WO2019172277A1 - 植物の病害抵抗性誘導用または植物の病害防除用の組成物 - Google Patents
植物の病害抵抗性誘導用または植物の病害防除用の組成物 Download PDFInfo
- Publication number
- WO2019172277A1 WO2019172277A1 PCT/JP2019/008698 JP2019008698W WO2019172277A1 WO 2019172277 A1 WO2019172277 A1 WO 2019172277A1 JP 2019008698 W JP2019008698 W JP 2019008698W WO 2019172277 A1 WO2019172277 A1 WO 2019172277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- component
- copper
- disease
- amino acid
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/06—Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/36—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/36—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
- A01N43/38—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
- A01N59/20—Copper
Definitions
- the present invention relates to a composition for plant disease resistance induction or plant disease control.
- pesticides that control diseases by acting directly on pathogens such as bactericides, and pesticides that control plant diseases by increasing the disease resistance of the plant itself (resistance induction) Type pesticides).
- Copper compounds are used as components of agricultural fungicides.
- Inorganic copper preparations such as Bordeaux solution containing copper sulfate as an active ingredient are effective for a wide range of diseases from filamentous fungal diseases to bacterial diseases, have low risk of appearance of resistant bacteria, are highly safe for human livestock, and are inexpensive. Therefore, inorganic copper agents have long been used as agricultural fungicides.
- an organic copper agent containing oxine copper or the like as an active ingredient is sterilized by copper ions as in the case of inorganic copper agents, but is excellent in penetrating copper ions into cells and has a higher medicinal effect than inorganic copper agents. . Therefore, when an organic copper agent is used, the amount of copper sprayed can be reduced, and thus chemical damage can be reduced as compared with an inorganic copper agent.
- many organic compounds such as oxine serving as a copper ligand are highly harmful.
- An amino acid is an element constituting a protein, and some amino acids are known to be applied to plants (Patent Documents 1 and 2, etc.).
- Patent Document 3 a fungicidal composition containing a basic amino acid and a copper compound has been reported. Specifically, this document discloses that a composition containing lysine and copper sulfate was applied to grapes.
- an amino acid selected from proline, alanine, and glycine 5-15% (w / w) zinc, 3-10% (w / w) manganese, 1-3% (w / w) boron Liquid composition for promoting germination and root growth of plants, comprising 3 to 3.5% (w / w) copper and 0.1 to 1% (w / w) water-soluble derivative of vitamin K
- a thing has been reported (patent document 4). Specifically, this document discloses that such a composition has been applied to corn.
- An object of the present invention is to provide a composition for inducing plant disease resistance or controlling plant diseases.
- an object of the present invention is to provide a composition for inducing plant disease resistance or controlling plant diseases with a small amount of copper used.
- the present inventors can obtain a remarkable disease resistance-inducing effect or a remarkable disease control effect by applying a copper compound and a specific amino acid to a plant in combination. As a result, the present invention has been completed.
- a composition comprising: For plant disease resistance induction or plant disease control, Contains the following components (A) and (B): (A) at least one copper compound; (B) at least one amino acid; A composition wherein the component (B) is selected from the group consisting of an amino acid having a hydroxyl group, alanine, proline and tryptophan. [2] The composition described above, wherein the amino acid having a hydroxyl group is a non-aromatic amino acid having a hydroxyl group.
- composition wherein the component (B) is selected from the group consisting of threonine, serine, homoserine, hydroxyproline, alanine, and proline.
- the composition wherein the component (B) is selected from the group consisting of threonine, serine, homoserine, and hydroxyproline.
- the composition, wherein the component (A) is a copper salt.
- the composition, wherein the component (A) is copper sulfate or copper chloride.
- the composition wherein the plant is a solanaceous plant, cucurbitaceae plant, or rose family.
- composition wherein the plant is a tomato, cucumber, or strawberry.
- composition used in the form of a liquid containing the component (A) at a concentration of 0.01 mM to 5 mM.
- the ratio of the content of the component (B) to the content of the component (A) is 0.1 to 10 in molar ratio. Said composition.
- a method for inducing disease resistance in plants Applying the following ingredients (A) and (B) to the plant: (A) at least one copper compound; (B) at least one amino acid; The method wherein the component (B) is selected from the group consisting of an amino acid having a hydroxyl group, alanine, proline, and tryptophan.
- a method for controlling plant diseases Applying the following ingredients (A) and (B) to the plant: (A) at least one copper compound; (B) at least one amino acid; The method wherein the component (B) is selected from the group consisting of an amino acid having a hydroxyl group, alanine, proline, and tryptophan.
- a method for producing a plant body comprising: Applying the following ingredients (A) and (B) to the plant to grow the plant; and recovering the plant body: (A) at least one copper compound; (B) at least one amino acid; The method wherein the component (B) is selected from the group consisting of an amino acid having a hydroxyl group, alanine, proline, and tryptophan. [16] The method, wherein the amino acid having a hydroxyl group is a non-aromatic amino acid having a hydroxyl group. [17] The method, wherein the component (B) is selected from the group consisting of threonine, serine, homoserine, hydroxyproline, alanine, and proline.
- the component (B) is selected from the group consisting of threonine, serine, homoserine, and hydroxyproline. [19] The method, wherein the component (B) is L-form. [20] The method, wherein the component (A) is a copper salt. [21] The method, wherein the component (A) is copper sulfate or copper chloride. [22] The method, wherein the plant is a solanaceous plant, cucurbitaceae plant, or rose family. [23] The method, wherein the plant is tomato, cucumber, or strawberry.
- the figure which shows the disease resistance induction effect (chitinase activity) of a cucumber by combined use of copper sulfate and an amino acid The figure which shows the disease resistance induction effect (peroxidase activity) of a cucumber by combined use of copper sulfate and an amino acid.
- the figure which shows the disease resistance induction effect (peroxidase activity) of a cucumber by combined use of copper sulfate and an amino acid The figure which shows the disease resistance induction effect (chitinase activity) of a cucumber by combined use of copper sulfate and an amino acid.
- the figure which shows the disease resistance induction effect (peroxidase activity) of a cucumber by combined use of copper sulfate and an amino acid The figure which shows the disease resistance induction effect (chitinase activity) of a cucumber by combined use of copper sulfate and an amino acid.
- the figure which shows the disease resistance induction effect (chitinase activity) of a cucumber by combined use of copper sulfate and an amino acid The figure which shows the disease resistance induction effect (peroxidase activity) of a cucumber by combined use of copper sulfate and an amino acid.
- the figure which shows the control effect of a cucumber anthracnose by combined use of copper sulfate and an amino acid The figure which shows the disease resistance induction effect (chitinase activity) of a cucumber by combined use of the amino acid which has copper sulfate and a hydroxyl group.
- the figure which shows the control effect of a cucumber anthracnose by combined use of the amino acid which has copper sulfate and a hydroxyl group The figure which shows the control effect of a cucumber anthracnose by combined use of the amino acid which has copper sulfate and a hydroxyl group.
- compositions (A) and (B) are collectively referred to as “active ingredients”.
- the disease resistance of the plant can be induced or the disease of the plant can be controlled.
- the plant disease may be controlled by inducing plant disease resistance.
- the induction of plant disease resistance can be confirmed using, for example, an increase in the expression of genes involved in disease resistance as an index. That is, it can be determined that the disease resistance of a plant is induced when the expression of a gene involved in disease resistance is increased when the active ingredient is used compared to when the active ingredient is not used.
- the genes involved in disease resistance include Peroxidase, Chitinase, WRKY-type transcription factor, Glucanase, Pto-interactor 5, Glutathione S-transferase, Enhanced disease susceptibility 1 protein, Pathogenesis-related protein, Phenylalanine ammonia lyase, OPR 12- Examples include genes encoding proteins such as oxophytodienoate reductase.
- the increase in gene expression is measured, for example, by the amount of transcription of the gene (amount of mRNA), the amount of translation of the gene (amount of protein encoded by the gene), or the activity of the protein encoded by the gene. This can be confirmed.
- Examples of the method for measuring the amount of mRNA include Northern hybridization and RT-PCR. Western blotting is mentioned as a measuring method of the amount of protein.
- the method for measuring protein activity can be appropriately selected according to various conditions such as the type of the target protein. For example, as a method for measuring the activity of Peroxidase and the activity of Chitinase, the methods described in Examples can be mentioned.
- Control of plant diseases can be confirmed using, for example, reduction of disease symptoms as an index. That is, it can be determined that the disease of the plant has been controlled when the symptoms of the disease are reduced when the active ingredient is used compared to when the active ingredient is not used. For example, in the case where the disease causes plaque on the leaves, the reduction of the symptoms of the disease includes a reduction in the number of plaques and a reduction in the area of the plaque. It should be noted that “reduction of disease symptoms” includes cases where disease symptoms completely disappear. In addition, “control of diseases” includes both control of diseases that may occur in the future and control of diseases that have already occurred.
- Examples of the control of diseases that may occur in the future include cases in which no disease occurs in the future, and cases in which symptoms of a disease when a disease occurs in the future are reduced.
- Examples of the control of a disease that has already occurred include a case where a symptom of a disease that has already occurred is reduced, and a case where a symptom of a disease that has already occurred is prevented from being worsened or scaled up.
- Plant The type of plant is not particularly limited.
- the plant may be a woody plant or a herbaceous plant.
- Plants include gramineous plants (such as rice, barley, wheat, corn, oats, and buckwheat), solanaceous plants (such as tomatoes, peppers, eggplants, and potatoes), cucurbitaceous plants (such as cucumbers, melons, and pumpkins), and legumes.
- Plant pea, soybean, kidney bean, alfalfa, groundnut, broad bean, etc.
- Brassicaceae plant radish, Chinese cabbage, cabbage, komatsuna, nano-hana, chingensai, Arabidopsis etc.
- Rosaceae strawberry, apple, pear, etc.
- mulberry family Plants such as mulberries
- mallows such as cotton
- celery plants carrots, parsley, celery, etc.
- lilies such as leek, onion, asparagus
- asteraceae burdock, sunflower, chrysanthemum, shungiku
- Safflower, lettuce, etc. azaleas (blueberries, etc.), vines (grapes, etc.)
- Kang family plant asatsuma mandarin, lemon, citron, etc.
- plants include eggplants, cucurbits and roses. More particularly, plants include tomatoes, cucumbers and strawberries.
- a plant one kind of plant may be targeted, and two or more kinds of plants may be targeted.
- the present invention may exclude the case where the plant is a gramineous plant, in particular, corn.
- Diseases Disease types are not particularly limited. Diseases include those caused by mold, bacteria, protists, or viruses. Specific diseases include powdery mildew, mildew, mosaic disease, vine split disease, vine blight, bacterial wilt, blight, leaf blight, ring-leaf blight, bud blight, bud Bacterial Blight Disease, Bacterial Blight Disease, Seedling Blight Disease, Dust Dust Mold, Subtilis Disease, Leaf Mold Disease, Gray Mold Disease, Rose Mold Disease, Dwarf Disease, Dwarf Bacterial Disease, Half Body Dwarf Disease, Root Disease , Root rot wilt disease, soft rot disease, fruit rot disease, ring spot disease, gnomonia ring spot disease, ring rot, spotted disease, spotted bacterial disease, horny spot bacterial disease, black star disease, black spot disease, brown spot disease, anthrax Disease, jade disease, yellowing disease, yellow leaf curl disease, mycorrhizal disease, white silk
- diseases that may occur in solanaceous plants such as tomatoes are not limited, but include powdery mildew, mosaic disease, bacterial wilt, ring-leaf blight, seedling blight, subtilis, leaf Mold disease, gray mold disease, rose mold disease, wilt disease, half body wilt disease, root rot, root rot wilt disease, soft rot disease, ring rot disease, spot disease, spot bacterial disease, black spot disease, brown leaf disease, anthrax Diseases, yellowing disease, yellow leaf curl disease, sclerotia, white silk disease, plague, common scab, powdery common scab, black bruise, summer plague, black scab.
- diseases that may occur in cucurbits such as cucumber are not limited, but powdery mildew, downy mildew, mosaic disease, vine split disease, vine blight, bacterial wilt, blight Bacterial disease, seedling blight, gray mold disease, rose mold disease, half body wilt disease, root rot, soft rot, fruit rot disease, spot disease, spot bacterial disease, black star disease, black spot disease, brown leaf disease, anthrax Diseases, mycoses, white silk diseases, and plagues.
- diseases that can occur in rosaceae plants are not limited, but powdery mildew, mosaic disease, bacterial wilt, pre-blight, leaf blight, bud blight, bud blight Bacterial disease, Seedling wilt disease, Dust mold fungus, Gray mold disease, Rose mold fungus, Dwarf disease, Dwarf bacterial disease, Root rot, Root wilt disease, Soft rot, Fruit rot disease, Ring spot disease, Gnomonia Examples include ring spot disease, spotted bacterial disease, horny spot bacterial disease, black spot disease, anthrax disease, jade disease, wilt disease, mycorrhizal disease, silkworm disease, fairy ring disease, and plague.
- Component (A) is a copper compound.
- the copper compound is not particularly limited as long as it contains copper as a constituent element.
- the copper compound may be an organic copper compound or an inorganic copper compound.
- a copper salt is mentioned as a copper compound. Examples of the copper salt include a salt of copper and an inorganic acid and a salt of copper and an organic acid.
- the copper salt include, for example, copper sulfate, copper nitrate, copper carbonate, copper phosphate, copper pyrophosphate, copper arsenate, copper oxalate, copper citrate, copper benzoate, copper fumarate, copper tartrate , Copper lactate, copper malate, copper formate, copper acetate, copper propionate, copper octoate, copper decanoate, copper palmitate, copper stearate, copper oleate, copper linoleate, copper gluconate, copper glutamate, adipine
- Examples include copper oxide, copper borate, copper methanesulfonate, copper sulfamate, copper chloride, copper bromide, copper sulfide, copper oxide, and copper hydroxide.
- the copper salt examples include copper sulfate and copper chloride. More specifically, copper sulfate is exemplified as the copper salt.
- the valence of copper in these copper compounds is not particularly limited.
- the valence of copper may be, for example, monovalent or divalent. That is, for example, copper sulfate includes copper (I) sulfate (Cu 2 SO 4 ) and copper sulfate (II) (CuSO 4 ).
- copper chloride includes copper chloride (I) (CuCl) and copper chloride (II) (CuCl 2 ).
- the copper compound may be an anhydride, hydrate, or a mixture thereof unless otherwise specified.
- the copper (II) sulfate hydrate includes copper (II) sulfate pentahydrate.
- the copper compound may take any form such as ions when used.
- a copper compound one type of copper compound may be used, or two or more types of copper compounds may be used in combination.
- a copper compound a commercial item may be used and what was manufactured and acquired suitably may be used.
- the method for producing the copper compound is not particularly limited.
- a copper compound can be manufactured by a well-known method, for example.
- the copper compound may or may not be purified to the desired degree. That is, as a copper compound, a refined product may be used and the raw material containing a copper compound may be used.
- Examples of the copper compound include a copper compound content of 1% (w / w) or more, 5% (w / w) or more, 10% (w / w) or more, 30% (w / w) or more, 50 % (W / w) or more, 70% (w / w) or more, 90% (w / w) or more, or 95% (w / w) or more may be used.
- Component (B) is an amino acid.
- amino acids include amino acids having a hydroxyl group (OH group), alanine, proline, and tryptophan.
- the number of hydroxyl groups is not particularly limited. For example, the number of hydroxyl groups may be one.
- amino acids having a hydroxyl group include non-aromatic ones and aromatic ones.
- examples of the amino acid having a hydroxyl group include non-aromatic ones.
- non-aromatic amino acid having a hydroxyl group include threonine, serine, homoserine, and hydroxyproline.
- Examples of the aromatic amino acid having a hydroxyl group include tyrosine and 3,4-dihydroxyphenylalanine.
- Examples of amino acids include threonine, serine, homoserine, hydroxyproline, alanine, proline, and tryptophan. More particularly, amino acids include threonine, serine, homoserine, hydroxyproline, alanine, and proline. More particularly, amino acids include threonine, serine, homoserine, and hydroxyproline. More particularly, amino acids include threonine and serine.
- the amino acid may be D-form, L-form, or a mixture thereof unless otherwise specified. The ratio of D-form and L-form in the mixture is not particularly limited.
- the ratio of D-form or L-form in the mixture may be, for example, 20 to 80%, 30 to 70%, 40 to 60%, or 45 to 55% in molar ratio.
- the amino acid may be in the L-form.
- a D-form or L-form amino acid is selected, it is sufficient to use the D-form or L-form amino acid as an active ingredient, and the L-form or D-form amino acid is used in combination. It does not prevent it.
- the L-form or D-form of the amino acid used together that is, the one not selected as an active ingredient
- component (B) ie, it is regarded as a component other than the active ingredient.
- the amino acid may be a free amino acid, a salt thereof, or a mixture thereof.
- amino acid salts include ammonium salts, salts with alkali metals, salts with alkaline earth metals, and salts with organic amines for acidic groups such as carboxyl groups.
- the amino acid salt include a salt with an inorganic acid and a salt with an organic acid with respect to a basic group.
- the amino acid may be an anhydride, a hydrate, or a mixture thereof unless otherwise specified.
- the amino acid may take any form such as an ion when used.
- the amino acid one type of amino acid may be used, or two or more types of amino acids may be used in combination.
- amino acid a commercially available product may be used, and an amino acid produced and obtained as appropriate may be used.
- the method for producing amino acids is not particularly limited.
- the amino acid can be produced, for example, by a known method.
- an amino acid can be produced by, for example, chemical synthesis, enzymatic reaction, fermentation method, extraction method, or a combination thereof.
- the amino acids may or may not be purified to the desired degree. That is, as the amino acid, a purified product may be used, or a material containing an amino acid may be used.
- the material containing an amino acid include, for example, a culture product obtained by culturing a microorganism having the ability to produce the amino acid, a fermentation product such as a bacterial cell and a culture supernatant, and agricultural water containing the amino acid.
- a culture product obtained by culturing a microorganism having the ability to produce the amino acid a fermentation product such as a bacterial cell and a culture supernatant
- agricultural water containing the amino acid examples include livestock products and processed products thereof.
- processed products include those obtained by subjecting raw materials such as the above fermentation products to treatments such as concentration, dilution, drying, fractionation, extraction, and purification.
- the amino acid content is 1% (w / w) or more, 5% (w / w) or more, 10% (w / w) or more, 30% (w / w) or more, 50% ( A material of w / w) or more, 70% (w / w) or more, 90% (w / w) or more, or 95% (w / w) or more may be used.
- composition of the present invention is a composition containing active ingredients (that is, the above components A and B).
- the composition of the present invention can be applied to plants for use.
- the use mode of the composition of the present invention is described in detail in “Method of the Present Invention”.
- the composition of the present invention may be a composition for inducing plant disease resistance or controlling plant diseases.
- the plant disease resistance-inducing composition and the plant disease controlling composition are also referred to as “plant disease resistance-inducing agent” and “plant disease-controlling agent”, respectively.
- the plant disease may be controlled by inducing plant disease resistance. That is, one embodiment of the plant disease resistance-inducing composition may be a plant disease control composition. Further, one aspect of the composition for controlling plant diseases may be a composition for inducing plant disease resistance.
- composition of the composition of the present invention is not particularly limited as long as the composition of the present invention contains an active ingredient and a desired effect is obtained.
- the types and contents of the components contained in the composition of the present invention include various types such as the type of the target plant, the cultivation method, the growth stage, the type of the target disease and the degree of symptoms, and the mode of use of the composition of the present invention. It can select suitably according to conditions.
- the composition of the present invention may comprise an active ingredient, and may contain components other than the active ingredient.
- Ingredients other than the active ingredient include ingredients usually used for applications such as agricultural chemicals, fertilizers, and pharmaceuticals.
- Specific examples of such components include, for example, excipients, binders, disintegrants, lubricants, stabilizers, diluents, surfactants, spreading agents, pH adjusters, water, alcohol, Additives such as vitamins and minerals can be mentioned.
- Specific examples of the spreading agent include Approach BI TM (Kao Corp.), Mix Power TM (Syngenta Japan Ltd.), and Squash TM (Maruwa Biochemical Corp.).
- a component other than the active component one type of component may be used, or two or more types of components may be used.
- the composition of the present invention includes one or more selected from water-soluble derivatives of zinc, manganese, boron, and vitamin K, for example, all four components in combination with the active ingredient. That is, if the composition of the present invention contains one or more, eg, all four, components selected from zinc, manganese, boron, and water-soluble derivatives of vitamin K, except Also good.
- Zinc, manganese, and boron as used herein may be zinc (II) sulfate heptahydrate, manganese sulfate, and boric acid, respectively.
- the composition of the present invention contains a water-soluble derivative of zinc, manganese, boron, or vitamin K
- the composition of the present invention contains 5 to 15% (w / w) zinc (particularly Zinc (II) sulfate heptahydrate), 3-10% (w / w) manganese (especially manganese sulfate), 1-3% (w / w) boron (especially boric acid), or 0.1- It may also contain 1% (w / w) of a water-soluble derivative of vitamin K.
- the composition of the present invention may be appropriately formulated.
- the dosage form of the composition of the present invention is not particularly limited.
- the dosage form of the composition of the present invention can be appropriately selected according to various conditions such as the mode of use of the composition of the present invention. Examples of the dosage form include solutions, suspensions, powders, tablets, pills, capsules, and pastes.
- the total content of active ingredients in the composition of the present invention is, for example, 0.001% (w / w) or more, 0.002% (w / w) or more, 0.005% (w / w) or more, 0 0.01% (w / w) or more, 0.02% (w / w) or more, 0.05% (w / w) or more, 0.1% (w / w) or more, 0.2% (w / w) w) or more, 0.5% (w / w) or more, 1% (w / w) or more, 2% (w / w) or more, 5% (w / w) or more, or 10% (w / w) 100% (w / w) or less, 99.9% (w / w) or less, 70% (w / w) or less, 50% (w / w) or less, 30% (w / w) w) or less, 20% (w / w) or less, 15%
- the ratio of the content of the component (B) to the content of the component (A) is, for example, 0 in terms of a molar ratio. May be 1 or more, 0.2 or more, 0.5 or more, 1 or more, or 2 or more, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, It may be 2 or less, or 1 or less, or a combination that is consistent.
- the ratio of the content of component (B) to the content of component (A) (content of component (B) / content of component (A)) is, for example, 0.1 in terms of molar ratio.
- the ratio of the content of the component (B) to the content of the component (A) is more specifically, for example, in molar ratio
- component (B) is threonine, it may be 2.5 to 5.3, and when component (B) is alanine, it may be 1.0 to 3.3, and component (B) is serine. 1.0 to 3.3, or 1.5 to 1.7 when component (B) is tryptophan, and 0.4 when component (B) is tyrosine. It may be ⁇ 1.2.
- each active ingredient in the composition of the present invention can be set so as to satisfy, for example, the total content and the content ratio of the active ingredients exemplified above.
- each active ingredient in the composition of the present invention can be set, for example, so that the concentration of each active ingredient falls within a predetermined range when the composition of the present invention is used.
- concentration of the active ingredient at the time of use of the composition of the present invention is also referred to as “active ingredient use concentration” or “active ingredient application concentration”.
- the concentration of component (A) and the concentration of component (B) used are, for example, 0.01 mM or more, 0.02 mM or more, 0.05 mM or more, 0.1 mM or more, 0.2 mM or more, 0.3 mM or more, 0.5 mM or more, 0.7 mM or more, 1 mM or more, 2 mM or more, 5 mM or more, 20 mM or less, 10 mM or less, 5 mM or less, 2 mM or less, 1 mM or less, 0.5 mM or less, or 0.2 mM or less It may be a combination that is consistent.
- the concentration of component (A) used may be, for example, 0.01 mM to 5 mM, 0.02 mM to 1 mM, or 0.05 mM to 0.5 mM.
- the application concentration of the copper compound is generally 10 to 20 mM, but the use concentration of the component (A) in the present invention may be lower.
- the concentration of component (B) used may be, for example, 0.02 mM to 10 mM, 0.05 mM to 5 mM, or 0.1 mM to 2 mM.
- the use concentration of the active ingredient as exemplified above may be a concentration particularly when the composition of the present invention is used in a liquid form.
- the amount of active ingredient (for example, content (concentration) or amount used) is calculated based on the amount of the active ingredient itself in the material when using a material containing the active ingredient. To do.
- the amount of component (B) (for example, content (concentration) or amount used) is the amount of salt or hydrate when component (B) forms a salt or hydrate. It is calculated based on the value converted into the mass of an equimolar free body.
- the active ingredient and other ingredients may be mixed with each other and contained in the composition of the present invention, or may be separately contained in the composition of the present invention separately or in any combination.
- the composition of the present invention may be provided as a set of component (A) and component (B), each packaged separately. In such a case, the component (A) and the component (B) may be applied to plants in combination as appropriate.
- the method of the present invention is a method comprising applying an active ingredient (that is, the above components A and B) to a plant.
- an active ingredient that is, the above components A and B
- the disease resistance of the plant can be induced or the plant disease can be controlled.
- the method of the present invention may be a method of inducing plant disease resistance or a method of controlling plant diseases.
- the plant disease may be controlled by inducing plant disease resistance.
- one aspect of the method for inducing plant disease resistance may be a method for controlling plant diseases.
- one aspect of a method for controlling plant diseases may be a method for inducing plant disease resistance.
- the active ingredient can be applied to plants using, for example, the composition of the present invention (that is, by applying the composition of the present invention). That is, one aspect of the method of the present invention may be, for example, a method including applying the composition of the present invention to a plant. “Applying an active ingredient to a plant” includes applying the composition of the present invention to a plant.
- the composition of the present invention can be applied to plants, for example, as it is, or appropriately diluted, dispersed, or dissolved in a liquid such as water, physiological saline, buffer solution or alcohol. That is, for example, the composition of the present invention can be applied to plants after adjusting the concentration so as to obtain the use concentration of the active ingredient as exemplified above.
- the composition according to the invention can be applied in particular to plants in liquid form.
- the active ingredient may be applied to the plant in a premixed state, or may be applied separately to the plant. That is, for example, when active ingredients are mixed with each other and contained in the composition of the present invention, the active ingredient can be applied to the plant in a premixed state by applying the composition of the present invention to the plant. .
- the active ingredients may be applied to the plant after being mixed with each other, or may be separately applied to the plant.
- the active ingredients may or may not be applied to the plant at the same time.
- the order of application of component (A) and application of component (B) is not particularly limited.
- the interval between the application of the component (A) and the application of the component (B) is not particularly limited as long as a desired effect is obtained.
- the interval between application of component (A) and application of component (B) may be, for example, within 7 days, within 5 days, within 3 days, or within 1 day.
- the description of the components other than the active components in the description of the composition of the present invention can be applied mutatis mutandis. That is, the composition of the present invention may be used in combination with additives such as a spreading agent.
- the application method of the composition of the present invention is not particularly limited as long as a desired effect is obtained.
- the application method of the composition of the present invention can be appropriately selected according to various conditions such as the type of the target plant, the cultivation method, the growth stage, the type of the target disease and the degree of symptoms.
- the composition of the present invention can be applied to a plant by, for example, an ordinary method in which an agricultural chemical or a fertilizer is applied to the plant.
- the composition of the present invention may be applied to, for example, a plant body, may be applied to soil or a medium used for plant cultivation, or may be applied to a combination thereof. Examples of the application to the plant body include spraying and application to the plant body, and immersion of the plant body.
- the composition of this invention may be applied to the whole plant body, and may be applied to a part of plant body. You may apply the composition of this invention to the whole above-ground part of a plant body, for example. Examples of the plant body include leaves, stems, trunks, roots, and fruits. When the composition of the present invention is applied to leaves, the composition of the present invention may be applied to only one of the front and back surfaces of the leaves, or may be applied to both. Specific examples of application to the plant include foliar spraying and root soaking. Examples of application to soil and medium include spraying, irrigation, and mixing on soil and medium. Application to the soil or culture medium may be performed so that the active ingredient reaches the rhizosphere of the plant.
- the application time of the composition of the present invention is not particularly limited as long as a desired effect is obtained.
- the application time of the composition of the present invention can be appropriately selected according to various conditions such as the type of the target plant, the cultivation method, the growth stage, the type of the target disease and the degree of symptoms.
- the composition of the present invention can be applied to a plant, for example, before the occurrence of a disease.
- a disease that may occur in the future can be controlled.
- the composition of this invention can also be applied to a plant after generation
- composition of the present invention By applying the composition of the present invention to a plant after the occurrence of a disease, for example, an already occurring disease can be controlled.
- the composition of the present invention may be applied only once, or may be applied twice or more.
- the composition of the present invention may be applied intermittently or continuously.
- the application amount of the composition of the present invention is not particularly limited as long as a desired effect is obtained.
- the application amount of the composition of the present invention depends on various conditions such as the type of the target plant, the cultivation method, the growth stage, the type of the target disease and the degree of symptoms, and the application method and the application time of the composition of the present invention. Can be selected as appropriate.
- the application amount of the composition of the present invention is, for example, 100 L / ha or more, 200 L / ha or more, 500 L as the application amount of the composition of the present invention in the form of a liquid containing the active ingredient at the use concentration as exemplified above.
- / L or more, 1000 L / hectare or more, 1500 L / hectare or more, 3000 L / hectare or more, or 5000 L / hectare or more may be 10,000 L / ha or less, 8000 L / ha or less, 7000 L / ha or less, 5000 L / ha or less, It may be 3000 L / ha or less, or 1500 L / ha or less, or may be a consistent combination thereof.
- the application amount of the composition of the present invention is, for example, 100 L / hectare to 10,000 L / L as the application amount of the composition of the present invention in the form of a liquid containing the active ingredient in the use concentration as exemplified above. It may be from 200 L / ha to 8000 L / ha, 500 L / ha to 5000 L / ha, or 1000 L / ha to 3000 L / ha.
- the application amount of the composition of the present invention can be set in consideration of not only the application area (two-dimensional element) but also a three-dimensional element. That is, the application amount of the composition of the present invention can be set, for example, according to the height of the plant to which the composition of the present invention is applied (for example, sprayed).
- the application amount of the composition of the present invention is, for example, from the ground surface to the knee height as the application amount of the composition of the present invention in the form of a liquid containing the active ingredient in the use concentration as exemplified above. 1000L / hectare to 1500L / hectare for plants, 1500L / hectare to 3000L / ha for plants with knee height to human height, 3000L / ha to 5000L / ha for plants with human height to 2 meters, It may be 5000 L / ha to 7000 L / ha.
- the application amount of the composition of the present invention can be set so that, for example, the application amount of each active ingredient is within a predetermined range.
- the application rates of component (A) and component (B) are, for example, 0.01 mol / ha or more, 0.02 mol / ha or more, 0.05 mol / ha or more, 0.1 mol / ha or more, 0.2 mol / ha, respectively.
- the application amount of each active ingredient can be set according to, for example, the height of the plant to which the composition of the present invention is applied (for example, sprayed).
- the application amount of the component (A) is, for example, 0.01 mol / ha to 0.5 mol / ha for a plant having a ground surface to a knee height, and 0.2 mol / ha for a plant having a knee height to a human height. It may be 0.4 mol / ha to 2 mol / hectare for plants of ⁇ 1 mol / ha, human height ⁇ 2 meters, and 0.7 mol / ha to 3 mol / ha for plants of 2 meters or more.
- the application amount of the component (B) is, for example, 0.02 mol / hectare to 2 mol / hectare for ground surface to knee height plants, and 0.3 mol / hectare to 4 mol for knee height to human height plants. It may be 0.7 mol / hectare to 6 mol / hectare for plants having a height of 2 meters / ha, or 1 mol / ha to 10 mol / ha for plants having a length of 2 meters or more.
- the application rate of the composition of the present invention as exemplified above is particularly applied when the composition of the present invention is applied to a plant by spraying on a plant body such as foliar spraying, or spraying on soil or culture medium. It may be a dose.
- the description relating to the application mode of the composition of the present invention as described above can be applied mutatis mutandis to any other case where the active ingredient is applied to a plant. That is, the active ingredient may be applied to a plant at the use concentration as exemplified above. Moreover, an active ingredient may be applied to a plant with the application amount of an active ingredient which was illustrated above, for example. Moreover, an active ingredient may be prepared as compositions, such as a liquid composition containing an active ingredient, and may be applied to a plant, for example. For the composition containing the active ingredient, the description of the composition of the present invention can be applied mutatis mutandis. The active ingredient can in particular be applied to plants in liquid form.
- the active ingredient may be prepared, for example, as a liquid composition containing the active ingredient at the use concentration as exemplified above and applied to plants.
- the active ingredient may be applied to the plant in a premixed state, or may be applied separately to the plant. That is, for example, a composition such as a liquid composition containing both the component (A) and the component (B) can be prepared and applied to plants.
- compositions, such as a liquid composition containing a component (A), and compositions, such as a liquid composition containing a component (B) can each be prepared, and can also be applied to a plant.
- the method of the present invention uses one or more components selected from water-soluble derivatives of zinc, manganese, boron, and vitamin K, for example, all four components in combination with an active ingredient.
- components selected from water-soluble derivatives of zinc, manganese, boron and vitamin K may be omitted.
- Zinc, manganese, and boron as used herein may be zinc (II) sulfate heptahydrate, manganese sulfate, and boric acid, respectively.
- a water-soluble derivative of zinc, manganese, boron, or vitamin K is applied to plants” means that 5-15% (w / w) of zinc (especially zinc (II) sulfate heptahydrate). ) 3-10% (w / w) manganese (especially manganese sulfate), 1-3% (w / w) boron (especially boric acid), or 0.1-1% (w / w) vitamins A water-soluble derivative of K may be applied to plants.
- one embodiment of the method of the present invention may be a method for producing a plant. More specifically, one aspect of the method of the present invention may be a method for producing a plant body, which comprises applying an active ingredient (that is, the above components A and B) to a plant and cultivating the plant. . Plants can be cultivated, for example, by the same method as a normal method for cultivating plants, except that the composition of the present invention is applied. Plants can be collected as appropriate. That is, the method of the present invention may further include recovering the plant body. The recovered plant body may be the whole plant body or a part of the plant body. Examples of the plant body include leaves, stems, trunks, roots, and fruits.
- this invention provides use of an active ingredient in the above uses. That is, the present invention is effective for, for example, using an active ingredient for inducing plant disease resistance, using an active ingredient for controlling plant disease, and producing a composition for inducing plant disease resistance.
- the use of an ingredient and the use of an active ingredient for the manufacture of a composition for plant disease control are provided.
- the present invention also provides the use of each active ingredient for use in combination with other active ingredients.
- Each active ingredient may be used in combination with other active ingredients for the use as described above.
- Example 1 Evaluation of disease resistance induction effect of cucumber by combined use of copper sulfate and amino acid (1)
- a combination of copper sulfate and various amino acids was applied to the first true leaf of cucumber, and the disease resistance-inducing effect was determined using the activity of chitinase and peroxidase, which are disease resistance-related enzymes, as indicators. Evaluated.
- aqueous solution containing a combination of 0.32 mM copper (II) sulfate and 0.84 mM each amino acid, an aqueous solution containing 0.32 mM copper (II) sulfate alone, an aqueous solution containing each 0.84 mM amino acid alone, and Ultrapure water was prepared for each mock.
- Each treatment solution was used in the experiment by adding Approach BI (Kao Corporation; “Approach BI” is a registered trademark of the company) at a 1/1000 concentration as a spreading agent.
- Approach BI Kao Corporation; “Approach BI” is a registered trademark of the company
- Enzyme extraction Enzyme activity measurement sample was frozen and crushed with a plant crusher MM300 MIXER MILL GRINDER (Retsch), and 500 ⁇ L of extraction buffer [100 mM NaH 2 PO 4 / Na 2 HPO 4 (pH 6.0) , 1 mM DTT]. The supernatant fraction after centrifugation at 10,000 rpm for 5 minutes was used as a crude extract fraction. The protein concentration of the crude extract fraction was measured by the Bradford method.
- Chitinase activity measurement Chitinase activity was measured by the method by McCreath et al. (McCreath, K. et al., J. Microbiol. Methods 14: 229-237, 1992). That is, the substrate 4MU- (GlcNAc) 3 (4-methylumbelliferyl- ⁇ -dN, N ′, N ′′ -triacetylchitobiose; SIGMA M5639) was dissolved in 50% ethanol to a concentration of 0.4 mM, and ⁇ 20 Stored at ° C. The solution was diluted 10 times with 50% ethanol at the time of use to obtain a substrate solution.
- McCreath et al. McCreath, K. et al., J. Microbiol. Methods 14: 229-237, 1992. That is, the substrate 4MU- (GlcNAc) 3 (4-methylumbelliferyl- ⁇ -dN, N ′, N ′′ -triacetylchitobio
- the crude extract fraction was diluted with the extraction buffer so that the protein concentration became 1 ⁇ g / ⁇ L, and used as a sample.
- 50 ⁇ L of each sample was dispensed into a 96-well plate, 50 ⁇ L of the substrate solution was added thereto, and the reaction was started at 37 ° C. 30 minutes and 90 minutes after the start of the reaction, 100 ⁇ L of 1M Gly / NaOH buffer (pH 10.2) was added to the reaction solution to stop the reaction.
- fluorescence intensity was measured at an excitation wavelength of 360 nm and a fluorescence wavelength of 450 nm using a fluorescence detection plate reader SpectraMax M2 (Molecular Devices).
- the amount of 4MU released was calculated using 4MU (4-methylumbelliferone) as a standard substance, and the amount of enzyme that reacted with 1 ⁇ mol of substrate per minute was defined as 1 unit.
- Peroxidase activity was measured using the fluorescent substrate AmplexRed.
- AmplexRed Ultra reagent (Invitrogen A36006) was dissolved in DMSO to a concentration of 10 mM (1 mg / 330 ⁇ l) and stored at ⁇ 20 ° C.
- H 2 O 2 was diluted with water to 20 mM and stored at 4 ° C.
- a substrate solution (100 mM NaH 2 PO 4 / Na 2 HPO 4 (pH 7.4), 2 mM H 2 O 2 , 50 ⁇ M AmplexRed) was prepared using these solutions.
- the crude extract fraction was diluted with the extraction buffer so that the protein concentration became 1 ng / ⁇ l, and used as a sample.
- Example 2 Evaluation of disease resistance induction effect of cucumber by combined use of copper sulfate and amino acid (2) 7 types of amino acids (Thr, Pro, Ala, Val, Ser, Trp, Tyr) in which chitinase activity and peroxidase activity were induced in combination with copper sulfate in Example 1 and bactericidal effect in combination with copper sulfate As for Lys, which is known, the disease resistance-inducing effect by the combined use with copper sulfate was evaluated again by the procedure described in Example 1.
- Example 3 Evaluation of the effect of amino acid concentration in the induction of disease resistance of cucumber by combined use with copper sulfate The effect of the concentration of each amino acid in the induction of disease resistance of cucumber by combined use with copper sulfate was evaluated. That is, for the eight amino acids (Thr, Pro, Ala, Val, Ser, Trp, Tyr, Lys) evaluated in Example 2, the amino acid concentration was 0.17 mM, 0.36 mM, 0.50 mM, 0.67 mM, 0.84 mM, or 1.01. As the mM, the disease resistance inducing effect of the combined use with copper sulfate was evaluated by the procedure described in Example 1.
- the effect did not reach the maximum value in the tested concentration range, and it was found that the effect reached the maximum value at 1.18 ⁇ mM in a separately conducted high concentration range test (FIGS. 27 to 28).
- the amino acid concentration required for the effect to reach the maximum value was determined as the optimum amino acid concentration.
- Example 4 Evaluation of cucumber disease resistance inducing effect when each amino acid is used in combination with copper sulfate at an optimum concentration.
- Eight amino acids evaluated in Example 2 Thr, Pro, Ala, Val, Ser, Trp, For Tyr, Lys
- the disease resistance-inducing effect by the combined use with copper sulfate was evaluated by the procedure described in Example 1 with the amino acid concentration being the optimum concentration. From the results of Example 3, the optimum concentration of each amino acid was 0.84 mM for Lys and Thr, 0.67 mM for Ser, 0.50 mM for Ala, Val, and Trp, 0.17 mM for Tyr, and 1.18 mM for Pro.
- a higher disease resistance-inducing effect was observed as compared with the case of using copper sulfate in combination with Lys.
- copper sulfate and Ser or Thr were used in combination, a remarkably high disease resistance inducing effect was observed.
- Example 5 Evaluation of Cucumber Anthracnose Control Effect by Combined Use of Copper Sulfate and Amino Acids
- a combination of copper sulfate and various amino acids was applied to the first true leaf of cucumber to cause disease caused by cucumber anthracnose fungi.
- the disease control effect was evaluated using the decrease in the number of spots as an index.
- Example 1 Cultivation and application method of plant body As described in Example 1, the amino acid concentration is the optimum concentration for the eight types of amino acids (Thr, Pro, Ala, Val, Ser, Trp, Tyr, Lys) evaluated in Example 2.
- the procedure of spraying cucumber on the first true leaf was carried out by the procedure described above. From the results of Example 3, the optimum concentration of each amino acid with respect to 0.32 mM copper sulfate was 0.84 mM for Lys and Thr, 0.67 mM for Ser, 0.50 mM for Ala, Val, Trp, 0.17 mM for Tyr, and 1.18 mM for Pro. It was.
- the amount ratio of each amino acid to copper is, in molar ratio, 2.625 for Lys and Thr, 2.094 for Ser, 1.563 for Ala, Val, Trp, 0.531 for Tyr, and 3.688 for Pro.
- Example 6 Evaluation of disease resistance inducing effect of cucumber by combined use of copper sulfate and various amino acids containing hydroxyl groups Ser and Thr confirmed to have remarkable disease resistance inducing effect and disease control effect by using copper sulfate together. These are all amino acids having a hydroxyl group.
- the disease control effect of Tyr which is an aromatic amino acid having a hydroxyl group but also a benzene ring, was small. Therefore, an aromatic and non-aromatic representative one is selected from other amino acids having a hydroxyl group, and the disease resistance inducing effect by the combined use with copper sulfate is evaluated by the procedure described in Example 1. went. Hse (homoserine) and Hyp (hydroxyproline) were selected as non-aromatics, and DOPA (3,4-dihydroxyphenylalanine) as aromatics.
- Hse or Hyp a significant induction effect of chitinase activity and peroxidase activity was observed, and the effect was comparable to that in the combination of copper sulfate and Ser.
- the induction effect of chitinase activity and peroxidase activity when copper sulfate and DOPA were used in combination was similar to that when copper sulfate and Lys were used in combination.
- Example 7 Evaluation of Cucumber Anthracnose Control Effect by Combined Use of Copper Sulfate and Various Amino Acids Containing Hydroxyl Acid
- the amino acid (Hse, Hyp, DOPA) evaluated in Example 6 was subjected to copper sulfate by the procedure described in Example 5.
- Example 8 Effect of induction of disease resistance of cucumber by combined use of copper sulfate or copper chloride and amino acid About 8 types of amino acids (Thr, Pro, Ala, Val, Ser, Trp, Tyr, Lys) evaluated in Example 2, The disease resistance inducing effect of the combined use with copper sulfate or copper chloride was evaluated by the procedure described in Example 1 with the amino acid concentration being the optimum concentration.
- the difference in the magnitude of the disease resistance-inducing effect depending on the type of amino acid was the same regardless of whether the copper compound used in combination was copper sulfate or copper chloride. That is, it was suggested that the disease resistance inducing effect by the combined use of amino acid and copper compound can be obtained by the combination of amino acid and copper ion.
- Example 9 Evaluation of influence of copper sulfate concentration on induction of disease resistance of cucumber by combined use of copper sulfate and Thr The influence of copper sulfate concentration on induction of disease resistance of cucumber by combined use of copper sulfate and Thr was evaluated. That is, Thr was fixed at 0.84 mM, which is the optimum concentration, and the copper sulfate concentration was set to 0.08 mM, 0.16 mM, 0.20 mM, 0.24 mM, 0.28 mM, or 0.32 mM. The disease resistance inducing effect of Thr in combination was evaluated.
- the dependence on the copper sulfate concentration was confirmed for the disease resistance-inducing effect of the combined use of copper sulfate and 0.84 mM Thr, and the effect reached the maximum when the copper sulfate concentration was 0.16 mM.
- Example 10 Effect of induction of disease resistance of cucumber by combined use of copper sulfate and alcohol
- four types of non-aromatic amino acids having a hydroxyl group Thr, Ser, Hse, Hyp
- the remarkable disease resistance induction effect and disease control effect by combined use with copper were confirmed. Therefore, representative substances were selected from alcohols as substances other than amino acids having hydroxyl groups, and the disease resistance inducing effect by the combined use with copper sulfate was evaluated by the procedure described in Example 1.
- alcohols EgOH (ethylene glycol), IpOH (isopropanol), GcOH (glycerol), and EtOH (ethanol) were selected.
- Thr and Ser in which a remarkable disease resistance inducing effect and disease controlling effect were confirmed in the previous examples, were also re-evaluated.
- Thr or Ser a remarkable disease resistance-inducing effect was reproduced, but when copper sulfate was used in combination with EgOH, IpOH, GcOH, or EtOH, the disease resistance-inducing effect was small. It was.
- Example 11 Evaluation of disease resistance-inducing effect of tomato by combined use of copper sulfate and amino acid
- tomato was applied in combination with copper sulfate and five amino acids (Lys, Thr, Ser, Trp, Ala).
- the disease resistance inducing effect was evaluated using the expression of the disease resistance gene as an index.
- WRKY-type transcription factor SLWRKY
- Glucanase SLGlu
- Chitinase SLChi
- Pto-interactor 5 SLPti 5
- Glutathione S -transferase SLEDS 1
- Pathogenesis-related protein SLPR 1a
- Phenylalanine ammonia lyase 5 SLPAL 5
- OPR 12-oxophytodienoate reductase 3 SLOPR 3
- FIG. 42 shows the data when copper sulfate and amino acids are used in combination in the data of FIG. 41 in descending order with respect to the gene expression level.
- the combination of Thr or Ser and copper sulfate, the combination of Trp and copper sulfate, and the combination of Ala or Lys and copper sulfate tended to provide a high disease resistance-inducing effect.
- Example 12 Evaluation of disease resistance inducing effect of tomato by combined use of copper sulfate and Thr fermentation broth The disease resistance inducing effect of tomato was evaluated by the procedure described in Example 11 for the fermented liquid containing Thr. Table 3 shows the treatment zones. The concentration of Thr in the Thr fermentation broth was adjusted to 0.84 mM. For the real-time PCR, the primers shown in Table 2 were used.
- Example 13 Evaluation of effects of Hyp and Hse concentrations on induction of disease resistance of cucumber by combined use with copper sulfate In combination with copper sulfate in Examples 6 and 7, remarkable disease resistance induction effect and disease control For Hyp and Hse whose effects were confirmed, the effect of concentration in the induction of disease resistance of cucumber by combined use with copper sulfate was evaluated. That is, for Hyp and Hse, the disease resistance inducing effect by the combined use with copper sulfate was evaluated according to the procedure described in Example 1 at a concentration of 0.17 mM, 0.36 mM, 0.50 mM, 0.67 mM, 0.84 mM, or 1.01 mM. did.
- Example 14 Effect of induction of disease resistance of cucumber by combined use of copper (I) or copper (II) chloride and amino acid Among the amino acids evaluated in Example 2, the effect of induction of disease resistance by combined use with copper sulfate With respect to Thr and Ser, which are particularly prominent, the concentration was set to 0.84 mM, and the disease resistance inducing effect by the combined use with copper (I) chloride or copper (II) was evaluated by the procedure described in Example 1.
- Example 15 Control Effect of Strawberry Anthracnose by Combined Use of Copper Sulfate and Ser
- using a combination of copper sulfate and Ser that was confirmed to have a remarkable disease resistance effect and disease control effect in cucumber The disease control effect was confirmed. That is, copper sulfate and Ser were applied in combination to the main leaves of strawberry, and the disease control effect was evaluated using as an index the decrease in the number of lesions caused by strawberry anthrax.
- Each treatment solution was used in the experiment by adding Approach BI (Kao Corporation; “Approach BI” is a registered trademark of the company) at a 1/1000 concentration as a spreading agent.
- Approach BI Kanao Corporation
- Approach BI is a registered trademark of the company
- the prepared strawberry seedlings were sprayed on the whole seedlings so that each treatment solution was applied at about 2 mL / strain and sprayed on both front and back surfaces of each true leaf.
- Strawberries were inoculated with strawberry anthracnose fungus (Colletotrichum gloeosporioides Nara gc5 strain) 24 hours after the spray treatment. Inoculation was performed by spraying the conical spore suspension (5 ⁇ 10 5 conidia / mL) on the leaf surface.
- the strawberry was infected with strawberry anthracnose by leaving it in a dark place under a wet room for 24 hours. Four days after inoculation, the number of diseased lesions that occurred on each treated leaf was measured for each strain and leaf.
- the combined use of copper sulfate and Ser resulted in a marked decrease in the number of lesions compared to when ultrapure water was applied.
- Example 16 Evaluation of disease resistance inducing effect of strawberry by combined use of copper sulfate and amino acid
- strawberry was applied in combination with copper sulfate and various amino acids, and disease resistance was expressed using the expression of disease resistance gene as an index. Sex induction effect was evaluated.
- the first true leaf was taken 24 hours after spraying, RNA was extracted, and the expression of genes related to disease resistance of strawberry was analyzed by Real-Time PCR.
- the following three genes were selected as genes related to disease resistance of strawberries: Osmotin-like protein (OLP2); Phenylalanine ammonia lyase (PAL); Chitinase 2-1 (Chi2-1).
- Osmotin-like protein Osmotin-like protein
- PAL Phenylalanine ammonia lyase
- Chitinase 2-1 Chitinase 2-1
- the FaOPL2 gene has Thr, Ser, or Pro and copper sulfate
- the FaPAL gene has Trp or Pro and copper sulfate
- the FaChi2-1 gene has Thr, Ser, Ala, Trp, or A remarkable expression inducing effect was observed with the combination of Pro and copper sulfate.
- a composition for inducing plant disease resistance or controlling plant diseases can be provided.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Dentistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Forests & Forestry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Botany (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Cultivation Of Plants (AREA)
Abstract
Description
[1]
組成物であって、
植物の病害抵抗性誘導用または植物の病害防除用であり、
下記成分(A)および(B)を含有し:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、組成物。
[2]
前記水酸基を有するアミノ酸が、水酸基を有する非芳香族のアミノ酸である、前記組成物。
[3]
前記成分(B)が、スレオニン、セリン、ホモセリン、ヒドロキシプロリン、アラニン、およびプロリンからなる群より選択される、前記組成物。
[4]
前記成分(B)が、スレオニン、セリン、ホモセリン、およびヒドロキシプロリンからなる群より選択される、前記組成物。
[5]
前記成分(B)が、L-体である、前記組成物。
[6]
前記成分(A)が、銅塩である、前記組成物。
[7]
前記成分(A)が、硫酸銅または塩化銅である、前記組成物。
[8]
前記植物が、ナス科植物、ウリ科植物、またはバラ科植物である、前記組成物。
[9]
前記植物が、トマト、キュウリ、またはイチゴである、前記組成物。
[10]
前記成分(A)を0.01mM~5mMの濃度で含有する液体の形態で使用される、前記組成物。
[11]
前記成分(B)を0.02mM~10mMの濃度で含有する液体の形態で使用される、前記組成物。
[12]
前記成分(A)の含有量に対する前記成分(B)の含有量の比率(成分(B)の含有量/成分(A)の含有量)が、モル比で、0.1~10である、前記組成物。
[13]
植物の病害抵抗性を誘導する方法であって、
下記成分(A)および(B)を植物に施用することを含み:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、方法。
[14]
植物の病害を防除する方法であって、
下記成分(A)および(B)を植物に施用することを含み:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、方法。
[15]
植物体を製造する方法であって、
下記成分(A)および(B)を植物に施用して植物を栽培すること;および
植物体を回収することを含み:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、方法。
[16]
前記水酸基を有するアミノ酸が、水酸基を有する非芳香族のアミノ酸である、前記方法。
[17]
前記成分(B)が、スレオニン、セリン、ホモセリン、ヒドロキシプロリン、アラニン、およびプロリンからなる群より選択される、前記方法。
[18]
前記成分(B)が、スレオニン、セリン、ホモセリン、およびヒドロキシプロリンからなる群より選択される、前記方法。
[19]
前記成分(B)が、L-体である、前記方法。
[20]
前記成分(A)が、銅塩である、前記方法。
[21]
前記成分(A)が、硫酸銅または塩化銅である、前記方法。
[22]
前記植物が、ナス科植物、ウリ科植物、またはバラ科植物である、前記方法。
[23]
前記植物が、トマト、キュウリ、またはイチゴである、前記方法。
[24]
前記成分(A)が、前記成分(A)を0.01mM~5mMの濃度で含有する液体の形態で施用される、前記方法。
[25]
前記成分(B)が、前記成分(B)を0.02mM~10mMの濃度で含有する液体の形態で施用される、前記方法。
[26]
前記成分(A)の施用量に対する前記成分(B)の施用量の比率(成分(B)の施用量/成分(A)の施用量)が、モル比で、0.1~10である、前記方法。
(A)銅化合物;
(B)アミノ酸。
植物の種類は特に制限されない。植物は、木本植物であってもよく、草本植物であってもよい。植物としては、イネ科植物(イネ、オオムギ、コムギ、トウモロコシ、エンバク、シバ等)、ナス科植物(トマト、ピーマン、ナス、ジャガイモ等)、ウリ科植物(キュウリ、メロン、カボチャ等)、マメ科植物(エンドウ、ダイズ、インゲンマメ、アルファルファ、ラッカセイ、ソラマメ等)、アブラナ科植物(ダイコン、ハクサイ、キャベツ、コマツナ、ナノハナ、チンゲンサイ、シロイヌナズナ等)、バラ科植物(イチゴ、リンゴ、ナシ等)、クワ科植物(クワ等)、アオイ科植物(ワタ等)、セリ科植物(ニンジン、パセリ、セロリ等)、ユリ科植物(ネギ、タマネギ、アスパラガス等)、キク科植物(ゴボウ、ヒマワリ、キク、シュンギク、ベニバナ、レタス等)、ツツジ科植物(ブルーベリー等)、ブドウ科植物(ブドウ等)、ミカン科植物(ウンシュウミカン、レモン、ユズ等)が挙げられる。植物としては、特に、ナス科植物、ウリ科植物、バラ科植物が挙げられる。植物として、さらに特には、トマト、キュウリ、イチゴが挙げられる。植物としては、1種の植物を対象としてもよく、2種またはそれ以上の植物を対象としてもよい。なお、一態様において、本発明からは、植物がイネ科植物である場合、特にトウモロコシである場合が除かれてもよい。
病害の種類は特に限定されない。病害としては、カビ、細菌、原生生物、またはウイルスにより引き起こされるものが挙げられる。病害として、具体的には、うどんこ病、べと病、モザイク病、つる割病、つる枯病、青枯病、先枯病、葉枯病、環紋葉枯病、芽枯病、芽枯細菌病、縁枯細菌病、苗立枯病、じくほこりかび病、すすかび病、葉かび病、灰色かび病、ばら色かび病、萎凋病、萎凋細菌病、半身萎凋病、根腐病、根腐萎凋病、軟腐病、果実腐敗病、輪斑病、グノモニア輪斑病、輪紋病、斑点病、斑点細菌病、角斑細菌病、黒星病、黒斑病、褐斑病、炭疽病、じゃのめ病、萎黄病、黄化葉巻病、菌核病、白絹病、フェアリーリング病、疫病、いもち病、ごま葉枯病、そうか病、粉状そうか病、赤かび病、褐紋病、雪腐病、さび病、黒穂病、株腐病、黒あざ病、紋枯病、夏疫病、紫斑病、根こぶ病、黒節病、黒あし病が挙げられる。病害としては、例えば、これらの病害の内、選択した植物に生じ得る病害を対象とすることができる。病害としては、1種の病害を対象としてもよく、2種またはそれ以上の病害を対象としてもよい。
<3-1>銅化合物;成分(A)
成分(A)は、銅化合物である。銅化合物は、銅を構成要素として含むものであれば特に制限されない。銅化合物は、有機銅化合物であってもよく、無機銅化合物であってもよい。銅化合物としては、銅塩が挙げられる。銅塩としては、銅と無機酸との塩や銅と有機酸との塩が挙げられる。銅塩として、具体的には、例えば、硫酸銅、硝酸銅、炭酸銅、リン酸銅、ピロリン酸銅、ヒ酸銅、シュウ酸銅、クエン酸銅、安息香酸銅、フマル酸銅、酒石酸銅、乳酸銅、リンゴ酸銅、ギ酸銅、酢酸銅、プロピオン酸銅、オクタン酸銅、デカン酸銅、パルミチン酸銅、ステアリン酸銅、オレイン酸銅、リノール酸銅、グルコン酸銅、グルタミン酸銅、アジピン酸銅、ホウ酸銅、メタンスルホン酸銅、スルファミン酸銅、塩化銅、臭化銅、硫化銅、酸化銅、水酸化銅が挙げられる。銅塩としては、特に、硫酸銅や塩化銅が挙げられる。銅塩として、さらに特には、硫酸銅が挙げられる。これら銅化合物における銅の価数は特に制限されない。銅の価数は、例えば、1価または2価であってよい。すなわち、例えば、硫酸銅としては、硫酸銅(I)(Cu2SO4)や硫酸銅(II)(CuSO4)が挙げられる。また、例えば、塩化銅としては、塩化銅(I)(CuCl)や塩化銅(II)(CuCl2)が挙げられる。銅化合物は、特記しない限り、無水物、水和物、またはそれらの混合物であってよい。例えば、硫酸銅(II)の水和物としては、硫酸銅(II)五水和物が挙げられる。銅化合物は、使用時にはイオン等のいずれの形態をとっていてもよい。銅化合物としては、1種の銅化合物を用いてもよく、2種またはそれ以上の銅化合物を組み合わせて用いてもよい。
成分(B)は、アミノ酸である。アミノ酸としては、水酸基(OH基)を有するアミノ酸、アラニン、プロリン、トリプトファンが挙げられる。水酸基の数は特に制限されない。水酸基の数は、例えば、1つであってよい。水酸基を有するアミノ酸としては、非芳香族のものや芳香族のものが挙げられる。水酸基を有するアミノ酸としては、特に、非芳香族のものが挙げられる。水酸基を有する非芳香族のアミノ酸としては、スレオニン、セリン、ホモセリン、ヒドロキシプロリンが挙げられる。水酸基を有する芳香族のアミノ酸としては、チロシンや3,4-ジヒドロオキシフェニルアラニンが挙げられる。アミノ酸としては、特に、スレオニン、セリン、ホモセリン、ヒドロキシプロリン、アラニン、プロリン、トリプトファンが挙げられる。アミノ酸として、さらに特には、スレオニン、セリン、ホモセリン、ヒドロキシプロリン、アラニン、プロリンが挙げられる。アミノ酸として、さらに特には、スレオニン、セリン、ホモセリン、ヒドロキシプロリンが挙げられる。アミノ酸として、さらに特には、スレオニンやセリンが挙げられる。アミノ酸は、特記しない限り、D-体、L-体、またはそれらの混合物であってよい。混合物におけるD-体とL-体の比率は特に制限されない。混合物におけるD-体またはL-体の比率は、例えば、モル比で、20~80%、30~70%、40~60%、または45~55%であってよい。アミノ酸は、特に、L-体であってもよい。なお、D-体またはL-体のアミノ酸を選択した場合、有効成分としてD-体またはL-体の該アミノ酸が用いられることで足り、L-体またはD-体の該アミノ酸が併用されることを妨げるものではない。この場合、併用されるL-体またはD-体の該アミノ酸(すなわち有効成分として選択されなかった方)は、成分(B)には該当しない(すなわち有効成分以外の成分とみなす)ものとする。また、アミノ酸は、特記しない限り、フリー体のアミノ酸、もしくはその塩、またはそれらの混合物であってよい。アミノ酸の塩としては、カルボキシル基等の酸性基に対しては、アンモニウム塩、アルカリ金属との塩、アルカリ土類金属との塩、有機アミンとの塩が挙げられる。アミノ酸の塩としては、塩基性基に対しては、無機酸との塩や有機酸との塩が挙げられる。また、アミノ酸は、特記しない限り、無水物、水和物、またはそれらの混合物であってよい。アミノ酸は、使用時にはイオン等のいずれの形態をとっていてもよい。アミノ酸としては、1種のアミノ酸を用いてもよく、2種またはそれ以上のアミノ酸を組み合わせて用いてもよい。
本発明の組成物は、有効成分(すなわち上記成分AおよびB)を含有する組成物である。本発明の組成物は、植物に施用して利用することができる。本発明の組成物の使用態様は、「本発明の方法」において詳述する。本発明の組成物を利用することにより、具体的には本発明の組成物を植物に施用することにより、植物の病害抵抗性を誘導すること、または、植物の病害を防除することができる。すなわち、本発明の組成物は、植物の病害抵抗性誘導用または植物の病害防除用の組成物であってよい。植物の病害抵抗性誘導用の組成物および植物の病害防除用の組成物を、それぞれ、「植物用病害抵抗性誘導剤」および「植物用病害防除剤」ともいう。なお、植物の病害抵抗性が誘導されることにより、植物の病害が防除されてもよい。すなわち、植物の病害抵抗性誘導用の組成物の一態様は、植物の病害防除用の組成物であってよい。また、植物の病害防除用の組成物の一態様は、植物の病害抵抗性誘導用の組成物であってよい。
本発明の方法は、有効成分(すなわち上記成分AおよびB)を植物に施用することを含む方法である。本発明の方法により、具体的には有効成分を植物に施用することにより、植物の病害抵抗性を誘導すること、または、植物の病害を防除することができる。すなわち、本発明の方法は、植物の病害抵抗性を誘導する方法または植物の病害を防除する方法であってよい。なお、植物の病害抵抗性が誘導されることにより、植物の病害が防除されてもよい。すなわち、植物の病害抵抗性を誘導する方法の一態様は、植物の病害を防除する方法であってよい。また、植物の病害を防除する方法の一態様は、植物の病害抵抗性を誘導する方法であってよい。
また、本発明は、上記のような用途での有効成分の使用を提供する。すなわち、本発明は、例えば、植物の病害抵抗性誘導のための有効成分の使用、植物の病害防除のための有効成分の使用、植物の病害抵抗性誘導用の組成物の製造のための有効成分の使用、および植物の病害防除用の組成物の製造のための有効成分の使用を提供する。
本実施例では、キュウリの第一本葉に硫酸銅と各種アミノ酸を組み合わせて施用し、病害抵抗性関連酵素であるキチナーゼ(Chitinase)およびパーオキシダーゼ(Peroxidase)の活性を指標として病害抵抗性誘導効果を評価した。
キュウリ(品種「四葉」)を園芸用培養土(クミアイニッピ園芸培土1号;JA)とバーミキュライトの容積比3:1混合土に播種し、2週間栽培した。培養庫内の温度は23~25℃、日周は14時間明期、光強度は約300μmol m-2 s-1とした。処理液として、0.32 mMの硫酸銅(II)と0.84 mMの各アミノ酸の組み合わせを含む水溶液、0.32 mMの硫酸銅(II)を単独で含む水溶液、0.84 mMの各アミノ酸を単独で含む水溶液、およびmock(モック)として超純水をそれぞれ用意した。各処理液は、展着剤としてアプローチBI(花王(株);「アプローチBI」は同社の登録商標である)を1/1000濃度で添加して、実験に用いた。第一本葉に各処理液を約1 mL/100 cm2程度霧吹きで噴霧処理した。噴霧処理の48時間後に葉の中心部分の1.5cm四方を酵素活性測定用試料として回収し、直ちに液体窒素で凍結し、-80℃で保存した。試験は、各処理液について3連(n=3)で実施した。
酵素活性測定用試料を凍結状態のまま植物破砕機MM300 MIXER MILL GRINDER (Retsch)により破砕し、500μLの抽出バッファー[100 mM NaH2PO4/Na2HPO4(pH6.0), 1 mM DTT]に懸濁した。10,000 rpm 5分間の遠心分離後の上清画分を粗抽出画分とした。粗抽出画分のタンパク質濃度をBradford法により測定した。
キチナーゼ活性は、McCreathらによる方法(McCreath, K. et al., J. Microbiol. Methods 14:229-237, 1992)により測定した。すなわち、基質である4MU-(GlcNAc)3(4-methylumbelliferyl-β-d-N,N',N''-triacetylchitobiose;SIGMA M5639)を、0.4 mMとなるように50%エタノール中に溶解し、-20℃で保存した。当該溶液を使用時に50% エタノールで10倍に希釈し、基質溶液とした。上記粗抽出画分をタンパク質濃度が1μg/μLとなるよう上記抽出バッファーで希釈し、試料とした。各試料50μLを96穴プレートに分注し、そこへ基質溶液50μLを添加し、37℃で反応を開始した。反応開始30分後及び90分後に、反応液に100μLの1M Gly/NaOH buffer (pH 10.2)を添加し、反応を停止した。液面の泡を完全に除去した後に、蛍光検出用プレートリーダーSpectraMax M2(Molecular Devices)を用いて、励起波長360 nm、蛍光波長450 nmで蛍光強度を測定した。4MU(4-methylumbelliferone)を標準物質として4MUの遊離量を算出し、1分間に1μmolの基質と反応する酵素量を1ユニットと定義した。
パーオキシダーゼ活性は蛍光基質AmplexRedを用いて測定した。AmplexRed Ultra reagent(Invitrogen A36006)を、10 mM(1 mg/330 μl)となるようにDMSOに溶解し、-20℃で保存した。H2O2を、20 mMとなるように水で希釈し、4℃で保存した。これらの溶液を用いて基質溶液(100 mM NaH2PO4/Na2HPO4(pH7.4)、2 mM H2O2、50 μM AmplexRed)を調製した。上記粗抽出画分をタンパク質濃度が1 ng/μlとなるよう上記抽出バッファーで希釈し、試料とした。各試料40 μlを96穴プレート(Greiner blank half volume microplate)に分注し、そこへ基質溶液40 μlを添加することで反応を開始し、経時的に蛍光強度を測定した。蛍光強度は、プレートリーダーSpectraMax M2(Molecular Devices)を用いて励起波長544 nm、蛍光波長544/590 nm、インターバル90秒で10分間測定した。直線的に反応が進行している時間で定量を行なった。パーオキシダーゼ標準品(Sigma;P8415-5KU)を用いて反応量を算出し、1分間に1μmolの基質と反応する酵素量を1ユニットと定義した。
結果を図1~8に示す(n=3)。硫酸銅とThr、Pro、Ala、Val、Ser、Trp、またはTyrを併用することにより、硫酸銅を単独で施用した場合と比較して、植物の病害抵抗性マーカーであるキチナーゼ活性およびパーオキシダーゼ活性の増大が認められた。
実施例1で硫酸銅との併用によりキチナーゼ活性およびパーオキシダーゼ活性の誘導効果が認められたアミノ酸7種類(Thr、Pro、Ala、Val、Ser、Trp、Tyr)および硫酸銅との併用による殺菌効果が既知であるLysについて、実施例1に記載の手順で、再度、硫酸銅との併用による病害抵抗性誘導効果を評価した。
硫酸銅との併用によるキュウリの病害抵抗性誘導における各アミノ酸の濃度の影響について評価した。すなわち、実施例2で評価したアミノ酸8種類(Thr、Pro、Ala、Val、Ser、Trp、Tyr、Lys)について、アミノ酸濃度を0.17 mM、0.36 mM、0.50 mM、0.67 mM、0.84 mM、または1.01 mMとして、実施例1に記載の手順で硫酸銅との併用による病害抵抗性誘導効果を評価した。
実施例2で評価したアミノ酸8種類(Thr、Pro、Ala、Val、Ser、Trp、Tyr、Lys)について、アミノ酸濃度を最適濃度として、実施例1に記載の手順で硫酸銅との併用による病害抵抗性誘導効果を評価した。各アミノ酸の最適濃度は、実施例3の結果より、LysおよびThrでは0.84 mM、Serでは0.67 mM、Ala、Val、Trpでは0.50 mM、Tyrでは0.17 mM、Proでは1.18 mMとした。
本実施例では、キュウリの第一本葉に硫酸銅と各種アミノ酸を組み合わせて施用し、ウリ類炭疽病菌による生ずる病斑数の減少を指標として病害防除効果を評価した。
実施例2で評価したアミノ酸8種類(Thr、Pro、Ala、Val、Ser、Trp、Tyr、Lys)について、アミノ酸濃度を最適濃度として、実施例1に記載の手順でキュウリの第一本葉への散布処理を実施した。0.32 mMの硫酸銅に対する各アミノ酸の最適濃度は、実施例3の結果より、LysおよびThrでは0.84 mM、Serでは0.67 mM、Ala、Val、Trpでは0.50 mM、Tyrでは0.17 mM、Proでは1.18 mMとした。銅に対する各アミノ酸の量比は、モル比で、LysおよびThrでは2.625、Serでは2.094、Ala、Val、Trpでは1.563、Tyrでは0.531、Proでは3.688である。
噴霧処理の24時間後に、ウリ類炭疽病菌(Colletotrichum lagenarium 104-T株)をキュウリに接種した。接種は、分生胞子懸濁液(1×105分生胞子/mL)を葉面に噴霧することにより行った。接種後、暗所、湿室下に24時間静置することにより、ウリ類炭疽病菌をキュウリに感染させた。接種7日後に各処理葉に発生した罹病性病斑数を測定した。
硫酸銅との併用により顕著な病害抵抗性誘導効果および病害防除効果が確認されたSerとThrは、いずれも、水酸基を有するアミノ酸である。一方、同様に水酸基を有するがベンゼン環も有する芳香族アミノ酸であるTyrでは病害防除効果が小さかった。そこで、水酸基を保有する他のアミノ酸の中から、芳香族および非芳香族の代表的なものを選んで、実施例1に記載の手順で硫酸銅との併用による病害抵抗性誘導効果の評価を行った。非芳香族のものとしてはHse(ホモセリン)およびHyp(ヒドロキシプロリン)を、芳香族のものとしてはDOPA(3,4-ジヒドロオキシフェニルアラニン)を選んだ。
実施例6で評価したアミノ酸(Hse、Hyp、DOPA)について、実施例5に記載の手順で硫酸銅との併用による病害防除効果を評価した。
実施例2で評価したアミノ酸8種類(Thr、Pro、Ala、Val、Ser、Trp、Tyr、Lys)について、アミノ酸濃度を最適濃度として、実施例1に記載の手順で硫酸銅あるいは塩化銅との併用による病害抵抗性誘導効果を評価した。
硫酸銅とThrの併用によるキュウリの病害抵抗性誘導における硫酸銅濃度の影響について評価した。すなわち、Thrを最適濃度である0.84 mMに固定して、硫酸銅濃度を0.08 mM、0.16 mM、0.20 mM、0.24 mM、0.28 mM、または0.32 mMとして、実施例1に記載の手順で硫酸銅とThrの併用による病害抵抗性誘導効果を評価した。
実施例6および実施例7では、水酸基を有する非芳香族アミノ酸4種類(Thr、Ser、Hse、Hyp)について、硫酸銅との併用による顕著な病害抵抗性誘導効果および病害防除効果が確認された。そこで、水酸基を保有するアミノ酸以外の物質としてアルコール類の中から代表的なものを選んで、実施例1に記載の手順で硫酸銅との併用による病害抵抗性誘導効果の評価を行った。アルコール類としては、EgOH(エチレングリコール)、IpOH(イソプロパノール)、GcOH(グリセロール)、EtOH(エタノール)を選んだ。比較のため、顕著な病害抵抗性誘導効果および病害防除効果が先の実施例で確認されたThrおよびSerも同時に再評価した。
本実施例では、トマトに硫酸銅とアミノ酸5種(Lys、Thr、Ser、Trp、Ala)を組み合わせて施用し、病害抵抗性遺伝子の発現を指標として病害抵抗性誘導効果を評価した。
トマト(品種:桃太郎ファイト)の種子2粒を、培養土を入れた直径10.5cmのスリットポット(口径10.5 cm×高さ8.8 cm)に播き、バイオトロン中で、温度23℃、明期14時間(6時~20時)、暗期10時間(20時~6時)で栽培した。培養土は、くみあいニッピ園芸培土1号(日本肥糧株式会社)とバーミキュライトを3:1(体積比)で混合したものを使用した。1週間後に1株を残して間引きし、栽培を継続した。播種の25日後に、0.1%の展着剤アプローチBI(花王(株))を添加した処理液を植物全体に散布した。処理区を表1に示す。アミノ酸の濃度はいずれも0.84 mMであり、硫酸銅の濃度は0.32 mM(Cuとして0.002%)である。各処理区につき3株のトマトを用い、1株当たり4 mLの処理液を散布した。散布の24時間後に2枚目の本葉から1.5 cm×1.5 cm四方をサンプルとして採集した。
サンプルから、SV Total RNA Isolation System TM(Promega)を用いて、そのキットのマニュアルに従ってRNAを抽出した。次いで、ReverTra Ace TM qPCR RT Master Mix(TOYOBO)を用いて、抽出したRNAから一本鎖cDNAを合成した。トマトの病害抵抗性に関連する遺伝子として、以下の9つの遺伝子を選択した:WRKY-type transcription factor(SLWRKY);Glucanase(SLGlu);Chitinase(SLChi);Pto-interactor 5(SLPti 5);Glutathione S-transferase (SLGST);Enhanced disease susceptibility 1 protein(SLEDS 1);Pathogenesis-related protein(SLPR 1a);Phenylalanine ammonia lyase 5(SLPAL 5);OPR 12-oxophytodienoate reductase 3(SLOPR 3)。上記のcDNAを鋳型とし、表2に示したプライマーを用いてリアルタイムPCRを行い、各遺伝子の発現量をアクチン(Actin)遺伝子に対する相対的な発現量として算出した。
Thrを含有する発酵液について、実施例11に記載の手順でトマトの病害抵抗性誘導効果を評価した。処理区を表3に示す。Thr発酵液中のThrの濃度は0.84 mMに調整した。Real-time PCRは表2に示したプライマーを用いた。
実施例6および実施例7で硫酸銅との併用により顕著な病害抵抗性誘導効果および病害防除効果が確認されたHypおよびHseについて、硫酸銅との併用によるキュウリの病害抵抗性誘導における濃度の影響を評価した。すなわち、HypおよびHseについて、濃度を0.17 mM、0.36 mM、0.50 mM、0.67 mM、0.84 mM、または1.01 mMとして、実施例1に記載の手順で硫酸銅との併用による病害抵抗性誘導効果を評価した。
実施例2で評価したアミノ酸のうち、硫酸銅との併用による病害抵抗性誘導効果が特に顕著であるThrおよびSerについて濃度を0.84mMとし、実施例1に記載の手順で塩化銅(I)または塩化銅(II)との併用による病害抵抗性誘導効果を評価した。
本実施例では、キュウリにおいて顕著な病害抵抗性効果および病害防除効果が確認された硫酸銅とSerの組み合わせを用いて、イチゴでの病害防除効果を確認した。すなわち、イチゴの本葉に硫酸銅とSerを組み合わせて施用し、イチゴ炭疽病菌による生ずる病斑数の減少を指標として病害防除効果を評価した。
本実施例では、イチゴに硫酸銅と各種アミノ酸を組み合わせて施用し、病害抵抗性遺伝子の発現を指標として病害抵抗性誘導効果を評価した。
配列番号1~28:プライマー
Claims (26)
- 組成物であって、
植物の病害抵抗性誘導用または植物の病害防除用であり、
下記成分(A)および(B)を含有し:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、組成物。 - 前記水酸基を有するアミノ酸が、水酸基を有する非芳香族のアミノ酸である、請求項1に記載の組成物。
- 前記成分(B)が、スレオニン、セリン、ホモセリン、ヒドロキシプロリン、アラニン、およびプロリンからなる群より選択される、請求項1または2に記載の組成物。
- 前記成分(B)が、スレオニン、セリン、ホモセリン、およびヒドロキシプロリンからなる群より選択される、請求項1~3のいずれか1項に記載の組成物。
- 前記成分(B)が、L-体である、請求項1~4のいずれか1項に記載の組成物。
- 前記成分(A)が、銅塩である、請求項1~5のいずれか1項に記載の組成物。
- 前記成分(A)が、硫酸銅または塩化銅である、請求項1~6のいずれか1項に記載の組成物。
- 前記植物が、ナス科植物、ウリ科植物、またはバラ科植物である、請求項1~7のいずれか1項に記載の組成物。
- 前記植物が、トマト、キュウリ、またはイチゴである、請求項1~8のいずれか1項に記載の組成物。
- 前記成分(A)を0.01mM~5mMの濃度で含有する液体の形態で使用される、請求項1~9のいずれか1項に記載の組成物。
- 前記成分(B)を0.02mM~10mMの濃度で含有する液体の形態で使用される、請求項1~10のいずれか1項に記載の組成物。
- 前記成分(A)の含有量に対する前記成分(B)の含有量の比率(成分(B)の含有量/成分(A)の含有量)が、モル比で、0.1~10である、請求項1~11のいずれか1項に記載の組成物。
- 植物の病害抵抗性を誘導する方法であって、
下記成分(A)および(B)を植物に施用することを含み:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、方法。 - 植物の病害を防除する方法であって、
下記成分(A)および(B)を植物に施用することを含み:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、方法。 - 植物体を製造する方法であって、
下記成分(A)および(B)を植物に施用して植物を栽培すること;および
植物体を回収することを含み:
(A)少なくとも1種の銅化合物;
(B)少なくとも1種のアミノ酸;
前記成分(B)が、水酸基を有するアミノ酸、アラニン、プロリン、およびトリプトファンからなる群より選択される、方法。 - 前記水酸基を有するアミノ酸が、水酸基を有する非芳香族のアミノ酸である、請求項13~15のいずれか1項に記載の方法。
- 前記成分(B)が、スレオニン、セリン、ホモセリン、ヒドロキシプロリン、アラニン、およびプロリンからなる群より選択される、請求項13~16のいずれか1項に記載の方法。
- 前記成分(B)が、スレオニン、セリン、ホモセリン、およびヒドロキシプロリンからなる群より選択される、請求項13~17のいずれか1項に記載の方法。
- 前記成分(B)が、L-体である、請求項13~18のいずれか1項に記載の方法。
- 前記成分(A)が、銅塩である、請求項13~19のいずれか1項に記載の方法。
- 前記成分(A)が、硫酸銅または塩化銅である、請求項13~20のいずれか1項に記載の方法。
- 前記植物が、ナス科植物、ウリ科植物、またはバラ科植物である、請求項13~21のいずれか1項に記載の方法。
- 前記植物が、トマト、キュウリ、またはイチゴである、請求項13~22のいずれか1項に記載の方法。
- 前記成分(A)が、前記成分(A)を0.01mM~5mMの濃度で含有する液体の形態で施用される、請求項13~23のいずれか1項に記載の方法。
- 前記成分(B)が、前記成分(B)を0.02mM~10mMの濃度で含有する液体の形態で施用される、請求項13~24のいずれか1項に記載の方法。
- 前記成分(A)の施用量に対する前記成分(B)の施用量の比率(成分(B)の施用量/成分(A)の施用量)が、モル比で、0.1~10である、請求項13~25のいずれか1項に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112020017985-0A BR112020017985A2 (pt) | 2018-03-05 | 2019-03-05 | Composição, e, métodos para induzir resistência a doenças em uma planta, para controlar uma doença de uma planta e para produzir um corpo de planta |
EP19763646.7A EP3763213A4 (en) | 2018-03-05 | 2019-03-05 | COMPOSITION INTENDED TO INDUCE RESISTANCE TO DAMAGE CAUSED BY A PLANT DISEASE OR TO PREVENT DAMAGE CAUSED BY A PLANT DISEASE |
JP2020505061A JP7375743B2 (ja) | 2018-03-05 | 2019-03-05 | 植物の病害抵抗性誘導用または植物の病害防除用の組成物 |
CN201980017242.2A CN111818802B (zh) | 2018-03-05 | 2019-03-05 | 用于诱导植物的抗病害性或用于防治植物的病害的组合物 |
US17/011,054 US20200397002A1 (en) | 2018-03-05 | 2020-09-03 | Composition for Inducing Plant Disease Damage Resistance or Preventing Plant Disease Damage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-038664 | 2018-03-05 | ||
JP2018038664 | 2018-03-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/011,054 Continuation US20200397002A1 (en) | 2018-03-05 | 2020-09-03 | Composition for Inducing Plant Disease Damage Resistance or Preventing Plant Disease Damage |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019172277A1 true WO2019172277A1 (ja) | 2019-09-12 |
Family
ID=67845720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008698 WO2019172277A1 (ja) | 2018-03-05 | 2019-03-05 | 植物の病害抵抗性誘導用または植物の病害防除用の組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200397002A1 (ja) |
EP (1) | EP3763213A4 (ja) |
JP (1) | JP7375743B2 (ja) |
CN (1) | CN111818802B (ja) |
BR (1) | BR112020017985A2 (ja) |
WO (1) | WO2019172277A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022088871A (ja) * | 2020-12-03 | 2022-06-15 | Oatアグリオ株式会社 | 植物病害抵抗性誘導剤 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113854302B (zh) * | 2021-11-09 | 2023-03-28 | 山东国仓健生物科技有限公司 | 脯氨酸和丙氨酸在防治小麦赤霉病中的应用 |
CN114009433A (zh) * | 2021-12-13 | 2022-02-08 | 云南硕农农业科技有限公司 | 一种能防治植物白粉病的组合物及其应用 |
CN115104617A (zh) * | 2022-07-27 | 2022-09-27 | 淮阴师范学院 | 一种防治黄瓜枯萎病的组合物 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0680530A (ja) | 1992-09-01 | 1994-03-22 | Mitsui Toatsu Chem Inc | 植物病害防除方法 |
JP2000191416A (ja) * | 1998-10-23 | 2000-07-11 | Hokko Chem Ind Co Ltd | 農園芸用種子消毒剤および種子の消毒方法 |
WO2005036967A1 (de) | 2003-10-17 | 2005-04-28 | Basf Aktiengesellschaft | Verwendung von basischen aminosäuren in kupferhaltigen fungiziden formulierungen |
WO2011087002A1 (ja) | 2010-01-13 | 2011-07-21 | 味の素株式会社 | ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法 |
WO2013186405A1 (es) | 2012-06-13 | 2013-12-19 | Agro Stock S.A. | Formulado líquido enraizante y potenciador de la autodefensa en las plantas y utilización del mismo. |
CN104163719A (zh) * | 2014-08-12 | 2014-11-26 | 冯思慧 | 一种含氨基酸水溶肥的制备方法 |
CN104642385A (zh) * | 2015-01-07 | 2015-05-27 | 安徽瀚驰生物科技有限公司 | 一种纳米铜和聚六亚甲基胍的复合杀菌剂及加工工艺 |
CN105461451A (zh) * | 2015-12-24 | 2016-04-06 | 北京沃土天地生物科技股份有限公司 | 一种微生物发酵水溶肥及其制备方法 |
CN105924266A (zh) * | 2016-04-19 | 2016-09-07 | 安徽尚诚生物科技有限公司 | 一种景观草种植叶面肥及其制备方法 |
CN106577792A (zh) * | 2016-10-31 | 2017-04-26 | 钟山县昱成水果种植专业合作社 | 一种防治贡柑溃疡病的药物组合物 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2823202B1 (fr) * | 2001-04-10 | 2004-03-05 | Penn Ar Bed | Engrais a base d'hydroxyde de cuivre ayant des proprietes fongiciels contre de nombreuses maladies cryptogamiques et un procede d'obtention d'un tel engrais |
CN101229987B (zh) * | 2008-01-17 | 2011-11-16 | 杜相革 | 一种适用于有机农业的药肥及其制备工艺 |
US8529964B1 (en) * | 2010-05-10 | 2013-09-10 | Timothy Lee Mann | Method and composition for suppression and control of citrus canker and other plant diseases |
GB2533081B (en) * | 2014-12-02 | 2019-10-16 | Rotam Agrochem Int Co Ltd | Composition and method for treating nematodes |
CN106962029A (zh) * | 2017-05-10 | 2017-07-21 | 麦丽 | 一种油茶的嫁接方法 |
-
2019
- 2019-03-05 JP JP2020505061A patent/JP7375743B2/ja active Active
- 2019-03-05 WO PCT/JP2019/008698 patent/WO2019172277A1/ja unknown
- 2019-03-05 BR BR112020017985-0A patent/BR112020017985A2/pt unknown
- 2019-03-05 EP EP19763646.7A patent/EP3763213A4/en active Pending
- 2019-03-05 CN CN201980017242.2A patent/CN111818802B/zh active Active
-
2020
- 2020-09-03 US US17/011,054 patent/US20200397002A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0680530A (ja) | 1992-09-01 | 1994-03-22 | Mitsui Toatsu Chem Inc | 植物病害防除方法 |
JP2000191416A (ja) * | 1998-10-23 | 2000-07-11 | Hokko Chem Ind Co Ltd | 農園芸用種子消毒剤および種子の消毒方法 |
WO2005036967A1 (de) | 2003-10-17 | 2005-04-28 | Basf Aktiengesellschaft | Verwendung von basischen aminosäuren in kupferhaltigen fungiziden formulierungen |
WO2011087002A1 (ja) | 2010-01-13 | 2011-07-21 | 味の素株式会社 | ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法 |
WO2013186405A1 (es) | 2012-06-13 | 2013-12-19 | Agro Stock S.A. | Formulado líquido enraizante y potenciador de la autodefensa en las plantas y utilización del mismo. |
CN104163719A (zh) * | 2014-08-12 | 2014-11-26 | 冯思慧 | 一种含氨基酸水溶肥的制备方法 |
CN104642385A (zh) * | 2015-01-07 | 2015-05-27 | 安徽瀚驰生物科技有限公司 | 一种纳米铜和聚六亚甲基胍的复合杀菌剂及加工工艺 |
CN105461451A (zh) * | 2015-12-24 | 2016-04-06 | 北京沃土天地生物科技股份有限公司 | 一种微生物发酵水溶肥及其制备方法 |
CN105924266A (zh) * | 2016-04-19 | 2016-09-07 | 安徽尚诚生物科技有限公司 | 一种景观草种植叶面肥及其制备方法 |
CN106577792A (zh) * | 2016-10-31 | 2017-04-26 | 钟山县昱成水果种植专业合作社 | 一种防治贡柑溃疡病的药物组合物 |
Non-Patent Citations (1)
Title |
---|
MCCREATH, K. ET AL., J. MICROBIOL. METHODS, vol. 14, 1992, pages 229 - 237 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022088871A (ja) * | 2020-12-03 | 2022-06-15 | Oatアグリオ株式会社 | 植物病害抵抗性誘導剤 |
JP7334975B2 (ja) | 2020-12-03 | 2023-08-29 | Oatアグリオ株式会社 | 植物病害抵抗性誘導剤 |
Also Published As
Publication number | Publication date |
---|---|
EP3763213A4 (en) | 2021-11-24 |
EP3763213A1 (en) | 2021-01-13 |
CN111818802B (zh) | 2023-03-07 |
BR112020017985A2 (pt) | 2020-12-29 |
CN111818802A (zh) | 2020-10-23 |
JPWO2019172277A1 (ja) | 2021-03-11 |
US20200397002A1 (en) | 2020-12-24 |
JP7375743B2 (ja) | 2023-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019172277A1 (ja) | 植物の病害抵抗性誘導用または植物の病害防除用の組成物 | |
El-Mohamedy et al. | Field application of plant resistance inducers (PRIs) to control important root rot diseases and improvement growth and yield of green bean (Phaseolus vulgaris L.) | |
Mazhabi et al. | The effect of Trichoderma on polianthes qualitative and quantitative properties | |
Gilardi et al. | Management of downy mildew of sweet basil (Ocimum basilicum) caused by Peronospora belbahrii by means of resistance inducers, fungicides, biocontrol agents and natural products | |
KR101287141B1 (ko) | 식물병 방제 효과를 가지는 스트렙토마이세스 그리세우스 big105 균주 및 이의 용도 | |
Ji et al. | Application of acibenzolar-S-methyl and standard fungicides for control of Phytophthora blight on squash | |
WO2020140163A1 (es) | Una formulación para la protección contra la bacteriosis del kiwi, causada por la bacteria pseudomonas syringae pv. actinidiae (psa) | |
JP2001172112A (ja) | 植物の活性付与剤、その製造方法と、活性付与方法及び活性促進剤並びにその施用方法 | |
CN109503266A (zh) | 一种农用药肥 | |
Maity et al. | Salicylic acid mediated multi-pronged strategy to combat bacterial blight disease (Xanthomonas axonopodis pv. punicae) in pomegranate | |
Mazhabi et al. | How may Trichoderma application affect vegetative and qualitative traits in tulip" Darwin hybride" cultivar | |
Orojnia et al. | Investigation of biological control of Trichoderma formulations and its mutant type related to chemical treatments in the control of soybean charcoal rots disease. | |
KR102431000B1 (ko) | 아스피린과 벤조치아졸이 포함된 식물의 자가면역 증강제 조성물 및 이를 이용한 이용방법 | |
Abo Nouh et al. | Induction of abiotic stress tolerance in plants by endophytic fungi hosted wild plants | |
RU2738483C1 (ru) | Пестицид и агрохимикат на основе хелатной формы фульвовой кислоты | |
Tantawy et al. | Effectiveness of Peroxy Acetic Aacid (PAA), Perbicarbonate (PB) and Potassium Silicate (PS) on Okra Growth, Yield and Resistance to Powdery Mildew | |
David et al. | Silicon suppresses anthracnose diseases in tomato (Lycopersicon esculentum) by enhancing disease resistance | |
Yang et al. | 5-Aminolevulinic acid against strawberry fusarium wilt: Bidirectional regulation of biocontrol agents and pathogens | |
JPWO2011037086A1 (ja) | 植物育成剤、植物病害抵抗性誘導剤及び病害防除方法 | |
KR20210011232A (ko) | 이산화염소를 포함하는 비료 조성물 | |
Khalil | Beneficial effects of Trichoderma viride and salicylic acid against Fusarium wilt in tomato | |
CN109704870A (zh) | 一种核苷多肽氨基酸多功能生物肥及其制备方法和应用 | |
Polat et al. | Efficiency of Zeolite as Alternative Product for Controlling Downy Mildew (Plasmopara viticola) in Table Grape | |
Ajiboye et al. | Effect of Trichoderma koningii on the Growth Yield of Capsicum chinense Jacq.(NHCC-AC9) Against Fusarium oxysporum and Pythium ultimum | |
Mohamed et al. | Effect of some bio agents and agricultural chemicals on Fusarium wilt incidence and growth characters of gladiolus plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19763646 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020505061 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020017985 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2019763646 Country of ref document: EP Effective date: 20201005 |
|
ENP | Entry into the national phase |
Ref document number: 112020017985 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200902 |