WO2019174121A1 - 显示面板、显示面板制备方法及电子装置 - Google Patents

显示面板、显示面板制备方法及电子装置 Download PDF

Info

Publication number
WO2019174121A1
WO2019174121A1 PCT/CN2018/087644 CN2018087644W WO2019174121A1 WO 2019174121 A1 WO2019174121 A1 WO 2019174121A1 CN 2018087644 W CN2018087644 W CN 2018087644W WO 2019174121 A1 WO2019174121 A1 WO 2019174121A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
color resist
filter
disposed
resist layer
Prior art date
Application number
PCT/CN2018/087644
Other languages
English (en)
French (fr)
Inventor
余文静
崔昇圭
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/074,541 priority Critical patent/US10985343B1/en
Publication of WO2019174121A1 publication Critical patent/WO2019174121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display panel, a display panel manufacturing method, and an electronic device.
  • the display panel of the electronic device When the electronic device is used outdoors, the display panel of the electronic device has a strong reflection of sunlight, resulting in a low contrast of the electronic device.
  • a polarizer POL
  • the polarizer While absorbing the external sunlight, the polarizer also absorbs about 55% of the light emitted by the display panel, so that the contrast of the electronic device is not significantly improved. Therefore, a new display panel structure is needed to significantly increase the contrast of the display panel.
  • the present invention provides a display panel including a flexible substrate, a thin film transistor layer, an anode layer, a light emitting layer, a cathode layer, and a color resist layer which are sequentially stacked, the thin film transistor layer including a drain, and the anode layer
  • the color resist layer includes a first color resist layer, a second color resist layer and a third color resist layer, and the first color resist layer and the second color resist layer are sequentially spaced apart from each other.
  • the layer and the third color resist layer are both disposed on a surface of the cathode layer, and the first color resist layer and the second color resist layer are filled with a first dielectric layer, the second color resist layer and Filling a second dielectric layer between the third color resist layers, the first dielectric layer and the second dielectric layer are for absorbing light incident from a side of the color resist layer away from the cathode layer, Increasing the contrast of the display panel.
  • the display panel of the present invention comprises a flexible substrate, a thin film transistor layer, an anode layer, a light emitting layer, a cathode layer and a color resist layer which are sequentially stacked, the thin film transistor layer includes a drain, the anode layer and the drain electrode Connecting, the color resist layer includes a first color resist layer, a second color resist layer and a third color resist layer which are sequentially spaced apart, the first color resist layer, the second color resist layer and the third
  • the color resist layers are disposed on the surface of the cathode layer, and the first dielectric layer is filled between the first color resist layer and the second color resist layer, and the second color resist layer and the third color resist layer are filled between The two dielectric layers, the first dielectric layer and the second dielectric layer are used to absorb light incident from the side of the color resist layer away from the cathode layer, so that more light can be incident on the display panel, thereby improving the contrast of the display panel.
  • the invention also provides a method for preparing a display panel, which is used for preparing a display panel as described above.
  • the present invention also provides an electronic device comprising the display panel as described above.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a thin film transistor layer in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another display panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for preparing a display panel according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram corresponding to step S100 in the embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram corresponding to step S200 in the embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram corresponding to step S300 in the embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram corresponding to step S400 in the embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram corresponding to step S500 in the embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram corresponding to step S600 in the embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram corresponding to step S700 in the embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram corresponding to step S800 in the embodiment of the present invention.
  • 20 is a partial flow chart of a method of fabricating a display panel in an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram corresponding to step S900 in the embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram corresponding to step S1000 in the embodiment of the present invention.
  • FIG. 23 is a partial flow chart of a method of fabricating a display panel in an embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram corresponding to step S910 in the embodiment of the present invention.
  • FIG. 25 is a schematic structural diagram corresponding to step S1100 in the embodiment of the present invention.
  • FIG. 26 is a schematic structural diagram corresponding to step S1200 in the embodiment of the present invention.
  • FIG. 27 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present invention.
  • the display panel 10 includes a flexible substrate 100, a thin film transistor layer 200, an anode layer 300, a light emitting layer 400, a cathode layer 500, and a color resist layer 600, which are sequentially stacked, and the thin film transistor layer 200 includes a drain 210 (not shown)
  • the anode layer 300 and the drain 210 are electrically connected, and the color resist layer 600 includes a first color resist layer 610, a second color resist layer 620, and a third color resist layer 630 which are disposed at intervals.
  • the first color resist layer 610, the second color resist layer 620, and the third color resist layer 630 are both disposed on a surface of the cathode layer 500, the first color resist layer 610 and the second A first dielectric layer 710 is filled between the color resist layers 620, and a second dielectric layer 720 is filled between the second color resist layer 620 and the third color resist layer 630, the first dielectric layer 710 and the first
  • the two dielectric layers 720 are for absorbing light incident from a side of the color resist layer 600 away from the cathode layer 500 to improve the contrast of the display panel 10.
  • the flexible substrate 100 is made of a polyimide film (PI) or a polyester film and a copper foil. Due to the excellent properties of polyimide high temperature soldering, high strength, high modulus and flame retardancy, polyimide has outstanding thermal stability as a polymer material, good radiation resistance and chemical stability and excellent mechanics. performance.
  • PI polyimide film
  • FIG. 2 is a schematic structural diagram of a thin film transistor layer according to an embodiment of the present invention.
  • the thin film transistor layer 200 includes a drain 210, an active layer 220, and a first insulation.
  • the active layer 220 is disposed on the flexible substrate 100
  • the first insulating layer 230 covers the active layer 220
  • the gate 240 is disposed on the first insulating layer 230
  • the pole 240 is disposed corresponding to the active layer 220
  • the second insulating layer 250 covers the gate 240.
  • the source 260 and the drain 210 are both disposed on the second insulating layer 250, and the source 260 and the drain 210 are spaced apart, and the source 260 is opened in the
  • the through holes on the first insulating layer 230 and the second insulating layer 250 are electrically connected to one end of the active layer 220, and the drain 210 is opened through the first insulating 230 and the second insulating layer A via hole on 250 is electrically connected to the other end of the active layer 220.
  • the light emitting layer 400 is an organic light emitting layer.
  • the anode layer 300 is disposed on a surface of the drain 210, and the anode layer 300 and the drain 210 are electrically connected.
  • the manner in which the anode layer 300 and the drain electrode 210 are electrically connected may be a direct electrical connection or a bridge connection.
  • the first color resist layer 610 is a red color resist (R color resist)
  • the second color resist layer 620 is a green color resist (G color resist)
  • the third color resist layer 630 is Blue color resistance (B color resistance).
  • the first dielectric layer 710 and the second dielectric layer 720 may be black organic materials, and may also be other black insulating materials.
  • the first dielectric layer 710 and the second dielectric layer 720 may be the same material or different materials. .
  • the first dielectric layer 710 has at least the following aspects: firstly, the problem that the adjacent two first color resist layers 610 and the second color resist layer 620 are mixed with light, thereby causing poor display effect;
  • the second color resist layer 610 and the second color resist layer 620 are insulated to prevent the light emitted by the corresponding light-emitting layer of the first color resist layer 610 and the light emitted by the light-emitting layer corresponding to the second color resist layer 620.
  • the display is poor due to mutual interference;
  • the first dielectric layer 710 is for absorbing external light, specifically, light incident from the side of the color resist layer 600 away from the cathode layer 500, The reflectance of the light is lowered, thereby increasing the contrast of the display panel 10.
  • the second dielectric layer 720 has at least the following aspects: firstly, the problem that the adjacent two second color resist layers 620 and the third color resist layer 630 are mixed with light, thereby causing poor display effect;
  • the second color resist layer 620 and the third color resist layer 630 are insulated to prevent the light emitted by the corresponding light-emitting layer of the second color resist layer 620 and the light emitted by the light-emitting layer corresponding to the third color resist layer 630.
  • the second dielectric layer 720 is for absorbing external light, specifically, light incident from the side of the color resist layer 600 away from the cathode layer 500, The reflectance of the light is lowered, thereby increasing the contrast of the display panel 10.
  • the display panel provided by the technical solution includes a flexible substrate, a thin film transistor layer, an anode layer, a light emitting layer, a cathode layer and a color resist layer which are sequentially stacked, the thin film transistor layer includes a drain, the anode layer and the drain
  • the color resist layer includes a first color resist layer, a second color resist layer and a third color resist layer which are sequentially spaced apart, the first color resist layer, the second color resist layer and the The third color resist layer is disposed on the surface of the cathode layer, and the first dielectric layer is filled between the first color resist layer and the second color resist layer, between the second color resist layer and the third color resist layer Filling a second dielectric layer, the first dielectric layer and the second dielectric layer are for absorbing light incident from a side of the color resist layer away from the cathode layer, so that more light can be incident on the display panel and the reflected light is reduced, Thereby, the contrast of the display panel can be remarkably improved.
  • FIG. 3 is a schematic structural diagram of another display panel according to an embodiment of the present invention.
  • the display panel 10 further includes a thin film encapsulation layer 800 and a color filter layer 900 disposed on a surface of the color resist layer 600 away from the cathode layer 500.
  • the color filter layer 900 is disposed on a surface of the thin film encapsulation layer 800 away from the color resist layer 600, and the color filter layer 900 includes adjacent layers.
  • first filter layer 910 a first filter layer 910, a second filter layer 920, and a third filter layer 930 disposed, the first filter layer 910 disposed opposite at least a portion of the first color resist layer 610
  • the second filter layer 920 is disposed at at least a portion of the second color resist layer 620
  • the third filter layer 930 is disposed opposite to the third color resist layer 630. At least part of the area.
  • the first filter layer 910 is a red filter
  • the second filter layer 920 is a green filter
  • the third filter layer 930 is a blue filter.
  • the red filter can transmit red light
  • the green filter can transmit green light
  • the blue filter can transmit blue light
  • the first filter layer 910 is a red color filter
  • the second color filter layer 920 is a green color filter
  • the third color filter layer 930 is a blue color filter.
  • the first filter layer 910 is disposed over the entire area of the first color resist layer 610. It is understood that, in another embodiment, the first filter layer 910 is disposed in a partial region facing the first color resist layer 610. Also, optionally, in one embodiment, the second filter layer 920 is disposed over the entire area of the second color resist layer 620, it being understood that in another embodiment, the second filter The sheet layer 920 is disposed in a partial region facing the second color resist layer 620. Also, optionally, in one embodiment, the third filter layer 930 is disposed over the entire area of the third color resist layer 630, it being understood that in another embodiment, the third filter The sheet layer 930 is disposed in a partial region facing the third color resist layer 630.
  • the arrangement of the various arrangement and combination of the first filter layer 910, the second filter layer 920 and the third filter layer 930 is not limited in the present invention, and any combination setting manner that does not violate the original intention of the invention is It is within the scope of the claimed invention.
  • FIG. 4 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • the first filter layer 910 and the second filter layer 920 are disposed to cover the first dielectric layer 710, or the second filter layer 920 and
  • the third filter layer 930 is disposed to cover the second dielectric layer 720.
  • the first filter layer 910 and the second filter layer 920 are disposed to cover the first dielectric layer 710, and the second filter layer The 920 and the third filter layer 930 are spaced apart.
  • the first filter layer 910 and the second filter layer 920 are disposed to cover the first dielectric layer 710, external light is irradiated to the adjacent first filter layer 910 and The area between the second filter layers 920 is reflected back by the thin film encapsulation layer 800, thereby increasing the contact between the first filter layer 910 and the second filter layer 920 and external light.
  • the area such that a portion of the external light can pass through the first filter layer 910 and the second filter layer 920, and further, the light that passes through the first filter layer 910 and the second filter layer 920 It is absorbed by the first dielectric layer 710, so that more light enters the non-light-emitting region, thereby increasing the contrast of the display panel 10.
  • the first filter layer 910 and the second filter layer 920 are spaced apart, the second filter layer 920 and the third filter
  • the sheet layer 930 is disposed to cover the second dielectric layer 720.
  • the second filter layer 920 and the third filter layer 930 are disposed to cover the second dielectric layer 720, external light can be irradiated to the adjacent second filter layer 920 and When the region between the third filter layers 930 is reflected back by the thin film encapsulation layer 800, the contact between the second filter layer 920 and the third filter layer 930 and external light is increased.
  • the area such that a portion of the external light can pass through the second filter layer 920 and the third filter layer 930, and further, the light that passes through the second filter layer 920 and the third filter layer 930 will It is absorbed by the second dielectric layer 720, so that more light enters the non-light-emitting region, thereby increasing the contrast of the display panel 10.
  • the first filter layer 910 and the second filter layer 920 are disposed to cover the first dielectric layer 710, and the second filter The sheet layer 920 and the third filter layer 930 are disposed to cover the second dielectric layer 720.
  • the first filter layer 910 and the second filter layer 920 are disposed to cover the first dielectric layer 710 , the second filter layer 920 and the third filter layer 930 .
  • the cover is disposed to cover the second dielectric layer 720, thereby increasing the contact area between the first filter layer 910, the second filter layer 920, and the third filter layer 930 and the external light, thereby making a portion External light may pass through the first filter layer 910, the second filter layer 920, and the third filter layer 930, and further, through the first filter layer 910, the second filter layer 920, and the first
  • the light that is transmitted through the three filter layers 930 is absorbed by the first dielectric layer 710 and the second dielectric layer 720, thereby reducing the reflected light, so that more light enters the non-light-emitting region, thereby significantly increasing the display panel 10. Contrast.
  • FIG. 5 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • the display panel 10 further includes a thin film encapsulation layer 800 and a color filter layer 900 disposed on a surface of the color resist layer 600 away from the cathode layer 500.
  • the color filter layer 900 is disposed on a surface of the thin film encapsulation layer 800 away from the color resist layer 600, and the color filter layer 900 includes intervals a first filter layer 910, a second filter layer 920 and a third filter layer 930, the first filter layer 910 being disposed in at least a portion of the first color resist layer 610
  • the second filter layer 920 is disposed at at least a portion of the second color resist layer 620
  • the third filter layer 930 is disposed at least opposite to the third color resist layer 630.
  • first filter layer 910 and the second filter layer 920 filling the first filter layer 910, the second filter layer 920, and the third filter At least one of the light sheet layers 930, or the first filter is filled between the second filter layer 920 and the third filter layer 930 Layer 910, the at least one filter layer 920 and the third layer 930 in the second filter.
  • the third filter layer 930 , the second filter layer 920 and the third filter layer 930 are filled between the first filter layer 910 and the second filter layer 920 .
  • the first filter layer 910 is filled
  • the second filter layer 920 is filled between the first filter layer 910 and the third filter layer 930 as an example.
  • the blank area between the first filter layer 910 and the second filter layer 920 is filled with the third filter layer 930, and the second filter layer 920 and the third filter layer 930 are The first region fills the first filter layer 910, and the region between the first filter layer 910 and the third filter layer 930 fills the second filter layer 920, and the first filter is enlarged.
  • the contact area between the layer 910, the second filter layer 920, and the third filter layer 930 and the external light so that a portion of the external light can pass through the first filter layer 910 and the second filter layer 920.
  • the third filter layer 930 further, the light that is infiltrated through the first filter layer 910, the second filter layer 920, and the third filter layer 930 is used by the first dielectric layer 710 and the second The dielectric layer 720 absorbs, thereby allowing more light to enter the non-light-emitting region, thereby increasing the contrast of the display panel 10.
  • the first color resist layer 610 is a red color resist (R color resist)
  • the second color resist layer 620 is a green color resist (G color resist)
  • the third The color resist layer 630 is blue color resist (B color resist)
  • the first dielectric layer 710 and the second dielectric layer 720 are the same material
  • the second dielectric layer 720 is filled by the first medium.
  • the amount of filling of layer 710. please refer to FIG. 6.
  • FIG. 6 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • the green color resistance has the highest luminous efficiency, followed by the red color resistance, and the lowest luminous efficiency is the blue color resistance. Since the luminous efficiency of the first color resist layer 610, the second color resist layer 620, and the third color resist layer 630 itself is different, in the present embodiment, when the first dielectric layer 710 and the second medium are When the layer 720 is the same material, the filling amount of the second dielectric layer 720 is set relatively more, and the filling amount of the first dielectric layer 710 is set relatively smaller, so that the second dielectric layer 720 can be absorbed. More light from the outside reduces the reflectivity of the external light, thereby allowing more light to enter the non-illuminated area, thereby significantly increasing the contrast of the display panel 10.
  • the first color resist layer 610 is a red color resist
  • the second color resist layer 620 is a green color resist
  • the third color resist layer 630 is a blue color resist.
  • the first dielectric layer 710 and the second dielectric layer 720 are different materials, and the density of the second dielectric layer 720 is greater than the density of the first dielectric layer 710.
  • FIG. 7 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • the green color resistance has the highest luminous efficiency, followed by the red color resistance, and the lowest luminous efficiency is the blue color resistance. Since the luminous efficiency of the first color resist layer 610, the second color resist layer 620, and the third color resist layer 630 itself is different, in the present embodiment, when the first dielectric layer 710 and the second medium are When the layers 720 are of different materials, and the amounts of the first dielectric layer 710 and the second dielectric layer 720 are equal, the density of the second dielectric layer 720 is set relatively larger, and the density of the first dielectric layer 710 is set. The arrangement is relatively small, so that the second dielectric layer 720 can absorb more light from the outside, reduce the reflectivity of the external light, and thus allow more light to enter the non-light-emitting area, thereby improving the contrast of the display panel 10.
  • FIG. 8 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • the first dielectric layer 710, the second dielectric layer 720, and the anode layer 300 are disposed in the same layer.
  • the process may be performed by first depositing an entire anode metal layer, and then etching the anode metal layer to form a plurality of anode layers 300 arranged in a matrix, and adjacent anode layers 300 are spaced apart from each other.
  • the adjacent three anode layers are sequentially labeled as an anode layer 300a, an anode layer 300b, and an anode layer 300c, respectively.
  • the gap between the anode layer 300a and the anode layer 300b is referred to as a first via (not labeled), and then a layer of black organic material is deposited in the first via to form a first dielectric layer 710.
  • the gap between the anode layer 300b and the anode layer 300c is referred to as a second via (not labeled), and then a layer of black organic material is deposited in the second via to form a second dielectric layer 720.
  • FIG. 9 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • the first dielectric layer 710, the second dielectric layer 720, and the light emitting layer 400 are disposed in the same layer, and the region between the adjacent anode layers 300 is filled with the insulating material 730, and a whole layer is first deposited.
  • the anode metal layer is then etched to form a plurality of anode layers 300 arranged in a matrix, and adjacent anode layers 300 are spaced apart from each other.
  • a layer of insulating material 730 is deposited.
  • the luminescent medium layer is etched to form a plurality of luminescent layers 400 arranged in a matrix, and adjacent luminescent layers 400 are spaced apart from each other.
  • Forming a second via hole (not labeled) penetrating the luminescent medium layer the second via hole is disposed in a region facing the second color resist layer 620 and the third color resist layer 630, and then in the second via hole A layer of insulating material 730 is deposited.
  • the insulating material 730 is disposed in a region between the adjacent two anode layers 300, and insulation is formed on the adjacent two anode layers 300, thereby achieving separate control of different color resists, thereby implementing the display panel 10. Different display effects.
  • a whole layer of the luminescent medium layer is further deposited, and then the luminescent medium layer is etched to form a third via hole (not labeled) penetrating the luminescent medium layer, and the third via hole is disposed opposite the first color resist layer
  • a region between the layer 610 and the second color resist layer 620 is then deposited with a layer of black organic material in the third via to form a first dielectric layer 710.
  • the luminescent medium layer is etched to form a fourth via hole (not labeled) penetrating the luminescent medium layer, and the fourth via hole is disposed between the second color resist layer 620 and the third color resist layer 630.
  • the region is then deposited with a layer of black organic material in the fourth via to form a second dielectric layer 720.
  • FIG. 10 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • the cathode layer 500 it is necessary to pattern the cathode layer 500 such that the first dielectric layer 710, the second dielectric layer 720, and the cathode layer 500 are disposed in the same layer.
  • the first via is disposed in a region facing the first color resist layer 610 and the second color resist layer 620, and then a layer of insulating material 730 is deposited in the first via hole, and simultaneously, the anode is simultaneously
  • the metal layer and the luminescent medium layer are etched to form a second via hole (not labeled) penetrating the anode metal layer and the luminescent medium layer, and the second via hole is disposed opposite the second color resist layer 620 and the third color resist
  • An area between layers 630 is then deposited with a layer of insulating material 730 in the second via.
  • the insulating material 730 is disposed in a region between the adjacent two anode layers 300, and insulation is formed on the adjacent two anode layers 300, thereby achieving separate control of different color resists, thereby implementing the display panel 10.
  • the insulating material 730 is disposed between the adjacent two light emitting layers 400 to form an insulation isolation between the adjacent two light emitting layers 400, thereby avoiding the occurrence of a light mixing phenomenon and causing a problem of poor display effect.
  • the technical solution can realize separate control of different color resists, thereby realizing different display effects of the display panel 10, and on the other hand, avoiding the occurrence of the light mixing phenomenon, and further improving the display effect of the display panel 10.
  • the display panel provided by the technical solution includes a flexible substrate, a thin film transistor layer, an anode layer, a light emitting layer, a cathode layer and a color resist layer which are sequentially stacked, the thin film transistor layer includes a drain, the anode layer and the drain
  • the color resist layer includes a first color resist layer, a second color resist layer and a third color resist layer which are sequentially spaced apart, the first color resist layer, the second color resist layer and the The third color resist layer is disposed on the surface of the cathode layer, and the first dielectric layer is filled between the first color resist layer and the second color resist layer, between the second color resist layer and the third color resist layer Filling a second dielectric layer, the first dielectric layer and the second dielectric layer are used for absorbing light incident from a side of the color resist layer away from the cathode layer, so that more light can be incident on the display panel, thereby improving the display panel. Contrast.
  • FIG. 11 is a flowchart of a method for preparing a display panel according to an embodiment of the present invention.
  • the display panel 10 preparation method includes, but is not limited to, steps S100, S200, S300, S400, S500, S600, S700, and S800, and detailed descriptions about steps S100, S200, S300, S400, S500, S600, S700, and S800 are as follows.
  • the flexible substrate 100 is made of a polyimide film (PI) or a polyester film and a copper foil. Due to the excellent properties of polyimide high temperature soldering, high strength, high modulus and flame retardancy, polyimide has outstanding thermal stability as a polymer material, good radiation resistance and chemical stability and excellent mechanics. performance.
  • PI polyimide film
  • S200 forming a thin film transistor layer 200 covering the flexible substrate 100, the thin film transistor layer 200 including a drain 210. See Figure 13.
  • the thin film transistor layer 200 includes a drain 210, an active layer 220, a first insulating layer 230, a gate 240, a second insulating layer 250, and a source 260.
  • the active layer 220 is disposed on the flexible substrate 100
  • the first insulating layer 230 covers the active layer 220
  • the gate 240 is disposed on the first insulating layer 230
  • the pole 240 is disposed corresponding to the active layer 220
  • the second insulating layer 250 covers the gate 240.
  • the source 260 and the drain 210 are both disposed on the second insulating layer 250, and the source 260 and the drain 210 are spaced apart, and the source 260 is opened in the
  • the through holes on the first insulating layer 230 and the second insulating layer 250 are electrically connected to one end of the active layer 220, and the drain 210 is opened through the first insulating 230 and the second insulating layer A via hole on 250 is electrically connected to the other end of the active layer 220.
  • an entire anode metal layer is formed first, and then the anode metal layer is patterned to form a plurality of anode layers 300 arranged in a matrix, and adjacent anode layers 300 are spaced apart from each other.
  • the adjacent three anode layers are sequentially labeled as an anode layer 300a, an anode layer 300b, and an anode layer 300c, respectively.
  • the gap between the anode layer 300a and the anode layer 300b is referred to as a first via (not labeled in the drawing).
  • the color resist layer 600 includes a first color resist layer 610, a second color resist layer 620, and a third color resist layer 630 which are sequentially spaced apart.
  • a color resist layer 610, the second color resist layer 620, and the third color resist layer 630 are both disposed on the surface of the cathode layer 500. See Figure 17.
  • S800 forming a second dielectric layer 720 filled between the second color resist layer 620 and the third color resist layer 630, the first dielectric layer 710 and the second dielectric layer 720 are used to absorb
  • the color resist layer 600 is away from light incident on one side of the cathode layer 500 to improve the contrast of the display panel 10. See Figure 19.
  • FIG. 20 is a partial flow chart of a method for preparing a display panel according to an embodiment of the present invention.
  • the display panel 10 preparation method further includes, but is not limited to, steps S900 and S1000, and detailed descriptions about steps S900 and S1000 are as follows.
  • S900 forming a thin film encapsulation layer 800 covering the color resist layer 600, the thin film encapsulation layer 800 for forming protection on the color resist layer 600. See Figure 21.
  • S1000 forming a color filter layer 900 covering the thin film encapsulation layer 800, the color filter layer 900 including a first filter layer 910, a second filter layer 920, and a third layer disposed adjacent to each other in sequence a filter layer 930, the first filter layer 910 is disposed at at least a portion of the first color resist layer 610, and the second filter layer 920 is disposed opposite the second color At least a partial region of the resist layer 620 disposed at at least a portion of the third color resist layer 630, the first filter layer 910 and the second filter
  • the sheet layer 920 is disposed to cover the first dielectric layer 710, or the second filter layer 920 and the third filter layer 930 are disposed to cover the second dielectric layer 720. See Figure 22.
  • FIG. 23 is a partial flow chart of a method for preparing a display panel according to an embodiment of the present invention.
  • the display panel 10 preparation method further includes, but is not limited to, steps S910, S1100, and S1200, and detailed descriptions about steps S910, S1100, and S1200 are as follows.
  • S910 forming a thin film encapsulation layer 800 covering the color resist layer 600, the thin film encapsulation layer 800 for forming protection on the color resist layer 600. See Figure 24.
  • S1100 forming a color filter layer 900 covering the thin film encapsulation layer 800, the color filter layer 900 including a first filter layer 910, a second filter layer 920, and a third filter disposed at intervals a light sheet layer 930, the first color filter layer 910 is disposed at at least a portion of the first color resist layer 610, and the second filter layer 920 is disposed opposite the second color resist layer At least a portion of the layer 620, the third filter layer 930 is disposed in at least a portion of the region facing the third color resist layer 630. See Figure 25.
  • S1200 forming the first filter layer 910, the second filter layer 920, and the first portion filled between the first filter layer 910 and the second filter layer 920 At least one of the three filter layers 930, or the first filter layer 910, which is filled between the second filter layer 920 and the third filter layer 930, At least one of the second filter layer 920 and the third filter layer 930 is described.
  • a blank area between the first filter layer 910 and the second filter layer 920 is filled with a third filter layer 930, a second filter layer 920 and a third filter.
  • the area between the light sheet layers 930 fills the first filter layer 910, and the area between the first filter layer 910 and the third color filter layer 930 fills the second filter layer 920, which is increased.
  • the layer 710 and the second dielectric layer 720 are absorbed such that more light enters the non-emitting area, thereby increasing the contrast of the display panel 10.
  • the display panel provided by the technical solution includes a flexible substrate, a thin film transistor layer, an anode layer, a light emitting layer, a cathode layer and a color resist layer which are sequentially stacked, the thin film transistor layer includes a drain, the anode layer and the drain
  • the color resist layer includes a first color resist layer, a second color resist layer and a third color resist layer which are sequentially spaced apart, the first color resist layer, the second color resist layer and the The third color resist layer is disposed on the surface of the cathode layer, and the first dielectric layer is filled between the first color resist layer and the second color resist layer, between the second color resist layer and the third color resist layer Filling a second dielectric layer, the first dielectric layer and the second dielectric layer are used for absorbing light incident from a side of the color resist layer away from the cathode layer, so that more light can be incident on the display panel, thereby improving the display panel. Contrast.
  • FIG. 27 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the present invention further provides an electronic device, and the electronic device 1 includes a display panel 10, and the display panel 10 can be the display panel 10 provided in any of the preceding embodiments, and details are not described herein.
  • the electronic device 1 can be, but is not limited to, an e-book, a smart phone (such as an Android mobile phone, an iOS mobile phone, a Windows Phone mobile phone, etc.), a tablet computer, a palmtop computer, a notebook computer, a mobile Internet device (MID, Mobile Internet Devices), or Wearable devices, etc.

Abstract

一种显示面板(10)、显示面板制备方法及电子装置。所述显示面板(10)包括依次层叠设置的柔性基板(100)、薄膜晶体管层(200)、阳极层(300)、发光层(400)、阴极层(500)以及色阻层(600),所述薄膜晶体管(200)层包括漏极(210),所述阳极层(300)和所述漏极(210)电连接,所述色阻层(600)包括依次间隔设置的第一色阻层(610)、第二色阻层(620)和第三色阻层(630),所述第一色阻层(610)、所述第二色阻层(620)及所述第三色阻层(630)均设置在所述阴极层(500)的表面,所述第一色阻层(610)和所述第二色阻层(620)之间填充第一介质层(710),所述第二色阻层(620)和所述第三色阻层(630)之间填充第二介质层(720),所述第一介质层(710)和所述第二介质层(720)用于吸收自所述色阻层(600)远离所述阴极层(500)的一侧入射的光线,以提高所述显示面板(10)的对比度。

Description

显示面板、显示面板制备方法及电子装置
本发明要求2018年3月14日递交的发明名称为“显示面板、显示面板制备方法及电子装置”的申请号201810208071.9的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及显示技术领域,尤其涉及一种显示面板、显示面板制备方法及电子装置。
背景技术
电子装置在室外使用时,电子装置的显示面板对太阳光的反射很强烈,导致电子装置的对比度很低。为了提升电子装置的对比度,通常的做法是在显示面板上方贴附一层偏光片(Polarizer,POL)。但是偏光片在吸收外界太阳光的同时,也将显示面板所发出的光吸收了55%左右,使得电子装置的对比度提升不明显。因此,需要一种新的显示面板结构,以显著地提高显示面板的对比度。
发明内容
本发明提供一种显示面板,所述显示面板包括依次层叠设置的柔性基板、薄膜晶体管层、阳极层、发光层、阴极层以及色阻层,所述薄膜晶体管层包括漏极,所述阳极层和所述漏极电连接,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面,所述第一色阻层和所述第二色阻层之间填充第一介质层,所述第二色阻层和所述第三色阻层之间填充第二介质层,所述第一介质层和所述第二介质层用于吸收自所述色阻层远离所述阴极层的一侧入射的光线,以提高所述显示面板的对比度。
本发明的显示面板,包括依次层叠设置的柔性基板、薄膜晶体管层、阳极层、发光层、阴极层以及色阻层,所述薄膜晶体管层包括漏极,所述阳极层和所述漏极电连接,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面,通过在第一色阻层和第二色阻层之间填充第一介质层,在第二色阻层和第三色阻层之间填充第二介质层,第一介质层和第二介质层用于吸收自色阻层远离阴极层的一侧入射的光线,使得更多的光线可以入射到显示面板上,从而可以提高显示面板的对比度。
本发明还提供一种显示面板制备方法,所述显示面板制备方法用于制备如上所述的显示面板。
本发明还提供一种电子装置,所述电子装置包括如上所述的显示面板。
附图说明
为了更清楚地阐述本发明的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种显示面板的结构示意图。
图2是本发明实施例中薄膜晶体管层的结构示意图。
图3是本发明实施例提供的另一种显示面板的结构示意图。
图4是本发明实施例提供的又一种显示面板的结构示意图。
图5是本发明实施例提供的又一种显示面板的结构示意图。
图6是本发明实施例提供的又一种显示面板的结构示意图。
图7是本发明实施例提供的又一种显示面板的结构示意图。
图8是本发明实施例提供的又一种显示面板的结构示意图。
图9是本发明实施例提供的又一种显示面板的结构示意图。
图10是本发明实施例提供的又一种显示面板的结构示意图。
图11是本发明实施例提供的一种显示面板制备方法流程图。
图12是本发明实施例中步骤S100对应的结构示意图。
图13是本发明实施例中步骤S200对应的结构示意图。
图14是本发明实施例中步骤S300对应的结构示意图。
图15是本发明实施例中步骤S400对应的结构示意图。
图16是本发明实施例中步骤S500对应的结构示意图。
图17是本发明实施例中步骤S600对应的结构示意图。
图18是本发明实施例中步骤S700对应的结构示意图。
图19是本发明实施例中步骤S800对应的结构示意图。
图20是本发明实施例中显示面板制备方法的局部流程图。
图21是本发明实施例中步骤S900对应的结构示意图。
图22是本发明实施例中步骤S1000对应的结构示意图。
图23是本发明实施例中显示面板制备方法的局部流程图。
图24是本发明实施例中步骤S910对应的结构示意图。
图25是本发明实施例中步骤S1100对应的结构示意图。
图26是本发明实施例中步骤S1200对应的结构示意图。
图27是本发明实施例提供的电子装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
为了使本发明实施例提供的技术方案更加清楚,下面结合附图对上述方案进行详细描述。
参见图1,图1是本发明实施例提供的一种显示面板的结构示意图。所述显示面板10包括依次层叠设置的柔性基板100、薄膜晶体管层200、阳极层300、发光层400、阴极层500以及色阻层600,所述薄膜晶体管层200包括漏极210(图中未示出),所述阳极层300和所述漏极210电连接,所述色阻层600包括依次间隔设置的第一色阻层610、第二色阻层620和第三色阻层630,所述第一色阻层610、所述第二色阻层620及所述第三色阻层630均设置在所述阴极层500的表面,所述第一色阻层610和所述第二色阻层620之间填充第一介质层710,所述第二色阻层620和所述第三色阻层630之间填充第二介质层720,所述第一介质层710和所述第二介质层720用于吸收自所述色阻层600远离所述阴极层500 的一侧入射的光线,以提高所述显示面板10的对比度。
其中,所述柔性基板100由聚酰亚胺薄膜(PI)或聚酯薄膜与铜箔复合而成。由于聚酰亚胺耐高温锡焊、高强度、高模量、阻燃等优良性能,聚酰亚胺作为高分子材料具有突出的热稳定性,良好的耐辐射和化学稳定性和优良的力学性能。
可选的,在一种实施方式中,请参阅图2,图2是本发明实施例中薄膜晶体管层的结构示意图,所述薄膜晶体管层200包括漏极210、有源层220、第一绝缘层230、栅极240、第二绝缘层250及源极260。所述有源层220设置在所述柔性基板100上,所述第一绝缘层230覆盖所述有源层220,所述栅极240设置在所述第一绝缘层230上,且所述栅极240对应所述有源层220设置,所述第二绝缘层250覆盖所述栅极240。所述源极260和所述漏极210均设置在所述第二绝缘层250上,且所述源极260和所述漏极210之间间隔设置,所述源极260通过开设在所述第一绝缘层230和所述第二绝缘层250上的通孔与所述有源层220的一端电连接,所述漏极210通过开设在所述第一绝缘230和所述第二绝缘层250上的通孔与所述有源层220的另一端电连接。
可选的,所述发光层400为有机发光层。
可选的,所述阳极层300设置在所述漏极210的表面,且所述阳极层300和所述漏极210电连接。其中,所述阳极层300和所述漏极210电连接的方式可以为直接电连接的方式,也可以为电桥连接的方式。
可选的,在一种实施方式中,第一色阻层610为红色色阻(R色阻),第二色阻层620为绿色色阻(G色阻),第三色阻层630为蓝色色阻(B色阻)。
可选的,第一介质层710和第二介质层720可以为黑色有机材料,还可以其他黑色的绝缘材料,第一介质层710和第二介质层720可以为相同材料,也可以为不同材料。第一介质层710具有至少以下几个方面的作用:第一,防止相邻的两个第一色阻层610和第二色阻层620出现光线混合的问题,从而导致显示效果不佳;第二,用于对第一色阻层610和第二色阻层620形成绝缘隔离,防止第一色阻层610对应的发光层发出的光线和第二色阻层620对应的发光层发出的光线产生相互干扰而导致的显示不良;第三,第一介质层710用于吸收外部的光线,确切的说,是吸收自所述色阻层600远离所述阴极层500的一侧入射的光线,降低光线的反射率,从而提高显示面板10的对比度。第二介质层720具有至少以下几个方面的作用:第一,防止相邻的两个第二色阻层620和第三色阻层630出现光线混合的问题,从而导致显示效果不佳;第二,用于对第二色阻层620和第三色阻层630形成绝缘隔离,防止第二色阻层620对应的发光层发出的光线和第三色阻层630对应的发光层发出的光线产生相互干扰而导致的显示不良;第三,第二介质层720用于吸收外部的光线,确切的说,是吸收自所述色阻层600远离所述阴极层500的一侧入射的光线,降低光线的反射率,从而提高显示面板10的对比度。
本技术方案提供的显示面板,包括依次层叠设置的柔性基板、薄膜晶体管层、阳极层、发光层、阴极层以及色阻层,所述薄膜晶体管层包括漏极,所述阳极层和所述漏极电连接,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面,通过在第一色阻层和第二色阻层之间填充第一介质层,在第二色阻层和第三色阻层之间填充第二介质层,第一介质层和第二介质层用于吸收自色阻层远离阴极层的一侧入射的光线,使得更多的光线可以入射到显示面板上且减少反射的光线,,从而可以显著地提高显示面板的对比度。
参见图3,图3是本发明实施例提供的另一种显示面板的结构示意图。在另一种实施方式中,所述显示面板10还包括薄膜封装层800和彩色滤光片层900,所述薄膜封装层800设置在所述色阻层600远离所述阴极层500的表面,用于对所述色阻层600形成保护,所述彩色滤光片层900设置在所述薄膜封装层800远离所述色阻层600的表面,所述彩色滤 光片层900包括依次相邻设置的第一滤光片层910、第二滤光片层920和第三滤光片层930,所述第一滤光片层910设置在正对所述第一色阻层610的至少部分区域,所述第二滤光片层920设置在正对所述第二色阻层620的至少部分区域,所述第三滤光片层930设置在正对所述第三色阻层630的至少部分区域。
可选的,在一种实施方式中,所述第一滤光片层910为红色滤光片,第二滤光片层920为绿色滤光片,第三滤光片层930为蓝色滤光片。其中,红色滤光片可以透过红光,绿色滤光片可以透过绿光,蓝色滤光片可以透过蓝光。本文中以第一滤光片层910为红色滤光片,第二滤光片层920为绿色滤光片,第三滤光片层930为蓝色滤光片为例进行说明。
可选的,在一种实施方式中,第一滤光片层910设置在正对第一色阻层610的整个区域,可以理解的,在另一种实施方式中,第一滤光片层910设置在正对第一色阻层610的部分区域。同样,可选的,在一种实施方式中,第二滤光片层920设置在正对第二色阻层620的整个区域,可以理解的,在另一种实施方式中,第二滤光片层920设置在正对第二色阻层620的部分区域。同样,可选的,在一种实施方式中,第三滤光片层930设置在正对第三色阻层630的整个区域,可以理解的,在另一种实施方式中,第三滤光片层930设置在正对第三色阻层630的部分区域。本发明对第一滤光片层910、第二滤光片层920和第三滤光片层930的各种排列组合的设置方式不做限定,任何不违背发明初衷的组合设置方式,都在本发明要求保护的范围之内。
参见图4,图4是本发明实施例提供的又一种显示面板的结构示意图。在本实施方式中,所述第一滤光片层910和所述第二滤光片层920贴合设置以覆盖所述第一介质层710,或者,所述第二滤光片层920和所述第三滤光片层930贴合设置以覆盖所述第二介质层720。
具体的,在一种实施方式中,所述第一滤光片层910和所述第二滤光片层920贴合设置以覆盖所述第一介质层710,所述第二滤光片层920和所述第三滤光片层930间隔设置。此技术方案中,由于第一滤光片层910和第二滤光片层920贴合设置以覆盖第一介质层710,从而可以改善外部光线照射到相邻的第一滤光片层910和第二滤光片层920之间的区域时,会被薄膜封装层800反射回去的情况,从而增大了第一滤光片层910和第二滤光片层920与外部光线之间的接触面积,进而使得一部分外部光线可以透过第一滤光片层910和第二滤光片层920,进一步的,通过第一滤光片层910和第二滤光片层920透进来的光线会被第一介质层710吸收,从而使得更多的光线进入到非发光区,进而提高显示面板10的对比度。
可选的,在另一种实施方式中,所述第一滤光片层910和所述第二滤光片层920间隔设置,所述第二滤光片层920和所述第三滤光片层930贴合设置以覆盖所述第二介质层720。此技术方案中,由于第二滤光片层920和第三滤光片层930贴合设置以覆盖第二介质层720,从而可以改善外部光线照射到相邻的第二滤光片层920和第三滤光片层930之间的区域时,会被薄膜封装层800反射回去的情况,从而增大了第二滤光片层920和第三滤光片层930与外部光线之间的接触面积,进而使得一部分外部光线可以透过第二滤光片层920和第三滤光片层930,进一步的,通过第二滤光片层920和第三滤光片层930透进来的光线会被第二介质层720吸收,从而使得更多的光线进入到非发光区,进而提高显示面板10的对比度。
优选的,在又一种实施方式中,所述第一滤光片层910和所述第二滤光片层920贴合设置以覆盖所述第一介质层710,且所述第二滤光片层920和所述第三滤光片层930贴合设置以覆盖所述第二介质层720。请参见图4,具体的,由于第一滤光片层910和第二滤光片层920贴合设置以覆盖第一介质层710,第二滤光片层920和第三滤光片层930贴合设置以覆盖第二介质层720,从而增大了第一滤光片层910、第二滤光片层920和第三滤光片层930与外部光线之间的接触面积,进而使得一部分外部光线可以透过第一滤光片层910、 第二滤光片层920和第三滤光片层930,进一步的,通过第一滤光片层910、第二滤光片层920和第三滤光片层930透进来的光线会被第一介质层710和第二介质层720吸收,从而减小反射的光线,使得更多的光线进入到非发光区,进而显著地提高显示面板10的对比度。
参见图5,图5是本发明实施例提供的又一种显示面板的结构示意图。在又一种实施方式中,所述显示面板10还包括薄膜封装层800和彩色滤光片层900,所述薄膜封装层800设置在所述色阻层600远离所述阴极层500的表面,用于对所述色阻层600形成保护,所述彩色滤光片层900设置在所述薄膜封装层800远离所述色阻层600的表面,所述彩色滤光片层900包括依次间隔设置的第一滤光片层910、第二滤光片层920和第三滤光片层930,所述第一滤光片层910设置在正对所述第一色阻层610的至少部分区域,所述第二滤光片层920设置在正对所述第二色阻层620的至少部分区域,所述第三滤光片层930设置在正对所述第三色阻层630的至少部分区域,所述第一滤光片层910和所述第二滤光片层920之间填充所述第一滤光片层910、所述第二滤光片层920和所述第三滤光片层930中的至少一种,或者,所述第二滤光片层920和所述第三滤光片层930之间填充所述第一滤光片层910、所述第二滤光片层920和所述第三滤光片层930中的至少一种。
参见图5,具体的,以第一滤光片层910和第二滤光片层920之间填充第三滤光片层930,第二滤光片层920和第三滤光片层930之间填充第一滤光片层910,且第一滤光片层910和第三滤光片层930之间填充第二滤光片层920为例进行说明。
具体的,在第一滤光片层910和第二滤光片层920之间的空白区域填充第三滤光片层930,在第二滤光片层920和第三滤光片层930之间的区域填充第一滤光片层910,且在第一滤光片层910和第三滤光片层930之间的区域填充第二滤光片层920,增大了第一滤光片层910、第二滤光片层920和第三滤光片层930与外部光线之间的接触面积,进而使得一部分外部光线可以透过第一滤光片层910、第二滤光片层920和第三滤光片层930,进一步的,通过第一滤光片层910、第二滤光片层920和第三滤光片层930透进来的光线会被第一介质层710和第二介质层720吸收,从而使得更多的光线进入到非发光区,进而提高显示面板10的对比度。
可选的,在一些实施方式中,所述第一色阻层610为红色色阻(R色阻),所述第二色阻层620为绿色色阻(G色阻),所述第三色阻层630为蓝色色阻(B色阻),所述第一介质层710和所述第二介质层720为相同材料,且所述第二介质层720的填充量大于所述第一介质层710的填充量。具体的,请参见图6,图6是本发明实施例提供的又一种显示面板的结构示意图。
具体的,由于绿色色阻的发光效率最高,其次是红色色阻,发光效率最低的是蓝色色阻。因为第一色阻层610、第二色阻层620和第三色阻层630本身的发光效率存在差异,因此,在本实施方式中,当所述第一介质层710和所述第二介质层720为相同材料时,将所述第二介质层720的填充量设置的相对多一点,将所述第一介质层710的填充量设置的相对小一点,从而可以使得第二介质层720吸收更多的来自外部的光线,降低外部光线的反射率,从而使得更多的光线进入到非发光区,进而显著地提高显示面板10的对比度。
可选的,在另一些实施方式中,所述第一色阻层610为红色色阻,所述第二色阻层620为绿色色阻,所述第三色阻层630为蓝色色阻,所述第一介质层和710所述第二介质层720为不同材料,且所述第二介质层720的密度大于所述第一介质层710的密度。具体的,请参见图7,图7是本发明实施例提供的又一种显示面板的结构示意图。
具体的,由于绿色色阻的发光效率最高,其次是红色色阻,发光效率最低的是蓝色色阻。因为第一色阻层610、第二色阻层620和第三色阻层630本身的发光效率存在差异,因此,在本实施方式中,当所述第一介质层710和所述第二介质层720为不同材料,且第一介质层710和第二介质层720填充的量相等时,将所述第二介质层720的密度设置的相 对大一点,将所述第一介质层710的密度设置的相对小一点,从而可以使得第二介质层720吸收更多的来自外部的光线,降低外部光线的反射率,从而使得更多的光线进入到非发光区,进而提高显示面板10的对比度。
可选的,在其他实施方式中,所述第一介质层710、所述第二介质层720和所述阳极层300同层设置。具体的,请参见图8,图8是本发明实施例提供的又一种显示面板的结构示意图。
具体的,在本实施方式中,第一介质层710、第二介质层720和阳极层300设置在同一层中。在具体地实现工艺上可以为,首先沉积一整层阳极金属层,然后对阳极金属层进行蚀刻处理,形成矩阵排布的多个阳极层300,相邻的阳极层300之间间隔设置。为了方便描述,相邻的三个阳极层分别依次标注为阳极层300a,阳极层300b,阳极层300c。阳极层300a与阳极层300b之间的的间隙称为第一过孔(图中未标号),然后在第一过孔内沉积一层黑色有机材料,以形成第一介质层710。阳极层300b与阳极层300c之间的间隙称为第二过孔(图中未标号),然后在第二过孔内沉积一层黑色有机材料,以形成第二介质层720。
或者,所述第一介质层710、所述第二介质层720和所述发光层400同层设置。具体的,请参见图9,图9是本发明实施例提供的又一种显示面板的结构示意图。
具体的,在本实施方式中,第一介质层710、第二介质层720和发光层400设置在同一层中,且相邻阳极层300之间的区域填充绝缘材料730,首先沉积一整层阳极金属层,然后对阳极金属层进行蚀刻处理,形成矩阵排布的多个阳极层300,相邻的阳极层300之间间隔设置。形成贯穿阳极金属层的第一过孔(图中未标号),第一过孔设置在正对第一色阻层610和第二色阻层620之间的区域,然后在第一过孔内沉积一层绝缘材料730。同样,对发光介质层进行蚀刻处理,形成矩阵排布的多个发光层400,相邻的发光层400之间间隔设置。形成贯穿发光介质层的第二过孔(图中未标号),第二过孔设置在正对第二色阻层620和第三色阻层630之间的区域,然后在第二过孔内沉积一层绝缘材料730。本技术方案将绝缘材料730设置在相邻的两个阳极层300之间的区域,对相邻的两个阳极层300形成绝缘隔离,从而实现不同色阻的单独控制,进而实现显示面板10的不同显示效果。进一步的,再沉积一整层发光介质层,然后对发光介质层进行蚀刻处理,形成贯穿发光介质层的第三过孔(图中未标号),第三过孔设置在正对第一色阻层610和第二色阻层620之间的区域,然后在第三过孔内沉积一层黑色有机材料,以形成第一介质层710。同样,对发光介质层进行蚀刻处理,形成贯穿发光介质层的第四过孔(图中未标号),第四过孔设置在正对第二色阻层620和第三色阻层630之间的区域,然后在第四过孔内沉积一层黑色有机材料,以形成第二介质层720。
或者,所述第一介质层710、所述第二介质层720和所述阴极层500同层设置。具体的,请参见图10,图10是本发明实施例提供的又一种显示面板的结构示意图。
具体的,在本实施方式中,需要图案化阴极层500,从而使得第一介质层710、第二介质层720和阴极层500设置在同一层。首先,沉积一整层阳极金属层,再沉积一整层发光介质层,然后同时对阳极金属层和发光介质层进行蚀刻处理,形成同时贯穿阳极金属层和发光介质层的第一过孔(图中未标号),第一过孔设置在正对第一色阻层610和第二色阻层620之间的区域,然后在第一过孔内沉积一层绝缘材料730,同样,同时对阳极金属层和发光介质层进行蚀刻处理,形成贯穿阳极金属层和发光介质层的第二过孔(图中未标号),第二过孔设置在正对第二色阻层620和第三色阻层630之间的区域,然后在第二过孔内沉积一层绝缘材料730。本技术方案将绝缘材料730设置在相邻的两个阳极层300之间的区域,对相邻的两个阳极层300形成绝缘隔离,从而实现不同色阻的单独控制,进而实现显示面板10的不同显示效果。且将绝缘材料730设置在相邻的两个发光层400之间,对相邻的两个发光层400形成绝缘隔离,从而避免混光现象的发生,造成显示效果不佳的问题,因此, 本技术方案一方面可以实现不同色阻的单独控制,进而实现显示面板10的不同显示效果,另一方面,还可以避免混光现象的发生,进一步可以提高显示面板10的显示效果。
本技术方案提供的显示面板,包括依次层叠设置的柔性基板、薄膜晶体管层、阳极层、发光层、阴极层以及色阻层,所述薄膜晶体管层包括漏极,所述阳极层和所述漏极电连接,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面,通过在第一色阻层和第二色阻层之间填充第一介质层,在第二色阻层和第三色阻层之间填充第二介质层,第一介质层和第二介质层用于吸收自色阻层远离阴极层的一侧入射的光线,使得更多的光线可以入射到显示面板上,从而可以提高显示面板的对比度。
请参阅图11,图11是本发明实施例提供的一种显示面板制备方法流程图。所述显示面板10制备方法包括但不限于步骤S100、S200、S300、S400、S500、S600、S700和S800,关于步骤S100、S200、S300、S400、S500、S600、S700和S800的详细描述如下。
S100:提供柔性基板100。请参见图12。
其中,所述柔性基板100由聚酰亚胺薄膜(PI)或聚酯薄膜与铜箔复合而成。由于聚酰亚胺耐高温锡焊、高强度、高模量、阻燃等优良性能,聚酰亚胺作为高分子材料具有突出的热稳定性,良好的耐辐射和化学稳定性和优良的力学性能。
S200:形成覆盖所述柔性基板100的薄膜晶体管层200,所述薄膜晶体管层200包括漏极210。请参见图13。
具体的,所述薄膜晶体管层200包括漏极210、有源层220、第一绝缘层230、栅极240、第二绝缘层250及源极260。所述有源层220设置在所述柔性基板100上,所述第一绝缘层230覆盖所述有源层220,所述栅极240设置在所述第一绝缘层230上,且所述栅极240对应所述有源层220设置,所述第二绝缘层250覆盖所述栅极240。所述源极260和所述漏极210均设置在所述第二绝缘层250上,且所述源极260和所述漏极210之间间隔设置,所述源极260通过开设在所述第一绝缘层230和所述第二绝缘层250上的通孔与所述有源层220的一端电连接,所述漏极210通过开设在所述第一绝缘230和所述第二绝缘层250上的通孔与所述有源层220的另一端电连接。
S300:形成覆盖所述薄膜晶体管层200的阳极层300,所述阳极层300和所述漏极210(图中未示出)电连接。请参见图14。
具体的,先形成一整层阳极金属层,然后对阳极金属层进行图案化处理,形成矩阵排布的多个阳极层300,相邻的阳极层300之间间隔设置。为了方便描述,相邻的三个阳极层分别依次标注为阳极层300a,阳极层300b,阳极层300c。阳极层300a与阳极层300b之间的的间隙称为第一过孔(图中未标号)。
S400:形成覆盖所述阳极层300的发光层400。请参见图15。
S500:形成覆盖所述发光层400的阴极层500。请参见图16。
S600:形成覆盖所述阴极层500的色阻层600,所述色阻层600包括依次间隔设置的第一色阻层610、第二色阻层620和第三色阻层630,所述第一色阻层610、所述第二色阻层620及所述第三色阻层630均设置在所述阴极层500的表面。请参见图17。
S700:形成填充在所述第一色阻层610和所述第二色阻层620之间的第一介质层710。请参见图18。
S800:形成填充在所述第二色阻层620和所述第三色阻层630之间的第二介质层720,所述第一介质层710和所述第二介质层720用于吸收自所述色阻层600远离所述阴极层500的一侧入射的光线,以提高所述显示面板10的对比度。请参见图19。
请参阅图20,图20是本发明实施例中显示面板制备方法的局部流程图。在一种实施方式中,所述显示面板10制备方法还包括但不限于步骤S900和S1000,关于步骤S900和 S1000的详细描述如下。
S900:形成覆盖所述色阻层600的薄膜封装层800,所述薄膜封装层800用于对所述色阻层600形成保护。请参见图21。
S1000:形成覆盖所述薄膜封装层800的彩色滤光片层900,所述彩色滤光片层900包括依次相邻设置的第一滤光片层910、第二滤光片层920和第三滤光片层930,所述第一滤光片层910设置在正对所述第一色阻层610的至少部分区域,所述第二滤光片层920设置在正对所述第二色阻层620的至少部分区域,所述第三滤光片层930设置在正对所述第三色阻层630的至少部分区域,所述第一滤光片层910和所述第二滤光片层920贴合设置以覆盖所述第一介质层710,或者,所述第二滤光片层920和所述第三滤光片层930贴合设置以覆盖所述第二介质层720。请参见图22。
请参阅图23,图23是本发明实施例中显示面板制备方法的局部流程图。在另一种实施方式中,所述显示面板10制备方法还包括但不限于步骤S910、S1100和S1200,关于步骤S910、S1100和S1200的详细描述如下。
S910:形成覆盖所述色阻层600的薄膜封装层800,所述薄膜封装层800用于对所述色阻层600形成保护。请参见图24。
S1100:形成覆盖所述薄膜封装层800的彩色滤光片层900,所述彩色滤光片层900包括依次间隔设置的第一滤光片层910、第二滤光片层920和第三滤光片层930,所述第一滤光片层910设置在正对所述第一色阻层610的至少部分区域,所述第二滤光片层920设置在正对所述第二色阻层620的至少部分区域,所述第三滤光片层930设置在正对所述第三色阻层630的至少部分区域。请参见图25。
S1200:形成填充在所述第一滤光片层910和所述第二滤光片层920之间的所述第一滤光片层910、所述第二滤光片层920和所述第三滤光片层930中的至少一种,或者,形成填充在所述第二滤光片层920和所述第三滤光片层930之间的所述第一滤光片层910、所述第二滤光片层920和所述第三滤光片层930中的至少一种。
请参见图26,具体的,在第一滤光片层910和第二滤光片层920之间的空白区域填充第三滤光片层930,在第二滤光片层920和第三滤光片层930之间的区域填充第一滤光片层910,且在第一滤光片层910和第三滤光片层930之间的区域填充第二滤光片层920,增大了第一滤光片层910、第二滤光片层920和第三滤光片层930与外部光线之间的接触面积,进而使得一部分外部光线可以透过第一滤光片层910、第二滤光片层920和第三滤光片层930,进一步的,通过第一滤光片层910、第二滤光片层920和第三滤光片层930透进来的光线会被第一介质层710和第二介质层720吸收,从而使得更多的光线进入到非发光区,进而提高显示面板10的对比度。
本技术方案提供的显示面板,包括依次层叠设置的柔性基板、薄膜晶体管层、阳极层、发光层、阴极层以及色阻层,所述薄膜晶体管层包括漏极,所述阳极层和所述漏极电连接,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面,通过在第一色阻层和第二色阻层之间填充第一介质层,在第二色阻层和第三色阻层之间填充第二介质层,第一介质层和第二介质层用于吸收自色阻层远离阴极层的一侧入射的光线,使得更多的光线可以入射到显示面板上,从而可以提高显示面板的对比度。
参见图27,图27是本发明实施例提供的电子装置的结构示意图。本发明还提供一种电子装置,所述电子装置1包括显示面板10,所述显示面板10可以为前面任意一实施例提供的显示面板10,在此不再赘述。所述电子装置1可以为但不仅限于为电子书、智能手机(如Android手机、iOS手机、Windows Phone手机等)、平板电脑、掌上电脑、笔记本电脑、移动互联网装置(MID,Mobile Internet Devices)或穿戴式装置等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种显示面板,其中,所述显示面板包括依次层叠设置的柔性基板、薄膜晶体管层、阳极层、发光层、阴极层以及色阻层,所述薄膜晶体管层包括漏极,所述阳极层和所述漏极电连接,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面,所述第一色阻层和所述第二色阻层之间填充第一介质层,所述第二色阻层和所述第三色阻层之间填充第二介质层,所述第一介质层和所述第二介质层用于吸收自所述色阻层远离所述阴极层的一侧入射的光线,以提高所述显示面板的对比度。
  2. 如权利要求1所述的显示面板,其中,所述显示面板还包括薄膜封装层和彩色滤光片层,所述薄膜封装层设置在所述色阻层远离所述阴极层的表面,用于对所述色阻层形成保护,所述彩色滤光片层设置在所述薄膜封装层远离所述色阻层的表面,所述彩色滤光片层包括依次相邻设置的第一滤光片层、第二滤光片层和第三滤光片层,所述第一滤光片层设置在正对所述第一色阻层的至少部分区域,所述第二滤光片层设置在正对所述第二色阻层的至少部分区域,所述第三滤光片层设置在正对所述第三色阻层的至少部分区域,所述第一滤光片层和所述第二滤光片层贴合设置以覆盖所述第一介质层,或者,所述第二滤光片层和所述第三滤光片层贴合设置以覆盖所述第二介质层。
  3. 如权利要求1所述的显示面板,其中,所述显示面板还包括薄膜封装层和彩色滤光片层,所述薄膜封装层设置在所述色阻层远离所述阴极层的表面,用于对所述色阻层形成保护,所述彩色滤光片层设置在所述薄膜封装层远离所述色阻层的表面,所述彩色滤光片层包括依次间隔设置的第一滤光片层、第二滤光片层和第三滤光片层,所述第一滤光片层设置在正对所述第一色阻层的至少部分区域,所述第二滤光片层设置在正对所述第二色阻层的至少部分区域,所述第三滤光片层设置在正对所述第三色阻层的至少部分区域,所述第一滤光片层和所述第二滤光片层之间填充所述第一滤光片层、所述第二滤光片层和所述第三滤光片层中的至少一种,或者,所述第二滤光片层和所述第三滤光片层之间填充所述第一滤光片层、所述第二滤光片层和所述第三滤光片层中的至少一种。
  4. 如权利要求1所述的显示面板,其中,所述第一色阻层为红色色阻,所述第二色阻层为绿色色阻,所述第三色阻层为蓝色色阻,所述第一介质层和所述第二介质层为相同材料,且所述第二介质层的填充量大于所述第一介质层的填充量。
  5. 如权利要求1所述的显示面板,其中,所述第一色阻层为红色色阻,所述第二色阻层为绿色色阻,所述第三色阻层为蓝色色阻,所述第一介质层和所述第二介质层为不同材料,且所述第二介质层的密度大于所述第一介质层的密度。
  6. 如权利要求1所述的显示面板,其中,所述第一介质层、所述第二介质层和所述阳极层同层设置,或者,所述第一介质层、所述第二介质层和所述发光层同层设置,或者,所述第一介质层、所述第二介质层和所述阴极层同层设置。
  7. 如权利要求1所述的显示面板,其中,所述发光层为有机发光层。
  8. 如权利要求1所述的显示面板,其中,所述阳极层设置在所述漏极的表面,且所述阳极层和所述漏极电连接。
  9. 一种显示面板制备方法,其中,所述显示面板制备方法包括:
    提供柔性基板;
    形成覆盖所述柔性基板的薄膜晶体管层,所述薄膜晶体管层包括漏极;
    形成覆盖所述薄膜晶体管层的阳极层,所述阳极层和所述漏极电连接;
    形成覆盖所述阳极层的发光层;
    形成覆盖所述发光层的阴极层;
    形成覆盖所述阴极层的色阻层,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面;
    形成填充在所述第一色阻层和所述第二色阻层之间的第一介质层;
    形成填充在所述第二色阻层和所述第三色阻层之间的第二介质层,所述第一介质层和所述第二介质层用于吸收自所述色阻层远离所述阴极层的一侧入射的光线,以提高所述显示面板的对比度。
  10. 如权利要求9所述的显示面板制备方法,其中,所述显示面板制备方法还包括:
    形成覆盖所述色阻层的薄膜封装层,所述薄膜封装层用于对所述色阻层形成保护;
    形成覆盖所述薄膜封装层的彩色滤光片层,所述彩色滤光片层包括依次相邻设置的第一滤光片层、第二滤光片层和第三滤光片层,所述第一滤光片层设置在正对所述第一色阻层的至少部分区域,所述第二滤光片层设置在正对所述第二色阻层的至少部分区域,所述第三滤光片层设置在正对所述第三色阻层的至少部分区域,所述第一滤光片层和所述第二滤光片层贴合设置以覆盖所述第一介质层,或者,所述第二滤光片层和所述第三滤光片层贴合设置以覆盖所述第二介质层。
  11. 如权利要求9所述的显示面板制备方法,其中,所述显示面板制备方法还包括:
    形成覆盖所述色阻层的薄膜封装层,所述薄膜封装层用于对所述色阻层形成保护;
    形成覆盖所述薄膜封装层的彩色滤光片层,所述彩色滤光片层包括依次间隔设置的第一滤光片层、第二滤光片层和第三滤光片层,所述第一滤光片层设置在正对所述第一色阻层的至少部分区域,所述第二滤光片层设置在正对所述第二色阻层的至少部分区域,所述第三滤光片层设置在正对所述第三色阻层的至少部分区域;
    形成填充在所述第一滤光片层和所述第二滤光片层之间的所述第一滤光片层、所述第二滤光片层和所述第三滤光片层中的至少一种,或者,形成填充在所述第二滤光片层和所述第三滤光片层之间的所述第一滤光片层、所述第二滤光片层和所述第三滤光片层中的至少一种。
  12. 如权利要求9所述的显示面板制备方法,其中,所述发光层为有机发光层。
  13. 如权利要求9所述的显示面板制备方法,其中,所述阳极层设置在所述漏极的表面,且所述阳极层和所述漏极电连接。
  14. 一种电子装置,其中,所述电子装置包括显示面板,所述显示面板包括包括依次层叠设置的柔性基板、薄膜晶体管层、阳极层、发光层、阴极层以及色阻层,所述薄膜晶体管层包括漏极,所述阳极层和所述漏极电连接,所述色阻层包括依次间隔设置的第一色阻层、第二色阻层和第三色阻层,所述第一色阻层、所述第二色阻层及所述第三色阻层均设置在所述阴极层的表面,所述第一色阻层和所述第二色阻层之间填充第一介质层,所述第二色阻层和所述第三色阻层之间填充第二介质层,所述第一介质层和所述第二介质层用于吸收自所述色阻层远离所述阴极层的一侧入射的光线,以提高所述显示面板的对比度。
  15. 如权利要求14所述的电子装置,其中,所述显示面板还包括薄膜封装层和彩色滤光片层,所述薄膜封装层设置在所述色阻层远离所述阴极层的表面,用于对所述色阻层形成保护,所述彩色滤光片层设置在所述薄膜封装层远离所述色阻层的表面,所述彩色滤光片层包括依次相邻设置的第一滤光片层、第二滤光片层和第三滤光片层,所述第一滤光片层设置在正对所述第一色阻层的至少部分区域,所述第二滤光片层设置在正对所述第二色阻层的至少部分区域,所述第三滤光片层设置在正对所述第三色阻层的至少部分区域,所述第一滤光片层和所述第二滤光片层贴合设置以覆盖所述第一介质层,或者,所述第二滤光片层和所述第三滤光片层贴合设置以覆盖所述第二介质层。
  16. 如权利要求14所述的电子装置,其中,所述显示面板还包括薄膜封装层和彩色滤光片层,所述薄膜封装层设置在所述色阻层远离所述阴极层的表面,用于对所述色阻层形成保护,所述彩色滤光片层设置在所述薄膜封装层远离所述色阻层的表面,所述彩色滤光片层包括依次间隔设置的第一滤光片层、第二滤光片层和第三滤光片层,所述第一滤光片层设置在正对所述第一色阻层的至少部分区域,所述第二滤光片层设置在正对所述第二色阻层的至少部分区域,所述第三滤光片层设置在正对所述第三色阻层的至少部分区域,所述第一滤光片层和所述第二滤光片层之间填充所述第一滤光片层、所述第二滤光片层和所述第三滤光片层中的至少一种,或者,所述第二滤光片层和所述第三滤光片层之间填充所述第一滤光片层、所述第二滤光片层和所述第三滤光片层中的至少一种。
  17. 如权利要求14所述的电子装置,其中,所述第一色阻层为红色色阻,所述第二色阻层为绿色色阻,所述第三色阻层为蓝色色阻,所述第一介质层和所述第二介质层为相同材料,且所述第二介质层的填充量大于所述第一介质层的填充量。
  18. 如权利要求14所述的电子装置,其中,所述第一色阻层为红色色阻,所述第二色阻层为绿色色阻,所述第三色阻层为蓝色色阻,所述第一介质层和所述第二介质层为不同材料,且所述第二介质层的密度大于所述第一介质层的密度。
  19. 如权利要求14所述的电子装置,其中,所述第一介质层、所述第二介质层和所述阳极层同层设置,或者,所述第一介质层、所述第二介质层和所述发光层同层设置,或者,所述第一介质层、所述第二介质层和所述阴极层同层设置。
  20. 如权利要求14所述的电子装置,其中,所述发光层为有机发光层。
PCT/CN2018/087644 2018-03-14 2018-05-21 显示面板、显示面板制备方法及电子装置 WO2019174121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/074,541 US10985343B1 (en) 2018-03-14 2018-05-21 Display panel and manufacturing method of display panel and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810208071.9 2018-03-14
CN201810208071.9A CN108461524B (zh) 2018-03-14 2018-03-14 显示面板、显示面板制备方法及电子装置

Publications (1)

Publication Number Publication Date
WO2019174121A1 true WO2019174121A1 (zh) 2019-09-19

Family

ID=63217429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087644 WO2019174121A1 (zh) 2018-03-14 2018-05-21 显示面板、显示面板制备方法及电子装置

Country Status (3)

Country Link
US (1) US10985343B1 (zh)
CN (1) CN108461524B (zh)
WO (1) WO2019174121A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873024A (zh) 2019-04-09 2019-06-11 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN111584551B (zh) * 2020-05-06 2023-12-01 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996696A (zh) * 2014-05-09 2014-08-20 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置
CN203826395U (zh) * 2014-05-09 2014-09-10 京东方科技集团股份有限公司 一种oled显示面板及显示装置
CN105514145A (zh) * 2016-03-04 2016-04-20 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示面板
CN106098742A (zh) * 2016-08-18 2016-11-09 信利(惠州)智能显示有限公司 有机发光显示装置及制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI256270B (en) * 2005-03-18 2006-06-01 Univision Technology Inc Organic electro-luminescent device with increased lifespan and method for producing the same
JP2010096882A (ja) * 2008-10-15 2010-04-30 Sony Corp 反射板、発光装置およびその製造方法
JP2014132525A (ja) * 2013-01-04 2014-07-17 Japan Display Inc 有機el表示装置
JP6692900B2 (ja) * 2016-05-18 2020-05-13 株式会社Joled 有機el表示パネル及びその製造方法
CN205900543U (zh) * 2016-05-18 2017-01-18 武汉华星光电技术有限公司 一种oled显示面板
CN106405958B (zh) * 2016-10-13 2019-09-13 深圳市华星光电技术有限公司 一种coa阵列基板及液晶显示面板
CN106654047B (zh) * 2016-12-22 2019-02-01 武汉华星光电技术有限公司 Oled显示面板及其制作方法
US20190206963A1 (en) * 2017-12-29 2019-07-04 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996696A (zh) * 2014-05-09 2014-08-20 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置
CN203826395U (zh) * 2014-05-09 2014-09-10 京东方科技集团股份有限公司 一种oled显示面板及显示装置
CN105514145A (zh) * 2016-03-04 2016-04-20 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示面板
CN106098742A (zh) * 2016-08-18 2016-11-09 信利(惠州)智能显示有限公司 有机发光显示装置及制造方法

Also Published As

Publication number Publication date
US10985343B1 (en) 2021-04-20
US20210098739A1 (en) 2021-04-01
CN108461524B (zh) 2020-12-29
CN108461524A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
US9013099B2 (en) Organic electroluminescent apparatus
CN110416269B (zh) 一种显示面板和显示面板的制作方法
WO2019233479A1 (zh) 显示面板及显示装置
CN111312742B (zh) 背光模组及其制备方法、显示装置
CN111146215B (zh) 一种阵列基板、其制作方法及显示装置
US11183111B2 (en) Pixel unit and method for manufacturing the same, and double-sided OLED display device
CN109300912B (zh) 基于电致发光器件的显示基板及其制备方法、显示装置
US11289685B2 (en) Display panel with patterned light absorbing layer, and manufacturing method thereof
CN113812014B (zh) 一种阵列基板及其制备方法和显示面板
JP7343614B2 (ja) 表示基板及びその製造方法、表示装置
CN108198838A (zh) 显示面板及其制作方法
CN111769210A (zh) 显示基板及其制备方法、显示装置
WO2019174121A1 (zh) 显示面板、显示面板制备方法及电子装置
CN110212111B (zh) 显示基板及制作方法、显示面板、显示装置
CN215933642U (zh) 显示基板、显示面板和显示装置
WO2021012399A1 (zh) 显示面板、显示装置及其制作方法
WO2021051509A1 (zh) 一种显示面板及其制备方法
CN111415963B (zh) 显示面板及其制备方法
US20240016004A1 (en) Display panel and display device
CN113066943B (zh) 显示基板、显示面板及电子设备
WO2021218587A1 (zh) 阵列基板及其制作方法、显示装置
CN114220821A (zh) 显示面板
CN112289948A (zh) 有机发光二极体显示面板及其制作方法
US20220223817A1 (en) Array substrate and manufacturing method thereof, display panel, and electronic apparatus
WO2022236559A1 (zh) 显示基板、电子装置及显示基板的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910054

Country of ref document: EP

Kind code of ref document: A1