WO2019172721A1 - 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2019172721A1
WO2019172721A1 PCT/KR2019/002754 KR2019002754W WO2019172721A1 WO 2019172721 A1 WO2019172721 A1 WO 2019172721A1 KR 2019002754 W KR2019002754 W KR 2019002754W WO 2019172721 A1 WO2019172721 A1 WO 2019172721A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
integer
group
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2019/002754
Other languages
English (en)
French (fr)
Inventor
신원경
안경호
이철행
오정우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190026227A external-priority patent/KR102270874B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to ES19764067T priority Critical patent/ES2976513T3/es
Priority to EP19764067.5A priority patent/EP3709382B1/en
Priority to CN201980006046.5A priority patent/CN111406328B/zh
Priority to US16/770,777 priority patent/US11777161B2/en
Publication of WO2019172721A1 publication Critical patent/WO2019172721A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a pouch exterior material for lithium secondary batteries and a lithium secondary battery including the same, and more particularly, to a lithium secondary battery pouch exterior material and a lithium secondary battery having improved bonding strength with a gel polymer electrolyte.
  • Such electric vehicles (EVs) and hybrid electric vehicles (HEVs) use nickel-metal hydride (Ni-MH) secondary batteries or lithium secondary batteries with high energy density, high discharge voltage, and output stability as power sources.
  • Ni-MH nickel-metal hydride
  • lithium secondary battery is used as a power source for portable electronic devices with an operating voltage of 3.6V or higher, or used in a high-power hybrid vehicle by connecting several in series, which operates compared to nickel-cadmium batteries or nickel-metal hydride batteries. The voltage is three times higher and the energy density per unit weight is also excellent and is being used rapidly.
  • lithium secondary batteries can be classified into lithium metal secondary batteries and lithium ion secondary batteries, and lithium ion secondary batteries can be used as electrolytes, liquid electrolytes, polymer electrolytes (gel, solid), ionic liquid electrolytes, and the like. have.
  • a liquid electrolyte or a gel polymer electrolyte it is usually used in the form of a cylinder or a square metal can welded and sealed. Since the battery using the metal can as a container is fixed in shape, there is a disadvantage in restricting the design of an electric product using the same as a power source, and it is difficult to reduce the volume.
  • a pouch type secondary battery that uses an electrode assembly composed of a positive electrode, a separator, and the like, is sealed in a pouch packaging material and used.
  • the commonly used pouch exterior material for secondary batteries has an internal resin layer which sequentially has a thermal adhesiveness, and serves as a sealing material, an external metal layer serving as a barrier layer between moisture and oxygen while maintaining mechanical strength, and acting as a protective layer. It consists of a multilayer film structure laminated
  • the pouch-type secondary battery it can be produced in various forms, there is an advantage that can implement the same capacity in a smaller volume and mass.
  • the conventional pouch type battery has a problem in that an internal short circuit occurs due to an external impact, and when gas is generated inside the battery due to oxidative decomposition reaction of the electrolyte under high temperature conditions, the high temperature safety and storage property are low. There is a problem, which is required to improve the situation.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2015-0131513
  • the present invention is to solve the above problems, to improve the bonding strength with the gel polymer electrolyte to improve the mechanical performance, high temperature storage and high temperature safety inside the battery pouch exterior material for a lithium secondary battery and a lithium secondary battery comprising the same It is to provide.
  • the present invention includes an inner layer, an outer resin layer and a metal layer positioned between the inner layer and the outer resin layer, the inner layer provides a pouch packaging material for a lithium secondary battery comprising an ethylenically unsaturated group. .
  • the inner layer may include a first layer including a resin, and the resin may include an ethylenically unsaturated group.
  • the inner layer may include a first layer including a resin and a second layer formed on the first layer, and the second layer may include an inorganic oxide including an ethylenically unsaturated group.
  • the ethylenically unsaturated group may be at least one selected from the group consisting of a vinyl group, an acryloxy group and a methacrylicoxy group.
  • the present invention provides an electrode assembly comprising: an electrode assembly; A gel polymer electrolyte comprising a polymer network in which an oligomer comprising a (meth) acrylate group and an oxyalkylene group is bonded in a three-dimensional structure; And an inner layer accommodating the electrode assembly and the gel polymer electrolyte and including an ethylenically unsaturated group, and including a pouch packaging material for a lithium secondary battery in which the ethylenically unsaturated group and the oligomer are bonded.
  • the inner layer included in the pouch case for a lithium secondary battery according to the present invention includes an ethylenically unsaturated group, and the ethylenically unsaturated group participates in the polymerization reaction while the oligomer included in the gel polymer electrolyte composition is cured through a radical polymerization reaction. It can be combined with
  • the adhesion between the pouch sheath and the gel polymer electrolyte is improved, thereby improving the mechanical performance and storage of the battery.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the pouch packaging material for a lithium secondary battery according to the present invention includes an inner layer, an outer resin layer, and a metal layer located between the inner layer and the outer resin layer.
  • the electrode assembly and the electrolyte are used after placing a cylindrical or rectangular metal can container inside and welding sealing them.
  • the electrode assembly and the electrolyte are used after placing a cylindrical or rectangular metal can container inside and welding sealing them.
  • the rectangular lithium secondary battery it is advantageous to protect the electrode assembly from external shocks and the pouring process is easy, while the shape is limited and it is difficult to reduce the volume.
  • the process (vent process) for exporting the gas or liquid is not smooth, there is a high risk of explosion due to internal heat and gas accumulation, and the battery performance is rapidly deteriorated.
  • the electrode assembly in which the positive electrode, the negative electrode, and the separator are wound up recently, is put into a pouch case and sealed, and then a liquid electrolyte is injected or a gel polymer electrolyte composition is poured and then cured. Secondary batteries have been developed.
  • the lithium secondary battery when the lithium secondary battery is shocked from the outside, it does not alleviate it, leading to a decrease in mechanical performance such as a short circuit inside the battery, and a battery swelling phenomenon due to heat generation and ignition in the battery ( Swelling) can not be suppressed when the high temperature storage and safety was low.
  • the present inventors include an oligomer when the gel polymer electrolyte composition is cured, including an oligomer constituting the gel polymer electrolyte composition and an ethylenically unsaturated group capable of radical polymerization reaction in the inner layer of the pouch case.
  • the liver as well as the ethylenically unsaturated group were allowed to bind with the oligomer.
  • the adhesion between the gel polymer electrolyte and the pouch exterior material is excellent, and durability and mechanical rigidity of the lithium secondary battery are improved, thereby preventing short circuit in the battery due to external stimulus. Even when gas is generated by the oxidative decomposition reaction of the electrolyte or the like in the lithium secondary battery under the condition of, the swelling of the battery can be suppressed, thereby improving high temperature safety and high temperature storage.
  • the inner layer has a heat adhesiveness and serves as a sealing material, and may be formed of at least one layer. For example, it may be formed in a single layer structure including only the resin layer, or may be formed in a multi-layer structure further comprising a separate layer in addition to the resin layer. More specifically, the inner layer may include a first layer including a resin, and the resin may include an ethylenically unsaturated group.
  • the inner layer may include a first layer including a resin and a second layer formed on the first layer, and the second layer may include an inorganic oxide including an ethylenically unsaturated group. have.
  • the inner layer is formed of a resin containing an ethylenically unsaturated group
  • a resin containing an ethylenically unsaturated group it is possible to include an ethylenically unsaturated group in the resin using a polymer containing an ethylenically unsaturated group.
  • the resin layer formed of a polymer may be formed by further coating a polymer including an ethylenically unsaturated group.
  • the polymer resin used to form the inner layer is a polypropylene-butyrene-ethylene terpolymer, polypropylene, polyethylene, ethylene propylene copolymer, polyethylene and acrylic acid copolymer, and copolymer of polypropylene and acrylic acid
  • One or more polymers selected from the group consisting of can be used.
  • the polymer resin containing an ethylenically unsaturated group has an ethylenically unsaturated group substituted in the main chain and / or the side chain of the above-mentioned polymer, and the ethylenically unsaturated group is at least one selected from the group consisting of vinyl group, acryloxy group and methacrylicoxy group It may contain the above.
  • the inner layer comprises a first layer comprising a resin and a second layer formed on the first layer
  • the second layer comprises an inorganic oxide containing an ethylenically unsaturated group
  • the unsaturated oxide-substituted inorganic oxide may be coated on one surface of the inner layer facing the gel polymer electrolyte, so that when the gel polymer electrolyte composition is cured, the oligomer and the ethylenically unsaturated group may be bonded together to improve the binding force of the pouch case.
  • the coating layer includes an inorganic oxide, while maintaining the thickness of the conventional pouch packaging material can further mitigate mechanical impact from the outside of the battery, it is possible to further improve the high temperature safety and storage.
  • the inorganic oxide is an oxide containing at least one element selected from the group consisting of Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, and Sr. It may be, preferably, may be an oxide containing at least one element selected from the group consisting of Si, Al, Ti and Zr.
  • the inorganic oxide may be an inorganic oxide coupling agent in which an ethylenically unsaturated group is substituted with an oxide of the elements listed above, wherein the ethylenically unsaturated group is at least one or more selected from the group consisting of a vinyl group, an acryloxy group and a methacrylicoxy group. It may be.
  • the inorganic oxide coupling agent substituted with the ethylenically unsaturated group is coated on the surface of the first layer including the resin, the polymer resin-inorganic oxide-ethylenically unsaturated group is bonded in order to form the second layer.
  • the inorganic oxide contained in the inorganic oxide coupling agent is SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO, Y 2 O 3 , Pb (Zr, Ti) O 3 (PZT), Pb (1-a1) La a1 Zr (1-b1) Ti b1 O 3 (0 ⁇ a1 ⁇ 1, 0 ⁇ b1 ⁇ 1, PLZT), PB (Mg 3 Nb 2/3) O 3 -PbTiO 3 ( PMN-PT), BaTiO 3, HfO 2 (hafnia), and may include SrTiO 3, etc., listed in the inorganic oxide are generally even if temperatures above 200 °C physical properties It has a characteristic that does not change. More preferably, the inorganic oxide may include at least one selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2, and ZrO 2 .
  • the inorganic oxide coupling agent substituted with the ethylenically unsaturated group is an alkoxy silane compound substituted with an ethylenically unsaturated group, and may include 3-methacryloxypropyltrimethoxysilane and vinyltriethoxysilane. ) And the like, but is not limited to the compounds listed above.
  • the thickness of the inner layer may be 0.1 ⁇ m to 100 ⁇ m, preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 100 ⁇ m.
  • the mechanical properties of the pouch packaging material may be improved to maintain a constant shape, and leakage of electrolyte may be suppressed.
  • the thickness of the second layer is 0.01 ⁇ m to 10 ⁇ m It may be, preferably from 0.05 ⁇ m to 7 ⁇ m, more preferably from 0.1 ⁇ m to 5 ⁇ m.
  • the manufacturing process is economical, and the energy density per volume of the battery can also be maintained at a predetermined level or more.
  • the external resin layer may be formed of at least one layer as a protective layer for mitigating external impact.
  • the outer resin layer a group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, nylon, low density polyethylene (LDPE) resin, high density polyethylene (HDPE) resin, and linear low density polyethylene (LLDPE) resin It may include one single layer or two or more composite layers selected from.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • the thickness of the outer resin layer may be 0.1 ⁇ m to 50 ⁇ m, preferably 0.5 ⁇ m 50 ⁇ m, more preferably 1 ⁇ m 50 ⁇ m.
  • the thickness of the outer resin layer is in the above range, the mechanical properties of the pouch packaging material can be maintained at a certain level or more, and leakage of the electrolyte can be prevented.
  • the metal layer is positioned between the inner layer and the outer resin layer, and serves as a moisture and oxygen barrier layer while maintaining a certain level or more of strength of the lithium secondary battery, and may be formed of at least one layer.
  • the metal layer is an alloy of iron (Fe), carbon (C), chromium (Cr) and manganese (Mn), an alloy of iron (Fe), carbon (C), chromium (Cr) and nickel (Ni), And it may include any one or more selected from the group consisting of aluminum (Al).
  • the metal layer may have a thickness of 0.1 ⁇ m to 50 ⁇ m, preferably 0.5 ⁇ m to 50 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m.
  • the thickness of the metal layer is within the above range, the mechanical properties of the pouch sheathing material can be maintained at a certain level or more, and leakage of the electrolyte can be prevented.
  • a lithium secondary battery includes an electrode assembly, a gel polymer electrolyte, and an inner layer containing the electrode assembly and the gel polymer electrolyte and including an ethylenically unsaturated group, wherein the ethylenically unsaturated group and the It includes a pouch packaging material for a lithium secondary battery is bonded to the oligomer. Details of the pouch exterior material for the lithium secondary battery are the same as the above descriptions, and thus a detailed description thereof will be omitted.
  • the electrode assembly has a separator interposed therebetween, and a cathode including a cathode active material and a cathode including a cathode active material are stacked.
  • the positive electrode may be prepared by coating a positive electrode active material slurry including a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector.
  • the positive electrode current collector generally has a thickness of 3 ⁇ m to 500 ⁇ m and is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, The surface treated with carbon, nickel, titanium, silver, etc. on the surface of calcined carbon or aluminum or stainless steel can be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (Eg, LiNiO 2, etc.), lithium-nickel-manganese oxides (eg, LiNi 1-Y1 Mn Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), LiMn 2-z1 Ni z1 O 4 ( Here, 0 ⁇ Z1 ⁇ 2) and the like, lithium-nickel-cobalt-based oxide (for example, LiNi 1-Y2 Co Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1) and the like), lithium-mangane
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides may be improved in capacity and stability of the battery.
  • the lithium composite metal oxide is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , considering the remarkable effect of the improvement effect according to the type and content ratio of the member forming the lithium composite metal oxide.
  • the cathode active material may be included in an amount of 60 wt% to 98 wt%, preferably 70 wt% to 98 wt%, and more preferably 80 wt% to 98 wt%, based on the total weight of the solids excluding the solvent in the cathode active material slurry. have.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector.
  • polyvinylidene fluoride polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene (PE) , Polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the binder may be included in an amount of 1 wt% to 20 wt%, preferably 1 wt% to 15 wt%, and more preferably 1 wt% to 10 wt%, based on the total weight of the solids in the cathode active material slurry, excluding the solvent. Can be.
  • the said conductive material is a component for further improving the electroconductivity of a positive electrode active material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • graphite Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may be included in an amount of 1 wt% to 20 wt%, preferably 1 wt% to 15 wt%, and more preferably 1 wt% to 10 wt%, based on the total weight of the solids excluding the solvent in the positive electrode active material slurry. .
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the cathode active material, and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the positive electrode active material and, optionally, the solids comprising the binder and the conductive material is 50% to 95% by weight, preferably 70% to 95% by weight, more preferably 70% to 90% by weight. May be included to be%.
  • the negative electrode may be prepared by coating, for example, a negative electrode active material slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector.
  • the negative electrode current collector generally has a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
  • Oxides of the metals (Me) (MeOx) Oxides of the metals (Me) (MeOx)
  • one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • the negative electrode active material may be included in an amount of 60 wt% to 98 wt%, preferably 70 wt% to 98 wt%, and more preferably 80 wt% to 98 wt%, based on the total weight of the solids excluding the solvent in the negative active material slurry. have.
  • a conventionally known polyolefin-based separator or a composite separator in which an organic and inorganic composite layer is formed on an olefin-based substrate may be used, and is not particularly limited.
  • a gel polymer electrolyte composition is injected to prepare a lithium secondary battery.
  • the gel polymer electrolyte is formed through the polymerization reaction after the gel polymer electrolyte composition is injected into a battery pouch packaging material, and a polymer network in which an oligomer including a (meth) acrylate group and an oxyalkylene group is combined into a three-dimensional structure.
  • the oligomer containing the (meth) acrylate group, as well as between the oligomers, may be combined in a three-dimensional structure by forming a radical polymerization reaction with an ethylenically unsaturated group substituted in the inorganic oxide.
  • the oligomer may be represented by the following formula (1).
  • a and A ' are each independently a unit containing a (meth) acrylate group
  • C 1 is a unit containing an oxyalkylene group.
  • units A and A ' are units containing a (meth) acrylate group so that the oligomers can be combined into a three-dimensional structure to form a polymer network.
  • Units A and A ' can be derived from monomers comprising monofunctional or polyfunctional (meth) acrylates or (meth) acrylic acid.
  • the units A and A ' may each independently include at least one or more of the units represented by Formulas A-1 to A-5.
  • the unit C 1 may include a unit represented by Chemical Formula C 1 -1.
  • each R is independently a substituted or unsubstituted linear or pulverized alkylene group having 1 to 10 carbon atoms, and k1 is an integer of 1 to 30.
  • R may be each independently —CH 2 CH 2 — or —CHCH 3 CH 2 —.
  • the oligomer forming the polymer network may be at least one compound selected from the group consisting of Formula 1-1 to Formula 1-5.
  • n1 to n5 are each independently an integer of 1 to 20,000, preferably an integer of 1 to 10,000, and more preferably an integer of 1 to 5,000.
  • the oligomer may be represented by the following formula (2).
  • a and A ' are each independently a unit containing a (meth) acrylate group, and are the same as those described above, and B and B' are each independently a unit including an amide group, and C 2 And C 2 ′ are each independently a unit containing an oxyalkylene group, D is a unit including a siloxane group, and l is an integer of 1 to 200.
  • l is preferably an integer of 10 to 200, more preferably, an integer of 20 to 200.
  • the fluidity may be maintained at a predetermined level or more and uniformly dispersed in the battery.
  • the units B and B ' are each independently a unit containing an amide group, in the implementation of the polymer electrolyte, to control the ion transfer characteristics and to impart mechanical properties.
  • the units B and B ' may each independently include a unit represented by the following formula (B-1).
  • R ′′ is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, a substituted or substituted carbon atom having 6 to 20 carbon atoms, or It is at least one selected from the group consisting of an unsubstituted arylene group, a unit represented by the following formula R ′′ -1 and a unit represented by the following formula R ′′ -2.
  • R ′′ may include at least one or more of units represented by the following formulas R ′′ -3 to R ′′ -8.
  • the units C 2 and C 2 ′ are each independently a unit containing an oxyalkylene group.
  • the units C 2 and C 2 ′ are used to control the dissociation and ion transport capacity of the salts in the polymer network.
  • the units C 2 and C 2 ′ may each independently include a unit represented by the formula C 2 -1.
  • R ' is a C1-C10 substituted or unsubstituted linear or pulverized alkylene group, and k2 is an integer of 1 to 30.
  • R ' may be -CH 2 CH 2 -or -CHCH 3 CH 2- .
  • the unit D is for controlling the affinity between the mechanical properties including the siloxane group and the separator.
  • a structure may be formed in the polymer network to secure flexibility other than a hard structure region by amide bonds.
  • the unit D may include a unit represented by Chemical Formula D-1.
  • R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms
  • R 3, R 4, R 5, and R 6 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or carbon atoms It is an aryl group which is 6-12
  • n is an integer of 1-400.
  • g1 is preferably an integer of 1 to 300, more preferably, an integer of 1 to 200.
  • the unit D may include a unit represented by the following Chemical Formula D-2.
  • R 3, R 4, R 5 and R 6 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 12 carbon atoms, and g2 is an integer of 1 to 400, preferably Is an integer of 1 to 300, more preferably, an integer of 1 to 200.
  • D-1 may be at least one selected from units represented by the following Chemical Formulas D-3 and D-4.
  • g3 and g4 may be each independently an integer of 1 to 400, preferably an integer of 1 to 300, more preferably, an integer of 1 to 200.
  • the oligomer forming the polymer network may be at least one compound selected from the group consisting of compounds represented by the following Formulas 2-1 to 2-5.
  • k3 to k12 are each independently an integer of 1 to 30, g5 to g8 are each independently an integer of 1 to 400, and l1 to l5 are each independently It is an integer of 1-200.
  • l1 to l5 are preferably, each independently may be an integer of 1 to 150.
  • the fluidity may be maintained at a predetermined level or more and uniformly dispersed in the battery.
  • the oligomer of the present invention may have a weight average molecular weight of about 1,000 g / mol to 100,000 g / mol.
  • the weight average molecular weight of the oligomer is in the above range, it is possible to effectively improve the mechanical strength of the battery comprising the same.
  • the gel polymer electrolyte is preferably formed by injecting and curing the gel polymer electrolyte composition containing the oligomer in a battery pouch packaging material.
  • the secondary battery according to the present invention comprises the steps of: (a) inserting an electrode assembly consisting of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode in the battery pouch packaging material and (b) the Injecting the composition for a gel polymer electrolyte according to the present invention in the battery pouch packaging material may be prepared through a step of forming a polymer polymer gel by polymerizing.
  • the polymerization reaction may be performed through, for example, E-BEAM, gamma rays and / or normal temperature / high temperature aging (thermal polymerization).
  • the gel polymer electrolyte composition may include a lithium salt, a non-aqueous organic solvent and a polymerization initiator in addition to the oligomer.
  • the lithium salt may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries.
  • the cationic include Li +, the anions F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3 ) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (F 2 SO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -
  • the said lithium salt can also be used 1 type or in mixture of 2 or more types as needed.
  • the lithium salt may be typically included in the gel polymer electrolyte composition at a concentration of 0.8 M to 2M, specifically 0.8M to 1.5M.
  • the present invention is not necessarily limited to the above concentration range, and may be included at a high concentration of 2 M or more according to other components in the gel polymer electrolyte composition.
  • the non-aqueous organic solvent may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries.
  • an ether compound, an ester compound, an amide compound, a linear carbonate compound, or a cyclic carbonate compound etc. can be used individually or in mixture of 2 or more types, respectively.
  • it may include a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC) are any one selected from the group consisting of or mixtures of two or more thereof.
  • linear carbonate compound examples include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate Any one selected from, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • cyclic carbonates such as ethylene carbonate and propylene carbonate, which are known to dissociate lithium salts in electrolytes due to high dielectric constants as high-viscosity organic solvents among the carbonate-based organic solvents, may be used.
  • dimethyl carbonate and diethyl When a low viscosity, low dielectric constant linear carbonate such as carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared.
  • the ether compound in the non-aqueous organic solvent may be any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof. Can be used, but is not limited thereto.
  • ester compounds in the non-aqueous organic solvent include linear esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate; And cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and ⁇ -caprolactone, or a mixture of two or more thereof may be used.
  • the present invention is not limited thereto.
  • the polymerization initiator is a compound which decomposes by heat in a battery, but not limited to 30 ° C. to 100 ° C., specifically 60 ° C. to 80 ° C., or at room temperature (5 ° C. to 30 ° C.) to form a radical.
  • the radical formed may initiate a free radical reaction with a functional group such as a (meth) acrylate group in the oligomer to form a polymer network through the polymerization reaction between the oligomers.
  • a functional group such as a (meth) acrylate group in the oligomer
  • curing by bonding between oligomers may proceed to form a gel polymer electrolyte.
  • the polymerization initiator may be used a conventional polymerization initiator known in the art, may be at least one or more selected from the group consisting of azo compounds, peroxide compounds or mixtures thereof.
  • the polymerization initiator benzoyl peroxide, acetyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, organic peroxides and hydros such as t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide, and hydrogen peroxide Peroxides and 2,2'-azobis (2-cyanobutane), dimethyl 2,2'-azobis (2-methylpropionate), 2,2'-azobis (methylbutyronitrile), 2 , 2'-azobis (isobutyronitrile) (AIBN; 2,2'-Azobis (iso-butyronitrile)) and 2,2'-azobisdimethyl-valeronitrile (AMVN; 2,2'-Azobisdimethyl- Valeronitrile), but there are one or more azo compounds selected from the group consisting of, but is not limited thereto.
  • the polymerization initiator may include 0.1 wt% to 5 wt% based on the total weight of the oligomer. When the polymerization initiator is included in the above range, the remaining of the unreacted polymerization initiator may be minimized, and gelation may be performed at a predetermined level or more.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the lithium secondary battery having a high capacity, a high rate characteristic, and a cycle characteristic, a medium to large size selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source for the device.
  • a polypropylene resin and a polyester resin (PET) were melted, and the polypropylene resin and the polyester resin were mixed and spun at a ratio of 6: 4 by weight at about 220 ° C. to prepare a porous nonwoven fabric support having a thickness of 80 ⁇ m.
  • a polypropylene resin was filled in the inner pores of the nonwoven fabric support using a T-die (doctor blade) method to prepare a polypropylene resin layer having a thickness of about 80 ⁇ m in total.
  • the polypropylene resin layer was bonded to one surface of an aluminum thin film (40 ⁇ m), and then a PET / nylon layer (outer resin layer, 40 ⁇ m) was attached to the other surface of the aluminum thin film.
  • the polypropylene resin containing the vinyl group is melted, and then the polypropylene resin including the molten vinyl group is coated on the other surface of the polypropylene resin layer and compressed to form an inner layer including the vinyl group, thereby forming a lithium secondary battery.
  • Pouch packaging material was prepared.
  • a positive electrode mixture slurry was prepared by adding -methyl-2-pyrrolidone (NMP).
  • NMP -methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVDF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • An electrode assembly was manufactured by sequentially stacking a separator consisting of the anode, the cathode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP).
  • the electrode assembly was accommodated in a pouch made of a lithium secondary battery pouch packaging material, the gel polymer electrolyte composition was injected, and then heated at 65 ° C. for 5 hours to prepare a lithium secondary battery including a thermally polymerized gel polymer electrolyte. .
  • Example 1 when forming the inner layer, a pouch packaging material for a lithium secondary battery and a lithium secondary battery were manufactured in the same manner except that polypropylene containing an acryloxy group was used instead of a polypropylene including a vinyl group.
  • a polypropylene resin and a polyester resin (PET) were melted, and the polypropylene resin and the polyester resin were mixed and spun at a ratio of 6: 4 by weight at about 220 ° C. to prepare a porous nonwoven fabric support having a thickness of 80 ⁇ m.
  • a polypropylene resin was filled into the internal pores in the nonwoven fabric support using a T-die (doctor blade) method to prepare a polypropylene resin layer having a total thickness of about 80 ⁇ m.
  • the polypropylene resin layer was bonded to one surface of an aluminum thin film (40 ⁇ m), and then the PET / nylon layer (40 ⁇ m), which is an external resin layer, was attached to the other surface of the aluminum thin film.
  • the inner surface of the polypropylene resin layer is coated with a composition in which a silane coupling agent (vinyltriethoxysilane, vinyltriethoxysilane) substituted with a vinyl group as an ethylenically unsaturated group is added to an ethanol solvent to form an inner layer.
  • a silane coupling agent vinyltriethoxysilane, vinyltriethoxysilane substituted with a vinyl group as an ethylenically unsaturated group
  • Example 3 when manufacturing a pouch case for a lithium secondary battery, a composition containing silane coupling agent (3-methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltrimethoxysilane) substituted with methacryloxy as an ethylenically unsaturated group is coated.
  • silane coupling agent 3-methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltrimethoxysilane substituted with methacryloxy as an ethylenically unsaturated group is coated.
  • a pouch packaging material for a lithium secondary battery and a lithium secondary battery were manufactured in the same manner except that the inner layer was used.
  • Example 1 a pouch exterior material for a lithium secondary battery and a lithium secondary battery were manufactured in the same manner except that the polypropylene resin including the molten vinyl group was not applied to the inner layer.
  • Example 3 a silane coupling agent (tetrae) in which an ethylenically unsaturated group is not substituted in place of a silane coupling agent (vinyltriethoxysilane) in which a vinyl group is substituted as an ethylenically unsaturated group in the manufacture of a pouch case for a lithium secondary battery.
  • a pouch exterior material for a lithium secondary battery and a lithium secondary battery were manufactured in the same manner except that an inner layer was formed by coating a composition containing oxysilane and tetraethoxysilane.
  • a metal nail having a diameter of 2.5 mm was dropped to a lithium secondary battery prepared in Examples and Comparative Examples at a rate of 600 mm / min, and a safety evaluation experiment was performed by mechanical shock and internal short circuit of the lithium secondary battery. Was carried out.
  • Example 1 0/5
  • Example 2 0/5
  • Example 3 0/5
  • Example 4 0/5 Comparative Example 1 5/5 Comparative Example 2 3/5
  • the lithium secondary battery according to the embodiment of the present invention can be seen that the ignition does not appear even though the nail penetrated the cell. This is because the adhesive force between the pouch packaging material and the gel polymer electrolyte is excellent, thereby suppressing internal short circuit of the battery, thereby reducing internal heat generation. On the other hand, the lithium secondary battery according to the comparative example does not have an adhesive force between the gel polymer electrolyte and the pouch packaging material can not suppress the internal short circuit can be confirmed that the heat generation phenomenon in the battery leads to the ignition phenomenon.
  • the examples do not ignite even when stored at 150 ° C, but in Comparative Example 1, it ignites only after 11 minutes of storage at 150 ° C, and in Comparative Example 2, it ignites after 60 minutes of storage at 150 ° C. You can see that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 내부층, 외부 수지층 및 상기 내부층과 외부 수지층 사이에 위치하는 금속층을 포함하고, 상기 내부층은 에틸렌성 불포화기를 포함하는 것인 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지에 관한 것이다.

Description

리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지
관련출원과의 상호인용
본 출원은 2018년 03월 09일자 한국특허출원 제10-2018-0028145호, 2018년 03월 09일자 한국특허출원 제10-2018-0028146호 및 2019년 03월 07일자 한국특허출원 제10-2019-0026227호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 보다 상세하게는 젤 폴리머 전해질과 결합력이 향상된 리튬 이차 전지용 파우치 외장재 및 이를 이용한 리튬 이차 전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차 전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다.
이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등은 동력원으로서 니켈 수소금속(Ni-MH) 이차 전지 또는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차 전지를 사용하고 있는데, 리튬 이차 전지를 전기 자동차에 사용할 경우에는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성과 더불어, 가혹한 조건 하에서 10년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차 전지보다 월등히 우수한 에너지 밀도, 안전성 및 장기 수명 특성이 필연적으로 요구된다.
통상적으로 충전이 불가능한 일차 전지와는 달리 충전 및 방전이 가능한 이차 전지는 디지털 카메라, 셀룰러 폰, 노트북 컴퓨터, 하이브리드 자동차 등 첨단 분야의 개발로 활발한 연구가 진행 중이다. 이차 전지로는 니켈-카드 뮴 전지, 니켈-메탈 하이드라이드 전지, 니켈-수소 전지, 리튬이차전지 등을 들 수 있다. 이 중에서, 리튬 이차 전지는 작동 전압이 3.6V 이상으로 휴대용 전자 기기의 전원으로 사용되거나, 또는 수개를 직렬 연결하여 고출력의 하이브리드 자동차에 사용되는데, 니켈-카드뮴 전지나 니켈-메탈 하이드라이드 전지에 비하여 작동 전압이 3배가 높고 단위 중량당 에너지 밀도의 특성도 우수하여 급속도로 사용되고 있는 추세이다.
한편, 리튬 이차 전지는 크게 리튬 금속 이차 전지와 리튬 이온 이차 전지로분류될 수 있으며, 리튬 이온 이차 전지는 전해질로서, 액체 전해질, 폴리머 전해질(젤형, 고체형), 이온성 액체 전해질 등을 사용할 수 있다. 일반적으로, 액체 전해질이나 젤 폴리머 전해질 사용하는 경우, 대개 원통이나 각형의 금속 캔을 용기로 하여 용접 밀봉시킨 형태로 사용된다. 이런 금속 캔을 용기로 사용하는 전지는 형태가 고정되므로 이를 전원으로 사용하는 전기 제품의 디자인을 제약하는 단점이 있고, 부피를 줄이는데 어려움이 있다. 따라서, 양 전극과 분리막 등으로 구성된 전극 조립체 및 전해질을 파우치 외장재(pouch)에 넣고 밀봉하여 사용하는 파우치형 이차 전지가 사용되고 있다. 통상적으로 사용되는 이차 전지용 파우치 외장재는 순차적으로 열접착성을 가져 실링재 역할을 하는 내부 수지층, 기계적 강도를 유지하면서 수분과 산소의 배리어층으로서 역할을 하는 금속박층, 기재 및 보호층으로 작용하는 외부 수지층으로 적층된 다층막 구조로 구성되어 있다. 이러한 파우치형 이차 전지의 경우, 다양한 형태로 제조될 수 있고, 보다 작은 부피 및 질량으로 같은 용량을 구현할 수 있는 장점이 있다.
그러나, 기존의 파우치형 전지는 외부 충격에 의해 전지 내부 단락이 발생하는 문제점이 있고, 고온 조건 하에서 전해질의 산화 분해 반응 등에 의하여 전지 내부에 가스가 발생 시, 이를 제어하지 못하여 고온 안전성 및 저장성이 낮다는 문제점이 있어, 이에 대한 개선이 요구되고 있는 실정이다.
(특허문헌 1) 대한민국 특허공개공보 제10-2015-0131513호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 젤 폴리머 전해질과의 결합력을 향상시켜 전지 내부의 기계적 성능, 고온 저장성 및 고온 안전성을 개선할 수 있는 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지를 제공하기 위한 것이다.
일 측면에서, 본 발명은 내부층, 외부 수지층 및 상기 내부층과 외부 수지층 사이에 위치하는 금속층을 포함하고, 상기 내부층은 에틸렌성 불포화기를 포함하는 것인 리튬 이차 전지용 파우치 외장재를 제공한다.
예를 들어, 상기 내부층은 수지를 포함하는 제1층을 포함하며, 상기 수지는 에틸렌성 불포화기를 포함할 수 있다.
다른 예를 들어, 상기 내부층은 수지를 포함하는 제1층 및 상기 제1층 상에 형성되는 제2층을 포함하고, 상기 제2층은 에틸렌성 불포화기를 포함하는 무기 산화물을 포함할 수 있다.
이때, 상기 에틸렌성 불포화기는, 비닐기, 아크릴옥시기 및 메타아크릴옥시기로 이루어진 군에서 선택되는 하나 이상일 수 있다.
다른 측면에서, 본 발명은, 전극 조립체; (메타)아크릴레이트기 및 옥시알킬렌기를 포함하는 올리고머가 3차원 구조로 결합된 폴리머 네트워크를 포함하는 젤 폴리머 전해질; 및 상기 전극 조립체 및 젤 폴리머 전해질을 수용하고, 에틸렌성 불포화기를 포함하는 내부층을 포함하며, 상기 에틸렌성 불포화기와 상기 올리고머가 결합되어 있는 리튬 이차 전지용 파우치 외장재를 포함하는 리튬 이차 전지를 제공한다.
본 발명에 따른 리튬 이차 전지용 파우치 외장재에 포함된 내부층은 에틸렌성 불포화기를 포함하여, 젤 폴리머 전해질 조성물에 포함된 올리고머가 라디칼 중합 반응을 통해 경화되는 도중 상기 에틸렌성 불포화기도 중합 반응에 참여하여 올리고머와 결합될 수 있다.
올리고머와 내부층이 결합되면, 파우치 외장재와 젤 폴리머 전해질 간의 밀착력이 향상되어, 전지의 기계적 성능 및 저장성을 개선시킬 수 있다.
이하, 본 발명에 대해 보다 자세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분을 의미한다.
<리튬 이차 전지용 파우치 외장재>
본 발명에 따른 리튬 이차 전지용 파우치 외장재는, 내부층, 외부 수지층, 상기 내부층과 외부 수지층 사이에 위치하는 금속층을 포함한다.
종래의 액체 전해질 또는 젤 폴리머 전해질 등을 사용하는 리튬 이차 전지는 전극 조립체 및 전해질을 원통이나 각형의 금속 캔 용기를 내부에 위치시킨 뒤, 용접 밀봉시켜 사용하였다. 한편, 각형 리튬 이차 전지의 경우 전극조립체를 외부 충격으로부터 보호하는데 유리하며 주액 공정이 쉬운 반면에, 형태가 제한적이고, 부피를 줄이기 어렵다. 또한, 안전성 측면에서 기체 또는 액체를 내보내기 위한 공정(vent 공정)이 원활하지 못해 인해 내부 열 및 가스가 축적되어 과열로 인한 폭발의 위험성이 크고, 전지 성능이 빠르게 퇴화된다는 단점이 있었다.
이러한 단점을 개선하기 위하여 최근 양극, 음극 및 세퍼레이터가 적층 권취되어 있는 전극조립체를 파우치 외장재에 넣고, 밀봉한 후, 액체 전해질을 주입하거나, 젤 폴리머 전해질 조성물을 주액한 후, 경화시켜 제조하는 파우치형 이차 전지가 개발되었다.
한편, 파우치 외장재의 경우, 리튬 이차 전지가 외부로부터 충격을 받으면, 이를 완화하지 못하여, 전지 내부 단락이 발생하는 등의 기계적 성능 저하를 초래하고, 전지 내부의 발열, 발화 현상에 따른 전지 부풀음 현상(swelling) 등이 발생시 이를 억제하지 못하여 고온 저장성 및 안전성이 낮다는 문제점이 있었다.
본 발명자들은 상기와 같은 문제점을 해소하기 위하여, 파우치 외장재의 내부층에 젤 폴리머 전해질 조성물을 구성하는 올리고머와 라디칼 중합반응을 할 수 있는 에틸렌성 불포화기를 포함하여, 젤 폴리머 전해질 조성물이 경화될 때 올리고머 간은 물론 상기 에틸렌성 불포화기가 올리고머와 함께 결합될 수 있도록 하였다.
상기 리튬 이차 전지용 파우치 외장재를 사용하게 되면, 젤 폴리머 전해질과 파우치 외장재 간의 접착력이 우수하여, 리튬 이차 전지의 내구성 및 기계적 강직도가 개선되어, 외부 자극에 의한 전지 내 단락을 방지할 수 있다 또한, 고온의 조건에서 리튬 이차 전지 내에 전해질의 산화 분해 반응 등에 의한 가스 발생시에도, 전지가 부풀어 오르는 현상(swelling)을 억제시킬 수 있어 고온 안전성, 고온 저장성이 향상될 수 있다.
상기 내부층은 열접착성을 가져 실링재 역할을 하는 층으로서, 적어도 한 층 이상으로 이루어질 수 있다. 예를 들어, 수지층만을 포함하는 단독층 구조로 형성될 수도 있고, 수지층 이외에 별도의 층을 더 포함하는 다층 구조로 형성될 수도 있다. 보다 구체적으로, 상기 내부층은 수지를 포함하는 제1층을 포함하며, 상기 수지는 에틸렌성 불포화기를 포함할 수 있다.
또 다른 예를 들어, 상기 내부층은 수지를 포함하는 제1층 및 상기 제1층 상에 형성되는 제2층을 포함하고, 상기 제2층은 에틸렌성 불포화기를 포함하는 무기 산화물을 포함할 수도 있다.
먼저, 에틸렌성 불포화기를 포함하는 수지로 내부층을 형성하는 경우, 에틸렌성 불포화기를 포함하는 폴리머를 사용하여, 수지에 에틸렌성 불포화기를 포함시킬 수 있다. 또는, 폴리머로 형성되는 수지층에 에틸렌성 불포화기를 포함하는 폴리머를 더 코팅하여 형성될 수 있다.
구체적으로, 상기 내부층을 형성하기 위해 사용되는 폴리머 수지는, 폴리프로필렌-부티렌-에틸렌 삼원공중합체, 폴리프로필렌, 폴리에틸렌, 에틸렌프로필렌 공중합체, 폴리에틸렌과 아크릴산 공중합체 및 폴리프로필렌과 아크릴산의 공중합체로 이루어진 군에서 선택된 1종 이상의 폴리머를 사용할 수 있다.
에틸렌성 불포화기를 포함하는 폴리머 수지는 상기 나열된 폴리머의 주쇄 및/또는 측쇄에 에틸렌성 불포화기가 치환된 것으로, 상기 에틸렌성 불포화기는 비닐기, 아크릴옥시기 및 메타아크릴옥시기로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다.
다음으로, 상기 내부층이 수지를 포함하는 제1층 및 상기 제1층 상에 형성되는 제2층을 포함하고, 상기 제2층은 에틸렌성 불포화기를 포함하는 무기 산화물을 포함하는 경우, 에틸렌성 불포화기가 치환된 무기 산화물이 젤 폴리머 전해질과 마주하는 내부층의 일면에 코팅되어, 젤 폴리머 전해질 조성물이 경화될 때 올리고머와 에틸렌성 불포화기가 함께 결합되어 파우치 외장재와의 결합력이 향상될 수 있다.
또한, 상기 코팅층은 무기산화물을 포함하고 있어, 기존의 파우치 외장재 수준의 두께를 유지하면서도 전지 외부로부터의 기계적 충격을 더 완화시킬 수 있고, 고온 안전성 및 저장성을 더 개선시킬 수 있다.
예를 들어, 상기 무기산화물은, Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, 및 Sr로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함하는 산화물일 수 있으며, 바람직하게는, Si, Al, Ti 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함하는 산화물일 수 있다.
한편, 무기 산화물은, 상기 나열된 원소의 산화물에 에틸렌성 불포화기가 치환된 무기 산화물 커플링제일 수 있으며, 상기 에틸렌성 불포화기는 비닐기, 아크릴옥시기 및 메타아크릴옥시기로 이루어진 군에서 선택되는 적어도 하나 이상인 것일 수 있다.
보다 구체적으로, 상기 에틸렌성 불포화기가 치환된 무기 산화물 커플링제가 수지를 포함하는 제1층의 표면에 코팅되면, 폴리머 수지 - 무기 산화물 - 에틸렌성 불포화기가 순서대로 결합되어 제2층을 형성한다. 이때, 상기 무기 산화물 커플링제에 포함되는 무기 산화물은 SiO2, Al2O3, TiO2, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3, Pb(Zr,Ti)O3 (PZT), Pb(1-a1)Laa1Zr(1-b1)Tib1O3 (0≤a1≤1, 0≤b1≤1, PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), BaTiO3, HfO2(hafnia), SrTiO3 등을 포함할 수 있으며, 상기 나열된 무기산화물들은 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 가지고 있다. 보다 바람직하게는, 상기 무기산화물은 SiO2, Al2O3, TiO2 및 ZrO2로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다.
구체적으로, 상기 에틸렌성 불포화기가 치환된 무기 산화물 커플링제는, 에틸렌성불포화기가 치환된 알콕시 실란 화합물로서, 3-메타아크릴록시프로필트리메톡시실란(3-Methacryloxypropyltrimethoxysilane), 비닐트리에톡시실란(vinyltriethoxysilane) 등을 사용할 수 있으나, 상기 나열된 화합물로 한정되는 것은 아니다.
한편, 상기 내부층의 두께는 0.1㎛ 내지 100㎛, 바람직하게는 0.5㎛ 내지 100㎛, 보다 바람직하게는 1㎛ 내지 100㎛ 일 수 있다. 내부층 전체의 두께가 상기 범위 내인 경우, 파우치 외장재의 기계적 물성이 향상되어 일정한 형상을 유지할 수 있으며, 전해질의 누액을 억제할 수 있다.
한편, 내부층이 수지를 포함하는 제1층 및 상기 제1층 상에 에틸렌성 불포화기를 포함하는 무기 산화물을 포함하는 제2층을 포함하는 경우, 상기 제2층의 두께는 0.01㎛ 내지 10㎛ 일 수 있으며, 바람직하게는 0.05㎛ 내지 7㎛, 보다 바람직하게는 0.1㎛ 내지 5㎛ 일 수 있다. 제2층의 두께가 상기 범위 내로 형성되는 경우, 파우치 외장재의 내구성 및 전해질과의 밀착성이 우수하면서도, 제조 공정이 경제적이며, 전지의 부피당 에너지 밀도도 일정 수준 이상으로 유지할 수 있다.
상기 외부 수지층은, 외부 충격을 완화시키기 위한 보호층으로서, 적어도 한 층 이상으로 이루어질 수 있다.
구체적으로, 상기 외부 수지층의 경우, 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리에틸렌테레프탈레이트 수지, 나일론, 저밀도 폴리에틸렌(LDPE) 수지, 고밀도 폴리에틸렌(HDPE) 수지, 및 직쇄상 저밀도 폴리에틸렌(LLDPE) 수지로 이루어진 군에서 선택된 1종의 단일층 또는 2종 이상의 복합층을 포함할 수 있다.
이때, 상기 외부 수지층의 두께는 0.1㎛ 내지 50㎛, 바람직하게는 0.5㎛ 내지 50㎛, 보다 바람직하게는 1㎛ 내지 50㎛일 수 있다. 외부 수지층의 두께가 상기 범위 내인 경우, 파우치 외장재의 기계적 물성이 일정 수준 이상으로 유지될 수 있으며, 전해질의 누액을 방지할 수 있다.
상기 금속층은 상기 내부층과 외부 수지층 사이에 위치하며, 리튬 이차 전지의 일정 수준 이상의 강도를 유지하면서 수분과 산소 배리어층 역할을 수행하고, 적어도 한 층 이상으로 이루어질 수 있다.
구체적으로, 상기 금속층은 철(Fe), 탄소(C), 크롬(Cr) 및 망간(Mn)의 합금, 철(Fe), 탄소(C), 크롬(Cr) 및 니켈(Ni)의 합금, 및 알루미늄(Al)으로 이루어진 그룹으로부터 선택된 어느 하나 이상을 포함할 수 있다.
이때, 상기 금속층의 두께는, 0.1㎛ 내지 50㎛, 바람직하게는 0.5㎛ 내지 50㎛, 보다 바람직하게는 1㎛ 내지 50㎛ 일 수 있다. 금속층의 두께가 상기 범위 내인 경우, 파우치 외장재의 기계적 물성이 일정수준 이상으로 유지될 수 있고 전해질의 누액을 방지할 수 있다.
<리튬 이차 전지>
다음으로, 본 발명에 따른 리튬 이차 전지에 대해 설명한다. 본 발명의 또 다른 구현예에 따른 리튬 이차 전지는, 전극 조립체, 젤 폴리머 전해질 및 상기 전극 조립체 및 젤 폴리머 전해질을 수용하고, 에틸렌성 불포화기를 포함하는 내부층을 포함하며, 상기 에틸렌성 불포화기와 상기 올리고머가 결합되어 있는 리튬 이차 전지용 파우치 외장재를 포함한다. 상기 리튬 이차 전지용 파우치 외장재에 대한 내용은 상술한 내용과 동일하여 구체적인 설명을 생략한다.
상기 전극 조립체는 분리막을 사이에 두고, 음극활물질을 포함하는 음극과 양극활물질을 포함하는 양극이 적층된 것이다.
구체적으로 양극은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 활물질 슬러리를 코팅하여 제조할 수 있다.
상기 양극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가지고, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiMn2-z1Niz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-z2Coz2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Nip1Coq1Mnr1)O2(여기에서, 0<p1<1, 0<q1<1, 0<r1<1, p1+q1+r1=1) 또는 Li(Nip2Coq2Mnr2)O4(여기에서, 0<p2<2, 0<q2<2, 0<r2<2, p2+q2+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip3Coq3Mnr3MS1)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군에서 선택되고, p3, q3, r3 및 s1은 각각 독립적인 원소들의 원자 분율로서, 0<p3<1, 0<q3<1, 0<r3<1, 0<s1<1, p3+q3+r3+s1=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극 활물질 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 60 중량% 내지 98 중량%, 바람직하게는 70 중량% 내지 98 중량%, 보다 바람직하게는 80 중량% 내지 98 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다. 구체적으로, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 통상적으로 상기 바인더는 양극 활물질 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다.
상기 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분이다. 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다. 상기 도전재는 양극 활물질 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게는 70 중량% 내지 95 중량%, 보다 바람직하게는 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
또한, 상기 음극은 예를 들어, 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 활물질 슬러리를 코팅하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군에서 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.
상기 음극 활물질은 음극 활물질 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 60 중량% 내지 98 중량%, 바람직하게는 70 중량% 내지 98 중량%, 보다 바람직하게는 80 중량% 내지 98 중량%로 포함될 수 있다.
상기 바인더, 도전재 및 용매에 대한 내용은 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
상기 양극과 음극 사이에서 상기 전극들을 절연시키는 분리막으로는 통상 알려진 폴리올레핀계 분리막이나, 또는 올레핀계 기재에 유, 무기 복합층이 형성된 복합 분리막 등을 모두 사용할 수 있으며, 특별히 한정되지 않는다.
상기 전극 조립체를 리튬 이차 전지용 파우치 외장재에 수용한 뒤, 젤 폴리머 전해질 조성물을 주입하여 리튬 이차 전지를 제조한다.
상기 젤 폴리머 전해질은 상기 젤 폴리머 전해질 조성물을 전지 파우치 외장재 내에 주액된 후 중합 반응을 거쳐 형성되는 것으로, (메타)아크릴레이트기 및 옥시알킬렌기를 포함하는 올리고머가 3차원 구조로 결합된 폴리머 네트워크를 포함한다. 상기 (메타)아크릴레이트기가 포함되어 있는 올리고머는, 올리고머 간은 물론, 상기 무기 산화물에 치환된 에틸렌성 불포화기와 라디칼 중합 반응을 형성하여 3차원 구조로 결합될 수 있다.
예를 들어, 상기 올리고머는 하기 화학식 1로 표시되는 것일 수 있다.
Figure PCTKR2019002754-appb-I000001
상기 화학식 1에서, 상기 A 및 A'는 각각 독립적으로 (메타)아크릴레이트 기를 포함하는 단위이고, 상기 C1은 옥시알킬렌기를 포함하는 단위이다.
구체적으로, 상기 단위 A 및 A'는 올리고머가 3차원 구조로 결합되어 폴리머 네트워크를 형성할 수 있도록 (메타)아크릴레이트기를 포함하는 단위이다. 상기 단위 A 및 A'는 단관능성 또는 다관능성 (메타)아크릴레이트 또는 (메타)아크릴산을 포함하는 단량체로부터 유도될 수 있다.
예를 들어, 상기 단위 A 및 A'는 각각 독립적으로 하기 화학식 A-1 내지 화학식 A-5로 표시되는 단위 중 적어도 하나 이상을 포함할 수 있다.
[화학식 A-1]
Figure PCTKR2019002754-appb-I000002
[화학식 A-2]
Figure PCTKR2019002754-appb-I000003
[화학식 A-3]
Figure PCTKR2019002754-appb-I000004
[화학식 A-4]
Figure PCTKR2019002754-appb-I000005
[화학식 A-5]
Figure PCTKR2019002754-appb-I000006
상기 단위 C1은 화학식 C1-1로 표시되는 단위를 포함할 수 있다.
[화학식 C1-1]
Figure PCTKR2019002754-appb-I000007
상기 화학식 C1-1에서, R은 각각 독립적으로 탄소수 1 내지 10 치환 또는 비치환된 직쇄형 또는 분쇄형 알킬렌기이고, k1은 1 내지 30의 정수이다.
또 다른 예를 들어, 상기 화학식 C1-1에서,
상기 R은 각각 독립적으로 -CH2CH2- 또는 -CHCH3CH2- 일 수 있다.
예를 들어, 본 발명의 일 구현예에 따르면, 폴리머 네트워크를 형성하는 올리고머는 하기 화학식 1-1 내지 화학식 1-5로 이루어진 군으로부터 선택된 적어도 하나의 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2019002754-appb-I000008
[화학식 1-2]
Figure PCTKR2019002754-appb-I000009
[화학식 1-3]
Figure PCTKR2019002754-appb-I000010
[화학식 1-4]
Figure PCTKR2019002754-appb-I000011
[화학식 1-5]
Figure PCTKR2019002754-appb-I000012
상기 화학식 1-1 내지 1-5에서 상기 n1 내지 n5는 각각 독립적으로 1 내지 20,000인 정수이고, 바람직하게는 각각 1 내지 10,000인 정수, 보다 바람직하게는 1 내지 5,000인 정수이다.
또 다른 예를 들어, 상기 올리고머는 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
Figure PCTKR2019002754-appb-I000013
상기 화학식 2에서, 상기 A 및 A'는 각각 독립적으로 (메타)아크릴레이트기를 포함하는 단위로서, 상기 기재된 것과 동일하고, 상기 B 및 B'는 각각 독립적으로 아마이드기를 포함하는 단위이며, 상기 C2 및 C2'는 각각 독립적으로 옥시알킬렌기를 포함하는 단위이고, 상기 D는 실록산 기를 포함하는 단위이며, l은 1 내지 200의 정수이다.
한편, 상기 l은 바람직하게는 10 내지 200의 정수, 보다 바람직하게는, 20 내지 200의 정수 일 수 있다. l이 상기 범위 내인 경우, 올리고머에 의하여 형성되는 폴리머의 기계적 물성이 높으면서도, 유동성이 일정 수준 이상으로 유지되어 전지 내부에 균일하게 분산될 수 있다.
또한, 상기 단위 B 및 B'는 각각 독립적으로 아마이드 기를 포함하는 단위로, 폴리머 전해질을 구현함에 있어서, 이온 전달 특성을 조절하고, 기계적 물성을 부여하기 위한 것이다.
예를 들어, 상기 단위 B 및 B'는 각각 독립적으로 하기 화학식 B-1로 표시되는 단위를 포함할 수 있다.
[화학식 B-1]
Figure PCTKR2019002754-appb-I000014
상기 화학식 B-1에서,
R"은 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 탄소수 3 내지 10의 치환 또는 비치환된 사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 하기 화학식 R"-1로 표시되는 단위 및 하기 화학식 R"-2로 표시되는 단위로 이루어진 군으로부터 선택된 적어도 하나이다.
[화학식 R"-1]
Figure PCTKR2019002754-appb-I000015
[화학식 R"-2]
Figure PCTKR2019002754-appb-I000016
또 다른 예를 들어, 상기 화학식 B-1에서,
상기 R"은 하기 화학식 R"-3 내지 R"-8로 표시되는 단위 중 적어도 하나 이상을 포함할 수 있다.
[화학식 R"-3]
Figure PCTKR2019002754-appb-I000017
[화학식 R"-4]
Figure PCTKR2019002754-appb-I000018
[화학식 R"-5]
Figure PCTKR2019002754-appb-I000019
[화학식 R"-6]
Figure PCTKR2019002754-appb-I000020
[화학식 R"-7]
Figure PCTKR2019002754-appb-I000021
[화학식 R"-8]
Figure PCTKR2019002754-appb-I000022
또한, 본 발명의 폴리머 전해질을 구현함에 있어서, 상기 단위 C2 및 C2'는 각각 독립적으로 옥시알킬렌기를 포함하는 단위이다. 상기 단위 C2 및 C2'는 폴리머 네트워크 내에서의 염의 해리 및 이온전달 능력을 조절하기 위하여 사용된다.
예를 들어, 상기 단위 C2 및 C2'는 각각 독립적으로 화학식 C2-1로 표시되는 단위를 포함할 수 있다.
[화학식 C2-1]
Figure PCTKR2019002754-appb-I000023
상기 화학식 C2-1에서, R'은 탄소수 1 내지 10 치환 또는 비치환된 직쇄형 또는 분쇄형 알킬렌기이고, k2는 1 내지 30의 정수이다.
또 다른 예를 들어, 상기 화학식 C2-1에서, 상기 R'은 -CH2CH2- 또는 -CHCH3CH2- 일 수 있다.
또한, 상기 단위 D는 실록산 기를 포함하는 기계적 물성과 분리막과의 친화력을 조절하기 위한 것이다. 구체적으로 폴리머 네트워크 내에서 아마이드 결합에 의한 단단한 구조 영역 이외의 유연성을 확보하기 위한 구조를 형성할 수 있다.
예를 들어, 상기 단위 D는 화학식 D-1로 표시되는 단위를 포함할 수 있다.
[화학식 D-1]
Figure PCTKR2019002754-appb-I000024
상기 화학식 D-1에서, R1 및 R2는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고, R3, R4, R5 및 R6는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 또는 탄소수 6 내지 12인 아릴기이며, n은 1 내지 400의 정수이다. 한편, 상기 g1은 바람직하게는 1 내지 300의 정수, 보다 바람직하게는, 1 내지 200의 정수 일 수 있다.
또 다른 예를 들어, 상기 단위 D는 하기 화학식 D-2로 표시되는 단위를 포함할 수 있다.
[화학식 D-2]
Figure PCTKR2019002754-appb-I000025
상기 화학식 D-2에서, R3, R4, R5 및 R6는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 또는 탄소수 6 내지 12인 아릴기이고, g2는 1 내지 400의 정수, 바람직하게는 1 내지 300의 정수, 보다 바람직하게는, 1 내지 200의 정수일 수 있다.
보다 구체적으로 상기 D-1은 하기 화학식 D-3 및 D-4로 표시되는 단위 중 선택되는 적어도 하나 이상일 수 있다.
[화학식 D-3]
Figure PCTKR2019002754-appb-I000026
[화학식 D-4]
Figure PCTKR2019002754-appb-I000027
상기 화학식 D-3 및 D-4에서 g3 및 g4는 각각 독립적으로 1 내지 400의 정수, 바람직하게는 1 내지 300의 정수, 보다 바람직하게는, 1 내지 200의 정수 일 수 있다.
예를 들어, 본 발명의 일 구현예에 따르면, 폴리머 네트워크를 형성하는 올리고머는 하기 화학식 2-1 내지 2-5로 표시되는 화합물로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물일 수 있다.
[화학식 2-1]
Figure PCTKR2019002754-appb-I000028
[화학식 2-2]
Figure PCTKR2019002754-appb-I000029
[화학식 2-3]
Figure PCTKR2019002754-appb-I000030
[화학식 2-4]
Figure PCTKR2019002754-appb-I000031
[화학식 2-5]
Figure PCTKR2019002754-appb-I000032
한편, 상기 화학식 2-1 내지 2-5에서 상기 k3 내지 k12는 각각 독립적으로 1 내지 30의 정수이고, 상기 g5 내지 g8은 가각 독립적으로 1 내지 400인 정수이며, 상기 l1 내지 l5는 각각 독립적으로 1 내지 200의 정수이다.
한편, 상기 l1 내지 l5는 바람직하게는, 각각 독립적으로 1 내지 150의 정수 일 수 있다. 상기 l1 내지 l5이 상기 범위 내인 경우, 올리고머에 의하여 형성되는 폴리머의 기계적 물성이 높으면서도, 유동성이 일정 수준 이상으로 유지되어 전지 내부에 균일하게 분산될 수 있다.
또한, 본 발명의 올리고머는 중량평균분자량이 약 1,000 g/mol 내지 100,000 g/mol 일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 전지의 기계적 강도를 효과적으로 개선할 수 있다.
한편, 상기 젤 폴리머 전해질은 상기 올리고머를 포함하는 젤 폴리머 전해질용 조성물을 전지 파우치 외장재 내에 주액한 후 경화시켜 형성되는 것이 바람직하다.
보다 구체적으로는, 본 발명에 따른 이차 전지는, (a) 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 분리막으로 이루어진 전극 조립체를 전지 파우치 외장재에 삽입하는 단계 및 (b) 상기 전지 파우치 외장재에 본 발명에 따른 젤 폴리머 전해질용 조성물을 주입한 후 중합시켜 젤 폴리머 전해질을 형성하는 단계를 거쳐 제조될 수 있다.
이때, 상기 중합 반응은 예를 들면, E-BEAM, 감마선 및/또는 상온/고온 에이징(열 중합) 공정을 통하여 수행될 수 있다.
한편, 상기 젤 폴리머 전해질용 조성물은 상기 올리고머 이외에 리튬염, 비수성 유기 용매 및 중합 개시제를 포함할 수 있다.
상기 리튬염은 리튬 이차 전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 양이온으로 Li+를 포함하고, 음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 적어도 어느 하나를 포함할 수 있다. 상기 리튬염은 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수도 있다. 상기 리튬염은 통상적으로 젤 폴리머 전해질용 조성물 내에 0.8 M 내지 2M, 구체적으로 0.8M 내지 1.5M의 농도로 포함될 수 있다. 다만, 반드시 상기 농도 범위에 한정되지는 않고, 젤 폴리머 전해질용 조성물 중 다른 성분에 따라 2M 이상의 고농도로 포함할 수도 있다.
상기 비수성 유기 용매는 리튬 이차전지용 전해질에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있다. 예를 들면, 에테르 화합물, 에스테르 화합물, 아미드 화합물, 선형 카보네이트 화합물, 또는 환형 카보네이트 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 또는 이들의 혼합물을 포함할 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 유기 용매 중 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키는 것으로 알려진 에틸렌 카보네이트 및 프로필렌 카보네이트와 같은 환형 카보네이트가 사용될 수 있으며, 이러한 환형 카보네이트에 더하여 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 제조할 수 있다.
또한, 상기 비수성 유기 용매 중 에테르 화합물로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 비수성 유기 용매 중 에스테르 화합물로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 부틸 프로피오네이트와 같은 선형 에스테르; 및 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤와 같은 환형 에스테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 중합 개시제는 전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃, 구체적으로 60℃ 내지 80℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하는 화합물이다. 이때, 형성된 라디칼이 상기 올리고머 내의 (메타)아크릴레이트기 등과 같은 작용기와의 자유라디칼 반응을 개시하여 상기 올리고머 간 중합 반응을 통해 폴리머 네트워크를 형성할 수 있다. 상기 폴리머 네트워크가 형성됨에 따라 올리고머 간의 결합에 의한 경화가 진행되어 젤 폴리머 전해질을 형성할 수 있다.
상기 중합 개시제는 당 업계에 알려진 통상적인 중합 개시제가 사용될 수 있으며, 아조계 화합물, 퍼옥사이드계 화합물 또는 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나 이상일 수 있다.
예를 들어, 상기 중합 개시제는, 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 디메틸 2,2'-아조비스(2-메틸프로피오네이트), 2,2'-아조비스(메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴)(AIBN; 2,2'-Azobis(iso-butyronitrile)) 및 2,2'-아조비스디메틸-발레로니트릴(AMVN; 2,2'-Azobisdimethyl-Valeronitrile)로 이루어진 군에서 선택된 1종 이상 아조 화합물류 등이 있으나, 이에 한정하지 않는다.
상기 중합 개시제는 상기 올리고머의 전체 중량을 기준으로 0.1 중량% 내지 5 중량%를 포함할 수 있다. 상기 중합 개시제가 상기 범위 내로 포함되면, 미반응 중합 개시제가 잔류하는 것을 최소화할 수 있고, 젤화가 일정 수준 이상으로 이루어질 수 있다.
본 발명의 다른 실시예에 따르면, 상기 리튬 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 리튬 이차전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
[실시예]
1. 실시예 1
(1) 리튬 이차 전지용 파우치 외장재 제조
폴리프로필렌 수지 및 폴리에스테르 수지(PET)를 용융시키고, 약 220℃에서 상기 폴리프로필렌 수지 및 폴리에스테르 수지를 6:4 중량비로 혼합 방사하여 80㎛ 두께의 다공성 부직포 지지체를 제작하였다.
이후, 폴리프로필렌 수지를 용융시킨 뒤, T-다이(닥터 블레이드) 방법을 이용하여 부직포 지지체 중의 내부 기공에 폴리프로필렌 수지를 충전하여, 전체 약 80㎛ 두께의 폴리프로필렌 수지층을 제조하였다.
알루미늄 박막 (40㎛)의 일면에 상기 폴리프로필렌 수지층을 접착시키고, 이어서 상기 알루미늄 박막의 타면에 PET/나일론층(외부 수지층, 40㎛)을 접착하였다.
이후, 비닐기가 포함된 폴리프로필렌 수지를 용융시킨 뒤, 상기 폴리프로필렌 수지층의 타면에 상기 용융된 비닐기가 포함된 폴리프로필렌 수지를 도포한 뒤 압착시켜 비닐기가 포함된 내부층을 형성하여 리튬 이차 전지용 파우치 외장재를 제조하였다.
(2) 전극 조립체 제조
양극 활물질로 (Li(Ni0.8Mn0.1Co0.1)O2) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴플루오라이드(PVDF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 합제 슬러리를 제조하였다. 상기 양극 합제 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 합제 슬러리를 제조하였다. 상기 음극 합제 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 순차적으로 적층하여 전극조립체를 제조하였다.
(3) 젤 폴리머 전해질 조성물 제조
에틸렌 카보네이트(EC):에틸 메틸카보네이트(EMC) = 3:7(부피비)에 1M LiPF6이 용해된 유기용매 94.99g에 화학식 1-1로 표시되는 화합물(n1=3) 5g, 중합 개시제인 디메틸 2,2'-아조비스(2-메틸프로피오네이트) (CAS No. 2589-57-3) 0.01g을 첨가하여 젤 폴리머 전해질 조성물을 제조하였다.
(4) 리튬 이차 전지 제조
상기 리튬 이차 전지용 파우치 외장재로 제조된 파우치 내에 상기 전극조립체를 수납하고, 상기 젤 폴리머 전해질용 조성물을 주입한 후 65℃에서 5시간 가열하여 열 중합된 젤 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
2. 실시예 2
상기 실시예 1에서, 내부층을 형성할 때, 비닐기가 포함된 폴리프로필렌 대신 아크릴록시기가 포함된 폴리프로필렌을 사용한 것을 제외하고는 동일한 방법으로 리튬 이차 전지용 파우치 외장재 및 리튬 이차 전지를 제조하였다.
3. 실시예 3
폴리프로필렌 수지 및 폴리에스테르 수지(PET)를 용융시키고, 약 220℃에서 상기 폴리프로필렌 수지 및 폴리에스테르 수지를 6:4 중량비로 혼합 방사하여 80㎛ 두께의 다공성 부직포 지지체를 제작하였다.
이어서, 폴리프로필렌 수지를 용융시킨 후, T-다이(닥터 블레이드) 방법을 이용하여 부직포 지지체 중의 내부 기공에 폴리프로필렌 수지를 충전하여, 전체 약 80㎛ 두께의 폴리프로필렌 수지층을 제조하였다.
알루미늄 박막 (40㎛)의 일면에 상기 폴리프로필렌 수지층을 접착시키고, 이어서 상기 알루미늄 박막의 타면에 외부 수지층인 PET/나일론층 (40㎛)을 접착하였다.
이후, 상기 폴리프로필렌 수지층의 타면에 에탄올 용매에 에틸렌성 불포화기로서 비닐기가 치환된 실란 커플링제(비닐트리에톡시실란, vinyltriethoxysilane)를 첨가한 조성물을 코팅하여 내부층을 형성하여 리튬 이차 전지용 파우치 외장재를 제조하였다.
이후, 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
4. 실시예 4
상기 실시예 3에서, 리튬 이차 전지용 파우치 외장재 제조시, 에틸렌성 불포화기로서 메타아크릴록시가 치환된 실란 커플링제(3-메타아크릴록시프로필트리메톡시실란, 3-Methacryloxypropyltrimethoxysilane)를 첨가한 조성물을 코팅하여 내부층을 형성한 것을 사용한 것을 제외하고는 동일한 방법으로 리튬 이차 전지용 파우치 외장재 및 리튬 이차 전지를 제조하였다.
[비교예]
1. 비교예 1
상기 실시예 1에서, 내부층에 상기 용융된 비닐기가 포함된 폴리프로필렌 수지를 도포하지 않은 것을 제외하고는 동일한 방법으로 리튬 이차 전지용 파우치 외장재 및 리튬 이차 전지를 제조하였다.
2. 비교예 2
상기 실시예 3에서, 리튬 이차 전지용 파우치 외장재 제조시, 에틸렌성 불포화기로서 비닐기가 치환된 실란 커플링제(비닐트리에톡시실란, vinyltriethoxysilane) 대신 에틸렌성 불포화기가 치환되어 있지 않은 실란 커플링제(테트라에톡시실란, tetraethoxysilane)를 첨가한 조성물을 코팅하여 내부층을 형성한 것을 제외하고는 동일한 방법으로 리튬 이차 전지용 파우치 외장재 및 리튬 이차 전지를 제조하였다.
[실험예]
1. 실험예 1: 못 관통 실험(Nail penetration test)
2.5 mm 의 지름을 갖는 금속 재질의 못을 만충전된 실시예 및 비교예에서 제조된 리튬 이차 전지에 600 mm/분 의 속도로 낙하시켜 리튬 이차 전지의 기계적 충격 및 내부 단락에 의한 안전성 평가 실험을 실시하였다.
이때, 금속 못에 의한 기계적 충격에 의하여 리튬 이차전지 내부 단락이 발생하고, 이로인한 전지의 발열이 발화로 이어지는 경우 이차 전지의 안전성이 취약하다고 판단하였다.
발화 여부 측정(발화된 횟수 / 전체 실험 횟수)
실시예 1 0 / 5
실시예 2 0 / 5
실시예 3 0 / 5
실시예 4 0 / 5
비교예 1 5 / 5
비교예 2 3 / 5
상기 표 1에 나타낸 바와 같이, 본 발명의 실시예에 따른 리튬 이차 전지는 못이 셀을 관통하였음에도 불구하고 발화현상이 나타나지 않는 것을 확인할 수 있다. 이는, 파우치 외장재와 젤 폴리머 전해질 간 접착력이 우수하여 전지 내부 단락이 억제되어 내부 발열이 감소했기 때문이다. 한편, 비교예에 따른 리튬 이차 전지는 젤 폴리머 전해질과 파우치 외장재 간 접착력이 없어 내부 단락을 억제할 수 없으므로 전지 내 발열 현상이 발화 현상으로 이어지는 것을 확인할 수 있다.
2. 실험예 2: 고온 노출 실험
실시예 및 비교예에서 제조된 각각의 리튬 이차 전지에 대하여 고온 내구성을 확인하기 위하여 SOC(State Of Charge) 100%의 만충된 상태의 리튬 이차 전지를 150℃의 온도 조건(승온 속도 5℃/min)에서, 5시간 동안 방치하였을 때, 발화 유무 및 발화 시작 시간을 측정하였다(핫 박스 테스트; Hot Box test). 그 결과를 하기 표 2에 나타내었다.
발화 여부 발화 시작 시간(분)
실시예 1 X -
실시예 2 X -
실시예 3 X -
실시예 4 X -
비교예 1 O 11
비교예 2 O 60
상기 결과, 실시예들은 150℃에서 보관하는 경우에도 발화하지 않지만, 비교예 1의 경우, 150℃에서 보관한지 11분만에 발화하고, 비교예 2의 경우, 150℃에서 보관한지 60분만에 발화하는 것을 확인할 수 있다.
3. 실험예 3: 고온 저장성 실험(swelling test)
실시예 및 비교예에서 리튬 이차 전지를 SOC(State Of Charge) 100%로 만충시킨 후, 120℃에 24시간 방치한 다음 리튬 이차 전지의 두께를 측정해서 리튬 이차 전지의 방치 전 후의 두께 변화를 측정하여 전지의 부풀음 (swelling) 정도를 확인하는 실험을 수행하였다. 그 결과를 하기 표 3에 나타내었다.
전지 두께 변화율(%)
실시예 1 5
실시예 2 7.5
실시예 3 5
실시예 4 7.5
비교예 1 25
비교예 2 15
고온(120℃)에서 젤 폴리머 전해질 내 성분들이 휘발 현상 및 전극 계면에서의 전해질의 분해 반응에 의해 전지 내 다량의 가스가 발생된다. 따라서 상기 표 3을 참조하면, 파우치와 젤 폴리머 전해질 간 접착력이 낮은 비교예에 따른 리튬 이차 전지의 경우, 전지의 부풀음(swelling) 현상이 두드러짐을 알 수 있다. 하지만 실시예에 따른 리튬 이차 전지의 경우 파우치와 젤 폴리머 전해질 간 접착력이 증가하므로 전지의 부풀음 현상이 억제되어 전지 두께 변화율이 낮은 것을 확인할 수 있다.

Claims (10)

  1. 내부층, 외부 수지층 및 상기 내부층과 외부 수지층 사이에 위치하는 금속층을 포함하고,
    상기 내부층은 에틸렌성 불포화기를 포함하는 것인 리튬 이차 전지용 파우치 외장재.
  2. 제1항에 있어서,
    상기 내부층은 수지를 포함하는 제1층을 포함하며,
    상기 수지는 에틸렌성 불포화기를 포함하는 것인 리튬 이차 전지용 파우치 외장재.
  3. 제1항에 있어서,
    상기 내부층은 수지를 포함하는 제1층 및 상기 제1층 상에 형성되는 제2층을 포함하고,
    상기 제2층은 에틸렌성 불포화기를 포함하는 무기 산화물을 포함하는 것인 리튬 이차 전지용 파우치 외장재.
  4. 제1항에 있어서,
    상기 에틸렌성 불포화기는, 비닐기, 아크릴옥시기 및 메타아크릴옥시기로 이루어진 군에서 선택되는 적어도 하나 이상인 것인 리튬 이차 전지용 파우치 외장재.
  5. 전극 조립체;
    (메타)아크릴레이트기 및 옥시알킬렌기를 포함하는 올리고머가 3차원 구조로 결합된 폴리머 네트워크를 포함하는 젤 폴리머 전해질; 및
    상기 전극 조립체 및 젤 폴리머 전해질을 수용하고, 에틸렌성 불포화기를 포함하는 내부층을 포함하며, 상기 에틸렌성 불포화기와 상기 올리고머가 결합되어 있는 리튬 이차 전지용 파우치 외장재를 포함하는 리튬 이차 전지.
  6. 제5항에 있어서,
    상기 올리고머는 하기 화학식 1로 표시되는 것인 리튬 이차 전지:
    [화학식 1]
    Figure PCTKR2019002754-appb-I000033
    상기 화학식 1에서,
    상기 A 및 A'는 각각 독립적으로 적어도 하나 이상의 (메타)아크릴레이트 기를 포함하는 단위이고,
    상기 C1은 옥시알킬렌기를 포함하는 단위이다.
  7. 제5항에 있어서,
    상기 올리고머는 하기 화학식 1-1 내지 화학식 1-5로 표시되는 화합물 중 선택되는 하나 이상의 화합물을 포함하는 리튬 이차 전지.
    [화학식 1-1]
    Figure PCTKR2019002754-appb-I000034
    (상기 화학식 1-1에서 상기 n1은 1 내지 20,000 인 정수임)
    [화학식 1-2]
    Figure PCTKR2019002754-appb-I000035
    (상기 화학식 1-2에서 상기 n2는 1 내지 20,000 인 정수임)
    [화학식 1-3]
    Figure PCTKR2019002754-appb-I000036
    (상기 화학식 1-3에서 상기 n3은 1 내지 20,000 인 정수임)
    [화학식 1-4]
    Figure PCTKR2019002754-appb-I000037
    (상기 화학식 1-4에서 상기 n4는 1 내지 20,000인 정수임)
    [화학식 1-5]
    Figure PCTKR2019002754-appb-I000038
    (상기 화학식 1-5에서 상기 n5는 1 내지 20,000인 정수임)
  8. 제5항에 있어서,
    상기 올리고머는 하기 화학식 2로 표시되는 것인 리튬 이차 전지:
    [화학식 2]
    Figure PCTKR2019002754-appb-I000039
    상기 화학식 2에서,
    상기 A 및 A'는 각각 독립적으로 적어도 하나 이상의 (메타)아크릴레이트기를 포함하는 단위이고,
    상기 B 및 B'는 각각 독립적으로 아마이드기를 포함하는 단위이며,
    상기 C2 및 C2'는 각각 독립적으로 옥시알킬렌기를 포함하는 단위이고,
    상기 D는 실록산기를 포함하는 단위이며,
    상기 l은 1 내지 200의 정수이다.
  9. 제5항에 있어서,
    상기 올리고머는 하기 2-1 내지 2-5로 표시되는 화합물로 이루어진 군에서 선택되는 하나 이상의 화합물을 포함하는 리튬 이차 전지.
    [화학식 2-1]
    Figure PCTKR2019002754-appb-I000040
    (상기 화학식 2-1에서, 상기 k3 및 k4는 각각 독립적으로 1 내지 30의 정수이고, 상기 g5는 1 내지 400의 정수이고, 상기 l1은 1 내지 200의 정수임)
    [화학식 2-2]
    Figure PCTKR2019002754-appb-I000041
    (상기 화학식 2-2에서, 상기 k5 및 k6은 각각 독립적으로 1 내지 30의 정수이고, 상기 g6는 1 내지 400의 정수이고, 상기 l2는 1 내지 200의 정수임)
    [화학식 2-3]
    Figure PCTKR2019002754-appb-I000042
    (상기 화학식 2-3에서, 상기 k7 및 k8은 각각 독립적으로 1 내지 30의 정수이고, 상기 g7은 1 내지 400의 정수이고, 상기 l3은 1 내지 200의 정수임)
    [화학식 2-4]
    Figure PCTKR2019002754-appb-I000043
    (상기 화학식 2-4에서, 상기 k9 및 k10은 각각 독립적으로 1 내지 30의 정수이고, 상기 g8은 1 내지 400의 정수이고, 상기 l4는 1 내지 200의 정수임)
    [화학식 2-5]
    Figure PCTKR2019002754-appb-I000044
    (상기 화학식 2-5에서, 상기 k11 및 k12는 각각 독립적으로 1 내지 30의 정수이고, 상기 g9는 1 내지 400의 정수이고, 상기 l5는 1 내지 200의 정수임)
  10. 제5항에 있어서,
    상기 젤 폴리머 전해질은 상기 올리고머를 포함하는 젤 폴리머 전해질용 조성물을 리튬 이차 전지용 파우치 외장재 내에 주액한 후 경화시켜 형성되는 것인 리튬 이차 전지.
PCT/KR2019/002754 2018-03-09 2019-03-08 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지 WO2019172721A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES19764067T ES2976513T3 (es) 2018-03-09 2019-03-08 Carcasa de tipo bolsa para batería secundaria de litio y batería secundaria de litio que comprende la misma
EP19764067.5A EP3709382B1 (en) 2018-03-09 2019-03-08 Pouch case for lithium secondary battery and lithium secondary battery comprising same
CN201980006046.5A CN111406328B (zh) 2018-03-09 2019-03-08 用于锂二次电池的袋外部材料和包括该袋外部材料的锂二次电池
US16/770,777 US11777161B2 (en) 2018-03-09 2019-03-08 Pouch exterior material for lithium secondary battery and lithium secondary battery including same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0028145 2018-03-09
KR20180028145 2018-03-09
KR20180028146 2018-03-09
KR10-2018-0028146 2018-03-09
KR10-2019-0026227 2019-03-07
KR1020190026227A KR102270874B1 (ko) 2018-03-09 2019-03-07 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2019172721A1 true WO2019172721A1 (ko) 2019-09-12

Family

ID=67846798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002754 WO2019172721A1 (ko) 2018-03-09 2019-03-08 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지

Country Status (3)

Country Link
ES (1) ES2976513T3 (ko)
HU (1) HUE066330T2 (ko)
WO (1) WO2019172721A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020633A (ko) * 2002-08-31 2004-03-09 삼성에스디아이 주식회사 고분자 전해질 및 이를 채용한 리튬 전지
JP2010092703A (ja) * 2008-10-08 2010-04-22 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
KR20100071798A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 이차전지용 파우치 외장재 및 파우치형 이차전지
KR20130091074A (ko) * 2012-02-07 2013-08-16 삼성에스디아이 주식회사 리튬이차전지 및 그 제조방법
KR20150131513A (ko) 2014-05-15 2015-11-25 주식회사 엘지화학 무기물 코팅층을 포함하는 전극조립체 및 이를 포함하는 이차전지
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020633A (ko) * 2002-08-31 2004-03-09 삼성에스디아이 주식회사 고분자 전해질 및 이를 채용한 리튬 전지
JP2010092703A (ja) * 2008-10-08 2010-04-22 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
KR20100071798A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 이차전지용 파우치 외장재 및 파우치형 이차전지
KR20130091074A (ko) * 2012-02-07 2013-08-16 삼성에스디아이 주식회사 리튬이차전지 및 그 제조방법
KR20150131513A (ko) 2014-05-15 2015-11-25 주식회사 엘지화학 무기물 코팅층을 포함하는 전극조립체 및 이를 포함하는 이차전지
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
ES2976513T3 (es) 2024-08-02
HUE066330T2 (hu) 2024-07-28

Similar Documents

Publication Publication Date Title
WO2019190126A1 (ko) 전고체 전지용 복합 고체 전해질 막 및 이를 포함하는 전고체 전지
WO2019198961A1 (ko) 리튬 이차 전지 및 이의 제조방법
WO2017171442A1 (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질, 및 이를 포함하는 전기화학소자
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022154309A1 (ko) 이차전지의 충방전 방법
WO2021206381A1 (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
WO2021235818A1 (ko) 이차전지의 제조방법
WO2019045399A2 (ko) 리튬 이차전지
WO2021060811A1 (ko) 이차전지의 제조방법
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2022050712A1 (ko) 리튬 이차 전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019209087A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2023063727A1 (ko) 겔 폴리머 전해질 이차전지의 제조방법 및 이에 의해 제조된 겔 폴리머 전해질 이차전지
WO2023075379A1 (ko) 비수 전해질용 첨가제, 이를 포함하는 비수 전해질 및 리튬 이차전지
WO2019209089A1 (ko) 리튬 이차 전지 및 이의 제조방법
WO2019143155A1 (ko) 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2022139521A1 (ko) 양극 활물질의 제조방법
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2019194445A1 (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2022211404A1 (ko) 리튬 이차 전지 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019764067

Country of ref document: EP

Effective date: 20200608

NENP Non-entry into the national phase

Ref country code: DE