WO2019174066A1 - 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法 - Google Patents

电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法 Download PDF

Info

Publication number
WO2019174066A1
WO2019174066A1 PCT/CN2018/080030 CN2018080030W WO2019174066A1 WO 2019174066 A1 WO2019174066 A1 WO 2019174066A1 CN 2018080030 W CN2018080030 W CN 2018080030W WO 2019174066 A1 WO2019174066 A1 WO 2019174066A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
shielding layer
shielding
film
particles
Prior art date
Application number
PCT/CN2018/080030
Other languages
English (en)
French (fr)
Inventor
苏陟
Original Assignee
广州方邦电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州方邦电子股份有限公司 filed Critical 广州方邦电子股份有限公司
Priority to US16/626,012 priority Critical patent/US11006554B1/en
Priority to KR1020197037924A priority patent/KR102293407B1/ko
Priority to JP2019570554A priority patent/JP6849828B2/ja
Publication of WO2019174066A1 publication Critical patent/WO2019174066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB

Definitions

  • the invention relates to the field of electronics, and in particular to a method for preparing an electromagnetic shielding film, a circuit board and an electromagnetic shielding film.
  • Electromagnetic Interference Shielding With the integration of functions such as mobile phones, the internal components are rapidly high-speed and high-speed. For example, in addition to the original audio transmission function, the camera function has become a necessary function, and WLAN (Wireless Local Area Networks) GPS (Global Positioning System) and Internet access functions have become popular, and with the integration of future sensing components, the trend of high-speed and high-speed components is even more inevitable. Under the drive of high frequency and high speed. The induced electromagnetic interference inside and outside the component, the attenuation of the signal during transmission, and the insertion loss and jitter problems are becoming more serious.
  • EMI Shielding Electromagnetic Interference Shielding
  • the shielding film commonly used in existing circuit boards includes a shielding layer and a conductive adhesive layer, and the shielding layer is connected to the circuit board ground layer through a conductive adhesive layer, thereby introducing interference charges into the circuit board formation to achieve shielding.
  • another commonly used method is to remove the conductive particles in the film layer and form a surface with a certain roughness on the flat shielding layer, and then pierce the film layer through the rough surface of the shielding layer, thereby The shielding layer is in contact with the ground layer of the circuit board, but this solution has the defects of small amount of glue and insufficient penetration force.
  • the object of the embodiments of the present invention is to provide a method for preparing an electromagnetic shielding film, a circuit board and an electromagnetic shielding film, which can effectively solve the problem that the amount of glue in the prior art is insufficient to cause high temperature explosion, the puncture force is strong, and the peeling strength is high. To avoid the occurrence of explosions.
  • an embodiment of the present invention provides an electromagnetic shielding film including a first shielding layer, a second shielding layer, a film layer and a plurality of convex particles;
  • the first shielding layer includes an opposite first surface and a second surface, the second surface being an undulating non-flat surface; the plurality of convex particles attached to the second surface of the first shielding layer;
  • the second shielding layer being disposed on the first shielding layer On the second surface, and covering the plurality of convex particles, thereby forming a convex portion at a position corresponding to the convex particles on an outer surface of the second shielding layer, and forming a concave portion at other positions,
  • the undulation of the outer surface of the second shielding layer is greater than the undulation of the second surface;
  • the film layer is disposed on the outer surface of the second shielding layer.
  • the convex particles include one or more of conductor particles, semiconductor particles, insulator particles, and coated composite particles.
  • the height of the convex particles is from 0.1 ⁇ m to 30 ⁇ m.
  • a plurality of conductive bumps are formed on the outer surface of the second shield layer.
  • the conductive bumps are concentratedly distributed on the convex portion.
  • the film layer includes an adhesive layer containing conductive particles.
  • the film layer includes an adhesive layer containing no conductive particles.
  • the first shielding layer and the second shielding layer include one or more of a metal shielding layer, a carbon nanotube shielding layer, a ferrite shielding layer, and a graphene shielding layer.
  • the metal shielding layer comprises a single metal shielding layer and/or an alloy shielding layer; wherein the single metal shielding layer is made of aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver and It is made of any one of gold materials made of any two or more of aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, and gold.
  • the electromagnetic shielding film further includes a protective film layer, and the first surface of the first shielding layer is formed with the protective film layer.
  • the embodiment of the invention discloses an electromagnetic shielding film, the plurality of convex particles are attached on the second surface of the first shielding layer; the second shielding layer is disposed in the first a second surface of a shielding layer covering the plurality of convex particles, so that a convex portion is formed at a position of the outer surface of the second shielding layer corresponding to the convex particles, and the second shielding
  • the convex portion on the outer surface of the layer opposite to the convex particles is more likely to pierce the film layer, so that the shielding layer is in contact connection with the circuit board layer, and the interference charge is directly led out through the shielding layer; in addition, the electromagnetic shielding film
  • the film layer is pressed into the concave portion of the outer surface of the second shielding layer during the pressing process, which can effectively solve the problem that the amount of glue in the prior art is insufficient to cause high temperature explosion, peeling strength High, there will be no blasting.
  • the embodiment of the present invention further provides a circuit board, comprising: a printed circuit board and the electromagnetic shielding film according to any one of the above, wherein the electromagnetic shielding film is pressed with the printed circuit board through a film layer thereof; The protrusion pierces the film layer and extends to the formation of the printed wiring board.
  • the circuit board provided by the embodiment of the present invention has the undulation of the outer surface of the second shielding layer by using the electromagnetic shielding film according to any one of the above aspects.
  • the viscous film of the electromagnetic shielding film is pressed into the concave portion of the outer surface of the second shielding layer during the pressing process, and the amount of the adhesive is increased. Large, it is not easy to explode; at the same time, the convex portion of the outer surface of the second shielding layer is more likely to pierce the film layer, so that the shielding layer is in contact with the circuit board layer, and the interference charge is directly led out through the shielding layer.
  • the embodiment of the invention further relates to a method for preparing an electromagnetic shielding film, which is suitable for preparing the electromagnetic shielding film according to any one of the above items, comprising the steps of:
  • the first shielding layer is formed in the following manner in the step S1:
  • the step of forming the film layer on the outer surface of the second shielding layer further includes the following steps:
  • step S4 the forming a film layer on the outer surface of the second shielding layer is specifically:
  • a film layer is directly coated on the outer surface of the second shielding layer to form the film layer on the outer surface of the second shielding layer.
  • the electromagnetic shielding film provided by the embodiment of the present invention is formed by forming a first shielding layer whose second surface is an undulating non-flat surface, and then forming a convex surface on the second surface of the first shielding layer.
  • a second shielding layer formed on the second surface on which the convex particles are distributed, such that an outer surface of the second shielding layer forms a convex portion at a position corresponding to the convex particles, and Positioning the flat portion, the convex portion is more likely to pierce the adhesive film layer, so that the shielding layer is in contact with the circuit board ground layer, and the interference charge is directly led out through the shielding layer; in addition, the adhesive film layer of the electromagnetic shielding film is pressed During the process, the glue substance is extruded into the concave portion of the outer surface of the second shielding layer, which can effectively solve the problem that the amount of glue in the prior art is insufficient and easily causes high temperature explosion, the peeling strength is high, and the explosion does not occur. Board phenomenon.
  • Figure 1 is a schematic view showing the structure of an electromagnetic shielding film in Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic view showing the structure of an electromagnetic shielding film in Embodiment 2 of the present invention.
  • Embodiment 3 is a schematic structural view of a circuit board in Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural view of a circuit board in Embodiment 4 of the present invention.
  • FIG. 5 is a schematic flow chart of a method for preparing an electromagnetic shielding film according to Embodiment 5 of the present invention.
  • the electromagnetic shielding film includes a first shielding layer 1, a second shielding layer 2, a film layer and a plurality of convex portions.
  • the first shielding layer 1 includes an opposite first surface 11 and a second surface, the second surface is a non-flat surface; the plurality of convex particles 4 are attached to the first shielding layer 1
  • the second shielding layer 2 is disposed on the second surface 12 of the first shielding layer 1 and covers the plurality of convex particles 4 so as to be on the outer surface of the second shielding layer 2 a position corresponding to the convex particles 4 forms a convex portion 212, and a concave portion 211 is formed at other positions, and an outer surface 21 of the second shielding layer 2 has a greater degree of undulation than the second surface 12;
  • the film layer 3 is disposed on the outer surface 21 of the second shield layer 2.
  • the first shielding layer 1 and the second shielding layer 2 both have the function of conducting free electrons, and the materials used may be the same or different, specifically including a metal shielding layer, a carbon nanotube shielding layer, a ferrite shielding layer and graphite.
  • the metal shielding layer comprises a single metal shielding layer and/or an alloy shielding layer; wherein the single metal shielding layer is made of any of aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver and gold.
  • a material is made of the alloy shielding layer made of any two or more of aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, and gold.
  • the material for the film layer 3 is preferably selected from the group consisting of modified epoxy resins, modified acrylics, modified rubbers, modified thermoplastic polyimides, and modified polyesters.
  • the convex particles 4 are distributed on the second surface 12 of the first shielding film (the second surface 12 is an undulating non-flat surface), and the function is such that the second shielding layer of the second shielding film
  • the outer surface 22 of the second surface 22 forms a convex portion 212 at a position corresponding to the convex particles 4, and forms a gentle portion 211 at other positions, and the outer surface 22 of the second shielding layer 2 has a greater degree of undulation than the second portion
  • the undulation of the surface 12, so that the convex portion 222 can more easily pierce the film layer 3 during the process of pressing the electromagnetic shielding film with the printed wiring board, so that the shielding layer is in contact with the circuit board layer, and the interference charge is passed through the shielding layer.
  • the convex particles 4 include one or more of conductor particles, semiconductor particles, insulator particle-coated composite particles (conductor-coated insulator particles, or another insulator-coated insulator particles, etc.), and further include small particles. Large particles that are agglomerated. In practical applications, the convex particles 4 are diamond powder, titanium white powder, silicon powder, silicide powder, silica powder, aluminide powder, graphene powder, iron powder, nickel powder, copper powder, nickel-plated diamond. Powder, metal-plated inorganic powder, etc.
  • the shape of the convex particles 4 in the present invention is not limited by the drawings, and the material thereof is not limited by the above materials as long as the outer surface 22 of the second shield layer 2 is formed to have the convex shape.
  • the particles of the portion are all within the scope of the present invention.
  • the ratio of the thickness of the film layer 3 to the undulation of the outer surface 22 of the second shielding layer 2 is preferably 0.8 to 2 to ensure sufficient puncture strength and amount of glue, which is embodied as
  • the undulation of the thickness of the film layer 3 relative to the outer surface 22 of the second shielding layer 2 is prevented from being too small, so that the amount of glue is insufficient to cause a blasting phenomenon, and on the other hand, the outer surface of the second shielding layer 2 is prevented.
  • the undulation of 22 is too small relative to the thickness of the film layer 3 to cause insufficient puncture strength to cause a ground failure phenomenon. It should be noted that the undulation of the outer surface 22 of the second shielding layer 2 is the distance between the highest point and the lowest point of the outer surface 22 of the second shielding layer 2.
  • a convex portion is formed at a position corresponding to the convex particles on the outer surface of the second shield layer 2, and a gentle portion is formed at other positions, and the outer surface 22 of the second shield layer 2 is formed.
  • the undulation is greater than the undulation of the second surface 12, the outer surface 22 of the second shielding layer 2 is provided with the film layer 3, and the convex portion 222 of the outer surface 22 of the second shielding layer 2 is pressed
  • the shielding layer is ensured to pierce the film layer 3 smoothly, and the interference charge is normally led out.
  • the concave portion 221 can increase the amount of glue in the pressing process, so that the peeling strength of the electromagnetic shielding film is increased, and the explosion does not occur. phenomenon.
  • the adhesive film layer 3 is an adhesive layer containing no conductive particles, which reduces the insertion loss of the circuit board during use, improves the shielding performance, and improves the bending property of the circuit board.
  • the adhesive film layer 3 is an adhesive layer with conductive particles, and the adhesive film layer 3 has a bonding function, so that the wiring board and the electromagnetic shielding film are closely bonded, and further has A conductive function that cooperates with the second shield layer 2 to rapidly introduce interfering electrons into the formation of the patch panel.
  • the conductive particles may be conductive particles separated from each other, or may be a large particle conductive particles agglomerated; when the conductive particles are conductive particles separated from each other, the area of electrical contact may be further improved, and electrical contact may be improved. Uniformity; and when the conductive particles are agglomerated large particle conductive particles, the puncture strength can be increased.
  • the electromagnetic shielding film further includes a protective film layer, and the first surface 11 of the first shielding layer 1 is formed with the protective film layer.
  • the protective film layer acts as a barrier to ensure the shielding effectiveness of the first shielding layer 1 and the second shielding layer 2.
  • the protective film layer is a PPS film layer, a PEN film layer, a polyester film layer, a polyimide film layer, a film layer formed by curing the epoxy resin ink, a film layer formed by curing the polyurethane ink, and a modified acrylic resin.
  • first shielding layer 1 and the second shielding layer 2 of the drawing of the present embodiment may have a single layer structure or a multi-layer structure.
  • first shielding layer 1 and the second shielding layer 2 of the drawings of the present embodiment may be disposed in a grid shape, a foamed shape, or the like according to actual production and application requirements.
  • FIG. 2 is a schematic structural view of an electromagnetic shielding film according to Embodiment 2 of the present invention, as shown in FIG. 1 , including a first shielding layer 1 , a second shielding layer 2 , a film layer and a plurality of convex particles;
  • the first shielding layer 1 includes an opposite first surface 11 and a second surface, the second surface is an undulating non-flat surface; the plurality of convex particles are attached on the second surface of the first shielding layer 1;
  • the second shielding layer 2 is disposed on the second surface 12 of the first shielding layer 1 and covers the plurality of convex particles 4 so as to be on the outer surface 21 of the second shielding layer 2
  • the convex particles 4 are formed at positions corresponding to the convex portions 212, and the concave portions 211 are formed at other positions, and the outer surface 21 of the second shielding layer 2 has a greater degree of undulation than the second surface 12;
  • the film layer 3 is disposed on the outer surface 21 of the second
  • the conductive bump 5 includes one or more of a metal bump, a carbon nanotube bump, and a ferrite bump.
  • the metal protrusions include single metal protrusions and/or alloy protrusions; wherein the single metal protrusions are any of aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, and gold.
  • the conductive bumps 5 may be the same as or different from the materials of the first shielding layer 1 and the second shielding layer 2.
  • the conductive protrusions 5 are preferably distributed on the convex portion 222, and the second shielding layer 2 is more likely to pierce the film layer 3 during the pressing process, thereby achieving grounding and improving the quality of the electromagnetic shielding.
  • the first shielding layer 1 and the second shielding layer 2 both have the function of conducting free electrons, and the materials used may be the same or different, specifically including a metal shielding layer, a carbon nanotube shielding layer, a ferrite shielding layer and graphite.
  • the metal shielding layer comprises a single metal shielding layer and/or an alloy shielding layer; wherein the single metal shielding layer is made of any of aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver and gold.
  • a material is made of the alloy shielding layer made of any two or more of aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, and gold.
  • the material for the film layer 3 is preferably selected from the group consisting of modified epoxy resins, modified acrylics, modified rubbers, modified thermoplastic polyimides, and modified polyesters.
  • the convex particles 4 are distributed on the second surface 12 of the first shielding film (the second surface 12 is an undulating non-flat surface), and the function is such that the second shielding layer 2 is outside.
  • the position of the surface 21 corresponding to the convex particles 4 forms a convex portion 212, and the concave portion 211 is formed at other positions, and the outer surface 22 of the second shielding layer 2 has a greater degree of undulation than the second surface 12 Therefore, in the process of pressing the electromagnetic shielding film and the printed circuit board, the convex portion 222 can pierce the adhesive film layer 3 more easily, so that the shielding layer is in contact with the circuit board ground layer, and the interference charge is directly led out through the shielding layer;
  • the concave portion 221 can increase the amount of the adhesive, so that the peeling strength of the electromagnetic shielding film is increased, and the phenomenon of cracking does not occur.
  • the convex particles 4 include one or more of conductor particles, semiconductor particles, insulator particles, and coated composite particles (conductor-coated insulator particles, or another insulator-coated insulator particles, etc.), and also include small Large particles agglomerated by particles.
  • the convex particles 4 are diamond powder, titanium white powder, silicon powder, silicide powder, silica powder, aluminide powder, graphene powder, iron powder, nickel powder, copper powder, nickel-plated diamond. Powder, metal-plated inorganic powder, etc.
  • the shape of the convex particles 4 in the present invention is not limited by the drawings, and the material thereof is not limited by the above materials as long as the outer surface 22 of the second shield layer 2 is formed into the convex portion 222.
  • the particles are all within the scope of the present invention.
  • the height of the convex particles 4 is from 0.1 ⁇ m to 30 ⁇ m.
  • the ratio of the thickness of the film layer 3 to the sum of the undulation of the outer surface 22 of the second shield layer 2 and the height of the conductive bumps 5 is preferably 0.8 to 2 to ensure sufficient thorns.
  • the wearing strength and the amount of adhesive are embodied as follows: on the one hand, the thickness of the film layer 3 is prevented from being too small with respect to the undulation of the outer surface 22 of the second shielding layer 2 and the height of the conductive protrusion 5 is too small.
  • the convex portion 212 is formed at a position corresponding to the convex particles 4 of the outer surface 21 of the second shield layer 2, and the concave portion 211 is formed at other positions, and the outer surface of the second shield layer 2 is formed.
  • the undulation of 22 is greater than the undulation of the second surface 12, the outer surface 22 of the second shielding layer 2 is provided with the film layer 3, and the outer surface 22 of the second shielding layer 2 is further formed with a plurality of conductive protrusions 5, the convex portion 222 of the outer surface 22 of the second shielding layer 2 and the conductive protrusions 5 thereon cooperate with each other to enhance the piercing function, and ensure that the second shielding layer 2 pierces the film layer 3 smoothly.
  • the concave portion 221 can increase the amount of glue in the pressing process, so that the peeling strength of the electromagnetic shielding film is increased, and the explosion phenomenon does not occur.
  • the adhesive film layer 3 is an adhesive layer containing no conductive particles, which reduces the insertion loss of the circuit board during use, improves the shielding performance, and improves the bending property of the circuit board.
  • the adhesive film layer 3 is an adhesive layer with conductive particles, and the adhesive film layer 3 has a bonding function, so that the wiring board and the electromagnetic shielding film are closely bonded, and further has A conductive function that cooperates with the second shield layer 2 to rapidly introduce interfering electrons into the formation of the patch panel.
  • the conductive particles may be conductive particles separated from each other, or may be a large particle conductive particles agglomerated; when the conductive particles are conductive particles separated from each other, the area of electrical contact may be further improved, and electrical contact may be improved. Uniformity; and when the conductive particles are agglomerated large particle conductive particles, the puncture strength can be increased.
  • the electromagnetic shielding film further includes a protective film layer, and the first surface 11 of the first shielding layer 1 is formed with the protective film layer.
  • the protective film layer acts as a barrier to ensure the shielding effectiveness of the first shielding layer 1 and the second shielding layer 2.
  • the protective film layer is a PPS film layer, a PEN film layer, a polyester film layer, a polyimide film layer, a film layer formed by curing the epoxy resin ink, a film layer formed by curing the polyurethane ink, and a modified acrylic resin.
  • the conductive protrusions 5 are preferably distributed in the convex portion 222, and the second shielding layer 2 is more likely to pierce the film layer 3 during the pressing process, thereby achieving more reliable grounding and improving electromagnetic The quality of the shield.
  • first shielding layer 1 and the second shielding layer 2 of the drawing of the present embodiment may have a single layer structure or a multi-layer structure.
  • first shielding layer 1 and the second shielding layer 2 of the drawings of the present embodiment may be disposed in a grid shape, a foamed shape, or the like according to actual production and application requirements.
  • FIG. 3 is a schematic structural diagram of a circuit board according to Embodiment 3 of the present invention.
  • the circuit board includes a printed circuit board and the electromagnetic shielding film described in Embodiment 1, and the electromagnetic shielding film passes through the film layer 3 thereof.
  • the printed wiring board is pressed; the convex portion 222 of the outer surface 22 of the second shielding layer 2 pierces the film layer 3 and extends to the ground layer of the printed wiring board.
  • the printed wiring board 3 is one of a flexible single-sided, a flexible double-sided, a flexible multilayer board, and a rigid-flex board.
  • the film layer 3 is pierced by the convex portion 222 of the second shield layer 2 during the nip process, so that at least a portion of the outer surface 22 of the second shield layer 2 and the printed circuit board 6 are
  • the formation is connected to realize the interference charge introduction in the first shielding layer 1 and the second shielding layer 2, avoiding the accumulation of interference charges to form an interference source, affecting the normal operation of the circuit board; and the flat portion can be reduced in use. Insertion loss in the process, suitable for UHF transmission.
  • the circuit board includes a printed circuit board and an electromagnetic shielding film according to Embodiment 2, and the electromagnetic shielding film passes through the film layer 3 thereof.
  • the printed wiring board is pressed; the convex portion 222 of the outer surface 22 of the second shielding layer 2 pierces the film layer 3 and extends to the ground layer of the printed wiring board.
  • the convex portion 222 of the outer surface 22 of the second shield layer 2 and the conductive bumps 5 thereon are used to pierce the film layer 3 in cooperation with each other during the nip process, thereby making the second shield layer 2
  • At least a portion of the outer surface 22 is connected to the ground layer of the printed circuit board 6, thereby realizing the introduction of interfering charges in the first shielding layer 1 and the second shielding layer 2, thereby avoiding the accumulation of interference charges and forming an interference source, affecting The normal operation of the circuit board; at the same time, the concave portion 221 can increase the amount of glue, so that the peeling strength of the electromagnetic shielding film is increased, and the phenomenon of bursting does not occur.
  • FIG. 5 is a schematic flow chart of a method for preparing an electromagnetic shielding film according to Embodiment 5 of the present invention.
  • the method is applicable to the preparation of the electromagnetic shielding film described in Embodiment 1, and includes the steps of:
  • the first shielding layer is formed by:
  • the second surface of the first shielding layer is an undulating non-flat surface which can be realized by:
  • a shielding layer on the flat surface or the non-flat surface of the protective film layer/peelable layer by one of physical roughing, electroless plating, physical vapor deposition, chemical vapor deposition, evaporation plating, sputtering plating, and electroplating Or surface treating the first shielding layer by a plurality of processes; or
  • a first shielding layer having a certain degree of undulation is formed on the non-flat surface of the protective film layer/peelable layer.
  • step S4 the forming a film layer on the second surface of the first shielding layer is specifically:
  • a film layer is directly coated on the outer surface of the second shielding layer to form the film layer on the outer surface of the second shielding layer.
  • first shielding layer the convex particles, the second shielding layer or the glass layer
  • formation of the first shielding layer, the convex particles, the second shielding layer or the glass layer may preferably be performed by electroless plating, PVD, CVD, evaporation plating, sputtering plating, electroplating or a composite process thereof.
  • the step further comprises a step before the step S4:

Abstract

一种电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法。电磁屏蔽膜包括第一屏蔽层(1)、第二屏蔽层(2)、胶膜层(3)和若干凸状颗粒(4);第一屏蔽层包括相对的第一表面(11)和第二表面(12),第二表面为起伏的非平整表面;若干凸状颗粒附着在第一屏蔽层的第二表面上;第二屏蔽层配置在第一屏蔽层的第二表面上,并覆盖若干凸状颗粒,从而在第二屏蔽层的外表面(21)的与凸状颗粒对应的位置形成凸部(212),而在其他位置形成凹部(211),第二屏蔽层的外表面的起伏度大于第二表面的起伏度;胶膜层配置在第二屏蔽层的外表面上。

Description

电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法 技术领域
本发明涉及电子领域,尤其涉及一种电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法。
背景技术
随着电子工业的迅速发展,电子产品进一步向小型化,轻量化,组装高密度化发展,极大地推动挠性电路板的发展,从而实现元件装置和导线连接一体化。挠性电路板可广泛应用于手机、液晶显示、通信和航天等行业。
在国际市场的推动下,功能挠性电路板在挠性电路板市场中占主导地位,而评价功能挠性电路板性能的一项重要指标是电磁屏蔽((Electromagnetic Interference Shielding,简称EMI Shielding)。随着手机等通讯设备功能的整合,其内部组件急剧高频高速化。例如:手机功能除了原有的音频传播功能外,照相功能已成为必要功能,且WLAN(Wireless Local Area Networks,无线局域网)、GPS(Global Positioning System,全球定位系统)以及上网功能已普及,再加上未来的感测组件的整合,组件急剧高频高速化的趋势更加不可避免。在高频及高速化的驱动下所引发的组件内部及外部的电磁干扰、信号在传输中衰减以及插入损耗和抖动问题逐渐严重。
目前,现有线路板常用的屏蔽膜包括屏蔽层和导电胶层,通过导电胶层将屏蔽层与线路板地层连接,进而将干扰电荷导入线路板地层,实现屏蔽。在现有技术中,另一种常用的方法是去除胶膜层中的导电粒子,并在平整屏蔽层上形成一定粗糙度的表面,然后通过屏蔽层的粗糙表面刺穿胶膜层,从而使得屏蔽层与线路板的地层接触连接,但是这种方案存在容胶量小和刺穿力度不足的缺陷。
发明内容
本发明实施例的目的是提供一种电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法,能有效解决现有技术容胶量不足而容易导致高温爆板现象,刺穿力度强,剥离强度高,避免爆板现象的发生。
为实现上述目的,本发明实施例提供了一种电磁屏蔽膜,包括第一屏蔽层、第二屏蔽层、胶膜层和若干凸状颗粒;所述第一屏蔽层包括相对的第一表面和第二表面,所述第二表面为起伏的非平整表面;所述若干凸状颗粒附着在所述第一屏蔽层的第二表面上;所述第二屏蔽层配置在所述第一屏蔽层的第二表面上,并覆盖所述若干凸状颗粒,从而在所述第二屏蔽层的外表面的与所述凸状颗粒对应的位置形成凸部,而在其他位置形成凹部,所述第二屏蔽层的外表面的起伏度大于所述第二表面的起伏度;所述胶膜层配置在所述第二屏蔽层的外表面上。
作为上述方案的改进,所述凸状颗粒包括导体颗粒、半导体颗粒、绝缘体颗粒和包覆复合颗粒的一种或多种。
作为上述方案的改进,所述凸状颗粒的高度为0.1μm-30μm。
作为上述方案的改进,所述第二屏蔽层的外表面上还形成有若干导电凸起。
作为上述方案的改进,所述导电凸起集中分布于所述凸部上。
作为上述方案的改进,所述胶膜层包括含有导电粒子的黏着层。
作为上述方案的改进,所述胶膜层包括不含导电粒子的黏着层。
作为上述方案的改进,所述第一屏蔽层和第二屏蔽层包括金属屏蔽层、碳纳米管屏蔽层、铁氧体屏蔽层和石墨烯屏蔽层中的一种或多种。
作为上述方案的改进,所述金属屏蔽层包括单金属屏蔽层和/或合金屏蔽层;其中,所述单金属屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意一种材料制成,所述合金屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意两种或两种以上的材料制成。
作为上述方案的改进,所述电磁屏蔽膜还包括保护膜层,所述第一屏蔽层的第一表面形成有所述保护膜层。
与现有技术相比,本发明实施例公开了一种电磁屏蔽膜,所述若干凸状颗粒附着在所述第一屏蔽层的第二表面上;所述第二屏蔽层配置在所述第一屏蔽层的第二表面上,并覆盖所述若干凸状颗粒,从而在所述第二屏蔽层的外表面的与所述凸状颗粒对应的位置形成凸起部,则所述第二屏蔽层的外表面上的与所述凸状颗粒相对的凸部更容易刺穿胶膜层,使得屏蔽层与线路板地层接触连接,将干扰电荷通过屏蔽层直接导出;另外,所述电磁屏蔽膜的胶膜层在压合过程中会将胶类物质挤压到所述第二屏蔽层的外表面的凹部中,能有效解决现有技术容胶量不足而容易导致高温爆板现象,剥离强度高,不会发生爆板现象。
本发明实施例还对应提供了一种线路板,包括印刷电路板和上述任意一项所述的电磁屏蔽膜,所述电磁屏蔽膜通过其胶膜层与所述印刷线路板相压合;所述凸部刺穿所述胶膜层,并延伸至所述印刷线路板的地层。
与现有技术相比,与现有技术相比,本发明实施例所提供的线路板,通过采用了上述任一项所述的电磁屏蔽膜,所述第二屏蔽层的外表面的起伏度大于所述第二表面的起伏度,则所述电磁屏蔽膜的胶膜层在压合过程中会将胶类物质挤压到所述第二屏蔽层的外表面的凹部中,容胶量增大,不容易出现爆板现象;同时,所述第二屏蔽层的外表面的凸部更容易刺穿胶膜层,使得屏蔽层与线路板地层接触连接,将干扰电荷通过屏蔽层直接导出。
本发明实施例还对应一种电磁屏蔽膜的制备方法,适用于制备上述任一项所述的电磁屏蔽膜,包括步骤:
S1、形成第一屏蔽层;其中,所述第一屏蔽层包括相对的第一表面和第二表面,所述第二表面为起伏的非平整表面;
S2、在第一屏蔽层的第二表面形成若干凸状颗粒;
S3、在分布有所述凸状颗粒的第二表面上形成第二屏蔽层;其中,所述第二 屏蔽层的外表面在与所述凸状颗粒对应的位置形成凸起部,而在其他位置形成平缓部;
S4、在所述第二屏蔽层的外表面上形成胶膜层。
作为上述方案的改进,步骤S1中通过以下方式形成所述第一屏蔽层:
在载体膜上形成保护膜层,在所述保护膜层上形成所述第一屏蔽层;其中,所述第一表面与所述保护膜层贴合;或
在载体膜上形成可剥离层,在所述可剥离层的表面上形成所述第一屏蔽层,在所述第一屏蔽层的第一表面形成保护膜层后,将所述载体膜层剥离。
作为上述方案的改进,在所述第二屏蔽层的外表面上形成胶膜层前还包括步骤:
通过物理打毛、化学镀、物理气相沉积、化学气相沉积、蒸发镀、溅射镀、电镀和和混合镀中的一种或多种工艺在所述第二屏蔽层的外表面形成若干导电凸起。
作为上述方案的改进,在步骤S4中,所述在所述第二屏蔽层的外表面上形成胶膜层具体为:
在离型膜上涂布胶膜层,然后将所述胶膜层压合转移至所述第二屏蔽层的外表面,从而在所述第二屏蔽层的外表面上形成所述胶膜层;或
直接在所述第二屏蔽层的外表面涂布胶膜层,从而在所述第二屏蔽层的外表面上形成所述胶膜层。
与现有技术相比,本发明实施例所提供的电磁屏蔽膜的制备方法,通过形成第二表面为起伏的非平整表面的第一屏蔽层,再在第一屏蔽层的第二表面形成凸状颗粒,在分布有所述凸状颗粒的第二表面上形成第二屏蔽层,从而所述第二屏蔽层的外表面在与所述凸状颗粒对应的位置形成凸起部,而在其他位置形成平缓 部,则所述凸部更容易刺穿胶膜层,使得屏蔽层与线路板地层接触连接,将干扰电荷通过屏蔽层直接导出;另外,所述电磁屏蔽膜的胶膜层在压合过程中会将胶类物质挤压到所述第二屏蔽层的外表面的凹部中,能有效解决现有技术容胶量不足而容易导致高温爆板现象,剥离强度高,不会发生爆板现象。
附图说明
图1是本发明实施例1中一种电磁屏蔽膜的结构示意图。
图2是本发明实施例2中一种电磁屏蔽膜的结构示意图。
图3是本发明实施例3中一种线路板的结构示意图。
图4是本发明实施例4中一种线路板的结构示意图。
图5是本发明实施例5中一种电磁屏蔽膜的制备方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,是本发明实施例1中一种电磁屏蔽膜的结构示意图,如图1所示,所述电磁屏蔽膜包括第一屏蔽层1、第二屏蔽层2、胶膜层和若干凸状颗粒;所述第一屏蔽层1包括相对的第一表面11和第二表面,所述第二表面为非平整表面;所述若干凸状颗粒4附着在所述第一屏蔽层1的第二表面12上;所述第二屏蔽层2配置在所述第一屏蔽层1的第二表面12上,并覆盖所述若干凸状颗粒4,从而在所述第二屏蔽层2的外表面21的与所述凸状颗粒4对应的位置形成凸部212,而在其他位置形成凹部211,所述第二屏蔽层2的外表面21的起伏度大于 所述第二表面12的起伏度;所述胶膜层3配置在所述第二屏蔽层2的外表面21上。
所述第一屏蔽层1和第二屏蔽层2均具有传导自由电子的功能,其所用的材料可相同也可不同,具体包括金属屏蔽层、碳纳米管屏蔽层、铁氧体屏蔽层和石墨烯屏蔽层中的一种或多种。其中,所述金属屏蔽层包括单金属屏蔽层和/或合金屏蔽层;其中,所述单金属屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意一种材料制成,所述合金屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意两种或两种以上的材料制成。另外,所述胶膜层3所用材料优选自以下几种:改性环氧树脂类、改性丙烯酸类、改性橡胶类、改性热塑性聚酰亚胺类、改性聚酯类。
在本实施例中,所述凸状颗粒4分布于第一屏蔽膜的第二表面12上(第二表面12为起伏的非平整表面),其功能为使得第二屏蔽膜的第二屏蔽层2的外表面22在与所述凸状颗粒4对应的位置形成凸起部212,而在其他位置形成平缓部211,所述第二屏蔽层2的外表面22的起伏度大于所述第二表面12的起伏度,从而使得电磁屏蔽膜与印刷线路板压合过程中,该凸部222能更容易刺穿胶膜层3,使得屏蔽层与线路板地层接触连接,将干扰电荷通过屏蔽层直接导出;另外,该凹部221能增大容胶量,使得该电磁屏蔽膜的剥离强度增高,不会发生爆板现象。所述凸状颗粒4包括导体颗粒、半导体颗粒、绝缘体颗粒包覆复合颗粒(导体包覆的绝缘体颗粒,或者绝缘体包覆的另一种绝缘体颗粒等)的一种或多种,还包括小颗粒团聚而成的大颗粒。实际应用中,所述凸状颗粒4为钻石粉、钛白粉、硅粉末、硅化物粉末、二氧化硅粉末、铝化物粉末、石墨烯粉体、铁粉、镍粉、铜粉、镀镍钻石粉,镀金属无机粉体等。需要说明的是,本发明中的凸状颗粒4的形状并不受图示的限制,其材料也不受上述材料的限制,只要是具有使得第二屏蔽层2的外表面22形成所述凸部的颗粒,均在本发明的保护范围之内。
为了满足所述第二屏蔽层2的外表面22形成足够刺穿胶膜层3的凸部222, 所述凸状颗粒4的高度为0.1μm-30μm。另外,所述胶膜层3的厚度与所述第二屏蔽层2的外表面22的起伏度满足比例关系优选为:0.8~2,以保证足够的刺穿强度和容胶量,具体体现为:一方面防止胶膜层3的厚度相对于第二屏蔽层2的外表面22的起伏度过小而导致容胶量不足进而导致爆板现象,另一方面防止第二屏蔽层2的外表面22的起伏度相对于胶膜层3的厚度过小而导致刺穿强度不足而导致接地失效现象产生。需要说明的是,所述第二屏蔽层2的外表面22的起伏度为所述第二屏蔽层2的外表面22的最高点和最低点的距离。
基于上述结构,在所述第二屏蔽层2的外表面上与所述凸状颗粒对应的位置形成凸起部,而在其他位置形成平缓部,所述第二屏蔽层2的外表面22的起伏度大于所述第二表面12的起伏度,所述第二屏蔽层2的外表面22上设有所述胶膜层3,第二屏蔽层2的外表面22的凸部222在压合过程中保证屏蔽层顺利刺穿胶膜层3,保证干扰电荷正常导出,同时凹部221又能增大压合过程中的容胶量,使得该电磁屏蔽膜的剥离强度增高,不会发生爆板现象。
优选地,所述胶膜层3为不含导电粒子的黏着层,降低使用过程中线路板的插入损耗,提高屏蔽效能的同时改善线路板的弯折性。
在另一优选实施例中,所述胶膜层3为带有导电粒子的黏着层,则所述胶膜层3除了具有黏合的作用,使所述接线板和电磁屏蔽膜紧密黏合,还具有导电的功能,其与所述第二屏蔽层2相配合,将干扰电子迅速导入所述接线板的地层中。其中,所述导电粒子可以为相互分离的导电粒子,也可以为团聚而成的大颗粒导电粒子;当所述导电粒子为相互分离的导电粒子时,可进一步提高电气接触的面积,提高电气接触的均匀度;而当所述导电粒子为团聚而成的大颗粒导电粒子,可增加刺穿强度。
优选地,所述电磁屏蔽膜还包括保护膜层,所述第一屏蔽层1的第一表面11形成有所述保护膜层。所述保护膜层起到隔绝作用从而保证所述第一屏蔽层1和第二屏蔽层2的屏蔽效能。所述保护膜层为PPS薄膜层、PEN薄膜层、聚酯薄膜 层、聚酰亚胺薄膜层、环氧树脂油墨固化后形成的膜层、聚氨酯油墨固化后形成的膜层、改性丙烯酸树脂固化后形成的膜层、聚酰亚胺树脂固化后形成的膜层中的一种。
需要说明的是,本实施例附图的第一屏蔽层1和第二屏蔽层2可为单层结构,也可以为多层结构。另外,根据实际生产和应用的需要,本实施例附图的第一屏蔽层1和第二屏蔽层2可设置为网格状、发泡状等。
参见图2,是本发明实施例2中一种电磁屏蔽膜的结构示意图,如图1所示,包括第一屏蔽层1、第二屏蔽层2、胶膜层和若干凸状颗粒;所述第一屏蔽层1包括相对的第一表面11和第二表面,所述第二表面为起伏的非平整表面;所述若干凸状颗粒附着在所述第一屏蔽层1的第二表面上;所述第二屏蔽层2配置在所述第一屏蔽层1的第二表面上12,并覆盖所述若干凸状颗粒4,从而在所述第二屏蔽层2的外表面21的与所述凸状颗粒4对应的位置形成凸部212,而在其他位置形成凹部211,所述第二屏蔽层2的外表面21的起伏度大于所述第二表面12的起伏度;所述胶膜层3配置在所述第二屏蔽层2的外表面21上;所述第二屏蔽层2的外表面上还形成有若干导电凸起5。
所述导电凸起5包括金属凸起、碳纳米管凸起和铁氧体凸起中的一种或多种。此外,所述金属凸起包括单金属凸起和/或合金凸起;其中,所述单金属凸起由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意一种材料制成,所述合金凸起由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意两种或两种以上的材料制成。需要说明的是,导电凸起5可与跟第一屏蔽层1、第二屏蔽层2的材料相同,也可不相同。
所述导电凸起5优选为集中分布于所述凸部222上,则所述第二屏蔽层2在压合过程中更容易刺穿胶膜层3,从而实现接地,提高电磁屏蔽的质量。
所述第一屏蔽层1和第二屏蔽层2均具有传导自由电子的功能,其所用的材料可相同也可不同,具体包括金属屏蔽层、碳纳米管屏蔽层、铁氧体屏蔽层和石 墨烯屏蔽层中的一种或多种。其中,所述金属屏蔽层包括单金属屏蔽层和/或合金屏蔽层;其中,所述单金属屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意一种材料制成,所述合金屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意两种或两种以上的材料制成。另外,所述胶膜层3所用材料优选自以下几种:改性环氧树脂类、改性丙烯酸类、改性橡胶类、改性热塑性聚酰亚胺类、改性聚酯类。
在本实施例中,所述凸状颗粒4分布于第一屏蔽膜的第二表面12上(第二表面12为起伏的非平整表面),其功能为使得所述第二屏蔽层2的外表面21的与所述凸状颗粒4对应的位置形成凸部212,而在其他位置形成凹部211,所述第二屏蔽层2的外表面22的起伏度大于所述第二表面12的起伏度,从而使得电磁屏蔽膜与印刷线路板压合过程中,该凸部222能更容易刺穿胶膜层3,使得屏蔽层与线路板地层接触连接,将干扰电荷通过屏蔽层直接导出;另外,该凹部221能增大容胶量,使得该电磁屏蔽膜的剥离强度增高,不会发生爆板现象。所述凸状颗粒4包括导体颗粒、半导体颗粒、绝缘体颗粒和包覆复合颗粒(导体包覆的绝缘体颗粒,或者绝缘体包覆的另一种绝缘体颗粒等)的一种或多种,还包括小颗粒团聚而成的大颗粒。实际应用中,所述凸状颗粒4为钻石粉、钛白粉、硅粉末、硅化物粉末、二氧化硅粉末、铝化物粉末、石墨烯粉体、铁粉、镍粉、铜粉、镀镍钻石粉,镀金属无机粉体等。需要说明的是,本发明中的凸状颗粒4的形状并不受图示的限制,其材料也不受上述材料的限制,只要是具有使得第二屏蔽层2的外表面22形成凸部222的颗粒,均在本发明的保护范围之内。
为了满足所述第二屏蔽层2的外表面22形成足够刺穿胶膜层3的凸部222,所述凸状颗粒4的高度为0.1μm-30μm。另外,所述胶膜层3的厚度与所述第二屏蔽层2的外表面22的起伏度和所述导电凸起5的高度的和满足比例关系优选为0.8~2,以保证足够的刺穿强度和容胶量,具体体现为:一方面防止胶膜层3的厚度相对于第二屏蔽层2的外表面22的起伏度和所述导电凸起5的高度的和 过小而导致容胶量不足进而导致爆板现象,另一方面防止第二屏蔽层2的外表面22的起伏度和所述导电凸起5的高度的和相对于胶膜层3的厚度过小而导致刺穿强度不足而导致接地失效现象产生。需要说明的是,所述第二屏蔽层2的外表面22的起伏度为所述第二屏蔽层2的外表面22的最高点和最低点的距离。
基于上述结构,在所述第二屏蔽层2的外表面21的与所述凸状颗粒4对应的位置形成凸部212,而在其他位置形成凹部211,所述第二屏蔽层2的外表面22的起伏度大于所述第二表面12的起伏度,所述第二屏蔽层2的外表面22上设有所述胶膜层3,且第二屏蔽层2的外表面22上还形成有若干导电凸起5,则第二屏蔽层2的外表面22的凸部222和其上的导电凸起5相互协同,增强刺穿功能,保证第二屏蔽层2顺利刺穿胶膜层3,从而确保干扰电荷正常导出;同时凹部221又能增大压合过程中的容胶量,使得该电磁屏蔽膜的剥离强度增高,不会发生爆板现象。
优选地,所述胶膜层3为不含导电粒子的黏着层,降低使用过程中线路板的插入损耗,提高屏蔽效能的同时改善线路板的弯折性。
在另一优选实施例中,所述胶膜层3为带有导电粒子的黏着层,则所述胶膜层3除了具有黏合的作用,使所述接线板和电磁屏蔽膜紧密黏合,还具有导电的功能,其与所述第二屏蔽层2相配合,将干扰电子迅速导入所述接线板的地层中。其中,所述导电粒子可以为相互分离的导电粒子,也可以为团聚而成的大颗粒导电粒子;当所述导电粒子为相互分离的导电粒子时,可进一步提高电气接触的面积,提高电气接触的均匀度;而当所述导电粒子为团聚而成的大颗粒导电粒子,可增加刺穿强度。
优选地,所述电磁屏蔽膜还包括保护膜层,所述第一屏蔽层1的第一表面11形成有所述保护膜层。所述保护膜层起到隔绝作用从而保证所述第一屏蔽层1和第二屏蔽层2的屏蔽效能。所述保护膜层为PPS薄膜层、PEN薄膜层、聚酯薄膜层、聚酰亚胺薄膜层、环氧树脂油墨固化后形成的膜层、聚氨酯油墨固化后形成 的膜层、改性丙烯酸树脂固化后形成的膜层、聚酰亚胺树脂固化后形成的膜层中的一种。
另外,所述导电凸起5优选为集中分布于所述凸部222,则所述第二屏蔽层2在压合过程中更容易刺穿胶膜层3,从而实现更可靠的接地,提高电磁屏蔽的质量。
需要说明的是,本实施例附图的第一屏蔽层1和第二屏蔽层2可为单层结构,也可以为多层结构。另外,根据实际生产和应用的需要,本实施例附图的第一屏蔽层1和第二屏蔽层2可设置为网格状、发泡状等。
参见图3,为本发明实施例3提供的一种线路板的结构示意图,所述线路板包括印刷线路板和实施例1所述的电磁屏蔽膜,所述电磁屏蔽膜通过其胶膜层3与所述印刷线路板相压合;所述第二屏蔽层2的外表面22的凸部222刺穿所述胶膜层3,并延伸至所述印刷线路板的地层。
在本实施例中,关于电磁屏蔽膜的实现方式可参考上述实施例1的描述,在此不再赘述。
优选地,所述印刷线路板3为挠性单面、挠性双面、挠性多层板、刚挠结合板中的一种。
通过上述结构,在压合过程中,利用所述第二屏蔽层2的凸部222将胶膜层3刺穿,从而使得第二屏蔽层2的外表面22至少一部分与所述印刷电路板6的地层连接,从而实现第一屏蔽层1和第二屏蔽层2中的干扰电荷导入地中,避免了干扰电荷的积聚而形成干扰源,影响线路板的正常工作;同时平缓部又能降低使用过程中的插入损耗,适用于超高频传输。
参见图4,为本发明实施例4提供的一种线路板的结构示意图,所述线路板包括印刷线路板和实施例2所述的电磁屏蔽膜,所述电磁屏蔽膜通过其胶膜层3与所述印刷线路板相压合;所述第二屏蔽层2的外表面22的凸部222刺穿所述胶膜层3,并延伸至所述印刷线路板的地层。
在本实施例中,关于电磁屏蔽膜的实现方式可参考上述实施例2的描述,在此不再赘述。
通过上述结构,在压合过程中,利用第二屏蔽层2的外表面22的凸部222和其上的导电凸起5相互协同刺穿所述胶膜层3,从而使得第二屏蔽层2的外表面22至少一部分与所述印刷电路板6的地层连接,从而实现第一屏蔽层1和第二屏蔽层2中的干扰电荷导入地中,避免了干扰电荷的积聚而形成干扰源,影响线路板的正常工作;同时,凹部221又能增大容胶量,使得该电磁屏蔽膜的剥离强度增高,不会发生爆板现象。
参见图5,为本发明实施例5提供的一种提供的电磁屏蔽膜制备方法的流程示意图,该方法适用于实施例1所述的电磁屏蔽膜的制备,包括步骤:
S1、形成第一屏蔽层;其中,所述第一屏蔽层包括相对的第一表面和第二表面,所述第二表面为起伏的非平整表面;
其中,在步骤S1中通过以下方式形成所述第一屏蔽层:
在载体膜上形成保护膜层,在所述保护膜层上形成所述第一屏蔽层;其中,所述第一表面与所述保护膜层贴合;或
在载体膜上形成可剥离层,在所述可剥离层的表面上形成所述第一屏蔽层,在所述第一屏蔽层的第一表面形成保护膜层后,将所述载体膜层剥离。
优选地,所述第一屏蔽层的第二表面为起伏的非平整表面可通过以下方式实现:
在所述保护膜层/可剥离层的平整表面或非平整表面上形成屏蔽层,通过物理打毛、化学镀、物理气相沉积、化学气相沉积、蒸发镀和溅射镀、电镀中的一种或多种工艺对所述第一屏蔽层进行表面处理;或,
在所述保护膜层/可剥离层的非平整表面上形成具有一定起伏度的第一屏蔽层。
S2、在第一屏蔽层的第二表面形成若干凸状颗粒;
S3、在分布有所述凸状颗粒的第二表面上形成第二屏蔽层;其中,其中,在所述第二屏蔽层的外表面的与所述凸状颗粒对应的位置形成凸部,而在其他位置形成凹部,所述第二屏蔽层的外表面的起伏度大于所述第二表面的起伏度;
S4、在所述第二屏蔽层的外表面上形成胶膜层。
其中,在步骤S4中,所述在所述第一屏蔽层的第二表面上形成胶膜层具体为:
在离型膜上涂布胶膜层,然后将所述胶膜层压合转移至所述第二屏蔽层的外表面,从而在所述第二屏蔽层的外表面上形成所述胶膜层;或
直接在所述第二屏蔽层的外表面涂布胶膜层,从而在所述第二屏蔽层的外表面上形成所述胶膜层。
需要说明的是,形成第一屏蔽层、凸状颗粒、第二屏蔽层或玻璃层均可优选为采用化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺进行。
在适用于制备实施例2所述的电磁屏蔽膜的另一优选实施例中,在实施例5的基础上,在步骤S4前还包括步骤:
通过物理打毛、化学镀、物理气相沉积、化学气相沉积、蒸发镀、溅射镀、电镀和混合镀中的一种或多种工艺在所述第二屏蔽层的外表面形成若干导电凸起。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (15)

  1. 一种电磁屏蔽膜,其特征在于,包括第一屏蔽层、第二屏蔽层、胶膜层和若干凸状颗粒;所述第一屏蔽层包括相对的第一表面和第二表面,所述第二表面为起伏的非平整表面;所述若干凸状颗粒附着在所述第一屏蔽层的第二表面上;所述第二屏蔽层配置在所述第一屏蔽层的第二表面上,并覆盖所述若干凸状颗粒,从而在所述第二屏蔽层的外表面的与所述凸状颗粒对应的位置形成凸部,而在其他位置形成凹部,所述第二屏蔽层的外表面的起伏度大于所述第二表面的起伏度;所述胶膜层配置在所述第二屏蔽层的外表面上。
  2. 如权利要求1所述的电磁屏蔽膜,其特征在于,所述凸状颗粒包括导体颗粒、半导体颗粒、绝缘体颗粒和包覆复合颗粒的一种或多种。
  3. 如权利要求2所述的电磁屏蔽膜,其特征在于,所述凸状颗粒的高度为0.1μm-30μm。
  4. 如权利要求1任一项所述的电磁屏蔽膜,其特征在于,所述第二屏蔽层的外表面上还形成有若干导电凸起。
  5. 如权利要求4所述的电磁屏蔽膜,其特征在于,所述导电凸起集中分布于所述凸部上。
  6. 如权利要求1所述的电磁屏蔽膜,其特征在于,所述胶膜层包括含有导 电粒子的黏着层。
  7. 如权利要求1所述的电磁屏蔽膜,其特征在于,所述胶膜层包括不含导电粒子的黏着层。
  8. 如权利要求1任一项所述的电磁屏蔽膜,其特征在于,所述第一屏蔽层和第二屏蔽层包括金属屏蔽层、碳纳米管屏蔽层、铁氧体屏蔽层和石墨烯屏蔽层中的一种或多种。
  9. 如权利要求7所述的电磁屏蔽膜,其特征在于,所述金属屏蔽层包括单金属屏蔽层和/或合金屏蔽层;其中,所述单金属屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意一种材料制成,所述合金屏蔽层由铝、钛、锌、铁、镍、铬、钴、铜、银和金中的任意两种或两种以上的材料制成。
  10. 如权利要求1所述的电磁屏蔽膜,其特征在于,所述电磁屏蔽膜还包括保护膜层,所述第一屏蔽层的第一表面形成有所述保护膜层。
  11. 一种线路板,其特征在于,包括印刷线路板和权利要求1至10任意一项所述的电磁屏蔽膜,所述电磁屏蔽膜通过其胶膜层与所述印刷线路板相压合;所述第二屏蔽层的外表面的凸部刺穿所述胶膜层,并延伸至所述印刷线路板的地层。
  12. 一种电磁屏蔽膜的制备方法,其特征在于,适用于制备权利要求1至10 任一项所述的电磁屏蔽膜,包括步骤:
    S1、形成第一屏蔽层;其中,所述第一屏蔽层包括相对的第一表面和第二表面,所述第二表面为起伏的非平整表面;
    S2、在第一屏蔽层的第二表面形成若干凸状颗粒;
    S3、在分布有所述凸状颗粒的第二表面上形成第二屏蔽层;其中,在所述第二屏蔽层的外表面的与所述凸状颗粒对应的位置形成凸部,而在其他位置形成凹部,所述第二屏蔽层的外表面的起伏度大于所述第二表面的起伏度;
    S4、在所述第二屏蔽层的外表面上形成胶膜层。
  13. 如权利要求12所述的电磁屏蔽膜的制备方法,其特征在于,步骤S1中通过以下方式形成所述第一屏蔽层:
    在载体膜上形成保护膜层,在所述保护膜层上形成所述第一屏蔽层;其中,所述第一表面与所述保护膜层贴合;或
    在载体膜上形成可剥离层,在所述可剥离层的表面上形成所述第一屏蔽层,在所述第一屏蔽层的第一表面形成保护膜层后,将所述载体膜层剥离。
  14. 如权利要求12或13所述的电磁屏蔽膜的制备方法,其特征在于,在所述第二屏蔽层的外表面上形成胶膜层前还包括步骤:
    通过物理打毛、化学镀、物理气相沉积、化学气相沉积、蒸发镀、溅射镀、电镀和和混合镀中的一种或多种工艺在所述第二屏蔽层的外表面形成若干导电凸起。
  15. 如权利要求12所述的电磁屏蔽膜的制备方法,其特征在于,在步骤S4 中,所述在所述第二屏蔽层的外表面上形成胶膜层具体为:
    在离型膜上涂布胶膜层,然后将所述胶膜层压合转移至所述第二屏蔽层的外表面,从而在所述第二屏蔽层的外表面上形成所述胶膜层;或
    直接在所述第二屏蔽层的外表面涂布胶膜层,从而在所述第二屏蔽层的外表面上形成所述胶膜层。
PCT/CN2018/080030 2018-03-14 2018-03-22 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法 WO2019174066A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/626,012 US11006554B1 (en) 2018-03-14 2018-03-22 Electromagnetic interference shielding film, circuit board, and preparation method for electromagnetic interference shielding film
KR1020197037924A KR102293407B1 (ko) 2018-03-14 2018-03-22 전자기 차폐 필름, 회로 기판 및 전자기 차폐 필름의 제조 방법
JP2019570554A JP6849828B2 (ja) 2018-03-14 2018-03-22 電磁シールド膜、回路基板及び電磁シールド膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810209668.5A CN108323143B (zh) 2018-03-14 2018-03-14 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN201810209668.5 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019174066A1 true WO2019174066A1 (zh) 2019-09-19

Family

ID=62901497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080030 WO2019174066A1 (zh) 2018-03-14 2018-03-22 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法

Country Status (5)

Country Link
US (1) US11006554B1 (zh)
JP (1) JP6849828B2 (zh)
KR (1) KR102293407B1 (zh)
CN (1) CN108323143B (zh)
WO (1) WO2019174066A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769667B (zh) * 2018-07-27 2023-12-05 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769674B (zh) * 2018-07-27 2024-04-23 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769675B (zh) * 2018-07-27 2024-04-26 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769673B (zh) * 2018-07-27 2024-04-23 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769670B (zh) * 2018-07-27 2023-12-05 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769676A (zh) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769672B (zh) * 2018-07-27 2024-04-23 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110257022B (zh) * 2019-07-18 2022-05-10 深圳前海量子翼纳米碳科技有限公司 一种绝缘的电磁屏蔽导热硅胶垫及其制备方法
CN113973487A (zh) * 2020-07-24 2022-01-25 广州方邦电子股份有限公司 一种屏蔽膜及线路板
CN113180686A (zh) * 2021-05-07 2021-07-30 四川新源生物电子科技有限公司 一种电信号采集装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772996A (zh) * 2007-08-03 2010-07-07 大自达系统电子株式会社 印刷布线板用屏蔽膜以及印刷布线板
CN104332217A (zh) * 2014-10-08 2015-02-04 广州方邦电子有限公司 自由接地膜及其制作方法、包含自由接地膜的屏蔽线路板及接地方法
JP5866266B2 (ja) * 2012-08-29 2016-02-17 信越ポリマー株式会社 電磁波シールドフィルム、電磁波シールドフィルムの製造方法、およびフレキシブルプリント配線板の製造方法
CN107079611A (zh) * 2014-12-05 2017-08-18 拓自达电线株式会社 电磁波屏蔽膜
CN206650912U (zh) * 2017-03-01 2017-11-17 昆山雅森电子材料科技有限公司 高遮蔽性emi屏蔽膜

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275880A (en) * 1989-05-17 1994-01-04 Minnesota Mining And Manufacturing Company Microwave absorber for direct surface application
JP4201548B2 (ja) * 2002-07-08 2008-12-24 タツタ電線株式会社 シールドフィルム、シールドフレキシブルプリント配線板及びそれらの製造方法
JP4673573B2 (ja) * 2004-04-21 2011-04-20 小松精練株式会社 電磁波シールド材の製造方法
JP2006086421A (ja) * 2004-09-17 2006-03-30 Taiyo Yuden Co Ltd 積層磁性薄膜及びその製造方法
US8138429B2 (en) * 2008-12-17 2012-03-20 3M Innovative Properties Company Electromagnetic shielding article
WO2010082514A1 (ja) * 2009-01-16 2010-07-22 東レフィルム加工株式会社 電磁波シールド性前面フィルターのアース電極取り出し用導電性部材並びにそれを用いた構成体及びディスプレイ
US9144185B1 (en) * 2009-02-02 2015-09-22 Conductive Composites Company, L.L.C. Method for manufacturing a panel for reflective broadband electromagnetic shield
JP2012204731A (ja) * 2011-03-28 2012-10-22 Dainippon Printing Co Ltd 電磁波シールドシート
JP2014049468A (ja) 2012-08-29 2014-03-17 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置
KR20160072189A (ko) * 2013-11-25 2016-06-22 아사히 가세이 가부시키가이샤 노이즈 흡수 시트
US9345181B2 (en) * 2014-08-19 2016-05-17 T-Kingdom Co., Ltd. Shielding film and method of manufacturing same
JP6184025B2 (ja) * 2014-09-04 2017-08-23 信越ポリマー株式会社 電磁波シールドフィルムおよび電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法
CN204104291U (zh) * 2014-10-15 2015-01-14 昆山雅森电子材料科技有限公司 薄型化高传输电磁吸收屏蔽膜
CN108260366B (zh) * 2015-09-07 2020-01-14 朱鹤植 电磁波吸波及屏蔽用和电子设备超强散热用融合片及其制造方法
US11312631B2 (en) * 2017-09-28 2022-04-26 Murata Manufacturing Co., Ltd. Aligned film and method for producing the same
CN108323145A (zh) * 2018-03-14 2018-07-24 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN108323144B (zh) * 2018-03-14 2020-07-28 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772996A (zh) * 2007-08-03 2010-07-07 大自达系统电子株式会社 印刷布线板用屏蔽膜以及印刷布线板
JP5866266B2 (ja) * 2012-08-29 2016-02-17 信越ポリマー株式会社 電磁波シールドフィルム、電磁波シールドフィルムの製造方法、およびフレキシブルプリント配線板の製造方法
CN104332217A (zh) * 2014-10-08 2015-02-04 广州方邦电子有限公司 自由接地膜及其制作方法、包含自由接地膜的屏蔽线路板及接地方法
CN107079611A (zh) * 2014-12-05 2017-08-18 拓自达电线株式会社 电磁波屏蔽膜
CN206650912U (zh) * 2017-03-01 2017-11-17 昆山雅森电子材料科技有限公司 高遮蔽性emi屏蔽膜

Also Published As

Publication number Publication date
CN108323143A (zh) 2018-07-24
US11006554B1 (en) 2021-05-11
US20210161040A1 (en) 2021-05-27
JP2020524415A (ja) 2020-08-13
CN108323143B (zh) 2020-05-05
JP6849828B2 (ja) 2021-03-31
KR102293407B1 (ko) 2021-08-24
KR20200010462A (ko) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2019174065A1 (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
WO2019174066A1 (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
WO2019174062A1 (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110691498B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110691500B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769667B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN208754589U (zh) 电磁屏蔽膜及线路板
CN110691497B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110691499B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769673B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769675B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110691502B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110691503B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769665A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769586A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769672B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769674B (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110691501A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769677A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769676A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769670A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110784991A (zh) 自由接地膜、线路板及自由接地膜的制备方法
CN110769664A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570554

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037924

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909337

Country of ref document: EP

Kind code of ref document: A1