WO2019176086A1 - 無線通信装置、無線通信システム及び送信電力制御方法 - Google Patents
無線通信装置、無線通信システム及び送信電力制御方法 Download PDFInfo
- Publication number
- WO2019176086A1 WO2019176086A1 PCT/JP2018/010432 JP2018010432W WO2019176086A1 WO 2019176086 A1 WO2019176086 A1 WO 2019176086A1 JP 2018010432 W JP2018010432 W JP 2018010432W WO 2019176086 A1 WO2019176086 A1 WO 2019176086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- wireless communication
- data
- processing unit
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
Definitions
- the present invention relates to a wireless communication apparatus that performs wireless communication by a frequency hopping method, and more particularly, wireless communication that can improve communication quality by performing appropriate transmission power correction in a high-frequency power supply apparatus used in a plasma processing apparatus.
- the present invention relates to an apparatus, a wireless communication system, and a transmission power control method.
- the frequency hopping method is a method of wireless transmission in which wireless transmission is performed by switching a wireless modulation frequency (carrier frequency) at a specific cycle by a frequency synthesizer.
- a fixed transmission power control value corresponding to each carrier frequency is set in advance in the transmission unit, and transmission adjusted based on the transmission power control value for each frequency. Transmission is performed with power.
- Patent Literature 1 Japanese Patent No. 5814462 “Gateway wireless communication device, wireless communication system, and communication control method”
- Patent Document 2 Japanese Patent No. 3820395 “Wireless reception device and There is a “wireless communication method”
- Patent Document 1 provides a period for performing each procedure of communication data acquisition, communication quality measurement, communication quality data acquisition, and channel switching in a wireless communication system using frequency hopping, and within a time limit set for each process. It is described that each process is executed and all processes are executed in one cycle, thereby preventing a delay in transmission of communication data.
- a data slot is extracted from a frame of wireless data received from a wireless transmission device that generates wireless data having a configuration in which a data slot having the same content is included in a plurality of different frames and transmits the data by a frequency hopping method.
- the waveform data equalization processing is performed and the equalization error power of the data symbols constituting the data slot is calculated, and the data symbol having the smallest equalization error power among the data symbols at the same position in the same data slot included in different frames
- a radio receiving apparatus that selects and demodulates is described.
- the transmission power control value for each carrier frequency is a fixed value, and the transmission power is not appropriately controlled by reflecting distortion caused by an actual amplifier or transmission path. There was a problem that quality could not be obtained.
- the present invention has been made in view of the above circumstances, and can control transmission power for each carrier wave reflecting distortion caused by an actual amplifier or transmission line, and can improve communication quality.
- An object of the present invention is to provide a wireless communication system and a transmission power control method.
- the present invention for solving the problems of the conventional example described above is a wireless communication apparatus that performs communication using a frequency hopping method, generates a transmission frame from transmission data, and transmits the transmission frame to the other party with a set transmission power.
- a transmission processing unit that wirelessly transmits to the apparatus, and a transmission power control unit that outputs the premise power characteristic information that is a premise of the transmission power to the transmission processing unit and sets the transmission power based on the premise power characteristic information in the transmission processing unit.
- the transmission processing unit includes the assumed power characteristic information in the transmission frame and transmits the transmission frame, and the transmission power control unit updates the assumed power characteristic information based on the error information for the own device included in the received frame received from the counterpart device.
- the wireless communication apparatus sets transmission power based on the updated assumed power characteristic information in the transmission processing unit.
- the present invention is the above wireless communication apparatus in which the precondition power characteristic information corresponds to each carrier frequency switched by the frequency hopping method.
- the present invention also provides a reception processing unit that extracts a received frame from a received signal and demodulates the received wireless signal, measures power characteristics from the received signal, and measures the presupposed power characteristic information demodulated by the reception processing unit. And an information determination unit that outputs the difference as error information for the partner device to the transmission processing unit, and the transmission processing unit converts the error information for the partner device into the transmission frame.
- a reception processing unit that extracts a received frame from a received signal and demodulates the received wireless signal, measures power characteristics from the received signal, and measures the presupposed power characteristic information demodulated by the reception processing unit.
- an information determination unit that outputs the difference as error information for the partner device to the transmission processing unit, and the transmission processing unit converts the error information for the partner device into the transmission frame.
- the transmission processing unit divides transmission data into a plurality of data slots, generates a transmission frame so that data slots having the same content are included in a plurality of different transmission frames, and the reception processing unit A data slot constituted by data symbols is extracted from the frame, waveform equalization processing of the data slot is performed, and the quality of the data symbols constituting the data slot is calculated, and a plurality of identical data included in different received frames For the slot, the quality of each data symbol is compared, the data symbol having the best quality is selected, the data slot is reconfigured, and the radio communication apparatus demodulates.
- the present invention is a wireless communication system in which a first wireless communication device and a second wireless communication device communicate using a frequency hopping method, and the first wireless communication device assumes transmission power. Is transmitted to the second wireless communication apparatus with the transmission power based on the assumed power characteristic, and the first wireless communication apparatus error fed back from the second wireless communication apparatus is included in the transmission frame. Based on the information, the device updates the assumed power characteristic information and adjusts the transmission power. The second wireless communication device demodulates the received signal from the first wireless communication device and extracts the assumed power property information. In addition, the power characteristic is measured from the received signal, the demodulated power characteristic information is compared with the measured power characteristic, a difference is calculated, and the difference is used as the first error information for the wireless communication device.
- Wireless communication It is a device which is a device for feedback to a wireless communication system.
- the present invention is an apparatus in which the first wireless communication apparatus divides transmission data into a plurality of data slots and generates a transmission frame so that data slots having the same content are included in a plurality of different transmission frames.
- the second radio communication apparatus demodulates the received signal, it extracts a data slot composed of data symbols from the received frame, performs waveform equalization processing of the data slot, and also performs a data symbol constituting the data slot.
- An apparatus for calculating quality, comparing the quality of each data symbol for a plurality of identical data slots included in different received frames, selecting a data symbol having the best quality, and reconfiguring and demodulating the data slot The above wireless communication system.
- the present invention is also a transmission power control method in a wireless communication system in which a first wireless communication device and a second wireless communication device communicate using a frequency hopping method, and the first wireless communication device Included in the transmission frame is the precondition power characteristic information to be used as a premise for the transmission power calculation, and transmits it to the second wireless communication apparatus with the transmission power based on the precondition power characteristic, and the second wireless communication apparatus performs the first wireless communication.
- the received signal from the device is demodulated to extract the assumed power characteristic information, and the power characteristic is measured from the received signal, and the difference is calculated by comparing the demodulated assumed power characteristic information with the calculated power characteristic.
- the difference is fed back to the first wireless communication device as the first wireless communication device error information, and the first wireless communication device error fed back from the second wireless communication device. Based on the distribution, and updates the premise power characteristic information, and a transmission power control method for adjusting the transmission power.
- the first wireless communication apparatus divides transmission data into a plurality of data slots, generates a transmission frame so that data slots having the same contents are included in a plurality of different transmission frames,
- the apparatus demodulates the received signal
- the data slot constituted by the data symbol is extracted from the received frame
- the waveform equalization processing of the data slot is performed, and the quality of the data symbol constituting the data slot is calculated
- the transmission power control method for comparing the quality of each data symbol for a plurality of identical data slots included in different received frames, selecting the data symbol with the best quality, reconfiguring the data slot, and demodulating Yes.
- a wireless communication device that performs communication using a frequency hopping method, a transmission processing unit that generates a transmission frame from transmission data and wirelessly transmits the transmission frame to a counterpart device with a set transmission power;
- a transmission power control unit configured to output transmission power based on the assumption power characteristic information to the transmission processing unit and output the assumption power characteristic information which is a premise of transmission power to the transmission processing unit.
- the transmission power control unit updates the assumption power characteristic information based on the error information for the own apparatus included in the reception frame received from the counterpart apparatus, and the updated assumption power characteristic information is transmitted.
- the transmission power is adjusted from time to time according to the actual power characteristics reflecting the effects of amplifiers and transmission lines, etc. , It is possible to set an appropriate transmission power, there is an effect that it is possible to improve the communication quality.
- the assumed power characteristic information is a wireless communication device corresponding to each carrier frequency switched by the frequency hopping method, even if the carrier frequency is switched, An appropriate transmission power can be set according to the power characteristics, and the communication quality can be improved.
- the transmission processing unit divides transmission data into a plurality of data slots, and generates a transmission frame so that data slots having the same contents are included in a plurality of different transmission frames.
- the reception processing unit extracts a data slot composed of data symbols from the received frame, performs waveform equalization processing of the data slot, calculates the quality of the data symbols constituting the data slot, and receives different received frames.
- Frequency hopping is performed by comparing the quality of each data symbol in a plurality of identical data slots included in the data symbol, selecting the data symbol having the best quality, reconfiguring the data slot, and demodulating the data slot. Prevents bursty data errors caused by carrier frequency switching Come, there is an effect that it is possible to improve the quality of wireless communication.
- the first wireless communication apparatus and the second wireless communication apparatus are wireless communication systems in which communication is performed using a frequency hopping method, and the first wireless communication apparatus transmits transmission power. Is transmitted to the second wireless communication apparatus with transmission power based on the assumed power characteristics, and the first wireless communication apparatus fed back from the second wireless communication apparatus is included in the transmission frame. Is a device that updates the assumed power characteristic information and adjusts the transmission power based on the error information, and the second wireless communication device demodulates the received signal from the first wireless communication device to obtain the assumed power characteristic information. , The power characteristic is measured from the received signal, the demodulated power characteristic information is compared with the measured power characteristic, a difference is calculated, and the difference is used as first wireless communication apparatus error information.
- the wireless communication system is a device that feeds back to the line communication device
- the first wireless communication device actually reflects the influence of the amplifier and the transmission path based on the information fed back from the second wireless communication device.
- the transmission power can be adjusted at any time in accordance with the power characteristics, and an appropriate transmission power can be set, thereby improving the communication quality.
- a transmission power control method in a wireless communication system in which a first wireless communication device and a second wireless communication device perform communication using a frequency hopping method, and the first wireless communication device
- the apparatus includes the precondition power characteristic information that is a premise of the transmission power calculation in the transmission frame, and transmits the transmission power to the second radio communication apparatus with the transmission power based on the premise power characteristic.
- the received signal from the wireless communication device is demodulated to extract the assumed power characteristic information, and the power characteristic is measured from the received signal.
- the demodulated assumed power characteristic information is compared with the calculated power characteristic to obtain the difference.
- the first wireless communication apparatus calculates and feeds back the difference as first wireless communication apparatus error information to the first wireless communication apparatus, and the first wireless communication apparatus is fed back from the second wireless communication apparatus. Based on the error information, the premise power characteristic information is updated and the transmission power control method is used to adjust the transmission power. Therefore, in the first wireless communication device, based on the information fed back from the second wireless communication device, The transmission power can be adjusted at any time according to the actual power characteristics reflecting the influence of the amplifier and the transmission path, etc., so that an appropriate transmission power can be set, and the communication quality can be improved.
- FIG. 2 is a configuration block diagram of a wireless communication device A.
- FIG. It is a block diagram of the configuration of the wireless communication device B (20). It is explanatory drawing of a transmission power control table. It is a block diagram which shows the structure of a transmission process part. It is a block diagram which shows the structure of a reception process part. It is a block diagram of a configuration of a transmission unit of another wireless communication device. It is a block diagram of a configuration of a receiving unit of another wireless communication device. It is explanatory drawing which shows the transmission frame in another radio
- a wireless communication apparatus (present wireless communication apparatus) according to an embodiment of the present invention is a time division multiple access (TDMA) communication system, a wireless communication apparatus using a frequency hopping system, In this device, corresponding to the carrier frequency, transmit information including information on the power characteristics based on the power amplifier of the transmitter and the expected transmission path characteristics, and measure the power characteristics of the received signal in the receiving device.
- TDMA time division multiple access
- the error is determined by comparing with the power characteristic information transmitted from the transmission side, and is transmitted as feedback error information to the transmission side device.
- the transmission side device is based on the fed back error information,
- the transmission power is adjusted, and the transmission power in the device on the transmission side can be finely adjusted based on the power characteristics actually measured on the reception side, thereby improving the communication quality.
- this wireless communication apparatus can further prevent burst data errors due to switching of the wireless modulation frequency in frequency hopping.
- FIG. 1 is a schematic configuration diagram of the wireless communication system.
- the wireless communication system is a system that performs wireless communication between a wireless communication device A (10) and a wireless communication device B (20).
- the wireless communication device A (10) and the wireless communication device B (20) are the present wireless communication devices.
- the wireless communication device A (10) includes a transmission unit 11 and a reception unit 12, and the wireless communication device B (20) includes a transmission unit 21 and a reception unit 22.
- the wireless communication device A (10) and the wireless communication device B (20) have the same configuration.
- the wireless signal transmitted from the transmission unit 11 of the wireless communication device A (10) is received by the reception unit 22 of the wireless communication device B (20), and the wireless signal transmitted from the transmission unit 21 of the wireless communication device B (20).
- the signal is received by the receiving unit of the wireless communication apparatus A (10). That is, the counterpart device for the radio communication device A (10) is the radio communication device B (20), and the counterpart device for the radio communication device B (20) is the radio communication device A (10).
- the wireless communication device A (10) adjusts the transmission power of the transmission unit 11 based on the information fed back from the wireless communication device B (20) and received by the reception unit 12.
- the wireless communication device B (20) adjusts the transmission power of the transmission unit 21 based on the information fed back from the wireless communication device A (10) and received by the data reception unit 22. Information to be fed back will be described later.
- FIG. 2 is a configuration block diagram of the wireless communication apparatus A.
- the wireless communication device A (10) includes the transmission unit 11 and the reception unit 12 as described above.
- the transmission unit 11 includes a transmission processing unit 110 and a transmission power control unit 120
- the reception unit 12 includes a reception processing unit 130 and an information determination unit 140.
- the transmission power control unit 120 and the information determination unit 140 are characteristic portions of the wireless communication apparatus.
- the transmission processing unit 110 of the transmission unit 11 performs various signal processing on the transmission data to generate and transmit a transmission frame. A specific configuration of the transmission processing unit 110 will be described later.
- the transmission power control unit 120 is a characteristic part of the present wireless communication device, and controls transmission power based on information fed back from the counterpart device (here, the wireless communication device B (20)) and information on power characteristics. Manage. Specifically, the transmission power control unit 120 stores, for each carrier frequency, information on power characteristics (assumed power characteristics) set in advance and transmission power calculated based on the information.
- the assumed power characteristic is a power characteristic predicted in consideration of nonlinear distortion caused by the power amplifier used in the transmission processing unit 110 and distortion caused by the characteristics of the transmission path, and is expressed as a distortion value. The transmission power is determined based on the assumed power characteristics.
- the transmission power control unit 120 outputs the value of the assumed power characteristic (prerequisite power characteristic information) corresponding to the carrier frequency to the transmission processing unit 110 and includes it in the transmission frame so as to include the partner apparatus (wireless communication apparatus B (20)). ) And the transmission power calculated based on the assumed power characteristics is set in the transmission processing unit 110.
- the transmission power control unit 120 is based on information fed back from the partner apparatus (wireless communication apparatus B (20)) included in the received reception frame (error information for own apparatus, here, error information for apparatus A). Then, the assumed power characteristic information is updated, the transmission power is determined based on the updated assumed power characteristic information, and the transmission power in the transmission processing unit 110 is changed. The operation of the transmission power control unit 120 will be described later.
- the transmission power control unit 120 outputs the assumed power characteristic information corresponding to the carrier frequency to the transmission processing unit 110 and transmits the transmission power based on the assumed power characteristic information to the transmission processing unit.
- the transmission processing unit 110 includes the premise power characteristic information in the transmission frame, transmits the transmission power to the partner device with the set transmission power, and the transmission power control unit 120 includes the received frame received from the partner device.
- the base power characteristic information is updated based on the error information for the own device, and the transmission power based on the updated base power characteristic information is set in the transmission processing unit 110.
- the transmission power control unit 120 can update the precondition power characteristic information at any time to reflect the power characteristic affected by the actual amplifier and propagation path for each carrier frequency, and adaptively adjust the transmission power. Communication quality can be improved.
- the reception processing unit 130 of the receiving unit 12 performs various signal processing on the received signal, demodulates it, and extracts received data. A specific configuration of the reception processing unit 130 will be described later.
- the information determination unit 140 is a characteristic part of the wireless communication device, and measures actual power characteristics based on the received signal. Here, the power characteristic is a distortion characteristic. Then, the information determination unit 140 compares the precondition power characteristic information included in the received data received from the partner apparatus (wireless communication apparatus B (20)) with the measured power characteristic value, obtains the difference, and provides feedback. Error information (partner device error information, here device B error information) is transmitted to the partner device (wireless communication device B (20)) via the transmission processing unit 110.
- partner device error information here device B error information
- the reception processing unit 130 extracts and demodulates the received frame from the received signal, and the information determination unit 140 measures the power characteristic from the received signal and is demodulated by the reception processing unit 130.
- the difference between the presupposed power characteristic information and the measured power characteristic is calculated, and a difference is calculated, and the difference is output to the transmission processing unit 110 of the transmission unit 11 as error information for the counterpart device.
- the transmission processing unit 110 includes the partner device error information input from the information determination unit 140 in a transmission frame and transmits the transmission frame to the partner device.
- the wireless communication device A (10) will be described as the device A
- the wireless communication device B (20) will be described as the device B.
- the transmission power control unit 120 performs transmission processing in order to transmit the precondition power characteristic information corresponding to the carrier frequency to the device B that is the counterpart device.
- the transmission power is output to the unit 110, the transmission power is determined based on the assumed power characteristic, and the transmission processing unit 110 is instructed.
- the transmission processing unit 110 adds the precondition power characteristic information to the input transmission data and transmits it to the apparatus B with the instructed transmission power.
- the reception signal transmitted from the device B is demodulated in the reception processing unit 130, and the received data, the precondition power characteristic information input in the transmission processing unit of the device B that is the counterpart device, and the feedback from the device B are also received.
- the error information for apparatus A (error information for own apparatus) is extracted.
- the information determination unit 140 measures the power characteristic of the received signal and compares it with the assumed power characteristic information obtained from the received signal. The difference is fed back from the transmission processing unit 110 to the device B as device B error information (partner device error information). Further, the transmission power control unit 120 updates the premise power characteristic information based on the received error information for apparatus A, and adjusts the transmission power when transmitting from the own apparatus. In this way, the operation of the wireless communication device A (10) is performed.
- the wireless communication apparatus adds information on the assumed power characteristic managed by the power control unit 120 to the transmission data, and transmits the transmission data from the transmission processing unit 110 with transmission power based on the assumed power characteristic. is there.
- the information determination unit 140 measures the power characteristic of the received signal, and compares the measured power characteristic with the presumed power characteristic information from the counterpart device demodulated by the reception processing unit 130. Then, the difference is obtained and transmitted as error information for the partner device together with the transmission data from the transmission processing unit 110 to the partner device, and the transmission power control unit 120 is based on the error information for the own device fed back from the partner device. The transmission power is adjusted.
- FIG. 3 is a configuration block diagram of the wireless communication apparatus B (20).
- the wireless communication device B (20) has a configuration equivalent to that of the wireless communication device A (10) illustrated in FIG. 2, and includes a transmission unit 21 and a reception unit 22.
- the transmission unit 21 includes a transmission processing unit 210 and a transmission power control unit 220
- the reception unit 22 includes a reception processing unit 230 and an information determination unit 240.
- Each component of the wireless communication device B (20) has the same configuration as each part of the wireless communication device A (10).
- the wireless communication device B (20) is the own device and the wireless communication device A (10) is the counterpart device. Since the same operation as described above is performed, the description thereof is omitted.
- the partner device error information is device A error information
- the own device error information is device B error information.
- FIG. 4 is an explanatory diagram of a transmission power control table.
- the content of the information actually stored in the transmission power control table is usually different between the wireless communication device A (10) and the wireless communication device B (20), but the basic configuration is the same, so it is common The configuration will be described with reference to FIG.
- the transmission power control table stores, for each carrier frequency, information on a presumed power characteristic (premise power characteristic information) and a corresponding transmission power value or power control value.
- the premise power characteristic information is information on the distortion that is predicted based on the non-linear distortion caused by the power amplifier and the propagation path.
- the transmission power value is a value of transmission power determined so as to be appropriately received by the counterpart device when it is assumed that distortion indicated by the assumed power characteristic information occurs.
- the transmission power value may be calculated and stored in advance by experiment or simulation corresponding to the assumption power characteristic information for each carrier frequency, or calculated based on the assumption power characteristic information each time. May be.
- the power control value is information indicating a control amount from a preset default transmission power value.
- the transmission power control unit 120 reads the precondition power characteristic information and the transmission power value corresponding to the carrier frequency, and the transmission processing unit 110 (210). And transmit the precondition power characteristic information together with the transmission data to the partner apparatus with the transmission power based on the transmission power value.
- the transmission power control unit 120 (220) when the transmission power control unit 120 (220) receives the error information for its own device from the reception processing unit 130 (230), the transmission power control unit 120 (220) corrects and updates the premise power characteristic information in the transmission power control table based on the error information. Then, the transmission power value corresponding to the updated assumption power characteristic information is set.
- the error information for the own device is the same information as the error information for the other device transmitted from the other device.
- FIG. 5 is a configuration block diagram showing the configuration of the transmission processing unit. Since the transmission processing unit 110 of the wireless communication device A (10) and the transmission processing unit 210 of the wireless communication device B (20) have the same configuration, they will be described using FIG. 5 as a common configuration. As illustrated in FIG. 5, the transmission processing unit 110 (210) includes a transmission frame generation unit 31, a UW (Unique Word) addition unit 32, a modulation signal generation unit 33, an orthogonal modulation unit 34, and a transmission. A wireless device 35 and a transmission antenna 36 are provided.
- UW Unique Word
- the UW addition unit 32 stores a predetermined unique word and outputs the unique word to the transmission frame generation unit 31.
- the unique word is known information used for synchronization processing or the like on the receiving side.
- the transmission frame generation unit 31 divides the transmission data into a predetermined data length, adds the unique word from the UW addition unit 32, the partner device error information, and the precondition power characteristic information to the beginning of the transmission frame for transmission.
- a frame (frame 1, frame 2,...) Is generated.
- the partner device error information is power characteristic error information fed back to the partner device, and is generated by the information determination unit 140 (240).
- the precondition power characteristic information is output from the transmission power control unit 120 (220).
- the modulation signal generation unit 33 performs modulation processing such as QAM (Quadrature Amplitude Modulation) mapping on the input transmission frame, and has a transmission baseband signal having an in-phase component (I-phase component) and a quadrature component (Q-phase component) Output as.
- QAM Quadrature Amplitude Modulation
- the quadrature modulation unit 34 multiplies the transmission baseband signal by a local frequency, adds each signal component to perform quadrature modulation, and outputs the result as a transmission IF (Intermediate Frequency) signal.
- the transmission radio 35 performs frequency conversion from a transmission IF signal to a transmission RF signal using a frequency synthesizer that generates a radio modulation frequency (carrier frequency).
- the frequency synthesizer of the transmission radio 35 periodically performs frequency hopping to sequentially switch the carrier frequency, and the transmission radio 35 performs frequency conversion using the switched and output carrier frequency, and transmits An RF signal is generated.
- the transmission antenna 36 performs radio transmission by releasing a transmission RF signal from the transmission radio 35 to the radio space.
- transmission processing unit 110 220 of the wireless communication apparatus
- transmission frame generation unit 31 transmission data, a unique word from the UW addition unit 32, feedback error information from the information determination unit 140 (240), and precondition power characteristic information from the transmission power control unit 120 (220) Is input, a transmission frame having a predetermined data length including a unique word, feedback error information, and precondition power characteristic information is generated at the head portion.
- the premise power characteristic information is a power characteristic corresponding to the carrier frequency switched by frequency hopping.
- the transmission frame is modulated by the modulation signal generation unit 33 and converted into a transmission baseband signal.
- the transmission baseband signal is orthogonally modulated by the orthogonal modulation unit 34 and output to the transmission radio 35 as a transmission IF signal. Is done.
- the transmission IF signal is converted into a transmission RF signal by the transmission radio device 35, and is output to the space via the antenna 36 with the transmission power instructed from the transmission power control unit 120 (220).
- the carrier frequency of the transmission radio 35 is switched by frequency hopping, and the transmission power control unit 120 (220) sets the transmission power corresponding to the assumed power characteristic information of the switched carrier frequency in the transmission radio 35.
- the transmission power control unit 120 adjusts the transmission power based on the information, and the transmission power is set in the transmission radio unit 35. Is done. In this way, processing in the transmission processing unit 110 (210) is performed.
- FIG. 6 is a block diagram showing the configuration of the reception processing unit. Since the reception processing unit 130 of the wireless communication device A (10) and the reception processing unit 230 of the wireless communication device B (20) have the same configuration, the common configuration will be described with reference to FIG. As shown in FIG. 6, the reception processing unit 130 (230) includes a reception antenna 41, a reception radio 42, a quadrature detection unit 43, a synchronization processing unit 44, an equalization processing unit 45, and a demodulated data generation unit. 46.
- the receiving antenna 41 receives an RF signal having a predetermined frequency.
- the receiving radio 42 is provided with the same frequency synthesizer as that used in the transmission processing unit of the counterpart device, and reproduces the frequency hopping pattern at the time of transmission using the synthesizer, and the frequency to the received IF signal. Perform conversion.
- the receiving radio 42 switches the modulation frequency in synchronization with the carrier frequency switching timing of the transmission processing unit of the counterpart device, and can convert the received IF signal using an appropriate frequency.
- the quadrature detection unit 43 performs quadrature detection by multiplying the reception IF signal by a local frequency, and outputs the result as a reception baseband signal having an I-phase component and a Q-phase component.
- the synchronization processing unit 44 performs a complex correlation operation between the UW included in the received baseband signal and the UW previously held by the receiving device, detects the synchronization point of the received baseband signal, and obtains the received frame obtained as a result, etc. Output to the data processing unit 45 and the information determination unit 140 (240).
- the equalization processing unit 45 compensates the distortion received on the transmission path by the waveform equalization processing of the received frame, and outputs it to the demodulated data generation unit 46.
- the demodulated data generation unit 46 performs data demodulation processing such as QAM demapping processing on the output of the equalization processing unit 45, and outputs the received data obtained as a result to the outside.
- the demodulation data generation unit 46 extracts the error information for the own device fed back from the counterpart device and the precondition power characteristic information transmitted from the counterpart device by the demodulation process, and uses the error information for the own device as the transmission power. It outputs to control part 120 (220), and premise electric power characteristic information is output to information judgment part 140 (240).
- a radio signal received by the reception antenna 41 is converted into a reception IF signal by the reception radio device 42, subjected to quadrature detection by the quadrature detection unit 43, and converted to reception baseband signals of I phase and Q phase.
- the received baseband signal is subjected to synchronization detection processing by the synchronization processing unit 44 and a received frame is extracted.
- the received frame distortion is detected as an actual power characteristic by the information determination unit 140 (240).
- the received frame is compensated for distortion by the equalization processing unit 45, demodulated by the demodulated data generation unit 46, and received data is output.
- the demodulated assumption power characteristic information is output to the information determination unit 140 (240), and the demodulated error information for the own device is output to the transmission power control unit 120 (220).
- the information determination unit 140 compares the detected power characteristic (distortion) with the received premise power characteristic information to obtain an error, and calculates the error as error information for the counterpart device. Is output to the transmission processing unit.
- the transmission power control unit 120 updates the precondition power characteristics in the transmission power control table based on the error information for the own device obtained by demodulating the error information for the other device fed back from the other device, The transmission power is determined and the transmission power control table is updated, and the transmission power is set in the transmission wireless device 35 of the transmission processing unit 110 (210). In this way, the operation in the reception processing unit 130 (230) is performed.
- the transmission power control unit 120 refers to the transmission power control table and outputs the assumed power characteristic information corresponding to the carrier frequency to the transmission frame generation unit 31 of the transmission processing unit 110 and Transmission power based on the characteristic information is set in the transmission radio device 35 of the transmission processing unit 110.
- the transmission processing unit 110 adds the unique word and the precondition power characteristic information to the transmission data and transmits the transmission data with the transmission power set by the transmission radio device 35.
- information determination unit 240 detects distortion (power characteristics) based on the received frame. Further, the equalization processing unit 45 performs distortion compensation on the received frame, and the demodulated data generation unit 46 extracts the received data. Premise power characteristic information included in the received data is output to information determination section 240.
- the information determination unit 240 of the device B compares the received premise power characteristic information with the actually detected power characteristic, and uses the difference as error information for the partner device (error information for the device A). Output to 210.
- the error information for the apparatus A is added to the transmission data together with the UW and the self-supplied power characteristic information and transmitted. As a result, the error information for apparatus A is fed back to apparatus A.
- the device A Upon receiving the signal from the device B, the device A demodulates the received signal to obtain received data, and obtains the fed back error information for the device A as error information for the device itself. Then, the transmission power control unit 120 updates the assumed power characteristic information in the transmission power control table and the corresponding transmission power value, and sets the updated transmission power in the transmission radio 35 of the transmission processing unit 110. In this way, transmission power is controlled in this system.
- the same processing is performed when device B transmits, and when transmission and reception are repeated between devices A and B, the premise power characteristic information and the error for the partner device are transmitted in the transmission frame from any device.
- Information In any of the devices, the information determination unit 140 (240) calculates the partner device error information based on the assumed power characteristic information in the received signal and the detected power characteristic, and the transmission power control unit 120 (220). ) Recognizes the error information for the counterpart device in the received signal as the error information for the own device, and adjusts the transmission power of the own device.
- the radio communication apparatus is a radio communication apparatus using a frequency hopping scheme, in which the transmission processing unit 110 assumes a transmission power calculation corresponding to a carrier frequency.
- the information is included in the transmission frame and transmitted to the counterpart device with the transmission power set by the transmission power control unit 110, and the transmission power control unit 120 is based on the error information for the own device fed back from the counterpart device. Since the characteristic information is updated and the transmission power is adjusted and set in the transmission processing unit 110, information on the difference between the assumed power characteristic and the actual power characteristic as the basis of the transmission power is received from the counterpart device.
- the transmission power can be finely adjusted, and the communication quality can be improved. There is an effect that can be good.
- the reception processing unit 130 extracts and demodulates the received frame from the received signal
- the information determining unit 140 measures the power characteristic of the received signal
- the demodulated presumed power characteristic information and measurement The error is determined by comparing with the actual power characteristic thus generated, error information for the counterpart device is generated, fed back from the transmission processing unit 110 to the counterpart device, and included in the received frame fed back from the counterpart device
- the transmission power is adjusted by updating the precondition power characteristic information. Therefore, the communication quality can be improved by finely adjusting the transmission power in both the partner device and the own device. There is an effect that can be done.
- the transmission power control unit 120 corresponds to the carrier frequency in apparatus A.
- the transmission power processing unit 110 sets the transmission power based on the assumption power characteristic information and the transmission power processing unit 110.
- the transmission power processing unit 110 sets the transmission power based on the assumption power characteristic information.
- the transmission power set including the power characteristic information is transmitted to the device B.
- the information determining unit 240 measures the power characteristic of the received signal, and the presupposed power characteristic information transmitted from the device A on the transmission side An error is determined by comparison with the actual power characteristics, error information for the counterpart device (device A error information) is generated, fed back from the transmission processing unit 210 to the device A, and mounted.
- the transmission power control unit 120 adjusts the transmission power in the transmission unit 110 based on the fed back partner device error information (device A error information), and is actually measured on the receiving side.
- the transmission power can be finely adjusted based on the power characteristics, and the communication quality can be improved.
- the transmission side in addition to finely controlling transmission power, includes the same data slot in a plurality of transmission frames and transmits the same, and the reception side includes the same data slot included in different reception frames. Compare the quality of data symbols and select data symbols with good quality to prevent burst data errors due to switching of carrier frequency in the frequency hopping method, and improve the quality of wireless communication. I try to improve it further.
- another wireless communication apparatus is compatible with transmission of transmission data in which one frame is composed of two data slots.
- FIG. 7 is a configuration block diagram of a transmission unit of another wireless communication apparatus.
- the transmission unit of another wireless communication apparatus includes a transmission data slot generation unit 301, a UW memory 302, a transmission data slot storage memory 303, a transmission frame generation unit 304, and a modulation signal generation unit 305.
- the transmission data slot generation unit 301, the transmission data storage memory 303, and the transmission frame generation unit 304 are characteristic portions of another wireless communication apparatus. Further, the portion excluding the transmission power control unit 309 constitutes a transmission power processing unit. Note that the components other than the transmission data slot generation unit 301, the transmission data storage memory 303, and the transmission frame generation unit 304 have the same configuration and operation as the respective units of the wireless communication apparatus described above, and thus detailed description thereof is omitted. .
- the transmission data slot generation unit 301 divides the input transmission data by a certain data length shorter than the frame data length to form a slot, generates a transmission data slot, and stores it in the transmission data slot storage memory 303. At that time, the transmission data slot generation unit 301 of another wireless communication device adds the assumed power characteristic information from the transmission power control unit 309 and the error information for the counterpart device from the information determination unit described later to each transmission data slot. And stored in the transmission data slot storage memory 303.
- the UW memory 302 outputs the UW to the transmission data slot storage memory 303.
- the transmission frame generation unit 304 uses the transmission data slot output from the transmission data slot storage memory 303 to generate a transmission frame by assigning two transmission data slots having different contents to the frame. A method for generating a transmission frame will be described later.
- a transmission frame is generated by allocating two transmission data slots to which UW, precondition power characteristic information, and error information for the counterpart device are added to one frame, and wireless modulation using a carrier frequency is performed. Then, orthogonal modulation is performed, and transmission is performed with the transmission power specified by the transmission power control unit 309.
- the transmission power control unit 309 includes a transmission power control table, and inputs a precondition power characteristic to the transmission processing unit during transmission.
- the transmission power is transmitted to the counterpart device, and at the time of reception, the transmission power control table is updated based on the received error information for the own device to adjust the transmission power.
- FIG. 8 is a configuration block diagram of a receiving unit of another wireless communication apparatus.
- the receiving unit of another wireless communication apparatus includes a receiving antenna 329, a receiving radio 330, a quadrature detecting unit 331, a synchronization processing unit 332, a received data slot extracting unit 333, and a first Data slot equalization processing unit 334, first data slot storage memory 335, second data slot equalization processing unit 336, second data slot storage memory 337, data symbol equalization error comparison unit 338, received data A symbol selection unit 339, a demodulated data generation unit 340, and an information determination unit 341 are provided.
- the reception antenna 329, the reception radio 330, the synchronization processing unit 332, the demodulated data generation unit 340, and the information determination unit 341 have the same configuration and operation as each component of the wireless communication device described above. Therefore, detailed description is omitted.
- the reception data slot extraction unit 333 extracts a reception data slot from the reception frame output from the synchronization processing unit 332. At that time, the reception data slot extraction unit 333 recognizes which data slot in the reception frame the extracted reception data slot is (first or second), and equalizes the data slot corresponding to the number. Output to the processing unit.
- the reception data slot extraction unit 333 outputs the first data slot that is the first data slot in the reception frame to the first data slot equalization processing unit 334, and the second data slot that is the second data slot in the reception frame.
- the slot is output to the second data slot equalization processing unit 336.
- the first data slot equalization processing unit 334 performs waveform equalization of the first data slot, calculates the equalization error of the data symbols constituting each first data slot, and outputs the equalization processing result and the equalization error.
- the data is output to the first data slot storage memory 335.
- the second data slot equalization processing unit 336 performs waveform equalization of the second data slot, calculates an equalization error of the data symbols constituting each second data slot, and performs the equalization processing result and the like. The error is output to the second data slot storage memory 337.
- an equalizer used for the first data slot equalization processing unit 334 and the second data slot equalization processing unit 336 any equalizer such as a decision feedback equalizer or a Viterbi equalizer may be used. Good.
- the first data slot storage memory 335 stores the equalization processing result of the first data slot and the equalization error of the data symbols constituting the data slot.
- the second data slot storage memory 337 stores the equalization processing result of the second data slot and the equalization error of the data symbols constituting the data slot.
- the first data slot storage memory 335 and the second data slot storage memory 337 are configured to store the equalization processing result and the equalization error for a plurality of slots in time series, respectively.
- the equalization error comparison unit 338 compares the size of the equalization error for each data symbol for the data slots having the same contents stored in the first data slot storage memory 335 and the second data slot storage memory 337, and compares the comparison results.
- the received data selection unit 339 outputs the received data.
- the reception data selection unit 339 selects a data symbol with a small equalization error from the equalization processing result of the same data slot, and the data symbol Are stored in the data slot storage memory, and output to the data demodulator 340.
- the equalization error power of the missing data symbol is larger than that of the missing data symbol.
- Another wireless communication apparatus utilizes this fact to select a highly reliable data symbol.
- the information determination unit 341 of another wireless communication device calculates power characteristics (distortion) based on the received frame from the synchronization processing unit 332, and generates a demodulated data generation unit. Compared with the precondition power characteristic information output from 340, error information for the counterpart device is generated. Then, the error information for the counterpart device is output to the transmission processing unit and transmitted to the counterpart device.
- FIG. 9 is an explanatory diagram showing a transmission frame in another wireless communication device, where (a) shows a transmission data slot, and (b) shows a transmission frame and transmission timing.
- a transmission data slot shows a transmission data slot
- b shows a transmission frame and transmission timing.
- the transmission frame generation unit 304 is generated by the transmission data slot generation unit 301 and stored in the transmission data slot storage memory 303 (slot data, S1, S2,. (S3%),
- the first data slot S1 is assigned to the second transmission data slot in the second half of the transmission frame F1 at the transmission frame timing T.
- the transmission frame generation unit 304 sequentially transmits the second transmission data of each transmission frame (F2, F3,%) At each transmission frame timing (T + 1, T + 2,. Assign to a slot.
- the data slot S1 is reassigned to the first transmission data slot of the transmission frame at the transmission timing after a certain delay time has elapsed from the transmission timing T.
- the number of delay frames is 3, and the data slot S1 is reassigned to the transmission frame F4 at the transmission timing T + 3.
- the number of delay frames when reassigning the same data slot needs to be set to be different from the carrier frequency switching interval. That is, each data slot is assigned to two frames transmitted at intervals different from the frequency switching frequency carrier frequency switching interval.
- an equalization error between the two on the receiving side is stored in different memories so that they can be compared.
- FIG. 10 is an explanatory diagram of a reception data symbol selection method of another wireless communication apparatus.
- a thick line on the waveform of the received RF signal indicates a no-signal section generated in the received RF signal due to frequency hopping of the transmission-side apparatus, and represents that the carrier frequency has been switched in this section.
- the shaded portion in the received frame, received data symbol, and received data slot represents the slot data or symbol data transmitted first out of the same data slot transmitted twice.
- a no-signal interval is generated in the received RF signal by switching the carrier frequency, and the data symbols Dn ⁇ 1 and the second received data slot S2 included in the second received frame F2 overlapping the no-signal interval Dn, the data symbols D1 to Dn-1 constituting the first reception data slot S1 included in the fourth reception frame F4 are missing.
- a data symbol that has been lost due to overlapping with a no-signal section is marked with a cross.
- the received data symbol is not missing in another data slot having the same content as the data slot containing these missing data but different in reception timing.
- the reception data symbols D1 to Dn-1 constituting the second reception data slot S1 of the first reception frame F1 are not missing.
- the transmission side apparatus assigns the same data slot to two transmission frames provided with transmission timing intervals different from the carrier frequency switching intervals. Also, the same data slot is arranged in a different order in each transmission frame, that is, one is arranged in the first transmission data slot of one transmission frame and the other is arranged in the second transmission data slot of another transmission frame.
- the equalization processing result of one data slot is stored in the first data slot storage memory 335, and the equalization processing result of the other data slot is stored in the second data slot. It is stored in the memory 337.
- the reception data selection unit 339 compares the equalization error power of the first slot data storage memory 335 with the equalization error power of the second slot data storage memory 337 for the same slot data, The received data symbol with the lower power is selected.
- a highly reliable received data symbol that is not missing from each of the first received frame F1 and the fourth received frame F4 can be selected, and the received data slot S1 is reconfigured. Can do.
- the state of the wireless propagation path may be deteriorated due to fading or the like that occurs during wireless communication, and the reception state of the received data symbol may be deteriorated.
- the received data symbol Dn constituting the second received data slot S1 of the first received frame F1 and the received data symbols D1 and D2 constituting the first received data slot S2 of the fifth received frame F5 are frequency hopping. Although there is no overlap with the no-signal section due to, it is degraded or missing due to the deterioration of the reception state.
- data symbols that have deteriorated due to deterioration of the reception state are hatched.
- another wireless communication apparatus can reconfigure the received data slot by referring to the same data slot included in another received frame and selecting an undegraded received data symbol. Can increase the sex.
- received data symbol selection section 339 uses received data symbols D1, D2, and Dn ⁇ 1 as received data symbols constituting data slot S1 from first received frame F1, and received data symbols Dn as fourth received data symbols.
- the reception data slot S1 is reconfigured by selecting from the reception frame F4.
- two different transmission data slots are included per frame, but three or more different transmission data slots may be included in one frame.
- another wireless communication apparatus requires as many data slot equalization processing units and corresponding data slot storage memories as the number of received data slots, and the data symbol equalization error comparison unit 338 includes each data slot storage memory. It is necessary to compare the equalization errors of the data symbols at the same position constituting the same data slot stored in the.
- the reception data symbol selection unit 339 needs to select and read out the reception data symbol that minimizes the equalization error power based on the comparison result from the data symbol equalization error comparison unit.
- equalization error power is used as a reference for selecting a received data symbol, but error determination such as CRC (Cyclic Redundancy Check) or Viterbi is used instead of the equalization error power.
- CRC Cyclic Redundancy Check
- Viterbi Viterbi is used instead of the equalization error power. You may use the error detection result by a process. That is, the reception data symbol quality is calculated, and a reception data symbol with good quality is selected.
- an error detection code is added to the transmission data symbol, and on the reception side, the error detection results calculated for the same reception data symbol included in different reception frames are compared, and reception with few errors is performed.
- a data symbol may be selected.
- transmission is performed based on the power characteristics actually measured on the receiving side, as in the case of the wireless communication device and the wireless communication system described above.
- Power can be finely adjusted, communication quality can be improved, and on the transmission side, wireless data is generated and transmitted by frequency hopping so that the same data slot is included in multiple frames, and the reception side
- a data slot constituted by data symbols is extracted to calculate the quality of each data symbol, and the quality of data symbols at the same position in the same data slot included in different received frames is compared. Select the data symbol with the best quality, reconstruct the data slot, and demodulate it.
- To prevent a burst data errors due to switching of the carrier frequency in the ping mode there is an effect that it is possible to further improve the quality of radio communication.
- the present invention is capable of controlling transmission power for each carrier wave reflecting distortion caused by an actual amplifier or transmission path, and capable of improving communication quality, a wireless communication apparatus, a wireless communication system, and a transmission power control method Suitable for
- reception processing unit, 140, 240 ... information determination unit 301 Transmission data slot generator 302: UW memory 303: Transmission data slot storage memory 333: Reception data Extraction unit, 334 ... first data slot equalization processing unit, 335 ... first slot data storage memory, 336 ... second data slot equalization processing unit, 337 ... second slot data storage memory, 338 ... data symbol, etc. Error comparison unit, 339 ... received data symbol selection unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Transmitters (AREA)
Abstract
実際の増幅器や伝送路に起因する歪を反映して搬送波毎の送信電力を制御することができ、通信品質を改善することができる無線通信装置、無線通信システム及び送信電力制御方法を提供する。周波数ホッピング方式を用いて通信を行い、送信処理部(110)が、送信電力算出の前提とする前提電力特性情報を送信フレームに含めて、送信電力制御部(110)から設定された送信電力で相手装置に送信し、送信電力制御部(120)が、相手装置からフィードバックされた自装置用誤差情報に基づいて、前提電力特性情報を更新すると共に送信電力を調整して送信処理部(110)に設定する無線通信装置、無線通信システム及び送信電力制御方法としている。
Description
本発明は、周波数ホッピング方式によって無線通信を行う無線通信装置に係り、特に、プラズマ処理装置に用いられる高周波電源装置において、適切な送信電力補正を行って、通信品質を改善することができる無線通信装置、無線通信システム及び送信電力制御方法に関する。
[先行技術の説明]
ディジタル無線通信の送信装置、受信装置として、周波数ホッピング方式を用いて無線伝送を行う無線通信装置が普及している。周波数ホッピング方式とは、周波数シンセサイザによって無線変調周波数(搬送波周波数)を特定の周期で切り替えて無線伝送を行う無線伝送の一方式である。
ディジタル無線通信の送信装置、受信装置として、周波数ホッピング方式を用いて無線伝送を行う無線通信装置が普及している。周波数ホッピング方式とは、周波数シンセサイザによって無線変調周波数(搬送波周波数)を特定の周期で切り替えて無線伝送を行う無線伝送の一方式である。
従来の周波数ホッピング方式を用いた無線通信装置では、予め送信部に、各搬送波周波数に応じた固定の送信電力制御値を設定しておき、周波数毎に当該送信電力制御値に基づいて調整した送信電力で送信を行うようにしている。
[関連技術]
尚、周波数ホッピング方式を用いた無線通信装置としては、特許第5841462号公報「ゲートウェイ無線通信装置、無線通信システム、及び通信制御方法」(特許文献1)、特許第3820395号公報「無線受信装置及び無線通信方法」(特許文献2)がある。
尚、周波数ホッピング方式を用いた無線通信装置としては、特許第5841462号公報「ゲートウェイ無線通信装置、無線通信システム、及び通信制御方法」(特許文献1)、特許第3820395号公報「無線受信装置及び無線通信方法」(特許文献2)がある。
特許文献1には、周波数ホッピングを用いた無線通信システムにおいて、通信データ取得、通信品質計測、通信品質データ取得、チャネル切替の各手順を行う期間を設け、各処理に設定された制限時間内に各処理を実行すると共に、1サイクルで全ての処理を実行することにより、通信データの伝送の遅延発生を防止することが記載されている。
特許文献2には、同一内容のデータスロットが複数の異なるフレームに含まれる構成の無線データを生成して周波数ホッピング方式で送信する無線送信装置から受信した無線データのフレームについて、データスロットを抽出して波形等化処理を行うと共にデータスロットを構成するデータシンボルの等化誤差電力を算出し、異なるフレームに含まれる同一のデータスロットの同位置のデータシンボルにおいて、等化誤差電力の最も小さいデータシンボルを選択して復調する無線受信装置が記載されている。
しかしながら、従来の無線通信装置では、各搬送波周波数の送信電力制御値は固定値であり、実際の増幅器や伝送路に起因する歪を反映して送信電力を適宜制御するものではなく、良好な通信品質が得られない場合があるという問題点があった。
本発明は上記実情に鑑みてなされたもので、実際の増幅器や伝送路に起因する歪を反映して搬送波毎の送信電力を制御することができ、通信品質を改善することができる無線通信装置、無線通信システム及び送信電力制御方法を提供することを目的とする。
上記従来例の問題点を解決するための本発明は、周波数ホッピング方式を用いて通信を行う無線通信装置であって、送信データから送信フレームを生成し、設定された送信電力で送信フレームを相手装置に無線送信する送信処理部と、送信電力の前提となる前提電力特性情報を送信処理部に出力すると共に、前提電力特性情報に基づく送信電力を送信処理部に設定する送信電力制御部とを備え、送信処理部が、前提電力特性情報を送信フレームに含めて送信し、送信電力制御部が、相手装置から受信した受信フレームに含まれる自装置用誤差情報に基づいて前提電力特性情報を更新し、更新された前提電力特性情報に基づく送信電力を送信処理部に設定する無線通信装置としている。
また、本発明は、前提電力特性情報が、周波数ホッピング方式によって切り替えられる各搬送波周波数に対応している上記無線通信装置としている。
また、本発明は、上記無線通信装置において、受信信号から受信フレームを抽出して復調する受信処理部と、受信信号から電力特性を測定し、受信処理部で復調された前提電力特性情報と測定された電力特性とを比較して差分を算出し、当該差分を相手装置用誤差情報として送信処理部に出力する情報判定部とを備え、送信処理部が、相手装置用誤差情報を送信フレームに含めて送信する上記無線通信装置としている。
また、本発明は、送信処理部が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成し、受信処理部が、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、データスロットの波形等化処理を行うと共に前記データスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する上記無線通信装置としている。
また、本発明は、第1の無線通信装置と第2の無線通信装置とが、周波数ホッピング方式を用いて通信を行う無線通信システムであって、第1の無線通信装置が、送信電力の前提となる前提電力特性情報を送信フレームに含めて、前提電力特性に基づく送信電力で第2の無線通信装置に送信すると共に、第2の無線通信装置からフィードバックされた第1の無線通信装置用誤差情報に基づいて、前提電力特性情報を更新し、送信電力を調整する装置であり、第2の無線通信装置が、第1の無線通信装置からの受信信号を復調して前提電力特性情報を抽出すると共に、受信信号から電力特性を測定して、復調された電力特性情報と測定された電力特性とを比較して差分を算出し、当該差分を第1の無線通信装置用誤差情報として第1の無線通信装置にフィードバックする装置である無線通信システムとしている。
また、本発明は、第1の無線通信装置が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成する装置であり、第2の無線通信装置が、受信信号を復調する際に、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、データスロットの波形等化処理を行うと共にデータスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する装置である上記無線通信システムとしている。
また、本発明は、第1の無線通信装置と第2の無線通信装置とが、周波数ホッピング方式を用いて通信を行う無線通信システムにおける送信電力制御方法であって、第1の無線通信装置が、送信電力算出の前提とする前提電力特性情報を送信フレームに含めて、前提電力特性に基づく送信電力で第2の無線通信装置に送信し、第2の無線通信装置が、第1の無線通信装置からの受信信号を復調して前提電力特性情報を抽出すると共に、受信信号から電力特性を測定して、復調された前提電力特性情報と算出された電力特性とを比較して差分を算出し、当該差分を第1の無線通信装置用誤差情報として第1の無線通信装置にフィードバックし、第1の無線通信装置が、第2の無線通信装置からフィードバックされた第1の無線通信装置用誤差情報に基づいて、前提電力特性情報を更新し、送信電力を調整する送信電力制御方法としている。
また、本発明は、第1の無線通信装置が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成し、第2の装置が、受信信号を復調する際に、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、データスロットの波形等化処理を行うと共にデータスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する上記送信電力制御方法としている。
本発明によれば、周波数ホッピング方式を用いて通信を行う無線通信装置であって、送信データから送信フレームを生成し、設定された送信電力で送信フレームを相手装置に無線送信する送信処理部と、送信電力の前提となる前提電力特性情報を送信処理部に出力すると共に、前提電力特性情報に基づく送信電力を送信処理部に設定する送信電力制御部とを備え、送信処理部が、前提電力特性情報を送信フレームに含めて送信し、送信電力制御部が、相手装置から受信した受信フレームに含まれる自装置用誤差情報に基づいて前提電力特性情報を更新し、更新された前提電力特性情報に基づく送信電力を送信処理部に設定する無線通信装置としているので、増幅器や伝送路の影響等を反映した実際の電力特性に応じて送信電力を随時調整して、適切な送信電力を設定することができ、通信品質を向上させることができる効果がある。
また、本発明によれば、上記無線通信装置において、前提電力特性情報が、周波数ホッピング方式によって切り替えられる各搬送波周波数に対応している無線通信装置としているので、搬送周波数が切り替わっても、実際の電力特性に応じて適切な送信電力を設定することができ、通信品質を向上させることができる効果がある。
また、本発明によれば、上記無線通信装置において、送信処理部が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成し、受信処理部が、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、データスロットの波形等化処理を行うと共に前記データスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する無線通信装置としているので、周波数ホッピング方式における搬送波周波数の切り替えに起因するバースト状データ誤りを防止でき、無線通信の品質を向上させることができる効果がある。
また、本発明によれば、第1の無線通信装置と第2の無線通信装置とが、周波数ホッピング方式を用いて通信を行う無線通信システムであって、第1の無線通信装置が、送信電力の前提となる前提電力特性情報を送信フレームに含めて、前提電力特性に基づく送信電力で第2の無線通信装置に送信すると共に、第2の無線通信装置からフィードバックされた第1の無線通信装置用誤差情報に基づいて、前提電力特性情報を更新し、送信電力を調整する装置であり、第2の無線通信装置が、第1の無線通信装置からの受信信号を復調して前提電力特性情報を抽出すると共に、受信信号から電力特性を測定して、復調された電力特性情報と測定された電力特性とを比較して差分を算出し、当該差分を第1の無線通信装置用誤差情報として第1の無線通信装置にフィードバックする装置である無線通信システムとしているので、第1の無線通信装置では、第2の無線通信装置からフィードバックされた情報に基づいて、増幅器や伝送路の影響等を反映した実際の電力特性に応じて送信電力を随時調整して、適切な送信電力を設定することができ、通信品質を向上させることができる効果がある。
また、本発明によれば、第1の無線通信装置と第2の無線通信装置とが、周波数ホッピング方式を用いて通信を行う無線通信システムにおける送信電力制御方法であって、第1の無線通信装置が、送信電力算出の前提とする前提電力特性情報を送信フレームに含めて、前提電力特性に基づく送信電力で第2の無線通信装置に送信し、第2の無線通信装置が、第1の無線通信装置からの受信信号を復調して前提電力特性情報を抽出すると共に、受信信号から電力特性を測定して、復調された前提電力特性情報と算出された電力特性とを比較して差分を算出し、当該差分を第1の無線通信装置用誤差情報として第1の無線通信装置にフィードバックし、第1の無線通信装置が、第2の無線通信装置からフィードバックされた第1の無線通信装置用誤差情報に基づいて、前提電力特性情報を更新し、送信電力を調整する送信電力制御方法としているので、第1の無線通信装置では、第2の無線通信装置からフィードバックされた情報に基づいて、増幅器や伝送路の影響等を反映した実際の電力特性に応じて送信電力を随時調整して、適切な送信電力を設定することができ、通信品質を向上させることができる効果がある。
本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明の実施の形態に係る無線通信装置(本無線通信装置)は、時分割多元接続(TDMA:Time Division Multiple Access)通信方式で、周波数ホッピング方式を用いた無線通信装置であって、送信側の装置において、搬送波周波数に対応して、送信部の電力増幅器や予想される伝送路の特性に基づく電力特性の情報を含めて送信し、受信側の装置において、受信信号の電力特性を測定し、送信側から送信された電力特性の情報と比較して誤差を判定して、フィードバック用誤差情報として送信側の装置に送信し、送信側の装置が、当該フィードバックされた誤差情報に基づいて、送信電力を調整するものであり、実際に受信側で測定された電力特性に基づいて送信側の装置における送信電力をきめ細かく調整することができ、通信品質を改善することができるものである。
[実施の形態の概要]
本発明の実施の形態に係る無線通信装置(本無線通信装置)は、時分割多元接続(TDMA:Time Division Multiple Access)通信方式で、周波数ホッピング方式を用いた無線通信装置であって、送信側の装置において、搬送波周波数に対応して、送信部の電力増幅器や予想される伝送路の特性に基づく電力特性の情報を含めて送信し、受信側の装置において、受信信号の電力特性を測定し、送信側から送信された電力特性の情報と比較して誤差を判定して、フィードバック用誤差情報として送信側の装置に送信し、送信側の装置が、当該フィードバックされた誤差情報に基づいて、送信電力を調整するものであり、実際に受信側で測定された電力特性に基づいて送信側の装置における送信電力をきめ細かく調整することができ、通信品質を改善することができるものである。
また、本無線通信装置は、更に、周波数ホッピングにおける無線変調周波数の切り替えに起因するバースト状データ誤りを防止することができるものである。
[本無線通信装置を用いた無線通信システムの概略:図1]
本無線通信装置の構成について説明する前に、本無線通信装置を用いた無線通信システム(本無線通信システム)について簡単に説明する。図1は、本無線通信システムの概略構成図である。
図1に示すように、本無線通信システムは、無線通信装置A(10)と、無線通信装置B(20)とで無線通信を行うシステムである。無線通信装置A(10)及び無線通信装置B(20)は、本無線通信装置である。
本無線通信装置の構成について説明する前に、本無線通信装置を用いた無線通信システム(本無線通信システム)について簡単に説明する。図1は、本無線通信システムの概略構成図である。
図1に示すように、本無線通信システムは、無線通信装置A(10)と、無線通信装置B(20)とで無線通信を行うシステムである。無線通信装置A(10)及び無線通信装置B(20)は、本無線通信装置である。
無線通信装置A(10)は、送信部11と、受信部12とを備え、無線通信装置B(20)は、送信部21と受信部22とを備えている。尚、ここでは、説明を簡単にするために、無線通信装置A(10)と無線通信装置B(20)とは同一の構成としている。
無線通信装置A(10)の送信部11から送信された無線信号は、無線通信装置B(20)の受信部22で受信され、無線通信装置B(20)の送信部21から送信された無線信号は、無線通信装置A(10)の受信部で受信される。
つまり、無線通信装置A(10)にとっての相手装置は無線通信装置B(20)であり、無線通信装置B(20)にとっての相手装置は無線通信装置A(10)である。
つまり、無線通信装置A(10)にとっての相手装置は無線通信装置B(20)であり、無線通信装置B(20)にとっての相手装置は無線通信装置A(10)である。
そして、本無線通信装置の特徴として、無線通信装置A(10)は、無線通信装置B(20)からフィードバックされ、受信部12で受信した情報に基づいて、送信部11の送信電力を調整し、同様に、無線通信装置B(20)は、無線通信装置A(10)からフィードバックされ、データ受信部22で受信した情報に基づいて、送信部21の送信電力を調整する。
フィードバックされる情報については後述する。
フィードバックされる情報については後述する。
[無線通信装置A(10)の構成:図2]
次に、無線通信装置Aの構成について図2を用いて説明する。図2は、無線通信装置Aの構成ブロック図である。
図2に示すように、無線通信装置A(10)は、上述したように、送信部11と、受信部12とを備えている。
更に、送信部11は、送信処理部110と、送信電力制御部120とを備え、受信部12は、受信処理部130と、情報判定部140とを備えている。
ここで、送信電力制御部120と、情報判定部140とが本無線通信装置の特徴部分となっている。
次に、無線通信装置Aの構成について図2を用いて説明する。図2は、無線通信装置Aの構成ブロック図である。
図2に示すように、無線通信装置A(10)は、上述したように、送信部11と、受信部12とを備えている。
更に、送信部11は、送信処理部110と、送信電力制御部120とを備え、受信部12は、受信処理部130と、情報判定部140とを備えている。
ここで、送信電力制御部120と、情報判定部140とが本無線通信装置の特徴部分となっている。
無線通信装置A(10)の各部について説明する。
送信部11の送信処理部110は、送信データに各種信号処理を施して、送信フレームを生成して送信する。送信処理部110の具体的な構成については後述する。
送信部11の送信処理部110は、送信データに各種信号処理を施して、送信フレームを生成して送信する。送信処理部110の具体的な構成については後述する。
送信電力制御部120は、本無線通信装置の特徴部分であり、相手装置(ここでは無線通信装置B(20))からフィードバックされた情報に基づいて送信電力の制御を行うと共に、電力特性の情報を管理する。
具体的には、送信電力制御部120は、搬送波周波数毎に、予め前提として設定した電力特性(前提電力特性)の情報及びそれに基づいて算出された送信電力を記憶している。
前提電力特性は、送信処理部110で用いられている電力増幅器に起因する非線形歪や、伝送路の特性によって生じる歪を考慮して予測した電力特性であり、歪値として表現されている。送信電力は前提電力特性に基づいて決定される。
具体的には、送信電力制御部120は、搬送波周波数毎に、予め前提として設定した電力特性(前提電力特性)の情報及びそれに基づいて算出された送信電力を記憶している。
前提電力特性は、送信処理部110で用いられている電力増幅器に起因する非線形歪や、伝送路の特性によって生じる歪を考慮して予測した電力特性であり、歪値として表現されている。送信電力は前提電力特性に基づいて決定される。
そして、送信電力制御部120は、搬送波周波数に対応した前提電力特性の値(前提電力特性情報)を送信処理部110に出力して、送信フレームに含めて相手装置(無線通信装置B(20))に送信させると共に、当該前提電力特性に基づいて算出した送信電力を送信処理部110に設定する。
更に、送信電力制御部120は、受信した受信フレームに含まれる相手装置(無線通信装置B(20))からフィードバックされた情報(自装置用誤差情報、ここでは装置A用誤差情報)に基づいて、前提電力特性情報を更新し、更新された前提電力特性情報に基づいて送信電力を決定して、送信処理部110における送信電力を変更する。
送信電力制御部120の動作については、後述する。
送信電力制御部120の動作については、後述する。
つまり、本無線通信装置の送信部11は、送信電力制御部120が、搬送波周波数に対応した前提電力特性情報を送信処理部110に出力すると共に、前提電力特性情報に基づく送信電力を送信処理部110に設定し、送信処理部110が、前提電力特性情報を送信フレームに含めて、設定された送信電力で相手装置に送信し、送信電力制御部120が、相手装置から受信した受信フレームに含まれる自装置用誤差情報に基づいて前提電力特性情報を更新し、更新された前提電力特性情報に基づいた送信電力を送信処理部110に設定するものである。
これにより、送信電力制御部120は、搬送波周波数毎に、実際の増幅器や伝搬路の影響を受けた電力特性を反映させて前提電力特性情報を随時更新でき、送信電力を適応的に調整して、通信品質を向上させることができるものである。
受信部12の受信処理部130は、受信信号に各種信号処理を施して復調し、受信データを取り出す。受信処理部130の具体的な構成については後述する。
情報判定部140は、本無線通信装置の特徴部分であり、受信した信号に基づいて、実際の電力特性を測定する。ここで、電力特性とは歪の特性である。
そして、情報判定部140は、相手装置(無線通信装置B(20))から受信した受信データに含まれる前提電力特性情報と、測定した電力特性の値とを比較してその差分を求め、フィードバックする誤差情報(相手装置用誤差情報、ここでは装置B用誤差情報)として、送信処理部110を介して相手装置(無線通信装置B(20))に送信する。
情報判定部140は、本無線通信装置の特徴部分であり、受信した信号に基づいて、実際の電力特性を測定する。ここで、電力特性とは歪の特性である。
そして、情報判定部140は、相手装置(無線通信装置B(20))から受信した受信データに含まれる前提電力特性情報と、測定した電力特性の値とを比較してその差分を求め、フィードバックする誤差情報(相手装置用誤差情報、ここでは装置B用誤差情報)として、送信処理部110を介して相手装置(無線通信装置B(20))に送信する。
つまり、本無線通信装置の受信部12は、受信処理部130が受信信号から受信フレームを取り出して復調し、情報判定部140が、受信信号から電力特性を測定し、受信処理部130で復調された前提電力特性情報と、測定された電力特性とを比較して差分を算出し、当該差分を相手装置用誤差情報として送信部11の送信処理部110に出力するものである。
そして、送信処理部110は、情報判定部140から入力された相手装置用誤差情報を送信フレームに含めて相手装置に送信するものである。
これにより、相手装置において、上述したように前提送信電力の更新と、実際の電力特性に応じた送信電力の調整が行われるものである。
尚、情報判定部140の動作については、後述する。
そして、送信処理部110は、情報判定部140から入力された相手装置用誤差情報を送信フレームに含めて相手装置に送信するものである。
これにより、相手装置において、上述したように前提送信電力の更新と、実際の電力特性に応じた送信電力の調整が行われるものである。
尚、情報判定部140の動作については、後述する。
[無線通信装置A(10)の動作:図2]
無線通信装置A(10)の動作について図2を用いて簡単に説明する。ここでは、説明を簡単にするために、無線通信装置A(10)を装置A、無線通信装置B(20)を装置Bとして説明する。
装置Aにおいて、送信時には、周波数ホッピングにより搬送波周波数が特定されると、送信電力制御部120は、当該搬送波周波数に対応する前提電力特性情報を、相手装置である装置Bに送信するために送信処理部110に出力し、当該前提電力特性に基づいて送信電力を決定し、送信処理部110に指示する。
送信処理部110では、入力された送信データに前提電力特性情報を付加して、指示された送信電力で装置Bに送信する。
無線通信装置A(10)の動作について図2を用いて簡単に説明する。ここでは、説明を簡単にするために、無線通信装置A(10)を装置A、無線通信装置B(20)を装置Bとして説明する。
装置Aにおいて、送信時には、周波数ホッピングにより搬送波周波数が特定されると、送信電力制御部120は、当該搬送波周波数に対応する前提電力特性情報を、相手装置である装置Bに送信するために送信処理部110に出力し、当該前提電力特性に基づいて送信電力を決定し、送信処理部110に指示する。
送信処理部110では、入力された送信データに前提電力特性情報を付加して、指示された送信電力で装置Bに送信する。
受信時には、装置Bから送信された受信信号が受信処理部130において復調されて、受信データと、相手装置である装置Bの送信処理部で入力された前提電力特性情報と、更に装置Bからフィードバックされた装置A用誤差情報(自装置用誤差情報)が抽出される。
そして、情報判定部140では、受信信号の電力特性を測定し、受信信号から得られた前提電力特性情報と比較する。そして、その差分を装置B用誤差情報(相手装置用誤差情報)として、送信処理部110から装置Bにフィードバックする。
更に、送信電力制御部120は、受信した装置A用誤差情報に基づいて、前提電力特性情報を更新し、自装置から送信する際の送信電力を調整する。
このようにして、無線通信装置A(10)の動作が行われる。
更に、送信電力制御部120は、受信した装置A用誤差情報に基づいて、前提電力特性情報を更新し、自装置から送信する際の送信電力を調整する。
このようにして、無線通信装置A(10)の動作が行われる。
つまり、本無線通信装置は、送信時には、電力制御部120が管理する前提電力特性の情報を送信データに付加して、当該前提電力特性に基づいた送信電力で送信処理部110から送信するものである。
また、本無線通信装置は、受信時には、情報判定部140が、受信信号の電力特性を測定し、受信処理部130で復調した、相手装置からの前提電力特性情報と測定した電力特性とを比較して差分を求め、それを相手装置用誤差情報として、送信データと共に送信処理部110から相手装置に送信すると共に、送信電力制御部120が、相手装置からフィードバックされた自装置用誤差情報に基づいて、送信電力を調整するものである。
[無線通信装置B(20)の構成:図3]
次に、無線通信装置B(20)の構成について図3を用いて説明する。図3は、無線通信装置B(20)の構成ブロック図である。
図3に示すように、無線通信装置B(20)は、図2に示した無線通信装置A(10)と同等の構成であり、送信部21と、受信部22とを備えている。更に、送信部21は、送信処理部210と、送信電力制御部220を備え、受信部22は、受信処理部230と、情報判定部240とを備えている。
次に、無線通信装置B(20)の構成について図3を用いて説明する。図3は、無線通信装置B(20)の構成ブロック図である。
図3に示すように、無線通信装置B(20)は、図2に示した無線通信装置A(10)と同等の構成であり、送信部21と、受信部22とを備えている。更に、送信部21は、送信処理部210と、送信電力制御部220を備え、受信部22は、受信処理部230と、情報判定部240とを備えている。
無線通信装置B(20)の各構成部分は、無線通信装置A(10)の各部と同一の構成であり、自装置を無線通信装置B(20)、相手装置を無線通信装置A(10)として上述した動作と同様の動作を行うものであるため、説明は省略する。
尚、無線通信装置B(20)において、相手装置用誤差情報は装置A用誤差情報であり、自装置用誤差情報は装置B用誤差情報である。
尚、無線通信装置B(20)において、相手装置用誤差情報は装置A用誤差情報であり、自装置用誤差情報は装置B用誤差情報である。
[送信電力制御テーブル:図4]
次に、装置Aの送信電力制御部120及び装置Bの送信電力制御部220に設けられている送信電力制御テーブルについて図4を用いて説明する。図4は、送信電力制御テーブルの説明図である。
実際に送信電力制御テーブルに記憶されている情報の内容は、無線通信装置A(10)と無線通信装置B(20)とで通常異なっているが、基本的な構成は同一であるため、共通の構成として図4を用いて説明する。
次に、装置Aの送信電力制御部120及び装置Bの送信電力制御部220に設けられている送信電力制御テーブルについて図4を用いて説明する。図4は、送信電力制御テーブルの説明図である。
実際に送信電力制御テーブルに記憶されている情報の内容は、無線通信装置A(10)と無線通信装置B(20)とで通常異なっているが、基本的な構成は同一であるため、共通の構成として図4を用いて説明する。
図4に示すように、送信電力制御テーブルは、搬送波周波数毎に、前提とする電力特性の情報(前提電力特性情報)と、それに対応する送信電力値又は電力制御値を記憶している。
上述したように、前提電力特性情報は、電力増幅器に起因する非線形歪や伝搬路に基づいて予測される歪の情報である。
上述したように、前提電力特性情報は、電力増幅器に起因する非線形歪や伝搬路に基づいて予測される歪の情報である。
送信電力値は、前提電力特性情報で示される歪が発生すると仮定した場合に、相手装置で適切に受信できるように決定された送信電力の値である。送信電力値は、搬送波周波数毎に、前提電力特性情報に対応して、予め実験的、又はシミュレーションによって求めて記憶しておいてもよいし、前提電力特性情報に基づいてその都度数式によって算出してもよい。
また、電力制御値は、予め設定されたデフォルトの送信電力値からの制御量を示す情報である。
また、電力制御値は、予め設定されたデフォルトの送信電力値からの制御量を示す情報である。
そして、上述したように、送信電力制御部120(220)は、周波数ホッピングによって搬送波周波数が決定されると、それに対応する前提電力特性情報と送信電力値とを読み出して送信処理部110(210)に出力し、当該送信電力値に基づく送信電力で、送信データと共に前提電力特性情報を相手装置に送信させる。
また、送信電力制御部120(220)は、受信処理部130(230)から、自装置用誤差情報が入力されると、それに基づいて、送信電力制御テーブルの前提電力特性情報を修正して更新し、更新された前提電力特性情報に対応する送信電力値を設定する。尚、自装置用誤差情報とは、相手装置から送信された相手装置用誤差情報と同一の情報である。
これにより、本無線通信装置では、ホッピング周波数毎に、実際の電力特性を反映した送信電力制御を可能とし、通信品質を向上させることができるものである。
これにより、本無線通信装置では、ホッピング周波数毎に、実際の電力特性を反映した送信電力制御を可能とし、通信品質を向上させることができるものである。
[送信処理部の構成:図5]
次に、本無線通信装置の送信処理部の構成について図5を用いて説明する。図5は、送信処理部の構成を示す構成ブロック図である。
尚、無線通信装置A(10)の送信処理部110と無線通信装置B(20)の送信処理部210は、同一の構成であるため、共通の構成として図5を用いて説明する。
図5に示すように、送信処理部110(210)は、送信フレーム生成部31と、UW(Unique Word:ユニークワード)付加部32と、変調信号生成部33と、直交変調部34と、送信無線機35と、送信アンテナ36とを備えている。
次に、本無線通信装置の送信処理部の構成について図5を用いて説明する。図5は、送信処理部の構成を示す構成ブロック図である。
尚、無線通信装置A(10)の送信処理部110と無線通信装置B(20)の送信処理部210は、同一の構成であるため、共通の構成として図5を用いて説明する。
図5に示すように、送信処理部110(210)は、送信フレーム生成部31と、UW(Unique Word:ユニークワード)付加部32と、変調信号生成部33と、直交変調部34と、送信無線機35と、送信アンテナ36とを備えている。
UW付加部32は、所定のユニークワードを格納しており、送信フレーム生成部31にユニークワードを出力する。ユニークワードは、受信側において同期処理等に用いられる既知の情報である。
送信フレーム生成部31は、送信データを所定のデータ長に分割し、送信フレームの先頭に、UW付加部32からのユニークワードと、相手装置用誤差情報と、前提電力特性情報を付加して送信フレーム(フレーム1、フレーム2、…)を生成する。
送信フレーム生成部31は、送信データを所定のデータ長に分割し、送信フレームの先頭に、UW付加部32からのユニークワードと、相手装置用誤差情報と、前提電力特性情報を付加して送信フレーム(フレーム1、フレーム2、…)を生成する。
上述したように、相手装置用誤差情報は、相手装置にフィードバックする電力特性の誤差情報であり、情報判定部140(240)で生成されるものである。
また、前提電力特性情報は、送信電力制御部120(220)から出力されるものである。
また、前提電力特性情報は、送信電力制御部120(220)から出力されるものである。
変調信号生成部33は、入力された送信フレームに対してQAM(Quadrature Amplitude Modulation)マッピング等の変調処理を行い、同相成分(I相成分)及び直交成分(Q相成分)を有する送信ベースバンド信号として出力する。
直交変調部34は、送信ベースバンド信号に対してローカル周波数を乗算し、各信号成分を加算して直交変調を行い、送信IF(Intermediate Frequency)信号として出力する。
送信無線機35は、無線変調周波数(搬送波周波数)を発生する周波数シンセサイザを用いて、送信IF信号から送信RF信号に周波数変換を行う。
送信無線機35は、無線変調周波数(搬送波周波数)を発生する周波数シンセサイザを用いて、送信IF信号から送信RF信号に周波数変換を行う。
また、送信無線機35の周波数シンセサイザは、定期的に周波数ホッピングを行って搬送波周波数を順次切り替えており、送信無線機35は、切り替えられて出力された搬送波周波数を用いて周波数変換を行い、送信RF信号を生成する。
送信アンテナ36は、送信無線機35からの送信RF信号を無線空間へ放出することで、無線送信を行う。
送信アンテナ36は、送信無線機35からの送信RF信号を無線空間へ放出することで、無線送信を行う。
[送信処理部の動作:図5]
次に、本無線通信装置の送信処理部110(220)の動作について図5を用いて説明する。
送信フレーム生成部31において、送信データと、UW付加部32からのユニークワードと、情報判定部140(240)からのフィードバック用誤差情報と、送信電力制御部120(220)からの前提電力特性情報とが入力されると、先頭部分にユニークワードとフィードバック用誤差情報と前提電力特性情報とを含む所定のデータ長の送信フレームが生成される。
ここで、前提電力特性情報は、周波数ホッピングによって切り替えられた搬送波周波数に対応する電力特性である。
次に、本無線通信装置の送信処理部110(220)の動作について図5を用いて説明する。
送信フレーム生成部31において、送信データと、UW付加部32からのユニークワードと、情報判定部140(240)からのフィードバック用誤差情報と、送信電力制御部120(220)からの前提電力特性情報とが入力されると、先頭部分にユニークワードとフィードバック用誤差情報と前提電力特性情報とを含む所定のデータ長の送信フレームが生成される。
ここで、前提電力特性情報は、周波数ホッピングによって切り替えられた搬送波周波数に対応する電力特性である。
送信フレームは、変調信号生成部33において変調処理が施されて送信ベースバンド信号に変換され、送信ベースバンド信号は、直交変調部34にて直交変調されて送信IF信号として送信無線機35に出力される。
送信IF信号は、送信無線機35で送信RF信号に変換され、送信電力制御部120(220)から指示された送信電力でアンテナ36を介して空間へ出力する。
送信無線機35の搬送波周波数は周波数ホッピングによって切り替えられ、送信電力制御部120(220)は、切り替えられた搬送波周波数の前提電力特性情報に対応する送信電力を送信無線機35に設定する。
送信無線機35の搬送波周波数は周波数ホッピングによって切り替えられ、送信電力制御部120(220)は、切り替えられた搬送波周波数の前提電力特性情報に対応する送信電力を送信無線機35に設定する。
更に、相手装置からフィードバックされた自装置用誤差情報を受信した場合には、送信電力制御部120(220)が当該情報に基づいて送信電力を調整し、当該送信電力が送信無線部35に設定される。
このようにして、送信処理部110(210)における処理が行われる。
このようにして、送信処理部110(210)における処理が行われる。
[受信処理部の構成:図6]
次に、本無線通信装置の受信処理部の構成について図6を用いて説明する。図6は、受信処理部の構成を示す構成ブロック図である。
尚、無線通信装置A(10)の受信処理部130と無線通信装置B(20)の受信処理部230は、同一の構成であるため、共通の構成として図6を用いて説明する。
図6に示すように、受信処理部130(230)は、受信アンテナ41と、受信無線機42と、直交検波部43と、同期処理部44と、等化処理部45と、復調データ生成部46とを備えている。
次に、本無線通信装置の受信処理部の構成について図6を用いて説明する。図6は、受信処理部の構成を示す構成ブロック図である。
尚、無線通信装置A(10)の受信処理部130と無線通信装置B(20)の受信処理部230は、同一の構成であるため、共通の構成として図6を用いて説明する。
図6に示すように、受信処理部130(230)は、受信アンテナ41と、受信無線機42と、直交検波部43と、同期処理部44と、等化処理部45と、復調データ生成部46とを備えている。
受信アンテナ41は、所定の周波数のRF信号を受信する。
受信無線機42は、相手装置の送信処理部で用いられたものと同一の周波数シンセサイザが備えられており、当該シンセサイザを用いて送信時の周波数ホッピングパターンを再現して、受信IF信号への周波数変換を行う。
受信無線機42は、相手装置の送信処理部の搬送波周波数切り替えのタイミングと同期を取って変調周波数の切り替えを行っており、適正な周波数を用いて受信IF信号への変換を行うことができる。
受信無線機42は、相手装置の送信処理部で用いられたものと同一の周波数シンセサイザが備えられており、当該シンセサイザを用いて送信時の周波数ホッピングパターンを再現して、受信IF信号への周波数変換を行う。
受信無線機42は、相手装置の送信処理部の搬送波周波数切り替えのタイミングと同期を取って変調周波数の切り替えを行っており、適正な周波数を用いて受信IF信号への変換を行うことができる。
直交検波部43は、受信IF信号に対してローカル周波数を乗算して直交検波を行い、その結果をI相成分及びQ相成分を有する受信ベースバンド信号として出力する。
同期処理部44は、受信ベースバンド信号に含まれるUWと予め受信装置が持つUWとの複素相関演算を行い、受信ベースバンド信号の同期点を検出し、その結果得られた受信フレームを、等化処理部45と、情報判定部140(240)に出力する。
同期処理部44は、受信ベースバンド信号に含まれるUWと予め受信装置が持つUWとの複素相関演算を行い、受信ベースバンド信号の同期点を検出し、その結果得られた受信フレームを、等化処理部45と、情報判定部140(240)に出力する。
等化処理部45は受信フレームの波形等化処理により伝送路で受けた歪みを補償し、復調データ生成部46へ出力する。
復調データ生成部46は、等化処理部45の出力に対してQAMデマッピング処理等のデータ復調処理を行い、その結果得られた受信データを外部へ出力する。
復調データ生成部46は、等化処理部45の出力に対してQAMデマッピング処理等のデータ復調処理を行い、その結果得られた受信データを外部へ出力する。
また、復調データ生成部46は、復調処理によって、相手装置からフィードバックされた自装置用誤差情報と、相手装置から送信された前提電力特性情報とを抽出して、自装置用誤差情報を送信電力制御部120(220)に出力し、前提電力特性情報を情報判定部140(240)に出力する。
[受信処理部の動作:図6]
次に、本無線通信装置の受信処理部130(230)の動作について図6を用いて説明する。
受信アンテナ41で受信された無線信号は、受信無線機42で受信IF信号に変換され、直交検波部43で直交検波されて、I相及びQ相の受信ベースバンド信号に変換される。
受信ベースバンド信号は、同期処理部44で同期検出処理が施されて受信フレームが抽出される。
次に、本無線通信装置の受信処理部130(230)の動作について図6を用いて説明する。
受信アンテナ41で受信された無線信号は、受信無線機42で受信IF信号に変換され、直交検波部43で直交検波されて、I相及びQ相の受信ベースバンド信号に変換される。
受信ベースバンド信号は、同期処理部44で同期検出処理が施されて受信フレームが抽出される。
受信フレームは、情報判定部140(240)において、実際の電力特性として歪が検出される。
また、受信フレームは、等化処理部45において歪が補償され、復調データ生成部46で復調処理が施されて、受信データが出力される。復調された前提電力特性情報は、情報判定部140(240)に出力され、復調された自装置用誤差情報は、送信電力制御部120(220)に出力される。
また、受信フレームは、等化処理部45において歪が補償され、復調データ生成部46で復調処理が施されて、受信データが出力される。復調された前提電力特性情報は、情報判定部140(240)に出力され、復調された自装置用誤差情報は、送信電力制御部120(220)に出力される。
そして、上述したように、情報判定部140(240)では、検出された電力特性(歪)と、受信した前提電力特性情報とを比較して、誤差を求め、当該誤差を相手装置用誤差情報として相手装置に送信するため、送信処理部に出力する。
また、送信電力制御部120(220)では、相手装置からフィードバックされた相手装置用誤差情報を復調した自装置用誤差情報に基づいて、送信電力制御テーブルの前提電力特性及を更新し、適切な送信電力を決定して送信電力制御テーブルを更新すると共に、送信処理部110(210)の送信無線機35に当該送信電力を設定する。
このようにして、受信処理部130(230)における動作が行われる。
このようにして、受信処理部130(230)における動作が行われる。
[本システムの動作:図1~6]
次に、本システムにおける送信電力制御の動作について、図1~6を用いて説明する。
ここでは、図1,2に示した無線通信装置A(10)(装置A)が、図1,3に示した無線通信装置B(20)(装置B)に送信を行い、フィードバックされた情報に基づいて送信電力制御を行う場合を例として説明する。
次に、本システムにおける送信電力制御の動作について、図1~6を用いて説明する。
ここでは、図1,2に示した無線通信装置A(10)(装置A)が、図1,3に示した無線通信装置B(20)(装置B)に送信を行い、フィードバックされた情報に基づいて送信電力制御を行う場合を例として説明する。
まず、装置Aでは、送信電力制御部120が、送信電力制御テーブルを参照して、搬送波周波数に対応した前提電力特性情報を送信処理部110の送信フレーム生成部31に出力すると共に、当該前提電力特性情報に基づく送信電力を送信処理部110の送信無線機35に設定する。
送信処理部110では、送信データにユニークワード及び前提電力特性情報を付加して、送信無線機35から設定された送信電力で送信する。
送信処理部110では、送信データにユニークワード及び前提電力特性情報を付加して、送信無線機35から設定された送信電力で送信する。
装置Bでは、装置Aからの信号を受信し、直交検波及び同期検出を行って受信フレームを取り出すと、情報判定部240が受信フレームに基づいて歪(電力特性)を検出する。
また、受信フレームに対して、等化処理部45で歪補償を行い、復調データ生成部46で受信データを抽出する。
受信データ中に含まれる前提電力特性情報は、情報判定部240に出力される。
また、受信フレームに対して、等化処理部45で歪補償を行い、復調データ生成部46で受信データを抽出する。
受信データ中に含まれる前提電力特性情報は、情報判定部240に出力される。
そして、装置Bの情報判定部240では、受信した前提電力特性情報と、実際に検出された電力特性とを比較し、差分を相手装置用誤差情報(装置A用誤差情報)として、送信処理部210に出力する。
装置Bの送信処理部210では、送信データに、UWや自己の前提電力特性情報と共に、装置A用誤差情報を付加して送信する。これにより、装置A用誤差情報は装置Aにフィードバックされる。
装置Bの送信処理部210では、送信データに、UWや自己の前提電力特性情報と共に、装置A用誤差情報を付加して送信する。これにより、装置A用誤差情報は装置Aにフィードバックされる。
装置Aでは、装置Bからの信号を受信すると、受信信号を復調して、受信データを得ると共に、フィードバックされた装置A用誤差情報を自装置用誤差情報として取得する。
そして、送信電力制御部120が、送信電力制御テーブルの前提電力特性情報及びそれに対応する送信電力値を更新して、更新された送信電力を送信処理部110の送信無線機35に設定する。
このようにして、本システムにおける送信電力の制御が行われるものである。
そして、送信電力制御部120が、送信電力制御テーブルの前提電力特性情報及びそれに対応する送信電力値を更新して、更新された送信電力を送信処理部110の送信無線機35に設定する。
このようにして、本システムにおける送信電力の制御が行われるものである。
尚、装置Bが送信する場合にも同様の処理が行われ、装置Aと装置Bとで送受信を繰り返す場合には、いずれの装置からの送信フレームにも、前提電力特性情報と相手装置用誤差情報とが含まれることになる。
また、いずれの装置においても、情報判定部140(240)が、受信信号中の前提電力特性情報と検出した電力特性に基づいて相手装置用誤差情報を算出すると共に、送信電力制御部120(220)が、受信信号中の相手装置用誤差情報を自装置用誤差情報として認識して、自装置の送信電力を調整するものである。
また、いずれの装置においても、情報判定部140(240)が、受信信号中の前提電力特性情報と検出した電力特性に基づいて相手装置用誤差情報を算出すると共に、送信電力制御部120(220)が、受信信号中の相手装置用誤差情報を自装置用誤差情報として認識して、自装置の送信電力を調整するものである。
[実施の形態の効果]
本発明の実施の形態に係る無線通信装置によれば、周波数ホッピング方式を用いた無線通信装置であって、送信処理部110が、搬送波周波数に対応して送信電力算出の前提とする前提電力特性情報を送信フレームに含めて、送信電力制御部110から設定された送信電力で相手装置に送信し、送信電力制御部120が、相手装置からフィードバックされた自装置用誤差情報に基づいて、前提電力特性情報を更新すると共に送信電力を調整して送信処理部110に設定するようにしているので、相手装置から、送信電力の根拠としていた前提電力特性と実際の電力特性との差分の情報を受信することにより、実際に受信側で測定された電力特性に基づいて前提電力特性情報を更新して、送信電力をきめ細かく調整することができ、通信品質を改善することができる効果がある。
本発明の実施の形態に係る無線通信装置によれば、周波数ホッピング方式を用いた無線通信装置であって、送信処理部110が、搬送波周波数に対応して送信電力算出の前提とする前提電力特性情報を送信フレームに含めて、送信電力制御部110から設定された送信電力で相手装置に送信し、送信電力制御部120が、相手装置からフィードバックされた自装置用誤差情報に基づいて、前提電力特性情報を更新すると共に送信電力を調整して送信処理部110に設定するようにしているので、相手装置から、送信電力の根拠としていた前提電力特性と実際の電力特性との差分の情報を受信することにより、実際に受信側で測定された電力特性に基づいて前提電力特性情報を更新して、送信電力をきめ細かく調整することができ、通信品質を改善することができる効果がある。
また、本無線通信装置によれば、受信処理部130が、受信信号から受信フレームを取り出して復調し、情報判定部140が受信信号の電力特性を測定し、復調された前提電力特性情報と測定された実際の電力特性とを比較して誤差を判定して、相手装置用誤差情報を生成して、送信処理部110から相手装置にフィードバックすると共に、相手装置からフィードバックされた受信フレームに含まれる自装置用誤差情報に基づいて、前提電力特性情報を更新して送信電力を調整するようにしているので、相手装置及び自装置共にきめ細かい送信電力の調整を行って、通信品質を改善することができる効果がある。
また、本発明の実施の形態に係る無線通信システム及び送信電力制御方法によれば、周波数ホッピング方式を用いた無線通信システムであって、装置Aにおいて、送信電力制御部120が、搬送波周波数に対応して、送信電力算出の前提とする前提電力特性情報を送信処理部110に出力すると共に、前提電力特性情報に基づく送信電力を送信電力処理部110に設定し、送信電力処理部110が、前提電力特性情報を含めて設定された送信電力で装置Bに送信し、装置Bにおいて、情報判定部240が受信信号の電力特性を測定し、送信側の装置Aから送信された前提電力特性情報と実際の電力特性と比較して誤差を判定して、相手装置用誤差情報(装置A用誤差情報)を生成して、送信処理部210から装置Aにフィードバックし、装置Aにおいて、送信電力制御部120が、当該フィードバックされた相手装置用誤差情報(装置A用誤差情報)に基づいて、送信部110における送信電力を調整するものであり、実際に受信側で測定された電力特性に基づいて送信電力をきめ細かく調整することができ、通信品質を改善することができる効果がある。
[別の実施の形態]
次に、本発明の別の実施の形態に係る無線通信装置(別の無線通信装置)について説明する。
別の無線通信装置の基本的な構成は、図2,図3に示した本無線通信装置と同様であるが、送信処理部及び受信処理部の構成が異なっている。
次に、本発明の別の実施の形態に係る無線通信装置(別の無線通信装置)について説明する。
別の無線通信装置の基本的な構成は、図2,図3に示した本無線通信装置と同様であるが、送信処理部及び受信処理部の構成が異なっている。
そして、別の無線通信装置では、送信電力の制御をきめ細かく行うことに加えて、送信側において同一のデータスロットを複数の送信フレームに含めて送信し、受信側において、異なる受信フレームに含まれる同一のデータスロットについて、データシンボルの品質を比較し、品質が良好なデータシンボルを選択するようにして、周波数ホッピング方式における搬送波周波数の切り替えに起因するバーストデータ誤りを防止して、無線通信の品質を一層向上させるようにしている。
特に、別の無線通信装置は、1フレームが2つのデータスロットで構成される伝送データの通信に対応したものである。
特に、別の無線通信装置は、1フレームが2つのデータスロットで構成される伝送データの通信に対応したものである。
[別の無線通信装置の送信部の構成:図7]
別の無線通信装置の送信部の構成について図7を用いて説明する。図7は、別の無線通信装置の送信部の構成ブロック図である。
図7に示すように、別の無線通信装置の送信部は、送信データスロット生成部301と、UWメモリ302と、送信データスロット格納メモリ303と、送信フレーム生成部304と、変調信号生成部305と、直交変調部306と、送信無線機307と、送信アンテナ308と、送信電力制御部309とを備えている。
別の無線通信装置の送信部の構成について図7を用いて説明する。図7は、別の無線通信装置の送信部の構成ブロック図である。
図7に示すように、別の無線通信装置の送信部は、送信データスロット生成部301と、UWメモリ302と、送信データスロット格納メモリ303と、送信フレーム生成部304と、変調信号生成部305と、直交変調部306と、送信無線機307と、送信アンテナ308と、送信電力制御部309とを備えている。
上記構成部分の内、送信データスロット生成部301、送信データ格納メモリ303、送信フレーム生成部304が別の無線通信装置の特徴部分となっている。また、送信電力制御部309を除く部分は、送信電力処理部を構成している。
尚、送信データスロット生成部301、送信データ格納メモリ303、送信フレーム生成部304以外の構成部分は、上述した本無線通信装置の各部と同等の構成及び動作であるため、詳細な説明は省略する。
尚、送信データスロット生成部301、送信データ格納メモリ303、送信フレーム生成部304以外の構成部分は、上述した本無線通信装置の各部と同等の構成及び動作であるため、詳細な説明は省略する。
送信データスロット生成部301は、入力された送信データをフレームデータ長より短い一定のデータ長で分割することでスロット化して送信データスロットを生成し、送信データスロット格納メモリ303に格納する。
その際、別の無線通信装置の送信データスロット生成部301は、送信電力制御部309からの前提電力特性情報と、後述する情報判定部からの相手装置用誤差情報を、各送信データスロットに付加して送信データスロット格納メモリ303に格納する。
その際、別の無線通信装置の送信データスロット生成部301は、送信電力制御部309からの前提電力特性情報と、後述する情報判定部からの相手装置用誤差情報を、各送信データスロットに付加して送信データスロット格納メモリ303に格納する。
UWメモリ302は、UWを送信データスロット格納メモリ303に出力する。
送信フレーム生成部304は、送信データスロット格納メモリ303から出力される送信データスロットを用いて、異なる内容の2つの送信データスロットをフレームに割り当てることで送信フレームを生成する。送信フレームの生成方法は、後述する。
送信フレーム生成部304は、送信データスロット格納メモリ303から出力される送信データスロットを用いて、異なる内容の2つの送信データスロットをフレームに割り当てることで送信フレームを生成する。送信フレームの生成方法は、後述する。
つまり、別の無線通信装置では、それぞれ、UW、前提電力特性情報、相手装置用誤差情報を付加された2つの送信データスロットを1つのフレームに割り当てて送信フレームを生成し、搬送波周波数による無線変調、直交変調を行って、送信電力制御部309から指定された送信電力で送信する。
また、送信電力制御部309は、上述した本無線通信装置の送信電力制御部120(240)と同様に、送信電力制御テーブルを備え、送信時には前提電力特性を送信処理部に入力して、対応する送信電力で相手装置に送信させ、また、受信時には、受信した自装置用誤差情報に基づいて送信電力制御テーブルを更新して、送信電力を調整する。
[別の無線通信装置の受信部の構成:図8]
次に、別の無線通信装置の受信部の構成について図8を用いて説明する。図8は、別の無線通信装置の受信部の構成ブロック図である。
図8に示すように、別の無線通信装置の受信部は、受信アンテナ329と、受信無線機330と、直交検波部331と、同期処理部332と、受信データスロット抽出部333と、第1データスロット等化処理部334と、第1データスロット格納メモリ335と、第2データスロット等化処理部336と、第2データスロット格納メモリ337と、データシンボル等化誤差比較部338と、受信データシンボル選択部339と、復調データ生成部340と、情報判定部341とを備えている。
次に、別の無線通信装置の受信部の構成について図8を用いて説明する。図8は、別の無線通信装置の受信部の構成ブロック図である。
図8に示すように、別の無線通信装置の受信部は、受信アンテナ329と、受信無線機330と、直交検波部331と、同期処理部332と、受信データスロット抽出部333と、第1データスロット等化処理部334と、第1データスロット格納メモリ335と、第2データスロット等化処理部336と、第2データスロット格納メモリ337と、データシンボル等化誤差比較部338と、受信データシンボル選択部339と、復調データ生成部340と、情報判定部341とを備えている。
上記構成部分の内、受信アンテナ329、受信無線機330、同期処理部332、復調データ生成部340、情報判定部341は、上述した本無線通信装置の各構成部分と同等の構成及び動作であるため、詳細な説明は省略する。
受信データスロット抽出部333は、同期処理部332から出力された受信フレームから、受信データスロットを抽出する。その際、受信データスロット抽出部333は、抽出した受信データスロットが、当該受信フレームにおける何番目のデータスロットであるか(1番目か2番目か)を認識し、番号に対応するデータスロット等化処理部に出力する。
つまり、受信データスロット抽出部333は、受信フレームにおける最初のデータスロットである第1データスロットを第1データスロット等化処理部334に出力し、受信フレームにおける2番目のデータスロットである第2データスロットを第2データスロット等化処理部336に出力する。
第1データスロット等化処理部334は、第1データスロットの波形等化を行うと共に、各第1データスロットを構成するデータシンボルの等化誤差を算出し、等化処理結果及び等化誤差を第1データスロット格納メモリ335に出力する。
同様に、第2データスロット等化処理部336は、第2データスロットの波形等化を行うと共に、各第2データスロットを構成するデータシンボルの等化誤差を算出し、等化処理結果及び等化誤差を第2データスロット格納メモリ337に出力する。
第1データスロット等化処理部334及び第2データスロット等化処理部336に用いる等化器としては、判定帰還型等化器やビタビ等化器等、どのような等化器を用いてもよい。
第1データスロット等化処理部334及び第2データスロット等化処理部336に用いる等化器としては、判定帰還型等化器やビタビ等化器等、どのような等化器を用いてもよい。
第1データスロット格納メモリ335は、第1データスロットの等化処理結果及び当該データスロットを構成するデータシンボルの等化誤差を格納する。同様に、第2データスロット格納メモリ337も、第2データスロットの等化処理結果及び当該データスロットを構成するデータシンボルの等化誤差を格納する。
第1データスロット格納メモリ335及び第2データスロット格納メモリ337は、それぞれ、等化処理結果及び等化誤差を、時系列で複数スロット分格納する構成となっている。
第1データスロット格納メモリ335及び第2データスロット格納メモリ337は、それぞれ、等化処理結果及び等化誤差を、時系列で複数スロット分格納する構成となっている。
等化誤差比較部338は、第1データスロット格納メモリ335及び第2データスロット格納メモリ337に格納された同一内容のデータスロットについて、データシンボル毎に等化誤差の大小を比較し、比較結果を受信データ選択部339に出力する。
受信データ選択部339は、等化誤差比較部338から出力された等化誤差比較結果に基づき、同一のデータスロットの等化処理結果から、等化誤差の小さいデータシンボルを選択し、当該データシンボルの格納されているデータスロット格納メモリから読み出して、データ復調部340に出力する。
通常、欠落したデータシンボルの等化誤差電力は、欠落していないものと比較して大きくなる。別の無線通信装置では、このことを利用して信頼性の高いデータシンボルを選択するようにしている。
通常、欠落したデータシンボルの等化誤差電力は、欠落していないものと比較して大きくなる。別の無線通信装置では、このことを利用して信頼性の高いデータシンボルを選択するようにしている。
別の無線通信装置の情報判定部341は、上述した本無線通信装置の情報判定部と同様に、同期処理部332からの受信フレームに基づいて電力特性(歪)を算出し、復調データ生成部340から出力された前提電力特性情報と比較して、相手装置用誤差情報を生成する。
そして、相手装置用誤差情報を送信処理部に出力して、相手装置に送信させる。
そして、相手装置用誤差情報を送信処理部に出力して、相手装置に送信させる。
[送信フレームの構成:図9]
次に、別の無線通信装置における送信フレームの構成について図9を用いて説明する。図9は、別の無線通信装置における送信フレームを示す説明図であり、(a)は送信データスロット、(b)は送信フレーム及び送信タイミングを示している。
ここでは、1つの送信フレームに2つの送信データスロットが含まれる場合について説明する。
次に、別の無線通信装置における送信フレームの構成について図9を用いて説明する。図9は、別の無線通信装置における送信フレームを示す説明図であり、(a)は送信データスロット、(b)は送信フレーム及び送信タイミングを示している。
ここでは、1つの送信フレームに2つの送信データスロットが含まれる場合について説明する。
図9(a)(b)に示すように、送信フレーム生成部304は、送信データスロット生成部301で生成され、送信データスロット格納メモリ303に格納されたデータスロット(スロットデータ、S1、S2、S3・・・)のうち、最初のデータスロットS1を、送信フレームタイミングTで送信フレームF1の後半部の第2送信データスロットに割り当てる。
送信フレーム生成部304は、2番目のデータスロットS2以降も順番に、各送信フレームタイミング(T+1、T+2、・・・)でそれぞれの送信フレーム(F2、F3、・・・)の第2送信データスロットに割り当てる。
また、データスロットS1は、送信タイミングTから一定の遅延時間を経過した送信タイミングにおける送信フレームの第1送信データスロットに再び割り当てられる。ここでは、遅延フレーム数を3フレームとし、データスロットS1が再び割り当てられるのは送信タイミングT+3における送信フレームF4とする。
ここで、同一のデータスロットを再び割り当てる際の遅延フレーム数、すなわち送信タイミングは、搬送波周波数の切り替えの間隔と異なるように設定する必要がある。
つまり、各データスロットは、周波数ホッピングの搬送波周波数切り替えの間隔とは異なる間隔となる2つのフレームに割り当てられて送信されるものである。
つまり、各データスロットは、周波数ホッピングの搬送波周波数切り替えの間隔とは異なる間隔となる2つのフレームに割り当てられて送信されるものである。
更に、別の無線通信装置では、同一のデータスロットを、異なるフレームにおいて、一方を第1送信データスロットに割り当て、他方を第2の送信データスロットに割り当てることにより、受信側において両者の等化誤差を異なるメモリに格納させ、両者を比較できるようにしている。
[受信データシンボルの選択:図10]
次に、別の無線通信装置の受信データシンボル選択部339おける受信データシンボルの選択方法について、図10を用いて説明する。図10は、別の無線通信装置の受信データシンボルの選択方法の説明図である。
図10において、受信RF信号の波形上の太線は、送信側の装置の周波数ホッピングにより受信RF信号で発生した無信号区間を示しており、この区間で搬送波周波数の切り替えが行われたことを表している。また、受信フレーム、受信データシンボル及び受信データスロットにおける網掛け部分は、同一のデータスロットについて2回送信される内の、最初に送信されたスロットデータ又はシンボルデータであることを表している。
次に、別の無線通信装置の受信データシンボル選択部339おける受信データシンボルの選択方法について、図10を用いて説明する。図10は、別の無線通信装置の受信データシンボルの選択方法の説明図である。
図10において、受信RF信号の波形上の太線は、送信側の装置の周波数ホッピングにより受信RF信号で発生した無信号区間を示しており、この区間で搬送波周波数の切り替えが行われたことを表している。また、受信フレーム、受信データシンボル及び受信データスロットにおける網掛け部分は、同一のデータスロットについて2回送信される内の、最初に送信されたスロットデータ又はシンボルデータであることを表している。
図10に示すように、搬送波周波数の切り替えにより受信RF信号に無信号区間が生じ、無信号区間に重なる第2受信フレームF2に含まれる第2受信データスロットS2を構成するデータシンボルDn-1及びDn、第4受信フレームF4に含まれる第1受信データスロットS1を構成するデータシンボルD1~Dn-1が欠落する。
ここで、無信号区間に重なったことにより欠落したデータシンボルには×印を付している。
ここで、無信号区間に重なったことにより欠落したデータシンボルには×印を付している。
一方、これらの欠落を含むデータスロットと同一の内容で受信タイミングが異なるもう一つのデータスロットにおいては、受信データシンボルは欠落していない。例えば第1受信フレームF1の第2受信データスロットS1を構成する受信データシンボルD1~Dn-1は欠落していない。
これは、送信側の装置において、搬送波周波数の切り替えの間隔とは異なる送信タイミングの間隔を与えた2つの送信フレームに、同一のデータスロットを割り当てているためである。
また、同一のデータスロットは、各送信フレームにおいて異なる順番で配置されており、つまり、一方がある送信フレームの第1送信データスロットに配置され、他方が別の送信フレームの第2送信データスロットに配置されているため、受信側の装置において、一方のデータスロットの等化処理結果は、第1データスロット格納メモリ335に格納され、他方のデータスロットの等化処理結果は、第2データスロット格納メモリ337に格納されることになる。
また、同一のデータスロットは、各送信フレームにおいて異なる順番で配置されており、つまり、一方がある送信フレームの第1送信データスロットに配置され、他方が別の送信フレームの第2送信データスロットに配置されているため、受信側の装置において、一方のデータスロットの等化処理結果は、第1データスロット格納メモリ335に格納され、他方のデータスロットの等化処理結果は、第2データスロット格納メモリ337に格納されることになる。
通常、欠落したデータシンボルの等化誤差電力は、欠落していないものと比較して大きくなる。したがって、受信データ選択部339は、同一のスロットデータについて、第1スロットデータ格納メモリ335の等化誤差電力と、第2スロットデータ格納メモリ337の等化誤差電力とを比較して、等化誤差電力の小さい方の受信データシンボルを選択する。
これにより、別の無線通信装置では、例えば、第1受信フレームF1及び第4受信フレームF4からそれぞれ欠落していない、信頼性の高い受信データシンボルを選択でき、受信データスロットS1を再構成することができる。
これにより、別の無線通信装置では、例えば、第1受信フレームF1及び第4受信フレームF4からそれぞれ欠落していない、信頼性の高い受信データシンボルを選択でき、受信データスロットS1を再構成することができる。
また、搬送波周波数の切り替えの他に、無線通信の際に発生するフェージング等によって無線伝搬路の状態が悪化し、受信データシンボルの受信状態が悪くなる場合がある。
図10において、第1受信フレームF1の第2受信データスロットS1を構成する受信データシンボルDnと、第5受信フレームF5の第1受信データスロットS2を構成する受信データシンボルD1及びD2は、周波数ホッピングによる無信号区間とは重なっていないが、受信状態の悪化により、劣化又は欠落している。
図10では、受信状態の悪化により劣化したデータシンボルには、斜線を付している。
図10において、第1受信フレームF1の第2受信データスロットS1を構成する受信データシンボルDnと、第5受信フレームF5の第1受信データスロットS2を構成する受信データシンボルD1及びD2は、周波数ホッピングによる無信号区間とは重なっていないが、受信状態の悪化により、劣化又は欠落している。
図10では、受信状態の悪化により劣化したデータシンボルには、斜線を付している。
このような場合においても、別の無線通信装置は、他の受信フレームに含まれる同一のデータスロットを参照し、劣化していない受信データシンボルを選択することによって、受信データスロットを再構成できる可能性を高めることができる。
図10の例では、受信データシンボル選択部339は、データスロットS1を構成する受信データシンボルとして、受信データシンボルD1、D2及びDn-1を第1受信フレームF1から、受信データシンボルDnを第4受信フレームF4から選択して、受信データスロットS1を再構成する。
尚、ここでは、1フレームにつき2つの異なる送信データスロットを含むように構成したが、3つ以上の異なる送信データスロットを1フレームに含むように構成してもよい。
この場合、別の無線通信装置は、受信データスロットの数だけデータスロット等化処理部及び対応するデータスロット格納メモリが必要となり、また、データシンボル等化誤差比較部338は、各データスロット格納メモリに格納された同一のデータスロットを構成する同位置のデータシンボルの等化誤差を比較する構成とする必要がある。
また、受信データシンボル選択部339は、データシンボル等化誤差比較部からの比較結果に基づいて、等化誤差電力が最小となる受信データシンボルを選択して読み出す必要がある。
この場合、別の無線通信装置は、受信データスロットの数だけデータスロット等化処理部及び対応するデータスロット格納メモリが必要となり、また、データシンボル等化誤差比較部338は、各データスロット格納メモリに格納された同一のデータスロットを構成する同位置のデータシンボルの等化誤差を比較する構成とする必要がある。
また、受信データシンボル選択部339は、データシンボル等化誤差比較部からの比較結果に基づいて、等化誤差電力が最小となる受信データシンボルを選択して読み出す必要がある。
更に、別の無線通信装置では、受信データシンボルを選択するための基準として等化誤差電力を用いているが、等化誤差電力の代わりに、例えばCRC(Cyclic Redundancy Check)、ビタビ等の誤り判定処理による誤り検出結果を用いてもよい。すなわち、受信データシンボルの品質を算出し、品質が良好な受信データシンボルを選択するよう構成する。
具体的には、送信側において、送信データシンボルに誤り検出符号を付加し、受信側において、異なる受信フレームに含まれる同一の受信データシンボルについて算出された誤り検出結果を比較し、誤りの少ない受信データシンボルを選択するようにしてもよい。
[別の実施の形態の効果]
本発明の別の実施の形態に係る無線通信装置及び無線通信システムによれば、上述した本無線通信装置及び本無線通信システムと同様に、実際に受信側で測定された電力特性に基づいて送信電力をきめ細かく調整することができ、通信品質を改善することができると共に、送信側で、同一のデータスロットが複数のフレームに含まれるよう無線データを生成して周波数ホッピング方式で送信し、受信側で、受信した受信フレームから、データシンボルによって構成されるデータスロットを抽出してデータシンボル毎の品質を算出し、異なる受信フレームに含まれる同一のデータスロットにおける同位置のデータシンボルの品質を比較し、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調することにより、周波数ホッピング方式における搬送波周波数の切り替えに起因するバーストデータ誤りを防止して、無線通信の品質を一層向上させることができる効果がある。
本発明の別の実施の形態に係る無線通信装置及び無線通信システムによれば、上述した本無線通信装置及び本無線通信システムと同様に、実際に受信側で測定された電力特性に基づいて送信電力をきめ細かく調整することができ、通信品質を改善することができると共に、送信側で、同一のデータスロットが複数のフレームに含まれるよう無線データを生成して周波数ホッピング方式で送信し、受信側で、受信した受信フレームから、データシンボルによって構成されるデータスロットを抽出してデータシンボル毎の品質を算出し、異なる受信フレームに含まれる同一のデータスロットにおける同位置のデータシンボルの品質を比較し、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調することにより、周波数ホッピング方式における搬送波周波数の切り替えに起因するバーストデータ誤りを防止して、無線通信の品質を一層向上させることができる効果がある。
本発明は、実際の増幅器や伝送路に起因する歪を反映して搬送波毎の送信電力を制御することができ、通信品質を改善することができる無線通信装置、無線通信システム及び送信電力制御方法に適している。
10,20…無線通信装置、 11,21…送信部、 12,22…受信部、 31,304…送信フレーム生成部、 32…UW付加部、 33,305…変調信号生成部、 34,306…直交変調部、 35,307…送信無線機、 36,308…送信アンテナ、 41,329…受信アンテナ、 42,330…受信無線機、 43,331…直交検波部、 44,332…同期処理部、 45…等化処理部、 46,340…復調データ生成部、 110,210…送信処理部、 120,220,309…送信電力制御部、 130,230…受信処理部、 140,240…情報判定部、 301…送信データスロット生成部、 302…UWメモリ、 303…送信データスロット格納メモリ、 333…受信データスロット抽出部、 334…第1データスロット等化処理部、 335…第1スロットデータ格納メモリ、 336…第2データスロット等化処理部、 337…第2スロットデータ格納メモリ、 338…データシンボル等化誤差比較部、 339…受信データシンボル選択部
Claims (10)
- 周波数ホッピング方式を用いて通信を行う無線通信装置であって、
送信データから送信フレームを生成し、設定された送信電力で前記送信フレームを相手装置に無線送信する送信処理部と、
送信電力の前提となる前提電力特性情報を前記送信処理部に出力すると共に、前記前提電力特性情報に基づく送信電力を前記送信処理部に設定する送信電力制御部とを備え、
前記送信処理部が、前記前提電力特性情報を前記送信フレームに含めて送信し、
前記送信電力制御部が、前記相手装置から受信した受信フレームに含まれる自装置用誤差情報に基づいて前記前提電力特性情報を更新し、前記更新された前提電力特性情報に基づく送信電力を前記送信処理部に設定する無線通信装置。 - 前提電力特性情報が、周波数ホッピング方式によって切り替えられる各搬送波周波数に対応している請求項1記載の無線通信装置。
- 受信信号から受信フレームを抽出して復調する受信処理部と、
前記受信信号から電力特性を測定し、前記受信処理部で復調された前提電力特性情報と前記測定された電力特性とを比較して差分を算出し、前記差分を相手装置用誤差情報として送信処理部に出力する情報判定部とを備え、
前記送信処理部が、前記相手装置用誤差情報を送信フレームに含めて送信する請求項1記載の無線通信装置。 - 受信信号から受信フレームを抽出して復調する受信処理部と、
前記受信信号から電力特性を測定し、前記受信処理部で復調された前提電力特性情報と前記測定された電力特性とを比較して差分を算出し、前記差分を相手装置用誤差情報として送信処理部に出力する情報判定部とを備え、
前記送信処理部が、前記相手装置用誤差情報を送信フレームに含めて送信する請求項2記載の無線通信装置。 - 送信処理部が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成し、
受信処理部が、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、前記データスロットの波形等化処理を行うと共に前記データスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する請求項3記載の無線通信装置。 - 送信処理部が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成し、
受信処理部が、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、前記データスロットの波形等化処理を行うと共に前記データスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する請求項4記載の無線通信装置。 - 第1の無線通信装置と第2の無線通信装置とが、周波数ホッピング方式を用いて通信を行う無線通信システムであって、
前記第1の無線通信装置が、送信電力の前提となる前提電力特性情報を送信フレームに含めて、前記前提電力特性に基づく送信電力で前記第2の無線通信装置に送信すると共に、前記第2の無線通信装置からフィードバックされた第1の無線通信装置用誤差情報に基づいて、前記前提電力特性情報を更新し、送信電力を調整する装置であり、
前記第2の無線通信装置が、前記第1の無線通信装置からの受信信号を復調して前記前提電力特性情報を抽出すると共に、前記受信信号から電力特性を測定して、前記復調された前提電力特性情報と前記測定された電力特性とを比較して差分を算出し、前記差分を前記第1の無線通信装置用誤差情報として前記第1の無線通信装置にフィードバックする装置である無線通信システム。 - 第1の無線通信装置が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成する装置であり、
第2の無線通信装置が、受信信号を復調する際に、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、前記データスロットの波形等化処理を行うと共に前記データスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する装置である請求項7記載の無線通信システム。 - 第1の無線通信装置と第2の無線通信装置とが、周波数ホッピング方式を用いて通信を行う無線通信システムにおける送信電力制御方法であって、
前記第1の無線通信装置が、送信電力算出の前提とする前提電力特性情報を送信フレームに含めて、前記前提電力特性に基づく送信電力で前記第2の無線通信装置に送信し、
前記第2の無線通信装置が、前記第1の無線通信装置からの受信信号を復調して前記前提電力特性情報を抽出すると共に、前記受信信号から電力特性を測定して、前記復調された前提電力特性情報と前記算出された電力特性とを比較して差分を算出し、前記差分を前記第1の無線通信装置用誤差情報として前記第1の無線通信装置にフィードバックし、
前記第1の無線通信装置が、前記第2の無線通信装置からフィードバックされた第1の無線通信装置用誤差情報に基づいて、前記前提電力特性情報を更新し、送信電力を調整する送信電力制御方法。 - 第1の無線通信装置が、送信データを複数のデータスロットに分割し、同一内容のデータスロットが複数の異なる送信フレームに含まれるように送信フレームを生成し、
第2の装置が、受信信号を復調する際に、受信フレームから、データシンボルによって構成されるデータスロットを抽出し、前記データスロットの波形等化処理を行うと共に前記データスロットを構成するデータシンボルの品質を算出し、異なる受信フレームに含まれる複数の同一のデータスロットについて、データシンボル毎の品質を比較して、品質が最も良好なデータシンボルを選択してデータスロットを再構成して復調する請求項9記載の送信電力制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/010432 WO2019176086A1 (ja) | 2018-03-16 | 2018-03-16 | 無線通信装置、無線通信システム及び送信電力制御方法 |
JP2020506077A JP7038192B2 (ja) | 2018-03-16 | 2018-03-16 | 無線通信装置、無線通信システム及び送信電力制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/010432 WO2019176086A1 (ja) | 2018-03-16 | 2018-03-16 | 無線通信装置、無線通信システム及び送信電力制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176086A1 true WO2019176086A1 (ja) | 2019-09-19 |
Family
ID=67907057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010432 WO2019176086A1 (ja) | 2018-03-16 | 2018-03-16 | 無線通信装置、無線通信システム及び送信電力制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7038192B2 (ja) |
WO (1) | WO2019176086A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09139694A (ja) * | 1995-11-13 | 1997-05-27 | Mitsubishi Electric Corp | 周波数ホッピング送信装置及び送受信装置 |
JP2003229789A (ja) * | 2002-02-06 | 2003-08-15 | Hitachi Kokusai Electric Inc | 無線データ送信装置、及び無線データ受信装置 |
JP2004221669A (ja) * | 2003-01-09 | 2004-08-05 | Hitachi Kokusai Electric Inc | 無線送信装置、無線受信装置及び無線通信方法 |
JP2008148293A (ja) * | 2006-11-14 | 2008-06-26 | Nec Electronics Corp | 送信回路及びシステム |
WO2013129418A1 (ja) * | 2012-02-29 | 2013-09-06 | 京セラ株式会社 | 移動通信システム、移動通信方法及び無線基地局 |
JP2014216819A (ja) * | 2013-04-25 | 2014-11-17 | 日本無線株式会社 | 無線通信システム及び無線通信方法 |
-
2018
- 2018-03-16 WO PCT/JP2018/010432 patent/WO2019176086A1/ja active Application Filing
- 2018-03-16 JP JP2020506077A patent/JP7038192B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09139694A (ja) * | 1995-11-13 | 1997-05-27 | Mitsubishi Electric Corp | 周波数ホッピング送信装置及び送受信装置 |
JP2003229789A (ja) * | 2002-02-06 | 2003-08-15 | Hitachi Kokusai Electric Inc | 無線データ送信装置、及び無線データ受信装置 |
JP2004221669A (ja) * | 2003-01-09 | 2004-08-05 | Hitachi Kokusai Electric Inc | 無線送信装置、無線受信装置及び無線通信方法 |
JP2008148293A (ja) * | 2006-11-14 | 2008-06-26 | Nec Electronics Corp | 送信回路及びシステム |
WO2013129418A1 (ja) * | 2012-02-29 | 2013-09-06 | 京セラ株式会社 | 移動通信システム、移動通信方法及び無線基地局 |
JP2014216819A (ja) * | 2013-04-25 | 2014-11-17 | 日本無線株式会社 | 無線通信システム及び無線通信方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7038192B2 (ja) | 2022-03-17 |
JPWO2019176086A1 (ja) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100710659B1 (ko) | Tdd 방식을 사용하는 무선통신 시스템에서의자동이득제어 장치 및 방법 | |
CA3035500C (en) | System, method and apparatus for mobile transmit diversity using symmetric phase difference | |
JP4725628B2 (ja) | 受信装置、受信方法、プログラム、及び無線通信システム | |
JP2001156868A (ja) | 非線形歪み補償回路及びそれを用いた送信装置並びに移動通信機 | |
JPWO2012132222A1 (ja) | 無線通信装置 | |
KR101774622B1 (ko) | 에러 제어 코딩 코드북의 하위 코드북의 생성 및 적용 | |
Murphy et al. | On building a cooperative communication system: testbed implementation and first results | |
KR20050012839A (ko) | 무선 통신망의 오버헤드 데이터를 사용한 트레이닝 | |
JP3389455B2 (ja) | アダプティブアレイ装置およびその補正方法 | |
JP2011077822A (ja) | 無線通信装置、無線通信システム、及び無線通信システムにおける無線通信方法 | |
JP3464656B2 (ja) | 無線通信装置 | |
US20030165157A1 (en) | System and method for measuring signal to noise values in an adaptive wireless communication system | |
WO2019176086A1 (ja) | 無線通信装置、無線通信システム及び送信電力制御方法 | |
US7016661B2 (en) | Multi-mode receiver for frequency error mitigation | |
JP6909015B2 (ja) | 送信装置及び受信装置 | |
JP6539090B2 (ja) | 無線通信装置及びその制御方法 | |
US10931350B2 (en) | Distributed collaborative beamforming in wireless networks | |
JP3820395B2 (ja) | 無線受信装置及び無線通信方法 | |
JP2008236592A (ja) | 受信装置および無線装置 | |
JP3898523B2 (ja) | 無線データ送信装置、及び無線データ受信装置 | |
JP2008518493A (ja) | マルチキャリア無線通信システムの中継器 | |
JP2007043608A (ja) | 振幅位相制御装置および受信システム | |
JP6643770B2 (ja) | 周波数オフセット推定装置および無線通信装置 | |
KR200425602Y1 (ko) | Tdd방식을 사용하는 무선통신 시스템에서의자동이득제어 장치 및 송수신기 | |
JPH06232939A (ja) | フレーム同期回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18909420 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020506077 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18909420 Country of ref document: EP Kind code of ref document: A1 |