WO2019171981A1 - 酸変性共役ジエン系重合体のラテックス、およびその製造方法 - Google Patents

酸変性共役ジエン系重合体のラテックス、およびその製造方法 Download PDF

Info

Publication number
WO2019171981A1
WO2019171981A1 PCT/JP2019/006725 JP2019006725W WO2019171981A1 WO 2019171981 A1 WO2019171981 A1 WO 2019171981A1 JP 2019006725 W JP2019006725 W JP 2019006725W WO 2019171981 A1 WO2019171981 A1 WO 2019171981A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
latex
conjugated diene
diene polymer
weight
Prior art date
Application number
PCT/JP2019/006725
Other languages
English (en)
French (fr)
Inventor
吉隆 佐藤
秀岳 石井
小出村 順司
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020207024824A priority Critical patent/KR20200130265A/ko
Priority to BR112020017124-7A priority patent/BR112020017124B1/pt
Priority to JP2020504920A priority patent/JP7259837B2/ja
Priority to CN201980013992.2A priority patent/CN111742006B/zh
Priority to US16/975,967 priority patent/US11466106B2/en
Publication of WO2019171981A1 publication Critical patent/WO2019171981A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/28Reaction with compounds containing carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/10Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J147/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/003Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • C09J153/025Vinyl aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J155/00Adhesives based on homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C09J123/00 - C09J153/00
    • C09J155/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/08Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms
    • C08F255/10Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms on to butene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2315/00Characterised by the use of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2347/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a latex of an acid-modified conjugated diene polymer, and a method for producing the latex. More specifically, the latex of an acid-modified conjugated diene polymer that can give a film molded article excellent in tensile strength and tear strength, And a manufacturing method thereof.
  • film molded articles such as dip molded articles obtained by dip molding latex compositions containing natural rubber or synthetic rubber latex have been suitably used as nipples, balloons, gloves, balloons, sacks and the like.
  • Patent Document 1 discloses a latex of carboxy-modified synthetic polyisoprene obtained by graft polymerization of a monomer having a carboxyl group to synthetic polyisoprene in an aqueous phase.
  • the latex obtained by the technique of Patent Document 1 is used as a film molded body such as a dip molded body, the obtained film molded body does not have sufficient tear strength. Therefore, improvement in tear strength is desired. It was rare.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a latex of an acid-modified conjugated diene polymer that can give a film molded article excellent in tensile strength and tear strength. .
  • the present inventors have found that in a latex containing an acid-modified conjugated diene polymer obtained by modifying a conjugated diene polymer with an acid group-containing compound, the content of the structural unit derived from the acid group-containing compound is in a specific range, the content of the water-soluble polymer contained in the latex is less than the specific amount, and under specific conditions
  • a film molded product such as a dip molded product obtained using the latex is found to have excellent tensile strength and tear strength, and the present invention is completed. It came to.
  • the content of the structural unit derived from the acid group-containing compound is 0.2 to 0.7 parts by weight, and the content of the water-soluble polymer in the latex is 100 weights of the acid-modified conjugated diene polymer. 2 parts by weight or less, the viscosity at a temperature of 25 ° C. is 800 mPa ⁇ s or less, and the latex solids concentration is 50% by weight when the solids concentration of the latex is 60% by weight.
  • an acid-modified conjugated diene polymer latex having a viscosity at a temperature of 25 ° C. of 300 mPa ⁇ s or less is provided.
  • the conjugated diene polymer is preferably a synthetic polyisoprene and / or a styrene-isoprene-styrene block copolymer, and preferably a synthetic polyisoprene. More preferred.
  • an acid group-containing compound is reacted with a conjugated diene polymer in an organic solvent having an SP value in the range of 7.2 to 10 (cal / cm 3 ) 1/2.
  • a method for producing an acid-modified conjugated diene polymer latex comprising a step of concentrating an emulsified dispersion from which an organic solvent has been removed by centrifugation or microfiltration.
  • the conjugated diene polymer is preferably a synthetic polyisoprene and / or a styrene-isoprene-styrene block copolymer. More preferably.
  • the synthetic polyisoprene is preferably obtained by polymerization using an alkyl lithium polymerization catalyst.
  • the latex composition containing the latex of said acid modified conjugated diene type polymer and a crosslinking agent is provided. Furthermore, according to this invention, the film forming body which consists of said latex composition is provided. Moreover, according to this invention, the adhesive bond layer formation base material formed by forming the adhesive bond layer formed using the latex of said acid-modified conjugated diene polymer on the base material surface is provided.
  • an acid-modified conjugated diene polymer latex capable of providing a film molded article excellent in tensile strength and tear strength.
  • the latex of the acid-modified conjugated diene polymer of the present invention is a latex containing an acid-modified conjugated diene polymer obtained by modifying a conjugated diene polymer with an acid group-containing compound,
  • the content of the structural unit derived from the acid group-containing compound is 0.2 to 0.7 parts by weight
  • the content of the water-soluble polymer in the latex is 2 parts by weight or less based on 100 parts by weight of the acid-modified conjugated diene polymer
  • the solid content concentration of the latex is 60% by weight, the viscosity at a temperature of 25 ° C. is 800 mPa ⁇ s or less, and when the solid content concentration of the latex is 50% by weight, the viscosity at a temperature of 25 ° C. is 300 mPa ⁇ s. It is as follows.
  • the conjugated diene polymer used in the present invention is not particularly limited as long as it contains a monomer unit derived from a conjugated diene monomer, and may be either natural rubber or synthetic rubber. However, it is said that it is possible to effectively prevent the occurrence of allergic symptoms when the obtained film molded body such as a dip molded body is used in contact with a human body such as a nipple, a balloon, a glove, a balloon, and a sac. From the viewpoint, synthetic rubber is preferable.
  • the synthetic rubber is not particularly limited, but homopolymers and copolymers of conjugated diene monomers such as synthetic polybutadiene, synthetic polyisoprene, and synthetic polychloroprene; styrene-butadiene copolymers, styrene-isoprene copolymers, Conjugated diene monomers such as styrene-isoprene-styrene block copolymer, acrylonitrile-butadiene copolymer, acrylonitrile-isoprene copolymer, acrylonitrile-butadiene-isoprene copolymer, butyl acrylate-butadiene copolymer and the like And a copolymer with another copolymerizable monomer.
  • conjugated diene monomers such as synthetic polybutadiene, synthetic polyisoprene, and synthetic polychloroprene
  • synthetic polyisoprene and / or styrene-isoprene-styrene block copolymers are preferred because they are excellent in tensile strength and elongation when formed into a film molded body such as a dip molded body.
  • the conjugated diene polymer used in the present invention is a synthetic polyisoprene and / or a styrene-isoprene-styrene block copolymer will be described as an example.
  • the present invention is not limited to these synthetic polyisoprene and / or styrene-isoprene-styrene block copolymers.
  • the synthetic polyisoprene used in the present invention is a polymer of isoprene obtained by polymerizing isoprene.
  • the synthetic polyisoprene may be a homopolymer of isoprene or a copolymer of other ethylenically unsaturated monomers copolymerizable with isoprene.
  • the content of isoprene units in the synthetic polyisoprene is flexible, and it is easy to obtain a film molded body such as a dip molded body having excellent tensile strength. More preferred is 90% by weight or more, still more preferred is 95% by weight or more, and particularly preferred is 100% by weight (isoprene homopolymer).
  • Examples of other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ - Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate (meaning “methyl acrylate and / or methyl methacrylate”; The same applies to ethyl (meth) acrylate, etc.), ethylenically unsaturated carboxylic acid ester monomers such as ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; Is mentioned.
  • Synthetic polyisoprene can be obtained by solution polymerization of isoprene and other copolymerizable ethylenically unsaturated monomers used as necessary in an organic solvent using a polymerization catalyst.
  • the polymerization catalyst used in this case is not particularly limited, and examples thereof include a Ziegler polymerization catalyst composed of trialkylaluminum-titanium tetrachloride, and an alkyllithium polymerization catalyst such as n-butyllithium and sec-butyllithium.
  • an alkyllithium polymerization catalyst from the viewpoint that it is easy to obtain high molecular weight synthetic polyisoprene, whereby the tensile strength of a film molded body such as a dip molded body can be further increased. More preferably, butyl lithium is used.
  • the polymer solution of synthetic polyisoprene obtained by solution polymerization may be used as it is for the reaction with the acid group-containing compound described later, but once the solid synthetic polyisoprene is taken out, it is dissolved in an organic solvent. It can also be used for the reaction with an acid group-containing compound. At this time, impurities such as a residue of the polymerization catalyst remaining in the polymer solution after the synthesis may be removed. Moreover, you may add the anti-aging agent mentioned later to the solution during superposition
  • organic solvent used when obtaining a polymer solution of synthetic polyisoprene examples include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; And aliphatic hydrocarbon solvents such as pentane, hexane and heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; Of these, alicyclic hydrocarbon solvents are preferred, with cyclohexane being particularly preferred.
  • the amount of the organic solvent used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, still more preferably 500 to 1000, particularly preferably 100 to 400 parts per 100 parts by weight of the synthetic polyisoprene. It is.
  • the content ratio of cis bond units in the isoprene units contained in the synthetic polyisoprene is preferably 70% by weight or more based on the total isoprene units. More preferably, it is 90 weight% or more, More preferably, it is 95 weight% or more.
  • the weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, and even more preferably, in terms of standard polystyrene by gel permeation chromatography analysis. Is 800,000 to 3,000,000.
  • the polymer Mooney viscosity (ML1 + 4, 100 ° C.) of the synthetic polyisoprene is preferably 50 to 100, more preferably 60 to 95, still more preferably 70 to 90, and most preferably 75 to 85.
  • the styrene-isoprene-styrene block copolymer is a block copolymer (SIS) of styrene and isoprene (“S” represents a styrene block and “I” represents an isoprene block, respectively).
  • SIS block copolymer
  • SIS can be obtained by a conventionally known method, for example, block copolymerization of isoprene and styrene in an organic solvent using an active organic metal such as n-butyllithium as an initiator.
  • the obtained SIS polymer solution may be used as it is in the reaction with the acid group-containing compound described later, but once the solid SIS is taken out, it is dissolved in an organic solvent and contains an acid group. It can also be used for reaction with compounds. At this time, impurities such as a residue of the polymerization catalyst remaining in the polymer solution after the synthesis may be removed. Moreover, you may add the anti-aging agent mentioned later to the solution during superposition
  • the organic solvent the same solvents as in the case of the synthetic polyisoprene can be used, and aromatic hydrocarbon solvents and alicyclic hydrocarbon solvents are preferable, and cyclohexane and toluene are particularly preferable.
  • the amount of the organic solvent used is usually 50 to 2,000, preferably 80 to 1,000 parts, more preferably 10 to 500 parts, and further preferably 150 to 300 parts by weight with respect to 100 parts by weight of SIS. It is.
  • the latex of the acid-modified conjugated diene polymer of the present invention is a latex containing an acid-modified conjugated diene polymer obtained by modifying a conjugated diene polymer such as the above-mentioned synthetic polyisoprene or SIS with an acid group-containing compound. It is.
  • the content of the structural unit derived from the acid group-containing compound in 100 parts by weight of the acid-modified conjugated diene polymer is 0.2 to 0.7 weight.
  • the content of the water-soluble polymer in the latex is 2 parts by weight or less with respect to 100 parts by weight of the acid-modified conjugated diene polymer,
  • the viscosity at a temperature of 25 ° C. is 800 mPa ⁇ s or less.
  • the viscosity at a temperature of 25 ° C. is 300 mPa ⁇ s or less. It is.
  • the acid-modified conjugated diene polymer contained in the latex of the present invention is a polymer obtained by modifying the conjugated diene polymer such as synthetic polyisoprene and SIS described above with an acid group-containing compound.
  • the acid group-containing compound is not particularly limited, and examples thereof include a carboxyl group-containing compound, a sulfonic acid group-containing compound, and a phosphoric acid group-containing compound. Tensile strength and tear strength of a film molded body such as a dip-molded body to be obtained. A carboxyl group-containing compound is preferable from the viewpoint that it can be further increased.
  • carboxyl group-containing compound examples include ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid, maleic acid and fumaric acid; maleic anhydride and citraconic anhydride And ethylenically unsaturated polyvalent carboxylic acid anhydrides such as acids; ethylenically unsaturated polyvalent carboxylic acid partial esters such as monobutyl fumarate, monobutyl maleate and mono-2-hydroxypropyl maleate; Among these, ethylenically unsaturated monocarboxylic acid and ethylenically unsaturated polyvalent carboxylic acid anhydride are preferable, and ethylenically unsaturated monocarboxylic acid is more preferable.
  • monocarboxylic acids such as acrylic acid and methacrylic acid
  • polyvalent carboxylic acids such as itaconic acid, maleic acid
  • methacrylic acid and maleic anhydride are preferable, and methacrylic acid is more preferable.
  • those soluble in an organic solvent having an SP value (solubility parameter) described later in the range of 7.2 to 10 (cal / cm 3 ) 1/2 are preferable, and the SP value is 8 to 9.5 (cal / cm 3 ) More preferred are those that are soluble in an organic solvent in the range of 1/2 , and more preferred are those that are soluble in an organic solvent in the range of SP to 8.5-9 (cal / cm 3 ) 1/2 .
  • These carboxyl group-containing compounds can also be used as alkali metal salts or ammonium salts.
  • the carboxyl group-containing compounds can be used alone or in combination of two or more.
  • the content of the structural unit derived from the acid group-containing compound is 0.2 to 0.7 parts by weight, preferably 0.25 to 0.6 parts by weight.
  • the amount is preferably 0.37 to 0.55 parts by weight.
  • the content of the structural unit derived from the acid group-containing compound is the content based on the weight basis of the structural unit derived from the acid group-containing compound in the acid-modified conjugated diene polymer, specifically, the acid-modified conjugated diene system. It is the content based on the weight of the structural unit derived from the acid group-containing compound when the total weight of the polymer is 100 parts by weight.
  • content of the structural unit derived from the acid group-containing compound is too small, the tensile strength of the resulting film molded product such as a dip-molded product will decrease, and if the content of the structural unit derived from the acid group-containing compound is too large In addition, aggregates are easily generated in the latex of the acid-modified conjugated diene polymer, resulting in poor stability as a latex.
  • content of the structural unit derived from an acid group containing compound can be measured by electrical conductivity measurement, for example. The conductivity measurement will be described later.
  • the content of the water-soluble polymer in the latex is 2 parts by weight or less with respect to 100 parts by weight of the acid-modified conjugated diene polymer. Preferably it is 1.5 weight part or less, More preferably, it is 1 weight part or less.
  • the minimum of content of a water-soluble polymer is not specifically limited, Usually, it is 0.05 weight part or more.
  • the latex of the acid-modified conjugated diene polymer of the present invention contains an acid-modified conjugated diene polymer obtained by modifying a conjugated diene polymer such as synthetic polyisoprene or SIS described above with an acid group-containing compound. Therefore, the water-soluble polymer formed by polymerizing the acid group-containing compound used for the modification reaction is inevitably contained in the latex. For example, when methacrylic acid is used as the acid group-containing compound, a methacrylic acid polymer is inevitably included as the water-soluble polymer.
  • a film molded body such as a dip molded body obtained by using the latex has been found to be excellent in tear strength while maintaining high tensile strength.
  • the water-soluble polymer is a polymer that is soluble in water, and is not particularly limited as long as it is mainly a polymer derived from the acid group-containing compound used in the modification reaction.
  • the weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited, but is usually 1,500 or more and 50,000 or less, preferably 2,000 in terms of standard polystyrene by gel permeation chromatography analysis. It is 10,000 or more and more preferably 2,500 or more and 5,000 or less.
  • content of the water-soluble polymer in latex can be calculated
  • the content of the structural unit derived from the acid group-containing compound in the acid-modified conjugated diene polymer can also be determined. That is, first, an acid group (for example, carboxyl group) contained in the entire latex of the acid-modified conjugated diene polymer is measured by measuring the conductivity of the acid-modified conjugated diene polymer latex using a conductivity meter. Group) (initial acid amount X1).
  • the electrical conductivity based on the acid group derived from the acid-modified conjugated diene polymer and the acid group derived from the water-soluble polymer is measured, and the total amount thereof is determined.
  • a treatment for removing the water-soluble polymer is performed on the latex of the acid-modified conjugated diene polymer.
  • the process for removing the water-soluble polymer is not particularly limited, but the process of diluting the latex with water, the process of centrifuging the latex, and the process of measuring the conductivity of the latex after centrifugation are repeatedly performed. There is a method in which such a process is repeated until the measured value does not change.
  • the amount of acid groups (acid amount after treatment X2) contained only in the acid-modified conjugated diene polymer is calculated. Based on this, the content of the structural unit derived from the acid group-containing compound in the acid-modified conjugated diene polymer can be determined. Finally, the content of the water-soluble polymer in the latex can be determined based on the difference between the initial acid amount X1 and the post-treatment acid amount X2.
  • the latex of the acid-modified conjugated diene polymer of the present invention has a viscosity at a temperature of 25 ° C. of 800 mPa ⁇ s or less, preferably 700 mPa ⁇ s or less, when the solid content concentration of the latex is 60% by weight. More preferably, it is 500 mPa ⁇ s or less, and the lower limit thereof is not particularly limited, but is usually 200 mPa ⁇ s or more.
  • the latex of the acid-modified conjugated diene polymer of the present invention has a viscosity at a temperature of 25 ° C.
  • the viscosity at a solid content concentration of 60% by weight and the viscosity at a solid content concentration of 50% by weight can be measured, for example, using a Brookfield viscometer (B-type viscometer) at 25 ° C.
  • a method of diluting by adding water a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, preferably centrifugation Viscosity measurement may be performed after adjusting the solid content concentration by the method of performing the concentration operation.
  • the method for producing the latex of the acid-modified conjugated diene polymer of the present invention is not particularly limited, but the content of the water-soluble polymer in the latex, the viscosity at a solid content concentration of 60% by weight, and the solid content concentration at 50% by weight. From the viewpoint of easily controlling the viscosity within the above-described range, the following production method is preferable. That is, it is derived from an acid group-containing compound by reacting a conjugated diene polymer with an acid group-containing compound in an organic solvent having an SP value in the range of 7.2 to 10 (cal / cm 3 ) 1/2.
  • step A of obtaining an organic solvent solution of an acid-modified conjugated diene polymer in which the content of the structural unit is 0.2 to 0.7 parts by weight in 100 parts by weight of the polymer;
  • step B A step of obtaining an emulsified dispersion by emulsifying the organic solvent solution of the acid-modified conjugated diene polymer in water in the presence of a surfactant (step B); Removing the organic solvent from the emulsified dispersion (step C);
  • a manufacturing method comprising a step of concentrating the emulsified dispersion from which the organic solvent has been removed by centrifugation or microfiltration (step D) is preferable.
  • the method of reacting the acid group-containing compound with the conjugated diene polymer such as synthetic polyisoprene or SIS described above in an organic solvent is not particularly limited. A method of graft-reacting the group-containing compound is preferred. In this case, the acid-modified conjugated diene polymer is obtained in the state of an organic solvent solution.
  • the amount of the acid group-containing compound used may be an amount in which the content of the structural unit derived from the acid group-containing compound is in the above range in 100 parts by weight of the acid-modified conjugated diene polymer.
  • the amount is preferably 0.4 to 20 parts by weight, more preferably 1 to 10 parts by weight, and still more preferably 1.5 to 5 parts by weight with respect to 100 parts by weight.
  • An organic solvent used for graft reaction of an acid group-containing compound to a conjugated diene polymer is one having an SP value (solubility parameter) in the range of 7.2 to 10 (cal / cm 3 ) 1/2.
  • Examples of such an organic solvent include benzene (SP value: 9.2 (cal / cm 3 ) 1/2 ), toluene (SP value: 8.9 (cal / cm 3 ) 1/2 ), xylene ( SP value: 8.8 (cal / cm 3 ) 1/2 ), cyclohexane (SP value: 8.2 (cal / cm 3 ) 1/2 ), octane (SP value: 7.6 (cal / cm 3 )) 1/2 ), methyl ethyl ketone (SP value: 9.3 (cal / cm 3 ) 1/2 ) and the like.
  • the SP value is calculated from the boiling point, critical point, critical pressure, evaporation enthalpy, liquid molar volume, etc. estimated from the molecular structure.
  • the SP value is calculated using ASPEN PLUS which is simulation software.
  • the specified one can be used.
  • the organic solvents having an SP value in the range of 7.2 to 10 (cal / cm 3 ) 1/2 can be used alone or in combination of two or more.
  • the conjugated diene polymer When the conjugated diene polymer is obtained in the state of a polymer solution of an organic solvent having an SP value in the range of 7.2 to 10 (cal / cm 3 ) 1/2 , the conjugated diene polymer The polymer solution may be used as it is, and the acid group-containing compound may be grafted, or the polymer value of the conjugated diene polymer may have an SP value of 7.2 to 10 (cal / cm 3 ).
  • An organic solvent in the range of 1/2 may be further added to cause the acid group-containing compound to undergo a graft reaction.
  • a graft polymerization catalyst is preferably used.
  • the graft polymerization catalyst is not particularly limited, but is an inorganic peroxide polymerization catalyst such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; diisopropylbenzene hydroperoxide, cumene hydroper Organic peroxide polymerization catalysts such as oxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, isobutyryl peroxide, benzoyl peroxide And azo compound-based polymerization catalysts such as 2,2′-azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate, and the like.
  • an azo compound-based polymerization catalyst is preferable, and 2,2′-azobisisobutyronitrile is particularly preferable from the viewpoint that the tear strength of a film molded body such as a dip molded body to be obtained can be further increased.
  • the graft polymerization catalysts can be used alone or in combination of two or more.
  • the amount of the graft polymerization catalyst used varies depending on the type, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the synthetic isoprene polymer. Moreover, it does not specifically limit as a method of adding a graft polymerization catalyst, Well-known addition methods, such as collective addition, divided addition, and continuous addition, are employable.
  • an anionic surfactant is preferable, and examples of the anionic surfactant include fatty acids such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, and sodium rosinate.
  • alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate, potassium dodecylbenzenesulfonate, sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate; di (2-ethylhexyl) Alkylsulfosuccinates such as sodium sulfosuccinate, potassium di (2-ethylhexyl) sulfosuccinate and sodium dioctylsulfosuccinate; sodium lauryl sulfate Alkyl sulfate salts such as potassium lauryl sulfate; polyoxyethylene alkyl ether sulfate salts such as sodium polyoxyethylene lauryl ether sulfate and potassium polyoxyethylene lauryl ether sulfate; monoalkyl
  • fatty acid salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfate esters and polyoxyethylene alkyl ether sulfate salts are preferable, and fatty acid salts and alkylbenzene sulfonates are particularly preferable.
  • a trace amount of the polymerization catalyst (particularly, aluminum or titanium) derived from the conjugated diene polymer can be removed more efficiently, thereby suppressing the generation of aggregates in the latex.
  • a fatty acid salt in combination with at least one selected from the group consisting of acid salts, alkyl sulfosuccinates, alkyl sulfate esters and polyoxyethylene alkyl ether sulfate salts, It is particularly preferred to use a fatty acid salt in combination.
  • fatty acid salt sodium rosinate and potassium rosinate are preferable, sodium rosinate is more preferable, and as the alkylbenzene sulfonate, sodium dodecylbenzenesulfonate and potassium dodecylbenzenesulfonate are preferable, and dodecylbenzene.
  • Sodium sulfonate is more preferred.
  • a surfactant other than the anionic surfactant may be used in combination.
  • a surfactant other than the anionic surfactant a sulfo of ⁇ , ⁇ -unsaturated carboxylic acid may be used.
  • examples thereof include copolymerizable surfactants such as esters, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, and sulfoalkylaryl ethers.
  • nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester may be used in combination.
  • the amount of the surfactant used in the aqueous solution of the surfactant is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the acid-modified conjugated diene polymer. Parts, more preferably 1 to 10 parts by weight. In addition, when using 2 or more types of surfactant, it is preferable to make these total usage into the said range.
  • the amount of water contained in the surfactant aqueous solution is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts per 100 parts by weight of the organic solvent solution of the acid-modified conjugated diene polymer. Part by weight, most preferably 50-100.
  • the water to be used include hard water, soft water, ion exchange water, distilled water, zeolite water and the like, and soft water, ion exchange water and distilled water are preferable.
  • An apparatus for emulsifying an organic solvent solution of an acid-modified conjugated diene polymer in water in the presence of a surfactant is not particularly limited as long as it is generally commercially available as an emulsifier or a disperser.
  • the method for adding the surfactant to the organic solvent solution of the acid-modified conjugated diene polymer is not particularly limited, and it is added beforehand to either or both of water and the acid-modified conjugated diene polymer. Alternatively, it may be added to the emulsified dispersion during the emulsification operation, or may be added all at once or dividedly.
  • emulsifier examples include batch type emulsification such as trade name “Homogenizer” (manufactured by IKA), trade name “Polytron” (manufactured by Kinematica), trade name “TK auto homomixer” (manufactured by Tokushu Kika Kogyo Co.) Machine: Trade name “TK Pipeline Homomixer” (made by Tokushu Kika Kogyo Co., Ltd.), trade name “Colloid Mill” (made by Shinko Pantech Co., Ltd.), trade name “Slasher” (made by Nippon Coke Industries, Ltd.) "Trigonal wet milling machine” (Mitsui Miike Chemical Co., Ltd.), trade name “Cabitron” (Eurotech Co., Ltd.), trade name “Milder” (Pacific Kiko Co., Ltd.), trade name “Fine Flow Mill” (Pacific Kiko Co., Ltd.) Product name “Microfluidizer” (manufactured by Mizuho Ko
  • the organic solvent is removed from the emulsified dispersion obtained by the emulsification operation.
  • a method for removing the organic solvent from the emulsified dispersion a method in which the content of the organic solvent in the latex of the resulting acid-modified conjugated diene polymer can be 500 ppm by weight or less is preferable. Methods such as atmospheric distillation and steam distillation can be employed.
  • Centrifugation for example, using a continuous centrifuge, the centrifugal force is preferably 100 to 10,000 G, and the solid content concentration of the acid-modified conjugated diene polymer latex before centrifugation is preferably 2 to 15 It is preferably carried out under the conditions of wt%, the flow rate fed to the centrifuge, preferably 500 to 1700 Kg / hr, and the back pressure (gauge pressure) of the centrifuge, preferably 0.03 to 1.6 MPa.
  • An acid-modified conjugated diene polymer latex can be obtained as a light liquid after centrifugation.
  • Concentration by microfiltration can be performed by a filtration operation using a microfiltration membrane (MF membrane) having a pore size of preferably 0.2 to 2 ⁇ m, more preferably 0.5 to 1 ⁇ m.
  • MF membrane microfiltration membrane
  • the content of the structural unit derived from the acid group-containing compound, the content of the water-soluble polymer in the latex, the solid content concentration of 60% by weight and the viscosity at the solid content concentration of 50% by weight can be suitably obtained.
  • an acid group-containing compound is reacted with a conjugated diene polymer in an organic solvent having an SP value in the range of 7.2 to 10 (cal / cm 3 ) 1/2.
  • the resulting organic solvent solution of the acid-modified conjugated diene polymer is emulsified in water, and then concentrated by centrifugal operation or microfiltration, thereby effecting the content of the water-soluble polymer in the resulting latex. Can be reduced.
  • an organic solvent solution of a conjugated diene polymer is emulsified in water to form a latex, and then an acid group-containing compound is reacted with the conjugated diene polymer.
  • the content of the water-soluble polymer remaining in the latex tends to be high, and as a result, the tear strength decreases due to the water-soluble polymer.
  • the solid concentration of the latex of the acid-modified conjugated diene polymer of the present invention is preferably 30 to 70% by weight, more preferably 40 to 70% by weight.
  • the solid content concentration is too low, a film molded body such as a dip molded body is thinned and easily broken.
  • the solid content concentration is too high, the viscosity of the latex of the acid-modified conjugated diene polymer becomes high, which may make it difficult to transfer it through piping or to stir in the preparation tank.
  • the volume average particle diameter of the latex of the acid-modified conjugated diene polymer is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, and still more preferably 0.5 to 2.0 ⁇ m.
  • the latex of the acid-modified conjugated diene polymer of the present invention is usually blended in the latex field, and is a pH adjuster, antifoaming agent, preservative, crosslinking agent, chelating agent, oxygen scavenger, dispersant.
  • An additive such as an anti-aging agent may be blended.
  • the pH adjuster include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium bicarbonate; ammonia
  • An organic amine compound such as trimethylamine or triethanolamine; an alkali metal hydroxide or ammonia is preferred.
  • the latex composition of the present invention is obtained by blending the above-described acid-modified conjugated diene polymer latex of the present invention with a crosslinking agent.
  • crosslinking agent examples include sulfur such as powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and the like; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, caprolactam disulfide (N, And sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azepinone-2)), phosphorus-containing polysulfides, polymer polysulfides, and 2- (4′-morpholinodithio) benzothiazole.
  • sulfur can be preferably used.
  • a crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
  • the content of the crosslinking agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight with respect to 100 parts by weight of the acid-modified conjugated diene polymer constituting the latex of the acid-modified conjugated diene polymer. Is 0.2 to 3 parts by weight.
  • the latex composition of this invention contains a crosslinking accelerator further.
  • a crosslinking accelerator those usually used in film forming such as dip forming can be used.
  • Dithiocarbamic acids such as acids and zinc salts thereof; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2 -(N, N-diethylthiocarbaylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino dithio)
  • Examples include benzothiazole, 4-morpholinyl-2-benzothiazyl disulfide, 1,3-bis (2-benzothiazyl mercaptomethyl) urea, and zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate
  • the content of the crosslinking accelerator is preferably 0.05 to 5 parts by weight, more preferably 100 parts by weight with respect to 100 parts by weight of the acid-modified conjugated diene polymer that constitutes the latex of the acid-modified conjugated diene polymer. 0.1 to 2 parts by weight.
  • the latex composition of this invention contains a zinc oxide further.
  • the zinc oxide content is not particularly limited, but is preferably 0.1 to 5 parts by weight, more preferably 100 parts by weight of the acid-modified conjugated diene polymer latex constituting the latex of the acid-modified conjugated diene polymer. Is 0.2 to 2 parts by weight.
  • the latex composition of the present invention further comprises a compounding agent such as an anti-aging agent, a dispersant; a reinforcing agent such as carbon black, silica, or talc; a filler such as calcium carbonate or clay; an ultraviolet absorber; a plasticizer; It can mix
  • a compounding agent such as an anti-aging agent, a dispersant; a reinforcing agent such as carbon black, silica, or talc; a filler such as calcium carbonate or clay; an ultraviolet absorber; a plasticizer; It can mix
  • Antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2′-methylene-bis (6- ⁇ -methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenol, p-cresol and dicyclopentadiene Phenol-based antioxidants containing no sulfur atom such as reaction products; 2,2′-thiobis- (4-methyl-6-t-butylphenol) 4,4′-thiobis- (6-tert-butyl-o-cresol), 2,6-di
  • Sulfur ester anti-aging agents of: phenyl- ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, p- (p-toluenesulfonylamido) -diphenylamine, 4,4 ′-( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, N, N -Diphenyl-p-phenylenediamine, N-isopropyl-N'-phenyl- -Amine-based antioxidants such as phenylenediamine and butyraldehyde-aniline condensates; Quinoline-based antioxidants such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline; 2,5-di- And hydroquinone anti-aging agents such as (t-amyl) hydroquinone. These anti-aging agents can be used alone or in combination of two or more.
  • the content of the antioxidant is preferably 0.05 to 10 parts
  • the method for preparing the latex composition of the present invention is not particularly limited.
  • a dispersing machine such as a ball mill, a kneader, or a disper
  • the latex of the acid-modified conjugated diene polymer is added to the crosslinking agent, and if necessary.
  • the aqueous dispersion is acid-modified conjugated. Examples thereof include a method of mixing with a diene polymer latex.
  • the latex composition of the present invention preferably has a pH of 7 or more, more preferably in the range of 7 to 13, and still more preferably in the range of 8 to 12.
  • the solid content concentration of the latex composition is preferably in the range of 15 to 65% by weight.
  • the latex composition of the present invention is preferably aged (pre-crosslinked) before being subjected to dip molding from the viewpoint of further improving the mechanical properties of the resulting dip molded body.
  • the pre-crosslinking time is not particularly limited and depends on the pre-crosslinking temperature, but is preferably 1 to 14 days, and more preferably 1 to 7 days.
  • the pre-crosslinking temperature is preferably 20 to 40 ° C.
  • pre-crosslinking it is preferably stored at a temperature of 10 to 30 ° C. until it is subjected to molding such as dip molding.
  • molding such as dip molding.
  • the tensile strength of the obtained film molded body such as a dip molded body may be lowered.
  • the film molded body of the present invention is a film-shaped molded body made of the latex composition of the present invention.
  • the film thickness of the film molded body of the present invention is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, and particularly preferably 0.08 to 0.30 mm.
  • the film molded body of the present invention is not particularly limited, but is preferably a dip molded body obtained by dip molding the latex composition of the present invention.
  • Dip molding is a method in which a mold is immersed in a latex composition, the composition is deposited on the surface of the mold, the mold is then lifted from the composition, and then the composition deposited on the mold surface is dried. is there.
  • the mold before being immersed in the latex composition may be preheated. Further, a coagulant can be used as necessary before the mold is immersed in the latex composition or after the mold is pulled up from the latex composition.
  • the method of using the coagulant include a method in which the mold before dipping in the latex composition is immersed in a solution of the coagulant to attach the coagulant to the mold (anode coagulation dipping method), and the latex composition is deposited.
  • anode coagulation dipping method There is a method of immersing the formed mold in a coagulant solution (Teag adhesion dipping method), etc., but the anode adhesion dipping method is preferable in that a dip-formed product with little thickness unevenness can be obtained.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetic acid such as barium acetate, calcium acetate, and zinc acetate. Salts; water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, and sulfates such as aluminum sulfate; Of these, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the coagulant is preferably used in the form of an aqueous solution.
  • This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol, or a nonionic surfactant.
  • concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
  • the deposit formed on the mold is usually dried by heating. What is necessary is just to select drying conditions suitably.
  • the heating conditions at the time of crosslinking are not particularly limited, but are preferably 60 to 150 ° C., more preferably 100 to 130 ° C., and preferably 10 to 120 minutes.
  • the heating method is not particularly limited, and there are a method of heating with warm air in an oven, a method of heating by irradiating infrared rays, and the like.
  • the mold may be washed with water or warm water to remove water-soluble impurities (for example, excess surfactant or coagulant) before or after heating the mold on which the latex composition is deposited.
  • water-soluble impurities for example, excess surfactant or coagulant
  • the hot water used is preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 70 ° C.
  • the dip-formed body after crosslinking is detached from the mold.
  • the desorption method include a method of peeling from a mold by hand, a method of peeling by water pressure or compressed air pressure, and the like. If the dip-formed product in the middle of crosslinking has sufficient strength against desorption, it may be desorbed in the middle of crosslinking, and then the subsequent crosslinking may be continued.
  • the film molded body of the present invention, and the dip molded body which is one embodiment thereof, are obtained by using the latex of the acid-modified conjugated diene polymer of the present invention described above, and therefore have excellent tensile strength and tear strength.
  • it can be particularly suitably used as a glove.
  • organic fine particles such as inorganic fine particles such as talc and calcium carbonate or starch particles are gloved. It may be dispersed on the surface, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • the membrane molded article of the present invention and the dip molded article as one aspect thereof are medical supplies such as nipples for baby bottles, syringes, tubes, water pillows, balloon sacks, catheters, condoms, etc. It can also be used for toys such as dolls and balls; industrial articles such as pressure forming bags and gas storage bags; finger sack and the like.
  • the adhesive layer forming base material of the present invention comprises a base material comprising an adhesive layer formed on the base material using the latex of the acid-modified conjugated diene polymer of the present invention described above, an adhesive layer, It is a composite material.
  • the substrate is not particularly limited, but for example, a fiber substrate can be used.
  • the kind of fiber which comprises a fiber base material is not specifically limited, For example, polyamide fibers, such as vinylon fiber, polyester fiber, nylon, and aramid (aromatic polyamide), glass fiber, cotton, rayon etc. are mentioned. These can be appropriately selected according to the application.
  • the shape of the fiber substrate is not particularly limited, and examples thereof include staples, filaments, cords, ropes, woven fabrics (such as canvas), and the like, and can be appropriately selected depending on the application.
  • the adhesive layer may be formed using the above-described latex of the acid-modified conjugated diene polymer of the present invention, and a compounding agent or the like is added to the above-described latex of the acid-modified conjugated diene polymer of the present invention.
  • Examples of the compounding agent contained in the adhesive composition include an adhesive resin.
  • the adhesive resin is not particularly limited, and for example, resorcin-formaldehyde resin, melamine resin, epoxy resin and isocyanate resin can be suitably used, and among these, resorcin-formaldehyde resin is preferable.
  • As the resorcin-formaldehyde resin known ones (for example, those disclosed in JP-A-55-142635) can be used.
  • the reaction ratio of resorcin to formaldehyde is usually 1: 1 to 1: 5, preferably 1: 1 to 1: 3 in terms of a molar ratio of “resorcin: formaldehyde”.
  • the adhesive composition contains 2,6-bis (2,4-dihydroxyphenylmethyl) -4-chlorophenol or a similar compound, isocyanate, block, which has been conventionally used to further increase the adhesive strength.
  • isocyanate, ethylene urea, polyepoxide, modified polyvinyl chloride resin and the like can be contained.
  • the adhesive composition can contain a vulcanization aid.
  • a vulcanization aid By including a vulcanization aid, the mechanical strength of the adhesive layer-forming substrate can be improved.
  • Vulcanization aids include quinone dioximes such as p-quinone dioxime; methacrylic acid esters such as lauryl methacrylate and methyl methacrylate; DAF (diallyl fumarate), DAP (diallyl phthalate), TAC (triallyl cyanurate), And allyl compounds such as TAIC (triallyl isocyanurate); maleimide compounds such as bismaleimide, phenylmaleimide and N, Nm-phenylene dimaleimide; sulfur; and the like.
  • the content (solid content) of the synthetic rubber in the adhesive composition is preferably 5 to 60% by weight, more preferably 10 to 30% by weight.
  • the adhesive layer-forming substrate of the present invention is, for example, a method of applying the latex of the acid-modified conjugated diene polymer of the present invention or an adhesive composition containing the same to the substrate surface, or a substrate. It can be obtained by forming an adhesive layer on a substrate by a method of immersing in the latex of the acid-modified conjugated diene polymer of the present invention or an adhesive composition containing the acid-modified conjugated diene polymer.
  • Such an adhesive layer-forming substrate of the present invention can be used as a substrate-rubber composite by adhering to rubber via an adhesive layer, for example.
  • the base material-rubber composite is not particularly limited.
  • rubber using a base fiber-like fiber base material such as a rubber toothed belt with a core wire using a cord-like fiber base material or a canvas Examples thereof include a toothed belt.
  • the method for obtaining the substrate-rubber composite is not particularly limited.
  • the latex of the acid-modified conjugated diene polymer of the present invention or an adhesive composition containing the same can be obtained by a coating method, a dipping treatment, or the like.
  • the pressurization can be performed using a compression (press) molding machine, a metal roll, an injection molding machine or the like.
  • the pressurizing pressure is preferably 0.5 to 20 MPa, more preferably 2 to 10 MPa.
  • the heating temperature is preferably 130 to 300 ° C, more preferably 150 to 250 ° C.
  • the treatment time for heating and pressing is preferably 1 to 180 minutes, more preferably 5 to 120 minutes.
  • rubber molding and adhesion between the adhesive layer forming substrate and the rubber can be performed simultaneously.
  • a base material-rubber-base composite can be exemplified.
  • the base material-rubber-base material composite can be formed, for example, by combining a base material (may be a composite of two or more kinds of base materials) and a base material-rubber composite.
  • a core wire as a base material, rubber and a base fabric as a base material are stacked (in this case, the core wire and the base fabric contain the latex of the acid-modified conjugated diene polymer of the present invention, or this).
  • a base material-rubber-base composite can be obtained by applying an adhesive composition as appropriate to form an adhesive layer forming base material) and applying pressure while heating.
  • the base material-rubber composite obtained using the adhesive layer forming base material of the present invention is excellent in mechanical strength such as tensile strength and tear strength. Therefore, a flat belt, a V belt, a V ribbed belt, It can be suitably used as a belt such as a round belt, a square belt, or a toothed belt.
  • the base material-rubber composite obtained using the base material for forming an adhesive layer of the present invention is excellent in oil resistance and can be suitably used as a belt in oil.
  • the substrate-rubber composite obtained using the adhesive layer-forming substrate of the present invention can be suitably used for hoses, tubes, diaphragms and the like.
  • Examples of the hose include a single tube rubber hose, a multilayer rubber hose, a braided reinforcement hose, and a cloth wound reinforcement hose.
  • Examples of the diaphragm include a flat diaphragm and a rolling diaphragm.
  • the substrate-rubber composite obtained by using the adhesive layer-forming substrate of the present invention can be used as industrial products such as seals and rubber rolls in addition to the above uses.
  • the seal include a moving part seal such as a rotating part, a swinging part, and a reciprocating part, and a fixed part seal.
  • the motion part seal include an oil seal, a piston seal, a mechanical seal, a boot, a dust cover, a diaphragm, and an accumulator.
  • Examples of the fixed part seal include an O-ring and various gaskets.
  • rolls that are parts of OA equipment such as printing equipment and copying equipment; rolls for fiber processing such as spinning rolls for spinning and drafting rolls for spinning; rolls for iron making such as bridle rolls, snubber rolls, steering rolls, etc.
  • OA equipment printing equipment and copying equipment
  • rolls for fiber processing such as spinning rolls for spinning and drafting rolls for spinning
  • rolls for iron making such as bridle rolls, snubber rolls, steering rolls, etc.
  • the process of diluting the acid-modified conjugated diene polymer latex with water, the process of centrifuging the latex to remove the aqueous solution of the water-soluble polymer, and the process of measuring the conductivity of the latex after centrifugation are repeated. This process was repeated until the measured conductivity value ceased to change. Then, based on the conductivity of the latex after removing the water-soluble polymer, the amount of acid groups (acid amount after treatment X2) contained only in the acid-modified conjugated diene polymer is calculated.
  • the acid in the case where the total weight of the acid-modified conjugated diene polymer is 100 parts by weight is obtained.
  • the content based on the weight of the structural unit derived from the group-containing compound was determined. Separately from this, the content of the water-soluble polymer in the latex of the acid-modified conjugated diene polymer was determined based on the difference between the initial acid amount X1 and the post-treatment acid amount X2.
  • the aqueous solution of the water-soluble polymer removed from the latex of the acid-modified conjugated diene polymer is diluted with distilled water, thereby measuring a weight average molecular weight of the water-soluble polymer (solid content concentration: 0). .1 weight) was prepared.
  • This solution was subjected to gel permeation chromatography analysis, and the weight average molecular weight (Mw) of the water-soluble polymer based on polyethylene oxide and polyethylene glycol was calculated.
  • ⁇ Viscosity at a solid concentration of 60% by weight and 50% by weight> Using a B-type viscometer (Brookfield viscometer, model BL, manufactured by Tokyo Keiki Co., Ltd.), the viscosity of the acid-modified conjugated diene polymer latex at a solid content concentration of 60% by weight and at 50% by weight of the solid content is measured. It measured on 25 degreeC conditions. When measuring the viscosity at a solid content of 50% by weight, the measurement was performed with water added to the latex of the acid-modified conjugated diene polymer and diluted to a solid content of 50% by weight.
  • ⁇ Tensile strength of dip-molded body> Based on ASTM D412, the dip-molded body was punched with a dumbbell (product name “Super Dumbbell (model: SDMK-100C)”, manufactured by Dumbbell) to prepare a test piece for measuring tensile strength. The test piece was pulled with a Tensilon universal testing machine (product name “RTG-1210”, manufactured by Orientec Co., Ltd.) at a tensile speed of 500 mm / min, and the tensile strength (unit: MPa) immediately before breaking was measured.
  • a dumbbell product name “Super Dumbbell (model: SDMK-100C)”, manufactured by Dumbbell
  • ⁇ Tear strength of dip-molded body> Based on ASTM D624-00, the dip-molded body is left in a constant temperature and humidity chamber at 23 ° C. and 50% relative humidity for 24 hours or more, then punched with a dumbbell (product name “Die C”, manufactured by Dumbbell) and torn A test piece for strength measurement was prepared. The test piece was pulled with a Tensilon universal testing machine (product name “RTG-1210”, manufactured by Orientec Co., Ltd.) at a tensile speed of 500 mm / min, and the tear strength (unit: N / mm) was measured.
  • RTG-1210 manufactured by Orientec Co., Ltd.
  • Example 1> (Production of acid-modified synthetic polyisoprene latex) An autoclave with stirring, which was dried and purged with nitrogen, was charged with 1150 parts of toluene having a water content of 3 ppm by weight and 100 parts of isoprene dried by molecular sieves. Next, the temperature in the autoclave was adjusted to 60 ° C., 0.114 parts of normal butyl lithium was added and reacted for 2 hours with stirring, 0.017 parts of methanol was added as a polymerization terminator, and the reaction was stopped. A toluene solution (A-1) of synthetic polyisoprene (solid content concentration: 8.0% by weight) was obtained. The weight average molecular weight of the synthetic polyisoprene in the toluene solution was 620,000.
  • toluene solution (A-1) of synthetic polyisoprene 750 parts of toluene is added and diluted with respect to 100 parts of synthetic polyisoprene in the toluene solution (A-1) of synthetic polyisoprene, and this is charged into a polymerization reaction vessel equipped with a stirrer. Warmed to ° C. In another container, 3 parts of methacrylic acid and 57 parts of toluene were mixed to prepare a toluene solution of methacrylic acid. This toluene solution of methacrylic acid was added to the polymerization reaction vessel heated to 40 ° C. over 10 minutes, and then 1.8 parts of 2,2′-azobisisobutyronitrile was added and 40 parts were added. The reaction was carried out at 1 ° C. for 1 hour and further at 80 ° C. for 2 hours to obtain a toluene solution (B-1) of acid-modified synthetic polyisoprene (solid content concentration: 5% by weight
  • the toluene solution (B-1) of the acid-modified synthetic polyisoprene obtained above and the surfactant aqueous solution (C-1) are mixed so that the weight ratio is 1: 1.5.
  • emulsification equipment Process name “Milder MDN310”, manufactured by Taiheiyo Kiko Co., Ltd.
  • D-1 emulsified dispersion
  • the total feed flow rate of the toluene solution (B-1) of the acid-modified synthetic polyisoprene and the aqueous surfactant solution (C-1) is 2,000 kg / hr, the temperature is 60 ° C., the back pressure (gauge Pressure) was 0.5 MPa.
  • the obtained emulsified dispersion (D-1) was heated to 80 ° C. under a reduced pressure of ⁇ 0.01 to ⁇ 0.09 MPa (gauge pressure), and toluene was distilled off to obtain acid-modified synthetic polyisoprene.
  • An aqueous dispersion (E-1) of was obtained.
  • an antifoaming agent (trade name “SM5515”, manufactured by Toray Dow Corning Co., Ltd.) was sprayed so as to have an amount of 300 ppm by weight with respect to the acid-modified synthetic polyisoprene in the emulsified dispersion (D-1). While adding continuously.
  • the emulsified dispersion (D-1) was adjusted to 70% by volume or less of the tank volume, and a three-stage inclined paddle blade was used as a stirring blade, and 60 rpm Was slowly stirred.
  • the obtained acid-modified synthetic polyisoprene aqueous dispersion (E-1) was obtained using a continuous centrifuge (product name “SRG510”, manufactured by Alfa Laval). Concentration was performed by centrifuging at 8,000 to 9,000 G to obtain a latex (F-1) of acid-modified synthetic polyisoprene having a solid concentration of 60% by weight as a light liquid.
  • the conditions for centrifugation were as follows: solid content concentration of aqueous dispersion (E-1) before centrifugation was 10% by weight, flow rate during continuous centrifugation was 1300 kg / hr, and the back pressure (gauge pressure) of the centrifuge was The pressure was 1.5 MPa.
  • the amount of the water-soluble polymer in the latex, the content of the structural unit derived from the acid group-containing compound in the acid-modified synthetic polyisoprene, according to the above method was determined.
  • “Wingstay L” (manufactured by Goodyear) 2 parts, zinc diethyldithiocarbamate 0.3 part, zinc dibutyldithiocarbamate 0.5 part, 2-mercaptobenzothiazole zinc salt 0.7 parts
  • an aqueous potassium hydroxide solution was added to obtain a latex composition having a pH adjusted to 10.5. Thereafter, the obtained latex composition was aged in a constant temperature water bath adjusted to 30 ° C. for 48 hours.
  • the glass mold coated with the coagulant is taken out of the oven, the latex composition obtained above is adjusted to 25 ° C., immersed in this latex composition for 10 seconds and then taken out, and then at room temperature for 60 minutes.
  • a glass mold covered with a film was obtained.
  • the glass mold covered with the film was immersed in warm water at 60 ° C. for 2 minutes, and then air-dried at room temperature for 30 minutes.
  • the glass mold covered with the film is placed in an oven at 120 ° C., vulcanized for 20 minutes, cooled to room temperature, sprayed with talc, and then peeled off from the glass mold to dip-molded body.
  • Got. And the tensile strength and tear strength were measured according to the said method using the obtained dip molding. The results are shown in Table 1.
  • Example 2 (Production of acid-modified synthetic polyisoprene latex)
  • 1150 parts of cyclohexane having a water content of 3 ppm by weight and 100 parts of isoprene were dried by molecular sieves.
  • the temperature in the autoclave was adjusted to 60 ° C.
  • 0.114 parts of normal butyl lithium was added and reacted for 2 hours with stirring
  • 0.017 parts of methanol was added as a polymerization terminator, and the reaction was stopped.
  • a cyclohexane solution (A-2) (solid content concentration: 8.0% by weight) of synthetic polyisoprene was obtained.
  • the weight average molecular weight of the synthetic polyisoprene in the cyclohexane solution was 570,000.
  • toluene is added to and diluted with 100 parts of synthetic polyisoprene in the cyclohexane solution (A-2) of synthetic polyisoprene, and this is charged into a polymerization reactor equipped with a stirrer. Warmed to ° C. Further, using another container, 3 parts of maleic anhydride and 57 parts of toluene were mixed to prepare a toluene solution of maleic anhydride. This toluene solution of maleic anhydride was added to the polymerization reaction vessel heated to 40 ° C. over 10 minutes, and then 1.8 parts of 2,2′-azobisisobutyronitrile was added. The reaction was carried out at 40 ° C. for 1 hour and further at 65 ° C. for 2 hours to obtain a cyclohexane / toluene solution (B-2) of acid-modified synthetic polyisoprene (solid content concentration: 5.1% by weight).
  • emulsified dispersion (D-2) and water of acid-modified synthetic polyisoprene and water were used in the same manner as in Example 1 except that the resulting cyclohexane / toluene solution (B-2) of acid-modified synthetic polyisoprene was used.
  • a dispersion liquid (E-2) was obtained, and a centrifugal operation using a continuous centrifuge was performed in the same manner as in Example 1 to obtain an acid-modified synthetic polyisoprene latex (F-2) having a solid content concentration of 60% by weight. Obtained.
  • the amount of the water-soluble polymer in the acid-modified synthetic polyisoprene latex is derived from the acid group-containing compound in the acid-modified synthetic polyisoprene according to the above method.
  • the content of the structural unit and the molecular weight (Mw) of the water-soluble polymer were determined.
  • Example 3> (Production of acid-modified synthetic polyisoprene latex)
  • 1150 parts of cyclohexane with a moisture content of 3 ppm by weight dried with molecular sieves synthetic polyisoprene (trade name “IR2200L”, manufactured by Nippon Zeon Co., Ltd.), a Ti—Al polymerization catalyst 100 parts of polymerized synthetic polyisoprene) was charged.
  • the temperature in the autoclave was set to 30 ° C., and the synthetic polyisoprene was dissolved by stirring to obtain a cyclohexane solution (A-3) (solid content concentration: 8.0 wt%) of the synthetic polyisoprene.
  • A-3 solid content concentration: 8.0 wt% of the synthetic polyisoprene.
  • the weight average molecular weight of the synthetic polyisoprene in the cyclohexane solution was 1,270,000.
  • emulsified dispersion (D-3) and water of acid-modified synthetic polyisoprene and water were used in the same manner as in Example 1 except that the resulting cyclohexane / toluene solution (B-3) of acid-modified synthetic polyisoprene was used.
  • a dispersion liquid (E-3) was obtained, and a centrifugal operation using a continuous centrifuge was performed in the same manner as in Example 1 to obtain an acid-modified synthetic polyisoprene latex (F-3) having a solid content concentration of 60% by weight. Obtained.
  • the amount of the water-soluble polymer in the acid-modified synthetic polyisoprene latex was determined according to the above method, The content of the structural unit and the molecular weight (Mw) of the water-soluble polymer were determined.
  • Example 4 (Production of acid-modified synthetic polyisoprene latex) To 100 parts of the synthetic polyisoprene in the cyclohexane solution (A-2) of the synthetic polyisoprene obtained in the same manner as in Example 2, 750 parts of toluene was added and diluted, and this was placed in a polymerization reaction vessel equipped with a stirrer. The temperature was raised to 30 ° C. while charging and stirring. Further, using another container, 3 parts of maleic anhydride and 57 parts of toluene were mixed to prepare a toluene solution of maleic anhydride. This toluene solution of maleic anhydride was added to a polymerization reaction vessel heated to 40 ° C.
  • the emulsified dispersion (D-4) and the water of the acid-modified synthetic polyisoprene and water were used in the same manner as in Example 1 except that the cyclohexane / toluene solution (B-4) of the obtained acid-modified synthetic polyisoprene was used.
  • a dispersion liquid (E-4) was obtained, and a centrifugal operation using a continuous centrifuge was performed in the same manner as in Example 1 to obtain an acid-modified synthetic polyisoprene latex (F-4) having a solid content concentration of 60% by weight. Obtained.
  • the amount of the water-soluble polymer in the acid-modified synthetic polyisoprene latex is derived from the acid group-containing compound in the acid-modified synthetic polyisoprene according to the above method.
  • the content of the structural unit and the molecular weight (Mw) of the water-soluble polymer were determined.
  • Example 5 (Production of acid-modified synthetic polyisoprene latex) To 100 parts of the synthetic polyisoprene in the toluene solution (A-1) of the synthetic polyisoprene obtained in the same manner as in Example 1, 750 parts of toluene was added and diluted, and this was added to a polymerization reaction vessel equipped with a stirrer. The temperature was raised to 40 ° C. while charging and stirring. Further, using another container, 3 parts of maleic anhydride and 57 parts of toluene were mixed to prepare a toluene solution of maleic anhydride. This toluene solution of maleic anhydride was added to the polymerization reaction vessel heated to 40 ° C.
  • an emulsified dispersion (D-5) and an aqueous dispersion of acid-modified synthetic polyisoprene were used in the same manner as in Example 1, except that the obtained toluene solution (B-5) of acid-modified synthetic polyisoprene was used.
  • a polyethylene microfiltration membrane manufactured by Asahi Kasei Co., Ltd., product name “Microza MF”, pore size: 0.5 ⁇ m
  • F-5 acid-modified synthetic polyisoprene latex having a solid concentration of 60% by weight was obtained.
  • the amount of the water-soluble polymer in the acid-modified synthetic polyisoprene latex and the acid group-containing compound-derived polyisoprene derived from the acid-modified synthetic polyisoprene latex was determined.
  • Example 6> Production of acid-modified styrene-isoprene-styrene block copolymer latex
  • 1150 parts of toluene having a moisture content of 3 ppm by weight dried with molecular sieves 1150 parts of toluene having a moisture content of 3 ppm by weight dried with molecular sieves
  • SIS styrene-isoprene-styrene block copolymer
  • SIS styrene-isoprene polymerized with normal butyllithium
  • the temperature in the autoclave is set to 30 ° C., and the styrene-isoprene-styrene block copolymer is dissolved by stirring to obtain a toluene solution of the styrene-isoprene-styrene block copolymer (A-6) (solid content concentration: 8.0 wt%) was obtained.
  • the weight average molecular weight of the styrene-isoprene-styrene block copolymer in the toluene solution was 250,000.
  • the emulsified dispersion (D-6) and the acid-modified styrene were then used in the same manner as in Example 1 except that the toluene solution (B-6) of the resulting acid-modified styrene-isoprene-styrene block copolymer was used.
  • -An isoprene-styrene block copolymer aqueous dispersion (E-6) was obtained, and subjected to centrifugal separation with a continuous centrifuge in the same manner as in Example 1 to obtain acid-modified styrene having a solid content concentration of 60% by weight.
  • a latex composition was prepared and a dip-molded product was prepared in the same manner as in Example 1, except that the acid-modified styrene-isoprene-styrene block copolymer latex (F-6) obtained above was used. Manufactured and evaluated in the same manner. The results are shown in Table 1.
  • the temperature in the autoclave was set to 30 ° C., and the synthetic polyisoprene was dissolved by stirring to obtain a cyclohexane solution (A-7) (solid content concentration: 8.0 wt%) of the synthetic polyisoprene.
  • the weight average molecular weight of the synthetic polyisoprene in the cyclohexane solution was 1,270,000.
  • toluene is added to and diluted with 100 parts of synthetic polyisoprene in the cyclohexane solution (A-7) of synthetic polyisoprene, and this is charged into a polymerization reaction vessel equipped with a stirrer. Warmed to ° C. Moreover, 5 parts of methacrylic acid and 55 parts of toluene were mixed using another container, and the toluene solution of methacrylic acid was prepared. This toluene solution of methacrylic acid was added to a polymerization reaction vessel heated to 30 ° C. over 10 minutes, and then 1,1,3,3-tetramethylbutyl hydroperoxide (product name “Perocta H”) was added.
  • Perocta H 1,1,3,3-tetramethylbutyl hydroperoxide
  • an emulsified dispersion (D-7) and an aqueous dispersion of acid-modified synthetic polyisoprene were used in the same manner as in Example 1 except that the resulting toluene solution (B-7) of acid-modified synthetic polyisoprene was used. While obtaining (E-7), instead of centrifuging with a continuous centrifuge, concentration by distillation was performed to obtain an acid-modified synthetic polyisoprene latex (F-7) having a solid concentration of 60% by weight. Obtained.
  • the amount of the water-soluble polymer in the acid-modified synthetic polyisoprene latex and the acid group-containing compound derived from the acid-modified synthetic polyisoprene are The content of the structural unit and the molecular weight (Mw) of the water-soluble polymer were determined.
  • an emulsified dispersion (D-8) and an aqueous dispersion of acid-modified synthetic polyisoprene were used in the same manner as in Example 1 except that the obtained pentane solution (B-8) of acid-modified synthetic polyisoprene was used.
  • (E-8) was obtained, and a centrifugal separation operation with a continuous centrifuge was performed in the same manner as in Example 1 to obtain an acid-modified synthetic polyisoprene latex (F-8) having a solid concentration of 60% by weight. .
  • the amount of the water-soluble polymer in the acid-modified synthetic polyisoprene latex and the acid group-containing compound-derived compound derived from the acid-modified synthetic polyisoprene according to the above method The content of the structural unit and the molecular weight (Mw) of the water-soluble polymer were determined.
  • the amount of the water-soluble polymer in the latex is an amount relative to 100 parts of the acid-modified conjugated diene polymer in the latex.
  • the content of the structural unit derived from the acid group-containing compound in the acid-modified conjugated diene polymer is 0.2 to 0.7 parts by weight, and the content of the water-soluble polymer in the latex However, it is 2 parts by weight or less with respect to 100 parts by weight of the acid-modified conjugated diene polymer, the viscosity at a solid content concentration of 60% by weight (25 ° C.) is 800 mPa ⁇ s or less, and the viscosity at a solid content concentration of 50% by weight ( According to the latex having a temperature of 25 m ° C. or less of 300 mPa ⁇ s or less, the dip-molded product obtained using this latex was excellent in tensile strength and tear strength (Examples 1 to 6).
  • the content of the water-soluble polymer in the latex is more than 2 parts by weight with respect to 100 parts by weight of the acid-modified conjugated diene polymer, and the viscosity (at 25 ° C.) at a solid content concentration of 60% by weight is 800 mPa ⁇
  • a dip-molded article obtained using a latex having a viscosity (25 ° C.) of more than 300 mPa ⁇ s at a solid content concentration of more than 300% by weight was inferior in tear strength (Comparative Examples 1 and 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

共役ジエン系重合体を、酸基含有化合物で変性してなる酸変性共役ジエン系重合体を含有するラテックスであって、前記酸変性共役ジエン系重合体100重量部中における、酸基含有化合物由来の構造単位の含有量が0.2~0.7重量部であり、前記ラテックス中における水溶性重合体の含有量が、前記酸変性共役ジエン系重合体100重量部に対して、2重量部以下であり、前記ラテックスの固形分濃度を60重量%とした場合における、温度25℃における粘度が800mPa・s以下であり、前記ラテックスの固形分濃度を50重量%とした場合における、温度25℃における粘度が300mPa・s以下である、酸変性共役ジエン系重合体のラテックスを提供する。

Description

酸変性共役ジエン系重合体のラテックス、およびその製造方法
 本発明は、酸変性共役ジエン系重合体のラテックス、およびその製造方法に関し、さらに詳しくは、引張強度および引裂強度に優れた膜成形体を与えることのできる酸変性共役ジエン系重合体のラテックス、およびその製造方法に関する。
 従来、天然ゴムや合成ゴムのラテックスを含有するラテックス組成物をディップ成形して得られるディップ成形体などの膜成形体は、乳首、風船、手袋、バルーン、サック等として好適に用いられている。
 たとえば、特許文献1には、合成ポリイソプレンにカルボキシル基を有する単量体を水相中でグラフト重合して得られるカルボキシ変性合成ポリイソプレンのラテックスが開示されている。しかしながら、特許文献1の技術により得られるラテックスは、ディップ成形体などの膜成形体とした際に、得られる膜成形体は、引裂強度が十分なものではなく、そのため、引裂強度の改善が望まれていた。
国際公開第2014/129547号
 本発明は、このような実状に鑑みてなされたものであり、引張強度および引裂強度に優れた膜成形体を与えることのできる酸変性共役ジエン系重合体のラテックスを提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、共役ジエン系重合体を、酸基含有化合物で変性してなる酸変性共役ジエン系重合体を含有するラテックスにおいて、酸変性共役ジエン系重合体中における、酸基含有化合物由来の構造単位の含有量が特定の範囲にあり、ラテックス中に含まれる水溶性重合体の含有量を特定量以下とし、かつ、特定条件下におけるラテックスの粘度を特定値以下とすることにより、該ラテックスを用いて得られるディップ成形体などの膜成形体が、引張強度および引裂強度に優れたものとなることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、共役ジエン系重合体を、酸基含有化合物で変性してなる酸変性共役ジエン系重合体を含有するラテックスであって、前記酸変性共役ジエン系重合体100重量部中における、酸基含有化合物由来の構造単位の含有量が0.2~0.7重量部であり、前記ラテックス中における水溶性重合体の含有量が、前記酸変性共役ジエン系重合体100重量部に対して、2重量部以下であり、前記ラテックスの固形分濃度を60重量%とした場合における、温度25℃における粘度が800mPa・s以下であり、前記ラテックスの固形分濃度を50重量%とした場合における、温度25℃における粘度が300mPa・s以下である、酸変性共役ジエン系重合体のラテックスが提供される。
 本発明の酸変性共役ジエン系重合体のラテックスにおいて、前記共役ジエン系重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体であることが好ましく、合成ポリイソプレンであることがより好ましい。
 また、本発明によれば、SP値が7.2~10(cal/cm1/2の範囲にある有機溶媒中で、共役ジエン系重合体に、酸基含有化合物を反応させることで、酸基含有化合物由来の構造単位の含有量が、重合体100重量部中、0.2~0.7重量部である酸変性共役ジエン系重合体の有機溶媒溶液を得る工程と、前記酸変性共役ジエン系重合体の有機溶媒溶液を、界面活性剤の存在下に、水中で乳化することで、乳化分散液を得る工程と、前記乳化分散液から、有機溶媒を除去する工程と、前記有機溶媒を除去した乳化分散液について、遠心分離操作または精密ろ過により濃縮を行う工程とを備える酸変性共役ジエン系重合体のラテックスの製造方法が提供される。
 本発明の酸変性共役ジエン系重合体のラテックスの製造方法において、前記共役ジエン系重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体であることが好ましく、合成ポリイソプレンであることがより好ましい。
 本発明の酸変性共役ジエン系重合体のラテックスの製造方法において、前記合成ポリイソプレンが、アルキルリチウム重合触媒を用いて重合することにより得られたものであることが好ましい。
 本発明の酸変性共役ジエン系重合体のラテックスの製造方法において、アゾ化合物系の重合触媒を用いて、前記共役ジエン系重合体に対する、酸基含有化合物の反応を行うことが好ましい。
 また、本発明によれば、上記の酸変性共役ジエン系重合体のラテックスと、架橋剤とを含有するラテックス組成物が提供される。
 さらに、本発明によれば、上記のラテックス組成物からなる膜成形体が提供される。
 また、本発明によれば、上記の酸変性共役ジエン系重合体のラテックスを用いて形成される接着剤層を、基材表面に形成してなる接着剤層形成基材が提供される。
 本発明によれば、引張強度および引裂強度に優れた膜成形体を与えることのできる酸変性共役ジエン系重合体のラテックスを提供することができる。
 本発明の酸変性共役ジエン系重合体のラテックスは、共役ジエン系重合体を、酸基含有化合物で変性してなる酸変性共役ジエン系重合体を含有するラテックスであって、
 前記酸変性共役ジエン系重合体100重量部中における、酸基含有化合物由来の構造単位の含有量が0.2~0.7重量部であり、前記ラテックス中における水溶性重合体の含有量が、前記酸変性共役ジエン系重合体100重量部に対して、2重量部以下であり、
 前記ラテックスの固形分濃度を60重量%とした場合における、温度25℃における粘度が800mPa・s以下、前記ラテックスの固形分濃度を50重量%とした場合における、温度25℃における粘度が300mPa・s以下である。
<共役ジエン系重合体>
 本発明で用いる共役ジエン系重合体としては、特に限定されず、共役ジエン単量体に由来の単量体単位を含有するものであればよく、天然ゴム、合成ゴムのいずれであってもよいが、得られるディップ成形体などの膜成形体を、乳首、風船、手袋、バルーン、サック等の人体と接触して使用される用途に用いた場合における、アレルギー症状の発生を有効に防止できるという観点より、合成ゴムが好ましい。
 合成ゴムとしては、特に限定されないが、合成ポリブタジエン、合成ポリイソプレン、合成ポリクロロプレン等の共役ジエン単量体の単独重合体および共重合体;スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-イソプレン-スチレンブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-イソプレン共重合体、アクリロニトリル-ブタジエン-イソプレン共重合体、ブチルアクリレート-ブタジエン共重合体等の共役ジエン単量体とこれと共重合可能な他の単量体との共重合体;等が挙げられる。これらのなかでも、ディップ成形体などの膜成形体とした場合における、引張強度および伸びに優れることから、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体が好ましい。
 以下においては、本発明で用いる共役ジエン系重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体である場合を例示して、説明を行う。ただし、本発明は、これら合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体に、何ら限定されるものではない。
 本発明で用いる合成ポリイソプレンは、イソプレンを重合して得られるイソプレンの重合体である。合成ポリイソプレンは、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよい。合成ポリイソプレン中のイソプレン単位の含有量は、柔軟で、引張強度に優れるディップ成形体などの膜成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。
 合成ポリイソプレンは、重合触媒を用いて、有機溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合して得ることができる。この際に用いる重合触媒としては、特に限定されないが、たとえば、トリアルキルアルミニウム-四塩化チタンからなるチーグラー系重合触媒や、n-ブチルリチウム、sec-ブチルリチウムなどのアルキルリチウム重合触媒などが挙げられるが、高分子量の合成ポリイソプレンが得やすく、これにより、得られるディップ成形体などの膜成形体の引張強度をより高めることができるという点より、アルキルリチウム重合触媒を用いることが好ましく、n-ブチルリチウムを用いることがより好ましい。
 溶液重合により得られた合成ポリイソプレンの重合体溶液は、後述する酸基含有化合物との反応にそのまま用いてもよいが、一度、固形の合成ポリイソプレンを取り出した後、有機溶媒に溶解した状態で、酸基含有化合物との反応に用いることもできる。この際、合成した後に重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形の合成ポリイソプレンを用いることもできる。
 合成ポリイソプレンの重合体溶液を得る際に用いる、有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂環族炭化水素溶媒が好ましく、シクロヘキサンが特に好ましい。
 有機溶媒の使用量は、合成ポリイソプレン100重量部に対して、好ましくは2,000重量部以下、より好ましくは20~1,500重量部、さらに好ましくは500~1000、特に好ましくは100~400である。
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体などの膜成形体の引張強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。
 合成ポリイソプレンの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~5,000,000、より好ましくは500,000~5,000,000、さらに好ましくは800,000~3,000,000である。合成ポリイソプレンの重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体とした場合における、引張強度をより高めることができるとともに、合成ポリイソプレンを用いたラテックスの製造が容易になる傾向がある。
 また、合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~100、より好ましくは60~95、さらに好ましくは70~90、最も好ましくは75~85である。
 スチレン-イソプレン-スチレンブロック共重合体は、スチレンとイソプレンのブロック共重合体(SIS)(「S」はスチレンブロック、「I」はイソプレンブロックをそれぞれ表す。)である。
 SISは、従来公知の方法、たとえばn-ブチルリチウムなどの活性有機金属を開始剤として、有機溶媒中で、イソプレンとスチレンとをブロック共重合して得ることができる。そして、得られたSISの重合体溶液は、後述する酸基含有化合物との反応にそのまま用いてもよいが、一度、固形のSISを取り出した後、有機溶媒に溶解した状態で、酸基含有化合物との反応に用いることもできる。この際、合成した後に重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形のSISを用いることもできる。
 有機溶媒としては、上記合成ポリイソプレンの場合と同様のものを使用することができ、芳香族炭化水素溶媒および脂環族炭化水素溶媒が好ましく、シクロヘキサンおよびトルエンが特に好ましい。
 なお、有機溶媒の使用量は、SIS100重量部に対して、通常50~2,000、好ましくは80~1,000重量部、より好ましくは10~500重量部、さらに好ましくは150~300重量部である。
<酸変性共役ジエン系重合体のラテックス>
 本発明の酸変性共役ジエン系重合体のラテックスは、上述した合成ポリイソプレンやSISなどの共役ジエン系重合体を、酸基含有化合物で変性してなる酸変性共役ジエン系重合体を含有するラテックスである。
 また、本発明の酸変性共役ジエン系重合体のラテックスにおいては、酸変性共役ジエン系重合体100重量部中における、酸基含有化合物由来の構造単位の含有量が0.2~0.7重量部であり、ラテックス中における水溶性重合体の含有量が、酸変性共役ジエン系重合体100重量部に対して、2重量部以下であり、
 ラテックスの固形分濃度を60重量%とした場合における、温度25℃における粘度が800mPa・s以下、前記ラテックスの固形分濃度を50重量%とした場合における、温度25℃における粘度が300mPa・s以下である。
 本発明のラテックス中に含まれる、酸変性共役ジエン系重合体は、上述した合成ポリイソプレンやSISなどの共役ジエン系重合体を、酸基含有化合物で変性してなる重合体である。
 酸基含有化合物としては、特に限定されないが、カルボキシル基含有化合物、スルホン酸基含有化合物、リン酸基含有化合物などが挙げられるが、得られるディップ成形体などの膜成形体の引張強度および引裂強度をより高めることができるという点より、カルボキシル基含有化合物が好ましい。カルボキシル基含有化合物の具体例としては、アクリル酸、メタクリル酸などのエチレン性不飽和モノカルボン酸;イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸;無水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸部分エステル;などが挙げられる。これらのなかでも、エチレン性不飽和モノカルボン酸、エチレン性不飽和多価カルボン酸無水物が好ましく、エチレン性不飽和モノカルボン酸がより好ましい。また、メタクリル酸、無水マレイン酸が好ましく、メタクリル酸がより好ましい。また、後述するSP値(溶解度パラメータ)が7.2~10(cal/cm1/2の範囲にある有機溶媒に溶解するものが好ましく、SP値が8~9.5(cal/cm1/2の範囲にある有機溶媒に溶解するものがより好ましく、SP値が8.5~9(cal/cm1/2の範囲にある有機溶媒に溶解するものがさらに好ましい。また、これらのカルボキシル基含有化合物はアルカリ金属塩またはアンモニウム塩として用いることもできる。カルボキシル基含有化合物は単独で、または2種以上を組合せて用いることができる。
 酸変性共役ジエン系重合体100重量部中における、酸基含有化合物由来の構造単位の含有量は0.2~0.7重量部であり、好ましくは0.25~0.6重量部、より好ましくは0.37~0.55重量部である。酸基含有化合物由来の構造単位の含有量は、酸変性共役ジエン系重合体中における、酸基含有化合物由来の構造単位の重量基準による含有量であり、具体的には、酸変性共役ジエン系重合体の全体の重量を100重量部とした場合における、酸基含有化合物由来の構造単位の重量基準による含有量である。酸基含有化合物由来の構造単位の含有量が少なすぎると、得られるディップ成形体などの膜成形体の引張強度が低下してしまい、酸基含有化合物由来の構造単位の含有量が多すぎると、酸変性共役ジエン系重合体のラテックス中に凝集物が生成しやすくなり、ラテックスとしての安定性に劣るものとなってしまう。なお、酸基含有化合物由来の構造単位の含有量は、たとえば、電導度測定により測定することができる。電導度測定については後述する。
 また、本発明の酸変性共役ジエン系重合体のラテックスにおいては、ラテックス中における水溶性重合体の含有量が、酸変性共役ジエン系重合体100重量部に対して、2重量部以下であり、好ましくは1.5重量部以下、より好ましくは1重量部以下である。水溶性重合体の含有量の下限は特に限定されないが、通常、0.05重量部以上である。
 本発明の酸変性共役ジエン系重合体のラテックスは、上述した合成ポリイソプレンやSISなどの共役ジエン系重合体を、酸基含有化合物で変性してなる酸変性共役ジエン系重合体を含有するものであるため、変性反応に用いた酸基含有化合物が重合することにより形成される水溶性重合体が、不可避的にラテックス中に含まれてしまうこととなる。たとえば、酸基含有化合物として、メタクリル酸を使用した場合には、水溶性重合体として、メタクリル酸重合体が、不可避的に含まれてしまうこととなる。これに対し、本発明者等によれば、ラテックス中における、このような水溶性重合体の含有量を上記範囲に制御することにより、該ラテックスを用いて得られるディップ成形体などの膜成形体を、高い引張強度を維持しながら、引裂強度に優れたものとすることができることを見出したものである。
 水溶性重合体としては、水に対して溶解性を示す重合体であり、主として、変性反応に用いた酸基含有化合物に由来する重合体であればよく、特に限定されない。水溶性重合体の重量平均分子量(Mw)は、特に限定されないが、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、通常、1,500以上50,000以下であり、好ましくは2,000以上10,000以下、より好ましくは2,500以上5,000以下である。
 また、ラテックス中における水溶性重合体の含有量は、たとえば、電導度測定により求めることができる。なお、この際には、酸変性共役ジエン系重合体中における、酸基含有化合物由来の構造単位の含有量も併せて求めることができる。
 すなわち、まず、酸変性共役ジエン系重合体のラテックスについて、電導率計などを用いて電導度測定を行うことで、酸変性共役ジエン系重合体のラテックス全体に含まれる、酸基(たとえば、カルボキシル基)の量(初期酸量X1)を算出する。この測定により、酸変性共役ジエン系重合体に由来の酸基と、水溶性重合体に由来の酸基とに基づく導電度が測定され、これらの合計量が求められる。
 次いで、酸変性共役ジエン系重合体のラテックスについて、水溶性重合体を除去する処理を行う。水溶性重合体を除去する処理としては、特に限定されないが、ラテックスを水で希釈する処理、これを遠心分離する処理、および遠心分離後のラテックスについて電導度測定を行う処理を繰り返し行い、電導度の測定値が変化しなくなるまで、このような処理を繰り返し行う方法が挙げられる。
 そして、水溶性重合体の除去を行った後のラテックスの電導度に基づき、酸変性共役ジエン系重合体のみに含まれる、酸基の量(処理後酸量X2)を算出し、この結果に基づき、酸変性共役ジエン系重合体中における、酸基含有化合物由来の構造単位の含有量を求めることができる。
 最後に、初期酸量X1と、処理後酸量X2との差に基づいて、ラテックス中における水溶性重合体の含有量を求めることができる。
 また、本発明の酸変性共役ジエン系重合体のラテックスは、ラテックスの固形分濃度を60重量%とした場合における、温度25℃における粘度が800mPa・s以下であり、好ましくは700mPa・s以下、さらに好ましくは500mPa・s以下であり、その下限は特に限定されないが、通常、200mPa・s以上である。また、本発明の酸変性共役ジエン系重合体のラテックスは、ラテックスの固形分濃度を50重量%とした場合における、温度25℃における粘度が300mPa・s以下であり、好ましくは200mPa・s以下、さらに好ましくは180mPa・s以下であり、その下限は特に限定されないが、通常、120mPa・s以上である。固形分濃度60重量%における粘度および固形分濃度50重量%における粘度が高すぎると、得られるディップ成形体などの膜成形体の引裂強度の向上効果が得られなくなってしまう。
 なお、固形分濃度60重量%における粘度および固形分濃度50重量%における粘度は、たとえば、ブルックフィールド粘度計(B型粘度計)を用いて、25℃の条件において測定することができる。また、固形分濃度が、60重量%や50重量%でない場合には、水を添加することで希釈する方法や、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法、好ましくは遠心分離で濃縮操作を行う方法により、固形分濃度を調整した後に粘度測定を行えばよい。
<酸変性共役ジエン系重合体のラテックスの製造方法>
 本発明の酸変性共役ジエン系重合体のラテックスの製造方法としては、特に限定されないが、ラテックス中における水溶性重合体の含有量、固形分濃度60重量%における粘度および固形分濃度50重量%における粘度を、上記した範囲に制御し易いという観点より、以下の製造方法が好ましい。
 すなわち、SP値が7.2~10(cal/cm1/2の範囲にある有機溶媒中で、共役ジエン系重合体に、酸基含有化合物を反応させることで、酸基含有化合物由来の構造単位の含有量が、重合体100重量部中、0.2~0.7重量部である酸変性共役ジエン系重合体の有機溶媒溶液を得る工程(工程A)と、
 前記酸変性共役ジエン系重合体の有機溶媒溶液を、界面活性剤の存在下に、水中で乳化することで、乳化分散液を得る工程(工程B)と、
 前記乳化分散液から、有機溶媒を除去する工程(工程C)と、
 前記有機溶媒を除去した乳化分散液について、遠心分離操作または精密ろ過により濃縮を行う工程(工程D)とを備える、製造方法が好ましい。
(工程A)
 有機溶媒中で、上述した合成ポリイソプレンやSISなどの共役ジエン系重合体に、酸基含有化合物を反応させる方法としては、特に限定されないが、有機溶媒中で、共役ジエン系重合体に、酸基含有化合物をグラフト反応させる方法が好適である。この場合に、酸変性共役ジエン系重合体は、有機溶媒溶液の状態で得られることとなる。
 酸基含有化合物としては、上述したものを用いることができる。酸基含有化合物の使用量は、酸変性共役ジエン系重合体100重量部中における、酸基含有化合物由来の構造単位の含有量が上記範囲となる量とすればよいが、共役ジエン系重合体100重量部に対し、好ましくは0.4~20重量部、より好ましくは1~10重量部、さらに好ましくは1.5~5重量部である。
 共役ジエン系重合体に、酸基含有化合物をグラフト反応させる際に用いる有機溶媒としては、SP値(溶解度パラメータ)が7.2~10(cal/cm1/2の範囲にあるものを用いればよいが、共役ジエン系重合体および酸基含有化合物を好適に溶解させることができるという観点より、SP値が8~9.5(cal/cm1/2の範囲にある有機溶媒を用いることがより好ましく、SP値が8.5~9(cal/cm1/2の範囲にある有機溶媒を用いることがさらに好ましい。このような有機溶媒としては、たとえば、ベンゼン(SP値:9.2(cal/cm1/2)、トルエン(SP値:8.9(cal/cm1/2)、キシレン(SP値:8.8(cal/cm1/2)、シクロヘキサン(SP値:8.2(cal/cm1/2)、オクタン(SP値:7.6(cal/cm1/2)、メチルエチルケトン(SP値:9.3(cal/cm1/2)などが挙げられる。なお、SP値は、分子構造から見積もられる沸点、臨界点、臨界圧、蒸発エンタルピー、および液体モル体積などから計算されるものであり、たとえば、シミュレーションソフトであるASPEN PLUSを用いて推算した値により規定されたものを用いることができる。SP値が7.2~10(cal/cm1/2の範囲にある有機溶媒は、単独で、または2種以上を組合せて用いることができる。また、共役ジエン系重合体を、SP値が7.2~10(cal/cm1/2の範囲にある有機溶媒の重合体溶液の状態で得た場合には、共役ジエン系重合体を重合体溶液のまま使用して、酸基含有化合物をグラフト反応させてもよいし、あるいは、共役ジエン系重合体の重合体溶液に、SP値が7.2~10(cal/cm1/2の範囲にある有機溶媒をさらに添加して、酸基含有化合物をグラフト反応させてもよい。
 有機溶媒中で、共役ジエン系重合体に、酸基含有化合物をグラフト反応させる際には、グラフト重合触媒を用いることが好ましい。グラフト重合触媒としては、特に限定されないが、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物系の重合触媒;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物系の重合触媒;2,2’-アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物系の重合触媒;等を挙げることができる。これらの中でも、得られるディップ成形体などの膜成形体の引裂強度をより高めることができるという観点より、アゾ化合物系の重合触媒が好ましく、2,2’-アゾビスイソブチロニトリルが特に好ましい。グラフト重合触媒は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。
 グラフト重合触媒の使用量は、その種類によって異なるが、合成イソプレン重合体100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~5重量部である。また、グラフト重合触媒を添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。
(工程B)
 次いで、上記にて得られた酸変性共役ジエン系重合体の有機溶媒溶液を、界面活性剤の存在下に、水中で乳化することで、乳化分散液を得る。
 界面活性剤としては、アニオン性界面活性剤が好ましく、アニオン性界面活性剤としては、たとえば、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム等の脂肪酸塩;ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、セチルベンゼンスルホン酸ナトリウム、セチルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩;ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩;等が挙げられる。
 これらアニオン性界面活性剤の中でも、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩が好ましく、脂肪酸塩およびアルキルベンゼンスルホン酸塩が特に好ましい。
 また、共役ジエン系重合体由来の、微量に残留する重合触媒(特に、アルミニウムやチタニウム)をより効率的に除去でき、これにより、ラテックス中の凝集物の発生が抑制されることから、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることが好ましく、アルキルベンゼンスルホン酸塩と、脂肪酸塩とを併用して用いることが特に好ましい。ここで、脂肪酸塩としては、ロジン酸ナトリウムおよびロジン酸カリウムが好ましく、ロジン酸ナトリウムがより好ましく、また、アルキルベンゼンスルホン酸塩としては、ドデシルベンゼンスルホン酸ナトリウムおよびドデシルベンゼンスルホン酸カリウムが好ましく、ドデシルベンゼンスルホン酸ナトリウムがより好ましい。また、これらの界面活性剤は、1種単独でも2種以上を併用してもよい。
 また、上記方法においては、アニオン性界面活性剤以外の界面活性剤を併用してもよく、このようなアニオン性界面活性剤以外の界面活性剤としては、α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性の界面活性剤が挙げられる。さらに、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性界面活性剤も併用してもよい。
 界面活性剤の水溶液中に含有させる界面活性剤の使用量は、酸変性共役ジエン系重合体100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~20重量部、さらに好ましくは1~10重量部である。なお、2種類以上の界面活性剤を用いる場合においては、これらの合計の使用量を上記範囲とすることが好ましい。
 また、界面活性剤の水溶液中に含有させる水の量は、酸変性共役ジエン系重合体の有機溶媒溶液100重量部に対して、好ましくは10~1,000重量部、より好ましくは30~500重量部、最も好ましくは50~100である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられ、軟水、イオン交換水および蒸留水が好ましい。
 酸変性共役ジエン系重合体の有機溶媒溶液を、界面活性剤の存在下、水中で乳化する装置は、一般に乳化機または分散機として市販されているものであれば特に限定されず使用できる。酸変性共役ジエン系重合体の有機溶媒溶液に、性界面活性剤を添加する方法としては、特に限定されず、予め、水もしくは酸変性共役ジエン系重合体のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化分散液に添加してもよく、一括添加しても、分割添加してもよい。
 乳化装置としては、たとえば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化機;商品名「膜乳化機」(冷化工業社製)等の膜乳化機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化機;等が挙げられる。なお、乳化装置による乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。
(工程C)
 次いで、乳化操作により得られた乳化分散液から、有機溶媒を除去する。乳化分散液から有機溶媒を除去する方法としては、得られる酸変性共役ジエン系重合体のラテックス中における、有機溶媒の含有量を500重量ppm以下とすることのできる方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留等の方法を採用することができる。
(工程D)
 次いで、有機溶媒の除去を行った乳化分散液に対して、遠心分離操作または精密ろ過により濃縮を行う。
 遠心分離は、たとえば、連続遠心分離機を用いて、遠心力を、好ましくは100~10,000G、遠心分離前の酸変性共役ジエン系重合体のラテックスの固形分濃度を、好ましくは2~15重量%、遠心分離機に送り込む流速を、好ましくは500~1700Kg/hr、遠心分離機の背圧(ゲージ圧)を、好ましくは0.03~1.6MPaの条件にて実施することが好ましく、遠心分離後の軽液として、酸変性共役ジエン系重合体のラテックスを得ることができる。
 また、精密ろ過による濃縮は、たとえば、孔径が、好ましくは0.2~2μm、より好ましくは0.5~1μmの精密ろ過膜(MF膜)を用いた、ろ過操作により行うことができる。
 以上のような製造方法によれば、酸基含有化合物由来の構造単位の含有量、ラテックス中における水溶性重合体の含有量、固形分濃度60重量%および固形分濃度50重量%における粘度が、本発明所定の範囲に制御された酸変性共役ジエン系重合体のラテックスを好適に得ることができる。
 特に、上記の製造方法によれば、SP値が7.2~10(cal/cm1/2の範囲にある有機溶媒中で、共役ジエン系重合体に、酸基含有化合物を反応させ、得られた酸変性共役ジエン系重合体の有機溶媒溶液を水中で乳化させ、次いで、遠心分離操作または精密ろ過により濃縮を行うことにより、得られるラテックス中における水溶性重合体の含有量を効果的に低減させることができるものである。一方、国際公開第2014/129547号のように、共役ジエン系重合体の有機溶媒溶液を水中で乳化させ、ラテックスの状態とした後に、共役ジエン系重合体に、酸基含有化合物を反応させた場合には、ラテックス中に残存する水溶性重合体の含有量が高くなる傾向にあり、結果として、水溶性重合体に起因する、引裂強度の低下が大きくなってしまうものである。
 本発明の酸変性共役ジエン系重合体のラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%である。固形分濃度が低すぎると、得られるディップ成形体などの膜成形体が薄くなり破れ易くなる。逆に固形分濃度が高すぎると、酸変性共役ジエン系重合体のラテックスの粘度が高くなり、配管での移送や調合タンク内での撹拌が困難になる場合がある。
 酸変性共役ジエン系重合体のラテックスの体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは0.5~2.0μmである。この体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、酸変性共役ジエン系重合体のラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。
 また、本発明の酸変性共役ジエン系重合体のラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。
<ラテックス組成物>
 本発明のラテックス組成物は、上述した本発明の酸変性共役ジエン系重合体のラテックスに、架橋剤を配合してなるものである。
 架橋剤としては、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール・ジスルフィド、カプロラクタム・ジスルフィド(N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2))、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらのなかでも、硫黄が好ましく使用できる。架橋剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 架橋剤の含有量は、特に限定されないが、酸変性共役ジエン系重合体のラテックスを構成する酸変性共役ジエン系重合体100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~3重量部である。架橋剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。
 また、本発明のラテックス組成物は、さらに架橋促進剤を含有することが好ましい。
 架橋促進剤としては、ディップ成形などの膜成形において通常用いられるものが使用でき、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4’-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられるが、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール亜鉛が好ましい。架橋促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 架橋促進剤の含有量は、酸変性共役ジエン系重合体のラテックスを構成する、酸変性共役ジエン系重合体100重量部に対して、好ましくは0.05~5重量部であり、より好ましくは0.1~2重量部である。架橋促進剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。
 また、本発明のラテックス組成物は、さらに酸化亜鉛を含有することが好ましい。
 酸化亜鉛の含有量は、特に限定されないが酸変性共役ジエン系重合体のラテックスを構成する、酸変性共役ジエン系重合体100重量部に対して、好ましくは0.1~5重量部、より好ましくは0.2~2重量部である。酸化亜鉛の含有量を上記範囲とすることにより、乳化安定性を良好なものとしながら、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。
 本発明のラテックス組成物には、さらに、老化防止剤、分散剤;カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;紫外線吸収剤;可塑剤;等の配合剤を必要に応じて配合することができる。
 老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、などの硫黄原子を含有しないフェノール系老化防止剤;2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、1種単独で、または2種以上を併用することができる。
 老化防止剤の含有量は、ラテックス中に含まれる合成ゴム100重量部に対して、好ましくは0.05~10重量部、より好ましくは0.1~5重量部である。
 本発明のラテックス組成物の調製方法は、特に限定されないが、たとえば、ボールミル、ニーダー、ディスパー等の分散機を用いて、酸変性共役ジエン系重合体のラテックスに、架橋剤、および必要に応じて配合される各種配合剤を混合する方法や、上記の分散機を用いて、酸変性共役ジエン系重合体のラテックス以外の配合成分の水性分散液を調製した後、該水性分散液を酸変性共役ジエン系重合体のラテックスに混合する方法などが挙げられる。
 本発明のラテックス組成物は、pHが7以上であることが好ましく、pHが7~13の範囲であることがより好ましく、pHが8~12の範囲であることがさらに好ましい。また、ラテックス組成物の固形分濃度は、15~65重量%の範囲にあることが好ましい。
 本発明のラテックス組成物は、得られるディップ成形体の機械的特性をより高めるという観点より、ディップ成形に供する前に、熟成(前架橋)させることが好ましい。前架橋する時間は、特に限定されず、前架橋の温度にも依存するが、好ましくは1~14日間であり、より好ましくは1~7日間である。なお、前架橋の温度は、好ましくは20~40℃である。
 そして、前架橋した後、ディップ成形などの成形に供されるまで、好ましくは10~30℃の温度で貯蔵することが好ましい。高温のまま貯蔵すると、得られるディップ成形体などの膜成形体の引張強度が低下する場合がある。
<膜成形体>
 本発明の膜成形体は、本発明のラテックス組成物からなる膜状の成形体である。本発明の膜成形体の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。
 本発明の膜成形体としては、特に限定されないが、本発明のラテックス組成物をディップ成形して得られるディップ成形体であることが好適である。ディップ成形は、ラテックス組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、その後、型の表面に沈着した当該組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用できる。
 凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の型を凝固剤の溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。
 凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。
 凝固剤は、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノールなどの水溶性有機溶媒やノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。
 型をラテックス組成物から引き上げた後、通常、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。
 次いで、加熱して、型上に形成された沈着物を架橋させる。
 架橋時の加熱条件は、特に限定されないが、好ましくは60~150℃、より好ましくは100~130℃の加熱温度で、好ましくは10~120分の加熱時間である。
 加熱の方法は、特に限定されないが、オーブンの中で温風により加熱する方法、赤外線を照射して加熱する方法などがある。
 また、ラテックス組成物を沈着させた型を加熱する前あるいは加熱した後に、水溶性不純物(たとえば、余剰の界面活性剤や凝固剤)を除去するために、型を水または温水で洗浄することが好ましい。用いる温水としては好ましくは40℃~80℃であり、より好ましくは50℃~70℃である。
 架橋後のディップ成形体は、型から脱着される。脱着方法の具体例は、手で型から剥がす方法、水圧または圧縮空気圧力により剥がす方法等が挙げられる。架橋途中のディップ成形体が脱着に対する十分な強度を有していれば、架橋途中で脱着し、引き続き、その後の架橋を継続してもよい。
 本発明の膜成形体、およびその一態様であるディップ成形体は、上述した本発明の酸変性共役ジエン系重合体のラテックスを用いて得られるものであるため、引張強度および引裂強度に優れるものであり、たとえば、手袋として特に好適に用いることができる。膜成形体が手袋である場合、膜成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子または澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。
 また、本発明の膜成形体、およびその一態様であるディップ成形体は、上記手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。
<接着剤層形成基材>
 本発明の接着剤層形成基材は、基材上に、上述した本発明の酸変性共役ジエン系重合体のラテックスを用いて形成される接着剤層を備える、基材と、接着剤層との複合材料である。
 基材としては、特に限定されないが、たとえば繊維基材を用いることができる。繊維基材を構成する繊維の種類は、特に限定されず、たとえば、ビニロン繊維、ポリエステル繊維、ナイロン、アラミド(芳香族ポリアミド)等のポリアミド繊維、ガラス繊維、綿、レーヨン等が挙げられる。これらは、その用途に応じて、適宜選定することができる。繊維基材の形状は特に限定されず、たとえば、ステープル、フィラメント、コード状、ロープ状、織布(帆布等)等を挙げることができ、その用途に応じて適宜選定することができる。
 また、接着剤層は、上述した本発明の酸変性共役ジエン系重合体のラテックスを用いて形成すればよく、上述した本発明の酸変性共役ジエン系重合体のラテックスに、配合剤等を配合することなくそのまま用いてもよいし、あるいは、各種配合剤を配合することで、接着剤組成物とし、このような接着剤組成物を用いて接着剤層を形成してもよい。
 接着剤組成物に含有させる配合剤としては、たとえば、接着剤樹脂が挙げられる。接着剤樹脂としては、特に限定されないが、たとえば、レゾルシン-ホルムアルデヒド樹脂、メラミン樹脂、エポキシ樹脂およびイソシアネート樹脂を好適に使用することができ、これらのなかでも、レゾルシン-ホルムアルデヒド樹脂が好ましい。レゾルシン-ホルムアルデヒド樹脂は、公知のもの(例えば、特開昭55-142635号公報に開示のもの)が使用できる。レゾルシンとホルムアルデヒドとの反応比率は、「レゾルシン:ホルムアルデヒド」のモル比で、通常、1:1~1:5、好ましくは1:1~1:3である。
 また、接着剤組成物には、接着力をさらに高めるために、従来から使用されている2,6-ビス(2,4-ジヒドロキシフェニルメチル)-4-クロロフェノールまたは類似の化合物、イソシアネート、ブロックイソシアネート、エチレン尿素、ポリエポキシド、変性ポリ塩化ビニル樹脂等を含有させることができる。
 さらに、接着剤組成物には、加硫助剤を含有させることができる。加硫助剤を含有させることにより、接着剤層形成基材の機械的強度を向上させることができる。加硫助剤としては、p-キノンジオキシム等のキノンジオキシム;ラウリルメタクリレートやメチルメタクリレート等のメタクリル酸エステル;DAF(ジアリルフマレート)、DAP(ジアリルフタレート)、TAC(トリアリルシアヌレート)、TAIC(トリアリルイソシアヌレート)等のアリル化合物;ビスマレイミド、フェニルマレイミド、N,N-m-フェニレンジマレイミド等のマレイミド化合物;硫黄;等を挙げることができる。
 接着剤組成物中における合成ゴムの含有量(固形分量)は、好ましくは5~60重量%、より好ましくは10~30重量%である。
 本発明の接着剤層形成基材は、たとえば、基材表面に、本発明の酸変性共役ジエン系重合体のラテックス、またはこれを含有する接着剤組成物を塗布する方法、あるいは、基材を、本発明の酸変性共役ジエン系重合体のラテックス、またはこれを含有する接着剤組成物中に浸漬する方法などにより、基材上に、接着剤層を形成することにより得ることできる。
 このような本発明の接着剤層形成基材は、たとえば、接着剤層を介して、ゴムと接着することにより、基材-ゴム複合体として用いることができる。基材-ゴム複合体としては、特に限定されないが、たとえば、繊維基材としてコード状のものを用いた芯線入りのゴム製歯付きベルト、帆布等の基布状の繊維基材を用いたゴム製歯付きベルト等が挙げられる。
 基材-ゴム複合体を得る方法としては、特に限定されないが、たとえば、塗布法や浸漬処理等により、本発明の酸変性共役ジエン系重合体のラテックス、またはこれを含有する接着剤組成物を基材に付着させて接着剤層形成基材を得て、接着剤層形成基材をゴム上に載置し、これを加熱および加圧する方法が挙げられる。加圧は、圧縮(プレス)成形機、金属ロール、射出成形機等を用いて行なうことができる。加圧の圧力は、好ましくは0.5~20MPa、より好ましくは2~10MPaである。加熱の温度は、好ましくは130~300℃、より好ましくは150~250℃である。加熱および加圧の処理時間は、好ましくは1~180分、より好ましくは5~120分である。加熱および加圧する方法により、ゴムの成形、および接着剤層形成基材とゴムとの接着を、同時に行なうことができるようになる。なお、加圧に用いる圧縮機の型の内面やロールの表面には、目的とする基材-ゴム複合体のゴムに所望の表面形状を付与するための型を形成させておくことが好ましい。
 また、基材-ゴム複合体の一態様として、基材-ゴム-基材複合体を挙げることができる。基材-ゴム-基材複合体は、たとえば、基材(2種以上の基材の複合体であってもよい。)と基材-ゴム複合体とを組み合わせて形成することができる。具体的には、基材としての芯線、ゴムおよび基材としての基布を重ね(このとき、芯線および基布には、本発明の酸変性共役ジエン系重合体のラテックス、またはこれを含有する接着剤組成物を適宜付着させて接着剤層形成基材としておく)、加熱しながら加圧することにより、基材-ゴム-基材複合体を得ることができる。
 本発明の接着剤層形成基材を用いて得られる基材-ゴム複合体は、引張強度や引裂強度などの機械的強度に優れたものであり、そのため、平ベルト、Vベルト、Vリブドベルト、丸ベルト、角ベルト、歯付ベルト等のベルトとして好適に用いることができる。また、本発明の接着剤層形成基材を用いて得られる基材-ゴム複合体は、耐油性に優れ、油中ベルトとして好適に用いることができる。さらに、本発明の接着剤層形成基材を用いて得られる基材-ゴム複合体は、ホース、チューブ、ダイアフラム等にも好適に使用できる。ホースとしては、単管ゴムホース、多層ゴムホース、編上式補強ホース、布巻式補強ホース等が挙げられる。ダイアフラムとしては、平形ダイアフラム、転動形ダイアフラム等が挙げられる。
 本発明の接着剤層形成基材を用いて得られる基材-ゴム複合体は、上記の用途以外にも、シール、ゴムロール等の工業用製品として用いることができる。シールとしては、回転用、揺動用、往復動等の運動部位シールと固定部位シールが挙げられる。運動部位シールとしては、オイルシール、ピストンシール、メカニカルシール、ブーツ、ダストカバー、ダイアフラム、アキュムレータ等が挙げられる。固定部位シールとしては、Oリング、各種ガスケット等が挙げられる。ゴムロールとしては、印刷機器、コピー機器等のOA機器の部品であるロール;紡糸用延伸ロール、紡績用ドラフトロール等の繊維加工用ロール;ブライドルロール、スナバロール、ステアリングロール等の製鉄用ロール;等が挙げられる。
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、以下の「部」は、特に断りのない限り、重量基準である。なお、各種の物性は以下のように測定した。
<共役ジエン系重合体の重量平均分子量(Mw)>
 試料を固形分濃度が0.1重量%となるように、テトラヒドロフランで希釈し、この溶液について、ゲル・パーミーエーション・クロマトグラフィー分析を行い、標準ポリスチレン換算の共役ジエン系重合体の重量平均分子量(Mw)を算出した。
<固形分濃度>
 アルミ皿(重量:Z1)に試料2gを精秤し(重量:Z2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:Z3)、下記の計算式にしたがって、固形分濃度を算出した。
 固形分濃度(重量%)=(Z3-Z1)×100/Z2
<酸変性共役ジエン系重合体のラテックス中の水溶性重合体量、酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)>
 酸変性共役ジエン系重合体のラテックスについて、電導率計(製品名「SG78-FK2」、METTLER  TOLEDO社製)を用いて電導度測定を行うことで、酸変性共役ジエン系重合体のラテックス全体に含まれる、酸基(たとえば、カルボキシル基)の量(初期酸量X1)を算出した。
 次いで、酸変性共役ジエン系重合体のラテックスについて、水で希釈する処理、これを遠心分離し水溶性重合体の水溶液を除去する処理、および遠心分離後のラテックスについて電導度測定を行う処理を繰り返し行い、電導度の測定値が変化しなくなるまで、このような処理を繰り返し行った。
 そして、水溶性重合体の除去を行った後のラテックスの電導度に基づき、酸変性共役ジエン系重合体のみに含まれる、酸基の量(処理後酸量X2)を算出し、この結果に基づき、酸変性共役ジエン系重合体中に含まれる、酸基含有化合物に由来する構造単位の重量を求めることで、酸変性共役ジエン系重合体全体の重量を100重量部とした場合における、酸基含有化合物由来の構造単位の重量基準での含有量を求めた。
 また、これとは別に、初期酸量X1と、処理後酸量X2との差に基づいて、酸変性共役ジエン系重合体のラテックス中における水溶性重合体の含有量を求めた。
 さらに、酸変性共役ジエン系重合体のラテックスから除去した、水溶性重合体の水溶液を蒸留水で希釈することにより、水溶性重合体の重量平均分子量を測定するための溶液(固形分濃度:0.1重量)を調製した。この溶液について、ゲル・パーミーエーション・クロマトグラフィー分析を行い、ポリエチレンオキサイドおよびポリエチレングリコール基準の水溶性重合体の重量平均分子量(Mw)を算出した。
<固形分濃度60重量%、50重量%における粘度>
 酸変性共役ジエン系重合体のラテックスの固形分濃度60重量%における粘度、および固形分50重量%における粘度を、B型粘度計(ブルックフィールド粘度計、型式BL、東京計器社製)を用いて25℃の条件にて測定した。固形分50重量%における粘度を測定する際には、酸変性共役ジエン系重合体のラテックスに水を添加して、固形分50重量%に希釈した状態として測定を行った。
<ディップ成形体の引張強度>
 ASTM  D412に基づいて、ディップ成形体を、ダンベル(製品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、引張強度測定用試験片を作製した。当該試験片をテンシロン万能試験機(製品名「RTG-1210」、オリエンテック社製)で引張速度500mm/minで引っ張り、破断直前の引張強度(単位:MPa)を測定した。
<ディップ成形体の引裂強度>
 ASTM D624-00に基づいて、ディップ成形体を、23℃、相対湿度50%の恒温恒湿室で24時間以上放置した後、ダンベル(製品名「Die C」、ダンベル社製)で打ち抜き、引裂強度測定用の試験片を作製した。当該試験片をテンシロン万能試験機(製品名「RTG-1210」、オリエンテック社製)で引張速度500mm/minで引っ張り、引裂強度(単位:N/mm)を測定した。
<実施例1>
(酸変性合成ポリイソプレンのラテックスの製造)
 乾燥および窒素置換された撹拌付きオートクレーブに、モレキュラーシーブスにより乾燥させた水分3重量ppmのトルエン1150部と、イソプレン100部とを仕込んだ。次いで、オートクレーブ内の温度を60℃にし、撹拌しながらノルマルブチルリチウム0.114部を加えて2時間反応させた後、重合停止剤としてメタノール0.017部を添加し、反応を停止させて、合成ポリイソプレンのトルエン溶液(A-1)(固形分濃度:8.0重量%)を得た。トルエン溶液中の合成ポリイソプレンの重量平均分子量は620,000であった。
 次いで、合成ポリイソプレンのトルエン溶液(A-1)中の合成ポリイソプレン100部に対して、トルエン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を40℃にまで加温した。また、別の容器を用い、メタクリル酸3部とトルエン57部を混合してメタクリル酸のトルエン溶液を調製した。このメタクリル酸のトルエン溶液を、40℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、2,2’-アゾビスイソブチロニトリル1.8部を添加して40℃で1時間反応を行い、さらに80℃で2時間反応させることにより、酸変性合成ポリイソプレンのトルエン溶液(B-1)(固形分濃度:5重量%)を得た。
 一方、ロジン酸ナトリウム20部を水に添加し、温度を60℃に昇温して溶解し、濃度1.5重量%の界面活性剤水溶液(C-1)を調製した。
 次に、上記にて得られた酸変性合成ポリイソプレンのトルエン溶液(B-1)と、界面活性剤水溶液(C-1)とを、重量比で1:1.5となるように、ミキサー(製品名「マルチラインミキサーMS26-MMR-5.5L」、佐竹化学機械工業社製)を用いて混合し、続いて、乳化装置(製品名「マイルダーMDN310」、太平洋機工社製)を用いて、回転数4100rpmで混合および乳化することで、乳化分散液(D-1)を得た。なお、この際、酸変性合成ポリイソプレンのトルエン溶液(B-1)と界面活性剤水溶液(C-1)との合計のフィード流速は2,000kg/hr、温度は60℃、背圧(ゲージ圧)は0.5MPaとした。
 次いで、得られた乳化分散液(D-1)を、-0.01~-0.09MPa(ゲージ圧)の減圧下で80℃に加温し、トルエンを留去し、酸変性合成ポリイソプレンの水分散液(E-1)を得た。その際、消泡剤(商品名「SM5515」、東レ・ダウコーニング社製)を、乳化分散液(D-1)中の酸変性合成ポリイソプレンに対して300重量ppmの量になるよう、噴霧しながら連続添加した。なお、トルエンを留去する際には、乳化分散液(D-1)がタンクの容積の70体積%以下になるように調整し、かつ、攪拌翼として3段の傾斜パドル翼を用い、60rpmでゆっくり攪拌を実施した。
 そして、トルエンの留去が完了した後、得られた酸変性合成ポリイソプレンの水分散液(E-1)を、連続遠心分離機(製品名「SRG510」、アルファラバル社製)を用いて、8,000~9,000Gで遠心分離することで濃縮し、軽液としての固形分濃度60重量%の酸変性合成ポリイソプレンのラテックス(F-1)を得た。なお、遠心分離の条件は、遠心分離前の水分散液(E-1)の固形分濃度10重量%、連続遠心分離時の流速は1300kg/hr、遠心分離機の背圧(ゲージ圧)は1.5MPaとした。得られた酸変性合成ポリイソプレンのラテックス(F-1)について、上記方法にしたがって、ラテックス中の水溶性重合体量、酸変性合成ポリイソプレン中における酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)を求めた。
(ラテックス組成物の調製)
 上記にて得られた酸変性合成ポリイソプレンのラテックス(F-1)を撹拌しながら、酸変性合成ポリイソプレンのラテックス(F-1)中の酸変性合成ポリイソプレン100部に対して、固形分換算での配合量が1部となるように、濃度10重量%のドデシルベンゼンスルホン酸ソーダを添加した。そして、得られた混合物を撹拌しながら、混合物中の酸変性合成ポリイソプレン100部に対して、それぞれ固形分換算で、酸化亜鉛1.5部、硫黄1.5部、老化防止剤(製品名「Wingstay L」、グッドイヤー社製)2部、ジエチルジチオカルバミン酸亜鉛0.3部、ジブチルジチオカルバミン酸亜鉛0.5部、2-メルカプトベンゾチアゾール亜鉛塩0.7部となるように、各配合剤の水分散液を添加した後、水酸化カリウム水溶液を添加して、pHを10.5に調整したラテックス組成物を得た。その後、得られたラテックス組成物を、30℃に調整された恒温水槽で48時間熟成した。
(ディップ成形体の製造)
 表面がすり加工されたガラス型(直径約5cm、すり部長さ約15cm)を洗浄し、70℃のオーブン内で予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(製品名「エマルゲン109P」、花王社製)を含む凝固剤水溶液に5秒間浸漬し、取り出した。次いで、凝固剤で被覆されたガラス型を70℃のオーブン内で30分以上乾燥した。
 その後、凝固剤で被覆されたガラス型をオーブンから取り出し、上記にて得られたラテックス組成物を25℃に調整し、このラテックス組成物に10秒間浸漬した後に取り出して、次いで、室温で60分間風乾することで、フィルムで被覆されたガラス型を得た。そして、フィルムで被覆されたガラス型を60℃の温水中に2分間浸漬した後、室温で30分間風乾した。その後、フィルムで被覆されたガラス型を120℃のオーブン内に置き20分間加硫を行った後、室温まで冷却し、タルクを散布した後、フィルムをガラス型から剥離することで、ディップ成形体を得た。そして、得られたディップ成形体を用いて、上記方法にしたがって、引張強度および引裂強度の測定を行った。結果を表1に示す。
<実施例2>
(酸変性合成ポリイソプレンのラテックスの製造)
 乾燥および窒素置換された撹拌付きオートクレーブに、モレキュラーシーブスにより乾燥させた水分3重量ppmのシクロヘキサン1150部と、イソプレン100部とを仕込んだ。次いで、オートクレーブ内の温度を60℃にし、撹拌しながらノルマルブチルリチウム0.114部を加えて2時間反応させた後、重合停止剤としてメタノール0.017部を添加し、反応を停止させて、合成ポリイソプレンのシクロヘキサン溶液(A-2)(固形分濃度:8.0重量%)を得た。シクロヘキサン溶液中の合成ポリイソプレンの重量平均分子量は570,000であった。
 次いで、合成ポリイソプレンのシクロヘキサン溶液(A-2)中の合成ポリイソプレン100部に対して、トルエン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を40℃にまで加温した。また、別の容器を用い、無水マレイン酸3部とトルエン57部を混合して無水マレイン酸のトルエン溶液を調製した。この無水マレイン酸のトルエン溶液を、40℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、2,2’-アゾビスイソブチロニトリル1.8部を添加して40℃で1時間反応を行い、さらに65℃で2時間反応させることにより、酸変性合成ポリイソプレンのシクロヘキサン/トルエン溶液(B-2)(固形分濃度:5.1重量%)を得た。
 そして、得られた酸変性合成ポリイソプレンのシクロヘキサン/トルエン溶液(B-2)を使用した以外は、実施例1と同様にして、乳化分散液(D-2)および酸変性合成ポリイソプレンの水分散液(E-2)を得て、実施例1と同様にして、連続遠心分離機による遠心分離操作を行い、固形分濃度60重量%の酸変性合成ポリイソプレンのラテックス(F-2)を得た。得られた酸変性合成ポリイソプレンのラテックス(F-2)について、上記方法にしたがって、酸変性合成ポリイソプレンのラテックス中の水溶性重合体量、酸変性合成ポリイソプレン中における酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)を求めた。
(ラテックス組成物の調製、ディップ成形体の製造)
 そして、上記にて得られた酸変性合成ポリイソプレンのラテックス(F-2)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様に評価を行った。結果を表1に示す。
<実施例3>
(酸変性合成ポリイソプレンのラテックスの製造)
 乾燥および窒素置換された撹拌付きオートクレーブに、モレキュラーシーブスにより乾燥させた水分3重量ppmのシクロヘキサン1150部と、合成ポリイソプレン(日本ゼオン社製、商品名「IR2200L」、Ti-Al系の重合触媒により重合された合成ポリイソプレン)100部とを仕込んだ。次いで、オートクレーブ内の温度を30℃にし、撹拌することで合成ポリイソプレンを溶解させ、合成ポリイソプレンのシクロヘキサン溶液(A-3)(固形分濃度:8.0重量%)を得た。シクロヘキサン溶液中の合成ポリイソプレンの重量平均分子量は1,270,000であった。
 次いで、合成ポリイソプレンのシクロヘキサン溶液(A-3)中の合成ポリイソプレン100部に対して、トルエン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を40℃にまで加温した。また、別の容器を用い、無水マレイン酸3部とトルエン57部を混合して無水マレイン酸のトルエン溶液を調製した。この無水マレイン酸のトルエン溶液を、40℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、2,2’-アゾビスイソブチロニトリル1.8部を添加して40℃で1時間反応を行い、さらに65℃で2時間反応させることにより、酸変性合成ポリイソプレンのシクロヘキサン/トルエン溶液(B-3)(固形分濃度:4.9重量%)を得た。
 そして、得られた酸変性合成ポリイソプレンのシクロヘキサン/トルエン溶液(B-3)を使用した以外は、実施例1と同様にして、乳化分散液(D-3)および酸変性合成ポリイソプレンの水分散液(E-3)を得て、実施例1と同様にして、連続遠心分離機による遠心分離操作を行い、固形分濃度60重量%の酸変性合成ポリイソプレンのラテックス(F-3)を得た。得られた酸変性合成ポリイソプレンのラテックス(F-3)について、上記方法にしたがって、酸変性合成ポリイソプレンのラテックス中の水溶性重合体量、酸変性合成ポリイソプレン中における酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)を求めた。
(ラテックス組成物の調製、ディップ成形体の製造)
 そして、上記にて得られた酸変性合成ポリイソプレンのラテックス(F-3)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様に評価を行った。結果を表1に示す。
<実施例4>
(酸変性合成ポリイソプレンのラテックスの製造)
 実施例2と同様にして得られた合成ポリイソプレンのシクロヘキサン溶液(A-2)中の合成ポリイソプレン100部に対して、トルエン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、無水マレイン酸3部とトルエン57部を混合して無水マレイン酸のトルエン溶液を調製した。この無水マレイン酸のトルエン溶液を、40℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、ベンゾイルパーオキサイド0.5部、ナトリウムホルムアルデヒドスルホキシレート(製品名「SFS」、三菱ガス化学社製)0.32部、およびエチレンジアミン四酢酸鉄ナトリウム錯体(商品名「フロストFe」、中部キレスト社製)0.011部を添加して、30℃で1時間反応を行い、さらに65℃で2時間反応させることにより、酸変性合成ポリイソプレンのシクロヘキサン/トルエン溶液(B-4)(固形分濃度:5.0重量%)を得た。
 そして、得られた酸変性合成ポリイソプレンのシクロヘキサン/トルエン溶液(B-4)を使用した以外は、実施例1と同様にして、乳化分散液(D-4)および酸変性合成ポリイソプレンの水分散液(E-4)を得て、実施例1と同様にして、連続遠心分離機による遠心分離操作を行い、固形分濃度60重量%の酸変性合成ポリイソプレンのラテックス(F-4)を得た。得られた酸変性合成ポリイソプレンのラテックス(F-4)について、上記方法にしたがって、酸変性合成ポリイソプレンのラテックス中の水溶性重合体量、酸変性合成ポリイソプレン中における酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)を求めた。
(ラテックス組成物の調製、ディップ成形体の製造)
 そして、上記にて得られた酸変性合成ポリイソプレンのラテックス(F-4)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様に評価を行った。結果を表1に示す。
<実施例5>
(酸変性合成ポリイソプレンのラテックスの製造)
 実施例1と同様にして得られた合成ポリイソプレンのトルエン溶液(A-1)中の合成ポリイソプレン100部に対して、トルエン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を40℃にまで加温した。また、別の容器を用い、無水マレイン酸3部とトルエン57部を混合して無水マレイン酸のトルエン溶液を調製した。この無水マレイン酸のトルエン溶液を、40℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、2,2’-アゾビスイソブチロニトリル1.8部を添加して40℃で1時間反応を行い、さらに80℃で2時間反応させることにより、酸変性合成ポリイソプレンのトルエン溶液(B-5)(固形分濃度:5.0重量%)を得た。
 そして、得られた酸変性合成ポリイソプレンのトルエン溶液(B-5)を使用した以外は、実施例1と同様にして、乳化分散液(D-5)および酸変性合成ポリイソプレンの水分散液(E-5)を得る一方で、連続遠心分離機による遠心分離操作に代えて、ポリエチレン製の精密ろ過膜(旭化成社製、製品名「マイクローザMF」、孔径:0.5μm)を使用した精密ろ過により濃縮を行うことで、固形分濃度60重量%の酸変性合成ポリイソプレンのラテックス(F-5)を得た。得られた酸変性合成ポリイソプレンのラテックス(F-5)について、上記方法にしたがって、酸変性合成ポリイソプレンのラテックス中の水溶性重合体量、酸変性合成ポリイソプレン中における酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)を求めた。
(ラテックス組成物の調製、ディップ成形体の製造)
 そして、上記にて得られた酸変性合成ポリイソプレンのラテックス(F-5)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様に評価を行った。結果を表1に示す。
<実施例6>
(酸変性スチレン-イソプレン-スチレンブロック共重合体のラテックスの製造)
 乾燥および窒素置換された撹拌付きオートクレーブに、モレキュラーシーブスにより乾燥させた水分3重量ppmのトルエン1150部と、スチレン-イソプレン-スチレンブロック共重合体(SIS)(ノルマルブチルリチウムにより重合されたスチレン-イソプレン-スチレンブロック共重合体)100部とを仕込んだ。次いで、オートクレーブ内の温度を30℃にし、撹拌することでスチレン-イソプレン-スチレンブロック共重合体を溶解させ、スチレン-イソプレン-スチレンブロック共重合体のトルエン溶液(A-6)(固形分濃度:8.0重量%)を得た。トルエン溶液中のスチレン-イソプレン-スチレンブロック共重合体の重量平均分子量は250,000であった。
 次いで、スチレン-イソプレン-スチレンブロック共重合体のトルエン溶液(A-6)中のスチレン-イソプレン-スチレンブロック共重合体100部に対して、トルエン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を40℃にまで加温した。また、別の容器を用い、メタクリル酸3部とトルエン57部を混合してメタクリル酸のトルエン溶液を調製した。このメタクリル酸のトルエン溶液を、40℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、2,2’-アゾビスイソブチロニトリル1.8部を添加して40℃で1時間反応を行い、さらに80℃で2時間反応させることにより、酸変性スチレン-イソプレン-スチレンブロック共重合体のトルエン溶液(B-6)(固形分濃度:5.2重量%)を得た。
 そして、得られた酸変性スチレン-イソプレン-スチレンブロック共重合体のトルエン溶液(B-6)を使用した以外は、実施例1と同様にして、乳化分散液(D-6)および酸変性スチレン-イソプレン-スチレンブロック共重合体の水分散液(E-6)を得て、実施例1と同様にして、連続遠心分離機による遠心分離操作を行い、固形分濃度60重量%の酸変性スチレン-イソプレン-スチレンブロック共重合体のラテックス(F-6)を得た。得られた酸変性スチレン-イソプレン-スチレンブロック共重合体のラテックス(F-6)について、上記方法にしたがって、酸変性スチレン-イソプレン-スチレンブロック共重合体のラテックス中の水溶性重合体量、酸変性スチレン-イソプレン-スチレンブロック共重合体中における酸基含有化合物由来の構造単位の含有量を求めた。
(ラテックス組成物の調製、ディップ成形体の製造)
 そして、上記にて得られた酸変性スチレン-イソプレン-スチレンブロック共重合体のラテックス(F-6)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様に評価を行った。結果を表1に示す。
<比較例1>
(酸変性合成ポリイソプレンのラテックスの製造)
 乾燥および窒素置換された撹拌付きオートクレーブに、モレキュラーシーブスにより乾燥させた水分3重量ppmのシクロヘキサン1150部と、合成ポリイソプレン(日本ゼオン社製、商品名「IR2200L」、Ti-Al系の重合触媒により重合された合成ポリイソプレン)100部とを仕込んだ。次いで、オートクレーブ内の温度を30℃にし、撹拌することで合成ポリイソプレンを溶解させ、合成ポリイソプレンのシクロヘキサン溶液(A-7)(固形分濃度:8.0重量%)を得た。シクロヘキサン溶液中の合成ポリイソプレンの重量平均分子量は1,270,000であった。
 次いで、合成ポリイソプレンのシクロヘキサン溶液(A-7)中の合成ポリイソプレン100部に対して、トルエン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、メタクリル酸5部とトルエン55部を混合してメタクリル酸のトルエン溶液を調製した。このメタクリル酸のトルエン溶液を、30℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(製品名「パーオクタH」、日本油脂社製)0.5部、ナトリウムホルムアルデヒドスルホキシレート(製品名「SFS」、三菱ガス化学社製)0.32部、およびエチレンジアミン四酢酸鉄ナトリウム錯体(商品名「フロストFe」、中部キレスト社製)0.011部を添加して、30℃で1時間反応を行い、さらに65℃で2時間反応させることにより、酸変性合成ポリイソプレンのシクロヘキサン/トルエン溶液(B-7)(固形分濃度:5.0重量%)を得た。
 そして、得られた酸変性合成ポリイソプレンのトルエン溶液(B-7)を使用した以外は、実施例1と同様にして、乳化分散液(D-7)および酸変性合成ポリイソプレンの水分散液(E-7)を得る一方で、連続遠心分離機による遠心分離操作に代えて、蒸留によって濃縮を行うことで、固形分濃度60重量%の酸変性合成ポリイソプレンのラテックス(F-7)を得た。得られた酸変性合成ポリイソプレンのラテックス(F-7)について、上記方法にしたがって、酸変性合成ポリイソプレンのラテックス中の水溶性重合体量、酸変性合成ポリイソプレン中における酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)を求めた。
(ラテックス組成物の調製、ディップ成形体の製造)
 そして、上記にて得られた酸変性合成ポリイソプレンのラテックス(F-7)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様に評価を行った。結果を表1に示す。
<比較例2>
(酸変性合成ポリイソプレンのラテックスの製造)
 乾燥および窒素置換された撹拌付きオートクレーブに、モレキュラーシーブスにより乾燥させた水分3重量ppmのペンタン(SP値:7.0(cal/cm1/2)1150部と、イソプレン100部とを仕込んだ。次いで、オートクレーブ内の温度を30℃にし、撹拌しながらノルマルブチルリチウム0.114部を加えて2時間反応させた後、重合停止剤としてメタノール0.017部を添加し、反応を停止させて、合成ポリイソプレンのペンタン溶液(A-8)(固形分濃度:8.0重量%)を得た。トルエン溶液中の合成ポリイソプレンの重量平均分子量は460,000であった。
 次いで、合成ポリイソプレンのペンタン溶液(A-8)中の合成ポリイソプレン100部に対して、ペンタン750部を添加して希釈し、これを攪拌機付き重合反応容器に仕込み、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、メタクリル酸3部とペンタン57部を混合してメタクリル酸の分散液を調製した。このメタクリル酸の分散液を、30℃にまで加温した重合反応容器内に、10分間かけて添加し、次いで、2,2’-アゾビスイソブチロニトリル1.8部を添加して30℃で3時間反応させることにより、酸変性合成ポリイソプレンのペンタン溶液(B-8)(固形分濃度:5.0重量%)を得た。
 そして、得られた酸変性合成ポリイソプレンのペンタン溶液(B-8)を使用した以外は、実施例1と同様にして、乳化分散液(D-8)および酸変性合成ポリイソプレンの水分散液(E-8)を得て、実施例1と同様にして、連続遠心分離機による遠心分離操作を行い、固形分濃度60重量%の酸変性合成ポリイソプレンのラテックス(F-8)を得た。得られた酸変性合成ポリイソプレンのラテックス(F-8)について、上記方法にしたがって、酸変性合成ポリイソプレンのラテックス中の水溶性重合体量、酸変性合成ポリイソプレン中における酸基含有化合物由来の構造単位の含有量、水溶性重合体の分子量(Mw)を求めた。
Figure JPOXMLDOC01-appb-T000001
 表1中、ラテックス中の水溶性重合体量は、ラテックス中の酸変性共役ジエン系重合体100部に対する量である。
 表1に示すように、酸変性共役ジエン系重合体中における酸基含有化合物由来の構造単位の含有量が0.2~0.7重量部であり、ラテックス中における水溶性重合体の含有量が、酸変性共役ジエン系重合体100重量部に対して、2重量部以下であり、固形分濃度60重量%における粘度(25℃)が800mPa・s以下、固形分濃度50重量%における粘度(25℃)が300mPa・s以下であるラテックスによれば、これを用いて得られるディップ成形体は、引張強度および引裂強度に優れるものであった(実施例1~6)。
 一方、ラテックス中における水溶性重合体の含有量が、酸変性共役ジエン系重合体100重量部に対して、2重量部超であり、固形分濃度60重量%における粘度(25℃)が800mPa・s超、固形分濃度50重量%における粘度(25℃)が300mPa・s超であるラテックスを用いて得られるディップ成形体は、引裂強度に劣るものであった(比較例1,2)。

Claims (11)

  1.  共役ジエン系重合体を、酸基含有化合物で変性してなる酸変性共役ジエン系重合体を含有するラテックスであって、
     前記酸変性共役ジエン系重合体100重量部中における、酸基含有化合物由来の構造単位の含有量が0.2~0.7重量部であり、前記ラテックス中における水溶性重合体の含有量が、前記酸変性共役ジエン系重合体100重量部に対して、2重量部以下であり、
     前記ラテックスの固形分濃度を60重量%とした場合における、温度25℃における粘度が800mPa・s以下、前記ラテックスの固形分濃度を50重量%とした場合における、温度25℃における粘度が300mPa・s以下である、酸変性共役ジエン系重合体のラテックス。
  2.  前記共役ジエン系重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体である請求項1に記載の酸変性共役ジエン系重合体のラテックス。
  3.  前記共役ジエン系重合体が、合成ポリイソプレンである請求項1または2に記載の酸変性共役ジエン系重合体のラテックス。
  4.  SP値が7.2~10(cal/cm1/2の範囲にある有機溶媒中で、共役ジエン系重合体に、酸基含有化合物を反応させることで、酸基含有化合物由来の構造単位の含有量が、重合体100重量部中、0.2~0.7重量部である酸変性共役ジエン系重合体の有機溶媒溶液を得る工程と、
     前記酸変性共役ジエン系重合体の有機溶媒溶液を、界面活性剤の存在下に、水中で乳化することで、乳化分散液を得る工程と、
     前記乳化分散液から、有機溶媒を除去する工程と、
     前記有機溶媒を除去した乳化分散液について、遠心分離操作または精密ろ過により濃縮を行う工程とを備える酸変性共役ジエン系重合体のラテックスの製造方法。
  5.  前記共役ジエン系重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体である請求項4に記載の酸変性共役ジエン系重合体のラテックスの製造方法。
  6.  前記共役ジエン系重合体が、合成ポリイソプレンである請求項4または5に記載の酸変性共役ジエン系重合体のラテックスの製造方法。
  7.  前記合成ポリイソプレンが、アルキルリチウム重合触媒を用いて重合することにより得られたものである請求項6に記載の酸変性共役ジエン系重合体のラテックスの製造方法。
  8.  アゾ化合物系の重合触媒を用いて、前記共役ジエン系重合体に対する、酸基含有化合物の反応を行う請求項4~7のいずれかに記載の酸変性共役ジエン系重合体のラテックスの製造方法。
  9.  請求項1~3のいずれかに記載の酸変性共役ジエン系重合体のラテックスと、架橋剤とを含有するラテックス組成物。
  10.  請求項9に記載のラテックス組成物からなる膜成形体。
  11.  請求項1~3のいずれかに記載の酸変性共役ジエン系重合体のラテックスを用いて形成される接着剤層を、基材表面に形成してなる接着剤層形成基材。
PCT/JP2019/006725 2018-03-08 2019-02-22 酸変性共役ジエン系重合体のラテックス、およびその製造方法 WO2019171981A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207024824A KR20200130265A (ko) 2018-03-08 2019-02-22 산 변성 공액 디엔계 중합체의 라텍스, 및 그 제조 방법
BR112020017124-7A BR112020017124B1 (pt) 2018-03-08 2019-02-22 Látex de um polímero de dieno conjugado modificado com grupo ácido, método para produção do mesmo, composição de látex, película moldada, e, substrato com uma camada de adesivo
JP2020504920A JP7259837B2 (ja) 2018-03-08 2019-02-22 酸変性共役ジエン系重合体のラテックス、およびその製造方法
CN201980013992.2A CN111742006B (zh) 2018-03-08 2019-02-22 酸改性共轭二烯系聚合物的胶乳及其制造方法
US16/975,967 US11466106B2 (en) 2018-03-08 2019-02-22 Latex of acid-modified conjugated diene-based polymer, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-041940 2018-03-08
JP2018041940 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019171981A1 true WO2019171981A1 (ja) 2019-09-12

Family

ID=67847334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006725 WO2019171981A1 (ja) 2018-03-08 2019-02-22 酸変性共役ジエン系重合体のラテックス、およびその製造方法

Country Status (7)

Country Link
US (1) US11466106B2 (ja)
JP (1) JP7259837B2 (ja)
KR (1) KR20200130265A (ja)
CN (1) CN111742006B (ja)
BR (1) BR112020017124B1 (ja)
TW (1) TWI783127B (ja)
WO (1) WO2019171981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181389A1 (ja) 2021-02-25 2022-09-01 日本ゼオン株式会社 変性共役ジエン系重合体ラテックスの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127950A (ja) * 1974-03-29 1975-10-08
JPS5163849A (ja) * 1974-11-30 1976-06-02 Kuraray Co Horiisopurengomunyuekino seiho
US3971746A (en) * 1974-03-29 1976-07-27 Kuraray Co., Ltd. Synthetic polyisoprene rubber latex
JPS5371148A (en) * 1976-12-06 1978-06-24 Kuraray Co Ltd Preparation of modified polyisoprene emulsion
WO2006057392A1 (ja) * 2004-11-29 2006-06-01 Zeon Corporation ディップ成形用組成物及びディップ成形品
WO2017130889A1 (ja) * 2016-01-27 2017-08-03 日本ゼオン株式会社 ラテックス組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251409A (en) 1979-04-23 1981-02-17 The General Tire & Rubber Company Adhesion of polyamide or polyester cords to rubber
US4300972A (en) 1979-04-23 1981-11-17 The General Tire & Rubber Company Adhesion of polyamide or polyester cords to rubber
US4289683A (en) 1979-04-23 1981-09-15 The General Tire & Rubber Company Adhesion of polyamide or polyester cords to rubber
US4285850A (en) 1979-04-23 1981-08-25 The General Tire & Rubber Company Adhesion of polyamide or polyester cords to rubber
JP6206482B2 (ja) * 2013-02-22 2017-10-04 日本ゼオン株式会社 ディップ成形用ラテックス、ディップ成形用組成物およびディップ成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127950A (ja) * 1974-03-29 1975-10-08
US3971746A (en) * 1974-03-29 1976-07-27 Kuraray Co., Ltd. Synthetic polyisoprene rubber latex
JPS5163849A (ja) * 1974-11-30 1976-06-02 Kuraray Co Horiisopurengomunyuekino seiho
JPS5371148A (en) * 1976-12-06 1978-06-24 Kuraray Co Ltd Preparation of modified polyisoprene emulsion
WO2006057392A1 (ja) * 2004-11-29 2006-06-01 Zeon Corporation ディップ成形用組成物及びディップ成形品
WO2017130889A1 (ja) * 2016-01-27 2017-08-03 日本ゼオン株式会社 ラテックス組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181389A1 (ja) 2021-02-25 2022-09-01 日本ゼオン株式会社 変性共役ジエン系重合体ラテックスの製造方法

Also Published As

Publication number Publication date
TW201938593A (zh) 2019-10-01
BR112020017124A2 (pt) 2020-12-22
US11466106B2 (en) 2022-10-11
JPWO2019171981A1 (ja) 2021-02-18
CN111742006A (zh) 2020-10-02
KR20200130265A (ko) 2020-11-18
TWI783127B (zh) 2022-11-11
BR112020017124B1 (pt) 2024-03-12
US20210040246A1 (en) 2021-02-11
JP7259837B2 (ja) 2023-04-18
CN111742006B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
JP7063318B2 (ja) ラテックス組成物
WO2017130889A1 (ja) ラテックス組成物
WO2017154736A1 (ja) 合成ゴムのラテックスおよびその製造方法
WO2017159534A1 (ja) 重合体ラテックスの製造方法
JPWO2019039523A1 (ja) ラテックス組成物
JPWO2018155110A1 (ja) 変性重合体ラテックスの製造方法
WO2017150199A1 (ja) 重合体ラテックスの製造方法
WO2019058807A1 (ja) ラテックス組成物の製造方法
US11976180B2 (en) Xanthogen compound dispersion, conjugated-diene-based polymer latex composition, and film molded body
JP7435457B2 (ja) ラテックス組成物および膜成形体
JP7092144B2 (ja) 重合体ラテックスの製造方法
WO2019171981A1 (ja) 酸変性共役ジエン系重合体のラテックス、およびその製造方法
JP2020100738A (ja) 変性ポリイソプレンのラテックスの製造方法
WO2021171993A1 (ja) ラテックス組成物
JP6984610B2 (ja) 合成ポリイソプレンラテックス
WO2018155113A1 (ja) 合成ポリイソプレンラテックスの製造方法
WO2018159270A1 (ja) 合成ゴムのラテックスの製造方法
WO2023026782A1 (ja) ラテックス組成物およびディップ成形体
WO2019003743A1 (ja) ラテックス組成物
JP2019065064A (ja) 重合体ラテックスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020017124

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020017124

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200821

122 Ep: pct application non-entry in european phase

Ref document number: 19764970

Country of ref document: EP

Kind code of ref document: A1