WO2019176116A1 - 障害物検知システムおよび障害物検知方法 - Google Patents

障害物検知システムおよび障害物検知方法 Download PDF

Info

Publication number
WO2019176116A1
WO2019176116A1 PCT/JP2018/010634 JP2018010634W WO2019176116A1 WO 2019176116 A1 WO2019176116 A1 WO 2019176116A1 JP 2018010634 W JP2018010634 W JP 2018010634W WO 2019176116 A1 WO2019176116 A1 WO 2019176116A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
moving body
detection
reflected
detection area
Prior art date
Application number
PCT/JP2018/010634
Other languages
English (en)
French (fr)
Inventor
欣也 市村
Original Assignee
株式会社三井E&Sマシナリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井E&Sマシナリー filed Critical 株式会社三井E&Sマシナリー
Priority to PCT/JP2018/010634 priority Critical patent/WO2019176116A1/ja
Priority to EP18909587.0A priority patent/EP3767337A4/en
Priority to US16/981,461 priority patent/US11977164B2/en
Priority to SG11202009078TA priority patent/SG11202009078TA/en
Publication of WO2019176116A1 publication Critical patent/WO2019176116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • G05D1/247

Definitions

  • the present invention relates to an obstacle detection system and an obstacle detection method that are installed in a moving body such as a vehicle traveling on a traveling surface and detect the presence or absence of an obstacle around the moving body.
  • the present invention relates to an obstacle detection system and an obstacle detection method that can improve the accuracy when determining the obstacle.
  • Patent Document 1 Various obstacle detection systems that are installed in vehicles that automatically travel and detect surrounding obstacles have been proposed (see, for example, Patent Document 1).
  • the obstacle detection system described in Patent Document 1 has a two-dimensional laser scanner that horizontally scans laser light toward the front of the vehicle. This system determines the presence or absence of an obstacle by detecting the reflected light when the irradiated laser light is reflected by the obstacle. That is, it is determined that there is an obstacle when the reflected light is obtained, and that there is no obstacle when the reflected light is not obtained.
  • Patent Document 1 has a configuration in which when no reflected light is obtained, it is determined that there is no obstacle and it is safe. For this reason, when the obstacle is a substance that hardly reflects the laser beam, such as an operator's clothes, the system cannot detect the obstacle. Despite the presence of workers in front of the vehicle, there was a problem that the system erroneously determined that there was no obstacle and it was safe. Even when a transmitting unit that emits laser light, a light receiving unit that receives reflected light, or the like cannot detect reflected light due to a failure, there is a problem that the system determines that there is no obstacle and is safe.
  • Patent Document 1 is configured to determine that there is an obstacle when reflected light is obtained.
  • laser light may be reflected by rain or insects, for example.
  • the system misidentifies that there is an obstacle based on the obtained reflected light.
  • the rain and insects did not interfere with the driving of the vehicle, the system slowed or stopped the vehicle because there was an obstacle.
  • Patent Document 1 has a problem that it is determined that there is no obstacle even though there is an obstacle, or that there is an obstacle even though there is no obstacle that prevents the vehicle from traveling. there were. That is, the accuracy in determining the presence or absence of an obstacle was not sufficient.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an obstacle detection system and an obstacle detection method capable of improving accuracy in determining the presence or absence of an obstacle.
  • an obstacle detection system of the present invention includes a transmitter that is installed on a moving body and that emits laser light while changing an irradiation angle, and a receiver that receives reflected light of the laser light.
  • An obstacle detection system comprising: a detection area setting mechanism that presets a detection area in a peripheral area of a reflection point where the laser beam is reflected when there is no obstacle; and the reflection that is reflected inside the detection area And a determination mechanism for determining the presence or absence of an obstacle according to light.
  • the obstacle detection method of the present invention irradiates a laser beam while changing the irradiation angle from a transmitter installed in a moving body, and receives the reflected light of the laser beam at a receiver to detect the presence of an obstacle.
  • a detection mechanism is preset in a peripheral area around a reflection point where the laser beam is reflected when there is no obstacle, and a determination mechanism according to the reflected light reflected inside the detection area Determines the presence or absence of an obstacle.
  • the presence or absence of an obstacle is determined based on the reflected light from the inside of the detection area. If there is an obstacle, the reflected light from the detection region cannot be obtained, so that even if the obstacle is a substance that hardly reflects the laser beam, it can be detected that there is an obstacle. This is advantageous for improving the accuracy in determining the presence or absence of an obstacle.
  • the reflected light from the detection region cannot be obtained when the light emitting unit that emits laser light or the light receiving unit that receives the reflected light cannot detect the reflected light due to a failure. Therefore, it is determined that there is an obstacle. Since it is possible to take measures on the safety side, it is advantageous for improving safety.
  • FIG. 1 is an explanatory diagram illustrating, in perspective, a portal crane in which the obstacle detection system of the present invention is installed.
  • FIG. 2 is an explanatory diagram showing the configuration of the obstacle detection system of the present invention.
  • FIG. 3 is an explanatory diagram illustrating, in plan view, a reflection point on the traveling surface when there is no obstacle.
  • FIG. 4 is an explanatory diagram illustrating a state when the obstacle detection system of FIG. 2 detects an obstacle.
  • FIG. 5 is an explanatory diagram illustrating, in plan view, reflection points on the traveling surface when an obstacle is present.
  • FIG. 6 is an explanatory diagram illustrating a modified example of the detection region in FIG. 4.
  • FIG. 7 is an explanatory diagram illustrating a modification of the detection region in FIG. FIG.
  • FIG. 8 is an explanatory diagram illustrating a modification of the scanning direction of the laser light.
  • FIG. 9 is an explanatory view illustrating a modification of the obstacle detection system of FIG. 1 in a side view.
  • FIG. 10 is an explanatory diagram illustrating a modification of the scanning direction of laser light.
  • FIG. 11 is an explanatory diagram illustrating, in side view, a hanging tool on which the obstacle detection system is installed.
  • the moving direction of the moving body is indicated by an arrow y
  • the traversing direction that intersects the moving direction y at a right angle is indicated by an arrow x
  • the vertical direction is indicated by an arrow z.
  • a portal crane that is a moving body 2 on which the obstacle detection system of the present invention is installed includes a traveling device 3 that travels in a moving direction y, and a vertical direction z that is disposed above the traveling device 3.
  • a traveling device 3 that travels in a moving direction y
  • a vertical direction z that is disposed above the traveling device 3.
  • Four beam members 4 extending in the horizontal direction, two beam members 5 connecting the upper ends of the leg members 4 extending in the horizontal direction x and facing the horizontal direction x, and traversing along the beam members 5
  • a trolley 6 configured to be movable in the direction x and a hanging tool 7 suspended from the trolley 6 with a wire rope are provided.
  • the portal crane constituting the mobile body 2 can handle containers while traveling on the traveling surface 8 in the moving direction y.
  • the obstacle detection system 1 includes a transmission unit 9 that emits laser light toward the traveling surface 8 and a reception unit 10 that receives reflected light reflected by the traveling surface 8.
  • the receiver 10 is arranged in the vicinity of the transmitter 9.
  • a transmitting unit 9 and a receiving unit 10 (hereinafter may be collectively referred to as a transmitting unit 9 or the like) are respectively installed at positions below the four leg members 4 and in the vicinity of the traveling device 3. ing.
  • the position where the transmission unit 9 and the like are installed is not limited to the above, and can be appropriately installed in another place such as the traveling device 3.
  • the transmitter 9 is configured to scan the laser beam in a range from the front to the back in the moving direction of the portal crane along the moving direction y in which the portal crane as the moving body 2 travels.
  • the irradiation direction of the laser beam is indicated by a broken line for explanation.
  • a configuration may be adopted in which laser light is not irradiated from the transmitter 9 installed on the rear side in the moving direction y of the portal crane.
  • the moving body 2 on which the obstacle detection system 1 is installed is not limited to the portal crane.
  • the obstacle detection system 1 can be installed on a moving body 2 that moves on a plane or space, and can be installed, for example, on a quay crane or a container chassis. Moreover, you may install the obstruction detection system 1 in the hanging tool 7 or the trolley 6 of a portal crane or a quay crane.
  • the obstacle detection system 1 includes a transmitter 9 and a receiver 10.
  • the transmitter 9 is not limited to the configuration that irradiates laser light.
  • the transmitter 9 may be configured to irradiate electromagnetic waves such as light and radio waves, or may be configured to transmit sound waves.
  • the receiving part 10 should just have the structure which can receive reflected waves, such as electromagnetic waves irradiated from the transmission part 9. FIG.
  • the obstacle detection system 1 includes a comparison mechanism 11 that acquires data from the receiving unit 10, a detection area setting mechanism 12 that sends data to the comparison mechanism 11, and data from the comparison mechanism 11 to determine the presence or absence of an obstacle. And a threshold setting mechanism 14 for adjusting a threshold used by the determination mechanism 13, and a control mechanism 15 that controls the moving body 2 based on the determination result in the determination mechanism 13.
  • the comparison mechanism 11, the threshold setting mechanism 14, and the control mechanism 15 are not essential requirements of the present invention.
  • the obstacle detection system 1 first irradiates the traveling surface 8 with laser light from the transmitter 9.
  • the transmitter 9 irradiates the laser beam in a radial (fan-shaped) manner a plurality of times in order by rotating the mirror or the like.
  • the receiving unit 10 acquires the time tn from the irradiation of the laser light until the reflected light is received by the receiving unit 10 for each angle ⁇ n when the laser beam is irradiated from the transmitter 9.
  • the angle ⁇ n represents the inclination of the traveling direction of the laser beam with respect to the vertical direction z.
  • the transmission unit 9 and the reception unit 10 measure the distance from the transmission unit 9 or the like to the traveling surface 8.
  • the transmitting unit 9 and the receiving unit 10 can be configured by a two-dimensional laser scanner, for example.
  • a two-dimensional laser scanner having a resolution of the angle ⁇ n of 0.125 degrees to 1.000 degrees and a mirror rotation speed of 5 to 100 Hz can be used.
  • the receiving unit 10 can use data in a range where the angle ⁇ n is 0 degree or more and 90 degrees or less and does not include 90 degrees.
  • the receiving unit 10 preferably uses data in which the angle ⁇ n is in the range of 0 ° to 60 °. As the range of the angle ⁇ n is increased, an obstacle at a position distant from the moving body 2 can be detected. Therefore, when the speed of the moving body 2 is high, it is desirable that the upper limit of the range of the angle ⁇ n be close to 90 degrees.
  • the receiving unit 10 obtains 2400 measurement data per second. . That is, the receiving unit 10 obtains 2400 points of data that combines the angle ⁇ n and the time tn per second.
  • the reflection points Pn where the laser beam is reflected by the traveling surface 8 are arranged in a straight line along the scanning direction of the laser beam.
  • this straight line may be referred to as a reference line 16.
  • This reference line 16 is a virtual straight line formed on the running surface 8. It can be said that the reference line 16 is an aggregate of a plurality of reflection points Pn formed by reflecting the laser beam on the traveling surface 8. Since the reference line 16 is formed in a range where the laser beam is reflected by the traveling surface 8, the relative position with respect to the transmitter 9 is fixed. Therefore, the reference line 16 moves in the moving direction y as the moving body 2 such as a portal crane moves. In this embodiment, since the laser beam scans along the movement direction y, the reference line 16 is a straight line parallel to the movement direction y. The reference line 16 is a straight line along the traveling surface 8.
  • the detection area S is set in advance.
  • the detection area S is a quadrangular area formed on a plane composed of the moving direction y and the vertical direction z, and is set as a relative position with respect to the transmitting unit 9 and the like.
  • the detection area S is a direction along the moving direction y of the moving body 2 and a pair of long sides 17a and 17b set at the reflection point Pn, that is, above and below the reference line 16, and the pair.
  • This is a rectangular region surrounded by a pair of short sides 18a and 18b that connect opposite ends of the long sides 17a and 17b and extend in the vertical direction z.
  • the shape of the detection region S is not limited to the above, and can be set as appropriate. For example, it can be set to a shape including a polygon or a curve.
  • the lengths of the short sides 18a and 18b of the detection region S can be set within a range of ⁇ 100 mm in the vertical direction z around the reference line 16, for example.
  • the rubber tire may expand and contract in the vertical direction z due to the load of the container.
  • the transmitting portion 9 and the like move in the vertical direction z, and accordingly, the detection region S also moves in the vertical direction z.
  • the lengths of the short sides 18a and 18b are set in a range in which the reference line 16 is inside the detection area S.
  • the length of the long sides 17a and 17b can be set in the range of several meters to several tens of meters in the horizontal direction.
  • the lengths of the long sides 17a and 17b are set to be longer than or equal to the reference line 16. That is, the range of the detection region S is set so that the reference line 16 is always inside the detection region S.
  • the relative position of the detection area S with the transmitter 9 is fixed. For this reason, the detection region S moves in the movement direction y in accordance with the movement of the movable body 2 such as a portal crane as with the reference line 16.
  • the detection region S is a plane parallel to the movement direction y.
  • the comparison mechanism 11 has a configuration in which the reflection point Pn of the laser light emitted from the transmitter 9 is compared with the detection region S to determine whether the reflection point Pn is inside or outside the detection region S. For example, when the laser beam is irradiated at an angle ⁇ 1, two intersection points p1 and p1 ′ between the irradiation direction of the laser beam and the boundary line of the detection region S can be determined in advance. That is, the range of the two intersections pn and pn ′ with the detection region S is determined for each angle ⁇ n.
  • intersections pn and pn ′ are set by a combination of the times Tn and Tn ′ from when the laser beam is irradiated from the transmitter 9 to when the reflected light is received by the receiver 10 and the irradiation angle ⁇ n of the laser beam. Has been.
  • the comparison mechanism 11 determines whether each of the plurality of reflection points Pn is inside or outside the detection area S based on the data of the detection area S from the detection area setting mechanism 12.
  • the time tn from when the laser beam is irradiated until the reflected light is obtained is between the time Tn corresponding to the intersection pn and the time Tn ′ corresponding to the intersection pn ′, the time tn is from the inside of the detection region S.
  • the comparison mechanism 11 determines that the light is reflected.
  • the comparison mechanism 11 sends an ON signal to the determination mechanism 13 when the reflection point Pn is located inside the detection region S, and is turned off when the reflection point Pn is located outside the detection region S ( OFF) signal is sent to the determination mechanism 13.
  • the signal sent by the comparison mechanism 11 is not limited to the above. A configuration may be adopted in which an off signal is sent to the determination mechanism 13 when the reflection point Pn is inside the detection region S, and an on signal is sent when the reflection point Pn is outside.
  • the determination mechanism 13 determines the presence or absence of an obstacle according to the ratio of on and off signals sent from the comparison mechanism 11. For example, when the receiving unit 10 obtains 2400 measurement data per second, 2400 on / off signals are sent from the comparison mechanism 11 to the determination mechanism 13 per second.
  • the determination mechanism 13 calculates the ratio of the number of ON signals to the total number of ON signals and OFF signals sent from the comparison mechanism 11 per unit time as a satisfaction rate. Further, the determination mechanism 13 stores a predetermined threshold value of the sufficiency rate.
  • the threshold of the fullness rate can be set to 90%, for example.
  • the reflection point Pn is located along the reference line 16 and is located inside the detection region S, so that an ON signal of 2400 points is sent to the determination mechanism 13 per second.
  • the sufficiency rate is 100%, which is 90% or more of the threshold value.
  • the determination mechanism 13 determines that there is no obstacle and is safe when the sufficiency rate is equal to or greater than the threshold value.
  • the determination mechanism 13 is not limited to the configuration in which the determination is performed every second, and the determination frequency can be set as appropriate, for example, the determination is performed every 0.2 seconds.
  • the obstacle detection system 1 is in a state where the entire reference line 16 has been confirmed. It can be said that the obstacle detection system 1 can see the traveling surface 8.
  • the determination mechanism 13 since the reflection points P1 to P3 are inside the detection region S, for example, three ON signals are output to the determination mechanism 13, and the reflection points P4 to P6 are outside the detection region S, so that the determination mechanism 13 has, for example, three An off signal is output.
  • the obstacle detection system 1 is in a state where only about half of the reference line 16 can be confirmed.
  • the satisfaction rate is about 50%, which is smaller than the threshold value. In such a case, the obstacle detection system 1 determines that there is an obstacle on the reference line 16.
  • the traveling speed of the moving body 2 such as a portal crane is reduced or stopped based on the determination by the determination mechanism 13 that there is an obstacle.
  • the control mechanism 15 may be configured to perform the control.
  • the obstacle detection system 1 is not configured to directly detect an obstacle, it is determined that there is an obstacle even when the obstacle absorbs laser light or cannot obtain reflected light. it can. This is advantageous for improving the accuracy in determining the presence or absence of an obstacle.
  • the presence of an obstacle is detected by the reflected light from the obstacle. Therefore, in order to improve the accuracy of the obstacle detection system, it is easy to obtain reflected light by increasing the laser beam output. It is necessary to improve the sensitivity of the receiving unit 10 so that even a small amount of reflected light can be detected. A great deal of effort was spent to find obstacles that were uncertain. As the sensitivity of the system is improved, the problem of detecting rain and insects that do not become obstacles as obstacles has been increasing. Furthermore, if the laser beam is not irradiated due to some failure or the reflected light cannot be detected, there is a problem that even if there is an obstacle, it cannot be detected and it is determined to be safe.
  • the obstacle detection system 1 of the present invention is configured to detect the absence of an obstacle. Specifically, it is a configuration for confirming at what rate a virtual straight line formed on the running surface 8, that is, the reference line 16, can be detected. As long as the reference line 16 can be detected, there is no need to increase the output of the laser beam or improve the sensitivity of the receiving unit 10 in order to improve the accuracy of the obstacle detection system 1.
  • the obstacle detection system 1 is configured to determine the possibility that there is no obstacle. Depending on the sufficiency rate, there is a possibility that there is no obstacle and the safety seems to be high. Can be determined to be low.
  • the obstacle detection system 1 is configured to determine the presence or absence of an obstacle according to the reflected light reflected inside the detection area S. Therefore, when the reflected light cannot be received due to a failure of the transmitting unit 9 or the receiving unit 10 or the like, there is no erroneous determination that there is no obstacle. Therefore, the obstacle detection system 1 is a system that functions on the safe side. It is advantageous for improving the safety associated with the movement of the moving body 2.
  • the moving object in order to directly search for an obstacle whose existence is uncertain, the moving object is stopped as an obstacle even if there is a slight reaction.
  • the present invention even when, for example, one laser beam is reflected outside the detection region S due to rain or insects, 2399 points out of 2400 points sent to the determination mechanism 13 are turned on, and the satisfaction rate Is 90% or more, so that it is possible to avoid problems such as the emergency stop of the moving body 2 such as a portal crane.
  • the threshold setting mechanism 14 a crane operator or the like can appropriately adjust the threshold according to the weather or the like.
  • the threshold can be set to 90%, for example.
  • the threshold can be set to 50%, for example.
  • the determination mechanism 13 can be incorporated in a sequencer (PLC) that controls the operation of the portal crane. Since the sequencer must also handle control such as traveling and cargo handling of the portal crane, the smaller the amount of memory occupied by the determination mechanism 13, the better.
  • PLC sequencer
  • the determination mechanism 13 Since the amount of memory occupied by the determination mechanism 13 can be suppressed, the number of laser beams emitted by the transmitter 9 per unit time can be increased, or the determination frequency by the determination mechanism 13 can be increased. Even if the transmitter 9 is configured by a two-dimensional laser scanner having a mirror rotation speed of 50 Hz, the determination mechanism 13 can perform the determination without increasing the occupation amount of the memory of the sequencer so much.
  • the determination mechanism 13 can process, for example, 2400 data points per second.
  • the determination mechanism 13 can process, for example, 24,000 points of data per second.
  • the time required for performing the determination by the determination mechanism 13 can be shortened. Even when the resolution of the two-dimensional laser scanner constituting the transmitting unit 9 is relatively high and the rotation speed is relatively fast, the determination by the determination mechanism 13 can be performed with almost no delay.
  • the safety can be appropriately determined without delay. This is advantageous for suppressing the occurrence of problems such as the emergency stop of the moving body 2 not being in time.
  • the speed at which the determination mechanism 13 performs the determination can be made relatively high. Therefore, it is not necessary to take measures such as setting the threshold of the sufficiency rate higher than necessary to avoid the collision of the moving body 2 with an obstacle or the like.
  • the comparison mechanism 11 is not an essential requirement. If the comparison mechanism 11 is not provided, the data obtained by the receiving unit 10 can be transmitted to the determination mechanism 13 as it is. In this case, data relating to the detection area S preset by the detection area setting mechanism 12 is sent to the determination mechanism 13. The determination mechanism 13 compares the data obtained from the receiving unit 10 with the data related to the detection region S to determine whether the reflected light is reflected from the inside of the detection region S.
  • the determination mechanism 13 calculates the ratio of the number of reflected light from the inside of the detection region S with respect to the total number of laser beams emitted from the transmitter 9 as a sufficiency rate. The determination mechanism 13 determines that there is no obstacle when the satisfaction rate is equal to or greater than a predetermined threshold, and determines that there is an obstacle when the satisfaction rate is smaller than the threshold.
  • the configuration for calculating the sufficiency rate in the determination mechanism 13 is not an essential requirement.
  • the determination mechanism 13 determines that there is no obstacle when the number of reflected light from the inside of the detection region S is equal to or greater than a predetermined threshold value such as 2000 points per unit time, and is smaller than this threshold value. It may be configured to determine that there is an obstacle sometimes.
  • the control mechanism 15 is not an essential requirement.
  • the determination result by the determination mechanism 13 can be displayed on a display or the like and notified to the crane operator.
  • the crane operator may be alerted by an alarm sound or the like.
  • control mechanism 15 in addition to contacting the crane operator, it is possible to perform control for automatically decelerating or stopping the portal crane.
  • the portal crane When the portal crane is traveling automatically, it may be configured to automatically control deceleration, stop, etc. by the control mechanism 15.
  • control mechanism 15 may be configured to control the deceleration amount of the moving body 2 according to the value of the fullness rate.
  • the control mechanism 15 can perform control to increase the deceleration amount as the sufficiency rate decreases.
  • the visibility is poor, such as heavy rain the moving body 2 can travel while the moving speed of the moving body 2 decreases.
  • the detection area setting mechanism 12 can set a plurality of detection areas S as exemplified in FIG.
  • two detection areas S are set, that is, a detection area S ⁇ b> 1 set in front of the moving body 2 and a detection area S ⁇ b> 2 set in the back along the moving direction y of the moving body 2.
  • both of the detection areas S1 and S2 are formed in a rectangular shape parallel to the movement direction y and the vertical direction z.
  • the detection areas S1 and S2 are set at positions that do not overlap each other.
  • the control mechanism 15 can be configured to perform different control for each of the two detection areas S1 and S2.
  • the threshold of the fullness rate is set to 90%, for example, and the control mechanism 15 performs control to decelerate the moving body 2 when the fullness rate falls below the threshold in the back detection region S2, and the fullness rate is detected in the detection region S1 in the foreground. When the value falls below the threshold, the control mechanism 15 can perform control to stop the moving body 2.
  • Different thresholds can be set for each of the two detection areas S1 and S2.
  • the threshold value of the front detection area S1 can be set to 90%
  • the threshold value of the back detection area S2 can be set to 70%. Control is performed to decelerate the moving body 2 when the fullness rate falls below the threshold value in the detection area S2 at the back, and control is performed to decelerate the mobile body 2 when the fullness rate falls below the threshold value in the detection area S1 in the foreground. be able to. Since the threshold value of the detection area S1 in the foreground is set higher than the threshold value of the detection area S2 in the back, the moving body 2 is more easily decelerated as it approaches the obstacle.
  • Different control contents and different threshold values may be set for each of the two detection areas S1 and S2.
  • the control is performed to decelerate the moving body 2 when the fullness rate falls below 70% in the detection region S2 in the back, and the emergency stop is performed when the fullness rate falls below 90% in the detection region S1 in the foreground. Can be done.
  • the upper limit value of the moving speed of the moving body 2 can be controlled according to the value of the fullness in the detection area S2 at the back.
  • the upper limit value of the moving speed can be made proportional to the value of the fullness rate. In this case, the lower the fullness rate, the smaller the upper limit value of the moving speed of the moving body 2, so that the moving body 2 can be decelerated as it approaches the obstacle.
  • the number of detection areas S is not limited to the above. Three or more areas set at positions that do not overlap each other may be set as the detection area S. A plurality of areas set at positions where a part thereof overlaps may be set as the detection area S.
  • a threshold for the fullness rate and a control when the threshold value is below the threshold can be set. Moreover, it is good also as a setting which performs the control which changes the moving speed and deceleration amount of the mobile body 2 in the state which is proportional or inversely proportional to a fullness rate without setting a threshold value.
  • the detection area setting mechanism 12 sets the trapezoidal detection area S.
  • the short side 18a that is positioned in front of the moving body 2 and extends in the vertical direction z
  • the short side that is positioned farther from the moving body 2 and extends in the vertical direction z.
  • the length of 18b is set long.
  • the moving body 2 may undulate in the moving direction y due to the eccentricity of the center of gravity of the container that handles the cargo.
  • the undulation of the moving body 2 means that the front side rises or falls compared to the rear side of the moving body 2.
  • the moving body 2 is raised and lowered, the inclination and the position of the transmitter 9 with respect to the traveling surface 8 change. Since the detection region S has a fixed relative position with respect to the transmission unit 9, its position changes with the inclination of the transmission unit 9.
  • the trapezoidal detection region S By setting the trapezoidal detection region S, it is possible to maintain a state in which the reference line 16 formed on the traveling surface 8 is inside the detection region S even if the moving body 2 is undulated.
  • the obstacle detection system 1 determines that there is an obstacle even though there is no obstacle. Even when the moving body 2 is undulated, the accuracy in determining the presence or absence of an obstacle can be improved.
  • the range of the detection region S and the position of the transmitter 9 and the like when the undulation is not generated in the moving body 2 are indicated by a one-dot chain line.
  • the moving body 2 When the traveling surface 8 is entirely inclined, the moving body 2 is also inclined together with the traveling surface 8, so that the reference line 16 is positioned inside the detection region S even if the detection region S is rectangular. Become. In the case where the moving body 2 is a device that is difficult to undulate such as an automobile, the presence or absence of an obstacle can be accurately determined even if the detection area S is set to a rectangle.
  • the reference line 16 is located on the inner side of the detection area S. It becomes easy to maintain the state. Even if the detection area S is set to a rectangle, it is easy to maintain the state where the reference line 16 is inside the detection area S by setting the short sides 18a and 18b to be relatively long.
  • the short sides 18a and 18b of the detection region S can be set relatively short. If the lengths of the short sides 18a and 18b are set in the range of, for example, ⁇ 30 mm in the vertical direction z around the reference line 16, the obstacle detection system 1 can detect an obstacle whose length in the vertical direction z is greater than 30 mm. . This is advantageous when it is necessary to detect relatively small obstacles.
  • the detection region S is set in an isosceles trapezoid in which the lengths of the pair of long sides 17a and 17b are equal.
  • the present invention is not limited to this.
  • the detection region S may be set to a trapezoid in which the upper long side 17a is longer than the lower long side 17b. it can.
  • the trapezoidal detection area S may be divided into a plurality of settings.
  • the direction in which the laser beam is scanned by the transmitter 9 is a direction along the moving direction y and can be set to be inclined in the transverse direction x.
  • the reference line 16 is inclined at a predetermined angle ⁇ in the transverse direction x with respect to the moving direction y.
  • the reference line 16 is inclined inward from the left and right leg members 4 of the portal crane.
  • the obstacle detection system 1 can detect an obstacle by expanding the range in the transverse direction x other than the direction parallel to the movement direction y.
  • the laser beam is irradiated from the transmitter 9 or the like that is on the front side in the moving direction y, and the reference line 16 is on the front side in the traveling direction of the moving body 2. Is formed.
  • a single leg member 4 can be configured to include a plurality of transmitters 9 and receivers 10. With a configuration in which a plurality of transmitters 9 and receivers 10 are installed on one leg member 4, the range in which an obstacle can be detected can be expanded as appropriate.
  • the safety in the direction parallel to the moving direction y is detected by one transmission unit 9 or the like, and the safety in the direction inclined in the transverse direction x illustrated in FIG. 8 is detected by the other transmission unit 9 or the like.
  • the other transmission unit 9 or the like Can be configured.
  • two sets of transmitting portions 9 and the like are installed on the leg member 4 with a space in the vertical direction z.
  • the reference line 16 can be set in a state parallel to the transverse direction x.
  • Two reference lines 16 can be set at different positions in the moving direction y by installing two transmitters 9 or the like on each leg member 4.
  • the detection region S is a quadrangular region formed on a plane composed of the transverse direction x and the vertical direction z. It is advantageous to extend the range in which an obstacle can be detected in the transverse direction x.
  • the moving body 2 travels while confirming a plurality of reference lines 16.
  • the moving body 2 travels while confirming the four reference lines 16.
  • a part of the reference line 16 is interrupted and cannot be recognized, it is possible to control deceleration of the moving body 2 on the assumption that safety in front of the moving body 2 is lowered.
  • the obstacle detection system 1 can be applied to the hanging tool 7 of the portal crane or the quay crane.
  • the transmitter 9 and the like are installed on the hanging tool 7.
  • a host system for accurately grasping the position and height of the container stored is arranged.
  • the detection area setting mechanism 12 sets the detection area S along the side surface and the top surface of the stacked containers. be able to. Inside the detection area S, a reference line 16 composed of the side surface and the top surface of the container is formed.
  • the laser beam can be scanned in a state where the inclination ⁇ n of the traveling direction of the laser beam with respect to the vertical direction z is in the range of 0 ° to 120 °.
  • the value of the fullness rate becomes small.
  • the moving speed of the hanger 7 can be reduced or stopped by the control mechanism 15 or the like. Even when the worker is on the reference line 16, the value of the fullness rate becomes small, so that the suspension tool 7 can be stopped.
  • the obstacle detection system 1 may be applied to the trolley 6.
  • the transmitter 9 and the like are installed on the lower surface of the trolley 6.
  • the direction in which the reference line 16 is formed and the shape and number of the detection regions S in the above-described embodiment can be used in appropriate combination.
  • the obstacle detection system 1 is not limited to a portal crane, a quay crane, or the like, and is used when the shape of the reference line 16 that is an aggregate of reflection points Pn from which reflected light is obtained when there is no obstacle is known. be able to. For example, it can be installed in a chassis or an automobile that travels along the traveling surface 8. In addition, it can be installed on the suspension 7 that can know the shape of the reference line 16 by the host system. The adoption of the obstacle detection system 1 can improve the safety when the moving body 2 is automatically driven.

Abstract

障害物の有無を判定する際の精度を向上できる障害物検知システムおよび障害物検知方法を提供する。移動体に設置される発信部9から照射角度θnを変化させながらレーザ光を照射して、このレーザ光の反射光を受信部10で受光して障害物の有無を検知する際に、障害物がない場合にレーザ光が反射される反射地点Pnの周辺領域に検知領域Sを予め設定して、検知領域Sの内側で反射する反射光に応じて判定機構13が障害物の有無を判定する。

Description

障害物検知システムおよび障害物検知方法
 本発明は、例えば走行面上を走行する車両等の移動体に設置されていて移動体の周囲の障害物の有無を検知する障害物検知システムおよび障害物検知方法に関し、詳しくは障害物の有無を判定する際の精度を向上できる障害物検知システムおよび障害物検知方法に関するものである。
 自動走行する車両に設置されていて周囲の障害物を検知する障害物検知システムが種々提案されている(例えば特許文献1参照)。
 特許文献1に記載の障害物検知システムは、車両の前方に向かってレーザ光を水平方向に走査させる二次元レーザスキャナを有していた。このシステムは、照射したレーザ光が障害物で反射されたときの反射光を検知することで障害物の有無を判定していた。つまり反射光が得られる場合には障害物が存在し、反射光が得られない場合は障害物が存在しないと判定していた。
 特許文献1に記載のシステムは、反射光が得られない場合は障害物がなく安全であると判定する構成であった。そのため障害物が作業員の衣服などレーザ光を反射し難い物質である場合は、システムは障害物を検知できなかった。車両の前方に作業員がいるにも関わらず、障害物がなく安全であるとの誤った判定をシステムが行ってしまう不具合があった。レーザ光を照射する発信部や反射光を受光する受光部などが故障により反射光を検知できない場合も、障害物がなく安全であるとの判断をシステムが行ってしまう不具合があった。
 また特許文献1に記載のシステムは、反射光が得られた場合は障害物があると判定する構成であった。このシステムを屋外で使用するとレーザ光が例えば雨や昆虫などで反射されることがあった。この場合システムは得られた反射光に基づき障害物があると誤認してしまう不具合があった。雨や昆虫などは車両の走行を妨げないにも関わらず、システムは障害物があるとして車両を減速させたり停止させたりしてしまっていた。
 特許文献1に記載のシステムは、障害物があるにも関わらず障害物がないと判定したり、車両の走行を妨げる障害物がないにも関わらず障害物があると判定したりする不具合があった。つまり障害物の有無を判定する際の精度が十分ではなかった。
日本国特開平06-187036号公報
 本発明は上記の問題を鑑みてなされたものであり、その目的は障害物の有無を判定する際の精度を向上できる障害物検知システムおよび障害物検知方法を提供することである。
 上記の目的を達成するための本発明の障害物検知システムは、移動体に設置されていて照射角度を変化させながらレーザ光を照射する発信部と、前記レーザ光の反射光を受光する受信部とを備える障害物検知システムにおいて、障害物がない場合に前記レーザ光が反射される反射地点の周辺領域に検知領域を予め設定する検知領域設定機構と、前記検知領域の内側で反射する前記反射光に応じて障害物の有無を判定する判定機構とを備えることを特徴とする。
 本発明の障害物検知方法は、移動体に設置される発信部から照射角度を変化させながらレーザ光を照射して、このレーザ光の反射光を受信部で受光して障害物の有無を検知する障害物検知方法において、障害物がない場合に前記レーザ光が反射される反射地点の周辺領域に検知領域を予め設定して、前記検知領域の内側で反射する前記反射光に応じて判定機構が障害物の有無を判定することを特徴とする。
 本発明の障害物検知システムおよび障害物検知方法によれば、検知領域の内側からの反射光に基づき障害物の有無を判定する構成である。障害物があると検知領域からの反射光が得られなくなるため、障害物がレーザ光を反射し難い物質であっても障害物があることを検知できる。障害物の有無を判定する際の精度を向上するには有利である。
 また本発明の障害物検知システム等によれば、レーザ光を照射する発信部や反射光を受光する受光部などが故障により反射光を検知できないときは、検知領域からの反射光が得られなくなるため、障害物があると判定する。安全側の対応を取ることができるため、安全性を向上するには有利である。
図1は、本発明の障害物検知システムが設置される門型クレーンを斜視で例示する説明図である。 図2は、本発明の障害物検知システムの構成を示す説明図である。 図3は、障害物がないときの走行面における反射地点を平面視で例示する説明図である。 図4は、図2の障害物検知システムが障害物を検知したときの状態を例示する説明図である。 図5は、障害物をあるときの走行面における反射地点を平面視で例示する説明図である。 図6は、図4の検知領域の変形例を例示する説明図である。 図7は、図4の検知領域の変形例を例示する説明図である。 図8は、レーザ光の走査方向の変形例を例示する説明図である。 図9は、図1の障害物検知システムの変形例を側面視で例示する説明図である。 図10は、レーザ光の走査方向の変形例を例示する説明図である。 図11は、障害物検知システムが設置される吊具を側面視で例示する説明図である。
 以下、本発明の障害物検知システムおよび障害物検知方法を図に示した実施形態に基づいて説明する。なお、図中では移動体の移動方向を矢印y、この移動方向yを直角に横断する横行方向を矢印x、上下方向を矢印zで示している。
 図1に例示するように本発明の障害物検知システムが設置される移動体2である門型クレーンは、移動方向yに走行する走行装置3と、走行装置3の上方に配置され上下方向zに延在する四本の脚部材4と、横行方向xに延在して横行方向xに対向する脚部材4どうしの上端を連結する二本の梁部材5と、梁部材5に沿って横行方向xに移動可能に構成されるトロリ6と、トロリ6にワイヤロープで懸吊される吊具7とを備えている。移動体2を構成する門型クレーンは、走行面8を移動方向yに走行しつつコンテナの荷役を行なうことができる。
 障害物検知システム1は、走行面8に向かってレーザ光を照射する発信部9と、走行面8で反射される反射光を受光する受信部10とを有している。受信部10は発信部9の近傍に配置されている。この実施形態では四本の脚部材4の下方であって走行装置3の近傍となる位置に、それぞれ発信部9および受信部10(以下、発信部9等と総称することがある)が設置されている。発信部9等を設置する位置は上記に限らず、走行装置3など他の場所に適宜設置することができる。
 移動体2である門型クレーンが走行する移動方向yに沿って、門型クレーンの移動方向の前方の手前から奥に至る範囲に発信部9はレーザ光を走査する構成を備えている。図1では説明のためレーザ光の照射方向を破線で示している。
 このとき門型クレーンの移動方向yの後方側に設置されている発信部9からはレーザ光が照射されない構成にしてもよい。
 障害物検知システム1が設置される移動体2は門型クレーンに限定されない。障害物検知システム1は平面または空間を移動する移動体2に設置することができ、例えば岸壁クレーンやコンテナシャシに設置することができる。また障害物検知システム1は門型クレーンや岸壁クレーンの吊具7またはトロリ6に設置してもよい。
 図2に例示するように障害物検知システム1は、発信部9と受信部10とを備えている。発信部9はレーザ光を照射する構成に限定されない。発信部9は光や電波などの電磁波を照射する構成でもよく、音波を発信する構成でもよい。受信部10は発信部9から照射される電磁波等の反射波を受信できる構成を有していればよい。
 障害物検知システム1は、受信部10からデータを取得する比較機構11と、この比較機構11にデータを送る検知領域設定機構12と、比較機構11からデータを取得して障害物の有無を判定する判定機構13と、判定機構13で利用する閾値を調整するための閾値設定機構14と、判定機構13における判定結果に基づき移動体2を制御する制御機構15とを備えている。なお比較機構11と閾値設定機構14と制御機構15とは本発明の必須要件ではない。
 障害物検知システム1は、まず走行面8に向かって発信部9からレーザ光を照射する。発信部9はミラーの回転等により放射状(扇形状)にレーザ光を順番に複数回照射していく。受信部10は発信部9からレーザ光を照射する際の角度θnごとに、レーザ光の照射から反射光が受信部10で受光されるまでの時間tnを取得していく。ここで角度θnは上下方向zに対するレーザ光の進行方向の傾きを表している。
 発信部9と受信部10とは、発信部9等から走行面8までの距離を測定することになる。発信部9と受信部10とは例えば二次元レーザスキャナで構成することができる。例えば角度θnの分解能が0.125度~1.000度、ミラーの回転速度が5~100Hzの二次元レーザスキャナを利用することができる。
 受信部10は、角度θnが0度以上90度以下で90度を含まない範囲のデータを利用することができる。受信部10は角度θnが0度以上60度以下の範囲のデータを利用することが望ましい。この角度θnの範囲を大きくするほど移動体2から離れた位置の障害物を検知できるため、移動体2の速度が大きい場合には角度θnの範囲の上限を90度に近づけることが望ましい。
 例えば角度θnの範囲が0度~60度、分解能が0.125度、回転速度が5Hzで設定されている二次元レーザスキャナの場合に、受信部10は1秒間に2400点の測定データを得る。つまり角度θnと時間tnとを組み合わせたデータを受信部10は1秒間に2400点得る。
 レーザ光が走行面8で反射される反射地点Pnは、レーザ光の走査方向に沿って直線状に並ぶ。以下この直線を基準線16ということがある。この基準線16は走行面8の上に形成される仮想の直線である。基準線16は走行面8でレーザ光が反射されることで形成される複数の反射地点Pnの集合体であるともいえる。この基準線16はレーザ光が走行面8で反射される範囲に形成されるので、発信部9との相対位置は固定される。そのため基準線16は門型クレーン等の移動体2の移動にともない移動方向yに移動する。この実施形態ではレーザ光が移動方向yに沿って走査するので、基準線16は移動方向yに平行な直線となる。また基準線16は走行面8に沿う直線となる。
 検知領域設定機構12では、検知領域Sが予め設定されている。検知領域Sは移動方向yと上下方向zとから成る平面に形成される四角形の領域であり、発信部9等に対する相対的な位置として設定されている。この実施形態では検知領域Sは、移動体2の移動方向yに沿った方向であり反射地点Pn、即ち基準線16の上方と下方とに設定される一対の長辺17a、17bと、この一対の長辺17a、17bの対向する端部どうしを結び上下方向zに延在する一対の短辺18a、18bとで囲まれる長方形の領域である。検知領域Sの形状は上記に限らず適宜設定することが可能である。例えば多角形や曲線を含む形状に設定することもできる。
 この実施形態では検知領域Sの短辺18a、18bの長さは、例えば基準線16を中心に上下方向zに±100mmの範囲に設定することができる。ゴムタイヤを有する門型クレーンの場合は、コンテナの荷重によりゴムタイヤが上下方向zに伸縮することがある。ゴムタイヤの伸縮にともない発信部9等が上下方向zに移動してこれにともない検知領域Sも上下方向zに移動する。検知領域Sが上下方向zに移動した場合であっても、基準線16が検知領域Sの内側に収まる範囲で短辺18a、18bの長さが設定されている。
 長辺17a、17bの長さは水平方向に数mから数十mの範囲に設定することができる。長辺17a、17bの長さは基準線16より長くなる状態または同じ長さとなる状態に設定される。つまり基準線16が常に検知領域Sの内側となる状態に、検知領域Sの範囲は設定される。
 検知領域Sは発信部9との相対位置が固定される。そのため検知領域Sは基準線16と同様に門型クレーン等の移動体2の移動にともない移動方向yに移動する。この実施形態では基準線16が移動方向yに平行であるため、検知領域Sは移動方向yに平行な平面となる。
 比較機構11では、発信部9から照射するレーザ光の反射地点Pnと検知領域Sとを比較して、反射地点Pnが検知領域Sの内側か外側かを判定する構成を有している。例えばレーザ光が角度θ1で照射されるとき、このレーザ光の照射方向と検知領域Sの境界線との二つの交点p1、p1’を予め決めることができる。つまり角度θnごとに検知領域Sとの二つの交点pn、pn’の範囲が決まる。
 具体的には交点pn、pn’は、発信部9からレーザ光が照射されてから受信部10で反射光を受信するまでの時間Tn、Tn’とレーザ光の照射角度θnとの組み合わせで設定されている。
 受信部10から反射地点P1までの距離が、受信部10から交点p1までの距離と交点p1’までの距離との間であれば、比較機構11は反射地点P1が検知領域Sの内側にあると判定する。複数の反射地点Pnがそれぞれ検知領域Sの内側であるか外側であるかの判定を、検知領域設定機構12からの検知領域Sのデータに基づき比較機構11が行う。
 具体的にはレーザ光の照射から反射光が得られるまでの時間tnが、交点pnに対応する時間Tnと交点pn’に対応する時間Tn’との間であれば検知領域Sの内側からの反射光であると比較機構11が判定する。
 比較機構11は、反射地点Pnが検知領域Sの内側に位置する場合にはオン(ON)の信号を判定機構13に送り、反射地点Pnが検知領域Sの外側に位置する場合にはオフ(OFF)の信号を判定機構13に送る。比較機構11が送る信号は上記に限定されない。反射地点Pnが検知領域Sの内側のときオフの信号、外側のときオンの信号を判定機構13に送る構成としてもよい。
 判定機構13では、比較機構11から送られてくるオンとオフの信号の割合に応じて、障害物の有無を判定する。例えば受信部10が1秒間で2400点の測定データを得る場合には、1秒間に2400点のオンとオフの信号が比較機構11から判定機構13に送られる。
 判定機構13は、単位時間あたりに比較機構11から送られてくるオンの信号の数とオフの信号の数との総数に対するオンの信号の数の割合を充足率として算出する。また充足率の予め定められた閾値を判定機構13は格納している。充足率の閾値は例えば90%に設定することができる。
 障害物がない場合に反射地点Pnは基準線16に沿った位置となり検知領域Sの内側に位置するため、1秒間に2400点のオンの信号が判定機構13に送られる。このとき充足率は100%となり、閾値の90%以上の値となる。
 発信部9から照射されるレーザ光の全てが走行面8で反射されているので、レーザ光を遮蔽する障害物が発信部9と走行面8との間に存在しないことがわかる。判定機構13は充足率が閾値以上である場合には障害物がなく安全であると判定する。判定機構13は1秒ごとに判定を行なう構成に限定されず、例えば0.2秒ごとに判定を行うなど、判定を行なう頻度は適宜設定することができる。
 このとき図3に例示するように障害物検知システム1は、基準線16の全体を確認できた状態となる。障害物検知システム1は走行面8を見ることができる状態ともいえる。
 図4および図5に例示するように移動体2の前方に作業員がいる場合には、発信部9から照射されるレーザ光の一部は作業員に遮られ走行面8まで到達しない。レーザ光が作業員に吸収されると反射光が得られない。レーザ光が作業員に反射したとしても検知領域Sの外側からの反射光となる。いずれの場合においても、作業員がいると検知領域Sの内側から得られる反射光の数が少なくなる。反射光の反射地点Pnが検知領域Sの外側となる場合には、比較機構11から判定機構13にオフの信号が出力される。
 つまり反射地点P1~P3は検知領域Sの内側となるので判定機構13に例えば三つのオンの信号が出力され、反射地点P4~P6は検知領域Sの外側となるので判定機構13に例えば三つのオフの信号が出力される。
 図5に例示するように障害物検知システム1は、基準線16の半分程度しか確認できない状態となる。充足率は50%程度となり閾値よりも小さい値となる。このような場合に障害物検知システム1は、基準線16の上に障害物があると判定する。
 障害物検知システム1が制御機構15を備えている場合には、判定機構13による障害物があるとの判定に基づき、門型クレーン等の移動体2の走行速度を減速させたり、停止させたりする制御を制御機構15が行う構成にしてもよい。
 障害物検知システム1は、障害物を直接的に検知する構成ではないため、障害物がレーザ光を吸収したりして反射光が得られない場合であっても、障害物があることを判定できる。障害物の有無を判定する際の精度を向上するには有利である。
 従来の障害物検知システムでは障害物からの反射光により障害物があることを検知していたため、障害物検知システムの精度を向上するためにはレーザ光の出力を増加させて反射光を得やすくしたり、受信部10の感度を向上させて微量の反射光であっても検出できるようにしたりする必要があった。存在が不確かな障害物を直接的に探すために、多大な労力を割いていた。またシステムの感度を向上させるほど、障害物とはならない雨や昆虫を障害物として検出してしまう不具合が大きくなっていた。さらに何らかの故障によりレーザ光が照射されなくなったり、反射光を検知できなくなると、障害物があっても検出できず、安全であると判定してしまう不具合があった。
 本発明の障害物検知システム1は、障害物がないことを検知する構成である。具体的には走行面8の上に形成される仮想の直線、すなわち基準線16をどの程度の割合で検知できるかを確認する構成である。基準線16を検知できればいいので、障害物検知システム1の精度を向上するためにレーザ光の出力を上げたり、受信部10の感度を向上させたりする必要がない。障害物検知システム1は、障害物がない可能性を判定する構成であり、充足率に応じて障害物がない可能性が高く安全性が高そうである場合と、障害物があるらしく安全性が低そうである場合とを判定することができる。
 障害物検知システム1は、検知領域Sの内側で反射する反射光に応じて障害物の有無を判定する構成である。そのため発信部9や受信部10の故障等により反射光を受光できない場合に、障害物がないと誤った判定を行なうことがない。そのため障害物検知システム1は安全側に機能するシステムとなる。移動体2の移動にともなう安全性を向上するには有利である。
 従来の障害物検知システムでは、存在が不確かな障害物を直接的に探すため、少しの反応であっても障害物ありとして移動体を停止させていた。これに対して本発明では雨や昆虫により例えば一つのレーザ光が検知領域Sの外側で反射した場合であっても、判定機構13に送られる2400点のデータのうち2399点がオンとなり充足率は90%以上となるので門型クレーン等の移動体2が緊急停止したりする不具合を回避できる。
 障害物検知システム1が閾値設定機構14を備えている場合には、クレーンオペレータ等が閾値を天候等に応じて適宜調整することが可能となる。晴天の際には閾値を例えば90%に設定することができる。大雨の際には、閾値を例えば50%に設定することができる。雨により多数のレーザ光が検知領域Sの外側で反射される場合であっても、門型クレーン等の移動体2を走行させることができる。この場合でも作業員が基準線16の上にいるときは充足率がさらに低下して例えば25%などの低い値になるため、作業員の存在を検知することが可能である。
 比較機構11を設置する構成により、判定機構13にはオンまたはオフの1ビットのデータが送られる。判定機構13に送られるデータ量が極めて小さいため、判定機構13が判定の際に必要とするメモリ量を節約するには有利である。移動体2が例えば門型クレーンで構成される場合、判定機構13は門型クレーンの動作を制御するシーケンサ(PLC)に組み込むことができる。シーケンサは門型クレーンの走行や荷役などの制御も処理しなければならないので、判定機構13により占有されるメモリ量が小さいほど望ましい。
 判定機構13により占有されるメモリ量を抑制できるので、発信部9が照射するレーザ光の単位時間当たりの数を増加させたり、判定機構13による判定の頻度を増加させたりすることができる。ミラーの回転速度が50Hzの二次元レーザスキャナで発信部9を構成したとしても、シーケンサのメモリの占有量をそれほど増加させることなく判定機構13により判定を行なうことができる。
 比較機構11を備えていない場合に、判定機構13が1秒間に例えば2400点のデータを処理できると仮定する。比較機構11を備えている場合には、判定機構13は1秒間に例えば24000点のデータを処理することが可能となる。
 また比較機構11の設置により判定機構13で処理するデータ量が小さくなるので、判定機構13で判定を行なう際に必要となる時間を短縮することができる。発信部9を構成する二次元レーザスキャナの分解能が比較的高く回転速度が比較的速い場合であっても、遅れがほとんど生じない状態で判定機構13による判定を行なうことができる。
 移動体2が例えば自動車など移動速度の速いものであっても、遅れなく安全性を適切に判定することができる。移動体2の緊急停止が間に合わないなどの不具合の発生を抑制するには有利である。移動体2の移動速度に比べて判定機構13で判定を行なう速度を比較的速くすることができる。そのため充足率の閾値を必要以上に高く設定して、移動体2の障害物等への衝突を回避するなどの対策が不要となる。
 本発明の障害物検知システム1において比較機構11は必須要件ではない。比較機構11を備えていない場合は、受信部10で得られるデータをそのまま判定機構13に送信する構成にすることができる。この場合、検知領域設定機構12で予め設定される検知領域Sに関するデータは判定機構13に送られる。判定機構13は、受信部10から得られるデータを検知領域Sに関するデータと比較して、反射光が検知領域Sの内側からの反射光であるか否かを判断する。
 判定機構13は発信部9から照射されるレーザ光の総数に対する検知領域Sの内側からの反射光の数の割合を充足率として算出する。判定機構13は、この充足率が所定の閾値以上の場合に障害物がなく安全であると判定して、充足率が閾値よりも小さいときに障害物があると判定する。
 本発明の障害物検知システム1において、判定機構13において充足率を算出する構成は必須要件ではない。この場合は判定機構13が、検知領域Sの内側からの反射光の数が単位時間あたりに例えば2000点など所定の閾値以上となる場合に障害物がないと判定して、この閾値よりも小さいときに障害物があると判定する構成にしてもよい。
 本発明の障害物検知システム1において制御機構15は必須要件ではない。移動体2が門型クレーンの場合は、判定機構13による判定結果をディスプレイ等に表示してクレーンオペレータに通知する構成にすることができる。また障害物があると判定されたときに、警報音等によりクレーンオペレータに注意を促す構成にしてもよい。
 制御機構15を備えている場合には、クレーンオペレータへの連絡の他に、門型クレーンを自動的に減速させたり、停止させたりする制御を行なうことができる。門型クレーンが自動走行の場合に、制御機構15による減速や停止等を自動で制御する構成にしてもよい。
 また制御機構15が、充足率の値に応じて移動体2の減速量を制御する構成にしてもよい。例えば充足率が小さくなる程、減速量を増加させる制御を制御機構15により行なうことができる。充足率が高いほど安全性が高い状態となり、充足率が低いほど安全性が低い状態となるため、安全性が低いときには移動体2の移動速度が小さくなる。大雨など視界の悪いときには、移動体2の移動速度は小さくなるものの移動体2を走行させることができる。
 図6に例示するように検知領域設定機構12が、複数の検知領域Sを設定できる構成にしてもよい。図6の実施形態では移動体2の移動方向yに沿って移動体2の手前に設定される検知領域S1と、奥に設定される検知領域S2との二つの検知領域Sが設定されている。この実施形態では検知領域S1、S2のいずれも移動方向yおよび上下方向zに平行となる長方形に形成されている。また検知領域S1、S2は互いに重ならない位置にそれぞれ設定されている。
 二つの検知領域S1、S2ごとに制御機構15が異なる制御を行なう構成にすることができる。充足率の閾値をそれぞれ例えば90%に設定して、奥の検知領域S2で充足率が閾値を下回ったとき制御機構15により移動体2を減速させる制御を行ない、手前の検知領域S1で充足率が閾値を下回ったとき制御機構15により移動体2を停止させる制御を行なうことができる。
 二つの検知領域S1、S2ごとに異なる閾値を設定することができる。例えば手前の検知領域S1の閾値を90%に設定して、奥の検知領域S2の閾値を70%に設定することができる。奥の検知領域S2で充足率が閾値を下回ったとき移動体2を減速させる制御を行ない、手前の検知領域S1で充足率が閾値を下回ったとき移動体2を減速させる制御を行なう構成にすることができる。手前の検知領域S1の閾値を奥の検知領域S2の閾値よりも高く設定しているので、移動体2が障害物に近づくほど減速し易くなる。
 二つの検知領域S1、S2ごとに、それぞれ異なる制御内容と異なる閾値とを設定してもよい。例えば奥の検知領域S2で充足率が70%を下回ったとき移動体2を減速させる制御を行ない、手前の検知領域S1で充足率が90%を下回ったとき移動体2を緊急停止させる制御を行なうことができる。
 また奥の検知領域S2での充足率の値に応じて、移動体2の移動速度の上限値を制御する構成にすることができる。例えば充足率の値に移動速度の上限値を比例させることができる。この場合充足率が小さくなる程、移動体2の移動速度の上限値が小さくなるので、障害物に接近するにしたがって移動体2を減速させることができる。
 検知領域Sの数は上記に限らない。互いに重ならない位置に設定される三つ以上の領域を検知領域Sとして設定してもよい。一部が重なる位置に設定される複数の領域を検知領域Sとして設定してもよい。
 また複数の検知領域Sごとにそれぞれ充足率の閾値と、閾値を下回ったときの制御を設定することができる。また閾値を設定せずに、充足率と比例または反比例させる状態で、移動体2の移動速度や減速量を変化させる制御を行なう設定としてもよい。
 図7に例示するように検知領域設定機構12が、台形の検知領域Sを設定する構成にしてもよい。この実施形態では移動体2から近い手前に位置して上下方向zに延在する短辺18aの長さに比べて、移動体2から遠い奥に位置して上下方向zに延在する短辺18bの長さが長く設定されている。
 門型クレーンがゴムタイヤを備えている場合など、荷役するコンテナの重心位置の偏心等により移動体2が移動方向yに起伏することがある。移動体2の起伏とは、移動体2の後方側に比べて前方側が上がったり下がったりすることをいう。移動体2が起伏すると走行面8に対する発信部9の傾きや位置が変化する。検知領域Sは発信部9に対する相対位置が固定されているため、発信部9の傾き等にともないその位置が変化してしまう。
 台形の検知領域Sを設定することにより、移動体2が起伏したとしても走行面8に形成される基準線16が検知領域Sの内側になる状態を維持できる。基準線16が検知領域Sの外側に位置する場合、障害物がないにも関わらず、障害物検知システム1は障害物ありと判定してしまう。移動体2が起伏する場合であっても、障害物の有無を判定する際の精度を向上することができる。図7では説明のため移動体2に起伏が発生していないときの検知領域Sの範囲および発信部9等の位置を一点鎖線で示している。
 なお走行面8が全体的に傾斜している場合は、走行面8とともに移動体2も傾斜するため、検知領域Sが長方形であっても検知領域Sの内側に基準線16が位置することになる。移動体2が自動車など起伏し難い機器の場合には、検知領域Sを長方形に設定しても障害物の有無を精度よく判定できる。
 ここで走行面8の上下方向zにおける凹凸が比較的大きい場合は、検知領域Sを台形で構成することで移動体2が移動にともない振動したとしても、基準線16が検知領域Sの内側となる状態を維持し易くなる。また検知領域Sを長方形に設定しても、短辺18a、18bを比較的長く設定することで、基準線16が検知領域Sの内側となる状態を維持し易くなる。
 一方で走行面8に凹凸がほとんどない場合は、検知領域Sの短辺18a、18bを比較的短く設定することができる。基準線16を中心に上下方向zに例えば±30mmの範囲に短辺18a、18bの長さを設定すると、上下方向zの長さが30mmよりも大きい障害物を障害物検知システム1が検知できる。比較的小さな障害物を検知する必要がある場合には有利である。
 この実施形態では一対の長辺17a、17bの長さが等しくなる等脚台形に検知領域Sが設定されているがこれに限定されない。例えば移動体2の前方側が下がることはあっても上がることがない場合には、下側の長辺17bに対して上側の長辺17aの方が長くなる台形に検知領域Sを設定することができる。
 図6に例示する実施形態と同様に台形の検知領域Sを複数に分割して設定する構成にしてもよい。
 図8に例示するように発信部9によりレーザ光を走査する方向が、移動方向yに沿った方向であり、かつ横行方向xに傾く状態に設定することができる。この場合、基準線16が移動方向yに対して横行方向xに所定の角度αで傾く状態となる。この実施形態では門型クレーンの左右の脚部材4から内側に向かって基準線16が傾いている。
 この構成により横行方向xに対置される一対の走行装置3の内側となる位置に作業員等がいる場合であっても、この作業員を障害物検知システム1により検知することができる。つまり障害物検知システム1は、移動方向yと平行となる方向以外にも、横行方向xに範囲を広げて障害物を検知することができる。
 移動体2である門型クレーンが逆方向に走行する場合には、移動方向yの前方側となる発信部9等からレーザ光が照射され、移動体2の走行方向の前方側に基準線16が形成される。
 図9に例示するように、一つの脚部材4に複数の発信部9および受信部10を備える構成にすることができる。一つの脚部材4に複数の発信部9および受信部10を設置する構成により、障害物を検知できる範囲を適宜広げることができる。
 この場合、例えば一方の発信部9等により移動方向yと平行となる方向の安全を検知して、他方の発信部9等により図8に例示する横行方向xに傾いた方向の安全を検知する構成にすることができる。図9の実施形態では二組の発信部9等が上下方向zに間隔をあけた状態で脚部材4に設置されている。
 図10に例示するように基準線16が横行方向xと平行となる状態に設定することができる。一つの脚部材4に二つずつ発信部9等を設置して、移動方向yにおいて異なる位置に複数の基準線16を設定することができる。このとき検知領域Sは横行方向xと上下方向zとから成る平面に形成される四角形の領域である。障害物を検知できる範囲を横行方向xに広げるには有利である。
 移動体2は複数の基準線16を確認しながら走行する。この実施形態では移動体2は四本の基準線16を確認しながら走行する。基準線16の一部が途切れたりして認識できない場合は、移動体2の前方の安全性が低下しているとして、移動体2の減速等の制御を行なうことができる。
 図11に例示するように門型クレーンや岸壁クレーンの吊具7に、障害物検知システム1を適用する構成にすることができる。この場合は吊具7に発信部9等が設置される。門型クレーン等がコンテナの荷役を行なうコンテナヤードには、蔵置されているコンテナの位置や高さを正確に把握する上位システムが配置されている。
 障害物検知システム1は、上位システムの情報に基づきコンテナが積み上げられている状況を把握できるので、この積み上げられたコンテナの側面および天面に沿って検知領域設定機構12で検知領域Sを設定することができる。この検知領域Sの内側にはコンテナの側面および天面からなる基準線16が形成される状態となる。この実施形態では上下方向zに対するレーザ光の進行方向の傾きθnは0度以上120度以下の範囲となる状態にレーザ光を走査させることができる。
 基準線16の上に本来載置されるべきでないコンテナが載置されている場合には、充足率の値が小さくなる。この場合制御機構15等により吊具7の移動速度を減速したり停止させたりすることができる。基準線16の上に作業員がいる場合も、充足率の値が小さくなるので吊具7の停止等を行なえる。
 上記と同様に、トロリ6に障害物検知システム1を適用する構成にしてもよい。この場合はトロリ6の下面に発信部9等が設置される。
 前述の実施形態における基準線16を形成する方向や検知領域Sの形状および数などは、適宜組み合わせて利用することができる。
 障害物検知システム1は、門型クレーンや岸壁クレーン等に限らず、障害物がないときに反射光が得られる反射地点Pnの集合体である基準線16の形状が既知である場合に利用することができる。例えば走行面8に沿って走行するシャシや自動車に設置することができる。また上位システムにより基準線16の形状を知ることができる吊具7に設置することができる。障害物検知システム1の採用により、移動体2を自動運転する際の安全性を向上することができる。
1     障害物検知システム
2     移動体
3     走行装置
4     脚部材
5     梁部材
6     トロリ
7     吊具
8     走行面
9     発信部
10   受信部
11   比較機構
12   検知領域設定機構
13   判定機構
14   閾値設定機構
15   制御機構
16   基準線
17a 長辺(上側)
17b 長辺(下側)
18a 短辺(手前)
18b 短辺(奥)
θn   (レーザ光の)角度
Pn   反射地点
S     検知領域
S1   検知領域(手前)
S2   検知領域(奥)
α     (基準線の)角度
x     横行方向
y     移動方向
z     上下方向

Claims (14)

  1.  移動体に設置されていて照射角度を変化させながらレーザ光を照射する発信部と、前記レーザ光の反射光を受光する受信部とを備える障害物検知システムにおいて、
     障害物がない場合に前記レーザ光が反射される反射地点の周辺領域に検知領域を予め設定する検知領域設定機構と、
     前記検知領域の内側で反射する前記反射光に応じて障害物の有無を判定する判定機構とを備えることを特徴とする障害物検知システム。
  2.  前記判定機構が、前記発信部から照射する前記レーザ光の総数に対する前記検知領域の内側で反射する前記反射光の数の割合である充足率を算出して、この充足率が所定の閾値以上の場合に障害物がないと判定して、前記充足率が前記閾値よりも小さいときに障害物があると判定する構成を備える請求項1に記載の障害物検知システム。
  3.  前記レーザ光を反射する反射地点が前記検知領域の内側である場合はオンの信号を、前記レーザ光を反射する反射地点が前記検知領域の外側である場合はオフの信号を前記判定機構に送る比較機構を備えていて、
     前記判定機構が、前記比較機構から得られる前記オンの信号の数と前記オフの信号の数との総数に対する前記オンの信号の数の割合である充足率を算出して、この充足率が所定の閾値以上の場合に障害物がないと判定して、前記充足率が前記閾値よりも小さいときに障害物があると判定する構成を備える請求項1に記載の障害物検知システム。
  4.  前記発信部が、前記移動体の移動方向に沿って前記移動体の手前から奥に至る範囲に前記レーザ光を走査する構成を備える請求項1~3のいずれかに記載の障害物検知システム。
  5.  前記検知領域が、前記移動体の移動方向に沿った方向であり障害物がない場合に前記レーザ光が反射される反射地点の上方と下方とに設定される一対の長辺と、前記一対の長辺の対向する端部どうしを結び上下方向に延在する一対の短辺とで囲まれる四角形の領域である請求項1~4のいずれかに記載の障害物検知システム。
  6.  前記検知領域が、前記移動体から近い手前に位置する前記短辺より前記移動体から遠い奥に位置する前記短辺の方が長い台形の領域である請求項5に記載の障害物検知システム。
  7.  前記検知領域設定機構が、複数の前記検知領域を設定する構成を備える請求項1~6のいずれかに記載の障害物検知システム。
  8.  移動体に設置される発信部から照射角度を変化させながらレーザ光を照射して、このレーザ光の反射光を受信部で受光して障害物の有無を検知する障害物検知方法において、 障害物がない場合に前記レーザ光が反射される反射地点の周辺領域に検知領域を予め設定して、前記検知領域の内側で反射する前記反射光に応じて判定機構が障害物の有無を判定することを特徴とする障害物検知方法。
  9.  前記判定機構が、前記発信部から照射する前記レーザ光の総数に対する前記検知領域の内側で反射する前記反射光の数の割合である充足率を算出して、この充足率が所定の閾値以上の場合に障害物がないと判定して、前記充足率が前記閾値よりも小さいときに障害物があると判定する請求項8に記載の障害物検知方法。
  10.  前記受信部と前記判定機構との間に比較機構を配置して、前記レーザ光を反射する反射地点が前記検知領域の内側である場合にはオンの信号を、前記レーザ光を反射する反射地点が前記検知領域の外側である場合にはオフの信号を前記比較機構から前記判定機構に送り、
     前記判定機構が、前記比較機構から得られる前記オンの信号の数と前記オフの信号の数との総数に対する前記オンの信号の数の割合である充足率を算出して、この充足率が所定の閾値以上の場合に障害物がないと判定して、前記充足率が前記閾値よりも小さいときに障害物があると判定する請求項8に記載の障害物検知方法。
  11.  前記発信部が、前記移動体の移動方向に沿って前記移動体の手前から奥に至る範囲に前記レーザ光を走査する請求項8~10のいずれかに記載の障害物検知方法。
  12.  前記検知領域を設定する際に、前記移動体の移動方向に沿った方向であり障害物がない場合に前記レーザ光が反射される反射地点の上方と下方とに設定される一対の長辺と、前記一対の長辺の対向する端部どうしを結び上下方向に延在する一対の短辺とで囲まれる四角形の領域を前記検知領域として設定する請求項8~11のいずれかに記載の障害物検知方法。
  13.  前記移動体から近い手前に位置する前記短辺より前記移動体から遠い奥に位置する前記短辺の方が長い台形の領域を前記検知領域として設定する請求項12に記載の障害物検知方法。
  14.  前記検知領域が複数設定される請求項8~13のいずれかに記載の障害物検知方法。
PCT/JP2018/010634 2018-03-16 2018-03-16 障害物検知システムおよび障害物検知方法 WO2019176116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/010634 WO2019176116A1 (ja) 2018-03-16 2018-03-16 障害物検知システムおよび障害物検知方法
EP18909587.0A EP3767337A4 (en) 2018-03-16 2018-03-16 OBSTACLE DETECTION SYSTEM AND METHOD
US16/981,461 US11977164B2 (en) 2018-03-16 2018-03-16 Obstacle sensing system and obstacle sensing method
SG11202009078TA SG11202009078TA (en) 2018-03-16 2018-03-16 Obstacle sensing system and obstacle sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010634 WO2019176116A1 (ja) 2018-03-16 2018-03-16 障害物検知システムおよび障害物検知方法

Publications (1)

Publication Number Publication Date
WO2019176116A1 true WO2019176116A1 (ja) 2019-09-19

Family

ID=67906531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010634 WO2019176116A1 (ja) 2018-03-16 2018-03-16 障害物検知システムおよび障害物検知方法

Country Status (4)

Country Link
US (1) US11977164B2 (ja)
EP (1) EP3767337A4 (ja)
SG (1) SG11202009078TA (ja)
WO (1) WO2019176116A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539936A (ja) * 2019-01-16 2022-09-14 ハイ ロボティクス カンパニー リミテッド 障害物回避方法、装置及び倉庫ロボット

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187036A (ja) 1992-12-16 1994-07-08 Nishimatsu Constr Co Ltd トンネル建設資材用搬送車
JP2000075032A (ja) * 1998-09-02 2000-03-14 Komatsu Ltd 走行路上の障害物の検出方法及びその存否推定方法
JP2007193495A (ja) * 2006-01-18 2007-08-02 Matsushita Electric Works Ltd 移動車両
JP2014194729A (ja) * 2013-02-27 2014-10-09 Sharp Corp 周囲環境認識装置、それを用いた自律移動システムおよび周囲環境認識方法
JP2014202527A (ja) * 2013-04-02 2014-10-27 株式会社神戸製鋼所 列車先頭位置の検出方法及び検出装置
JP2016224854A (ja) * 2015-06-03 2016-12-28 シャープ株式会社 自律走行装置
US20170060132A1 (en) * 2015-08-31 2017-03-02 Korea University Research And Business Foundation Method for detecting floor obstacle using laser range finder
JP2017083223A (ja) * 2015-10-26 2017-05-18 シャープ株式会社 測距装置および走行装置
JP2017130098A (ja) * 2016-01-21 2017-07-27 シャープ株式会社 自律走行装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612781A (en) * 1993-09-09 1997-03-18 Kabushiki Kaisha Topcon Object reflector detection system
JPH1010233A (ja) 1996-06-24 1998-01-16 Mitsui Eng & Shipbuild Co Ltd レーザ式障害物検知方法およびセンサ
US7136753B2 (en) * 2002-12-05 2006-11-14 Denso Corporation Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
JP4687563B2 (ja) * 2006-05-23 2011-05-25 株式会社デンソー 車両用レーンマーク認識装置
US20100066587A1 (en) * 2006-07-14 2010-03-18 Brian Masao Yamauchi Method and System for Controlling a Remote Vehicle
JP5152840B2 (ja) * 2007-11-07 2013-02-27 オムロンオートモーティブエレクトロニクス株式会社 車載用レーダ装置
JP5184973B2 (ja) * 2008-05-29 2013-04-17 オムロンオートモーティブエレクトロニクス株式会社 物体検出装置
JP5147129B2 (ja) 2008-10-23 2013-02-20 株式会社Ihiエアロスペース 自律型移動体
JP5267592B2 (ja) * 2010-04-09 2013-08-21 株式会社デンソー 物体認識装置
JP6505470B2 (ja) * 2015-02-27 2019-04-24 株式会社デンソー ノイズ除去方法および物体認識装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187036A (ja) 1992-12-16 1994-07-08 Nishimatsu Constr Co Ltd トンネル建設資材用搬送車
JP2000075032A (ja) * 1998-09-02 2000-03-14 Komatsu Ltd 走行路上の障害物の検出方法及びその存否推定方法
JP2007193495A (ja) * 2006-01-18 2007-08-02 Matsushita Electric Works Ltd 移動車両
JP2014194729A (ja) * 2013-02-27 2014-10-09 Sharp Corp 周囲環境認識装置、それを用いた自律移動システムおよび周囲環境認識方法
JP2014202527A (ja) * 2013-04-02 2014-10-27 株式会社神戸製鋼所 列車先頭位置の検出方法及び検出装置
JP2016224854A (ja) * 2015-06-03 2016-12-28 シャープ株式会社 自律走行装置
US20170060132A1 (en) * 2015-08-31 2017-03-02 Korea University Research And Business Foundation Method for detecting floor obstacle using laser range finder
JP2017083223A (ja) * 2015-10-26 2017-05-18 シャープ株式会社 測距装置および走行装置
JP2017130098A (ja) * 2016-01-21 2017-07-27 シャープ株式会社 自律走行装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767337A4

Also Published As

Publication number Publication date
SG11202009078TA (en) 2020-10-29
US20210072399A1 (en) 2021-03-11
EP3767337A4 (en) 2021-11-17
US11977164B2 (en) 2024-05-07
EP3767337A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2018056125A1 (ja) 鉱山用作業機械及び障害物判別装置
US11975951B2 (en) Engineering machinery and dynamic anti-collision method, device, and system for operation space of the engineering machinery
US10416676B2 (en) Obstacle monitoring device, vehicle control device and work machine
JP6258626B2 (ja) 自律移動装置およびその制御方法
AU2004223688C1 (en) Arrangement for collision prevention of mine vehicle
US6018308A (en) Obstacle recognition system for automotive vehicle
JP6393123B2 (ja) 障害物検出システム及び運搬車両
WO2016121688A1 (ja) 運搬用車両の障害物検出装置
JP6513544B2 (ja) 荷役クレーンの衝突防止装置
JP2011232230A (ja) 上方障害物検知装置、衝突防止装置および上方障害物検知方法
JP6740552B2 (ja) 障害物検知システムおよび障害物検知方法
JP5262394B2 (ja) 衝突予測装置
WO2019176116A1 (ja) 障害物検知システムおよび障害物検知方法
JP2998125B2 (ja) レーザレーダによる物体大きさ判定方法、物体大きさ判定装置、距離検出方法、及び距離検出装置
JP2006242622A (ja) 車載用レーダ装置および車両搭載方法
WO2018043540A1 (ja) 制御装置、計測装置、制御方法、およびプログラム
JP5733524B2 (ja) 駐車支援装置
WO2020195128A1 (ja) 物体検出システム、搬送台車及び物体検出装置
JPH1114747A (ja) 車両の物体検知装置
JP2022187121A (ja) 障害物検知方法および障害物検知システム
US20220004190A1 (en) Infrastructure system
JP2020160511A5 (ja)
JP2018072033A (ja) 制動試験用装置及び制動試験システム
JP2019127373A (ja) クレーン作業エリア登録装置
CN114175124A (zh) 自主行驶车辆的避撞装置、避撞方法、避撞程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018909587

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP