WO2013129418A1 - 移動通信システム、移動通信方法及び無線基地局 - Google Patents

移動通信システム、移動通信方法及び無線基地局 Download PDF

Info

Publication number
WO2013129418A1
WO2013129418A1 PCT/JP2013/055006 JP2013055006W WO2013129418A1 WO 2013129418 A1 WO2013129418 A1 WO 2013129418A1 JP 2013055006 W JP2013055006 W JP 2013055006W WO 2013129418 A1 WO2013129418 A1 WO 2013129418A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio base
radio
base stations
path loss
base station
Prior art date
Application number
PCT/JP2013/055006
Other languages
English (en)
French (fr)
Inventor
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014502259A priority Critical patent/JP5947877B2/ja
Priority to US14/380,985 priority patent/US9313748B2/en
Publication of WO2013129418A1 publication Critical patent/WO2013129418A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention relates to a mobile communication system that receives an uplink signal transmitted from a radio terminal in cooperation with a plurality of radio base stations, a mobile communication method used in the mobile communication system, and a radio base station.
  • a mobile communication system that receives uplink signals transmitted from wireless terminals in cooperation with a plurality of wireless base stations is known.
  • selective combining of uplink signals received by a plurality of radio base stations is performed.
  • an uplink signal is transmitted via PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the uplink signal transmission power control is performed based on a path loss between the radio terminal and the radio base station.
  • the uplink signal transmission power may be excessive.
  • a radio base station that manages a pico cell (hereinafter referred to as a pico base station) and a radio base station that manages a macro cell (hereinafter referred to as a macro base station) are mixed.
  • a pico base station a radio base station that manages a pico cell
  • a macro base station a radio base station that manages a macro cell
  • the mobile communication system is a system in which an uplink signal transmitted from a radio terminal is received in cooperation by a plurality of radio base stations.
  • Each of the plurality of radio base stations includes an acquisition unit that acquires a path loss between the radio terminal and the own station, and an interface that notifies the other radio base station of the path loss acquired by the acquisition unit.
  • At least one radio base station of the plurality of radio base stations transmits a path loss used for transmission power control of the uplink signal according to a path loss between each of the plurality of radio base stations and the radio terminal.
  • a notification unit for notifying the terminal is provided.
  • the radio base station including the notification unit is a radio base station that allocates radio resources to the radio terminal.
  • a path loss used for transmission power control of the uplink signal is a minimum path loss among path losses between each of the plurality of radio base stations and the radio terminal.
  • the path loss used for transmission power control of the uplink signal is the reciprocal of the sum of the reciprocals of a predetermined number of path losses among the path losses between each of the plurality of radio base stations and the radio terminal. is there.
  • the predetermined number of path losses are selected in order from the smallest path loss between each of the plurality of radio base stations and the radio terminal.
  • the mobile communication system is a system in which an uplink signal transmitted from a radio terminal is received in cooperation by a plurality of radio base stations.
  • Each of the plurality of radio base stations an acquisition unit for acquiring a path loss between the radio terminal and the own station;
  • An interface for notifying other radio base stations of the path loss acquired by the acquisition unit.
  • At least one radio base station of the plurality of radio base stations is a radio base to be referred to in transmission power control of the uplink signal according to a path loss between each of the plurality of radio base stations and the radio terminal.
  • a notification unit configured to notify the wireless terminal of information indicating a station;
  • the radio base station including the notification unit is a radio base station that allocates radio resources to the radio terminal.
  • a radio base station to be referred to in transmission power control of the uplink signal is a radio corresponding to a minimum path loss among path losses between each of the plurality of radio base stations and the radio terminal. It is a base station.
  • radio base stations to be referred to in transmission power control of the uplink signal are selected in order from the smallest of path losses between each of the plurality of radio base stations and the radio terminal. It is a radio base station corresponding to a predetermined number of path losses.
  • the mobile communication method is a method in which an uplink signal transmitted from a radio terminal is received in cooperation by a plurality of radio base stations.
  • each of the plurality of radio base stations acquires a path loss between the radio terminal and the own station, and each of the plurality of radio base stations is acquired in the step A.
  • Step B for notifying a path loss to another radio base station, and at least one radio base station of the plurality of radio base stations, according to the path loss between each of the plurality of radio base stations and the radio terminal,
  • C for notifying the wireless terminal of a path loss used for transmission power control of the uplink signal.
  • the mobile communication method is a method in which an uplink signal transmitted from a radio terminal is received in cooperation by a plurality of radio base stations.
  • each of the plurality of radio base stations acquires a path loss between the radio terminal and the own station, and each of the plurality of radio base stations is acquired in the step A.
  • Step B for notifying a path loss to another radio base station, and at least one radio base station of the plurality of radio base stations, according to the path loss between each of the plurality of radio base stations and the radio terminal,
  • step C of notifying the radio terminal of information indicating a radio base station to be referred to in transmission power control of the uplink signal.
  • the radio base station is used in a mobile communication system that receives an uplink signal transmitted from a radio terminal in cooperation with a plurality of radio base stations.
  • the radio base station is configured to obtain a path loss between the radio terminal and the own station, and from the radio base stations other than the own station among the plurality of radio base stations, An interface for acquiring a path loss between the wireless terminal and a path loss used for transmission power control of the uplink signal according to the path loss between each of the plurality of wireless base stations and the wireless terminal.
  • a notification unit for notifying is provided.
  • the radio base station is used in a mobile communication system that receives an uplink signal transmitted from a radio terminal in cooperation with a plurality of radio base stations.
  • the radio base station is configured to obtain a path loss between the radio terminal and the own station, and from the radio base stations other than the own station among the plurality of radio base stations, An interface for acquiring a path loss with the radio terminal, and a radio base station to be referred to in transmission power control of the uplink signal according to the path loss between each of the plurality of radio base stations and the radio terminal
  • a notification unit that notifies the wireless terminal of information indicating
  • FIG. 1 is a diagram showing a mobile communication system 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating a radio frame according to the first embodiment.
  • FIG. 3 is a diagram illustrating radio resources according to the first embodiment.
  • FIG. 4 is a diagram illustrating an application case according to the first embodiment.
  • FIG. 5 is a block diagram showing the radio base station 110 according to the first embodiment.
  • FIG. 6 is a block diagram showing the UE 10 according to the first embodiment.
  • FIG. 7 is a sequence diagram showing operations of the mobile communication system 100 according to the first embodiment.
  • FIG. 8 is a sequence diagram showing operations of the mobile communication system 100 according to the first modification.
  • the mobile communication system is a system that receives an uplink signal transmitted from a radio terminal in cooperation with a plurality of radio base stations.
  • Each of the plurality of radio base stations includes an acquisition unit that acquires a path loss between the radio terminal and the own station, and an interface that notifies the other radio base station of the path loss acquired by the acquisition unit.
  • At least one radio base station of the plurality of radio base stations transmits a path loss used for transmission power control of the uplink signal according to a path loss between each of the plurality of radio base stations and the radio terminal.
  • a notification unit for notifying the terminal is provided.
  • At least one radio base station of the plurality of radio base stations uses the path loss used for uplink signal transmission power control according to the path loss between each of the plurality of radio base stations and the radio terminal. Notify That is, the radio terminal performs uplink signal transmission power control based on the path loss notified from the radio base station. As a result, a state in which the uplink signal transmission power is excessive can be avoided, and the uplink signal transmission power can be appropriately controlled.
  • the mobile communication system is a system in which an uplink signal transmitted from a radio terminal is received in cooperation by a plurality of radio base stations.
  • Each of the plurality of radio base stations includes an acquisition unit that acquires a path loss between the radio terminal and the own station, and an interface that notifies the other radio base station of the path loss acquired by the acquisition unit.
  • At least one radio base station of the plurality of radio base stations is a radio base to be referred to in transmission power control of the uplink signal according to a path loss between each of the plurality of radio base stations and the radio terminal.
  • a notification unit configured to notify the wireless terminal of information indicating a station;
  • At least one radio base station of the plurality of radio base stations is referred to in uplink signal transmission power control according to a path loss between each of the plurality of radio base stations and the radio terminal.
  • Information indicating the station is notified to the wireless terminal. That is, the radio terminal identifies a radio base station to be referred to in uplink signal transmission power control based on information notified from the radio base station, and a path loss between the identified radio base station and the own station. Based on the transmission power control of the uplink signal. As a result, a state in which the uplink signal transmission power is excessive can be avoided, and the uplink signal transmission power can be appropriately controlled.
  • FIG. 1 is a diagram showing a mobile communication system 100 according to the first embodiment.
  • the mobile communication system 100 includes a radio terminal 10 (hereinafter referred to as UE 10) and a core network 50.
  • the mobile communication system 100 includes a first communication system and a second communication system.
  • the first communication system is a communication system that supports, for example, LTE (Long Term Evolution).
  • the first communication system includes, for example, a base station 110A (hereinafter referred to as MeNB 110A), a home base station 110B (hereinafter referred to as HeNB 110B), a home base station gateway 120B (hereinafter referred to as HeNB-GW 120B), and an MME 130.
  • MeNB 110A a base station 110A
  • HeNB 110B home base station gateway 120B
  • MME 130 MME
  • a radio access network (E-UTRAN; Evolved Universal Terrestrial Radio Access Network) corresponding to the first communication system is configured by MeNB 110A, HeNB 110B, and HeNB-GW 120B.
  • the second communication system is a communication system compatible with, for example, UMTS (Universal Mobile Telecommunication System).
  • the second communication system includes a base station 210A (hereinafter referred to as MNB 210A), a home base station 210B (hereinafter referred to as HNB 210B), an RNC 220A, a home base station gateway 220B (hereinafter referred to as HNB-GW 220B), and an SGSN 230.
  • a radio access network (UTRAN: Universal Terrestrial Radio Access Network) corresponding to the second communication system is configured by an MNB 210A, an HNB 210B, an RNC 220A, and an HNB-GW 220B.
  • UTRAN Universal Terrestrial Radio Access Network
  • the UE 10 is a device (User Equipment) configured to communicate with the second communication system or the first communication system.
  • the UE 10 has a function of performing wireless communication with the MeNB 110A and the HeNB 110B.
  • the UE 10 has a function of performing wireless communication with the MNB 210A and the HNB 210B.
  • the MeNB 110A is a device (evolved NodeB) that manages the general cell 111A and performs radio communication with the UE 10 existing in the general cell 111A.
  • the HeNB 110B is a device (Home evolved NodeB) that manages the specific cell 111B and performs radio communication with the UE 10 existing in the specific cell 111B.
  • the HeNB-GW 120B is an apparatus (Home evolved NodeB Gateway) that is connected to the HeNB 110B and manages the HeNB 110B.
  • the MME 130 is an apparatus (Mobility Management Entity) that manages the mobility of the UE 10 that is connected to the MeNB 110A and has established a wireless connection with the MeNB 110A. Further, the MME 130 is an apparatus that manages the mobility of the UE 10 that is connected to the HeNB 110B via the HeNB-GW 120B and has established a radio connection with the HeNB 110B.
  • MME 130 Mobility Management Entity
  • the MNB 210A is a device (NodeB) that manages the general cell 211A and performs radio communication with the UE 10 existing in the general cell 211A.
  • the HNB 210B is a device (Home NodeB) that manages the specific cell 211B and performs radio communication with the UE 10 existing in the specific cell 211B.
  • the RNC 220A is an apparatus (Radio Network Controller) that is connected to the MNB 210A and sets up a radio connection (RRC Connection) with the UE 10 existing in the general cell 211A.
  • RRC Connection Radio Connection
  • the HNB-GW 220B is a device (Home NodeB Gateway) that is connected to the HNB 210B and sets up a radio connection (RRC Connection) with the UE 10 existing in the specific cell 211B.
  • RRC Connection Radio Connection
  • SGSN 230 is a device (Serving GPRS Support Node) that performs packet switching in the packet switching domain.
  • the SGSN 230 is provided in the core network 50.
  • an apparatus MSC: Mobile Switching Center
  • MSC Mobile Switching Center
  • the general cell and the specific cell should be understood as a function of performing radio communication with the UE 10.
  • the general cell and the specific cell are also used as terms indicating a cell coverage area.
  • cells such as general cells and specific cells are identified by the frequency, spreading code, time slot, or the like used in the cells.
  • the coverage area of general cells is wider than the coverage area of specific cells.
  • the general cell is, for example, a macro cell provided by a telecommunications carrier.
  • the specific cell is, for example, a femto cell or a home cell provided by a third party other than the communication carrier.
  • the specific cell may be a CSG (Closed Subscriber Group) cell or a pico cell provided by a communication carrier.
  • the first communication system will be mainly described. However, the following description may be applied to the second communication system.
  • the OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Multiplex
  • a method is used.
  • an uplink control channel (PUCCH; Physical Link Control Channel), an uplink shared channel (PUSCH; Physical Uplink Channel), and the like exist as uplink channels.
  • PUSCH Physical Uplink Channel
  • downlink channels there are a downlink control channel (PDCCH; Physical Downlink Control Channel), a downlink shared channel (PDSCH; Physical Downlink Shared Channel), and the like.
  • the uplink control channel is a channel that carries a control signal.
  • the control signal includes, for example, CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), SR (Scheduling Request), ACK / NACK, and the like.
  • CQI is a signal notifying the recommended modulation method and coding rate that should be used for downlink transmission.
  • PMI is a signal indicating a precoder matrix that is preferably used for downlink transmission.
  • the RI is a signal indicating the number of layers (number of streams) to be used for downlink transmission.
  • SR is a signal for requesting allocation of uplink radio resources (resource blocks to be described later).
  • ACK / NACK is a signal indicating whether or not a signal transmitted via a downlink channel (for example, PDSCH) has been received.
  • the uplink shared channel is a channel that carries a control signal (including the control signal described above) and / or a data signal.
  • the uplink radio resource may be allocated only to the data signal, or may be allocated so that the data signal and the control signal are multiplexed.
  • the downlink control channel is a channel that carries a control signal.
  • the control signals are, for example, Uplink SI (Scheduling Information), Downlink SI (Scheduling Information), and TPC bits.
  • Uplink SI is a signal indicating the allocation of uplink radio resources.
  • Downlink SI is a signal indicating allocation of downlink radio resources.
  • the TPC bit is a signal instructing increase / decrease in power of a signal transmitted through an uplink channel.
  • the downlink shared channel is a channel that carries control signals and / or data signals.
  • the downlink radio resource may be allocated only to the data signal, or may be allocated so that the data signal and the control signal are multiplexed.
  • TA Triming Advance
  • TA is transmission timing correction information between UE10 and MeNB110A, and is measured by MeNB110A based on the uplink signal transmitted from UE10.
  • ACK / NACK can be cited as a control signal transmitted via a channel other than the downlink control channel (PDCCH) and the downlink shared channel (PDSCH).
  • ACK / NACK is a signal indicating whether or not a signal transmitted via an uplink channel (for example, PUSCH) has been received.
  • the broadcast information is information such as MIB (Master Information Block) or SIB (System Information Block).
  • FIG. 2 is a diagram illustrating a radio frame in the first communication system.
  • one radio frame is composed of 10 subframes, and one subframe is composed of two slots.
  • the time length of one slot is 0.5 msec
  • the time length of one subframe is 1 msec
  • the time length of one radio frame is 10 msec.
  • One slot is composed of a plurality of OFDM symbols (for example, six OFDM symbols or seven OFDM symbols) in the downlink direction.
  • one slot is configured by a plurality of SC-FDMA symbols (for example, six SC-FDMA symbols or seven SC-FDMA symbols) in the uplink direction.
  • FIG. 3 is a diagram illustrating radio resources in the first communication system.
  • radio resources are defined by a frequency axis and a time axis.
  • the frequency is composed of a plurality of subcarriers, and a predetermined number of subcarriers (12 subcarriers) are collectively referred to as a resource block (RB).
  • RB resource block
  • the time has units such as an OFDM symbol (or SC-FDMA symbol), a slot, a subframe, and a radio frame.
  • radio resources can be allocated for each resource block. Also, it is possible to divide and allocate radio resources to a plurality of users (for example, user # 1 to user # 5) on the frequency axis and the time axis.
  • the radio resource is allocated by the MeNB 110A.
  • MeNB110A is allocated to each UE10 based on CQI, PMI, RI, etc.
  • FIG. 4 is a diagram for explaining an application scene according to the first embodiment.
  • MeNB110A and HeNB110B are illustrated as an example of a radio base station.
  • an uplink signal transmitted from the UE 10 is received in cooperation by a plurality of radio base stations (MeNB 110A and HeNB 110B). Selective combining of uplink signals received by a plurality of radio base stations is performed.
  • the uplink signal transmitted from the UE 10 is transmitted, for example, via the above-described uplink shared channel (PUSCH).
  • PUSCH uplink shared channel
  • UE10 controls the transmission power ( PPUSCH, c (i)) of an uplink signal (PUSCH) according to the following equation.
  • PL c is a path loss calculated according to “referenceSignalPower-RSRP”.
  • RSRP Reference Signal Received Power
  • FIG. 5 is a block diagram showing the radio base station 110 according to the first embodiment.
  • the radio base station 110 may be the MeNB 110A or the HeNB 110B.
  • the radio base station 110 includes a reception unit 113, a transmission unit 114, an interface 115, a control unit 116, and an allocation unit 117.
  • the receiving unit 113 receives an uplink signal from the UE 10 connected to a cell managed by the radio base station 110.
  • the reception unit 113 receives an uplink signal via an uplink shared channel (PUSCH).
  • PUSCH uplink shared channel
  • the transmission unit 114 transmits a downlink signal to the UE 10 connected to a cell managed by the radio base station 110.
  • the transmission unit 114 transmits the radio resource (scheduling information) allocated by the allocation unit 117.
  • the transmission unit 114 transmits a path loss used for transmission power control of the uplink signal. That is, in 1st Embodiment, the transmission part 114 comprises the notification part which notifies UE10 of the path loss used for transmission power control of an uplink signal.
  • the interface 115 is an interface that communicates with other radio base stations via a backhaul network.
  • the interface 115 is an X2 interface that directly connects wireless base stations.
  • the interface 115 is an S1 interface that connects wireless base stations to each other via an upper node (for example, the MME 130).
  • the control unit 116 controls the operation of the radio base station 110.
  • the control unit 116 identifies a path loss used for uplink signal transmission power control.
  • the control part 116 comprises the acquisition part which acquires the path loss between the wireless base station 110 and UE10.
  • the control unit 116 may calculate (estimate) the path loss between the radio base station 110 and the UE 10 based on the uplink signal.
  • the control part 116 may acquire the path loss calculated by UE10 from UE10 based on a downlink signal (for example, reference signal).
  • control unit 116 acquires a path loss between the UE 10 and another radio base station that receives the uplink signal in a coordinated manner.
  • the control unit 116 acquires a path loss from another radio base station via the interface 115.
  • the control unit 116 identifies a path loss used for transmission power control of the uplink signal.
  • the path loss between each of the plurality of radio base stations that receive the uplink signal in cooperation with the UE 10 is PL p , PL q , PL r , PL s .
  • the path loss has a relationship of PL p > PL q > PL r > PL s .
  • control unit 116 may specify the minimum path loss as a path loss used for uplink signal transmission power control. That is, control section 116 identifies PL s as a path loss used for uplink signal transmission power control.
  • the control unit 116 specifies the reciprocal of the sum of the reciprocals of the predetermined number of path losses as the path loss used for uplink signal transmission power control. For example, when all of PL p , PL q , PL r , and PL s are used, the control unit 116 uses 1 / ⁇ 1 / PL p + 1 / PL q +1 as a path loss used for uplink signal transmission power control. / identifies the PL r + 1 / PL s ⁇ .
  • control unit 116 may select a predetermined number of path losses in order from the smallest. For example, when the predetermined number is “2”, the control unit 116 specifies 1 / ⁇ 1 / PL r + 1 / PL s ⁇ as a path loss used for uplink signal transmission power control.
  • the path loss used for uplink signal transmission power control is notified to the UE 10 by the transmission unit 114.
  • the allocation unit 117 allocates radio resources to the UE 10 connected to the cell managed by the radio base station 110.
  • FIG. 6 is a block diagram showing the UE 10 according to the first embodiment. As illustrated in FIG. 6, the UE 10 includes a reception unit 11, a transmission unit 12, and a control unit 13.
  • the receiving unit 11 receives a downlink signal from the radio base station 110.
  • the reception unit 11 receives radio resources (scheduling information) allocated by the radio base station 110.
  • the reception unit 11 receives a path loss used for transmission power control of an uplink signal.
  • the transmission unit 12 transmits an uplink signal to the radio base station 110.
  • the transmission unit 12 transmits an uplink signal via an uplink shared channel (PUSCH).
  • PUSCH uplink shared channel
  • the control unit 13 controls the operation of the UE 10.
  • the control unit 13 controls the transmission power of the uplink signal (PUSCH).
  • the control unit 13 controls the uplink signal transmission power (P PUSCH, c (i)) according to the following equation.
  • PL C should be noted that a path loss that is notified from the radio base station 110.
  • FIG. 7 is a sequence diagram showing operations of the mobile communication system 100 according to the first embodiment.
  • the radio base station that allocates radio resources to the UE 10 is the MeNB 110A.
  • Step 10A the MeNB 110A acquires a path loss between the MeNB 110A and the UE 10.
  • MeNB110A may calculate (estimate) the path loss between MeNB110A and UE10 based on an uplink signal.
  • MeNB110A may acquire the path loss calculated by UE10 from UE10 based on a downlink signal (for example, reference signal).
  • the HeNB 110B acquires a path loss between the HeNB 110B and the UE 10.
  • the HeNB 110B may calculate (estimate) the path loss between the HeNB 110B and the UE 10 based on the uplink signal.
  • HeNB110B may acquire the path loss calculated by UE10 based on the downlink signal (for example, reference signal) from UE10.
  • the HeNB 110B transmits path loss information indicating the path loss between the HeNB 110B and the UE 10 to the MeNB 110A.
  • the path loss information is transmitted via a backhaul network (eg, X2 interface or S1 interface).
  • MeNB110A identifies a path loss used for transmission power control of the uplink signal.
  • MeNB110A may specify the minimum path loss among the path loss corresponding to the radio base station which receives an uplink signal in cooperation as a path loss used for transmission power control of an uplink signal.
  • MeNB110A specifies the reciprocal number of the sum of the reciprocal number of a predetermined number of path loss among the path loss corresponding to the wireless base station which receives an uplink signal in cooperation as a path loss used for transmission power control of an uplink signal. Also good.
  • the predetermined number of path losses are preferably selected in order from the smallest.
  • MeNB110A transmits the path loss information indicating path loss identified in step 30 1 the UE 10.
  • UE10 determines the transmission power of an uplink signal.
  • UE10 determines the transmission power ( PPUSCH, c (i)) of an uplink signal according to the following formula
  • PL C should be noted that a path loss sent from MeNB110A.
  • step 60 the UE 10 transmits an uplink signal to the MeNB 110A and the HeNB 110B using the transmission power determined in step 50.
  • MeNB110A and HeNB110B receive an uplink signal in cooperation.
  • the radio base station 110 (for example, the MeNB 110A) notifies the UE 10 of the path loss used for the transmission power control of the uplink signal according to the path loss between each of the plurality of radio base stations and the UE 10. . That is, the UE 10 performs uplink signal transmission power control based on the path loss notified from the radio base station 110. As a result, a state in which the uplink signal transmission power is excessive can be avoided, and the uplink signal transmission power can be appropriately controlled.
  • the radio base station 110 notifies the UE 10 of a path loss used for uplink signal transmission power control according to the path loss between each of the plurality of radio base stations and the UE 10. .
  • the radio base station 110 determines the radio base station to be referred to in the uplink signal transmission power control according to the path loss between each of the plurality of radio base stations and the UE 10. Notify The UE 10 controls the transmission power of the uplink signal based on the path loss corresponding to the radio base station notified from the radio base station 110.
  • the radio base station 110 identifies a radio base station corresponding to the minimum path loss as a radio base station to be referred to in uplink signal transmission power control.
  • the radio base station 110 identifies radio base stations corresponding to a predetermined number of path losses selected in order from the smallest direction, as radio base stations to be referred to in uplink signal transmission power control.
  • the radio base station 110 notifies the UE 10 of the identified radio base station.
  • FIG. 8 is a sequence diagram showing operations of the mobile communication system 100 according to the first modification.
  • the same step numbers are assigned to the same processes as in FIG. Description of the same processing as in FIG. 7 is omitted.
  • MeNB110A identifies the radio base station to be referred by the transmission power control of the uplink signal.
  • MeNB110A specifies the radio base station corresponding to the minimum path loss among the path losses corresponding to the radio base stations that receive the uplink signal in cooperation as the radio base station to be referred to in the transmission power control of the uplink signal. May be.
  • the MeNB 110A as a radio base station to be referred to in the transmission power control of the uplink signal, a predetermined number of path losses corresponding to radio base stations that receive the uplink signal in a coordinated manner in order from the smallest one.
  • a radio base station corresponding to the path loss may be specified.
  • MeNB110A transmits the radio base station information indicating the radio base station identified at step 30 2 to UE 10.
  • the UE 10 measures the path loss between the notified radio base station and the UE 10, and based on the measured path loss, Controls the transmission power of the link signal.
  • the UE 10 measures the path loss between the notified radio base station and the UE 10 and calculates the sum of the reciprocal of the measured path loss. Based on the inverse, the transmission power of the uplink signal is controlled.
  • the radio base station 110 designates the radio base station to be referred to in the transmission power control of the uplink signal as the UE 10 according to the path loss between each of the plurality of radio base stations and the UE 10.
  • the UE 10 specifies a radio base station to be referred to in uplink signal transmission power control based on the information notified from the radio base station 110, and a path loss between the specified radio base station and the own station. Based on the transmission power control of the uplink signal. As a result, a state in which the uplink signal transmission power is excessive can be avoided, and the uplink signal transmission power can be appropriately controlled.
  • the radio base stations that receive uplink signals in cooperation are the MeNB 110A and the HeNB 110B.
  • a plurality of MeNBs 110A may be the radio base stations that receive uplink signals in a coordinated manner.
  • the radio base stations that receive uplink signals in cooperation may be a plurality of HeNBs 110B.
  • a radio base station that notifies a path loss used for transmission power control of an uplink signal is a radio base station (for example, MeNB 110A) that allocates radio resources to the UE 10.
  • the radio base station that notifies the path loss used for the transmission power control of the uplink signal may be any radio base station that receives the uplink signal in a coordinated manner.
  • the radio base station that notifies the radio base station to be referred to in the transmission power control of the uplink signal is a radio base station (for example, MeNB 110A) that allocates radio resources to the UE 10.
  • the embodiment is not limited to this.
  • the radio base station that notifies the radio base station to be referred to in the transmission power control of the uplink signal may be any radio base station that cooperatively receives the uplink signal.
  • the uplink signal transmission power can be appropriately controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動通信システムは、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信するシステムである。前記複数の無線基地局のそれぞれは、前記無線端末と自局との間のパスロスを取得する取得部と、前記取得部によって取得されたパスロスを他の無線基地局に通知するインタフェースとを備える。前記複数の無線基地局の少なくとも1つの無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知する通知部を備える。

Description

移動通信システム、移動通信方法及び無線基地局
 本発明は、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システム、移動通信システムで用いる移動通信方法及び無線基地局に関する。
 従来、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムが知られている。このような移動通信システムでは、複数の無線基地局で受信する上りリンク信号の選択合成が行われる。
 例えば、LTE(Long Term Evolution)では、上りリンク信号は、PUSCH(Physical Uplink Shared Channel)を介して送信される。上りリンク信号の送信電力制御は、無線端末と無線基地局との間のパスロスに基づいて行われる。
 しかしながら、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムにおいて、複数の無線基地局のいずれかの無線基地局と無線端末との間のパスロスに基づいて上りリンク信号の送信電力制御が行われると、上りリンク信号の送信電力が過剰になるケースが考えられる。
 例えば、無線基地局として、ピコセルを管理する無線基地局(以下、ピコ基地局)とマクロセルを管理する無線基地局(以下、マクロ基地局)とが混在しており、マクロ基地局と無線端末との間のパスロスに基づいて上りリンク信号の送信電力制御が行われるケースについて考える。このようなケースにおいて、無線端末が、マクロ基地局から離れており、かつ、ピコ基地局の近傍に位置する場合に、ピコ基地局にとって、上りリンク信号の送信電力が過剰である。
3GPP TS36.300 V9.4.0
 第1の特徴に係る移動通信システムは、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信するシステムである。前記複数の無線基地局のそれぞれは、前記無線端末と自局との間のパスロスを取得する取得部と、前記取得部によって取得されたパスロスを他の無線基地局に通知するインタフェースとを備える。前記複数の無線基地局の少なくとも1つの無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知する通知部を備える。
 第1の特徴において、前記通知部を備える無線基地局は、前記無線端末に対して無線リソースを割当てる無線基地局である。
 第1の特徴において、前記上りリンク信号の送信電力制御に用いるパスロスは、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、最小のパスロスである。
 第1の特徴において、前記上りリンク信号の送信電力制御に用いるパスロスは、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、所定数のパスロスの逆数の和の逆数である。
 第1の特徴において、前記所定数のパスロスは、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、小さい方から順に選択される。
 第2の特徴に係る移動通信システムは、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信するシステムである。前記複数の無線基地局のそれぞれは、前記無線端末と自局との間のパスロスを取得する取得部と、
 前記取得部によって取得されたパスロスを他の無線基地局に通知するインタフェースとを備える。前記複数の無線基地局の少なくとも1つの無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を前記無線端末に通知する通知部を備える。
 第2の特徴において、前記通知部を備える無線基地局は、前記無線端末に対して無線リソースを割当てる無線基地局である。
 第2の特徴において、前記上りリンク信号の送信電力制御で参照すべき無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、最小のパスロスに対応する無線基地局である。
 第2の特徴において、前記上りリンク信号の送信電力制御で参照すべき無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、小さい方から順に選択される所定数のパスロスに対応する無線基地局である。
 第3の特徴に係る移動通信方法は、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する方法である。移動通信方法は、前記複数の無線基地局のそれぞれが、前記無線端末と自局との間のパスロスを取得するステップAと、前記複数の無線基地局のそれぞれが、前記ステップAで取得されたパスロスを他の無線基地局に通知するステップBと、前記複数の無線基地局の少なくとも1つの無線基地局が、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知するステップCとを備える。
 第4の特徴に係る移動通信方法は、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する方法である。移動通信方法は、前記複数の無線基地局のそれぞれが、前記無線端末と自局との間のパスロスを取得するステップAと、前記複数の無線基地局のそれぞれが、前記ステップAで取得されたパスロスを他の無線基地局に通知するステップBと、前記複数の無線基地局の少なくとも1つの無線基地局が、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を前記無線端末に通知するステップCとを備える。
 第5の特徴に係る無線基地局は、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムで用いる。無線基地局は、前記無線端末と自局との間のパスロスを取得する取得部と、前記複数の無線基地局のうち、自局以外の他の無線基地局から、前記他の無線基地局と前記無線端末との間のパスロスを取得するインタフェースと、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知する通知部を備える。
 第6の特徴に係る無線基地局は、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムで用いる。無線基地局は、前記無線端末と自局との間のパスロスを取得する取得部と、前記複数の無線基地局のうち、自局以外の他の無線基地局から、前記他の無線基地局と前記無線端末との間のパスロスを取得するインタフェースと、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を前記無線端末に通知する通知部を備える。
図1は、第1実施形態に係る移動通信システム100を示す図である。 図2は、第1実施形態に係る無線フレームを示す図である。 図3は、第1実施形態に係る無線リソースを示す図である。 図4は、第1実施形態に係る適用ケースを示す図である。 図5は、第1実施形態に係る無線基地局110を示すブロック図である。 図6は、第1実施形態に係るUE10を示すブロック図である。 図7は、第1実施形態に係る移動通信システム100の動作を示すシーケンス図である。 図8は、変更例1に係る移動通信システム100の動作を示すシーケンス図である。
 以下において、本発明の実施形態に係る移動通信システムについて、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [実施形態の概要]
 第1に、実施形態に係る移動通信システムは、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信するシステムである。前記複数の無線基地局のそれぞれは、前記無線端末と自局との間のパスロスを取得する取得部と、前記取得部によって取得されたパスロスを他の無線基地局に通知するインタフェースとを備える。前記複数の無線基地局の少なくとも1つの無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知する通知部を備える。
 実施形態では、複数の無線基地局の少なくとも1つの無線基地局は、複数の無線基地局のそれぞれと無線端末との間のパスロスに応じて、上りリンク信号の送信電力制御に用いるパスロスを無線端末に通知する。すなわち、無線端末は、無線基地局から通知されたパスロスに基づいて、上りリンク信号の送信電力制御を行う。これによって、上りリンク信号の送信電力が過剰である状態が回避され、上りリンク信号の送信電力を適切に制御することができる。
 第2に、実施形態に係る移動通信システムは、無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信するシステムである。前記複数の無線基地局のそれぞれは、前記無線端末と自局との間のパスロスを取得する取得部と、前記取得部によって取得されたパスロスを他の無線基地局に通知するインタフェースとを備える。前記複数の無線基地局の少なくとも1つの無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を前記無線端末に通知する通知部を備える。
 実施形態では、複数の無線基地局の少なくとも1つの無線基地局は、複数の無線基地局のそれぞれと無線端末との間のパスロスに応じて、上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を無線端末に通知する。すなわち、無線端末は、無線基地局から通知された情報に基づいて、上りリンク信号の送信電力制御で参照すべき無線基地局を特定し、特定された無線基地局と自局との間のパスロスに基づいて、上りリンク信号の送信電力制御を行う。これによって、上りリンク信号の送信電力が過剰である状態が回避され、上りリンク信号の送信電力を適切に制御することができる。
 [第1実施形態]
 (移動通信システム)
 以下において、第1実施形態に係る移動通信システムについて説明する。図1は、第1実施形態に係る移動通信システム100を示す図である。
 図1に示すように、移動通信システム100は、無線端末10(以下、UE10)と、コアネットワーク50とを含む。また、移動通信システム100は、第1通信システムと第2通信システムとを含む。
 第1通信システムは、例えば、LTE(Long Term Evolution)に対応する通信システムである。第1通信システムは、例えば、基地局110A(以下、MeNB110A)と、ホーム基地局110B(以下、HeNB110B)と、ホーム基地局ゲートウェイ120B(以下、HeNB-GW120B)と、MME130とを有する。
 なお、第1通信システムに対応する無線アクセスネットワーク(E-UTRAN;Evoled Universal Terrestrial Radio Access Network)は、MeNB110A、HeNB110B及びHeNB-GW120Bによって構成される。
 第2通信システムは、例えば、UMTS(Universal Mobile Telecommunication System)に対応する通信システムである。第2通信システムは、基地局210A(以下、MNB210A)と、ホーム基地局210B(以下、HNB210B)と、RNC220Aと、ホーム基地局ゲートウェイ220B(以下、HNB-GW220B)と、SGSN230とを有する。
 なお、第2通信システムに対応する無線アクセスネットワーク(UTRAN;Universal Terrestrial Radio Access Network)は、MNB210A、HNB210B、RNC220A、HNB-GW220Bによって構成される。
 UE10は、第2通信システム或いは第1通信システムと通信を行うように構成された装置(User Equipment)である。例えば、UE10は、MeNB110A及びHeNB110Bと無線通信を行う機能を有する。或いは、UE10は、MNB210A及びHNB210Bと無線通信を行う機能を有する。
 MeNB110Aは、一般セル111Aを管理しており、一般セル111Aに存在するUE10と無線通信を行う装置(evolved NodeB)である。
 HeNB110Bは、特定セル111Bを管理しており、特定セル111Bに存在するUE10と無線通信を行う装置(Home evolved NodeB)である。
 HeNB-GW120Bは、HeNB110Bに接続されており、HeNB110Bを管理する装置(Home evolved NodeB Gateway)である。
 MME130は、MeNB110Aと接続されており、MeNB110Aと無線接続を設定しているUE10の移動性を管理する装置(Mobility Management Entity)である。また、MME130は、HeNB-GW120Bを介してHeNB110Bと接続されており、HeNB110Bと無線接続を設定しているUE10の移動性を管理する装置である。
 MNB210Aは、一般セル211Aを管理しており、一般セル211Aに存在するUE10と無線通信を行う装置(NodeB)である。
 HNB210Bは、特定セル211Bを管理しており、特定セル211Bに存在するUE10と無線通信を行う装置(Home NodeB)である。
 RNC220Aは、MNB210Aに接続されており、一般セル211Aに存在するUE10と無線接続(RRC Connection)を設定する装置(Radio Network Controller)である。
 HNB-GW220Bは、HNB210Bに接続されており、特定セル211Bに存在するUE10と無線接続(RRC Connection)を設定する装置(Home NodeB Gateway)である。
 SGSN230は、パケット交換ドメインにおいてパケット交換を行う装置(Serving GPRS Support Node)である。SGSN230は、コアネットワーク50に設けられる。図1では省略しているが、回線交換ドメインにおいて回線交換を行う装置(MSC;Mobile Switching Center)がコアネットワーク50に設けられていてもよい。
 なお、一般セル及び特定セルは、UE10と無線通信を行う機能として理解すべきである。但し、一般セル及び特定セルは、セルのカバーエリアを示す用語としても用いられる。また、一般セル及び特定セルなどのセルは、セルで用いられる周波数、拡散コード又はタイムスロットなどによって識別される。
 ここで、一般セルのカバーエリアは、特定セルのカバーエリアよりも広い。一般セルは、例えば、通信事業者によって提供されるマクロセルである。特定セルは、例えば、通信事業者以外の第三者によって提供されるフェムトセル又はホームセルである。但し、特定セルは、通信事業者によって提供されるCSG(Closed Subscriber Group)セル又はピコセルであってもよい。
 なお、以下においては、第1通信システムについて主として説明する。但し、以下の記載が第2通信システムに適用されてもよい。
 ここで、第1通信システムでは、下り方向の多重方式として、OFDMA(Orthogonal Frequency Division Multiple Access)方式が用いられており、上り方向の多重方式として、SC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が用いられる。
 また、第1通信システムでは、上り方向のチャネルとして、上り方向制御チャネル(PUCCH;Physical Uplink Control Channel)及び上り方向共有チャネル(PUSCH;Physical Uplink Shared Channel)などが存在する。また、下り方向のチャネルとして、下り方向制御チャネル(PDCCH;Physical Downlink Control Channel)及び下り方向共有チャネル(PDSCH;Physical Downlink Shared Channel)などが存在する。
 上り方向制御チャネルは、制御信号を搬送するチャネルである。制御信号は、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、SR(Scheduling Request)、ACK/NACKなどである。
 CQIは、下り方向の伝送に使用すべき推奨変調方式と符号化速度を通知する信号である。PMIは、下り方向の伝送の為に使用することが望ましいプリコーダマトリックスを示す信号である。RIは、下り方向の伝送に使用すべきレイヤ数(ストリーム数)を示す信号である。SRは、上り方向無線リソース(後述するリソースブロック)の割当てを要求する信号である。ACK/NACKは、下り方向のチャネル(例えば、PDSCH)を介して送信される信号を受信できたか否かを示す信号である。
 上り方向共有チャネルは、制御信号(上述した制御信号を含む)又は/及びデータ信号を搬送するチャネルである。例えば、上り方向無線リソースは、データ信号にのみ割当てられてもよく、データ信号及び制御信号が多重されるように割当てられてもよい。
 下り方向制御チャネルは、制御信号を搬送するチャネルである。制御信号は、例えば、Uplink SI(Scheduling Information)、Downlink SI(Scheduling Information)、TPCビットである。
 Uplink SIは、上り方向無線リソースの割当てを示す信号である。Downlink SIは、下り方向無線リソースの割当てを示す信号である。TPCビットは、上り方向のチャネルを介して送信される信号の電力の増減を指示する信号である。
 下り方向共有チャネルは、制御信号又は/及びデータ信号を搬送するチャネルである。例えば、下り方向無線リソースは、データ信号にのみ割当てられてもよく、データ信号及び制御信号が多重されるように割当てられてもよい。
 なお、下り方向共有チャネルを介して送信される制御信号としては、TA(Timing Advance)が挙げられる。TAは、UE10とMeNB110Aとの間の送信タイミング補正情報であり、UE10から送信される上り方向信号に基づいてMeNB110Aによって測定される。
 また、下り方向制御チャネル(PDCCH)、下り方向共有チャネル(PDSCH)以外のチャネルを介して送信される制御信号としては、ACK/NACKが挙げられる。ACK/NACKは、上り方向のチャネル(例えば、PUSCH)を介して送信される信号を受信できたか否かを示す信号である。
 なお、一般セル及び特定セルは、報知チャネル(BCCH;Broadcast Control Channel)を介して報知情報を報知する。報知情報は、例えば、MIB(Master Information Block)やSIB(System Information Block)などの情報である。
 (無線フレーム)
 以下において、第1通信システムにおける無線フレームについて説明する。図2は、第1通信システムにおける無線フレームを示す図である。
 図2に示すように、1つの無線フレームは、10のサブフレームによって構成されており、1つのサブフレームは、2つのスロットによって構成される。1つのスロットの時間長は、0.5msecであり、1つのサブフレームの時間長は、1msecであり、1つの無線フレームの時間長は、10msecである。
 なお、1つのスロットは、下り方向において、複数のOFDMシンボル(例えば、6つのOFDMシンボル或いは7つのOFDMシンボル)によって構成される。同様に、1つのスロットは、上り方向において、複数のSC-FDMAシンボル(例えば、6つのSC-FDMAシンボル或いは7つのSC-FDMAシンボル)によって構成される。
 (無線リソース)
 以下において、第1通信システムにおける無線リソースについて説明する。図3は、第1通信システムにおける無線リソースを示す図である。
 図3に示すように、無線リソースは、周波数軸及び時間軸によって定義される。周波数は、複数のサブキャリアによって構成されており、所定数のサブキャリア(12のサブキャリア)を纏めてリソースブロック(RB:Resource Block)と称する。時間は、上述したように、OFDMシンボル(又は、SC-FDMAシンボル)、スロット、サブフレーム、無線フレームなどの単位を有する。
 ここで、無線リソースは、1リソースブロック毎に割当て可能である。また、周波数軸及び時間軸上において、複数のユーザ(例えば、ユーザ#1~ユーザ#5)に対して分割して無線リソースを割当てることが可能である。
 また、無線リソースは、MeNB110Aによって割当てられる。MeNB110Aは、CQI、PMI、RIなどに基づいて、各UE10に割当てられる。
 (適用シーン)
 以下において、第1実施形態に係る適用シーンについて説明する。図4は、第1実施形態に係る適用シーンを説明するための図である。図4では、無線基地局の一例として、MeNB110A及びHeNB110Bを例示する。
 図4に示すように、UE10から送信される上りリンク信号を複数の無線基地局(MeNB110A及びHeNB110B)で協調して受信する。複数の無線基地局で受信された上りリンク信号の選択合成が行われる。
 第1実施形態では、UE10から送信される上りリンク信号は、例えば、上述した上り方向共有チャネル(PUSCH)を介して送信される。
 ここで、UE10は、以下の式に従って、上りリンク信号(PUSCH)の送信電力(PPUSCH,c(i))を制御する。
Figure JPOXMLDOC01-appb-M000001
CMAX,c(i):無線端末の最大送信電力
 MPUSCH,c(i):サブフレームiにおけるPUSCHに割当てられるRB数
 PO_PUSCH,c(j):無線端末に固有の値であり、1RBあたりの送信電力の初期値
 α(j):パスロスの補償係数
 PL:パスロス
 ΔTF,c(i):変調符号化方式(MCS)によって定まる送信電力の補正項
 f(i):無線基地局から無線端末に送信されるTPCコマンドによって定まる送信電力の補正項
 ここで、PLは、“referenceSignalPower-RSRP”に従って算出されるパスロスである。RSRP(Reference Signal Received Power)は、無線基地局から送信される参照信号の受信電力である。
 (無線基地局)
 以下において、第1実施形態に係る無線基地局について説明する。図5は、第1実施形態に係る無線基地局110を示すブロック図である。無線基地局110は、MeNB110Aであってもよく、HeNB110Bであってもよい。
 図5に示すように、無線基地局110は、受信部113と、送信部114と、インタフェース115と、制御部116と、割当部117とを有する。
 受信部113は、無線基地局110によって管理されるセルと接続されたUE10から上りリンク信号を受信する。受信部113は、例えば、上り方向共有チャネル(PUSCH)を介して上りリンク信号を受信する。
 送信部114は、無線基地局110によって管理されるセルと接続されたUE10に下りリンク信号を送信する。送信部114は、例えば、割当部117によって割当てられた無線リソース(スケジューリング情報)を送信する。送信部114は、例えば、上りリンク信号の送信電力制御に用いるパスロスを送信する。すなわち、第1実施形態では、送信部114は、上りリンク信号の送信電力制御に用いるパスロスをUE10に通知する通知部を構成する。
 インタフェース115は、バックホール・ネットワーク経由で他の無線基地局と通信を行うインタフェースである。インタフェース115は、無線基地局同士を直接的に接続するX2インタフェースである。或いは、インタフェース115は、無線基地局同士を上位ノード(例えば、MME130)経由で接続するS1インタフェースである。
 制御部116は、無線基地局110の動作を制御する。第1実施形態において、制御部116は、上りリンク信号の送信電力制御に用いるパスロスを特定する。
 第1に、制御部116は、無線基地局110とUE10との間のパスロスを取得する取得部を構成する。制御部116は、上りリンク信号に基づいて、無線基地局110とUE10との間のパスロスを算出(推定)してもよい。或いは、制御部116は、下りリンク信号(例えば、参照信号)に基づいてUE10によって算出されたパスロスをUE10から取得してもよい。
 第2に、制御部116は、上りリンク信号を協調して受信する他の無線基地局とUE10との間のパスロスを取得する。制御部116は、インタフェース115を介して他の無線基地局からパスロスを取得する。
 第3に、制御部116は、上りリンク信号の送信電力制御に用いるパスロスを特定する。ここで、上りリンク信号を協調して受信する複数の無線基地局のそれぞれとUE10との間のパスロスがPL、PL、PL、PLであるケースについて考える。但し、パスロスは、PL>PL>PL>PLの関係を有する。
 (A)最小のパスロス
 制御部116は、上りリンク信号の送信電力制御に用いるパスロスとして、最小のパスロスを特定してもよい。すなわち、制御部116は、上りリンク信号の送信電力制御に用いるパスロスとして、PLを特定する。
 (B)所定数のパスロス
 制御部116は、上りリンク信号の送信電力制御に用いるパスロスとして、所定数のパスロスの逆数の和の逆数を特定する。例えば、PL、PL、PL、PLの全てを用いる場合には、制御部116は、上りリンク信号の送信電力制御に用いるパスロスとして、1/{1/PL+1/PL+1/PL+1/PL}を特定する。
 ここで、制御部116は、所定数のパスロスを小さい方から順に選択してもよい。例えば、所定数が”2”である場合には、制御部116は、上りリンク信号の送信電力制御に用いるパスロスとして、1/{1/PL+1/PL}を特定する。
 上述したように、上りリンク信号の送信電力制御に用いるパスロスは、送信部114によってUE10に通知される。
 割当部117は、無線基地局110によって管理されるセルと接続されたUE10に無線リソースを割当てる。
 (無線端末)
 以下において、第1実施形態に係る無線端末について説明する。図6は、第1実施形態に係るUE10を示すブロック図である。図6に示すように、UE10は、受信部11と、送信部12と、制御部13とを有する。
 受信部11は、無線基地局110から下りリンク信号を受信する。受信部11は、例えば、無線基地局110によって割当てられた無線リソース(スケジューリング情報)を受信する。受信部11は、例えば、上りリンク信号の送信電力制御に用いるパスロスを受信する。
 送信部12は、無線基地局110に上りリンク信号を送信する。送信部12は、例えば、上り方向共有チャネル(PUSCH)を介して上りリンク信号を送信する。
 制御部13は、UE10の動作を制御する。第1実施形態において、制御部13は、上りリンク信号(PUSCH)の送信電力を制御する。詳細には、制御部13は、以下の式に従って、上りリンク信号の送信電力(PPUSCH,c(i))を制御する。
Figure JPOXMLDOC01-appb-M000002
 ここで、PLは、無線基地局110から通知されるパスロスであることに留意すべきである。
 (移動通信システムの動作)
 以下において、第1実施形態に係る移動通信システムの動作について説明する。図7は、第1実施形態に係る移動通信システム100の動作を示すシーケンス図である。
 ここでは、UE10から送信される上りリンク信号をMeNB110A及びHeNB110Bで協調して受信するケースについて例示する。また、UE10に対して無線リソースを割当てる無線基地局がMeNB110Aである。
 ステップ10Aにおいて、MeNB110Aは、MeNB110AとUE10との間のパスロスを取得する。MeNB110Aは、上りリンク信号に基づいて、MeNB110AとUE10との間のパスロスを算出(推定)してもよい。或いは、MeNB110Aは、下りリンク信号(例えば、参照信号)に基づいてUE10によって算出されたパスロスをUE10から取得してもよい。
 同様に、ステップ10Bにおいて、HeNB110Bは、HeNB110BとUE10との間のパスロスを取得する。HeNB110Bは、上りリンク信号に基づいて、HeNB110BとUE10との間のパスロスを算出(推定)してもよい。或いは、HeNB110Bは、下りリンク信号(例えば、参照信号)に基づいてUE10によって算出されたパスロスをUE10から取得してもよい。
 ステップ20Bにおいて、HeNB110Bは、HeNB110BとUE10との間のパスロスを示すパスロス情報をMeNB110Aに送信する。パスロス情報は、バックホール・ネットワーク(例えば、X2インタフェース又はS1インタフェース)を介して送信される。
 ステップ30において、MeNB110Aは、上りリンク信号の送信電力制御に用いるパスロスを特定する。MeNB110Aは、上りリンク信号の送信電力制御に用いるパスロスとして、上りリンク信号を協調して受信する無線基地局に対応するパスロスのうち、最小のパスロスを特定してもよい。或いは、MeNB110Aは、上りリンク信号の送信電力制御に用いるパスロスとして、上りリンク信号を協調して受信する無線基地局に対応するパスロスのうち、所定数のパスロスの逆数の和の逆数を特定してもよい。所定数のパスロスは、小さい方から順に選択されることが好ましい。
 ステップ40において、MeNB110Aは、ステップ30で特定されたパスロスを示すパスロス情報をUE10に送信する。
 ステップ50において、UE10は、上りリンク信号の送信電力を決定する。UE10は、以下の式に従って、上りリンク信号の送信電力(PPUSCH,c(i))を決定する。
Figure JPOXMLDOC01-appb-M000003
 ここで、PLは、MeNB110Aから通知されるパスロスであることに留意すべきである。
 ステップ60において、UE10は、ステップ50で決定された送信電力を用いて、MeNB110A及びHeNB110Bに上りリンク信号を送信する。MeNB110A及びHeNB110Bは、協調して上りリンク信号を受信する。
 (作用及び効果)
 第1実施形態では、無線基地局110(例えば、MeNB110A)は、複数の無線基地局のそれぞれとUE10との間のパスロスに応じて、上りリンク信号の送信電力制御に用いるパスロスをUE10に通知する。すなわち、UE10は、無線基地局110から通知されたパスロスに基づいて、上りリンク信号の送信電力制御を行う。これによって、上りリンク信号の送信電力が過剰である状態が回避され、上りリンク信号の送信電力を適切に制御することができる。
 [変更例1]
 以下において、第1実施形態の変更例1について説明する。以下においては、第1実施形態に対する相違点について主として説明する。
 具体的には、第1実施形態では、無線基地局110は、複数の無線基地局のそれぞれとUE10との間のパスロスに応じて、上りリンク信号の送信電力制御に用いるパスロスをUE10に通知する。
 これに対して、変更例1では、無線基地局110は、複数の無線基地局のそれぞれとUE10との間のパスロスに応じて、上りリンク信号の送信電力制御で参照すべき無線基地局をUE10に通知する。UE10は、無線基地局110から通知された無線基地局に対応するパスロスに基づいて、上りリンク信号の送信電力を制御する。
 詳細には、変更例1において、無線基地局110は、上りリンク信号の送信電力制御で参照すべき無線基地局として、最小のパスロスに対応する無線基地局を特定する。或いは、無線基地局110は、上りリンク信号の送信電力制御で参照すべき無線基地局として、小さい方向から順に選択された所定数のパスロスに対応する無線基地局を特定する。無線基地局110は、特定された無線基地局をUE10に通知する。
 (移動通信システムの動作)
 以下において、変更例1に係る移動通信システムの動作について説明する。図8は、変更例1に係る移動通信システム100の動作を示すシーケンス図である。図8では、図7と同様の処理について同様のステップ番号が付されている。図7と同様の処理の説明については省略する。
 図8に示すように、ステップ30において、MeNB110Aは、上りリンク信号の送信電力制御で参照すべき無線基地局を特定する。MeNB110Aは、上りリンク信号の送信電力制御で参照すべき無線基地局として、上りリンク信号を協調して受信する無線基地局に対応するパスロスのうち、最小のパスロスに対応する無線基地局を特定してもよい。或いは、MeNB110Aは、上りリンク信号の送信電力制御で参照すべき無線基地局として、上りリンク信号を協調して受信する無線基地局に対応するパスロスのうち、小さい方から順に選択された所定数のパスロスに対応する無線基地局を特定してもよい。
 ステップ40において、MeNB110Aは、ステップ30で特定された無線基地局を示す無線基地局情報をUE10に送信する。
 ここで、UE10は、最小のパスロスに対応する無線基地局が通知された場合には、通知された無線基地局とUE10との間のパスロスを測定して、測定されたパスロスに基づいて、上りリンク信号の送信電力を制御する。
 或いは、UE10は、所定数のパスロスに対応する無線基地局が通知された場合には、通知された無線基地局とUE10との間のパスロスを測定して、測定されたパスロスの逆数の和の逆数に基づいて、上りリンク信号の送信電力を制御する。
 (作用及び効果)
 変更例1では、無線基地局110(例えば、MeNB110A)は、複数の無線基地局のそれぞれとUE10との間のパスロスに応じて、上りリンク信号の送信電力制御で参照すべき無線基地局をUE10に通知する。すなわち、UE10は、無線基地局110から通知された情報に基づいて、上りリンク信号の送信電力制御で参照すべき無線基地局を特定し、特定された無線基地局と自局との間のパスロスに基づいて、上りリンク信号の送信電力制御を行う。これによって、上りリンク信号の送信電力が過剰である状態が回避され、上りリンク信号の送信電力を適切に制御することができる。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では、上りリンク信号を協調して受信する無線基地局は、MeNB110A及びHeNB110Bである。しかしながら、実施形態は、これに限定されるものではない。上りリンク信号を協調して受信する無線基地局は、複数のMeNB110Aであってもよい。或いは、上りリンク信号を協調して受信する無線基地局は、複数のHeNB110Bであってもよい。
 実施形態では、上りリンク信号の送信電力制御に用いるパスロスを通知する無線基地局は、無線リソースをUE10に割当てる無線基地局(例えば、MeNB110A)である。しかしながら、実施形態は、これに限定されるものではない。上りリンク信号の送信電力制御に用いるパスロスを通知する無線基地局は、上りリンク信号を協調して受信する無線基地局のいずれかであればよい。
 同様に、上りリンク信号の送信電力制御で参照すべき無線基地局を通知する無線基地局は、無線リソースをUE10に割当てる無線基地局(例えば、MeNB110A)である。しかしながら、実施形態は、これに限定されるものではない。上りリンク信号の送信電力制御で参照すべき無線基地局を通知する無線基地局は、上りリンク信号を協調して受信する無線基地局のいずれかであればよい。
 なお、米国仮出願第61/604713号(2012年2月29日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明によれば、上りリンク信号の送信電力が過剰である状態が回避され、上りリンク信号の送信電力を適切に制御することができる。

Claims (13)

  1.  無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムであって、
     前記複数の無線基地局のそれぞれは、
     前記無線端末と自局との間のパスロスを取得する取得部と、
     前記取得部によって取得されたパスロスを他の無線基地局に通知するインタフェースとを備え、
     前記複数の無線基地局の少なくとも1つの無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知する通知部を備えることを特徴とする移動通信システム。
  2.  前記通知部を備える無線基地局は、前記無線端末に対して無線リソースを割当てる無線基地局であることを特徴とする請求項1に記載の移動通信システム。
  3.  前記上りリンク信号の送信電力制御に用いるパスロスは、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、最小のパスロスであることを特徴とする請求項1に記載の移動通信システム。
  4.  前記上りリンク信号の送信電力制御に用いるパスロスは、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、所定数のパスロスの逆数の和の逆数であるであることを特徴とする請求項1に記載の移動通信システム。
  5.  前記所定数のパスロスは、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、小さい方から順に選択されることを特徴とする請求項1に記載の移動通信システム。
  6.  無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムであって、
     前記複数の無線基地局のそれぞれは、
     前記無線端末と自局との間のパスロスを取得する取得部と、
     前記取得部によって取得されたパスロスを他の無線基地局に通知するインタフェースとを備え、
     前記複数の無線基地局の少なくとも1つの無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を前記無線端末に通知する通知部を備えることを特徴とする移動通信システム。
  7.  前記通知部を備える無線基地局は、前記無線端末に対して無線リソースを割当てる無線基地局であることを特徴とする請求項6に記載の移動通信システム。
  8.  前記上りリンク信号の送信電力制御で参照すべき無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、最小のパスロスに対応する無線基地局であることを特徴とする請求項6に記載の移動通信システム。
  9.  前記上りリンク信号の送信電力制御で参照すべき無線基地局は、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスのうち、小さい方から順に選択される所定数のパスロスに対応する無線基地局であることを特徴とする請求項6に記載の移動通信システム。
  10.  無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信方法であって、
     前記複数の無線基地局のそれぞれが、前記無線端末と自局との間のパスロスを取得するステップAと、
     前記複数の無線基地局のそれぞれが、前記ステップAで取得されたパスロスを他の無線基地局に通知するステップBと、
     前記複数の無線基地局の少なくとも1つの無線基地局が、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知するステップCとを備えることを特徴とする移動通信方法。
  11.  無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信方法であって、
     前記複数の無線基地局のそれぞれが、前記無線端末と自局との間のパスロスを取得するステップAと、
     前記複数の無線基地局のそれぞれが、前記ステップAで取得されたパスロスを他の無線基地局に通知するステップBと、
     前記複数の無線基地局の少なくとも1つの無線基地局が、前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を前記無線端末に通知するステップCとを備えることを特徴とする移動通信方法。
  12.  無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムで用いる無線基地局であって、
     前記無線端末と自局との間のパスロスを取得する取得部と、
     前記複数の無線基地局のうち、自局以外の他の無線基地局から、前記他の無線基地局と前記無線端末との間のパスロスを取得するインタフェースと、
     前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御に用いるパスロスを前記無線端末に通知する通知部を備えることを特徴とする無線基地局。
  13.  無線端末から送信される上りリンク信号を複数の無線基地局で協調して受信する移動通信システムで用いる無線基地局であって、
     前記無線端末と自局との間のパスロスを取得する取得部と、
     前記複数の無線基地局のうち、自局以外の他の無線基地局から、前記他の無線基地局と前記無線端末との間のパスロスを取得するインタフェースと、
     前記複数の無線基地局のそれぞれと前記無線端末との間のパスロスに応じて、前記上りリンク信号の送信電力制御で参照すべき無線基地局を示す情報を前記無線端末に通知する通知部を備えることを特徴とする無線基地局。
PCT/JP2013/055006 2012-02-29 2013-02-26 移動通信システム、移動通信方法及び無線基地局 WO2013129418A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014502259A JP5947877B2 (ja) 2012-02-29 2013-02-26 移動通信システム、移動通信方法及び無線基地局
US14/380,985 US9313748B2 (en) 2012-02-29 2013-02-26 Mobile communication system, mobile communication method, and radio base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261604713P 2012-02-29 2012-02-29
US61/604,713 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129418A1 true WO2013129418A1 (ja) 2013-09-06

Family

ID=49082615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055006 WO2013129418A1 (ja) 2012-02-29 2013-02-26 移動通信システム、移動通信方法及び無線基地局

Country Status (3)

Country Link
US (1) US9313748B2 (ja)
JP (1) JP5947877B2 (ja)
WO (1) WO2013129418A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176086A1 (ja) * 2018-03-16 2019-09-19 株式会社日立国際電気 無線通信装置、無線通信システム及び送信電力制御方法
WO2021220855A1 (ja) * 2020-04-28 2021-11-04 株式会社Nttドコモ 端末、無線通信方法及び基地局

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811063B (zh) * 2017-05-05 2023-07-18 华为技术有限公司 一种确定上行信号发射功率的方法及设备
US11690022B2 (en) * 2020-03-24 2023-06-27 Qualcomm Incorporated Managing transmit power control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150807A1 (ja) * 2009-06-23 2010-12-29 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置及び送信電力制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079210A1 (en) * 2005-01-28 2006-08-03 Nortel Networks Limited Method and system for determining a paging zone in a wireless network
WO2006114873A1 (ja) * 2005-04-20 2006-11-02 Mitsubishi Denki Kabushiki Kaisha 通信品質判定方法、移動局、基地局及び通信システム
US8855046B2 (en) * 2006-03-30 2014-10-07 Broadcom Corporation Method and system for uplink coordinated reception in orthogonal frequency division multiple access systems
JP5236483B2 (ja) * 2006-11-08 2013-07-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局及び移動局並びに通信制御方法
JP5020300B2 (ja) * 2009-10-28 2012-09-05 シャープ株式会社 無線通信システム、移動局装置、基地局装置、無線通信方法および移動局装置の制御プログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150807A1 (ja) * 2009-06-23 2010-12-29 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置及び送信電力制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Considerations for uplink power control in UL CoMP", 3GPP TSG RAN WG1 MEETING #68 RL-120827, 6 February 2012 (2012-02-06), pages 1 - 5 *
"Uplink power control discussions for CoMP", 3GPP TSG RAN WG1 MEETING #67 RL-113736, 14 November 2011 (2011-11-14), pages 1 - 5 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176086A1 (ja) * 2018-03-16 2019-09-19 株式会社日立国際電気 無線通信装置、無線通信システム及び送信電力制御方法
JPWO2019176086A1 (ja) * 2018-03-16 2021-03-11 株式会社日立国際電気 無線通信装置、無線通信システム及び送信電力制御方法
JP7038192B2 (ja) 2018-03-16 2022-03-17 株式会社日立国際電気 無線通信装置、無線通信システム及び送信電力制御方法
WO2021220855A1 (ja) * 2020-04-28 2021-11-04 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
JP5947877B2 (ja) 2016-07-06
US9313748B2 (en) 2016-04-12
US20150018031A1 (en) 2015-01-15
JPWO2013129418A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6174285B1 (ja) 移動通信方法及び無線基地局
JP5851583B2 (ja) 移動通信システム、移動通信方法、無線基地局、及び無線端末
JP5947877B2 (ja) 移動通信システム、移動通信方法及び無線基地局
JP2017188931A (ja) 移動通信システム、ユーザ端末、及びプロセッサ
JP6140183B2 (ja) 移動通信システム、移動通信方法及びアンカー無線基地局
JP5736054B2 (ja) 一般基地局
JP5872679B2 (ja) 移動通信システム、移動通信方法及び無線基地局
JP6251164B2 (ja) 移動通信システム、移動通信方法、無線基地局及びプロセッサ
JP5755798B2 (ja) 移動通信システム及び移動通信方法
JP5947878B2 (ja) 移動通信システム、移動通信方法、無線基地局及び無線端末
JP5883021B2 (ja) 移動通信方法及び基地局
WO2013065844A1 (ja) 移動通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502259

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754016

Country of ref document: EP

Kind code of ref document: A1