having an injection pump 48 and a valve 50.
  • An aqueous solution containing platinum ions prepared by dissolving a platinum complex for example, sodium hexahydroxoplatinate hydrate (Na 2 [Pt (OH) 6 ] ⁇ nH 2 O)
  • water for example, sodium hexahydroxoplatinate Hydrate aqueous solution
  • An aqueous solution containing platinum ions is a kind of aqueous solution containing noble metal ions.
  • an aqueous solution containing noble metal ions an aqueous solution containing any ion of palladium, rhodium, ruthenium, osmium and iridium may be used in addition to an aqueous solution containing platinum ions.
  • the reducing agent injection device 41 includes a chemical tank 42, an injection pump 43, and an injection pipe 44.
  • the chemical tank 42 is connected to the circulation pipe 31 by an injection pipe 44 having an injection pump 43 and a valve 45.
  • a chemical tank 42 is filled with an aqueous solution of hydrazine as a reducing agent.
  • the reducing agent any of hydrazine derivatives such as hydrazine, formhydrazine, hydrazinecarboxamide and carbohydrazide and hydroxylamine may be used.
  • the pH buffer solution injection device 51 has a chemical solution tank 52, an injection pump 53 and an injection pipe 54.
  • the chemical tank 52 is connected to the circulation pipe 31 by an injection pipe 54 having an injection pump 53 and a valve 55.
  • the chemical tank 52 is filled with a mixed aqueous solution of formic acid and ammonia which is a pH buffer solution.
  • Injection pipes 39, 54, 49 and 44 are connected to the circulation pipe 31 between the valve 84 and the on-off valve 85 in that order from the valve 84 to the on-off valve 85.
  • the oxidant supply device 56 includes a chemical liquid tank 57, a supply pump 58, and a supply pipe 59.
  • the chemical tank 57 is connected to a pipe 83 upstream of the valve 80 by a supply pipe 59 having a supply pump 58 and a valve 60.
  • the chemical liquid tank 57 is filled with hydrogen peroxide as an oxidant.
  • the oxidizing agent ozone or water in which oxygen is dissolved may be used.
  • a pH meter 88 is attached to the circulation pipe 31 between the connection point between the injection pipe 44 and the circulation pipe 31 and the on-off valve 85.
  • the BWR plant 1 is stopped after the operation in one operation cycle is completed. After the shutdown, a part of the fuel assembly loaded in the core 4 is taken out as a spent fuel assembly, and a new fuel assembly having a burnup of 0 GWd / t is loaded in the core 4. After such a fuel change is completed, the BWR plant 1 is restarted for operation in the next operation cycle. Maintenance inspection of the BWR plant is performed using a period during which the BWR plant 1 is stopped for fuel replacement.
  • a carbon steel piping system connected to the RPV 3, which is one of the carbon steel members in the BWR plant 1, for example, the purification system piping 18 is provided.
  • the method for attaching a noble metal to the carbon steel member of the nuclear power plant according to the present embodiment is performed.
  • a noble metal adhesion method a nickel metal film is formed on the inner surface of the purification system pipe 18 in contact with the reactor water, and a noble metal, for example, platinum is adhered to the formed nickel metal film.
  • a method for adhering a noble metal to a carbon steel member of a nuclear power plant according to this embodiment will be described below based on the procedure shown in FIG.
  • a film forming apparatus 30 is used.
  • a film forming apparatus is connected to a piping system made of carbon steel for film formation (step S1).
  • the bonnet of the valve 23 installed in the purification system pipe 18 connected to the recirculation system pipe 6 is opened to block the recirculation system pipe 6 side.
  • One end of the circulation pipe 31 of the film forming apparatus 30 on the open / close valve 85 side is connected to the flange of the valve 23.
  • the bonnet of the valve 25 installed in the purification system pipe 18 is opened between the regenerative heat exchanger 20 and the non-regenerative heat exchanger 21 to block the non-regenerative heat exchanger 21 side.
  • the other end of the circulation pipe 31 on the on-off valve 67 side is connected to the flange of the valve 25. In this way, both ends of the circulation pipe 31 are connected to the purification system pipe 18, and a closed loop including the purification system pipe 18 and the circulation pipe 31 is formed.
  • the film forming apparatus 30 is connected to the purification system pipe 18 of the reactor purification system.
  • the residual heat removal system that is a carbon steel member and communicates with the RPV 3.
  • the film forming apparatus 30 is connected to one of the carbon steel pipes of the reactor isolation cooling system and the core spray system, and the carbon steel pipe is connected with the precious metal to the carbon steel member of the nuclear power plant of this embodiment. An attachment method may be applied.
  • Chemical decontamination is performed on the piping system made of carbon steel to be coated (step S2).
  • an oxide film containing a radionuclide is formed on the inner surface of the purification system pipe 18 that comes into contact with the reactor water discharged from the RPV 3.
  • chemical decontamination in particular, reductive decontamination using a reductive decontamination solution containing oxalic acid as a reductive decontamination agent is performed on the inner surface of the purification system pipe 18.
  • step S2 the chemical decontamination applied to the inner surface of the purification system pipe 18 is a known reductive decontamination described in Japanese Patent Application Laid-Open No. 2000-105295. This reductive decontamination will be described.
  • the on-off valve 67, the valves 68, 71, 74, 79 and 84, and the on-off valve 85 are opened, and the circulation pumps 34 and 35 are driven with the other valves closed.
  • the water heated to 90 ° C. by the heater 33 in the surge tank 32 is supplied into the purification system pipe 18 and circulates in the closed loop formed by the circulation pipe 31 and the purification system pipe 18. A part of the water at 90 ° C.
  • oxalic acid aqueous solution (reduction decontamination solution) is generated in the surge tank 32.
  • the aqueous oxalic acid solution is discharged from the surge tank 32 to the circulation pipe 31 by driving the circulation pump 34.
  • the aqueous hydrazine solution in the chemical tank 42 of the reducing agent injection device 41 is injected into the oxalic acid aqueous solution in the circulation pipe 31 through the injection pipe 44 by opening the valve 45 and driving the injection pump 43.
  • the purification system is controlled by controlling the injection pump 43 (or the opening of the valve 45) based on the pH value of the oxalic acid aqueous solution measured by the pH meter 88 and adjusting the injection amount of the hydrazine aqueous solution into the circulation pipe 31.
  • the pH of the oxalic acid aqueous solution supplied to the pipe 18 is adjusted to 2.5.
  • hydrazine which is a reducing agent used when depositing nickel metal on the inner surface of the purification system pipe 18 and depositing noble metal, for example, platinum on the nickel metal film, is reduced by decontamination. In the process, it is used as a pH adjuster for adjusting the pH of the oxalic acid aqueous solution.
  • An oxalic acid aqueous solution containing hydrazine (pH adjusting agent) having a pH of 2.5 and 90 ° C. is supplied from the circulation pipe 31 to the purification system pipe 18 and contains a radionuclide formed on the inner surface of the purification system pipe 18. Contact the oxide film. This oxide film is dissolved by oxalic acid. During reductive decontamination, the oxalic acid aqueous solution contains hydrazine (pH adjusting agent). The oxalic acid aqueous solution flows in the purification system pipe 18 while dissolving the oxide film, passes through the purification system pump 19 and the regenerative heat exchanger 20, and is returned to the circulation pipe 31.
  • hydrazine pH adjusting agent
  • the aqueous oxalic acid solution returned to the circulation pipe 31 is pressurized by the circulation pump 35 through the open / close valve 67, passes through the valves 68, 71, 74 and 79 and reaches the surge tank 32.
  • the oxalic acid aqueous solution circulates in the closed loop including the circulation pipe 31 and the purification system pipe 18, performs reductive decontamination of the inner surface of the purification system pipe 18, and dissolves the oxide film formed on the inner surface. .
  • the valves 75, 81 and 82 are opened to adjust the opening degree of the valve 74, and a part of the oxalic acid aqueous solution returned from the purification system pipe 18 to the circulation pipe 31. Is led to the cation exchange resin tower 63 through the pipe 76. Radionuclide and metal cations such as Fe contained in the oxalic acid aqueous solution are adsorbed and removed by the cation exchange resin in the cation exchange resin tower 63.
  • the oxalic acid aqueous solution discharged from the cation exchange resin tower 63 and the oxalic acid aqueous solution that has passed through the valve 74 are supplied again from the circulation pipe 31 to the purification system pipe 18 and used for reductive decontamination of the purification system pipe 18.
  • the cation exchange resin a hydrazine-plated resin is used.
  • valve 60 Injecting this hydrogen peroxide into the oxalic acid aqueous solution, the valve 60 is opened and the supply pump 58 is started, and the hydrogen peroxide in the chemical tank 57 flows through the circulation pipe 31 through the supply pipe 59, the pipe 83 and the valve 82. Supply to the oxalic acid aqueous solution. At this time, the valve 80 is closed.
  • An aqueous oxalic acid solution containing hydrogen peroxide is introduced into the purification system pipe 18 from the circulation pipe 31, and Fe (II) contained in iron (II) oxalate formed on the inner surface of the purification system pipe 18 is oxalic acid aqueous solution. It is oxidized to Fe (III) by the action of hydrogen peroxide contained in the solution, and becomes iron (III) oxalate complex and dissolves in the aqueous oxalic acid solution.
  • iron (II) oxalate and hydrogen peroxide and oxalic acid contained in the oxalic acid aqueous solution generate an iron (III) oxalate complex, water, and hydrogen ions by the reaction shown in Formula (11).
  • Metal cations such as radionuclides contained in the oxalic acid aqueous solution are adsorbed and removed by the cation exchange resin in the cation exchange resin tower 63.
  • the disappearance of hydrogen peroxide in the oxalic acid aqueous solution can be confirmed by attaching a test paper that reacts with hydrogen peroxide to the oxalic acid aqueous solution sampled from the circulation pipe 31 and observing the color that appears on the test paper.
  • Oxalic acid and hydrazine are decomposed as follows.
  • the valve 82 is closed, the valves 80 and 74 are opened to partially reduce the opening of the valve 79, and the aqueous oxalic acid solution discharged from the cation exchange resin tower 63 is supplied to the decomposition device 65 through the valve 80 through the pipe 83. Is done.
  • the hydrogen peroxide in the chemical tank 57 is supplied to the pipe 83 through the supply pipe 59 and flows into the decomposition apparatus 65.
  • Oxalic acid and hydrazine contained in the oxalic acid aqueous solution are decomposed in the decomposition apparatus 65 by the action of the activated carbon catalyst and the supplied hydrogen peroxide.
  • the decomposition reaction of oxalic acid and hydrazine in the decomposition apparatus 65 is represented by the following formulas (12) and (13).
  • the decomposition of the oxalic acid and hydrazine in the decomposition device 65 is performed while circulating the oxalic acid aqueous solution in the closed loop including the circulation pipe 31 and the purification system pipe 18.
  • the supply amount of hydrogen peroxide from the chemical tank 57 to the decomposition apparatus 65 is reduced.
  • the rotational speed of the supply pump 58 is controlled and adjusted.
  • the aqueous oxalic acid solution containing hydrogen peroxide discharged from the decomposition device 65 is guided from the circulation pipe 31 to the purification system pipe 18.
  • the iron (II) oxalate formed on the inner surface of the purification system pipe 18 in the reductive decontamination decomposition process becomes an iron (III) oxalate complex by the action of the hydrogen peroxide, and in the aqueous oxalic acid solution.
  • the formic acid is injected by, for example, supplying formic acid from the hopper and ejector 66 described above to the oxalic acid aqueous solution with the valve 86 opened and the oxalic acid aqueous solution flowing in the pipe 87.
  • the supplied formic acid is mixed in the oxalic acid aqueous solution in the surge tank 32.
  • the supplied oxalic acid aqueous solution containing formic acid contains hydrogen peroxide discharged from the decomposition device 65 in addition to oxalic acid and hydrazine having a reduced concentration.
  • Hydrogen peroxide contained in the aqueous oxalic acid solution dissolves iron (II) oxalate deposited on the inner surface of the purification system pipe 18, and formic acid dissolves Fe (OH) 3 .
  • Decomposition of oxalic acid and hydrazine contained in the oxalic acid aqueous solution is also continued in the decomposition apparatus 65.
  • the concentration of hydrogen peroxide in the oxalic acid aqueous solution flowing in the circulation pipe 31 is reduced, and the oxalic acid aqueous solution is supplied to the cation exchange resin tower 63. Therefore, the valve 60 is closed, the valve 86 is closed, and the supply of formic acid from the ejector 66 is stopped.
  • these concentrations in the oxalic acid aqueous solution also decrease.
  • the valve 75 is opened to reduce the opening of the valve 74, and the oxalic acid aqueous solution is supplied to the cation exchange resin tower 63.
  • the metal cation contained in the oxalic acid aqueous solution is removed by the cation exchange resin in the cation exchange resin tower 63, and the metal cation concentration of the oxalic acid aqueous solution decreases.
  • the decomposition of oxalic acid, hydrazine and formic acid is continued in the decomposition apparatus 65.
  • oxalic acid hydrazine and formic acid
  • hydrazine is decomposed first, then oxalic acid is decomposed, and formic acid remains last. In this state, the decomposition process of oxalic acid and hydrazine is completed.
  • the purification system pipe 18 is in the state shown in FIG. 9 with the oxide film containing the radionuclide removed from the inner surface of the purification system pipe 18.
  • the inner surface is in contact with the aforementioned aqueous solution containing formic acid.
  • the temperature of the film forming liquid is adjusted (step S3).
  • Valves 74 and 79 are opened and valves 75, 80, 81 and 82 are closed. Since the circulation pumps 34 and 35 are driven, the remaining aqueous solution containing formic acid circulates in the closed loop including the circulation pipe 31 and the purification system pipe 18.
  • This formic acid aqueous solution (described later, a film-forming aqueous solution) is heated by the heater 33 to a temperature within a temperature range of 60 ° C. to 100 ° C. (60 ° C. or more and 100 ° C. or less), for example, 90 ° C. Further, the valve 69 is opened and the valve 68 is closed.
  • the formic acid aqueous solution flowing in the circulation pipe 31 is supplied to the filter 61, and the fine solid content remaining in the formic acid aqueous solution is removed by the filter 61.
  • the fine solid content is not removed by the filter 61, when forming the nickel metal film on the inner surface of the purification system pipe 18, when the nickel formic acid aqueous solution is injected into the circulation pipe 31, the surface of the solid matter is also nickel. A metal film is formed, and the injected nickel ions are wasted.
  • the supply of the formic acid aqueous solution to the filter 61 is to prevent such useless use of nickel ions.
  • step S4 Inject pH buffer solution.
  • the valve 68 is opened, the valve 69 is closed, and water flow to the filter 61 is stopped.
  • the valve 55 of the pH buffer solution injection device 51 is opened to drive the injection pump 53, and the pH buffer solution in the chemical liquid tank 52, specifically, the mixed aqueous solution of formic acid and ammonia flows through the circulation pipe 31 through the injection pipe 54. Pour into a 90 ° C. aqueous solution containing the remaining formic acid.
  • the concentration of formic acid in the pH buffer solution to be injected is, for example, 800 ppm, and the concentration of ammonia is, for example, 156 ppm.
  • the pH of the remaining aqueous solution containing formic acid (or a film forming aqueous solution described later) flowing through the circulation pipe 31 is in the range of 3.9 to 4.2, for example, 4. It becomes 0 and is kept at 4.0.
  • the pH of the remaining aqueous solution containing formic acid (a film-forming aqueous solution described later) is adjusted to 3.9 or more and 4.2 by changing the mixing ratio of formic acid and ammonia contained in the pH buffer solution before being supplied to the chemical tank 52. It is possible to adjust within the following pH range.
  • Nickel ion aqueous solution is injected (step S5).
  • the valve 40 of the nickel ion implantation apparatus 36 is opened to drive the injection pump 38, and the aqueous solution of nickel formate in the chemical tank 37 flows through the circulation pipe 31 through the injection pipe 39 and contains the pH buffer solution and the remaining formic acid 90. Pour into an aqueous solution at ° C.
  • the nickel ion concentration of the injected nickel formate aqueous solution is, for example, 200 ppm.
  • the pH of the aqueous solution hardly fluctuates.
  • a film forming aqueous solution at 90 ° C. containing nickel ions, formic acid and ammonia is generated in the circulation pipe.
  • Formic acid contained in this film-forming aqueous solution is formic acid contained in each of the pH buffer solution and nickel formate aqueous solution, and ammonia contained in this film-forming aqueous solution is ammonia contained in the pH buffer solution.
  • the film-forming aqueous solution containing formic acid, nickel ions, and pH buffer solution components of formic acid and ammonia, which originally remained, is supplied from the circulation pipe 31 to the purification system pipe 18 by the drive of the circulation pump 34, and the purification system It contacts the inner surface of the pipe 18.
  • a displacement plating reaction occurs between iron contained in the purification system pipe 18 and nickel ions contained in the film-forming aqueous solution flowing in the purification system pipe 18.
  • a nickel metal film is formed on the inner surface.
  • the next step (reducing agent injection step in step S6) is performed, for example, after 60 minutes from the start of injection of the nickel formate aqueous solution.
  • the nickel ions taken into the surface of the purification system pipe 18 are reduced not by the reducing agent but by electrons and become nickel metal.
  • a film 89 is formed on the inner surface of the purification system pipe 18.
  • the displacement plating reaction between nickel ions and iron in the purification system pipe 18 is most active when the pH of the film-forming aqueous solution 91 in contact with the inner surface of the purification system pipe 18 is 4.0 (FIG. 2) (FIG. 7). See), the amount of nickel ions taken into the inner surface of the purification system pipe 18 is the largest.
  • step S6 Injecting reducing agent.
  • the valve 45 of the reducing agent injection device 41 is opened to drive the injection pump 43, and the aqueous solution of hydrazine, which is the reducing agent in the chemical tank 42, passes through the injection pipe 44. It inject
  • the hydrazine concentration of the injected hydrazine aqueous solution is, for example, 200 ppm.
  • the pH of the film-forming aqueous solution into which the hydrazine aqueous solution has been injected hardly varies from 4.0 due to the action of the injected pH buffer solution.
  • a 90 ° C. film-forming aqueous solution containing nickel ions, formic acid, ammonia and hydrazine (reducing agent) is supplied from the circulation pipe 31 to the purification system pipe 18 by driving the circulation pump 34. Since this film-forming aqueous solution 91 comes into contact with the inner surface of the purification system pipe 18, nickel ions adsorbed on the inner surface of the purification system pipe 18 become nickel metal by the reducing action of hydrazine contained in the film-forming aqueous solution 91. A nickel metal film 89 is formed on the inner surface of the purification system pipe 18 (see FIG. 5). When the pH of the film-forming aqueous solution 91 is increased to 7 or the like by the injection of the reducing agent, the amount of nickel ions taken into nickel metal increases.
  • the film-forming aqueous solution 91 discharged from the purification system pipe 18 to the circulation pipe 31 is pressurized by the circulation pumps 35 and 34, and the nickel formate aqueous solution from the nickel ion implanter 36 and the hydrazine aqueous solution from the reducing agent injector 41 are injected, respectively. Then, it is again injected into the purification system pipe 18.
  • the nickel metal film 89 eventually comes into contact with the film-forming aqueous solution 91 of the purification system pipe 18. Cover the entire surface uniformly.
  • the nickel metal existing on the inner surface of the purification system pipe 18 is in the range of, for example, 50 ⁇ g to 300 ⁇ g (50 ⁇ g / cm 2 or more and 300 ⁇ g / cm 2 or less) per square centimeter.
  • the amount per square centimeter of the nickel metal film 89 covering the entire corresponding inner surface of the purification system pipe 18 varies depending on the temperature of the aqueous solution for forming a film in contact with the inner surface.
  • the temperature of the film-forming aqueous solution is 60 ° C.
  • the amount is 50 ⁇ g / cm 2
  • the amount of the nickel metal film 89 formed on the inner surface of the purification system pipe 18 is 250 ⁇ g / cm 2 .
  • the injection pump 43 may be driven by opening the valve 45 and an aqueous solution of hydrazine as a reducing agent in the chemical tank 42 may be injected into the circulation pipe 31 through the injection pipe 44.
  • nickel ions taken into the inner surface of the purification system pipe 18 are reduced by hydrazine (reducing agent), and a nickel metal film is formed on the inner surface of the purification system pipe 18.
  • the nickel metal film 89 is formed on the inner surface of the purification system pipe 18 by reducing the nickel ions taken into the inner surface of the purification system pipe 18 with electrons, as described above.
  • the purification system piping by the reducing action of hydrazine (reducing agent) injected into the film-forming aqueous solution This is done by reducing the nickel ions taken into the inner surface of 18.
  • the effect of suppressing the attachment of radionuclides (for example, Co-60) to the inner surface of the purification system pipe 18 increases as the thickness of the formed nickel metal film increases.
  • the reduction reaction of nickel ions by electrons accompanying the elution of Fe 2+ is early in the initial period in which the inner surface of the purification system pipe 18 and the film-forming aqueous solution 91 are in contact, but the inner surface of the purification system pipe 18 is covered with nickel metal. As the amount of Fe 2+ eluted from the purification system pipe 18 decreases, the amount decreases. When the entire inner surface of the purification system pipe 18 is covered with nickel metal, Fe 2+ is not eluted and the reduction reaction of nickel ions by electrons is stopped. The reduction reaction of nickel ions by hydrazine (reducing agent) is continued regardless of the decrease in the Fe 2+ elution amount.
  • a hydrazine (reducing agent) aqueous solution is injected into the film-forming aqueous solution 91 containing nickel ions, and the nickel ions taken into the inner surface of the purification system pipe 18 are injected. Hydrazine (reducing agent) is reduced, nickel metal is increased on the inner surface of the purification system pipe 18, and the thickness of the nickel metal film 89 formed on the concavo-convex surface is increased.
  • the reduction reaction of nickel ions by hydrazine (reducing agent) is slower than the reduction reaction of nickel ions by electrons, and the formation of the nickel metal film 89 by the former reduction reaction takes time. Is performed prior to the reduction of nickel ions with hydrazine (reducing agent).
  • step S7 It is determined whether the formation of the nickel metal film has been completed.
  • step S7 When the nickel metal film 89 formed on the inner surface of the purification system pipe 18 is insufficient (when the temperature of the film-forming aqueous solution is 90 ° C. and the nickel metal existing on the inner surface is less than 250 ⁇ g / cm 2 ), step The steps S5 to S7 are repeated.
  • the injection pump 38 is stopped and the valve 40 is closed to stop the injection of the nickel formate aqueous solution into the circulation pipe 31 and the injection pump 43.
  • the valve 45 is closed to stop the injection of the hydrazine aqueous solution into the circulation pipe 31, and the formation of the nickel metal film on the inner surface of the purification system pipe 18 is finished.
  • the elapsed time after injecting the nickel formate aqueous solution into the circulation pipe 31 reaches the set time, it is determined that the nickel metal existing on the inner surface of the purification system pipe 18 has become 250 ⁇ g / cm 2 .
  • the set time is obtained by measuring in advance the time until the nickel metal on the surface of the carbon steel test piece reaches 250 ⁇ g / cm 2 .
  • Step S8 Decompose formic acid and reducing agent.
  • the valve 81 and the valve 75 are opened and a part of the opening of the valve 74 is closed, and a part of the film forming aqueous solution 91 containing nickel ions, formic acid, ammonia and hydrazine is guided to the cation exchange resin tower 63 through the pipe 76. Further, the valve 99 is kept closed, the valve 80 is opened, and the film-forming aqueous solution 91 discharged from the cation exchange resin tower 63 is supplied to the decomposition device 65 through the pipe 83. At this time, hydrogen peroxide in the chemical tank 57 is supplied to the decomposition device 65 through the supply pipe 59 and the pipe 83.
  • Formic acid and hydrazine (reducing agent) contained in the film-forming aqueous solution 91 are decomposed into carbon dioxide, nitrogen and water by the action of the activated carbon catalyst and hydrogen peroxide in the decomposition device 65.
  • step S9 The film-forming aqueous solution from which nickel ions and ammonia have been removed and formic acid and the reducing agent have been decomposed is purified (step S9).
  • the valve 74 is opened and the valves 75, 80 and 81 are closed to stop the supply of the film-forming aqueous solution 91 to the cation exchange resin tower 63 and the decomposition device 65. Is opened, a part of the opening of the valve 71 is closed, and the valves 77 and 82 are opened. Circulation pumps 35 and 34 are driven.
  • the concentrations of hydrazine and formic acid are reduced by decomposition and returned to the circulation pipe 31 from the purification system pipe 18, and the film-forming aqueous solution 91 containing nickel ions and ammonia is cooled to 60 ° C. by the cooler 62. Further, the film forming aqueous solution 91 at 60 ° C. discharged from the cooler 62 is guided to the mixed bed resin tower 64, and nickel ions, other cations and anions, and ammonia remaining in the film forming aqueous solution 91 are further removed. The cation exchange resin and the anion exchange resin in the mixed bed resin tower 64 are removed (first purification step).
  • the circulation piping 31 and the purification system piping 18 are circulated until the above-described ions contained in the film-forming aqueous solution cooled to 60 ° C. are substantially eliminated.
  • the valve 71 is opened and the valves 72, 77 and 82 are closed.
  • the film-forming aqueous solution becomes substantially 60 ° C. water.
  • the temperature of 60 ° C. is maintained so that the noble metal (for example, platinum) adheres easily to the nickel metal film formed on the surface of the purification system pipe 18 in the next step S10.
  • ammonia for example, 50 ppm of ammonia
  • ammonia is injected into the 60 ° C. water.
  • the ammonia is injected by opening the valve 86 and then supplying ammonia from the ejector 66 to 60 ° C. water flowing in the pipe 87.
  • the supplied ammonia is mixed with water at 60 ° C. in the surge tank 32. After the predetermined amount of ammonia is injected, the valve 86 is closed.
  • a platinum ion aqueous solution is injected (step S10).
  • the valve 50 of the platinum ion implanter 46 is opened and the injection pump 48 is driven.
  • the water flowing in the circulation pipe 31 is kept at 60 ° C. by heating with the heater 33.
  • An aqueous solution containing platinum ions in the chemical liquid tank 47 through the injection pipe 49 (for example, sodium hexahydroxoplatinate hydrate (Na 2 [Pt (OH) 6 ]) into water containing ammonia at 60 ° C. flowing in the circulation pipe 31.
  • an aqueous solution of nH 2 O) is injected.
  • the concentration of platinum ions in this aqueous solution to be injected is, for example, 1 ppm.
  • Platinum is in an ionic state in an aqueous solution of sodium hexahydroxoplatinate sodium hydrate.
  • An aqueous solution containing ammonia and platinum ions at 60 ° C. is supplied from the circulation pipe 31 to the purification system pipe 18 and returned from the purification system pipe 18 to the circulation pipe 31 by driving of the circulation pumps 34 and 35.
  • the aqueous solution containing ammonia and platinum ions circulates in the closed loop including the circulation pipe 31 and the purification system pipe 18.
  • a reducing agent is injected (step S11).
  • the valve 45 of the reducing agent injection device 41 is opened to drive the injection pump 43, and the aqueous solution of hydrazine, which is the reducing agent in the chemical tank 42, contains ammonia and platinum ions flowing through the circulation pipe 31 through the injection pipe 44. Pour into an aqueous solution at 60 ° C.
  • the hydrazine concentration of the injected hydrazine aqueous solution is, for example, 100 ppm.
  • the aqueous hydrazine solution is injected into the circulation pipe 31 after the 60 ° C. aqueous solution containing ammonia and platinum ions reaches the connection point between the injection pipe 44 and the circulation pipe 31 which is the injection point of the hydrazine aqueous solution.
  • an aqueous solution containing ammonia, platinum ions and hydrazine at 60 ° C. is supplied from the circulation pipe 31 to the purification system pipe 18.
  • the hydrazine aqueous solution is injected into the injection pipe immediately after the predetermined amount of Na 2 [Pt (OH) 6 ] ⁇ nH 2 O filled in the chemical tank 47 is completely injected into the circulation pipe 31.
  • the reduction reaction to convert platinum ions into platinum by hydrazine first occurs in the aqueous solution containing hydrazine and platinum ions flowing in the circulation pipe 31, whereas the latter.
  • the platinum ions are already adsorbed on the surface of the nickel metal film 89 formed on the inner surface of the purification system pipe 18, and the adsorbed platinum ions are reduced by hydrazine.
  • the amount of platinum 90 adhering to the surface of the nickel metal film 89 formed on the inner surface of the purification system pipe 18 further increases (see FIG. 6).
  • the hydrazine concentration at the connection point of the hydrazine aqueous solution injected from the chemical liquid tank 42 through the connection point of the circulation pipe 31 and the injection pipe 44 is set in advance so as to become a set concentration, for example, 100 ppm. Then, the injection rate of the hydrazine aqueous solution into the circulation pipe 31 is calculated, and the hydrazine in the aqueous solution 92 containing platinum ions at 60 ° C. flowing through the circulation pipe 31 is set to the set concentration, and formed on the inner surface of the purification system pipe 18.
  • the amount of the hydrazine aqueous solution to be filled in the chemical liquid tank 42 necessary for reducing the platinum ions adsorbed on the surface of the nickel metal film 89 to the platinum 90 is calculated, and the calculated amount of the hydrazine aqueous solution is stored in the chemical liquid tank 42. Fill.
  • the rotational speed of the injection pump 43 is controlled in accordance with the calculated injection speed of the hydrazine aqueous solution into the circulation pipe 31, and the hydrazine aqueous solution in the chemical liquid tank 42 is injected into the circulation pipe 31.
  • step S12 It is determined whether or not the adhesion of platinum is completed (step S12).
  • the elapsed time from the injection of the platinum ion aqueous solution and the reducing agent aqueous solution reaches a predetermined time, it is determined that the adhesion of a predetermined amount of platinum to the surface of the nickel metal film 89 formed on the inner surface of the purification system pipe 18 is completed.
  • the steps S10 to S11 are repeated.
  • the aqueous solution remaining in the purification system pipe 18 and the circulation pipe 31 is purified (step S13).
  • the valves 81, 77 and 82 are opened to close a part of the opening of the valve 74, A 60 ° C. aqueous solution containing platinum ions, ammonia and hydrazine, which has been pressurized by the circulation pump 35, is supplied to the mixed bed resin tower 64.
  • Platinum ions, other metal cations (for example, sodium ions), ammonia, hydrazine, and OH groups contained in the aqueous solution are adsorbed by the ion exchange resin in the mixed bed resin tower 64 and removed from the aqueous solution (first). 2 purification process).
  • the aqueous solution discharged from the mixed bed resin tower 64 is returned to the circulation pipe 31 through the valve 82 and guided to the surge tank 32.
  • the waste liquid is processed (step S14).
  • the circulation pipe 31 and the waste liquid treatment device (not shown) are connected by a high pressure hose (not shown) having a pump (not shown).
  • the aqueous solution that is radioactive waste liquid remaining in the purification system pipe 18 and the circulation pipe 31 is driven to the waste liquid treatment device (not shown) from the circulation pipe 31 through the high-pressure hose. It is discharged and processed in a waste liquid treatment device.
  • cleaning water is supplied into the purification system pipe 18 and the circulation pipe 31, and the circulation pumps 34 and 35 are driven to clean the inside of these pipes.
  • the cleaning water in the purification system pipe 18 and the circulation pipe 31 is discharged to the waste liquid treatment apparatus.
  • the pH of the film-forming aqueous solution is not affected by the injection of the nickel formate aqueous solution and the reducing agent (for example, hydrazine).
  • the pH of the film-forming aqueous solution can be maintained at the set value while the film-forming aqueous solution containing one component each of a reducing agent, pH buffer solution, acid and base is in contact with the surface of the carbon steel member. .
  • the time required for forming the nickel metal film on the surface of the carbon steel member can be shortened.
  • the amount of nickel metal film formed on the surface of the carbon steel member can be remarkably increased by setting the pH of the film-forming aqueous solution to a pH in the range of 3.9 to 4.2 (see FIG. 7).
  • the set value of the pH of the film-forming aqueous solution can be set to a pH within the range of 3.9 to 4.2.
  • the amount of nickel metal film formed on the surface of the steel member can be further increased. As a result, the time required for forming the nickel metal film on the surface of the carbon steel member can be further shortened.
  • a film-forming aqueous solution containing nickel ions and a reducing agent is brought into contact with the inner surface of the purification system pipe 18, and this inner surface is attached to the inner surface of the purification system pipe 18 in contact with the reactor water.
  • a reducing agent for example, hydrazine
  • This nickel metal film 89 it is possible to prevent the dissolution of Fe 2+ into the film-forming aqueous solution from the purification system pipe 18, to the inner surface of the cleanup system piping 18 noble metal (e.g., platinum) adhesion of the Fe 2+
  • noble metal e.g., platinum
  • the time required for adhesion of the noble metal to the inner surface is reduced without being hindered by elution. be able to.
  • the noble metal can be efficiently attached to the inner surface, and the amount of the noble metal attached to the inner surface of the purification system pipe 18 is increased.
  • the nickel metal film 89 formed on the inner surface of the purification system pipe 18 contains nickel metal in the range of 50 ⁇ g / cm 2 to 300 ⁇ g / cm 2 .
  • the nickel metal film 89 covers the entire inner surface of the purification system pipe 18 in contact with the film forming liquid;
  • the nickel metal coating 89 prevents the reactor water flowing in the purification system pipe 18 from coming into contact with the base material of the purification system pipe 18. For this reason, the radionuclide contained in the reactor water is not taken into the base material of the purification system pipe 18.
  • the nickel metal film 89 formed on the inner surface of the purification system pipe 18 not only shortens the time required for the platinum to adhere to the purification system pipe 18, but also as described in Examples 2, 3 and 4 below. Combined with the action of the deposited platinum 90, the inner surface of the purification system pipe 18 contributes to the formation of a stable nickel ferrite film that does not elute into the reactor water due to the deposited platinum.
  • the nickel metal film 89 is formed on the inner surface of the purification system pipe 18 by the nickel ions contained in the aqueous solution for film formation being taken into the inner surface of the purification system pipe 18 by the substitution plating reaction with iron contained in the purification system pipe 18. Electrons generated as a result of the elution of Fe 2+ from the system pipe 18 or nickel ions adsorbed on the inner surface of the pipe are reduced to nickel metal by hydrazine (reducing agent) contained in the film-forming aqueous solution. Thus, the nickel metal generated by the displacement plating reaction and the reducing action of the electrons or the reducing agent has strong adhesion to the base material of the purification system pipe 18. For this reason, the formed nickel metal film 89 is not peeled off from the purification system pipe 18.
  • the nickel metal film 89 is formed on the inner surface of the purification system pipe 18, so that the oxidation containing the radionuclide formed on the inner surface of the purification system pipe 18 is performed.
  • the nickel metal film is not formed on the film, the radiation emitted from the purification system pipe 18 is reduced, and the surface dose rate of the purification system pipe 18 is significantly reduced.
  • iron (II) oxalate formed on the inner surface of the purification system pipe 18 that is a carbon steel member is It is removed by the action of an oxidizing agent (for example, hydrogen peroxide) injected into the acid aqueous solution.
  • an oxidizing agent for example, hydrogen peroxide
  • a method for suppressing the attachment of radionuclides to carbon steel members of the nuclear power plant of Example 2, which is another preferred embodiment of the present invention, will be described below with reference to FIG.
  • the method for suppressing the attachment of radionuclide to the carbon steel member of this embodiment is applied to the purification system piping of the BWR plant.
  • each of steps S1 to S14 and new steps S15 to S17 in the method for attaching a noble metal to the carbon steel member of the nuclear power plant of embodiment 1 are performed. Each step is performed.
  • the film forming apparatus 30 used in Embodiment 1 is used in each step of Steps S1 to S14.
  • steps S1 to S14 are sequentially performed. Since the steps S1 to S14 are the same as those in the first embodiment, description of these steps is omitted. Here, the steps S15 to S17 performed after the step S14 will be described in detail.
  • the film forming apparatus is removed from the piping system (step S15). After the steps S1 to S14 are performed, the film forming apparatus 30 connected to the purification system pipe 18 is removed from the purification system pipe 18. Then, the purification system pipe 18 is restored.
  • the nuclear power plant is activated (step S16). After the fuel replacement and maintenance inspection of the BWR plant 1 are completed, the BWR plant 1 having the purification system pipe 18 having the nickel metal film 89 formed on the inner surface is started in order to start operation in the next operation cycle.
  • the reactor water at 130 ° C. or higher is brought into contact with the nickel metal film to which platinum is attached (step S17).
  • the reactor water in the RPV 3 is supplied to the reactor core 4 through the recirculation system pipe 6 and the jet pump 5 as described above. And the reactor water discharged from the core is returned to the downcomer.
  • Reactor water in the downcomer flows into the purification system pipe 18 via the recirculation system pipe 6 and eventually flows into the water supply pipe 11 and is returned to the RPV 3.
  • a control rod (not shown) is pulled out of the core 4 to change the core 4 from a subcritical state to a critical state, and the reactor water in the core 4 is heated by heat generated by the nuclear fission of nuclear fuel material in the fuel rod. At this time, no steam is generated in the core 4, and steam is not yet supplied to the turbine 9. Further, the control rod is pulled out from the core 4, and the pressure in the RPV 3 is raised to the rated pressure in the temperature raising / pressurizing step of the reactor 2, and the reactor water is heated by the heat generated by the nuclear fission, so that the reactor water in the RPV 3 is heated. The temperature is raised to the rated temperature (280 ° C.).
  • the reactor power is rated output by pulling out the control rods from the core 4 and increasing the flow rate of the reactor water supplied to the core 4. It is raised to (100% output).
  • the rated operation of the BWR plant 1 while maintaining the rated output is continued until the end of the operation cycle.
  • the reactor power rises to, for example, 10% power
  • steam generated in the core 4 is supplied to the turbine 9 through the main steam pipe 8, and power generation is started.
  • the reactor water 93 contains oxygen and hydrogen peroxide. Oxygen and hydrogen peroxide are generated by radiolysis of the reactor water 93 in the RPV 3.
  • Reactor water 93 in the RPV 3 is guided from the recirculation system pipe 6 into the purification system pipe 18 and comes into contact with a nickel metal film 89 to which platinum 90 is adhered, which is formed on the inner surface of the purification system pipe 18 (FIG. 13). reference).
  • the temperature of the reactor water 93 in contact with the nickel metal film 89 rises due to the heating of the reactor water by the heat generated by the nuclear fission described above, and eventually reaches 130 ° C. or higher and reaches 280 ° C. To rise.
  • the temperature of the reactor water 93 becomes 130 ° C. or higher
  • the temperature of the nickel metal film 89 formed on the inner surface and the purification system pipe 18 surrounded by the heat insulating material also becomes 130 ° C. or higher.
  • Ni 1-x Fe 2 + x O reacts with the oxygen and Fe 2+ in which the nickel in the nickel metal film 89 migrates due to the decrease in the corrosion potential of the nickel metal film 89 and the formation of a high temperature environment of about 130 ° C. or more.
  • nickel ferrite (NiFe 2 O 4 ) in which x is 0 is generated.
  • the nickel metal film 89 formed on the inner surface of the purification system pipe 18 is converted to the nickel ferrite film 94, and the nickel ferrite film 94 covers the inner surface of the purification system pipe 18 (see FIG. 15).
  • the nickel ferrite film 94 covers the entire inner surface of the purification system pipe 18 covered by the nickel metal film 89.
  • Platinum 90 is deposited on the nickel ferrite film 94.
  • This example can obtain each effect produced in Example 1.
  • the platinum 90 was adhered to the nickel metal film 89 formed on the inner surface of the purification system pipe 18 and having platinum 90 adhered thereto by simply starting the BWR plant 1.
  • the nickel ferrite film 94 can be changed.
  • the nickel ferrite film 94 is a stable nickel ferrite that does not elute even by the action of the attached platinum 90. For this reason, the time required for forming a stable nickel ferrite film 94 that does not elute into the reactor water 93 even by the platinum 90 adhering to the inner surface of the purification system pipe 18 is shortened.
  • the nickel metal film 89 is formed on the inner surface of the purification system pipe 18 and the platinum 90 is adhered to the nickel metal film 89 while the BWR plant 1 is stopped.
  • the conversion of the nickel metal film 89 into the nickel ferrite film 94 is performed after the start of the BWR plant 1. For this reason, when the temperature of the reactor water is less than 130 ° C., the nickel metal film 89 is not changed to the nickel ferrite film 94, and the inner surface of the purification system pipe 18 is covered with the nickel metal film 89 to which platinum 90 is adhered. (See FIG. 13).
  • the platinum 90 adhering to the stable nickel ferrite film not only converts the nickel metal film 89 into the stable nickel ferrite film 94, but also injects dissolved oxygen and hydrogen in the reactor water 93 during operation of the nuclear power plant 1. It also functions as a catalyst for reacting hydrogen injected into the reactor water 93 to generate water. For this reason, the dissolved oxygen concentration in the reactor water 93 is reduced, and the occurrence of stress corrosion cracking in the stainless steel structural member of the nuclear power plant 1 is suppressed.
  • the inner surface of the purification system pipe 18 is covered with a stable nickel ferrite film 94 that does not elute even by the action of the platinum 90 during most of the operation cycle.
  • the period during which the nickel metal film 89 covers the inner surface of the purification system pipe 18 is a very short period with respect to the operation period of the nuclear power plant 1 in one operation cycle, so that the nickel contained in the nickel metal film 89 is the reactor water.
  • the amount eluted in 93 is extremely small, and the thickness of the nickel metal film 89 covering the inner surface of the purification system pipe 18 hardly changes. For this reason, the nickel metal film 89 cannot disappear before the nickel ferrite film 94 is changed.
  • a method for suppressing the attachment of radionuclides to carbon steel members of the nuclear power plant of Example 3 which is another preferred embodiment of the present invention will be described below with reference to FIG.
  • the method for suppressing the attachment of radionuclide to the carbon steel member of this embodiment is applied to the purification system piping of the BWR plant.
  • the steps S1 to S17 performed in the method for suppressing the attachment of radionuclides to carbon steel members of the nuclear power plant of Example 2 are performed.
  • Examples 1 and 2 use the film forming apparatus 30 shown in FIG. 3 in the step S4, in this example, a film forming apparatus 30A shown in FIG. 16 is used.
  • the film forming apparatus 30A has a configuration in which the pH buffer solution injection device 51 in the film formation device 30 is replaced with a pH buffer solution injection device 51A including a formic acid injection device 51C and an ammonia injection device 51D.
  • the configuration of the film forming apparatus 30A excluding the pH buffer solution injection apparatus 51A is the same as the configuration of the film forming apparatus 30 excluding the pH buffer solution injection apparatus 51.
  • a formic acid injection device 51C of the pH buffer solution injection device 51A has a chemical tank 52A, an injection pump 53A, and an injection pipe 54A.
  • the chemical tank 52A is connected to the circulation pipe 31 and to the injection pipe 54 having the valve 55 on the upstream side of the valve 55 by an injection pipe 54A having an injection pump 53A and a valve 55A.
  • An aqueous solution of formic acid, which is one component of the pH buffer solution, is filled in the chemical tank 52A.
  • the ammonia injection device 51D of the pH buffer solution injection device 51A includes a chemical liquid tank 52B, an injection pump 53B, and an injection pipe 54B.
  • the chemical liquid tank 52B is connected to the injection pipe 54 connected to the circulation pipe 31 on the upstream side of the valve 55 by an injection pipe 54B having an injection pump 53B and a valve 55B.
  • An aqueous solution of ammonia which is another component of the pH buffer solution, is filled in the chemical tank 52B.
  • Steps S1 to S3 are performed.
  • the formic acid aqueous solution in the chemical liquid tank 52A and the aqueous ammonia solution in the chemical liquid tank 52B are supplied to the injection pipe 54 having the valve 55 with the valve 55 opened.
  • the aqueous solution and the aqueous ammonia solution are mixed to produce a mixed solution containing formic acid and ammonia, which is a pH buffer solution.
  • the mixed solution containing formic acid and ammonia is injected into a 90 ° C. aqueous solution containing the remaining formic acid flowing through the circulation pipe 31 through the injection pipe 54.
  • the supply of the formic acid aqueous solution and the aqueous ammonia solution to the injection pipe 54 will be described more specifically.
  • the valve 55A of the formic acid injection device 51C is opened to drive the injection pump 53A, and the formic acid aqueous solution in the chemical liquid tank 52A is supplied to the injection pipe 54 through the injection pipe 54A.
  • the valve 55B of the ammonia injection device 51D is opened to drive the injection pump 53B, and the aqueous ammonia solution in the chemical liquid tank 52B is supplied to the injection pipe 54 through the injection pipe 54B.
  • the aqueous formic acid solution and the aqueous ammonia solution are mixed to produce a mixed solution containing formic acid and ammonia.
  • the injection flow rate of the formic acid aqueous solution and the injection flow rate of the aqueous ammonia solution into the injection pipe 54 are adjusted by the injection pumps 53A and 53B so that the formic acid concentration at the junction of the injection pipe 54 and the circulation pipe 31 is 800 ppm and the ammonia concentration is 156 ppm.
  • the injection flow rate is adjusted to continue until the injection amount necessary for achieving the formic acid concentration of 800 ppm and the ammonia concentration of 156 ppm calculated from the system water content is injected.
  • the pH of the 90 ° C. aqueous solution containing the remaining formic acid flowing through the circulation pipe 31 into which the mixed solution containing formic acid and ammonia, which is a pH buffer solution, is injected is a value within the range of 3.9 to 4.2. For example, 4.0.
  • step S4 after the step S4 is performed, the steps S5 to S17 are sequentially performed.
  • each effect produced in the second embodiment can be obtained.
  • formic acid aqueous solution and ammonia aqueous solution are separately supplied from the formic acid injection device 51C and the ammonia injection device 51D to the injection pipe 54.
  • Impurities such as Fe (OH) 3 are deposited somewhere in the piping (the purification system piping 18 and the circulation piping 31) through which the aqueous solution is formed, and the deposited impurities dissolve to provide a buffer capacity of the mixed solution of formic acid and ammonia.
  • the pH of the film-forming aqueous solution fluctuates from 4.0, for example, when the pH is lower than 4.0, ammonia is supplied from the ammonia injection device 51D, and the pH is lower than 4.0.
  • formic acid can be individually injected from the formic acid injection device 51C to adjust the pH of the film-forming aqueous solution to 4.0. That is, the pH of the film-forming aqueous solution can be easily adjusted to a set value (for example, 4.0).
  • a method for suppressing the attachment of radionuclides to the carbon steel member of the nuclear power plant of Example 4 which is another preferred embodiment of the present invention will be described below with reference to FIGS.
  • the method for suppressing the attachment of radionuclides to carbon steel members of a nuclear power plant according to this embodiment is applied to the purification system piping of a BWR plant that has undergone operation in at least one operation cycle.
  • the steps S1 to S15 and S17 performed in the second embodiment and the new steps S18 and S19 are performed.
  • the film forming apparatus 30 used in Embodiment 2 is used in each step of Steps S1 to S14, and a new heating system 95 is used in each step of Steps S18 and S17.
  • the heating system 95 has a pressure-resistant structure, and includes a circulation pipe 96, a circulation pump 97, a heating device 98, and a valve 99 that is a pressure increasing device.
  • a circulation pump 97 is provided in the circulation pipe 96, and a heating device 98 is provided in the circulation pipe 96 upstream of the circulation pump 97.
  • the heating device 98 may be disposed downstream of the circulation pump 97.
  • the pipe 100 bypasses the circulation pump 97, one end of the pipe 100 is connected to the circulation pipe 96 upstream from the circulation pump 97, and the other end of the pipe 100 is connected to the circulation pipe 96 downstream from the circulation pump 97. Connected.
  • a valve 99 is provided in the pipe 100.
  • the on-off valve 101 is provided at the upstream end of the circulation pipe 96, and the on-off valve 102 is provided at the downstream end of the circulation pipe.
  • step S15, S18, S17, and S18 are sequentially performed.
  • step S15, S18, S17, and S18 is demonstrated in detail below.
  • the film forming apparatus is removed from the piping system (step S15).
  • the film forming apparatus 30 connected to the purification system pipe 18 is removed from the purification system pipe 18.
  • One end of the circulation pipe 31 of the film forming apparatus 30 is removed from the flange of the valve 23, and the other end of the circulation pipe 31 is removed from the flange of the valve 25.
  • step S18 Connect the heating system to the piping system (step S18).
  • One end of the circulation pipe 96 (third pipe) of the heating system 95 on the open / close valve 102 side is connected to the flange of the valve 23, and the circulation pipe 96 is connected to the purification system pipe 18.
  • the other end of the circulation pipe 96 on the on-off valve 101 side is connected to the flange of the valve 25, and the circulation pipe 96 is connected to the purification system pipe 18 between the regenerative heat exchanger 20 and the non-regenerative heat exchanger 21.
  • Both ends of the circulation pipe 96 are connected to the purification system pipe 18, and a closed loop including the purification system pipe 18 and the circulation pipe 96 is formed.
  • step S17 water having a temperature within a temperature range of 130 ° C. or higher and 330 ° C. or lower and containing oxygen is brought into contact with the nickel metal film to which platinum is attached (step S17).
  • Water containing oxygen is filled in a closed loop including the circulation pipe 96 and the purification system pipe 18.
  • the circulation pump 97 is driven to circulate oxygen-containing water in the closed loop.
  • the rotational speed of the circulation pump 97 is increased to a certain rotational speed, and then the opening degree of the valve 99 is gradually decreased to increase the pressure of water discharged from the circulation pump 97.
  • the water containing oxygen circulating in the closed loop is heated by the heating device 98, and the temperature of the water is raised.
  • the temperature of the water is raised while increasing the pressure of the water discharged from the circulation pump 97.
  • the rotational speed of the circulation pump 97 is further increased.
  • the pressure of the water circulating in the closed loop rises to a range of 0.27 MPa to 12.863 MPa, for example, the temperature of the circulating water is about 130.0 ° C. to 330.0 ° C. Ascend within range.
  • the pressure of the circulating water is adjusted, and the temperature of the water is adjusted to, for example, 150 ° C. within a temperature range of 130 ° C. to 330 ° C.
  • the temperature of the water circulating in the closed loop is maintained at 150 ° C. while the nickel metal film formed on the inner surface of the purification system pipe 18 is converted into a stable nickel ferrite film.
  • a water 93A containing 150 ° C. containing oxygen is supplied from the circulation pipe 96 to the purification system pipe 18 and comes into contact with the nickel metal film 89 formed on the inner surface of the purification system pipe 18 to which platinum 90 adheres (see FIG. 13). .
  • the purification system pipe 18 is surrounded by a heat insulating material (not shown) except for the vicinity of the valves 23 and 25 to which both ends of the circulation pipe 96 are connected.
  • each of the water 93A containing oxygen, the purification system pipe 18, and the nickel metal film 89 is 150 ° C., it constitutes oxygen (O 2 ) contained in the water 93A and some water molecules contained in the water 93A.
  • Oxygen moves into the nickel metal film 89, and Fe contained in the purification system pipe 18 becomes Fe 2+ and moves into the nickel metal film 89 (see FIG. 14).
  • Oxygen contained in the water 93A easily moves alone in the water 93A at 130 ° C. or higher, and easily enters the nickel metal film 89. Due to the action of platinum 90 adhering to the nickel metal film 89, the corrosion potential of the purification system pipe 18 and the nickel metal film 89 is lowered.
  • Ni 1-x Fe Stable nickel ferrite NiFe 2 O 4
  • x is 0 in 2 + x O 4 and does not elute even by the action of platinum.
  • the nickel metal film 89 formed on the inner surface of the purification system pipe 18 is converted into a stable nickel ferrite (NiFe 2 O 4 ) film 94, and the nickel ferrite film 94 is applied to the valves 23 and 25 of the purification system pipe 18.
  • the inner surface of the intermediate portion is covered (see FIG. 15).
  • the platinum 90 is attached to the surface of the stable nickel ferrite film 94.
  • step S19 Remove the heating system from the piping system (step S19). After the nickel ferrite film 94 is formed covering the inner surface of the purification system pipe 18, the heating system 95 connected to the purification system pipe 18 is removed from the purification system pipe 18. Thereafter, the purification system pipe 18 is restored.
  • a BWR plant having a purification system pipe 18 having a nickel ferrite film 94 with platinum 90 attached on its inner surface in order to start operation in the next operation cycle. 1 is activated.
  • the reactor water flowing in the purification system pipe 18 is not directly in contact with the base material of the purification system pipe 18 because the nickel ferrite film 94 is formed.
  • This example can obtain each effect produced in Example 1. Furthermore, in this embodiment, in order to convert the nickel metal film 89 formed on the inner surface of the purification system pipe 18 into the stable nickel ferrite film 94 using the heating system 95, the conversion process in step S17 is performed in the BWR plant 1. This can be done during the shutdown. For this reason, when starting up the BWR plant 1, since the stable nickel ferrite film 94 is already formed on the inner surface of the purification system pipe 18, in this embodiment, the stable nickel ferrite film is formed on the inner surface in the first embodiment. Even before the film 94 is formed, the corrosion of the purification system pipe 18 can be suppressed.
  • the oxygen-containing water in the temperature range of 130 ° C. or higher and 330 ° C. or higher is brought into contact with the nickel metal film 89 formed on the inner surface of the purification system pipe 18 using the heating system 95,
  • the time required for heating water to a predetermined temperature can be shortened.
  • the degree of pressure resistance required by the heating system 95 can be reduced.
  • a method for adhering a noble metal to a carbon steel member of a nuclear power plant of Example 5 which is another preferred embodiment of the present invention will be described below with reference to FIG.
  • the method for adhering a noble metal to a carbon steel member of a nuclear power plant according to this embodiment is applied to a purification system piping of a BWR plant that has undergone an operation in at least one operation cycle.
  • This example has a procedure in which step S4 is replaced with steps S4A and 4B in the method for attaching a noble metal to a carbon steel member of the nuclear power plant of example 1.
  • the procedure of the present embodiment excluding steps S4A and 4B is the same as the procedure of the first embodiment excluding step S4. That is, in the present embodiment, the steps S1 to S3 are performed before the step S4A, and the steps S5 to S14 are performed after the step S4B.
  • a film forming apparatus 30A shown in FIG. 16 is used.
  • the injection pipe 54 does not exist, and each of the formic acid injection apparatus 51C and the ammonia injection apparatus 51D shown in FIG. 16 is directly connected to the circulation pipe 31 separately.
  • the injection piping 54A of the formic acid injection device 51C is connected to the circulation piping 31 between the connection point of the injection piping 39 and the circulation piping 31 of the nickel ion injection device 36 and the valve 84, and the injection piping of the ammonia injection device 51D.
  • the formic acid injection device 51C and the ammonia injection device 51D are substantially pH buffer solution injection devices.
  • the other structure of the film forming apparatus 30A used in the present embodiment is the same as that of the film forming apparatus 30A shown in FIG.
  • step S4A the formic acid aqueous solution filled in the chemical tank 52A of the formic acid injection device 51C is injected into the 90 ° C. aqueous solution containing the remaining formic acid flowing through the circulation pipe 31 through the injection pipe 54A.
  • the formic acid aqueous solution is injected and the 90 ° C. aqueous solution reaches the connection point between the injection pipe 54B and the circulation pipe 31, the aqueous ammonia solution filled in the chemical liquid tank 52B of the chemical liquid tank 52BC passes through the injection pipe 54A. Injected into.
  • the injection flow rate of the formic acid aqueous solution and the aqueous ammonia solution into each circulation pipe 31 is such that the formic acid concentration of the aqueous solution at 800C flowing through the circulation pipe 31 is 800 ppm and the ammonia concentration of the aqueous solution is 156 ppm. Be controlled.
  • a pH buffer solution that is, a mixed solution containing formic acid and ammonia
  • an aqueous solution containing formic acid and ammonia which are two different components of the pH buffer solution, and having a pH of 4.0 and 90 ° C. is produced.
  • Injection of the formic acid aqueous solution and the aqueous ammonia solution into the respective circulation pipes 31 is performed such that the injected formic acid and ammonia are mixed in the circulation pipe 31 to generate a pH buffer solution.
  • the nickel formate aqueous solution becomes the nickel ion implanter.
  • the chemical solution tank 37 is poured into an aqueous solution at 90 ° C. with a pH in the purification system pipe 18 of 4.0 (step S5). Thereafter, steps S5 to S14 are sequentially performed.
  • step S14 any of steps S15 to S17 described in embodiment 2 and steps S15, S18, S17, and S18 described in embodiment 4 are performed. May be implemented.
  • This example can obtain each effect produced in Example 3.
  • the film forming apparatus 30A shown in FIG. 16 can be used in place of the film forming apparatus 30 in each of Examples 1, 2, 4, and 5.
  • the heating system 95 used in the fourth embodiment can be used in each of the third and fifth embodiments. In each of the third and fifth embodiments, the procedure shown in FIG. 17 can be applied.
  • Examples 1 to 5 described above can be applied to carbon steel members that are in contact with the reactor water of a pressurized water nuclear plant and a Canadian heavy water cooled pressure tube nuclear plant.
  • pH buffer solution injection device 51C ... formic acid injection device, 51D ... ammonia injection device, 56 ... Oxidizer supply device, 58 ... supply pump, 62 ... cooler, 63 ... cation exchange resin tower, 64 ... mixed bed resin tower, 65 ... decomposition device, 89 ... nickel metal film, 90 ... platinum, 94 ... nicke Ferrite film, 95 ... heating system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemically Coating (AREA)

Abstract

貴金属を付着するニッケル金属皮膜の、炭素鋼部材への形成に要する時間を短縮できる原子力プラントの炭素鋼部材への貴金属の付着方法を提供する。BWRプラントの炭素鋼製の浄化系配管に皮膜形成装置を接続する(S1)。pH緩衝溶液を注入して皮膜形成水溶液のpHを4.0にする(S4)。ギ酸ニッケル水溶液をその皮膜形成水溶液に注入し(S5)、さらに、還元剤を注入する(S5)。pH緩衝溶液、ニッケルイオン及び還元剤を含む皮膜形成水溶液を浄化系配管内に供給してその内面にニッケル金属皮膜を形成する。皮膜形成水溶液内のギ酸及び還元剤を分解した(S8)後、白金イオンの注入(S10)及び還元剤の注入(S11)を実施し、白金イオン及び還元剤を含む水溶液を、浄化系配管の内面に形成されたニッケル金属皮膜の表面に接触させ、ニッケル金属皮膜の表面に白金を付着させる。

Description

原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
 本発明は、原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法に係り、特に、沸騰水型原子力プラントに適用するのに好適な原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法に関する。
 原子力プラントとして、例えば、沸騰水型原子力プラント(以下、BWRプラントという)及び加圧水型原子力プラント(以下、PWRプラントという)が知られている。例えば、BWRプラントでは、原子炉圧力容器(RPVと称する)内で発生した蒸気が、タービンに導かれ、タービンを回転させる。タービンから排出された蒸気は、復水器で凝縮されて水になる。この水は、給水として給水配管を通ってRPVに供給される。RPV内での放射性腐食生成物の発生を抑制するために、給水に含まれる金属不純物が、給水配管に設けられたろ過脱塩装置で除去される。
 BWRプラント及びPWRプラントでは、RPVなどの主要な構成部材は、腐食を抑制するために、水が接触する接水部にステンレス鋼及びニッケル基合金などを用いる。原子炉浄化系、残留熱除去系、原子炉隔離時冷却系、炉心スプレイ系及び給水系などの構成部材には、プラントの製造所要コストを低減する観点、あるいは給水系を流れる高温水に起因するステンレス鋼の応力腐食割れを避ける観点から、主に炭素鋼部材が用いられる。
 さらに、炉水(RPV内に存在する冷却水)の一部を原子炉浄化系の炉水浄化装置によって浄化し、炉水中に僅かに存在する金属不純物を積極的に除去している。
 しかし、上述のような腐食防止対策を講じても、炉水中における極僅かな金属不純物の存在は避けられないため、一部の金属不純物が、金属酸化物として、燃料集合体に含まれる燃料棒の外面に付着する。燃料棒外面に付着した金属不純物に含まれる金属元素は、燃料棒内の核燃料物質から放出される中性子の照射により原子核反応を生じ、コバルト60、コバルト58、クロム51、マンガン54等の放射性核種になる。酸化物の形態で燃料棒外面に付着した一部の放射性核種は、取り込まれている酸化物の溶解度に応じて炉水中にイオンとして溶出し、また、クラッドと呼ばれる不溶性固体として炉水中に再放出される。炉水中の放射性核種は、原子炉浄化系で除去される。しかしながら、そこで除去されなかった放射性核種は炉水とともに再循環系などを循環する間に、構成部材の炉水と接触する表面に蓄積される。この結果、構成部材表面から放射線が放出され、定検作業時の従事者の放射線被ばくの原因となる。その従業者の被ばく線量は、各人毎に規定値を超えないように管理されている。しかしながら、近年、この規定値が引き下げられ、各人の被ばく線量を経済的に可能な限り低くする必要が生じている。
 運転を経験した原子力プラントの構成部材、例えば、配管の炉水と接触する内面に形成された、コバルト60やコバルト58等の放射性核種を含む酸化被膜を、化学薬品を用いた溶解により除去する化学除染法が提案されている(特開2000-105295号公報)。
 また、配管への放射性核種の付着を低減する方法が様々検討されている。例えば、原子力プラントの構成部材の表面への放射性核種の付着抑制のために、特開平8-220293号公報は、炉水に亜鉛及びニッケル等の金属イオンを注入し、構成部材の表面に亜鉛及びニッケルを付着させることを記載している。
 化学除染後の原子力プラント構成部材表面に、フェライト皮膜の一種であるマグネタイト皮膜を形成することによって、プラントの運転後においてその構成部材表面に放射性核種が付着することを抑制する方法が、特開2006-38483号公報に提案されている。さらに、特開2006-38483号公報には、構成部材の表面にマグネタイト皮膜を形成した後、原子力プラントを起動し、貴金属を注入した炉水をそのマグネタイト皮膜に接触させてマグネタイト皮膜上に貴金属を付着させることが記載されている(図17及び図18参照)。
 特開2007-182604号公報は、原子力プラントの運転停止中で、鉄(II)イオン、ニッケルイオン、酸化剤及びpH調整剤(例えば、ヒドラジン)を含む60℃~100℃の範囲の皮膜形成液を、化学除染後において、原子力プラントの炭素鋼製の構成部材の表面に接触させ、この表面にニッケルフェライト皮膜を形成することを記載する(図6参照)。ニッケルフェライト皮膜の形成により、炭素鋼製の構成部材の腐食が抑制され、その構成部材への放射性核種の付着が抑制される。
 さらに、特開2012-247322号公報は、原子力プラントの運転停止中で、鉄(II)イオン、酸化剤及びpH調整剤(ヒドラジン)を含む60℃~100℃の範囲の皮膜形成液を、原子力プラントの、化学除染されたステンレス鋼製の構成部材の表面に接触させ、この表面にマグネタイト皮膜を形成することを記載する。特開2012-247322号公報には、運転停止中において、貴金属(例えば、白金)を含む水溶液を形成されたマグネタイト皮膜に接触させ、貴金属をマグネタイト皮膜上に付着させることも記載されている。
 特開2014-44190号公報は、原子力プラントの構成部材への貴金属付着方法を記載する。この貴金属付着方法では、原子力プラントの運転停止中に実施される化学除染において、還元除染剤の一部が分解された状態における、ステンレス鋼製の構成部材の表面への貴金属(例えば、白金)の付着、または還元除染剤分解工程後の浄化工程における、構成部材の表面への貴金属の付着を行っている。その構成部材の表面への貴金属の付着により、その表面への放射性核種の付着が抑制される。
特開2000-105295号公報 特開平8-220293号公報 特開2006-38483号公報 特開2007-182604号公報 特開2012-247322号公報 特開2014-44190号公報
 原子力プラントの炭素鋼製の構成部材(炭素鋼部材)への貴金属の付着に要する時間を短縮することが望まれている。
 さらに、亜鉛及びニッケルなどの金属イオンを炉水に注入して原子力プラントの構成部材の表面に亜鉛及びニッケルなどの金属を付着させる場合は、ステンレス鋼製の構成部材に対しては放射性核種の付着抑制効果を発現するが、炭素鋼製の構成部材(炭素鋼部材)では、ステンレス鋼製の構成部材に比べて放射性核種の付着抑制効果が低下する。貴金属の付着においても、炭素鋼製の構成部材の表面に貴金属を付着させた場合は、ステンレス鋼製の構成部材の表面にそれを付着させた場合に比べて放射性核種の付着抑制効果が低下する。
 さらに、原子力プラントの炭素鋼部材への放射性核種の付着が抑制され、その付着抑制効果が長期に亘って持続することが望まれている。
 本発明の第1の目的は、貴金属を付着するニッケル金属皮膜の、炭素鋼部材への形成に要する時間を短縮できる原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法を提供することにある。
 本発明の第2の目的は、炭素鋼部材への放射性核種の付着抑制効果をより長い期間に亘って持続させることができる原子力プラントの炭素鋼部材への放射性核種の付着抑制方法を提供することにある。
 上記した第1の目的を達成する第1発明の特徴は、pH緩衝溶液の、酸及び塩基のそれぞれ1種類の成分、及びニッケルイオンを含む皮膜形成液を、原子力プラントの炭素鋼部材の、炉水と接する第1表面に接触させて、この第1表面に、この第1表面を覆うニッケル金属皮膜を形成し、
 貴金属をそのニッケル金属皮膜の第2表面に付着させ、
 そのニッケル金属皮膜の形成及びその貴金属の付着は、原子力プラントの運転停止後で原子力プラントの起動前に行われることにある。
 皮膜形成液が、pH緩衝溶液の、酸及び塩基のそれぞれ1種類の成分を含んでいるので、皮膜形成液を炭素鋼部材の第1表面に接触している間、皮膜形成液のpHを設定値に維持することができる。このため、皮膜形成液のpHの変動による、炭素鋼部材の第1表面へのニッケル金属の付着量の減少を防止することができ、その第1表面へのニッケル金属の付着量を増大させることができる。この結果、炭素鋼部材の第1表面へのニッケル金属皮膜の形成に要する時間を短縮することができる。
 好ましくは、皮膜形成液のpHが3.9以上4.2以下の範囲内に存在するとよい。
 上記した第2の目的を達成する第2発明の特徴は、酸素を含む130℃以上330℃以下の温度範囲内の温度の水を、原子力プラントの炭素鋼部材の、炉水と接する第1表面に形成されて、貴金属が付着したそのニッケル金属皮膜の第2表面に接触させることにある。
 その水に接触するニッケル金属皮膜及び炭素鋼部材の腐食電位が、ニッケル金属皮膜に付着している貴金属の作用によって低下する。このような腐食電位の低下、及び酸素を含む130℃以上330℃以下の温度範囲内の温度の水の、そのニッケル金属皮膜への接触による、炭素鋼部材及びニッケル金属皮膜における130℃以上330℃以下の温度範囲の高温環境の形成によって、水に含まれる酸素がニッケル金属皮膜内に移行し、さらに、Fe2+が炭素鋼部材からニッケル金属皮膜に移行することにより、ニッケル金属皮膜が、付着した貴金属の作用によっても、原子力プラントの接触する冷却水中に溶出しない安定なニッケルフェライト皮膜に変換される。炭素鋼部材の表面を覆うこのような安定なニッケルフェライト皮膜は、炭素鋼部材への放射性核種の付着抑制効果をより長い期間に亘って持続させることができる。
 第1発明によれば、貴金属を付着するニッケル金属皮膜の、炭素鋼部材への形成に要する時間を短縮することができ、原子力プラントの炭素鋼部材への貴金属の付着作業に要する時間を短縮することができる。
 第2発明によれば、原子力プラントの炭素鋼部材への放射性核種の付着抑制効果をより長い期間に亘って持続させることができる。
本発明の好適な一実施例である、沸騰水型発電プラントの浄化系配管に適用される実施例1の原子力プラントの炭素鋼部材への貴金属の付着方法の手順を示すフローチャートである。 図1に示す原子力プラントの炭素鋼部材への貴金属の付着方法を実施する際に用いられる皮膜形成装置を沸騰水型原子力プラントの浄化系配管に接続した状態を示す説明図である。 図2に示す皮膜形成装置の詳細構成図である。 図1に示す原子力プラントの炭素鋼部材への貴金属の付着方法が開始される前の浄化系配管の断面図である。 図1に示す原子力プラントの炭素鋼部材への貴金属の付着方法により浄化系配管の内面にニッケル金属皮膜が形成された状態を示す説明図である。 図1に示す原子力プラントの炭素鋼部材への貴金属の付着方法により浄化系配管の内面に形成されたニッケル金属皮膜表面に貴金属を付着させた状態を示す説明図である。 炭素鋼試験片の表面に接触させる皮膜形成水溶液のpHと炭素鋼試験片の表面に形成されたニッケル金属皮膜の量との関係を示す特性図である。 皮膜形成水溶液に注入するギ酸の濃度とアンモニアの濃度との関係を、皮膜形成水溶液のpHをパラメータとして示す特性図である。 60Coを含む模擬炉水に浸漬した各種の炭素鋼製の試験片への60Coの付着結果を示した説明図である。 白金を付着した安定なニッケルフェライト皮膜が形成された炭素鋼製の試験片及び表面にその安定なニッケルフェライト皮膜が形成されず酸化皮膜が形成された炭素鋼製の試験片のそれぞれを用いた実機模擬環境腐食試験により、それらの炭素鋼試験片のレーザーラマンスペクトル分析結果を示す説明図である。 白金を付着した安定なニッケルフェライト皮膜が形成された炭素鋼製の試験片を用いたCo-60付着試験によりその安定なニッケルフェライト皮膜のオージェースペクトル分析の結果を示す説明図である。 本発明の好適な他の実施例である、沸騰水型原子力プラントの浄化系配管に適用される実施例2の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法の手順を示すフローチャートである。 図12に示す原子力プラントの炭素鋼部材への放射性核種の付着抑制方法において、浄化系配管の内面に形成されて白金が付着したニッケル金属皮膜に酸素を含む130℃以上330℃以下の温度範囲の水を接触させる状態を示す説明図である。 図12に示す原子力プラントの炭素鋼部材への放射性核種の付着抑制方法において、130℃以上330℃以下の温度範囲の水に含まれる酸素及び浄化系配管内のFe2+が、浄化系配管の内面に形成されて白金が付着したニッケル金属皮膜に移行する状態を示す説明図である。 図12に示す原子力プラントの炭素鋼部材への放射性核種の付着抑制方法において、浄化系配管の内面に形成されたニッケル金属皮膜が安定なニッケルフェライト皮膜に変換された状態を示す説明図である。 図2に示す皮膜形成装置の他の実施例の構成図である。 本発明の好適な他の実施例である、沸騰水型原子力プラントの浄化系配管に適用される実施例3の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法の手順を示すフローチャートである。 図17に示す原子力プラントの炭素鋼部材への放射性核種の付着抑制方法において浄化系配管の内面に形成されたニッケル金属皮膜を安定なニッケルフェライト皮膜に変換するために浄化系配管に接続される加熱システムの構成図である。 本発明の好適な他の実施例である、沸騰水型発電プラントの浄化系配管に適用される実施例4の原子力プラントの炭素鋼部材への貴金属の付着方法の手順を示すフローチャートである。
 発明者らは、原子力プラントの炭素鋼製の構成部材、すなわち、炭素構成部材への放射性核種の付着を抑制できる対策について種々の検討を行った。
 前述したように、炭素鋼部材の、炉水と接触する表面にニッケルまたは白金を付着させる場合は、ステンレス鋼製の構成部材の、炉水と接触する表面にニッケルまたは白金を付着させる場合に比べて、その表面への放射性核種の付着抑制効果が低下する。
 そのような放射性核種の付着抑制効果の低下を改善するために、発明者らは、炉水条件において炭素鋼製の構成部材の、炉水と接触する表面に貴金属(例えば、白金)を付着させ、その後、炭素鋼部材の、貴金属が付着された表面にニッケルを付着させたところ、炭素鋼部材のその表面への放射性核種の付着量が著しく低減されることを見出した(特開2016-161466号公報参照)。
 このような知見に基づいて、発明者らは、貴金属及びニッケルを炭素鋼部材の表面に付着させることがその表面への放射性核種の付着抑制につながると考えた。そこで、発明者らは、貴金属及びニッケルを炭素鋼部材の表面に付着させることを前提に、その表面への放射性核種の付着をさらに抑制することができる対策案についての検討を行った。
 発明者らによる検討の結果、発明者らは、最終的に、ニッケル金属皮膜を炭素鋼部材の表面に形成し、このニッケル金属皮膜の表面に貴金属(例えば、白金)を付着させ、酸素を含む130℃以上(好ましくは、130℃以上330℃以下)の温度範囲の水をそのニッケル金属皮膜の表面に接触させて、その皮膜内のニッケル金属をNi含有率が定比に近い安定なニッケルフェライトに変換させ、炭素鋼部材の表面をその安定なニッケルフェライト皮膜で覆うことによって、その炭素鋼部材への放射性核種の付着を抑制できるとの結論を見出した。
 ところで、その放射性核種の付着抑制では、発明者らは、炭素鋼部材への放射性核種の付着抑制を図る工程のうちの一つの工程である、炭素鋼部材の表面への貴金属の付着作業、すなわち、炭素鋼部材の表面へのニッケル金属皮膜の形成及びこのニッケル金属皮膜表面への貴金属の付着に要する時間を短縮することが、原子力プラントの、燃料交換作業及び保守点検作業が実施される運転停止期間の限られた期間においてその貴金属付着作業を実施するためにも重要であるとの認識を有した。
 そこで、発明者らは、炭素鋼部材の表面への貴金属の付着作業、特に、炭素鋼部材の表面へのニッケル金属皮膜の形成に要する時間を短縮できる対策を見出すべく、種々の検討を行った。この検討結果を以下に説明する。
 炭素鋼部材の表面へのニッケル金属皮膜の形成に用いる皮膜形成水溶液を生成するための薬剤としては、ニッケルの対アニオンとして水及び二酸化炭素に分解可能なギ酸を用いる。具体的には、ギ酸ニッケル水溶液を使用した。炭素鋼をギ酸ニッケル水溶液に浸漬すると、式(1)に示すように、炭素鋼内の鉄とギ酸ニッケル水溶液に含まれるニッケルイオンとの置換めっき反応が生じ、炭素鋼の表面にニッケル金属皮膜が形成される。
  Fe+Ni2+ → Fe2++Ni    ……(1)
 さらに、ギ酸ニッケル水溶液に還元剤を注入すると、還元剤の作用により、ニッケルイオンが還元されてニッケル金属となり、このニッケル金属が炭素鋼の表面に析出する。還元剤として、例えば、ヒドラジンを使用すると、式(2)に示す反応により、ニッケル金属が生成される。
  2Ni2++N24 → Ni+N2+2H++H2  ……(2)
 発明者らは、式(1)及び式(2)の各反応により炭素鋼の表面に形成されるニッケル金属皮膜の量を調べるため、炭素鋼製の試験片を90℃のギ酸ニッケル水溶液に浸漬し、浸漬開始から60分が経過したときに、その試験片をギ酸ニッケル水溶液から取り出した第1ケース、及び別の炭素鋼製の試験片をギ酸ニッケル水溶液に浸漬し、浸漬開始から60分が経過したときに、その試験片が浸漬されているギ酸ニッケル水溶液にヒドラジン(還元剤)を注入し、ヒドラジンを含むギ酸水溶液に浸漬された試験片を、ヒドラジンを含むギ酸水溶液への浸漬開始から4時間が経過したときに、ヒドラジンを含むギ酸水溶液から取り出した第2ケースのそれぞれのケースについて、それぞれの試験片に形成されたニッケル金属皮膜の量を比較した。
 この結果、ヒドラジンの注入前にギ酸ニッケル水溶液から試験片を取り出した、式(1)の反応だけが生じる第1ケースにおいて試験片に形成されたニッケル金属皮膜の量が、ヒドラジンが注入されたギ酸ニッケル水溶液から試験片を取り出した、式(1)及び式(2)のそれぞれの反応が生じる第2ケースにおいて試験片に形成されたニッケル金属皮膜の量の約8割に達することを、発明者らは確認した。このため、発明者らは、炭素鋼部材へのニッケル金属皮膜の形成には、式(1)の置換めっき反応が大きな影響を与え、その置換めっき反応が重要であると判断した。
 すなわち、ニッケルイオンのヒドラジンによる還元反応速度は、触媒が存在すると早く進むことが知られている。しかしながら、還元除染後のニッケル金属皮膜形成においては、触媒が存在しないため、その還元反応速度はあまり早くは進まない。一方、炭素鋼部材内の鉄とギ酸ニッケル水溶液に含まれるニッケルイオンとの置換めっき反応は、薬剤の使用が限定される還元除染後の条件下でも、ヒドラジンによる還元反応よりも早く進行するため、置換めっきを始めに実施する。
 次に、式(1)の置換めっき反応の、皮膜形成水溶液のpH依存性を調べたところ、発明者らは、ギ酸ニッケルを含む皮膜形成水溶液のpHが4.0で、炭素鋼部材におけるニッケル金属皮膜形成量が極大化する傾向を見出した。発明者らが調べた、ニッケル金属皮膜の形成量のpH依存性の結果を図7に示す。図7から明らかであるように、pH3.8~4.2の間で炭素鋼部材の表面に形成されるニッケル金属皮膜の量は、皮膜形成水溶液のpHが3.9~4.2(3.9以上4.2以下)の範囲内で炭素鋼部材内の鉄と皮膜形成水溶液に含まれるニッケルイオンとの置換メッキ反応の効率が増大するため、その量の最大値の80%以上になった。このため、ニッケル金属皮膜を炭素鋼部材の表面に形成するためには、皮膜形成水溶液のpHを3.9以上4.2以下の範囲に制御することが好ましい。
 そこで、発明者らは、皮膜形成水溶液のpHを3.9以上4.2以下の範囲に制御するために、ギ酸ニッケル水溶液による皮膜形成水溶液のpHの調節と併せて、皮膜形成水溶液にpH緩衝溶液を注入することを考えた。pH緩衝溶液は、弱酸と弱塩基の混合溶液であり、希釈しても、外部から酸または塩基を加えてもそれらの影響をあまり受けず、水素イオン濃度(pH)がそれほど変化しないような溶液である。このようなpH緩衝溶液としては、弱酸にはギ酸ニッケルに含まれる、例えば、ギ酸と、弱塩基には取り扱いが容易な、例えば、アンモニアの混合溶液がある。弱酸及び弱塩基のそれぞれは、pH緩衝溶液の成分である。例えば、pH緩衝溶液の一例であるギ酸及びアンモニアの混合溶液では、ギ酸及びアンモニアのそれぞれがpH緩衝溶液の成分である。pH緩衝溶液は、酸及び塩基のそれぞれ1種類の成分を含んでいるとも言える。皮膜形成水溶液にpH緩衝溶液を注入することによって、皮膜形成水溶液のpHをある値、例えば、3.9以上4.2以下の範囲内のpHに一定に保つことができる。また、pH緩衝溶液の他の例としては、酢酸とアンモニアの混合溶液がある。pH緩衝溶液に含まれるギ酸及び酢酸は、触媒及び酸化剤の作用により分解することができる。
 pH緩衝溶液にギ酸及びアンモニアの混合溶液を使用することとして、皮膜形成水溶液のpHを4.0にする場合におけるギ酸及びアンモニアのそれぞれの濃度を計算する。ギ酸ニッケルのニッケル濃度を、例えば200ppmとした場合、そのニッケル濃度に伴うギ酸濃度は約400ppmとなる。このため、ギ酸及びアンモニアの混合溶液(pH緩衝溶液)においてギ酸ニッケルの注入時にpH緩衝性を持たせるためには、その混合溶液のギ酸濃度は、少なくともギ酸ニッケルに伴うギ酸濃度よりも高くする必要がある。上記の混合溶液において、例えば、2倍の800ppmのギ酸を用いたとき、皮膜形成水溶液のpHを4.0にするために必要なアンモニアの濃度は、以下のように計算できる。ギ酸の酸解離反応式及び酸解離平衡式は、ぞれぞれ、式(3)及び式(4)のように表される。
  HCOOH → H+HCOO     ……(3)
Figure JPOXMLDOC01-appb-M000001
ここで、KFはギ酸の酸解離定数、[H+]は皮膜形成水溶液の水素イオン濃度、[HCOO-]は皮膜形成水溶液のギ酸イオン濃度、及び[HCOOH]は皮膜形成水溶液のギ酸濃度である。
 ギ酸の全濃度[HCOOH]Tは、式(5)で表される。
  [HCOOH]T=[HCOOH]+[HCOO-]    ……(5)
 アンモニアの酸解離反応式及び酸解離平衡式は、それぞれ、式(6)及び式(7)で表される。
  NH4 + → H++NH3       ……(6)
Figure JPOXMLDOC01-appb-M000002
ここで、KAはアンモニアの酸解離定数、[NH3]は皮膜形成水溶液のアンモニア濃度、及び[NH4 +]は皮膜形成水溶液のアンモニアイオン濃度である。
 アンモニアの全濃度[NH3]Tは、式(8)で表される。
  [NH3]=[NH3]+[NH4 +]    ……(8)
 水のイオン積KWを、KW=[H+][OH-]として表すと、イオン均衡式は式(9)で表される。なお、[OH-]は皮膜形成水溶液の水酸化物イオン濃度である。
  [H]+[NH +]=[OH-]+[HCOO-]  ……(9)
 式(9)の[NH4 +]、[OH-]、[HCOO-]について、式(4)、式(5)、式(7)、式(8)及び水のイオン積KWの関係を使って整理すると、式(10)が得られる。
Figure JPOXMLDOC01-appb-M000003
 KF=1.12×10-4、KA=2.43×10-8、及びKW=5.379×10-13として、ギ酸全濃度[HCOOH]を800ppm(17.4mmol/L)、皮膜形成水溶液のpHを4.0とした時のアンモニア全濃度[NH]を求めると、156ppmとなる。同様に、皮膜形成水溶液のpHが4.0である場合のギ酸全濃度400ppm~1600ppmの範囲におけるアンモニア全濃度[NH3]Tを求めた。皮膜形成水溶液のpHが4.0である場合における、ギ酸濃度と求められたアンモニア濃度の関係を図8に実線で示した。同様に、図8には、皮膜形成水溶液のpHが3.9の場合におけるギ酸濃度とアンモニア濃度の関係を一点鎖線で、皮膜形成水溶液のpHが4.2の場合におけるギ酸濃度とアンモニア濃度の関係を破線でそれぞれ示している。図8によれば、pH3.9からpH4.2に必要なギ酸及びアンモニアのそれぞれの濃度は、一点鎖線(pH3.9)と破線(pH4.2)に挟まれた領域の濃度とすればよいことが分かる。
 ところで、発明者らは、特開2006-38483号公報及び特開2012-247322号公報に記載されているように、鉄(II)イオン、酸化剤及びpH調整剤(例えば、ヒドラジン)を含む、60℃~100℃の低い温度範囲の皮膜形成水溶液を原子力プラントの構成部材の表面に接触させて構成部材の表面にマグネタイト皮膜を形成し、このマグネタイト皮膜上に貴金属を付着させた場合には、原子力プラントの運転中においてマグネタイト皮膜が貴金属の作用により炉水中に溶出するという現象を見出した。また、60℃~100℃の低い温度範囲で炭素鋼部材の炉水と接触する表面に形成されたニッケルフェライト皮膜上に貴金属を付着させた場合においても、原子力プラントの運転中においてニッケルフェライト皮膜が貴金属の作用により炉水中に溶出するという現象を見出した。
 炭素鋼部材の表面からの、このようなフェライト皮膜の溶出は、やがて、炭素鋼部材上のフェライト皮膜の消失をもたらし、フェライト皮膜が消失した後、すなわち、運転サイクルの末期において、放射性核種が炭素鋼部材の表面に付着することになる。この結果、炭素鋼部材表面への放射性核種の、長期間に亘る付着抑制が阻害されることになる。また、この運転サイクルでの原子力プラントの運転を停止した後、炭素鋼部材の表面に、再度、フェライト皮膜を形成する必要がある。
 貴金属が表面に付着されたマグネタイト皮膜及びニッケルフェライト皮膜等のフェライト皮膜の溶出を考慮すれば、炭素鋼部材の表面への放射性核種付着のさらなる抑制を図るだけでなく、その表面への放射性核種の、長期間に亘る付着抑制も重要であると発明者らは考えた。
 発明者らは、60℃~100℃の低い温度範囲で炭素鋼部材の炉水と接触する表面に形成したニッケルフェライト皮膜がこの皮膜上に貴金属を付着させたときにそのニッケルフェライトが溶出する理由について、検討を行った。この検討により、原子力プラントの運転停止中において、そのような低い温度範囲で炭素鋼部材の表面に形成されたニッケルフェライトの皮膜は、Ni0.7Fe2.34の皮膜であり、不安定であることが分かった。なお、Ni0.7Fe2.34は、Ni1-xFe2+x4においてxが0.3である場合の形態である。このため、不安定な皮膜であるNi0.7Fe2.34の皮膜上に、貴金属、例えば、白金が付着されているとき、Ni0.7Fe2.34が、その白金の作用により、原子力プラントの運転中において炉水中に溶出するということが分かった。また、不安定なNi0.7Fe2.34の皮膜は、上記の低い温度範囲で形成されるため、炭素鋼部材の表面にNi0.7Fe2.34の小さい粒が多数付着している状態になっている。この理由によっても、上面に白金が付着したNi0.7Fe2.34の皮膜が溶出する。
 ところで、貴金属を炭素鋼部材の表面に付着させる際に、炭素鋼部材に含まれるFeがFe2+として溶出していると、貴金属を炭素鋼部材の表面に付着させることができなくなる。このため、発明者らは、貴金属を炭素鋼部材の表面に付着させるときにおける、炭素鋼部材からのFe2+の溶出を防ぐ対策を検討した。そして、発明者らは、炭素鋼部材の表面をニッケル金属の皮膜で覆うことによって炭素鋼部材からのFe2+の溶出を防ぐことができることを見出した。炭素鋼部材の表面を覆うニッケル金属は、後述するように、炭素鋼部材への放射性核種の付着を抑制する安定なニッケルフェライト皮膜の形成に寄与する物質である。炭素鋼部材の表面にニッケル金属皮膜を形成してこのニッケル金属皮膜で炭素鋼部材の表面を覆うことによって、炭素鋼部材からのFe2+の溶出を防ぐことができ、貴金属のニッケル金属皮膜表面への付着、具体的には、炭素鋼部材への貴金属の付着を短い時間で行うことができた。併せて、炭素鋼部材への貴金属の付着量も増大した。
 炭素鋼部材の表面へのニッケル金属皮膜の形成は、ニッケルイオン及び還元剤を含む皮膜形成水溶液を炭素鋼部材の表面に接触させることによって可能である。ニッケル金属皮膜の形成においては、その水溶液に含まれるニッケルイオンが炭素鋼部材に含まれるFeと置換されてニッケル金属皮膜が炭素鋼部材の表面に形成される第1工程、及びニッケルイオンが還元剤の作用によりニッケル金属になり、炭素鋼部材の表面にニッケル金属皮膜が形成される第2工程の2つの工程が存在する。特に、ニッケル金属皮膜を形成する第1工程においては、ニッケルイオン及び還元剤と共に前述のpH緩衝溶液(例えば、ギ酸及びアンモニアの混合溶液)を含む皮膜形成水溶液を炭素鋼部材の表面に接触させるため、pH緩衝溶液の作用により、炭素鋼部材に接触させる皮膜形成水溶液のpHを設定値(好ましいpHの範囲である3.9以上4.2以下の範囲内の、例えば、4.0)に維持することができる。
 皮膜形成水溶液がpH緩衝溶液を含んでいるため、皮膜形成水溶液のpHは還元剤(例えば、ヒドラジン)の注入によっても影響を受けず、還元剤及びpH緩衝溶液を含む皮膜形成水溶液を炭素鋼部材の表面に接触している間、皮膜形成水溶液のpHを設定値に維持することができる。このため、皮膜形成水溶液のpHの変動による、炭素鋼部材の表面へのニッケル金属の付着量の減少を防止することができ、その表面へのニッケル金属の付着量を増大させることができる。この結果、炭素鋼部材の表面へのニッケル金属皮膜の形成に要する時間を短縮することができる。
 皮膜形成水溶液のpHを3.9以上4.2の範囲内のpHにすることによって、炭素鋼部材表面に形成されるニッケル金属皮膜の量を著しく増大させることができる(図7参照)。皮膜形成水溶液がpH緩衝溶液を含むことによって、皮膜形成水溶液のpHの設定値を3.9以上4.2の範囲内のpHにすることができ、pH緩衝溶液の作用と相俟って炭素鋼部材表面に形成されるニッケル金属皮膜の量をさらに増大させることができる。この結果、炭素鋼部材表面へのニッケル金属皮膜の形成に要する時間を、さらに短縮することができる。
 また、炭素鋼部材の表面に形成されたニッケル金属皮膜表面への貴金属の付着は、貴金属イオン(例えば、白金イオン)及び還元剤を含む水溶液を形成されたニッケル金属皮膜に接触させることによって可能である。上記のように、炭素鋼部材の表面にニッケル金属皮膜を形成することによって、炭素鋼部材からのFe2+の溶出を防ぐことができ、短い時間でより多くの貴金属を炭素鋼部材に付着させることができる。
 さらに、炭素鋼部材の表面への放射性核種の、長期間に亘る付着抑制に関する検討結果を以下に説明する。発明者らは、60℃~100℃の低い温度範囲で不安定なNi0.7Fe2.34の皮膜を炭素鋼部材の表面に形成するのではなく、付着した貴金属によっても溶出しない安定なニッケルフェライト皮膜の、炭素鋼部材の表面への形成を目指した。そこで、発明者らは、炭素鋼部材への貴金属の付着を効果的に行うために炭素鋼部材の表面に形成したニッケル金属皮膜を、その安定なニッケルフェライト皮膜の、炭素鋼部材の表面への形成に利用できないかを種々検討した。この結果、酸素を含む高温(130℃以上)の水を、炭素鋼部材の表面に形成されたニッケル金属皮膜の、貴金属が付着された側の表面に接触させることによって、そのニッケル金属皮膜を、炭素鋼部材の表面を覆う、貴金属の作用によっても溶出しない安定なニッケルフェライト皮膜(Ni1-xFe2+x4において0≦x<0.3を満足するニッケルフェライト、例えば、NiFe24)に変えることができた。NiFe24は、Ni1-xFe2+x4においてxが0であるニッケルフェライトである。炭素鋼部材の表面は、安定なニッケルフェライト皮膜(NiFe24皮膜)で覆われる。ちなみに、その表面に付着した貴金属の作用によって溶出する不安定なニッケルフェライトは、Ni1-xFe2+x4において0.3≦x<1.0を満足するニッケルフェライト、例えば、Ni0.7Fe2.34である。Ni0.7Fe2.34は、前述したように、Ni1-xFe2+x4においてxが0.3であるニッケルフェライトである。
 表面にニッケル金属皮膜が形成されてこのニッケル金属皮膜表面に貴金属(例えば、白金)が付着された炭素鋼部材のニッケル金属皮膜が、酸素を含む130℃以上(好ましくは、130℃以上330℃以下の温度範囲内)の水との接触により、炭素鋼部材の表面を覆うニッケルフェライト皮膜(Ni1-xFe2+x4においてxが0であるニッケルフェライト皮膜)に変換される理由を説明する。酸素を含む130℃以上330℃以下の温度範囲内の温度の水が炭素鋼部材上のニッケル金属皮膜に接触すると、ニッケル金属皮膜及び炭素鋼部材が130℃以上330℃以下の温度範囲内の温度に加熱される。その水に含まれる酸素がニッケル金属皮膜内に移行し、炭素鋼部材に含まれるFeがFe2+となってニッケル金属皮膜内に移行する。ニッケル金属皮膜内のニッケルが、130℃以上330℃以下の温度範囲内の高温環境で、ニッケル金属皮膜内に移行した酸素及びFe2+と反応し、Ni1-xFe2+x4においてxが0であるニッケルフェライトが生成される。このニッケルフェライトの皮膜が、炭素鋼部材の表面を覆う。
 炭素鋼部材の表面を覆ったニッケル金属皮膜に含まれるニッケル金属から、130℃以上330℃以下の温度範囲内の高温の環境下において上記のように生成された、Ni1-xFe2+x4においてxが0であるニッケルフェライトは、結晶が大きく成長しており、貴金属が付着してもNi0.7Fe2.34皮膜のように水中に溶出しなく安定であり、さらに、Co-60等の放射性核種の取り込みを抑制する。このNi1-xFe2+x4においてxが0である安定なニッケルフェライトは、ニッケル金属皮膜に付着した白金等の貴金属の作用により、炭素鋼部材及びニッケル金属皮膜の腐食電位が低下されるために生成される。このように、130℃以上330℃以下の温度範囲内の高温の環境下で、炭素鋼部材の表面を覆ったニッケル金属から生成されたその安定なニッケルフェライト皮膜は、60℃~100℃の低い温度範囲で生成されたNi0.7Fe2.34皮膜よりも長期に亘って炭素鋼部材への放射性核種の付着を抑制することができる。
 発明者らは、ニッケル及び白金を付着していない炭素鋼製の試験片A及び表面に安定なニッケルフェライト皮膜を形成してそのニッケルフェライト皮膜表面に白金を付着した炭素鋼製の試験片Bを用いて、放射性核種であるCo-60の付着を確認する実験を行った。この実験は、試験片A及びBを閉ループの循環配管内に設置し、その循環配管内に原子炉内の炉水を模擬した模擬水を流して循環させて行った。循環する模擬水はCo-60を含んでおり、模擬水の温度は280℃である。循環配管内に設置された試験片A及びBのそれぞれは、循環配管内を流れる模擬水中に500時間浸漬された。500時間が経過した後、試験片A及びBのそれぞれを循環配管から取り出し、それぞれの試験片のCo-60付着量を測定した。
 それぞれの試験片におけるCo-60付着量の測定結果を図9に示す。図9から明らかであるように、白金を付着した安定なニッケルフェライト皮膜を表面に形成した試験片Bでは、炭素鋼の表面が露出した試験片Aに比べてCo-60の付着量が著しく低下した。
 そして、循環配管から取り出された試験片A及びBのそれぞれの表面における組成をラマン分光によって分析した。この分析結果を図10に示す。実質的に炭素鋼である試験片Aの表面には、主にFe34からなる皮膜が形成されていた。Co-60の付着量が大幅に低減された試験片Bの表面には、ニッケルフェライト(NiFe24)を主成分とする酸化皮膜が形成されていた。このNiFe24は、Ni1-xFe2+x4においてxが0である形態である。
 また、循環配管から取り出された試験片Bの表面のオージェースペクトルの結果を、図11に示した。図11に示す結果より、試験片Bの母材(炭素鋼)の表面に、均一な組成のNiFe24が形成されていることが確認できた。このNiFe24の形成により、試験片Bでは、Co―60の付着量が著しく抑制されたのである。
 以上の検討結果を反映した、本発明の実施例を以下に説明する。
 本発明の好適な一実施例である実施例1の原子力プラントの炭素鋼部材への貴金属の付着方法を、図1、図2及び図3を用いて説明する。本実施例の原子力プラントの炭素鋼部材への貴金属の付着方法は、沸騰水型原子力発電プラント(BWRプラント)の、炭素鋼製の浄化系配管(炭素鋼部材)に適用される。
 このBWRプラントの概略構成を、図2を用いて説明する。BWRプラント1は、原子炉2、タービン9、復水器10、再循環系、原子炉浄化系及び給水系等を備えている。原子炉2は、炉心4を内蔵する原子炉圧力容器(以下、RPVという)3を有し、RPV3内で炉心13を取り囲む炉心シュラウド(図示せず)の外面とRPV3の内面との間に形成される環状のダウンカマ内に複数のジェットポンプ5を設置している。炉心4には多数の燃料集合体(図示せず)が装荷されている。燃料集合体は、核燃料物質で製造された複数の燃料ペレットが充填された複数の燃料棒を含んでいる。
 再循環系は、ステンレス鋼製の再循環系配管6、及び再循環系配管6に設置された再循環ポンプ7を有する。給水系は、復水器10とRPV3を連絡する炭素鋼製の給水配管11に、復水ポンプ12、復水浄化装置(例えば、復水脱塩器)13、低圧給水加熱器14、給水ポンプ15及び高圧給水加熱器16を、復水器10からRPV3に向って、この順に設置して構成されている。高圧給水加熱器16及び低圧給水加熱器14に接続されドレン水回収配管27が、復水器10に接続される。原子炉浄化系は、再循環系配管6と給水配管11を連絡する浄化系配管18に、浄化系ポンプ19、再生熱交換器20、非再生熱交換器21及び炉水浄化装置22をこの順に設置している。浄化系配管18は、再循環ポンプ7の上流で再循環系配管6に接続される。原子炉2は、原子炉建屋(図示せず)内に配置された原子炉格納容器26内に設置されている。
 RPV3内の冷却水(以下、炉水という)は、再循環ポンプ7で昇圧され、再循環系配管6を通ってジェットポンプ5内に噴出される。ダウンカマ内でジェットポンプ5のノズルの周囲に存在する炉水も、ジェットポンプ5内に吸引されて炉心4に供給される。炉心4に供給された炉水は、燃料棒内の核燃料物質の核分裂で発生する熱によって加熱される。加熱された一部の炉水が蒸気になる。この蒸気は、RPV3から主蒸気配管8を通ってタービン9に導かれ、タービン9を回転させる。タービン9に連結された発電機(図示せず)が回転し、電力が発生する。タービン9から排出された蒸気は、復水器10で凝縮されて水になる。この水は、給水として、給水配管11を通りRPV3内に供給される。給水配管11内を流れる給水は、復水ポンプ12で昇圧され、復水浄化装置13で不純物が除去され、給水ポンプ15でさらに昇圧される。給水は、さらに、低圧給水加熱器14及び高圧給水加熱器16で加熱されてRPV3内に導かれる。抽気配管17でタービン9から抽気された抽気蒸気が、低圧給水加熱器14及び高圧給水加熱器16にそれぞれ供給され、給水の加熱源となる。
 再循環系配管6内を流れる炉水の一部は、浄化系ポンプ19の駆動によって浄化系配管18内に流入し、再生熱交換器20及び非再生熱交換器21で冷却された後、炉水浄化装置22で浄化される。浄化された炉水は、再生熱交換器20で加熱されて浄化系配管18及び給水配管11を経てRPV3内に戻される。
 本実施例の原子力プラントの炭素鋼部材への貴金属の付着方法では、皮膜形成装置30が用いられ、この皮膜形成装置30が、図2に示すように、BWRプラントの浄化系配管18に接続される。
 皮膜形成装置30の詳細な構成を、図3を用いて説明する。
 皮膜形成装置30は、サージタンク32、加熱器33、循環ポンプ34,35、循環配管31、ニッケルイオン注入装置36、還元剤注入装置41、白金イオン注入装置46、pH緩衝溶液注入装置51、冷却器62、酸化剤供給装置56、カチオン交換樹脂塔63、混床樹脂塔64、分解装置65及びエゼクタ66を備えている。
 開閉弁67、循環ポンプ35、弁68,71,74及び79、サージタンク32、循環ポンプ34、弁84及び開閉弁85が、上流よりこの順に循環配管31に設けられている。弁68をバイパスする配管70が循環配管31に接続され、弁69及びフィルタ61が配管70に設置される。両端が循環配管31に接続されて弁74をバイパスする配管76に、カチオン交換樹脂塔63及び弁75が設置される。両端が配管76に接続されてカチオン交換樹脂塔63及び弁75をバイパスする配管78に、混床樹脂塔64及び弁77が設置される。カチオン交換樹脂塔63は陽イオン交換樹脂を充填しており、混床樹脂塔64は陽イオン交換樹脂及び陰イオン交換樹脂を充填している。弁81が、カチオン交換樹脂塔63よりも上流側において、配管76と配管78の接続点と循環配管31の間で、配管76に設けられる。弁82が、カチオン交換樹脂塔63よりも下流側において、配管76と配管78の接続点と循環配管31の間で、配管76に設けられる。弁71をバイパスする配管73の一端が弁71の上流側で循環配管31に接続され、配管73の他端が混床樹脂塔64の上流側で配管78に接続される。配管73には、冷却器62及び弁72が設置される。
 弁79が、循環配管31と配管76の接続点とサージタンク32の間で循環配管31に設置される。配管83の一端が弁77よりも下流側で配管78に接続され、配管83の他端が弁79とサージタンク32の間で循環配管31に接続される。弁80及び弁80よりも下流に位置する分解装置65が、配管83に設けられる。分解装置65は、内部に、例えば、ルテニウムを活性炭の表面に添着した活性炭触媒を充填している。サージタンク32が弁79と循環ポンプ34の間で循環配管31に設置される。加熱器33がサージタンク32内に配置される。弁86及びエゼクタ66が設けられる配管87が、弁84と循環ポンプ34の間で循環配管31に接続され、さらに、サージタンク32に接続されている。再循環系配管6の内面の汚染物を還元溶解するために用いるシュウ酸(還元除染剤)をサージタンク32内に供給するためのホッパ(図示せず)がエゼクタ66に設けられている。
 ニッケルイオン注入装置36が、薬液タンク37、注入ポンプ38及び注入配管39を有する。薬液タンク37は、注入ポンプ38及び弁40を有する注入配管39によって循環配管31に接続される。ギ酸ニッケル(Ni(HCOO)・2H2O)を水に溶解して調製したギ酸ニッケル水溶液(ニッケルイオンを含む水溶液)が、薬液タンク37内に充填される。
 白金イオン注入装置(貴金属イオン注入装置)46が、薬液タンク47、注入ポンプ48及び注入配管49を有する。薬液タンク47は、注入ポンプ48及び弁50を有する注入配管49によって循環配管31に接続される。白金錯体(例えば、ヘキサヒドロキソ白金酸ナトリウム水和物(Na[Pt(OH)]・nHO))を水に溶解して調整した白金イオンを含む水溶液(例えば、ヘキサヒドロキソ白金酸ナトリウム水和物水溶液)が、薬液タンク47内に充填されている。白金イオンを含む水溶液は貴金属イオンを含む水溶液の一種である。貴金属イオンを含む水溶液としては、白金イオンを含む水溶液以外に、パラジウム、ロジウム、ルテニウム、オスミウム及びイリジウムのいずれかのイオンを含む水溶液を用いてもよい。
 還元剤注入装置41が、薬液タンク42、注入ポンプ43及び注入配管44を有する。
薬液タンク42は、注入ポンプ43及び弁45を有する注入配管44によって循環配管31に接続される。還元剤であるヒドラジンの水溶液が薬液タンク42内に充填される。還元剤としては、ヒドラジン、ホルムヒドラジン、ヒドラジンカルボアミド及びカルボヒドラジド等のヒドラジン誘導体及びヒドロキシルアミンのいずれかを用いるとよい。
 pH緩衝溶液注入装置51が、薬液タンク52、注入ポンプ53及び注入配管54を有する。薬液タンク52は、注入ポンプ53及び弁55を有する注入配管54によって循環配管31に接続される。pH緩衝溶液であるギ酸及びアンモニアの混合水溶液が薬液タンク52内に充填される。
 注入配管39,54、49及び44が、弁84から開閉弁85に向かってその順番で、弁84と開閉弁85の間で循環配管31に接続される。
 酸化剤供給装置56が、薬液タンク57、供給ポンプ58及び供給配管59を有する。
薬液タンク57は、供給ポンプ58及び弁60を有する供給配管59によって弁80よりも上流で配管83に接続される。酸化剤である過酸化水素が薬液タンク57内に充填される。酸化剤としては、オゾン、または酸素を溶解した水を用いてもよい。
 pH計88が、注入配管44と循環配管31の接続点と開閉弁85の間で循環配管31に取り付けられる。
 BWRプラント1は、1つの運転サイクルでの運転が終了した後に停止される。この運転停止後に、炉心4に装荷されている燃料集合体の一部が使用済燃料集合体として取り出され、燃焼度0GWd/tの新しい燃料集合体が炉心4に装荷される。このような燃料交換が終了した後、BWRプラント1が、次の運転サイクルでの運転のために再起動される。燃料交換のためにBWRプラント1が停止されている期間を利用して、BWRプラントの保守点検が行われる。
 上記のようにBWRプラント1の運転が停止されている期間中において、BWRプラント1における炭素鋼部材の一つである、RPV3に連絡される炭素鋼製の配管系、例えば、浄化系配管18を対象にした、本実施例の原子力プラントの炭素鋼部材への貴金属の付着方法が実施される。この貴金属の付着方法では、浄化系配管18の、炉水と接触する内面へのニッケル金属皮膜の形成処理、及び形成されたニッケル金属皮膜への貴金属、例えば、白金の付着処理が行われる。
 本実施例の原子力プラントの炭素鋼部材への貴金属の付着方法を、図1に示す手順に基づいて以下に説明する。本実施例の原子力プラントの炭素鋼部材への貴金属の付着方法では、皮膜形成装置30が用いられる。
 まず、皮膜形成対象の炭素鋼製の配管系に、皮膜形成装置を接続する(ステップS1)。BWRプラント1の運転が停止されているときに、例えば、再循環系配管6に接続されている浄化系配管18に設置されている弁23のボンネットを開放して再循環系配管6側を封鎖する。皮膜形成装置30の循環配管31の開閉弁85側の一端部が弁23のフランジに接続される。さらに、再生熱交換器20と非再生熱交換器21の間で浄化系配管18に設置されている弁25のボンネットを開放して非再生熱交換器21側を封鎖する。循環配管31の開閉弁67側の他端部が弁25のフランジに接続される。このように、循環配管31の両端部が浄化系配管18に接続され、浄化系配管18及び循環配管31を含む閉ループが形成される。
 なお、本実施例では、皮膜形成装置30を原子炉浄化系の浄化系配管18に接続しているが、浄化系配管18以外に、炭素鋼部材であってRPV3に連絡される残留熱除去系、原子炉隔離時冷却系及び炉心スプレイ系のいずれかの炭素鋼製の配管に皮膜形成装置30を接続し、この炭素鋼製の配管に本実施例の原子力プラントの炭素鋼部材への貴金属の付着方法を適用してもよい。
 皮膜形成対象の炭素鋼製の配管系に対する化学除染を実施する(ステップS2)。前の運転サイクルでの運転を経験したBWRプラント1では、放射性核種を含む酸化皮膜が、RPV3から排出された炉水と接触する浄化系配管18の内面に形成されている。浄化系配管18の線量率を下げるためにも、その内面から放射性核種を含む酸化皮膜を除去することが好ましい。この酸化皮膜の除去は、ニッケル金属皮膜と浄化系配管18の内面の密着性を向上させることにもつながる。この酸化皮膜を除去するために、化学除染、特に、還元除染剤であるシュウ酸を含む還元除染液を用いた還元除染が、浄化系配管18の内面に対して実施される。
 ステップS2において、浄化系配管18の内面に対して適用される化学除染は、特開2000-105295号公報に記載された公知の還元除染である。この還元除染について説明する。まず、開閉弁67,弁68,71,74,79及び84、及び開閉弁85をそれぞれ開き、他の弁を閉じた状態で、循環ポンプ34及び35を駆動する。これにより、サージタンク32内で加熱器33により90℃に加熱された水が、浄化系配管18内に供給され、循環配管31及び浄化系配管18によって形成される閉ループ内を循環する。循環配管31内を流れる、90℃の一部の水を、弁86を開いて配管87内に導く。ホッパ及びエゼクタ66から配管87内に供給された所定量のシュウ酸が、配管87内を流れる水によりサージタンク32内に導かる。このシュウ酸がサージタンク32内で水に溶解し、サージタンク32内でシュウ酸水溶液(還元除染液)が生成される。
 このシュウ酸水溶液は、循環ポンプ34の駆動によってサージタンク32から循環配管31に排出される。還元剤注入装置41の薬液タンク42内のヒドラジン水溶液が、弁45を開いて注入ポンプ43を駆動することにより、注入配管44を通して循環配管31内のシュウ酸水溶液に注入される。pH計88で測定されたシュウ酸水溶液のpH値に基づいて注入ポンプ43(または弁45の開度)を制御して循環配管31内へのヒドラジン水溶液の注入量を調節することにより、浄化系配管18に供給されるシュウ酸水溶液のpHが2.5に調節される。本実施例では、浄化系配管18の内面にニッケル金属を付着させるとき、及びそのニッケル金属の皮膜の上に貴金属、例えば、白金を付着させるときに用いる還元剤であるヒドラジンが、還元除染の工程ではシュウ酸水溶液のpHを調整するpH調整剤として用いられる。
 pHが2.5で90℃の、ヒドラジン(pH調整剤)を含むシュウ酸水溶液が、循環配管31から浄化系配管18に供給され、浄化系配管18の内面に形成された、放射性核種を含む酸化皮膜に接触する。この酸化皮膜は、シュウ酸によって溶解される。還元除染が実施されている間、シュウ酸水溶液はヒドラジン(pH調整剤)を含んでいる。そのシュウ酸水溶液は、酸化皮膜を溶解しながら浄化系配管18内を流れ、浄化系ポンプ19及び再生熱交換器20を通過して循環配管31に戻される。循環配管31に戻されたシュウ酸水溶液は、開閉弁67を通って循環ポンプ35で昇圧され、弁68、71、74及び79を通過してサージタンク32に達する。このように、シュウ酸水溶液は、循環配管31及び浄化系配管18を含む閉ループ内を循環し、浄化系配管18の内面の還元除染を実施してその内面に形成された酸化皮膜を溶解する。
 酸化皮膜の溶解に伴って、シュウ酸水溶液の放射性核種及びFeの各濃度が上昇する。
シュウ酸水溶液のこれらの濃度の上昇を抑えるために、弁75,81及び82を開いて弁74の開度を調節し、浄化系配管18から循環配管31に戻されたシュウ酸水溶液の一部を、配管76を通してカチオン交換樹脂塔63に導く。シュウ酸水溶液に含まれた放射性核種及びFe等の金属陽イオンは、カチオン交換樹脂塔63内の陽イオン交換樹脂に吸着されて除去される。カチオン交換樹脂塔63から排出されたシュウ酸水溶液及び弁74を通過したシュウ酸水溶液は、循環配管31から浄化系配管18に再び供給され、浄化系配管18の還元除染に用いられる。なお、カチオン交換樹脂はヒドラジンプレークした樹脂を使用している。
 シュウ酸を用いた、炭素鋼部材(例えば、浄化系配管18)の表面に対する還元除染では、炭素鋼部材の表面に難溶解性のシュウ酸鉄(II)が形成され、このシュウ酸鉄(II)により、炭素鋼部材の表面に形成された放射性核種を含む酸化皮膜のシュウ酸による溶解が抑制される場合がある。この場合には、弁74を全開にし、弁75を閉じてシュウ酸水溶液のカチオン交換樹脂塔63への供給を停止し、酸化剤である過酸化水素を、循環配管31内を流れるシュウ酸水溶液に注入する。この過酸化水素のシュウ酸水溶液への注入は、弁60を開いて供給ポンプ58を起動し、薬液タンク57内の過酸化水素を供給配管59、配管83及び弁82を通して循環配管31内を流れているシュウ酸水溶液に供給する。このとき、弁80は閉じている。
 過酸化水素を含むシュウ酸水溶液が循環配管31から浄化系配管18内に導かれ、浄化系配管18の内面に形成されたシュウ酸鉄(II)に含まれるFe(II)が、シュウ酸水溶液に含まれる過酸化水素の作用によりFe(III)に酸化され、シュウ酸鉄(III)錯体となってシュウ酸水溶液中に溶解する。すなわち、シュウ酸鉄(II)、及びシュウ酸水溶液に含まれる過酸化水素及びシュウ酸が、式(11)に示す反応により、シュウ酸鉄(III)錯体、水及び水素イオンを生成する。
  2Fe(COO)2+H22+2(COOH)2 →
            2Fe[(COO)2]2 +2H2O+2H+    …(11)
 浄化系配管18の内面に形成されたシュウ酸鉄(II)が溶解され、シュウ酸水溶液に注入した過酸化水素が式(11)の反応によって消失したことが確認された後、弁75を開いて弁74の開度を調節し、循環配管31内を流れて弁71を通過したシュウ酸水溶液の一部を、配管76を通してカチオン交換樹脂塔63に供給する。シュウ酸水溶液に含まれる放射性核種等の金属陽イオンが、カチオン交換樹脂塔63内の陽イオン交換樹脂に吸着されて除去される。なお、シュウ酸水溶液内の過酸化水素の消失は、循環配管31からサンプリングしたシュウ酸水溶液に過酸化水素に反応する試験紙を付け、試験紙に現れる色を見ることによって確認できる。
 浄化系配管18の、還元除染箇所の線量率が設定線量率まで低下したとき、または、浄化系配管18の還元除染時間が所定の時間に達したとき、シュウ酸水溶液に含まれるシュウ酸及びヒドラジンを分解する。すなわち、還元除染剤分解工程が実施される。なお、還元除染箇所の線量率が設定線量率まで低下したことは、浄化系配管18の還元除染箇所からの放射線を検出する放射線検出器の出力信号に基づいて求められた線量率により確認することができる。
 シュウ酸及びヒドラジンの分解は、以下のようにして行われる。弁82を閉じ、弁80及び74を開いて弁79の開度を一部減少させ、カチオン交換樹脂塔63から排出されたシュウ酸水溶液が、弁80を通って配管83により分解装置65に供給される。このとき、弁60を開いて供給ポンプ58を駆動することにより、薬液タンク57内の過酸化水素が、供給配管59を通して配管83に供給され、分解装置65内に流入する。シュウ酸水溶液に含まれるシュウ酸及びヒドラジンは、分解装置65内で、活性炭触媒及び供給された過酸化水素の作用により分解される。分解装置65内でのシュウ酸及びヒドラジンの分解反応は、以下の式(12)及び式(13)で表される。
  (COOH)2+H22 → 2CO2+2H2O     ……(12)
  N24+2H22 → N2+4H2O         ……(13)
シュウ酸及びヒドラジンの分解装置65内での分解は、シュウ酸水溶液を循環配管31及び浄化系配管18を含む閉ループ内を循環させながら行われる。供給した過酸化水素がシュウ酸及びヒドラジンの分解のために分解装置65で完全に消費されて分解装置65から流出しないように、薬液タンク57から分解装置65への過酸化水素の供給量を、供給ポンプ58の回転速度を制御して調節する。
 還元除染剤分解工程においても、シュウ酸水溶液にシュウ酸が存在すると、このシュウ酸水溶液と接触する、炭素鋼部材である浄化系配管18の内面に、シュウ酸鉄(II)が形成される可能性がある。そこで、シュウ酸水溶液に含まれるシュウ酸及びヒドラジンの分解がある程度進んだ段階で、供給ポンプ58の回転速度を増大させ、分解装置65から過酸化水素が流出するように、薬液タンク57から分解装置65への過酸化水素の供給量を増加させる。
 分解装置65から排出された、過酸化水素を含むシュウ酸水溶液は、循環配管31から浄化系配管18に導かれる。還元除染剤分解工程において浄化系配管18の内面に形成されたシュウ酸鉄(II)は、前述したように、その過酸化水素の作用によりシュウ酸鉄(III)錯体になりシュウ酸水溶液中に溶解する。シュウ酸水溶液中のシュウ酸等の分解が進んでいるため、シュウ酸鉄(II)に含まれるFe(II)を溶解しやすいFe(III)に変換するシュウ酸が不足し、循環配管31の内面にFe(OH)3が析出しやすくなる。このため、Fe(OH)3の析出を抑制するため、シュウ酸水溶液にギ酸を注入する。ギ酸の注入は、例えば、弁86を開いて配管87内にシュウ酸水溶液が流れている状態で前述のホッパ及びエゼクタ66からギ酸をそのシュウ酸水溶液に供給することにより行われる。供給されたギ酸は、サージタンク32内でシュウ酸水溶液に混合される。
 供給されたギ酸を含むシュウ酸水溶液は、濃度の低下したシュウ酸及びヒドラジンに加え、分解装置65から排出された過酸化水素を含んでいる。このシュウ酸水溶液に含まれる過酸化水素は浄化系配管18内面に析出したシュウ酸鉄(II)を溶解し、ギ酸はFe(OH)3を溶解する。シュウ酸水溶液に含まれるシュウ酸及びヒドラジンの分解も、分解装置65内で継続される。
 次に、シュウ酸及びヒドラジンの分解工程を終了するため、循環配管31内を流れるシュウ酸水溶液の過酸化水素濃度を低下させてカチオン交換樹脂塔63にシュウ酸水溶液を供給する。このため、弁60を閉じて、弁86を閉じ、エゼクタ66からのギ酸の供給を停止する。循環配管31内を流れるシュウ酸水溶液への過酸化水素及びギ酸の注入が停止されると、シュウ酸水溶液中のこれらの濃度も低下する。シュウ酸水溶液の過酸化水素濃度が1ppm以下になったとき、弁75を開いて弁74の開度を低減させ、カチオン交換樹脂塔63にシュウ酸水溶液を供給する。シュウ酸水溶液に含まれる金属陽イオンは、前述したように、カチオン交換樹脂塔63内の陽イオン交換樹脂で除去され、シュウ酸水溶液の金属陽イオン濃度が低下する。分解装置65内でシュウ酸、ヒドラジン及びギ酸の分解は継続される。シュウ酸、ヒドラジン及びギ酸のうちでは、ヒドラジンが先に分解され、次いでシュウ酸が分解され、ギ酸が最後に残る。この状態でシュウ酸及びヒドラジンの分解工程を終了する。
 以上に述べた化学除染が終了したとき、浄化系配管18は、浄化系配管18の内面から放射性核種を含む酸化皮膜が除去されて図9に示す状態になっており、浄化系配管18の内面が前述した残存するギ酸を含む水溶液に接触している。
 皮膜形成液の温度調整を行う(ステップS3)。弁74及び79を開けて弁75,80,81及び82を閉じる。循環ポンプ34及び35が駆動しているので、残存するギ酸を含む水溶液が循環配管31及び浄化系配管18を含む閉ループ内を循環する。このギ酸水溶液(後述の皮膜形成水溶液)は、加熱器33によって加熱されて、60℃~100℃(60℃以上100℃以下)の温度範囲内の温度、例えば、90℃になる。さらに、弁69を開いて弁68を閉じる。これらの弁操作により、循環配管31内を流れているギ酸水溶液がフィルタ61に供給され、ギ酸水溶液に残留している微細な固形分がフィルタ61によって除去される。微細な固形分をフィルタ61によって除去しない場合には、浄化系配管18の内面にニッケル金属皮膜を形成する際に、ニッケルギ酸水溶液を循環配管31に注入したとき、その固形物の表面にもニッケル金属皮膜が形成され、注入したニッケルイオンが無駄に使用される。フィルタ61へのギ酸水溶液の供給は、このようなニッケルイオンの無駄な使用を防止するためである。
 pH緩衝溶液を注入する(ステップS4)。弁68を開いて弁69を閉じ、フィルタ61への通水を停止する。pH緩衝溶液注入装置51の弁55を開いて注入ポンプ53を駆動し、薬液タンク52内のpH緩衝溶液、具体的には、ギ酸及びアンモニアの混合水溶液を、注入配管54を通して循環配管31を流れる残存するギ酸を含む90℃の水溶液に注入する。注入されるpH緩衝溶液内のギ酸の濃度は、例えば、800ppmであり、アンモニアの濃度は、例えば、156ppmである。このpH緩衝溶液の注入により、循環配管31を流れる残存するギ酸を含む水溶液(または後述の皮膜形成水溶液)のpHは、3.9以上4.2以下のpHの範囲内の、例えば、4.0になり、4.0に保たれる。残存するギ酸を含む水溶液(後述の皮膜形成水溶液)のpHは、薬液タンク52に供給する前にpH緩衝溶液に含まれるギ酸及びアンモニアの混合比率を予め変えることによって、3.9以上4.2以下のpHの範囲内で調節することが可能である。
 ニッケルイオン水溶液を注入する(ステップS5)。ニッケルイオン注入装置36の弁40を開いて注入ポンプ38を駆動し、薬液タンク37内のギ酸ニッケル水溶液を、注入配管39を通して、循環配管31内を流れる、pH緩衝溶液及び残存するギ酸を含む90℃の水溶液に注入する。注入されるギ酸ニッケル水溶液のニッケルイオン濃度は、例えば、200ppmである。ステップS4における2種類の成分(ギ酸及びアンモニア)を含むpH緩衝溶液の注入によって、循環配管31内を流れる残存するギ酸を含む水溶液(または後述の皮膜形成水溶液)のpHは4.0で緩衝されるので、ギ酸ニッケル水溶液の注入によっても、その水溶液のpHはほとんど変動しない。ギ酸ニッケル水溶液の循環配管31への注入によって、ニッケルイオン、ギ酸及びアンモニアを含む90℃の皮膜形成水溶液が、循環配管内で生成される。この皮膜形成水溶液に含まれるギ酸はpH緩衝溶液及びギ酸ニッケル水溶液のそれぞれに含まれたギ酸であり、この皮膜形成水溶液に含まれるアンモニアはpH緩衝溶液に含まれたアンモニアである。元々残存していたギ酸、ニッケルイオン、及びpH緩衝溶液の成分であるギ酸及びアンモニアを含むその皮膜形成水溶液は、循環ポンプ34の駆動により、循環配管31から浄化系配管18に供給され、浄化系配管18の内面に接触する。このとき、浄化系配管18の内面では、浄化系配管18に含まれる鉄と浄化系配管18内を流れる皮膜形成水溶液に含まれるニッケルイオンとの間で置換めっき反応が生じ、浄化系配管18の内面にニッケル金属皮膜が形成される。この置換めっき反応を促進させる時間を確保するため、ギ酸ニッケル水溶液の注入開始時点から、例えば、60分経過後に、次の工程(ステップS6における還元剤注入工程)を実施する。
 pH4.0の皮膜形成水溶液91(図5)が浄化系配管18の内面に接触すると、浄化系配管18からFe2+が皮膜形成水溶液91に溶出し、この溶出に伴って電子が生成される。鉄(II)イオンとの置換によって浄化系配管18の内面に取り込まれたニッケルイオンは、その電子によって還元されてニッケル金属になる。このため、浄化系配管18の内面にニッケル金属皮膜89が形成される(図5参照)。その60分間では、皮膜形成水溶液は、還元剤を含んでいない。このため、ギ酸ニッケル水溶液の注入開始から還元剤注入開始までの60分間では、浄化系配管18の表面に取り込まれたニッケルイオンは、還元剤ではなく、電子によって還元されてニッケル金属なり、ニッケル金属皮膜89が浄化系配管18の内面に形成される。ニッケルイオンと浄化系配管18内の鉄との置換めっき反応は、浄化系配管18の内面と接触する皮膜形成水溶液91のpHが4.0(図2)のときに最も活発であり(図7参照)、浄化系配管18の内面に取り込まれるニッケルイオンの量が最も多くなる。
 還元剤を注入する(ステップS6)。ギ酸ニッケル水溶液の注入開始から60分が経過したとき、還元剤注入装置41の弁45を開いて注入ポンプ43を駆動し、薬液タンク42内の還元剤であるヒドラジンの水溶液を、注入配管44を通して循環配管31内を流れる皮膜形成水溶液に注入する。注入されるヒドラジン水溶液のヒドラジン濃度は、例えば、200ppmである。このヒドラジン水溶液が注入された皮膜形成水溶液のpHは、注入されたpH緩衝溶液の作用によって4.0からほとんど変動しない。
 ニッケルイオン、ギ酸、アンモニア及びヒドラジン(還元剤)を含む90℃の皮膜形成水溶液は、循環ポンプ34の駆動により、循環配管31から浄化系配管18に供給される。この皮膜形成水溶液91が浄化系配管18の内面に接触することにより、浄化系配管18の内面に吸着されたニッケルイオンは、皮膜形成水溶液91に含まれるヒドラジンの還元作用によりニッケル金属となるため、浄化系配管18の内面にニッケル金属皮膜89が形成される(図5参照)。還元剤の注入により皮膜形成水溶液91のpHが7等に大きくなると、取り込まれたニッケルイオンがニッケル金属になる量が増大する。
 浄化系配管18から循環配管31に排出された皮膜形成水溶液91は、循環ポンプ35及び34で昇圧され、ニッケルイオン注入装置36からのギ酸ニッケル水溶液及び還元剤注入装置41からのヒドラジン水溶液がそれぞれ注入されて、再び、浄化系配管18に注入される。このように、皮膜形成水溶液91を、循環配管31及び浄化系配管18を含む閉ループ内を循環させることによって、やがて、ニッケル金属皮膜89が、浄化系配管18の、皮膜形成水溶液91と接触する内面の全面を均一に覆う。このとき、浄化系配管18の内面に存在するニッケル金属は、例えば1平方センチメートル当たり50μgから300μg(50μg/cm2以上300μg/cm2以下)の範囲となる。なお、浄化系配管18の該当する内面全体を覆うニッケル金属皮膜89の1平方センチメートル当たりの量は、その内面と接触する皮膜形成水溶液の温度によって異なる。皮膜形成水溶液の温度が60℃の場合には、その量は50μg/cm2であり、皮膜形成水溶液の温度が90℃の場合には、その量は250μg/cm2である。本実施例では、皮膜形成水溶液の温度が90℃であるので、浄化系配管18の内面に形成されるニッケル金属皮膜89の量は250μg/cm2である。
 ギ酸ニッケル水溶液の注入開始時点から60分経過後ではなく、ギ酸及びアンモニアを含む90℃の皮膜形成水溶液が循環配管31内で注入配管44と循環配管31の接続点の位置に到達したときに、弁45を開いて注入ポンプ43を駆動し、薬液タンク42内の還元剤であるヒドラジンの水溶液を、注入配管44を通して循環配管31内に注入してもよい。この場合には、浄化系配管18の内面に取り込まれたニッケルイオンがヒドラジン(還元剤)によって還元され、浄化系配管18の内面にニッケル金属皮膜が形成される。
 本実施例では、浄化系配管18の内面へのニッケル金属皮膜89の形成は、前述のように、浄化系配管18の内面に取り込まれたニッケルイオンを電子で還元することにより、さらに、ニッケルイオンの電子による還元が開始された後(ギ酸ニッケル水溶液の注入開始から所定時間(例えば、60分)が経過した後)に皮膜形成水溶液に注入されるヒドラジン(還元剤)の還元作用によって浄化系配管18の内面に取り込まれたニッケルイオンを還元することにより、行われる。浄化系配管18の内面への放射性核種(例えば、Co-60)の付着抑制効果は、形成されるニッケル金属皮膜の厚みが厚い程、大きくなる。
 Fe2+の溶出に伴う電子によるニッケルイオンの還元反応は、浄化系配管18の内面と皮膜形成水溶液91が接触している期間の初期において早いが、浄化系配管18の内面がニッケル金属で覆われて浄化系配管18から溶出するFe2+の量が減少するに伴って遅くなる。浄化系配管18の内面全体がニッケル金属で覆われてしまうと、Fe2+が溶出しなくなり、電子によるニッケルイオンの還元反応は停止される。ヒドラジン(還元剤)によるニッケルイオンの還元反応は、Fe2+の溶出量の減少とは無関係に、継続される。そこで、ギ酸ニッケル水溶液の注入開始から所定時間が経過したときヒドラジン(還元剤)水溶液をニッケルイオンを含んでいる皮膜形成水溶液91に注入して、浄化系配管18の内面に取り込まれたニッケルイオンをヒドラジン(還元剤)を還元し、浄化系配管18の内面へのニッケル金属の増大を図り、その寧面に形成されるニッケル金属皮膜89の厚みを増加させる。
 なお、ヒドラジン(還元剤)によるニッケルイオンの還元反応は電子によるニッケルイオンの還元反応よりも遅く、前者の還元反応によるニッケル金属皮膜89の形成には時間が掛かるために、電子によるニッケルイオンの還元を、ヒドラジン(還元剤)によるニッケルイオンの還元よりも先に実施する。
 ニッケル金属皮膜の形成が完了したかを判定する(ステップS7)。浄化系配管18の内面に形成されたニッケル金属皮膜89が不十分な場合(皮膜形成水溶液の温度が90℃で、その内面に存在するニッケル金属が250μg/cm2未満の場合)には、ステップS5~S7の各工程が繰り返される。浄化系配管18の内面に存在するニッケル金属が250μg/cm2になったとき、注入ポンプ38を停止して弁40を閉じて循環配管31へのギ酸ニッケル水溶液の注入を停止すると共に注入ポンプ43を停止して弁45を閉じて循環配管31へのヒドラジン水溶液の注入を停止し、浄化系配管18の内面へのニッケル金属皮膜の形成を終了する。ギ酸ニッケル水溶液を循環配管31に注入してからの経過時間が設定時間になったとき、浄化系配管18の内面に存在するニッケル金属が250μg/cm2になったと判定する。その設定時間は、炭素鋼試験片の表面のニッケル金属が250μg/cm2になるまでの時間を予め測定することによって求められる。
 ギ酸、還元剤を分解する(ステップS8)。弁81及び弁75を開いて弁74の開度の一部を閉じ、ニッケルイオン、ギ酸、アンモニア及びヒドラジンを含む皮膜形成水溶液91の一部を、配管76を通してカチオン交換樹脂塔63に導く。さらに、弁99を閉じたままにしておき、弁80を開いてカチオン交換樹脂塔63から排出された皮膜形成水溶液91が、配管83を通して分解装置65に供給される。このとき、薬液タンク57内の過酸化水素が供給配管59及び配管83を通して分解装置65に供給される。皮膜形成水溶液91に含まれる、ギ酸及びヒドラジン(還元剤)は、分解装置65内で、活性炭触媒及び過酸化水素の作用により、二酸化炭素、窒素及び水に分解される。
 ニッケルイオン及びアンモニアが除去され、ギ酸及び還元剤が分解された皮膜形成水溶液を浄化する(ステップS9)。ギ酸及びヒドラジン(還元剤)が分解された後、弁74を開いて弁75,80及び81を閉じて皮膜形成水溶液91のカチオン交換樹脂塔63及び分解装置65への供給を停止し、弁72を開いて弁71の開度の一部を閉じ、弁77及び82を開く。循環ポンプ35及び34は駆動している。浄化系配管18から循環配管31に戻された、分解によりヒドラジン及びギ酸の各濃度が低減され、ニッケルイオン及びアンモニアを含む皮膜形成水溶液91は、冷却器62で60℃になるまで冷却される。さらに、冷却器62から排出された60℃の皮膜形成水溶液91が混床樹脂塔64に導かれ、この皮膜形成水溶液91に残留しているニッケルイオン、他の陽イオン及び陰イオン、さらにアンモニアが、混床樹脂塔64内の陽イオン交換樹脂及び陰イオン交換樹脂により除去される(第1浄化工程)。60℃に冷却された皮膜形成水溶液に含まれた上記の各イオンが実質的になくなるまで、循環配管31及び浄化系配管18を循環させる。第1浄化工程終了後、弁71を開いて弁72,77及び82を閉じる。第1浄化工程終了後、その皮膜形成水溶液は、実質的の60℃の水になる。次のステップS10の工程において浄化系配管18の表面に形成されたニッケル金属皮膜上への貴金属(例えば、白金)の付着が容易に行われるように、第1浄化工程後においても、その60℃の水に僅かに残存するFe3+の水酸化鉄(III)の形成による析出を抑制するために、その60℃の水にアンモニア(例えば、50ppmのアンモニア)を注入する。このアンモニアの注入は、弁86を開いた後、エゼクタ66から配管87内を流れる60℃の水にアンモニアを供給することによって行われる。供給されたアンモニアは、サージタンク32内で60℃の水に混合される。上記の所定量のアンモニアが注入された後、弁86を閉じる。
 白金イオン水溶液を注入する(ステップS10)。白金イオン注入装置46の弁50を開いて注入ポンプ48を駆動する。循環配管31内を流れる水は、加熱器33による加熱により60℃に保たれる。循環配管31内を流れる60℃のアンモニアを含む水に、注入配管49を通して薬液タンク47内の白金イオンを含む水溶液(例えば、ヘキサヒドロキソ白金酸ナトリウム水和物(Na[Pt(OH)]・nHO)の水溶液)が注入される。注入されるこの水溶液の白金イオンの濃度は、例えば、1ppmである。ヘキサヒドロキソ白金酸ナトリウム水和物の水溶液内では、白金がイオン状態になっている。60℃のアンモニア及び白金イオンを含む水溶液が、循環ポンプ34及び35の駆動により、循環配管31から浄化系配管18に供給され、浄化系配管18から循環配管31に戻される。そのアンモニア及び白金イオンを含む水溶液は、循環配管31及び浄化系配管18を含む閉ループ内を循環する。
 注入開始直後において、薬液タンク47から循環配管31と注入配管49の接続点を通して循環配管31に注入される、Na[Pt(OH)]・nHOの水溶液のその接続点での白金濃度が、設定濃度、例えば、1ppmとなるように、予め、Na[Pt(OH)]・nHOの水溶液の循環配管31への注入速度を計算し、さらに、循環配管31内を流れる60℃のアンモニア及び白金イオンを含む水溶液の白金イオンをその設定濃度にして、浄化系配管18の内面に形成されたニッケル金属皮膜の表面に所定量の白金を付着させるのに必要な、薬液タンク47に充填するNa[Pt(OH)]・nHOの水溶液の量を計算し、計算されたNa[Pt(OH)]・nHOの水溶液の量を薬液タンク47に充填する。計算されたNa[Pt(OH)]・nHOの水溶液の循環配管31への注入速度に合わせて注入ポンプ48の回転速度を制御し、薬液タンク47内のNa[Pt(OH)]・nHOの水溶液を循環配管31内に注入する。
 還元剤を注入する(ステップS11)。還元剤注入装置41の弁45を開いて注入ポンプ43を駆動し、薬液タンク42内の還元剤であるヒドラジンの水溶液を、注入配管44を通して、循環配管31内を流れる、アンモニア及び白金イオンを含む60℃の水溶液に注入する。注入されるヒドラジン水溶液のヒドラジン濃度は、例えば、100ppmである。
 ヒドラジン水溶液は、60℃の、アンモニア及び白金イオンを含む水溶液がヒドラジン水溶液の注入点である注入配管44と循環配管31の接続点に到達した以降に循環配管31に注入される。この場合には、アンモニア、白金イオン及びヒドラジンを含み60℃の水溶液が、循環配管31から浄化系配管18に供給される。しかし、より好ましくは、薬液タンク47内に充填された所定量のNa[Pt(OH)]・nHOの水溶液を全て循環配管31内に注入し終わった直後にヒドラジン水溶液を注入配管44から循環配管31に注入することが望ましい。この場合には、アンモニア及び白金イオンを含む60℃の水溶液が循環配管31から浄化系配管18に供給され、白金イオン水溶液の注入配管49から循環配管31への注入が終了した後では、アンモニア、白金イオン及びヒドラジンを含み60℃の水溶液92(図6参照)が循環配管31から浄化系配管18に供給される。
 前者のヒドラジン水溶液の注入の場合には、ヒドラジンにより白金イオンを白金にする還元反応が、最初に、循環配管31内を流れる、ヒドラジン及び白金イオンを含む水溶液内で生じるのに対して、後者のヒドラジン水溶液の注入の場合には、既に、白金イオンが浄化系配管18の内面に形成されたニッケル金属皮膜89の表面に吸着されており、この吸着された白金イオンがヒドラジンにより還元されるので、浄化系配管18の内面に形成されたニッケル金属皮膜89表面への白金90の付着量がさらに増加する(図6参照)。
 ヒドラジン水溶液の注入開始直後において、薬液タンク42から循環配管31と注入配管44の接続点を通して注入されるヒドラジン水溶液のその接続点でのヒドラジン濃度が、設定濃度、例えば、100ppmとなるように、予め、ヒドラジン水溶液の循環配管31への注入速度を計算し、さらに、循環配管31内を流れる60℃の白金イオンを含む水溶液92内のヒドラジンをその設定濃度にして、浄化系配管18の内面に形成されたニッケル金属皮膜89表面に吸着された白金イオンを白金90に還元するために必要な、薬液タンク42に充填するヒドラジン水溶液の量を計算し、計算されたヒドラジン水溶液の量を薬液タンク42に充填する。計算されたヒドラジン水溶液の循環配管31への注入速度に合わせて注入ポンプ43の回転速度を制御し、薬液タンク42内のヒドラジン水溶液を循環配管31内に注入する。
 なお、薬液タンク47内のNa[Pt(OH)]・nHOの水溶液(白金イオンを含む水溶液)が、全量、循環配管31に注入されたとき、注入ポンプ48の駆動を停止して弁50を閉じる。これにより、白金イオンを含む水溶液の循環配管31への注入が停止される。また、薬液タンク42内のヒドラジン水溶液(還元剤水溶液)が、全量、循環配管31に注入されたとき、注入ポンプ43の駆動を停止して弁45を閉じる。これにより、ヒドラジン水溶液の循環配管31への注入が停止される。
 ニッケル金属皮膜89表面に吸着した白金イオンが注入されたヒドラジンによって還元されて白金90となるため、浄化系配管18の内面に形成されたニッケル金属皮膜89の表面に白金90が付着する(図6参照)。この白金付着工程において、炭素鋼配管表面にはニッケル金属皮膜が既に形成されているため、下地の鉄の溶出が抑制されるので白金の付着が起こり易くなっている。
 白金の付着が完了したかを判定する(ステップS12)。白金イオン水溶液及び還元剤水溶液の注入からの経過時間が所定時間になったとき、浄化系配管18の内面に形成されたニッケル金属皮膜89表面への所定量の白金の付着が完了したと判定する。その経過時間が所定時間に到達しないときには、ステップS10~S11の各工程が繰り返される。
 浄化系配管18及び循環配管31内に残留する水溶液を浄化する(ステップS13)。
浄化系配管18の内面に形成されたニッケル金属皮膜89表面への白金90の付着が完了したと判定された後、弁81,77及び82を開いて弁74の開度の一部を閉じ、循環ポンプ35で昇圧された、白金イオン、アンモニア及びヒドラジンを含む60℃の水溶液を、混床樹脂塔64に供給する。その水溶液に含まれる白金イオン、他の金属陽イオン(例えば、ナトリウムイオン)、アンモニア、ヒドラジン及びOH基が、混床樹脂塔64内のイオン交換樹脂に吸着され、その水溶液から除去される(第2浄化工程)。混床樹脂塔64から排出されたその水溶液は、弁82を通して循環配管31に戻され、サージタンク32に導かれる。
 廃液を処理する(ステップS14)。第2浄化工程が終了した後、ポンプ(図示せず)を有する高圧ホース(図示せず)により循環配管31と廃液処理装置(図示せず)を接続する。第2浄化工程の終了後に、浄化系配管18及び循環配管31内に残存する、放射性廃液である水溶液は、そのポンプを駆動して循環配管31から高圧ホースを通して廃液処理装置(図示せず)に排出され、廃液処理装置で処理される。浄化系配管18及び循環配管31内の水溶液が排出された後、洗浄水を浄化系配管18及び循環配管31内に供給し、循環ポンプ34,35を駆動してこれらの配管内を洗浄する。洗浄終了後、浄化系配管18及び循環配管31内の洗浄水を、上記の廃液処理装置に排出する。
 以上により、本実施例の原子力プラントの炭素鋼部材へのニッケル金属と貴金属の付着方法が終了する。そして、浄化系配管18に接続された皮膜形成装置30を浄化系配管18から取り外し、浄化系配管18を復旧させる。
 皮膜形成水溶液がpH緩衝溶液の、酸及び塩基のそれぞれ1種類の成分を含んでいるため、皮膜形成水溶液のpHはギ酸ニッケル水溶液及び還元剤(例えば、ヒドラジン))の注入によっても影響を受けず、還元剤、及びpH緩衝溶液、酸及び塩基のそれぞれ1種類の成分を含む皮膜形成水溶液を炭素鋼部材の表面に接触している間、皮膜形成水溶液のpHを設定値に維持することができる。このため、皮膜形成水溶液のpHの変動による、炭素鋼部材の表面へのニッケル金属の付着量の減少を防止することができ、その表面へのニッケル金属の付着量を増大させることができる。この結果、炭素鋼部材の表面へのニッケル金属皮膜の形成に要する時間を短縮することができる。
 皮膜形成水溶液のpHを3.9以上4.2の範囲内のpHにすることによって、炭素鋼部材表面に形成されるニッケル金属皮膜の量を著しく増大させることができる(図7参照)。皮膜形成水溶液がpH緩衝溶液を含むことによって、皮膜形成水溶液のpHの設定値を3.9以上4.2の範囲内のpHにすることができ、pH緩衝溶液の作用と相俟って炭素鋼部材表面に形成されるニッケル金属皮膜の量をさらに増大させることができる。この結果、炭素鋼部材表面へのニッケル金属皮膜の形成に要する時間を、さらに短縮することができる。
 本実施例によれば、ニッケルイオン及び還元剤(例えば、ヒドラジン)を含む皮膜形成水溶液を浄化系配管18の内面に接触させ、浄化系配管18の、炉水と接触する内面に、この内面を覆うニッケル金属皮膜89を形成することができる。このニッケル金属皮膜89によって、浄化系配管18から皮膜形成水溶液へのFe2+の溶出を防止することができ、浄化系配管18の内面への貴金属(例えば、白金)の付着がFe2+の溶出によって阻害されることがなくなり、その内面への貴金属の付着(具体的には、浄化系配管18の内面に形成されたニッケル金属皮膜89の表面への貴金属の付着)に要する時間を短縮することができる。また、その内面への貴金属の付着を効率良く行うことができ、浄化系配管18の内面への貴金属の付着量が増加する。
 本実施例では、浄化系配管18の内面に形成されたニッケル金属皮膜89には、50μg/cm2以上300μg/cm2以下の範囲内のニッケル金属が存在する。このように、50μg/cm2以上300μg/cm2以下の範囲内のニッケル金属が存在すると、ニッケル金属皮膜89が、浄化系配管18の、皮膜形成液に接触する内面の全面を覆った状態とになり、BWRプラントの運転中において、浄化系配管18内を流れる炉水が浄化系配管18の母材と接触することが、そのニッケル金属皮膜89によって、遮られる。このため、炉水に含まれる放射性核種の浄化系配管18の母材への取り込みが生じない。
 浄化系配管18の内面に形成されたニッケル金属皮膜89は、浄化系配管18への白金の付着に要する時間を短縮させるだけでなく、後述の実施例2,3及び4等で述べるように、付着した白金90の作用と相俟って、浄化系配管18の内面への、付着した白金によっても炉水に溶出しない安定なニッケルフェライト皮膜の形成に貢献する。
 浄化系配管18の内面へのニッケル金属皮膜89の形成は、皮膜形成水溶液に含まれたニッケルイオンが浄化系配管18に含まれる鉄と置換めっき反応によって浄化系配管18の内面に取り込まれ、浄化系配管18からのFe2+の溶出に伴って生成された電子、または皮膜形成水溶液に含まれるヒドラジン(還元剤)により配管内表面に吸着したニッケルイオンが還元されてニッケル金属になる。このように、置換めっき反応と電子または還元剤の還元作用によって生成されたニッケル金属は、浄化系配管18の母材との密着性が強い。このため、形成されたニッケル金属皮膜89は、浄化系配管18からはがれることはない。
 本実施例では、浄化系配管18の内面を還元除染した後、浄化系配管18の内面にニッケル金属皮膜89を形成するため、浄化系配管18の内面に形成された、放射性核種を含む酸化皮膜の上にニッケル金属皮膜が形成されることはなく、浄化系配管18から放出される放射線が低減され、浄化系配管18の表面線量率が著しく低減される。
 シュウ酸水溶液を用いた、浄化系配管18内面の還元除染時、及びシュウ酸の分解時において、炭素鋼部材である浄化系配管18の内面に形成されたシュウ酸鉄(II)を、シュウ酸水溶液に注入した酸化剤(例えば、過酸化水素)の作用によって除去する。このシュウ酸鉄(II)の除去により、浄化系配管18とニッケル金属皮膜89の密着性が向上し、ニッケル金属皮膜89が浄化系配管18の内面から剥離することを防止できる。
 本発明の好適な他の実施例である実施例2の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法を、図12を用いて以下に説明する。本実施例の炭素鋼部材への放射性核種の付着抑制方法は、BWRプラントの浄化系配管に適用される。
 本実施例の炭素鋼部材への放射性核種の付着抑制方法では、実施例1の原子力プラントの炭素鋼部材への貴金属の付着方法におけるステップS1~S14の各工程、及び新たなステップS15~S17の各工程が実施される。本実施例の炭素鋼部材への放射性核種の付着抑制方法では、実施例1で用いられる皮膜形成装置30がステップS1~S14の各工程で用いられる。
 本実施例では、ステップS1~S14の各工程が、順次、実施される。ステップS1~S14の各工程は実施例1と同じであるため、これらの工程の説明は省略する。ここでは、ステップS14の工程の後に実施されるステップS15~S17の各工程について詳述する。
 皮膜形成装置を配管系から除去する(ステップS15)。ステップS1~S14の各工程が実施された後、浄化系配管18に接続されている皮膜形成装置30を浄化系配管18から取り外す。そして、浄化系配管18が復旧される。
 原子力プラントを起動させる(ステップS16)。BWRプラント1の燃料交換及び保守点検が終了した後、次の運転サイクルでの運転に入るために、ニッケル金属皮膜89が内面に形成された浄化系配管18を有するBWRプラント1が起動される。
 130℃以上の炉水を白金が付着されたニッケル金属皮膜に接触させる(ステップS17)。BWRプラント1が起動されたとき、RPV3内の炉水は、前述したように、再循環系配管6及びジェットポンプ5を通って炉心4に供給される。そして、炉心から吐出された炉水は、ダウンカマに戻される。ダウンカマ内の炉水は、再循環系配管6を経由して浄化系配管18内に流入し、やがて、給水配管11に流入してRPV3内に戻される。
 炉心4から制御棒(図示せず)が引き抜かれて炉心4が未臨界状態から臨界状態になり、炉心4内の炉水が燃料棒内の核燃料物質の核分裂で生じる熱で加熱される。このとき、炉心4では蒸気が発生せず、まだ、タービン9には蒸気が供給されていない。さらに、制御棒が炉心4から引き抜かれ、原子炉2の昇温昇圧工程において、RPV3内の圧力が定格圧力まで上昇され、その核分裂で生じる熱によって炉水が加熱されてRPV3内の炉水の温度が定格温度(280℃)まで上昇される。RPV3内の圧力が定格圧力になり、炉水温度が定格温度に上昇した後、炉心4からの制御棒の引き抜き、及び炉心4に供給される炉水の流量増加により、原子炉出力が定格出力(100%出力)まで上昇される。定格出力を維持した、BWRプラント1の定格運転が、その運転サイクルの終了まで継続される。原子炉出力が、例えば、10%出力まで上昇したとき、炉心4で発生した蒸気が主蒸気配管8を通してタービン9に供給され、発電が開始される。
 炉水93には、酸素及び過酸化水素が含まれている。酸素及び過酸化水素は、RPV3内で炉水93の放射線分解により生成される。RPV3内の炉水93は、再循環系配管6から浄化系配管18内に導かれ、浄化系配管18の内面に形成されている、白金90が付着したニッケル金属皮膜89に接触する(図13参照)。原子炉2の昇温昇圧工程において、前述の核分裂で生じる熱による炉水の加熱により、このニッケル金属皮膜89に接触する炉水93の温度は上昇し、やがて、130℃以上になり、280℃まで上昇する。炉水93の温度が130℃以上になると、内面に形成されたニッケル金属皮膜89、及び保温材で取り囲まれている浄化系配管18のそれぞれの温度も130℃以上になる。本実施例では、130℃以上330℃以下の温度範囲内である130℃以上280℃以下の温度範囲内の温度の炉水が、白金が付着したニッケル金属皮膜に接触される。
 この結果、炉水93に含まれる酸素がニッケル金属皮膜89内に移行し、浄化系配管18に含まれるFeがFe2+となってニッケル金属皮膜89内に移行する(図14参照)。
浄化系配管18及びニッケル金属皮膜89は、ニッケル金属皮膜89に付着した白金90の作用によって、腐食電位が低下する。ニッケル金属皮膜89の腐食電位の低下、及び約130℃以上の高温環境の形成により、ニッケル金属皮膜89内のニッケルが移行した酸素及びFe2+と反応し、Ni1-xFe2+x4においてxが0であるニッケルフェライト(NiFe24)が生成される。
 このため、浄化系配管18の内面に形成されたニッケル金属皮膜89がこのニッケルフェライトの皮膜94に変換され、ニッケルフェライト皮膜94が浄化系配管18の内面を覆うことになる(図15参照)。ニッケルフェライト皮膜94が、浄化系配管18の、ニッケル金属皮膜89が覆っていた内面全体を覆う。ニッケルフェライト皮膜94上に白金90が付着している。
 本実施例は実施例1で生じる各効果を得ることができる。皮膜形成装置30を浄化系配管18から取り外した後に、BWRプラント1を起動させるだけで、浄化系配管18の内面に形成されて白金90が付着されたニッケル金属皮膜89を白金90が付着されたニッケルフェライト皮膜94に変えることができる。ニッケルフェライト皮膜94は、付着した白金90の作用によっても溶出しない、安定なニッケルフェライトである。このため、浄化系配管18の内面への、付着した白金90によっても炉水93中に溶出しない安定なニッケルフェライト皮膜94の形成に要する時間が短縮される。
 本実施例は、ニッケル金属皮膜89の、浄化系配管18の内面への形成、及び白金90のニッケル金属皮膜89への付着が、実施例1と同様に、BWRプラント1の運転停止中に行われるが、ニッケル金属皮膜89のニッケルフェライト皮膜94への変換が、BWRプラント1の起動後において行われる。このため、炉水の温度が130℃未満の状態では、ニッケル金属皮膜89がニッケルフェライト皮膜94に変わっておらず、浄化系配管18の内面が、白金90が付着したニッケル金属皮膜89で覆われている(図13参照)。
この状態でも、白金90の作用により炉水93が接触している浄化系配管18及びニッケル金属皮膜89の腐食電位が低下し、ニッケル金属皮膜89及び浄化系配管18への放射性核種の取り込みは生じない。このように、浄化系配管18への放射性核種の付着が抑制される。
 安定なニッケルフェライト皮膜に付着している白金90は、ニッケル金属皮膜89を安定なニッケルフェライト皮膜94に変換させるだけでなく、原子力プラント1の運転中において、炉水93中の溶存酸素と水素注入により炉水93に注入された水素を反応させて水を生成する触媒としても機能する。このため、炉水93中の溶存酸素濃度が低減され、原子力プラント1のステンレス鋼製の構造部材における応力腐食割れの発生を抑制する。
 炉水93がニッケル金属皮膜89に接触する状態では、極微量であるがニッケル金属皮膜89に含まれるニッケルが炉水93中に溶出する。炉水93がニッケル金属皮膜89に接触する期間が長くなる、例えば、一つの運転サイクルの期間に亘ると、ニッケル金属皮膜89が消失する可能性もある。しかしながら、本実施例では、BWRプラント1の起動時における昇温昇圧工程で炉水93の温度が130℃以上になると、前述したように、白金90が付着されて炉水93に接触しているニッケル金属皮膜89がニッケルフェライト皮膜94に変わるので、運転サイクルのほとんど大部分の期間では、浄化系配管18の内面が、白金90の作用によっても溶出しない安定なニッケルフェライト皮膜94で覆われることになる。ニッケル金属皮膜89が浄化系配管18の内面を覆っている期間は、一つの運転サイクルにおける原子力プラント1の運転期間に対して極めて短い期間であるため、ニッケル金属皮膜89に含まれるニッケルが炉水93中に溶出する量は極微量であり、浄化系配管18の内面を覆うニッケル金属皮膜89の厚みはほとんど変化しない。このため、ニッケルフェライト皮膜94に変わる前に、ニッケル金属皮膜89が消失することは起こりえない。
 本発明の好適な他の実施例である実施例3の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法を、図16を用いて以下に説明する。本実施例の炭素鋼部材への放射性核種の付着抑制方法は、BWRプラントの浄化系配管に適用される。
 本実施例の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法では、実施例2の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法において実施されるステップS1~S17の各工程が実施される。ただし、実施例1及び2がステップS4の工程で図3に示される皮膜形成装置30を用いているのに対し、本実施例では、図16に示される皮膜形成装置30Aを用いる。皮膜形成装置30Aは、皮膜形成装置30においてpH緩衝溶液注入装置51をギ酸注入装置51C及びアンモニア注入装置51Dを含むpH緩衝溶液注入装置51Aに変えた構成を有する。pH緩衝溶液注入装置51Aを除いた皮膜形成装置30Aの構成は、pH緩衝溶液注入装置51を除いた皮膜形成装置30の構成と同じである。
 pH緩衝溶液注入装置51Aの構造を以下に説明する。pH緩衝溶液注入装置51Aのギ酸注入装置51Cが、薬液タンク52A、注入ポンプ53A及び注入配管54Aを有する。薬液タンク52Aは、注入ポンプ53A及び弁55Aを有する注入配管54Aによって、循環配管31に接続されて弁55を有する注入配管54に弁55の上流側で接続される。pH緩衝溶液の一つの成分であるギ酸の水溶液が薬液タンク52A内に充填される。
また、pH緩衝溶液注入装置51Aのアンモニア注入装置51Dが、薬液タンク52B、注入ポンプ53B及び注入配管54Bを有する。薬液タンク52Bは、注入ポンプ53B及び弁55Bを有する注入配管54Bによって、循環配管31に接続された上記の注入配管54に弁55の上流側で接続される。pH緩衝溶液の他の一つの成分であるアンモニアの水溶液が薬液タンク52B内に充填される。
 ステップS1~S3の各工程が実施される。その後におけるステップS4の工程では、弁55を開いた状態で、薬液タンク52A内のギ酸水溶液及び薬液タンク52B内のアンモニア水溶液が弁55を有する注入配管54に供給され、注入配管54内で、ギ酸水溶液及びアンモニア水溶液が混合され、pH緩衝溶液である、ギ酸及びアンモニアを含む混合溶液が生成される。このギ酸及びアンモニアを含む混合溶液が、注入配管54を通して循環配管31内を流れる残存するギ酸を含む90℃の水溶液に注入される。
 ギ酸水溶液及びアンモニア水溶液の注入配管54への供給を、さらに具体的に説明する。ギ酸注入装置51Cの弁55Aを開いて注入ポンプ53Aを駆動し、薬液タンク52A内のギ酸水溶液を、注入配管54Aを通して注入配管54に供給する。弁55Aを開くのと同時に、アンモニア注入装置51Dの弁55Bを開いて注入ポンプ53Bを駆動し、薬液タンク52B内のアンモニア水溶液を、注入配管54Bを通して注入配管54に供給する。注入配管54内では、ギ酸水溶液とアンモニア水溶液が混合され、ギ酸及びアンモニアを含む混合溶液が生成される。注入配管54へのギ酸水溶液の注入流量及びアンモニア水溶液の注入流量は注入ポンプ53A及び53Bで調節され、注入配管54と循環配管31の合流点でのギ酸濃度が800ppm、アンモニア濃度が156ppmとなるように注入流量が調整され、系統保有水量から計算されるギ酸濃度800ppm及びアンモニア濃度156ppmを達成するために必要な注入量全量を注入するまで継続する。
 pH緩衝溶液である、ギ酸及びアンモニアを含む混合溶液が注入される、循環配管31内を流れる残存するギ酸を含む90℃の水溶液のpHは、3.9~4.2の範囲内の値、例えば、4.0になる。
 本実施例においても、ステップS4の工程の実施後に、ステップS5~S17の各工程が、順次、実施される。
 本実施例は、実施例2で生じる各効果を得ることができる。さらに、本実施例は、ギ酸注入装置51C及びアンモニア注入装置51Dからギ酸水溶液及びアンモニア水溶液を注入配管54に別々に供給するため、ステップS5の工程でのニッケルイオン注入後、何らかの原因、例えば、皮膜形成水溶液が流れる配管(浄化系配管18及び循環配管31)内のどこかでFe(OH)3のような不純物が沈積し、沈積した不純物が溶解してギ酸及びアンモニアの混合溶液の緩衝能力を越えて皮膜形成水溶液のpHが4.0から変動してしまった場合、例えば、そのpHが4.0よりも低くなった場合にはアンモニア注入装置51Dからアンモニアを、pHが4.0よりも高くなった場合にはギ酸注入装置51Cからギ酸を個別に注入して皮膜形成水溶液のpHを4.0に調節することができる。すなわち、皮膜形成水溶液のpHを、設定値(例えば、4.0)に容易に調節することができる。
 本発明の好適な他の実施例である実施例4の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法を、図17及び図18を用いて以下に説明する。本実施例の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法は、少なくとも1つの運転サイクルでの運転を経験したBWRプラントの浄化系配管に適用される。
 本実施例では、実施例2で実施されるステップS1~S15及びS17の各工程、及び新たなステップS18及びS19の各工程が実施される。本実施例は、実施例2で用いられる皮膜形成装置30がステップS1~S14の各工程で用いられ、さらに、新たな加熱システム95がステップS18及びS17の各工程で用いられる。
 加熱システム95の構成を、図18を用いて説明する。加熱システム95は、耐圧構造であって、循環配管96、循環ポンプ97、加熱装置98及び昇圧装置である弁99を有する。循環ポンプ97が循環配管96に設けられ、加熱装置98が循環ポンプ97の上流で循環配管96に設けられる。加熱装置98は循環ポンプ97の下流に配置してもよい。
配管100が循環ポンプ97をバイパスしており、配管100の一端部が循環ポンプ97よりも上流で循環配管96に接続され、配管100の他端部が循環ポンプ97よりも下流で循環配管96に接続される。弁99が配管100に設けられる。開閉弁101が循環配管96の上流側端部に設けられ、開閉弁102が循環配管の下流側端部に設けられる。
 本実施例では、ステップS1~S14の各工程が実施された後、ステップS15,S18,S17及びS18の各工程が、順次、実施される。ステップS15,S18,S17及びS18の各工程を、以下に詳細に説明する。
 皮膜形成装置を配管系から除去する(ステップS15)。本実施例において、ステップS1~S14の各工程が実施された後、浄化系配管18に接続されている皮膜形成装置30が浄化系配管18から取り外される。皮膜形成装置30の循環配管31の一端部が弁23のフランジから取り外され、循環配管31の他端部が弁25のフランジから取り外される。
 加熱システムを配管系に接続する(ステップS18)。加熱システム95の循環配管96(第3配管)の開閉弁102側の一端部が弁23のフランジに接続され、循環配管96が浄化系配管18に連絡される。循環配管96の開閉弁101側の他端部が弁25のフランジに接続され、循環配管96が再生熱交換器20と非再生熱交換器21の間で浄化系配管18に接続される。循環配管96の両端が浄化系配管18に接続され、浄化系配管18及び循環配管96を含む閉ループが形成される。
 次に、130℃以上330℃以下の温度範囲内の温度を有し、酸素を含む水を、白金が付着されたニッケル金属皮膜に接触させる(ステップS17)。酸素を含む水が、循環配管96及び浄化系配管18を含む閉ループ内に充填される。循環ポンプ97を駆動して、酸素を含む水を、その閉ループ内で循環させる。循環ポンプ97の回転速度を或る回転速度まで増加させ、その後、弁99の開度を徐々に減少させて循環ポンプ97から吐出される水の圧力を高める。加熱装置98により、その閉ループ内を循環する酸素を含む水を加熱し、その水の温度を上昇させる。このように、循環ポンプ97から吐出される水の圧力を高めながら、その水の温度を上昇させる。弁99が全閉になった後は、循環ポンプ97の回転速度を、さらに、増加させる。このような操作により、その閉ループ内を循環する水の圧力が、例えば、0.27MPa~12.863MPaの範囲に上昇したとき、循環する水の温度は約130.0℃~330.0℃の範囲内に上昇する。循環する水の圧力を調節し、その水の温度を130℃以上330℃以下の温度範囲内の、例えば、150℃に調節する。閉ループ内を循環する水の温度は、浄化系配管18の内面に形成されたニッケル金属皮膜を安定なニッケルフェライト皮膜に変換する間、150℃に保持される。
 酸素を含む150℃の水93Aが、循環配管96から浄化系配管18に供給され、浄化系配管18の内面に形成された、白金90が付着したニッケル金属皮膜89に接触する(図13参照)。浄化系配管18は、循環配管96の両端部が接続された弁23及び25の付近を除いて、保温材(図示せず)で取り囲まれている。150℃の水93Aがニッケル金属皮膜89に接触することによって、浄化系配管18及びニッケル金属皮膜89のそれぞれが加熱され、それぞれの温度が150℃になる。
 酸素を含む水93A、浄化系配管18及びニッケル金属皮膜89のそれぞれが、150℃になるため、その水93Aに含まれる酸素(O2)及び水93Aに含まれる一部の水分子を構成する酸素がニッケル金属皮膜89内に移行し、浄化系配管18に含まれるFeがFe2+となってニッケル金属皮膜89内に移行する(図14参照)。水93Aに含まれる酸素は、130℃以上の水93A中では単独で移動し易くなり、ニッケル金属皮膜89内に入り易くなる。ニッケル金属皮膜89に付着した白金90の作用により、浄化系配管18及びニッケル金属皮膜89の腐食電位が低下する。ニッケル金属皮膜89の腐食電位の低下、及び150℃の高温環境の形成により、ニッケル金属皮膜89内のニッケルがニッケル金属皮膜89内に移行した酸素及びFe2+と反応し、Ni1-xFe2+x4においてxが0である、白金の作用によっても溶出しない安定なニッケルフェライト(NiFe24)が生成される。このため、浄化系配管18の内面に形成されたニッケル金属皮膜89が安定なニッケルフェライト(NiFe24)皮膜94に変換され、ニッケルフェライト皮膜94が浄化系配管18の弁23と弁25の間の部分の内面を覆うことになる(図15参照)。白金90は、安定なニッケルフェライト皮膜94の表面に付着している。
 加熱システムを配管系から取り外す(ステップS19)。ニッケルフェライト皮膜94が浄化系配管18の内面を覆って形成された後、浄化系配管18に接続されている加熱システム95が浄化系配管18から取り外される。その後、浄化系配管18が復旧される。
 燃料交換及びBWRプラント1の保守点検が終了した後、次の運転サイクルでの運転を開始するために、白金90が付着したニッケルフェライト皮膜94が内面に形成された浄化系配管18を有するBWRプラント1が起動される。浄化系配管18内を流れる炉水は、ニッケルフェライト皮膜94が形成されているため、浄化系配管18の母材に直接接触することはない。
 本実施例は実施例1で生じた各効果を得ることができる。さらに、本実施例では、加熱システム95を用いて浄化系配管18の内面に形成されたニッケル金属皮膜89を安定なニッケルフェライト皮膜94に変換するため、ステップS17におけるその変換の処理をBWRプラント1の運転停止中に行うことができる。このため、BWRプラント1を起動するときには、浄化系配管18の内面に、既に、安定なニッケルフェライト皮膜94が形成されているので、本実施例では、実施例1においてその内面に安定なニッケルフェライト皮膜94が形成される前の時点においても浄化系配管18の腐食を抑制することができる。
 さらに、本実施例では、加熱システム95を用いて130℃以上330℃以上の温度範囲の、酸素を含む水を、浄化系配管18の内面に形成されたニッケル金属皮膜89に接触させるので、その水を所定温度まで加熱するために要する時間を短縮することができる。
また、加熱システム95の必要とする耐圧性の度合いを低減することができる。
 本発明の好適な他の実施例である実施例5の原子力プラントの炭素鋼部材への貴金属の付着方法を、図19を用いて以下に説明する。本実施例の原子力プラントの炭素鋼部材への貴金属の付着方法は、少なくとも1つの運転サイクルでの運転を経験したBWRプラントの浄化系配管に適用される。
 本実施例は、実施例1の原子力プラントの炭素鋼部材への貴金属の付着方法においてステップS4をステップS4A及び4Bに替えた手順を有する。ステップS4A及び4Bを除いた本実施例の手順は、ステップS4を除いた実施例1の手順と同じである。すなわち、本実施例は、ステップS4Aの工程の前に前述のステップS1~S3の各工程を実施し、ステップS4Bの工程の後に前述のステップS5~S14の各工程を実施する。
 本実施例では、図16に示す皮膜形成装置30Aが用いられる。ただし、本実施例で用いられる皮膜形成装置30Aは、注入配管54が存在しなく、図16に示すギ酸注入装置51C及びアンモニア注入装置51Dのそれぞれが別々に循環配管31に、直接、接続される。すなわち、ギ酸注入装置51Cの注入配管54Aが、ニッケルイオン注入装置36の注入配管39と循環配管31の接続点と弁84との間で、循環配管31に接続され、アンモニア注入装置51Dの注入配管54Bが、注入配管54Aと循環配管31の接続点と注入配管39と循環配管31の接続点との間で、循環配管31に接続される。ギ酸注入装置51C及びアンモニア注入装置51Dは、実質的に、pH緩衝溶液注入装置である。本実施例で用いられる皮膜形成装置30Aの他の構造は、図16に示す皮膜形成装置30Aと同じである。
 ステップS1~S3の各工程が実施された後、ステップS4A及びS4Bの各工程が実施される。ステップS4Aでは、ギ酸注入装置51Cの薬液タンク52Aに充填されたギ酸水溶液が、注入配管54Aを通して循環配管31内を流れる、残存するギ酸を含む90℃の水溶液に注入される。ギ酸水溶液が注入された、その90℃の水溶液が注入配管54Bと循環配管31の接続点に到達したとき、薬液タンク52BCの薬液タンク52Bに充填されたアンモニア水溶液が、注入配管54Aを通して循環配管31に注入される。循環配管31内を流れるその90℃に水溶液のギ酸濃度が800ppmになるように、またその水溶液のアンモニア濃度が156ppmになるように、ギ酸水溶液及びアンモニア水溶液のそれぞれの循環配管31への注入流量が制御される。
 ギ酸水溶液及びアンモニア水溶液のそれぞれの注入により、浄化系配管18内のその90℃の水溶液中で、実質的に、pH緩衝溶液、すなわち、ギ酸及びアンモニアを含む混合溶液が生成され、浄化系配管18内で、pH緩衝溶液の異なる2種類の成分であるギ酸及びアンモニアを含み、pHが4.0で90℃の水溶液が生成される。ギ酸水溶液及びアンモニア水溶液のそれぞれの循環配管31内への注入は、注入されたギ酸及びアンモニアが循環配管31内で混合されてpH緩衝溶液が生成されるように、実施される。
 ギ酸及びアンモニアを含み、pHが4.0で90℃のその水溶液が、ニッケルイオン注入装置36の注入配管39と循環配管31との接続点に到達したとき、ギ酸ニッケル水溶液が、ニッケルイオン注入装置36の薬液タンク37から浄化系配管18内のpHが4.0で90℃の水溶液に注入される(ステップS5)。その後、ステップS5~S14の各工程が、順次、実施される。
 本実施例では、ステップS14の工程が実施された後、実施例2で述べたステップS15~S17の各工程、及び実施例4で述べたステップS15,S18,S17及びS18の各工程のいずれかを実施してもよい。
 本実施例は、実施例3で生じる各効果を得ることができる。
 なお、図16に示す皮膜形成装置30Aは、実施例1,2,4及び5のそれぞれにおいて皮膜形成装置30の替りに使用することができる。
 実施例4で用いる加熱システム95は実施例3及び5のそれぞれで使用することができ、実施例3及び5のそれぞれでは、図17に示す手順を適用することができる。
 前述した実施例1ないし5は、加圧水型原子力プラント及びカナダ型重水冷却圧力管型原子力プラントの炉水に接触する炭素鋼部材に対して適用することができる。
 1…原子力プラント、2…原子炉、3…原子炉圧力容器、4…炉心、6…再循環系配管、9…タービン、11…給水配管、18…浄化系配管、30,30A…皮膜形成装置、31,96…循環配管、32…サージタンク、33…加熱器、34,35…循環ポンプ、36…ニッケルイオン注入装置、37,42,47,52,57,52A,52A…薬液タンク、38,43,48,53,53A,53B…注入ポンプ、41…還元剤注入装置、46…白金イオン注入装置、51…pH緩衝溶液注入装置、51C…ギ酸注入装置、51D…アンモニア注入装置、56…酸化剤供給装置、58…供給ポンプ、62…冷却器、63…カチオン交換樹脂塔、64…混床樹脂塔、65…分解装置、89…ニッケル金属皮膜、90…白金、94…ニッケルフェライト皮膜、95…加熱システム。

Claims (15)

  1.  pH緩衝溶液の、酸及び塩基のそれぞれ1種類の成分、及びニッケルイオンを含む皮膜形成液を、原子力プラントの炭素鋼部材の、炉水と接する第1表面に接触させて、この第1表面に、この第1表面を覆うニッケル金属皮膜を形成し、
     貴金属を前記ニッケル金属皮膜の第2表面に付着させ、
     前記ニッケル金属皮膜の形成及び前記貴金属の付着は、前記原子力プラントの運転停止後で前記原子力プラントの起動前に行われることを特徴とする原子力プラントの炭素鋼部材への貴金属の付着方法。
  2.  前記皮膜形成液のpHが、3.9以上4.2以下の範囲内に存在する請求項1に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  3.  前記ニッケル金属皮膜の形成は、前記炭素鋼部材の第1表面に対して還元除染が実施された後に行われる請求項1または2に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  4.  前記炭素鋼部材の第1表面の前記還元除染に用いられるシュウ酸水溶液に、酸化剤を注入する請求項3に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  5.  前記皮膜形成液は、前記酸及び前記塩基のそれぞれ1種類の成分を含む溶液にニッケルイオンを含む溶液を注入することによって生成される請求項1ないし4のいずれか1項に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  6.  前記皮膜形成液の温度は、60℃以上100℃以下の温度範囲内の温度である請求項1ないし5のいずれか1項に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  7.  前記ニッケル金属皮膜に含まれるニッケル金属の割合は、50μg/cm2以上300μg/cm2以下の範囲内の割合である請求項6に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  8.  前記炭素鋼部材の第1表面への前記ニッケル金属皮膜の形成は、前記皮膜形成液の前記炭素鋼部材の第1表面への接触による前記炭素鋼部材からの鉄イオンの溶出に伴って発生する電子、及び前記皮膜形成液に注入される還元剤のいずれかの作用によって、前記皮膜形成液から前記炭素鋼部材に取り込まれた前記ニッケルイオンがニッケル金属に変換されることによって行われる請求項1ないし7のいずれか1項に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  9.  前記ニッケル金属皮膜の形成が、原子炉圧力容器に連絡される、前記炭素鋼部材である第1配管に、第2配管を通して前記皮膜形成液を供給して、この皮膜形成液を前記炭素鋼部材の第1表面である前記第1配管の内面に接触させることにより前記第1配管の内面において行われ、
     前記ニッケル金属皮膜の第2表面への前記貴金属の付着が、貴金属イオン及び還元剤を含む水溶液を、前記第2配管を通して前記第1配管に供給して、この水溶液を前記第1配管の内面に形成された前記ニッケル金属皮膜の第2表面に接触させることにより行われる請求項1ないし7のいずれか1項に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  10.  前記皮膜形成液を前記第1配管及び前記第2配管を含む閉ループ内で循環させ、前記貴金属イオン及び前記還元剤を含む前記水溶液を前記閉ループ内で循環させる請求項9に記載の原子力プラントの炭素鋼部材への貴金属の付着方法。
  11.  請求項1ないし10のいずれか1項に記載の原子力プラントの炭素鋼部材への貴金属の付着方法を実施し、酸素を含む130℃以上330℃以下の温度範囲内の温度の水を前記貴金属が付着した前記ニッケル金属皮膜の第2表面に接触させることを特徴とする原子力プラントの炭素鋼部材への放射性核種の付着抑制方法。
  12.  前記原子力プラントを起動し、前記酸素を含む前記水として原子炉圧力容器内の炉水を用いる請求項11に記載の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法。
  13.  請求項9または10に記載の原子力プラントの炭素鋼部材への貴金属の付着方法を実施し、
     前記貴金属が前記ニッケル金属皮膜の第2表面に付着された後、前記第2配管を前記第1配管から取り外し、
     その後、酸素を含む130℃以上330℃以下の温度範囲内の水を前記第1配管に供給し、
     前記水を、前記第1配管の内面に形成された、前記貴金属が付着した前記ニッケル金属皮膜の第2表面に接触させることを特徴とする原子力プラントの炭素鋼部材への放射性核種の付着抑制方法。
  14.  前記第2配管を前記第1配管から取り外した後、前記原子力プラントを起動させ、
     前記第1配管に供給されて、前記第1配管の内面に形成された、前記貴金属が付着した前記ニッケル金属皮膜の第2表面に接触させる前記水として、前記原子力プラントを起動後に原子炉圧力容器内に存在する炉水を用いる請求項13に記載の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法。
  15.  前記第2配管を前記第1配管から取り外した後、第3配管の両端部を前記第1配管に接続して前記第1配管及び前記第3配管を含む閉ループを形成し、
     前記酸素を含む130℃以上330℃以下の温度範囲内の前記水の前記第1配管への供給は、前記閉ループ内を循環する、前記酸素を含む前記水を、前記第3配管に設けられた加熱装置により130℃以上330℃以下の温度範囲に加熱して前記第3配管から前記第1配管に供給することによって行い、
     前記水の、前記第1配管の内面に形成された、前記貴金属が付着した前記ニッケル金属皮膜の第2表面への接触は、前記加熱装置で加熱された、前記酸素を含む130℃以上330℃以下の温度範囲内の前記水を、前記第1配管内で前記貴金属が付着した前記ニッケル金属皮膜の第2表面に接触させることによって行う請求項13に記載の原子力プラントの炭素鋼部材への放射性核種の付着抑制方法。
PCT/JP2019/003973 2018-03-16 2019-02-05 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法 WO2019176376A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018049244A JP6931622B2 (ja) 2018-03-16 2018-03-16 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP2018-049244 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019176376A1 true WO2019176376A1 (ja) 2019-09-19

Family

ID=67907566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003973 WO2019176376A1 (ja) 2018-03-16 2019-02-05 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法

Country Status (2)

Country Link
JP (1) JP6931622B2 (ja)
WO (1) WO2019176376A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372324B2 (ja) 2019-06-28 2023-10-31 富士フイルム株式会社 機上現像型平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
JP7344132B2 (ja) * 2020-01-16 2023-09-13 日立Geニュークリア・エナジー株式会社 原子力プラントの炭素鋼部材への貴金属付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124891A (ja) * 1999-07-09 2001-05-11 Hitachi Ltd 原子力プラント構造物の表面処理方法および原子力プラント
JP2011032551A (ja) * 2009-08-04 2011-02-17 Hitachi-Ge Nuclear Energy Ltd 炭素鋼部材の防食方法
JP2012247322A (ja) * 2011-05-30 2012-12-13 Hitachi-Ge Nuclear Energy Ltd プラント構成部材への白金皮膜形成方法
JP2016161466A (ja) * 2015-03-04 2016-09-05 日立Geニュークリア・エナジー株式会社 原子力プラントの構造部材への放射性核種付着抑制方法
JP2018165645A (ja) * 2017-03-28 2018-10-25 日立Geニュークリア・エナジー株式会社 原子力プラントの炭素鋼部材への貴金属の付着方法、及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322493B2 (ja) * 2014-06-17 2018-05-09 日立Geニュークリア・エナジー株式会社 原子力プラントの炭素鋼部材への放射性核種付着抑制方法
JP6523973B2 (ja) * 2016-01-05 2019-06-05 日立Geニュークリア・エナジー株式会社 放射性核種の付着抑制方法、及び炭素鋼配管への皮膜形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124891A (ja) * 1999-07-09 2001-05-11 Hitachi Ltd 原子力プラント構造物の表面処理方法および原子力プラント
JP2011032551A (ja) * 2009-08-04 2011-02-17 Hitachi-Ge Nuclear Energy Ltd 炭素鋼部材の防食方法
JP2012247322A (ja) * 2011-05-30 2012-12-13 Hitachi-Ge Nuclear Energy Ltd プラント構成部材への白金皮膜形成方法
JP2016161466A (ja) * 2015-03-04 2016-09-05 日立Geニュークリア・エナジー株式会社 原子力プラントの構造部材への放射性核種付着抑制方法
JP2018165645A (ja) * 2017-03-28 2018-10-25 日立Geニュークリア・エナジー株式会社 原子力プラントの炭素鋼部材への貴金属の付着方法、及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法

Also Published As

Publication number Publication date
JP6931622B2 (ja) 2021-09-08
JP2019158808A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6620081B2 (ja) 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP6619717B2 (ja) 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
WO2019176376A1 (ja) 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP2016102727A (ja) 原子力プラントの炭素鋼部材への放射性核種付着抑制方法及び皮膜形成装置
JP6462378B2 (ja) 原子力プラントの構造部材への貴金属付着方法
JP6118278B2 (ja) 原子力プラントの構造部材への貴金属付着方法
JP6751044B2 (ja) 原子力プラントの炭素鋼部材への貴金属の付着方法、及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP5557475B2 (ja) 原子力プラントを構成する部材へのフェライト皮膜の形成方法と皮膜形成装置
US20220213601A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for preventing adhesion of radionuclides to carbon steel member of nuclear power plant
JP2017020786A (ja) 原子力プラントの構造部材への貴金属付着方法
JP6868545B2 (ja) プラントの炭素鋼部材の腐食抑制方法
JP6322493B2 (ja) 原子力プラントの炭素鋼部材への放射性核種付着抑制方法
JP6059106B2 (ja) 原子力プラントの炭素鋼部材の化学除染方法
JP7142587B2 (ja) 原子力プラントの炭素鋼部材への貴金属付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP7104616B2 (ja) 原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP2017122593A (ja) 放射性核種の付着抑制方法、及び炭素鋼配管への皮膜形成装置
WO2019102768A1 (ja) 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
WO2019176264A1 (ja) 原子力プラントの炭素鋼部材への放射性核種付着抑制方法
JP7001534B2 (ja) 原子力プラントの構造部材への放射性核種の付着抑制方法
JP2018100836A (ja) 放射性物質付着抑制皮膜の形成方法
JP2019164059A (ja) 原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP2019157215A (ja) プラントの炭素鋼部材の腐食抑制方法
JP2020148574A (ja) 原子力プラントの炭素鋼部材へのニッケル金属皮膜の形成方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP5645759B2 (ja) 原子力プラント構成部材の線量低減方法
JP2020160030A (ja) 原子力プラント構成部材の線量抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768141

Country of ref document: EP

Kind code of ref document: A1