WO2019171876A1 - 積層体の製造方法 - Google Patents

積層体の製造方法 Download PDF

Info

Publication number
WO2019171876A1
WO2019171876A1 PCT/JP2019/004545 JP2019004545W WO2019171876A1 WO 2019171876 A1 WO2019171876 A1 WO 2019171876A1 JP 2019004545 W JP2019004545 W JP 2019004545W WO 2019171876 A1 WO2019171876 A1 WO 2019171876A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coating film
liquid crystalline
cooling
dichroic compound
Prior art date
Application number
PCT/JP2019/004545
Other languages
English (en)
French (fr)
Inventor
小堂 厚司
洋平 ▲濱▼地
直弥 西村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020207021334A priority Critical patent/KR102445632B1/ko
Priority to JP2020504877A priority patent/JP6741898B2/ja
Publication of WO2019171876A1 publication Critical patent/WO2019171876A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to a method for manufacturing a laminate.
  • Patent Document 1 A polarizing plate using a dichroic dye instead of polyvinyl alcohol (PVA) dyed with iodine for the purpose of improving heat resistance and moisture resistance is also known (Patent Document 2).
  • PVA polyvinyl alcohol
  • a polarizing film which is an optical film containing a dichroic dye, is formed on an alignment film.
  • the polarizing film is formed from a coating solution in which a dichroic dye and a polymerizable liquid crystal compound (polymerizable liquid crystal compound) are dissolved in a solvent.
  • the coating liquid is applied onto the alignment film and the formed coating film is polymerized at a temperature lower than the phase transition temperature of the polymerizable liquid crystal compound, the polymerizable liquid crystal compound is not polymerized. Dry with.
  • the dried coating film is heated above the nematic transition temperature of the polymerizable liquid crystal compound, and then cooled to a temperature at which a smectic phase liquid crystal state is obtained.
  • Patent Document 2 forms an alignment layer, which is an optical film containing a dichroic dye, on an alignment film.
  • a liquid crystalline dichroic dye is used as the dichroic dye.
  • a coating solution in which the liquid crystalline dichroic dye is dissolved in a solvent is applied onto the alignment film, and the solvent is removed from the formed coating film.
  • the orientation is fixed by heating the coating film to a temperature at which the liquid crystalline dichroic dye exhibits a liquid crystal state, and then the orientation is fixed by cooling. Cooling is performed at a temperature drop rate of 1 ° C./second or more in order to suppress the precipitation of fine crystals.
  • Patent Document 2 must use a liquid crystalline dichroic dye, but the manufacturing method of Patent Document 1 has an advantage in that it is not necessary to use a liquid crystalline dichroic dye. However, according to the manufacturing method of Patent Document 1, the orientation of the optical film may be insufficient.
  • an object of the present invention is to provide a method for producing a laminate including an optical film with improved orientation.
  • the method for producing a laminate of the present invention includes a coating film forming step, a drying step, a first heating step, and a cooling step.
  • a coating-film formation process forms a coating film by apply
  • the coating liquid contains a liquid crystalline compound, a dichroic compound, and a solvent that dissolves the liquid crystalline compound and the dichroic compound.
  • the drying process reduces the solvent from the coating.
  • a 1st heating process heats the coating film in which the solvent decreased, and makes it 1st temperature higher than melting
  • the coating film that has undergone the first heating step is cooled to a second temperature that is lower than the crystallization temperature of the dichroic compound and lower than the crystallization temperature of the liquid crystalline compound. .
  • a second heating step in which the coating film that has undergone the cooling step is heated to a third temperature that is lower than the nematic transition temperature of the liquid crystalline compound.
  • the first heating step preferably includes a temperature raising step for raising the temperature of the coating film below the first temperature to the first temperature, and a temperature maintaining step for maintaining the coating film at the first temperature.
  • the cooling step is preferably the next step after the first heating step.
  • the coating film is preferably cooled at a cooling rate of 1 ° C./second or more.
  • the coating film is preferably cooled within 110 seconds from the first temperature to the second temperature.
  • a laminate comprising an optical film with improved orientation can be produced.
  • the laminated body 10 manufactured by this invention is a polarizing plate which arranges incident light into specific polarized light, for example.
  • the laminate 10 includes a base material 11, a first protective layer 12 laminated on the base material 11, an alignment film 13 laminated on the first protective layer 12, and a coating optical film 14 laminated on the alignment film 13. And a second protective layer 15 laminated on the coated optical film 14.
  • the substrate 11 is not particularly limited as long as it does not change when forming the coated optical film 14 or the like.
  • the substrate 11 may be a polyester polymer such as polyethylene terephthalate or polyethylene naphthalate, diacetyl cellulose, or Cellulose polymer such as triacetyl cellulose (TAC), polycarbonate polymer, acrylic polymer such as polymethyl methacrylate, styrene polymer such as polystyrene or acrylonitrile styrene copolymer, polyethylene, polypropylene, cyclic or norbornene structure Olefin polymers such as polyolefin and ethylene propylene copolymers, vinyl chloride polymers, amide polymers such as nylon or aromatic polyamide, imide polymers Sulfone polymers, polyethersulfone polymers, polyetheretherketone polymers, polyphenylene sulfide polymers, vinyl alcohol polymers, vinylidene chloride polymers, vinyl butyral polymers,
  • the first protective layer 12 protects the alignment film 13 and the coating optical film 14 from water (including water vapor) and / or oxygen that permeates the base material 11.
  • the 1st protective layer 12 is polyvinyl alcohol (PVA), and shields the water etc. which permeate
  • PVA polyvinyl alcohol
  • the 1st protective layer 12 can be abbreviate
  • the alignment film 13 regulates the alignment of the liquid crystalline compound contained in the coating optical film 14 under specific conditions.
  • the alignment film 13 contains an azo compound, and this azo compound is a photo-alignment film that is isomerized by irradiation with ultraviolet rays or the like polarized in a specific direction and aligned along a specific direction.
  • the azo compound any of a monomer, an oligomer, and a polymer can be used.
  • azobenzene that is a monomer is used.
  • cinnamate may be used.
  • the coated optical film 14 is contained by rubbing the surface of the substrate 11, the first protective layer 12, or other film provided on the first protective layer 12.
  • the orientation of the liquid crystal compound to be controlled can be regulated.
  • the coated optical film 14 has a function as a polarizer in the laminate 10.
  • the coating optical film 14 is an optical film formed by coating, and contains a liquid crystalline compound and at least one dichroic compound 31.
  • the liquid crystalline polymer 21 (see FIG. 2) is used as the liquid crystalline compound.
  • the liquid crystalline polymer 21 is a polymer having a mesogenic group in the main chain or side chain.
  • a thermotropic liquid crystalline polymer described in JP2011-237513A or a polymer having thermotropic liquid crystal described in JP2016-4055A can be used.
  • the liquid crystalline polymer 21 may have a crosslinkable group (for example, acryloyl group and methacryloyl group) at the terminal.
  • other liquid crystalline compounds such as a liquid crystalline monomer or a liquid crystalline polymer different from the liquid crystalline polymer 21 can be used instead of or together with the liquid crystalline polymer 21.
  • the liquid crystalline polymer 21 contained in the coating optical film 14 is a so-called side chain type, and includes a flexible main chain 22 and a side chain 24 having a mesogenic group 23.
  • the mesogenic group 23 is generally aligned along a predetermined direction (hereinafter referred to as X direction) by the alignment film 13 in the manufacturing process.
  • the main chain 22 is generally oriented in a direction perpendicular to the X direction (hereinafter referred to as the Y direction).
  • the liquid crystalline polymer 21 of the coating optical film 14 is arranged in a ladder shape or a network shape, and at least partially includes the one or more dichroic compounds 31 by the main chain 22 and the mesogenic group 23.
  • the dichroic compound 31 is a compound having so-called dichroism, and there is a difference in the absorption intensity of each linearly polarized light when irradiated with two linearly polarized light having different polarization directions by 90 degrees.
  • the dichroic compound 31 contained in the coating optical film 14 has the above-mentioned dichroism, and the property that two or more are bonded in a regular arrangement by intermolecular force under specific conditions ( So-called association). Therefore, when the liquid crystalline polymer 21 traps (captures) the dichroic compound 31 having two or more associative properties in the void 26, these dichroic compounds 31 associate to form an aggregate 32 in the manufacturing process.
  • the orientation is roughly aligned.
  • the orientation of the dichroic compound 31 and / or the aggregate 32 of the dichroic compound 31 trapped in the void 26 is generally regulated in the same direction as the mesogenic group 23.
  • Examples of the dichroic compound 31 include paragraphs [0067] to [0071] in JP 2013-228706 A, paragraphs [0008] to [0026] in JP 2013-227532 A, and JP 2013-209367 A. [0008] to [0015] paragraphs of the publication, paragraphs [0045] to [0058] of JP 2013-14883 A, paragraphs [0012] to [0029] of JP 2013-109090 A, JP 2013-101328 A Paragraphs [0009] to [0017], JP-A-2013-37353, paragraphs [0051] to [0065], JP-A-2012-63387, paragraphs [0049] to [0073], JP-A-11- [0016] to [0018] paragraphs of Japanese Patent No.
  • the second protective layer 15 protects the coated optical film 14 from water or the like.
  • the second protective layer 15 is formed of an acrylic polymer, an acrylate monomer polymer, an epoxy monomer polymer, or a cyclic olefin polymer (COP) or a cyclic olefin copolymer (COC). Not limited to.
  • the dichroic compound 31 and / or the aggregate 32 absorbs polarized light in the X direction with respect to light incident from the substrate 11 side or the second protective layer 15 side, Moreover, since it transmits polarized light in the Y direction, it functions as a polarizing plate. Further, the coating optical film 14 having a function as a polarizer can be formed very thin, and the orientation of the dichroic compound 31 is aligned with high accuracy in the coating optical film 14.
  • permeability is made higher than the polarizing plate (henceforth an iodine addition PVA polarizing plate) which uses the PVA which added iodine for the laminated body 10 (especially, the transmittance
  • the degree of polarization is higher than that of the iodine-added PVA polarizing plate.
  • the coating optical film 14 can be formed thinner than the iodine-added PVA polarizing plate. As a result, the entire laminate 10 is thinner than the iodine-added PVA polarizing plate, and is equal to or higher than the iodine-added PVA polarizing plate. It has durability (heat resistance or moisture resistance).
  • the laminate 10 is manufactured using, for example, a manufacturing apparatus 40 shown in FIG.
  • the laminate 10 is manufactured in a long shape, but may be manufactured in a sheet shape by cutting the obtained long laminate 10.
  • the manufacturing apparatus 40 includes a first protective layer forming unit 41, an alignment film forming unit 42, a coating optical film forming unit 43, and a second protective layer forming unit 44 in order from the upstream side in the transport direction of the long base material 11.
  • the first protective layer forming unit 41 forms the first protective layer 12 on the substrate 11.
  • the alignment film forming unit 42 forms the alignment film 13 on the first protective layer 12.
  • the coating optical film forming unit 43 forms the coating optical film 14 on the alignment film 13.
  • the second protective layer forming unit 44 forms the second protective layer 15 on the coated optical film 14.
  • the manufacturing apparatus 40 uses the transport mechanism (transport roller, transport roller drive mechanism, and the like) (not shown) to transport the base material 11 in the longitudinal direction, and the respective units sequentially stack the films or layers to form the laminate 10. obtain.
  • symbol Dc is attached
  • the first protective layer forming unit 41 includes a coating film forming unit 51 and a drying unit 52.
  • the coating film forming unit 51 applies a coating solution 53 in which PVA is dissolved in a solvent on the base material 11 moving in the transport direction Dc to form a coating film 54.
  • the drying section 52 forms the first protective layer 12 on the substrate 11 by reducing the solvent from the coating film 54 by heating, blowing, natural drying and / or other methods, and drying the coating film 54. To do.
  • the alignment film forming unit 42 includes a coating film forming unit 61, a drying unit 62, and a light irradiation unit 63.
  • the coating film forming unit 61 applies a coating solution 66 in which an azo compound is dissolved in a solvent on the first protective layer 12 to form a coating film 67.
  • the drying unit 62 reduces the solvent from the coating film 67 by heating, blowing, natural drying, and / or other methods, and drying the coating film 67, thereby forming the dried coating film 68 on the first protective layer 12.
  • the light irradiation unit 63 irradiates the dried coating film 68 with ultraviolet polarized light.
  • the dried coating film 68 isomerizes the azo compound in accordance with the polarization direction of the ultraviolet rays to form the alignment film 13.
  • the coating optical film forming unit 43 includes a coating film forming unit 91, a drying unit 92, and a temperature management unit 93.
  • the coating film forming unit 91 applies a coating liquid 94 containing the liquid crystalline polymer 21, the dichroic compound 31, and a solvent for dissolving the liquid crystalline polymer 21 and the dichroic compound 31 on the alignment film 13.
  • the coating film 96 is formed (coating film formation process).
  • the coating liquid 94 of this example is in a state where the liquid crystalline polymer 21 and the dichroic compound 31 are dissolved in a solvent.
  • the drying unit 92 reduces the solvent from the coating film 96 by heating, blowing, natural drying, and / or other methods, and the coating film 96 is dried, thereby forming the dried coating film 97 on the alignment film 13.
  • the temperature management unit 93 ripens the dried coating 97 by raising the temperature of the dried coating 97, which is a coating with a reduced solvent, and lowering the temperature, and / or maintaining a specific temperature range.
  • the temperature management performed by the temperature management unit 93 the orientation of the liquid crystalline polymer 21 and the dichroic compound 31 is more precisely adjusted in the dry coating film 97.
  • the dried coating film 97 becomes the coated optical film 14 having a function as a polarizer.
  • the solvent may remain in the dry coating 97, and a small amount remains in this example.
  • the temperature management unit 93 includes a first heating unit 101, a first cooling unit 102, a second heating unit 103, and a second cooling unit 104, and the temperature control shown in FIG. Manage the temperature according to the profile.
  • 1st heating part 101 heats intermediate layered product 110 conveyed from drying part 92, and makes it specific temperature from the temperature at the time of conveying from drying part 92 (for example, normal temperature To).
  • the first heating unit 101 performs at least a first heating step P1 that heats at least the dry coating film 97 to a first temperature T1 that is higher than the melting point Tm of the dichroic compound 31.
  • the melting point Tm of the dichroic compound 31 is usually higher than the nematic transition temperature Tne of the liquid crystalline polymer 21. For this reason, when the 1st heating part 101 makes the dry coating film 97 1st temperature T1, it will exceed the nematic transition temperature Tne of the liquid crystalline polymer 21 automatically.
  • the first temperature T1 is a temperature higher than the nematic transition temperature Tne of the liquid crystalline polymer 21. That is, the first temperature T1 is at least higher than the melting point Tm of the dichroic compound 31 and higher than the nematic transition temperature Tne of the liquid crystalline polymer 21.
  • the first temperature T1 needs to be lower than the melting point (not shown) of the liquid crystalline polymer 21.
  • the melting point of the liquid crystalline polymer 21 is exceeded, the dried coating film 97 is melted and the film state cannot be maintained. As a result, the coated optical film 14 cannot be formed from the dried coating film 97.
  • the first temperature T1 is a temperature at which the substrate 11, the first protective layer 12, or the alignment film 13 is damaged (for example, melting, deformation, or alteration (the alignment film 13 loses the direction of isomerization).
  • the first temperature T1 is a temperature at which the liquid crystalline polymer 21 exhibits a nematic phase.
  • the first heating step P1 preferably includes a temperature raising step P1a and a temperature maintaining step P1b.
  • the temperature raising step P1a is a step in which a practical temperature rise change up to the first temperature T1 is generated and the dry coating film 97 having a temperature lower than the first temperature T1 is first raised to the first temperature T1.
  • the temperature maintenance process P1b is a process of maintaining the dry coating film 97 that has reached the first temperature T1 at the first temperature T1.
  • the reason why the dry coating film 97 is set to the first temperature T1 is that the liquid crystalline polymer 21 and the dichroic compound 31 are compatible by making the liquid crystalline polymer 21 into a nematic phase and melting the dichroic compound 31. It is for making it into a state. Therefore, if this state can be created, the specific temperature rise profile when the dry coating film 97 is set to the first temperature T1 is arbitrary. For example, in the temperature profile of FIG.
  • the temperature raising step P1a linearly raises the temperature of the dry coating film 97 at a constant rate of temperature rise from the elapsed time t1 to the elapsed time t2, but the temperature raising step P1a
  • the temperature may be raised stepwise up to one temperature T1 or along a curve of an arbitrary shape.
  • the first temperature T1 is almost completely maintained from the elapsed time t2 to the elapsed time t3, but it is only necessary to maintain a temperature equal to or higher than the first temperature T1. That is, “maintaining the first temperature T1” means “maintaining a temperature higher than the melting point Tm of the dichroic compound 31 and higher than the nematic transition temperature Tne of the liquid crystalline polymer 21”.
  • the actual liquid crystal polymer 21 exhibits a nematic phase in the entire dry coating film 97, and is a practical requirement for realizing a state in which the liquid crystal polymer 21 and the dichroic compound 31 are compatible. It is sufficient to maintain the first temperature T1 for a long time.
  • the time for maintaining the first temperature T1 depends on the material of each part constituting the liquid crystalline polymer 21, the dichroic compound 31, and the other intermediate laminate 110, and is, for example, about several seconds to several tens of seconds.
  • the time is preferably from 19 seconds to 19 seconds, more preferably from 15 seconds to 15 seconds, and particularly preferably from 9 seconds to 11 seconds.
  • the time for maintaining the first temperature T1 is 10 seconds.
  • the first heating unit 101 heats the dry coating film 97, in the state where the temperature of the dry coating film 97 is lower than the nematic transition temperature Tne of the liquid crystalline polymer 21, as shown in FIG.
  • the liquid crystalline polymer 21 and the dichroic compound 31 are solidified in a state of being arranged almost randomly. Thereafter, when the dry coating film 97 reaches the first temperature T1, as shown in FIG. 10, the liquid crystalline polymer 21 increases the fluidity to exhibit a nematic phase, and is aligned approximately in accordance with the alignment film 13.
  • the dichroic compound 31 melts and is compatible with the liquid crystalline polymer 21, but the liquid crystalline polymer 21 has an orientation generally in accordance with the alignment film 13. Therefore, as a result, it becomes easy to gather between the mesogenic groups 23.
  • the first cooling unit 102 cools the dried coating film 97 that has undergone the first heating step P1, and changes the first temperature T1 to a second temperature T2 that is lower than at least the crystallization temperature Tc of the dichroic compound 31. Cooling process P2 (cooling process) is performed. More preferably, the second temperature T2 is a temperature lower than the crystallization temperature Tc of the dichroic compound 31 and lower than the crystallization temperature Ts of the liquid crystalline polymer 21. In the present embodiment, the second temperature T2 is a temperature lower than the crystallization temperature Tc of the dichroic compound 31 and lower than the crystallization temperature Ts of the liquid crystalline polymer 21.
  • the crystallization temperature Tc of the dichroic compound 31 is usually lower than the nematic transition temperature Tne of the liquid crystalline polymer 21. For this reason, when the 1st cooling part 102 makes the dry paint film 97 2nd temperature T2, it is automatically lower than the nematic transition temperature Tne of the liquid crystalline polymer 21. In general, since the crystallization temperature Ts of the liquid crystalline polymer 21 is lower than the crystallization temperature Tc of the dichroic compound 31, the first cooling unit 102 is in the process of setting the dry coating film 97 to the second temperature T2. The dichroic compound 31 is crystallized before the liquid crystalline polymer 21.
  • the second temperature T2 is a temperature lower than at least the crystallization temperature Tc of the dichroic compound 31. That is, the second temperature T2 needs to be at least lower than the crystallization temperature Tc of the dichroic compound 31, but is not necessarily lower than the crystallization temperature Ts of the liquid crystalline polymer 21.
  • the liquid crystalline polymer 21 includes one or a plurality of dichroic compounds 31 in the voids 26 formed as a result of regular alignment according to the alignment film 13, and dichroism. This is because the compound 31 only needs to be able to suppress movement such as movement or rotation while maintaining a substantially constant orientation in the constant gap 26 formed by the liquid crystalline polymer 21.
  • the first cooling step P2 is a step of rapidly cooling the dried coating film 97. For this reason, in the first cooling step P2, the dried coating film 97 is cooled at a cooling rate equal to or higher than a predetermined cooling rate, or the dried coating film 97 is cooled within a predetermined time from the first temperature T1 to the second temperature T2. To do.
  • the cooling rate is a rate of temperature decrease that lowers (ie, decreases) the temperature. For example, the cooling rate of 3 ° C./second means that the temperature is lowered by 3 ° C. per second.
  • the first cooling step P2 is performed by dry coating at a cooling rate (hereinafter referred to as a predetermined cooling rate) of at least 1 ° C./second or more, more preferably 3 ° C./second or more, particularly preferably 5 ° C./second or more.
  • a predetermined cooling rate of at least 1 ° C./second or more, more preferably 3 ° C./second or more, particularly preferably 5 ° C./second or more.
  • the membrane 97 is cooled.
  • the dichroic compound 31 is crystallized at the crystallization temperature Tc. More practically, the dichroic compound 31 is in a predetermined temperature range (hereinafter, Crystallization occurs in the crystallization temperature range.
  • the upper limit temperature of the crystallization temperature range (that is, the temperature at which crystallization of the dichroic compound 31 starts during cooling) is “Tc1”, and the lower limit temperature of the crystallization temperature range (that is, the crystal of the dichroic compound 31)
  • Tc1 the temperature at which crystallization of the dichroic compound 31
  • Tc2 the temperature at which crystallization is completed
  • the predetermined cooling rate is a so-called average rate. For this reason, it may include time for cooling at a cooling rate lower than a predetermined cooling rate in a part of the process of cooling the dry coating film 97.
  • the cooling rate averaged in any one of the temperature sections may be a predetermined cooling rate.
  • the cooling rate in the first cooling step P2 it is preferable to cool as fast as possible if each part of the intermediate
  • the dry coating film 97 is applied from the first temperature T1 to the second temperature T2, within 0.01 seconds to 110 seconds, preferably within 0.01 seconds to 40 seconds, more preferably The dried coating film 97 is cooled within 0.01 seconds to 25 seconds, particularly preferably within 0.01 seconds to 10 seconds. More practically, the time required to reach at least the upper limit temperature Tc1 of the crystallization temperature range and the lower limit temperature Tc2 of the crystallization temperature range may be 0.01 seconds or more and 40 seconds or less. The time is more preferably from 01 seconds to 20 seconds, and particularly preferably from 0.01 seconds to 10 seconds.
  • the dry coating film 97 can be cooled at least within the predetermined cooling rate or within the predetermined time, and the dry coating film 97 is cooled within the predetermined cooling rate and within the predetermined time. It is preferable.
  • a specific cooling profile in the first cooling step P2 is arbitrary. For example, in FIG. 8, in the first cooling step P2, the temperature of the dry coating film 97 is linearly decreased at a constant cooling rate from the elapsed time t3 to the elapsed time t4, but the first cooling step P2 is performed at the second temperature. The temperature may be lowered stepwise up to T2 or along a curve of an arbitrary shape.
  • the first cooling step P2 may include a part of the time period during which the temperature of the dry coating film 97 does not decrease (maintain a constant temperature, etc.).
  • the 1st cooling process P2 may have the time slot
  • the lowest temperature reached in the first cooling step P2 is the second temperature T2.
  • the first cooling process P2 is the next process of the first heating process P1. That is, after the first heating step P1 and before the start of the first cooling step P2, the first step without the step with the temperature change of the dry coating 97 and the other step with the change in the state of the dry coating 97 are not performed.
  • the first cooling step P2 is performed immediately after the heating step P1.
  • the liquid crystalline polymer 21 is solidified while the mesogenic group 23 approaches the regular alignment state according to the alignment film 13 more accurately as shown in FIG.
  • the air gap 26 is further clarified.
  • the dichroic compound 31 follows the alignment direction of the mesogenic groups 23 in the voids 26 and is solidified while maintaining a substantially constant alignment state, and is in a phase-separated state with respect to the liquid crystalline polymer 21.
  • the dried coating film 97 has a function as a uniform polarizer as a whole.
  • the dichroic compound 31 trapped in the void 26 destroys the void 26 or is bonded to another void 26, for example.
  • the reason why the crystallization is performed while maintaining the arrangement order according to the voids 26 formed by the mesogenic groups 23 and the like without crystal growth with random orientation is because the dried coating film 97 is rapidly cooled in the first cooling step P2. It is. Further, in the first cooling step P2, the liquid crystalline polymer 21 is solidified while the mesogenic group 23 approaches the regular alignment state according to the alignment film 13 more accurately. It is because it cools quickly.
  • the 2nd heating part 103 performs the 2nd heating process P3 which heats the dry paint film 97 which passed through the 1st cooling process P2, and makes it the 3rd temperature T3.
  • the third temperature T3 is at least lower than the nematic transition temperature Tne of the liquid crystalline polymer 21. Further, the third temperature T3 is preferably lower than the crystallization temperature Tc of the dichroic compound 31.
  • the crystallization temperature Ts of the liquid crystalline polymer 21 is lower than the nematic transition temperature Tne, and the third temperature T3 is at least higher than the crystallization temperature Ts of the liquid crystalline polymer 21.
  • the third temperature T3 is a temperature in the temperature range where the association of the dichroic compound 31 is promoted (hereinafter referred to as the association promotion temperature range) RT or higher. Therefore, the second heating step P3 promotes the association of the plurality of dichroic compounds 31 included in one void 26 formed by the liquid crystalline polymer 21.
  • association-accelerating temperature range RT is X 1 ° C. or more X 2 ° C. or less, and the meeting promotes temperature range RT or higher, at least X 1 ° C. or higher, X 1 ° C. or more X 2 ° C. below the temperature
  • the temperature may be X 2 ° C or higher.
  • the second heating step P3 preferably includes a temperature raising step P3a and a temperature maintaining step P3b.
  • the temperature raising step P3a is a step in which a practical temperature increase up to the third temperature T3 is generated, and the dry coating film 97 is first heated to the third temperature T3.
  • the temperature maintaining step P3b is a step of maintaining the dry coating film 97 that has reached the third temperature T3 at the third temperature T3.
  • the reason why the dry coating film 97 is set to the third temperature T3 is to promote the association of the dichroic compound 31, and therefore the specific temperature rise profile when the dry coating film 97 is set to the third temperature T3 is arbitrary. It is.
  • the temperature raising step P3a linearly raises the temperature of the dry coating film 97 at a constant rate of temperature rise from the elapsed time t5 to the elapsed time t6.
  • the temperature can be raised stepwise up to 3 temperatures T3 or along a curve of an arbitrary shape.
  • the second heating step P3 it is preferable to heat the dried coating film 97 that has undergone the first cooling step P2 at a predetermined heating rate (hereinafter referred to as a predetermined heating rate).
  • the heating rate is a rate of temperature increase that raises the temperature (that is, increases the temperature).
  • a heating rate of 3 ° C./second means that the temperature is increased by 3 ° C. per second.
  • the predetermined heating rate is, for example, 0.1 ° C./second or more and 3.0 ° C./second or less, and more preferably 0.5 ° C./second or more and 2.0 ° C./second or less. Since it takes time for the dichroic compound 31 to form the association body 32, if the heating rate is high, a sufficient association body cannot be formed, and the degree of orientation decreases. Further, when the heating rate is slow, the process length becomes long and the process load increases.
  • the predetermined heating rate is a so-called average rate. For this reason, in the part of the process which heats the dry coating film 97 which passed through the 1st cooling process P2, the time heated at the heating rate outside the range of the predetermined heating rate may be included.
  • the heating rate averaged in the temperature raising step P3a may be a predetermined heating rate.
  • the temperature maintaining step P3b schematically maintains the third temperature T3 almost completely from the elapsed time t6 to the elapsed time t7, but it is only necessary to maintain at least a temperature higher than the association promotion temperature range RT. That is, “maintaining the third temperature T3” means maintaining a temperature not lower than the association promotion temperature range RT. Therefore, the temperature maintaining process P3b does not need to strictly maintain a specific temperature (the third temperature T3 set as a target for temperature increase), and there may be a temperature change of the dry coating film also in the temperature maintaining process P3b. .
  • the liquid crystal polymer 21 does not break the alignment state according to the alignment film 13 and the association of the dichroic compound 31 is substantially completed in the entire dry coating film 97. It is only necessary to maintain the third temperature T3 for a long time.
  • the second heating step P3 is performed in the temperature maintaining step P3b and / or the temperature raising step P3a, depending on the liquid crystal polymer 21, the dichroic compound 31, and other materials constituting the intermediate laminate 110.
  • the third temperature T3 is preferably maintained continuously or intermittently for at least 1 second or more, and more preferably maintained for 3 seconds or more.
  • the mesogenic group 23 of the liquid crystalline polymer 21 is gradually maintained while generally maintaining the alignment state of the liquid crystalline polymer 21 and the dichroic compound 31 (see FIG. 11). Gain some mobility. As a result, the mesogenic group 23 follows the alignment film 13 better. Further, the dichroic compound 31 obtains mobility when the crystallization temperature Tc exceeds the crystallization temperature Tc and becomes a temperature equal to or higher than the association promotion temperature range RT, but the gap 26 formed by the mesogenic group 23 and the like is not removed and the same. The probability of contact with another dichroic compound 31 in the void 26 is increased. As a result, the association of the dichroic compound 31 proceeds in each gap 26, and the degree of orientation of the dried coating film 97 is improved (see FIG. 2).
  • the second cooling unit 104 performs a second cooling step P4 that cools the dried coating film 97 that has undergone the second heating step P3 naturally or actively by blowing air or the like.
  • the dried coating film 97 is brought to a temperature such as room temperature To or room temperature, for example.
  • the dried coating film 97 that has undergone the second cooling step P4 becomes the coated optical film 14 having a high degree of orientation while maintaining a good polarizer state with improved polarization degree (see FIG. 6).
  • the first heating unit 101, the first cooling unit 102, the second heating unit 103, and the second cooling unit 104 constituting the temperature management unit 93 are, for example, a conveyance roller with a temperature adjustment function as shown in FIG. (Hereinafter referred to as a temperature control roller) 116 and a temperature control unit 117.
  • the temperature control roller 116 adjusts the temperature of the contact surface with the intermediate laminate 110 by passing oil or the like whose temperature has been adjusted by the temperature control unit 117 inside.
  • the temperature control roller 116 is a drive roller having a rotation control unit in the present embodiment.
  • the temperature control roller 116 may be a driven roller that rotates by contact with the conveyed intermediate laminate 110.
  • the contact area of the intermediate laminate 110 with respect to the peripheral surface of the temperature control roller 116 is increased by sucking the atmosphere below the paper surface of FIG. I am letting.
  • middle laminated body 110 can be heated or cooled more rapidly and uniformly.
  • the second protective layer forming unit 44 includes a coating film forming unit 121 and a drying unit 122.
  • the coating film forming unit 121 applies a coating liquid 126 containing an epoxy monomer polymer that is a material of the second protective layer 15 and a solvent that dissolves the epoxy monomer polymer onto the coating optical film 14.
  • Application is performed to form a coating film 127.
  • the drying unit 122 reduces the solvent from the coating film 127 by heating, blowing, natural drying, and / or other methods, and the coating film 127 is dried, so that the second protective layer 15 is formed on the coated optical film 14. Form. Thereby, the laminated body 10 is completed.
  • the manufacturing apparatus 41 includes the liquid crystalline polymer 21 and the dichroic compound 31, and when forming the coating optical film 14 that expresses the function as a polarizer by the orientation of the dichroic compound 31, Since the 1st heating process P1 and the 1st cooling process P2 are performed, the laminated body 10 which has the coating optical film 14 with high orientation degree and the coating optical film 14 with high orientation degree can be obtained.
  • the dichroic compound 31 has an associative property
  • the coating optical film 14 and the laminated body in which the dichroic compound 31 forms the associated body 32 and the degree of orientation is further improved by performing the second heating step P3. 10 is obtained.
  • the coating optical film 14 is formed by using the liquid crystalline polymer 21 and one type of dichroic compound 31, but the coating optical film 14 has two or more types.
  • the dichroic compound 31 can be contained.
  • the dichroic compound 31 has different wavelength bands of light to be absorbed depending on the type, when the coating optical film 14 contains two or more types of dichroic compounds 31, only one type of dichroic compound 31 is used.
  • the wavelength band in which the laminate 10 functions as a polarizing plate can be made wider than in the case.
  • at least one type contains the dichroic compound 31 that mainly absorbs the green wavelength band. It is particularly preferable that the dichroic compound 31 that absorbs the green wavelength band has association properties. This is because green has higher visibility than blue or red.
  • the coating optical film 14 contains two or more kinds of dichroic compounds 31, it is preferable that at least one kind contains the dichroic compounds 31 having associative properties. This is because the degree of orientation is particularly easily improved by promoting the association by performing the second heating step P3. However, even when the coating optical film 14 contains only one type or a plurality of types of dichroic compounds 31 that do not have associative properties, the dichroism is obtained through the first heating step P1 and the first cooling step P2. The compound 31 can obtain a certain orientation. Even when the coating optical film 14 contains only one or a plurality of types of dichroic compounds 31 having no associative properties, the orientation degree of the liquid crystalline polymer 21 is improved by performing the second heating step P3. Therefore, the degree of orientation of the dichroic compound 31 is improved following the improvement of the degree of orientation of the liquid crystalline polymer 21.
  • the first temperature T1 is set to a temperature higher than the maximum value of the melting point Tm of the dichroic compound 31. This is because all the dichroic compounds 31 are melted.
  • the second temperature T2 is set to a temperature lower than at least the minimum value of the crystallization temperature Tc of the dichroic compound 31. This is because all the dichroic compounds 31 are solidified to suppress motility.
  • the second temperature is lower than the crystallization temperature Ts of the liquid crystalline polymer 21.
  • the third temperature is set to a value lower than the lowest value of the crystallization temperature Tc of the associative dichroic compound 31 and lower than the nematic transition temperature Tne of the liquid crystalline polymer 21. Set T3. This is because the dichroic compound 31 having all the associative properties is given motility and the association is promoted with the positional restriction in the void 26 being imposed.
  • the cooling conditions in the first cooling step P2 were changed to the conditions shown in Table 1, and the stacked body 10 of the example and the stacked body of the comparative example were manufactured.
  • the laminated body 10 of each example and the laminated body of each comparative example have the same manufacturing conditions and configuration other than the conditions shown in Table 1.
  • the substrate 11 is formed of a TAC film
  • the first protective layer 12 is formed of PVA
  • the alignment film 13 is a photo-alignment film using azobenzene
  • the second protective layer 15 is an epoxy-based film. It is a monomer polymer.
  • the liquid crystalline polymer 21 used for the coating optical film 14 is L1 below.
  • the liquid crystalline polymer 21 of L1 is composed of a repeating unit represented by (1) and a repeating unit represented by (2).
  • the liquid crystalline polymer 21 of the following L1 has a nematic transition temperature Tne of about 97 ° C. and a crystallization temperature Ts of about 67 ° C.
  • the dichroic compound 31 used for the coating optical film 14 is D1 below.
  • the following dichroic compound 31 of D1 has a melting point Tm of about 140 ° C., a crystallization temperature Tc of about 85 ° C., a crystallization start temperature Tc 1 during cooling of 90 ° C., and a crystallization completion temperature Tc 2 of 70 ° C.
  • the third temperature T3 is 80 ° C.
  • the heating rate in the second heating step P3 is about 2.0 ° C./second, and the heating time is at least 1 second.
  • the association promotion temperature range RT of the dichroic compound 31 shown in D1 below is about 50 ° C. or higher and about 80 ° C. or lower.
  • the cooling rate is defined as an average rate when the temperature reaches Tc2 from Tc1.
  • the parentheses () written in the “presence / absence of maintenance step” column of Table 1 is the time during which the first temperature T1 was maintained.
  • the laminated body 10 of an Example and the laminated body of a comparative example were evaluated using the orientation degree by the following method.
  • ⁇ Measurement method of orientation degree> The second protective layer 15 was peeled from the obtained laminate 10. Then, in a state where a linear polarizer is inserted on the light source side of an optical microscope (manufactured by Nikon Corporation, product name “ECLIPSE E600 POL”), “laminate with the second protective layer 15 peeled off” on the sample base in the examples and comparative examples
  • the body 10 was set, the absorbance in the wavelength region of 400 to 700 nm was measured using a multi-channel spectrometer (product name“ QE65000 ”manufactured by Ocean Optics), and the degree of orientation was calculated by the following formula.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

配向を向上した光学膜を備える積層体の製造方法を提供する。 積層体(10)の製造方法は、塗膜形成工程と、乾燥工程と、第1加熱工程(P1)と、第1冷却工程(P2)(冷却工程)と、を有する。第1加熱工程(P1)は、液晶性化合物である液晶性ポリマー(21)及び二色性化合物(31)を含有する乾燥塗膜(97)を加熱し、二色性化合物の融点よりも高い第1温度(T1)にする。第1冷却工程(P2)は、第1加熱工程(P1)を経た乾燥塗膜(97)を冷却し、第1温度(T1)から、二色性化合物(31)の結晶化温度(Tc)よりも低く、かつ、液晶性ポリマー(21)の結晶化温度(Ts)よりも低い第2温度(T2)にする。

Description

積層体の製造方法
 本発明は、積層体の製造方法に関する。
 近年においては、二色性色素によって偏光機能を発現する偏光板の作製が試みられている(特許文献1)。また、耐熱性及び耐湿性の向上を目的として、ヨウ素で染色したポリビニルアルコール(PVA)の代わりに、二色性色素を使用する偏光板も知られている(特許文献2)。
 特許文献1は、配向膜上に、二色性色素を含有した光学膜である偏光膜を形成している。偏光膜は、二色性色素と重合性の液晶性化合物(重合性液晶化合物)とが溶媒に溶けている塗布液から形成している。具体的には、配向膜上に、上記塗布液を塗布し、形成した塗膜を、重合性液晶化合物の相転移温度よりも低い温度で重合させた後に、重合性液晶化合物が重合しない温度下で乾燥する。次に、乾燥した塗膜を重合性液晶化合物のネマチック転移温度以上に加熱し、その後、スメクチック相の液晶状態になる温度にまで冷却している。
 特許文献2は、配向膜上に、二色性色素を含有した光学膜である配向層を形成している。二色性色素としては液晶性二色性色素が用いられている。この液晶性二色性色素が溶媒に溶けている塗布液を、配向膜上に塗布し、形成した塗膜から溶媒を除去する。次に、液晶性二色性色素が液晶状態を示す温度に塗膜を加熱することにより配向させ、その後、冷却することにより配向を固定している。冷却は、微細な結晶の析出を抑制するために、1℃/秒以上の降温速度で行っている。
特開2013-228706号公報 特開2005-189393号公報
 特許文献2の製造方法は、液晶性二色性色素を用いなければならないが、特許文献1の製造方法では、液晶性二色性色素を用いる必要がない点でメリットがある。しかし特許文献1の製造方法によると、光学膜の配向が不十分な場合がある。
 そこで、本発明は、配向を向上した光学膜を備える積層体の製造方法を提供することを目的とする。
 本発明の積層体の製造方法は、塗膜形成工程と、乾燥工程と、第1加熱工程と、冷却工程とを有する。塗膜形成工程は、塗布液を配向膜上に塗布することにより、塗膜を形成する。塗布液は、液晶性化合物と、二色性化合物と、液晶性化合物及び二色性化合物を溶解する溶媒とを含有する。乾燥工程は、塗膜から溶媒を減少させる。第1加熱工程は、溶媒が減少した塗膜を加熱し、二色性化合物の融点よりも高い第1温度にする。冷却工程は、第1加熱工程を経た塗膜を冷却し、第1温度から、二色性化合物の結晶化温度よりも低く、かつ、液晶性化合物の結晶化温度よりも低い第2温度にする。
 さらに、冷却工程を経た塗膜を加熱し、液晶性化合物のネマチック転移温度よりも低い第3温度にする第2加熱工程を有することが好ましい。
 第1加熱工程は、第1温度未満の塗膜を第1温度に昇温する昇温工程と、塗膜を第1温度で維持する温度維持工程と、を有することが好ましい。
 冷却工程は、第1加熱工程の次工程であることが好ましい。
 冷却工程は、1℃/秒以上の冷却速度で塗膜を冷却することが好ましい。
 冷却工程は、第1温度から第2温度まで110秒以内に塗膜を冷却することが好ましい。
 本発明の積層体の製造方法によれば、配向を向上した光学膜を備える積層体を製造することができる。
偏光板の断面図である。 偏光膜の構成を示す説明図である。 製造装置のブロック図である。 第1保護層形成部の構成を示す説明図である。 配向膜形成部の構成を示す説明図である。 塗布光学膜形成部の構成を示す説明図である。 温度管理部の構成を示すブロック図である。 温度管理部における温度制御プロファイルを示すグラフである。 ネマチック転移温度未満の温度における乾燥塗膜の状態を示す説明図である。 第1温度にした乾燥塗膜の状態を示す説明図である。 冷却後の乾燥塗膜の状態を示す説明図である。 第1加熱部等の構成を示す説明図である。 第2保護層形成部の構成を示す説明図である。
 [積層体]
 図1に示すように、本発明により製造する積層体10は、例えば、入射する光を特定の偏光に整える偏光板である。積層体10は、基材11と、基材11上に積層した第1保護層12と、第1保護層12上に積層した配向膜13と、配向膜13上に積層した塗布光学膜14と、塗布光学膜14上に積層した第2保護層15と、を有する。
 基材11は、塗布光学膜14等を形成する際に変質しないものであれば特に制限はなく、例えば、基材11には、ポリエチレンテレフタレートもしくはポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、もしくはトリアセチルセルロース(TAC)等のセルロース系ポリマー、ポリカーボネート系ポリマー、もしくはポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレン、もしくはアクリロニトリルスチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状もしくはノルボルネン構造を有するポリオレフィン、エチレンプロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンもしくは芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アクリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー等の透明ポリマー、または、これらポリマーのブレンド物からなるフィルムもしくはシート等を使用することができる。また、基材11は、ガラスであってもよい。本実施形態においては、基材11はTACフィルムである。
 第1保護層12は、基材11を透過する水(水蒸気を含む)及び/または酸素等から、配向膜13及び塗布光学膜14を保護する。本実施形態においては、第1保護層12はポリビニルアルコール(PVA)であり、基材11であるTACフィルムを透過する水等を遮蔽する。なお、基材11が水等を透過しない場合、積層体10から第1保護層12を省略できる。
 配向膜13は、特定の条件下において、塗布光学膜14が含有する液晶性化合物の配向を規制する。本実施形態においては、配向膜13は、アゾ化合物を含有しており、このアゾ化合物が、特定方向に偏光した紫外線等の照射により異性化し、特定の方向に沿って配向した光配向膜である。アゾ化合物としては、モノマー、オリゴマー、あるいはポリマーのいずれも用いることができるが、本例ではモノマーであるアゾベンゼンを用いている。アゾ化合物の代わりに、例えば、シンナメートなどを用いてもよい。なお、配向膜13を積層する代わりに、基材11、第1保護層12、または、第1保護層12上に設ける他のフィルム等の表面をラビング処理することにより、塗布光学膜14が含有する液晶性化合物の配向を規制できる。
 塗布光学膜14は、積層体10において偏光子としての機能をもつ。塗布光学膜14は、塗布によって形成する光学膜であって、液晶性化合物と少なくとも1種類の二色性化合物31を含有する。
 本実施形態においては、液晶性化合物として、液晶性ポリマー21(図2参照)を用いる。液晶性ポリマー21は主鎖または側鎖にメソゲン基を有するポリマーである。液晶性ポリマー21としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子、特開2016-4055号公報に記載のサーモトロピック液晶性を有するポリマーを使用できる。また、液晶性ポリマー21は、末端に架橋性基(例えば、アクリロイル基およびメタクリロイル基)を有していてもよい。なお、液晶性化合物としては、液晶性ポリマー21の代わりに、または、液晶性ポリマー21とともに、液晶性モノマーまたは液晶性ポリマー21とは異なる液晶性ポリマー等、他の液晶性化合物も使用できる。
 本実施形態においては、図2に示すように、塗布光学膜14が含有する液晶性ポリマー21はいわゆる側鎖型であり、柔軟な主鎖22と、メソゲン基23を有する側鎖24と、を有する。メソゲン基23は、製造の過程において、配向膜13によって概ね所定方向(以下、X方向という)に沿って配向する。また、主鎖22はX方向に垂直な方向(以下、Y方向という)に概ね配向する。したがって、塗布光学膜14の液晶性ポリマー21は、梯子状または網目状に配列し、かつ、少なくとも一部において主鎖22とメソゲン基23によって1または複数の二色性化合物31を包含する空隙26を形成する。
 二色性化合物31とは、いわゆる二色性を有する化合物であり、偏光方向が90度異なる2つの直線偏光を照射した場合にこれら各直線偏光の吸収強度に差がある。本実施形態においては、塗布光学膜14が含有する二色性化合物31は、上記二色性を有する他、特定の条件下において分子間力によって2個以上が規則的な配列で結合する性質(いわゆる会合性)を有する。したがって、液晶性ポリマー21が空隙26に2以上の会合性を有する二色性化合物31をトラップ(捕捉)した場合、製造工程においてこれらの二色性化合物31は会合して会合体32を形成し、配向が大まかに揃う。また、空隙26にトラップされた二色性化合物31及び/または二色性化合物31の会合体32は、メソゲン基23と同方向に配向が概ね規制される。
 二色性化合物31としては、例えば、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-14883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-37353号公報の[0051]~[0065]段落、特開2012-63387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、WO2016/060173号の[0005]~[0041]段落、WO2016/136561号の[0008]~[0062]段落などに記載された二色性色素を使用できる。また、可視光ではない他の波長領域で二色性を示す化合物でもよい。例えば、赤外線または紫外線の波長領域で二色性を示す化合物を使用できる。
 第2保護層15は、塗布光学膜14を水等から保護する。第2保護層15は、アクリル系ポリマー、アクリレート系モノマー重合体、エポキシ系モノマー重合体または、環状オレフィンポリマー(COP)もしくは環状オレフィンコポリマー(COC)等で形成されているが、形成する材料はこれらに限られない。
 上記のように構成した積層体10は、基材11側または第2保護層15側から入射する光に対して、二色性化合物31及び/または会合体32がX方向の偏光を吸収し、かつ、Y方向の偏光を透過するので、偏光板として機能する。また、偏光子としての機能をもつ塗布光学膜14はごく薄く形成することができ、かつ、塗布光学膜14内において二色性化合物31の配向が高精度に揃っている。このため、積層体10は、ヨウ素を添加したPVAを用いる偏光板(以下、ヨウ素添加PVA偏光板という)よりも透過率を高くした場合(特に、透過率を50%以上の高透過率にする場合)に、ヨウ素添加PVA偏光板よりも偏光度が高い。この他、塗布光学膜14をヨウ素添加PVA偏光板よりも薄く形成できる結果、積層体10の全体としてもヨウ素添加PVA偏光板よりも薄く、かつ、ヨウ素添加PVA偏光板と同程度かそれ以上の耐久性(耐熱性または耐湿性等)を有する。
 [積層体の製造装置及び製造方法]
 積層体10は、例えば図3に示す製造装置40を用いて製造する。この例では、積層体10を長尺に製造しているが、得られた長尺の積層体10をカットすることによりシート状に製造してもよい。製造装置40は、長尺の基材11の搬送方向における上流側から順に、第1保護層形成部41と配向膜形成部42と塗布光学膜形成部43と第2保護層形成部44とを備える。第1保護層形成部41は、基材11上に第1保護層12を形成する。配向膜形成部42は、第1保護層12上に配向膜13を形成する。塗布光学膜形成部43は、配向膜13上に塗布光学膜14を形成する。第2保護層形成部44は、塗布光学膜14上に第2保護層15を形成する。製造装置40は、図示しない搬送機構(搬送ローラ及び搬送ローラの駆動機構等)を用いて基材11を長手方向に搬送しながら、上記各部が膜または層を順次積層することにより積層体10を得る。なお、基材11の搬送方向には符号Dcを付す。
 図4に示すように、第1保護層形成部41は、塗膜形成部51と、乾燥部52と、を備える。塗膜形成部51は、搬送方向Dcに移動する基材11上に、PVAが溶媒に溶けている塗布液53を塗布し、塗膜54を形成する。その後、乾燥部52は、加熱、送風、自然乾燥及び/またはその他の方法により塗膜54から溶媒を減少させ、塗膜54を乾燥することにより、基材11上に第1保護層12を形成する。
 図5に示すように、配向膜形成部42は、塗膜形成部61と、乾燥部62と、光照射部63と、を備える。塗膜形成部61は、第1保護層12上に、アゾ化合物が溶媒に溶けている塗布液66を塗布し、塗膜67を形成する。その後、乾燥部62は、加熱、送風、自然乾燥及び/またはその他の方法により塗膜67から溶媒を減少させ、塗膜67を乾燥することにより、第1保護層12上に乾燥塗膜68を形成する。次いで、光照射部63は、乾燥塗膜68に紫外線の偏光を照射する。その結果、乾燥塗膜68は、アゾ化合物を紫外線の偏光方向にしたがって異性化し、配向膜13を形成する。
 図6に示すように、塗布光学膜形成部43は、塗膜形成部91と、乾燥部92と、温度管理部93と、を備える。塗膜形成部91は、配向膜13上に、液晶性ポリマー21と、二色性化合物31と、液晶性ポリマー21及び二色性化合物31を溶解する溶媒と、を含有する塗布液94を塗布することにより、塗膜96を形成する(塗膜形成工程)。なお、この例の塗布液94は、液晶性ポリマー21と、二色性化合物31とが溶媒に溶けた状態となっている。その後、乾燥部92は、加熱、送風、自然乾燥及び/またはその他の方法により塗膜96から溶媒を減少させ、塗膜96を乾燥することにより、配向膜13上に乾燥塗膜97を形成する(乾燥工程)。温度管理部93は、溶媒が減少した塗膜である乾燥塗膜97を昇温し、降温し、及び/または、特定の温度帯域を維持することにより、乾燥塗膜97を熟成する。この温度管理部93が行う温度管理によって、乾燥塗膜97内において液晶性ポリマー21及び二色性化合物31の配向が、より精緻に整う。この結果、乾燥塗膜97は、偏光子としての機能をもつ塗布光学膜14となる。なお、乾燥工程の終了時において、乾燥塗膜97に溶媒が残留していてもよく、この例においても少量残留している。
 図7に示すように、温度管理部93は、第1加熱部101と、第1冷却部102と、第2加熱部103と、第2冷却部104と、を備え、図8に示す温度制御プロファイルにしたがって温度管理をする。
 第1加熱部101は、乾燥部92から搬送される中間積層体110を加熱し、乾燥部92から搬送される際の温度(例えば常温To)から特定の温度にする。具体的には、第1加熱部101は、少なくとも乾燥塗膜97を加熱し、二色性化合物31の融点Tmよりも高い第1温度T1にする第1加熱工程P1を行う。二色性化合物31の融点Tmは、通常、液晶性ポリマー21のネマチック転移温度Tneよりも高い。このため、第1加熱部101が乾燥塗膜97を第1温度T1にした場合には、自動的に液晶性ポリマー21のネマチック転移温度Tneを超える。
 なお、液晶性ポリマー21と二色性化合物31との具体的な組み合わせに起因して、二色性化合物31の融点Tmが、液晶性ポリマー21のネマチック転移温度Tneよりも低い場合、第1温度T1は、液晶性ポリマー21のネマチック転移温度Tneよりも高い温度である。すなわち、第1温度T1は、少なくとも、二色性化合物31の融点Tmよりも高く、かつ、液晶性ポリマー21のネマチック転移温度Tneよりも高い温度である。
 第1温度T1は、液晶性ポリマー21の融点(図示しない)よりも低いことが必要である。液晶性ポリマー21の融点以上にした場合には、乾燥塗膜97が融解してしまい、膜の状態を維持できなくなるので、結果として、乾燥塗膜97から塗布光学膜14を形成できないからである。同様に、第1温度T1は、基材11、第1保護層12、または配向膜13が損なわれる温度(例えば、融解、変形、または変質(配向膜13については異性化の方向性が消失することを含む)等が生じる温度)よりも低いことが必要である。さらに、第1温度T1は、液晶性ポリマー21のスメクチック相への相転移温度(図示しない)等、他の相への転移温度よりも低いことが必要である。すなわち、第1温度T1は、液晶性ポリマー21がネマチック相を呈する温度である。
 第1加熱工程P1は、より詳しくは、昇温工程P1aと、温度維持工程P1bと、を有することが好ましい。昇温工程P1aは、第1温度T1までの実際的な温度の上昇変化を生じて第1温度T1未満の乾燥塗膜97を最初に第1温度T1まで昇温する工程である。温度維持工程P1bは、第1温度T1に到達した乾燥塗膜97を第1温度T1に維持する工程である。
 乾燥塗膜97を第1温度T1にするのは、液晶性ポリマー21をネマチック相にし、かつ、二色性化合物31を融解することにより、液晶性ポリマー21と二色性化合物31が相溶した状態にするためである。したがって、この状態を作り出すことができれば、乾燥塗膜97を第1温度T1にする際の具体的な昇温のプロファイルは任意である。例えば、図8の温度プロファイルにおいては、昇温工程P1aは経過時間t1から経過時間t2にかけて一定の昇温速度で直線的に乾燥塗膜97を昇温しているが、昇温工程P1aは第1温度T1まで段階的にまたは任意形状の曲線に沿って昇温してもよい。
 また、温度維持工程P1bは、経過時間t2から経過時間t3の間、ほぼ完全に第1温度T1を維持しているが、第1温度T1以上の温度を維持できればよい。すなわち、「第1温度T1を維持する」とは、「二色性化合物31の融点Tmよりも高く、かつ、液晶性ポリマー21のネマチック転移温度Tneよりも高い温度」を維持すること、すなわち、塗布光学膜14及び配向膜13等その他の層または膜に不具合がなく、液晶性ポリマー21がネマチック相を呈し、かつ、液晶性ポリマー21と二色性化合物31の相溶を継続し得る温度範囲内に乾燥塗膜97の温度を維持することをいう。したがって、温度維持工程P1bは、厳密に第1温度T1を継続する必要はなく、温度維持工程P1bにおいて乾燥塗膜97の温度変化があってもよい。
 昇温工程P1aに要する時間(Δt21=t2-t1)、温度維持工程P1bに要する時間(Δt32=t3-t2)、及び、第1加熱工程P1の全体に要する時間(Δt31=t3-t1)は、いずれも、液晶性ポリマー21、二色性化合物31、及びその他の中間積層体110を構成する各部の材質等に応じて調節可能である。温度維持工程P1bにおいては、乾燥塗膜97の全体において、液晶性ポリマー21がネマチック相を呈し、かつ、液晶性ポリマー21と二色性化合物31の相溶する状態を実現するために要する実際的な時間だけ、第1温度T1を維持すれば足りる。第1温度T1を維持する時間は、液晶性ポリマー21、二色性化合物31、及びその他の中間積層体110を構成する各部の材質等にも依るが、例えば数秒から十数秒程度であり、1秒以上19秒以下であることが好ましく、5秒以上15秒以下であることがより好ましく、9秒以上11秒以下であることが特に好ましい。本実施形態においては、第1温度T1を維持する時間は10秒である。
 第1加熱部101が乾燥塗膜97を加熱する場合、乾燥塗膜97の温度が液晶性ポリマー21のネマチック転移温度Tne未満の状態においては、図9に示すように、乾燥塗膜97内において液晶性ポリマー21と二色性化合物31とがほぼランダムに並んだ状態で固化している。その後、乾燥塗膜97が第1温度T1に到達にした場合、図10に示すように、液晶性ポリマー21は流動性を増してネマチック相を呈し、概ね配向膜13にしたがって配向する。一方、乾燥塗膜97が第1温度T1に到達にした場合、二色性化合物31は溶融して液晶性ポリマー21と相溶するが、液晶性ポリマー21が概ね配向膜13にしたがった配向をとるので、結果的に、メソゲン基23の間に集まりやすくなった状態となる。
 第1冷却部102は、第1加熱工程P1を経た乾燥塗膜97を冷却し、第1温度T1から、少なくとも二色性化合物31の結晶化温度Tcよりも低い第2温度T2にする第1冷却工程P2(冷却工程)を行う。より好ましくは、第2温度T2は、二色性化合物31の結晶化温度Tcよりも低く、かつ、液晶性ポリマー21の結晶化温度Tsよりも低い温度である。本実施形態においては、第2温度T2は、二色性化合物31の結晶化温度Tcよりも低く、かつ、液晶性ポリマー21の結晶化温度Tsよりも低い温度である。
 なお、二色性化合物31の結晶化温度Tcは、通常、液晶性ポリマー21のネマチック転移温度Tneよりも低い。このため、第1冷却部102が乾燥塗膜97を第2温度T2にした場合、自動的に液晶性ポリマー21のネマチック転移温度Tneを下回る。また、通常は、液晶性ポリマー21の結晶化温度Tsは、二色性化合物31の結晶化温度Tcよりも低いので、第1冷却部102が乾燥塗膜97を第2温度T2にする過程で、液晶性ポリマー21よりも先に二色性化合物31が結晶化する。
 液晶性ポリマー21と二色性化合物31の具体的な組み合わせに起因して、液晶性ポリマー21の結晶化温度Tsと、二色性化合物31の結晶化温度Tcと、の高低関係が上記とは逆転する場合がある。この場合においても、第2温度T2は、少なくとも二色性化合物31の結晶化温度Tcよりも低い温度である。すなわち、第2温度T2は、少なくとも二色性化合物31の結晶化温度Tcを下回る必要があるが、必ずしも液晶性ポリマー21の結晶化温度Tsを下回る必要はない。第1冷却工程P2においては、液晶性ポリマー21は、配向膜13にしたがって規則的に配列した結果として形成される空隙26に1または複数の二色性化合物31を包含し、かつ、二色性化合物31は、液晶性ポリマー21が形成する一定の空隙26内において概ね一定の配向を得ている状態を保ったままで移動または回転等の運動を抑制できればよいからである。
 第1冷却工程P2は乾燥塗膜97を急速冷却する工程である。このため、第1冷却工程P2においては、所定の冷却速度以上の冷却速度で乾燥塗膜97を冷却し、または、第1温度T1から第2温度T2まで所定時間内に乾燥塗膜97を冷却する。冷却速度とは、温度を下げる(すなわち降温する)降温速度である。例えば、3℃/秒の冷却速度とは、1秒間に温度を3℃下げることをいう。
 具体的には、第1冷却工程P2は、少なくとも1℃/秒以上、より好ましくは3℃/秒以上、特に好ましくは5℃/秒以上の冷却速度(以下、所定冷却速度という)で乾燥塗膜97を冷却する。また、本実施形態においては、簡単のため、二色性化合物31は結晶化温度Tcにおいて結晶化するものとしているが、より実際的には、二色性化合物31は所定の温度範囲(以下、結晶化温度範囲という)において結晶化する。結晶化温度範囲の上限の温度(すなわち冷却時に二色性化合物31の結晶化が開始する温度)を「Tc1」とし、かつ、結晶化温度範囲の下限の温度(すなわち二色性化合物31の結晶化が完了する温度)を「Tc2」とする場合、少なくとも、結晶化温度範囲の上限の温度Tc1から結晶化温度範囲の下限の温度Tc2に到達するまでの冷却速度が所定冷却速度であることが好ましい。なお、所定冷却速度は、いわゆる平均速度である。このため、乾燥塗膜97を冷却する過程の一部において所定冷却速度を下回る冷却速度で冷却する時間を含んでいてもよい。この場合、上記いずれかの温度区間で平均した冷却速度が所定冷却速度であればよい。また、第1冷却工程P2における冷却速度には基本的には上限はない。このため、乾燥塗膜97を有する中間積層体110の各部が変質する、または、皺(しわ)ができる等の不具合が生じない範囲内であれば、できる限り速く冷却することが好ましい。
 第1冷却工程P2においては、乾燥塗膜97を、第1温度T1から第2温度T2まで、0.01秒以上110秒以内に、好ましくは0.01秒以上40秒以内に、より好ましくは0.01秒以上25秒以内に、特に好ましくは0.01秒以上10秒以内に乾燥塗膜97を冷却する。また、より実際的には、少なくとも結晶化温度範囲の上限の温度Tc1から結晶化温度範囲の下限の温度Tc2に達するまでの所要時間が0.01秒以上40秒以内であればよく、0.01秒以上20秒以内であることがより好ましく、0.01秒以上10秒以内であることが特に好ましい。
 なお、第1冷却工程P2においては、少なくとも上記所定冷却速度または上記所定時間以内に乾燥塗膜97を冷却することができればよく、上記所定冷却速度かつ上記所定時間以内に乾燥塗膜97を冷却することが好ましい。また、上記所定冷却速度または上記所定時間を遵守する場合、第1冷却工程P2における具体的な冷却のプロファイルは任意である。例えば、図8においては、第1冷却工程P2は、経過時間t3から経過時間t4にかけて一定の冷却速度で直線的に乾燥塗膜97を降温しているが、第1冷却工程P2は第2温度T2まで段階的にまたは任意形状の曲線に沿って降温してもよい。また、第1冷却工程P2は、その一部に、乾燥塗膜97の温度が下がらない(一定の温度を維持する等)時間帯があってもよい。また、第1冷却工程P2は、その一部に、乾燥塗膜97の温度が上がる時間帯があってもよい。上記のように、第1冷却工程P2において、段階的にまたは任意形状の曲線に沿って降温する場合、または、一部に、乾燥塗膜97の温度が下がらない時間帯もしくは乾燥塗膜97の温度が上がる時間帯を含む場合、第1冷却工程P2における最低の到達温度が第2温度T2である。
 また、第1冷却工程P2は、第1加熱工程P1の次工程である。すなわち、第1加熱工程P1後、第1冷却工程P2の開始までの間に、乾燥塗膜97の温度変化をともなう工程及びその他乾燥塗膜97の状態の変化をともなう工程を行わず、第1加熱工程P1の直後に第1冷却工程P2を行う。
 第1冷却部102が乾燥塗膜97を冷却した場合、図11に示すように、メソゲン基23が配向膜13にさらに正確にしたがった規則的な配向状態に近づきつつ液晶性ポリマー21が固化して、空隙26がより明確化する。一方、二色性化合物31は、空隙26においてメソゲン基23の配向方向に追従して概ね一定の配向状態を保ったまま固化し、液晶性ポリマー21に対して相分離した状態となる。この結果、乾燥塗膜97は全体として一様な偏光子としての機能を得る。
 上記のように、第1冷却工程P2において、空隙26にトラップされた二色性化合物31が、空隙26を破壊し、または、他の空隙26と結合する等して二色性化合物31の位置及び向きがランダムな結晶成長をせずに、メソゲン基23等が形成する空隙26にしたがった配列秩序を維持して結晶化するのは、第1冷却工程P2において乾燥塗膜97を急冷するからである。また、第1冷却工程P2において、メソゲン基23が配向膜13にさらに正確にしたがった規則的な配向状態に近づきつつ液晶性ポリマー21が固化するのも、第1冷却工程P2において乾燥塗膜97を急冷するからである。
 第2加熱部103は、第1冷却工程P2を経た乾燥塗膜97を加熱し、第3温度T3にする第2加熱工程P3を行う。第3温度T3は、少なくとも液晶性ポリマー21のネマチック転移温度Tneよりも低い。さらに、第3温度T3は、二色性化合物31の結晶化温度Tcよりも低いことが好ましい。また、液晶性ポリマー21の結晶化温度Tsはネマチック転移温度Tneよりも低く、第3温度T3は、少なくとも液晶性ポリマー21の結晶化温度Tsよりも高い。第3温度T3は、二色性化合物31の会合が促進される温度範囲(以下、会合促進温度範囲という)RT以上の温度である。したがって、第2加熱工程P3は、液晶性ポリマー21が形成する1つの空隙26に包含された複数の二色性化合物31の会合を促進する。会合促進温度範囲RTがX℃以上X℃以下である場合、会合促進温度範囲RT以上の温度とは、少なくともX℃以上の温度であり、X℃以上X℃以下の温度であってもよく、X℃以上の温度でもよい。
 第2加熱工程P3は、より詳しくは、昇温工程P3aと、温度維持工程P3bと、を有することが好ましい。昇温工程P3aは、第3温度T3までの実際的な温度の上昇変化を生じて、乾燥塗膜97を最初に第3温度T3まで昇温する工程である。温度維持工程P3bは、第3温度T3に到達した乾燥塗膜97を第3温度T3に維持する工程である。
 乾燥塗膜97を第3温度T3にするのは二色性化合物31の会合を促進するためであるから、乾燥塗膜97を第3温度T3にする際の具体的な昇温のプロファイルは任意である。例えば、図8の温度プロファイルにおいては、昇温工程P3aは経過時間t5から経過時間t6にかけて一定の昇温速度で直線的に乾燥塗膜97を昇温しているが、昇温工程P3aは第3温度T3まで段階的にまたは任意形状の曲線に沿って昇温することができる。
 但し、第2加熱工程P3は、第1冷却工程P2を経た乾燥塗膜97を、所定の加熱速度(以下、所定加熱速度という)で加熱することが好ましい。加熱速度とは、温度を上げる(すなわち昇温する)昇温速度である。例えば、3℃/秒の加熱速度とは、1秒間に温度を3℃上げることをいう。
 具体的には、所定加熱速度は、例えば、0.1℃/秒以上3.0℃/秒以下であり、より好ましくは、0.5℃/秒以上2.0℃/秒以下である。二色性化合物31が会合体32をつくるために時間を要するため、加熱速度が速いと十分な会合体が作れず、配向度が低下する。また、加熱速度が遅いと工程長が長くなりプロセス負荷が大きくなる。なお、所定加熱速度は、いわゆる平均速度である。このため、第1冷却工程P2を経た乾燥塗膜97を加熱する過程の一部において所定加熱速度の範囲外の加熱速度で加熱する時間を含んでいてもよい。例えば、昇温工程P3aにおいて平均した加熱速度が所定加熱速度であれば良い。
 また、温度維持工程P3bは、模式的に経過時間t6から経過時間t7の間、ほぼ完全に第3温度T3を維持しているが、少なくとも会合促進温度範囲RT以上の温度を維持できれば良い。すなわち、「第3温度T3を維持する」とは、会合促進温度範囲RT以上の温度を維持するこという。したがって、温度維持工程P3bは、厳密に特定の温度(昇温の目標として設定した第3温度T3)を維持する必要はなく、温度維持工程P3bにおいても乾燥塗膜の温度変化があってもよい。
 昇温工程P3aに要する時間(ΔT65=t6-t5)、温度維持工程P3bに要する時間(ΔT76=t7-t6)、及び、第2加熱工程P3の全体に要する時間(ΔT75=t7-t5)は、いずれも液晶性ポリマー21、二色性化合物31、及びその他中間積層体110を構成する各部の材質等に応じて調節可能である。温度維持工程P3bにおいては、乾燥塗膜97の全体において、液晶性ポリマー21が配向膜13にしたがった配向状態を崩さず、かつ、二色性化合物31の会合が概ね完了するために要する実際的な時間だけ第3温度T3を維持すればよい。なお、液晶性ポリマー21、二色性化合物31、及びその他中間積層体110を構成する各部の材質等にも依るが、第2加熱工程P3は、温度維持工程P3b及び/または昇温工程P3aにおいて、継続的または断続的に、第3温度T3を少なくとも1秒以上維持することが好ましく、第3温度T3を3秒以上維持することがより好ましい。
 第2加熱部103が乾燥塗膜97を加熱した場合、液晶性ポリマー21及び二色性化合物31の配向状態(図11参照)を概ね維持しつつ、徐々に、液晶性ポリマー21のメソゲン基23は若干の可動性を得る。その結果、メソゲン基23はさらに良く配向膜13にしたがう。また、二色性化合物31は、結晶化温度Tcを超え、会合促進温度範囲RT以上の温度になると、可動性を得るが、メソゲン基23等が形成する空隙26は脱せずに、同一の空隙26にある他の二色性化合物31との接触等の確率が高まる。その結果、各空隙26において二色性化合物31の会合が進み、乾燥塗膜97は配向度が向上する(図2参照)。
 第2冷却部104は、第2加熱工程P3を経た乾燥塗膜97を、自然に、または、送風等によって能動的に冷却する第2冷却工程P4を行う。第2冷却工程P4においては、乾燥塗膜97を、例えば、常温Toまたは室温等の温度にする。第2冷却工程P4を経た乾燥塗膜97は、偏光度が向上した良好な偏光子の状態を維持した配向度が高い塗布光学膜14となる(図6参照)。
 上記温度管理部93を構成する第1加熱部101、第1冷却部102、第2加熱部103、及び、第2冷却部104は、例えば、図12に示すように、温度調節機能付き搬送ローラ(以下、温調ローラという)116と、温度制御部117と、によって構成することができる。温調ローラ116は、温度制御部117が温度を調節した油等を内部に通すことにより、中間積層体110との接触面の温度を調節する。また、温調ローラ116は、本実施形態においては回転制御部を有する駆動ローラである。但し、温調ローラ116には、搬送される中間積層体110との接触により回転する従動ローラを用いてもよい。本実施形態においては、各温調ローラ116の間で、搬送路に関し、図12の紙面下側の雰囲気を吸引することにより、温調ローラ116の周面に対する中間積層体110の接触面積を増加させている。これにより、中間積層体110をより迅速かつ一様に加熱または冷却することができる。
 図13に示すように、第2保護層形成部44は、塗膜形成部121と、乾燥部122と、を備える。塗膜形成部121は、第2保護層15の材料であるエポキシ系モノマー重合体等と、エポキシ系モノマー重合体等を溶解する溶媒と、を含有する塗布液126を、塗布光学膜14上に塗布し、塗膜127を形成する。その後、乾燥部122は、加熱、送風、自然乾燥及び/またはその他の方法により塗膜127から溶媒を減少させ、塗膜127を乾燥することにより、塗布光学膜14上に第2保護層15を形成する。これにより、積層体10が完成する。
 上記のように、製造装置41は、液晶性ポリマー21と二色性化合物31とを含み、二色性化合物31の配向によって偏光子としての機能を発現する塗布光学膜14を形成する際に、第1加熱工程P1と、第1冷却工程P2と、を行うので、配向度が高い塗布光学膜14、及び、配向度が高い塗布光学膜14を有する積層体10を得ることができる。また、二色性化合物31が会合性を有する場合に第2加熱工程P3を行うことにより、二色性化合物31が会合体32を形成してさらに配向度が向上した塗布光学膜14及び積層体10が得られる。
 なお、上記実施形態及び実施例においては、液晶性ポリマー21と、1種類の二色性化合物31を用いて塗布光学膜14を形成しているが、塗布光学膜14には、2種類以上の二色性化合物31を含有できる。
 二色性化合物31は種類に応じて吸収する光の波長帯域が異なるので、塗布光学膜14が2種類以上の二色性化合物31を含有する場合、1種類の二色性化合物31のみを用いる場合よりも積層体10が偏光板として機能する波長帯域を広くできる。可視光の波長帯域において偏光板として機能する積層体10を製造する場合には、少なくとも1種類は、主に緑色の波長帯域を吸収する二色性化合物31を含有することが好ましい。緑色の波長帯域を吸収する二色性化合物31は会合性を有することが特に好ましい。緑色は青色または赤色と比較して視感度が高いからである。
 塗布光学膜14に2種類以上の二色性化合物31を含有する場合、少なくとも1種類は、会合性を有する二色性化合物31を含有することが好ましい。第2加熱工程P3を行って会合を促進することで配向度を特に向上し易いからである。但し、塗布光学膜14が、会合性を有しない1種類または複数種類の二色性化合物31だけを含有する場合においても、第1加熱工程P1及び第1冷却工程P2を経ることで二色性化合物31は一定の配向性を得ることができる。また、塗布光学膜14が、会合性を有しない1種類または複数種類の二色性化合物31だけを含有する場合においても、第2加熱工程P3を行うと、液晶性ポリマー21の配向度が向上するので、液晶性ポリマー21の配向度向上に追従して二色性化合物31の配向度も向上する。
 塗布光学膜14に2種類以上の二色性化合物31を含有する場合、二色性化合物31の融点Tmの最高値よりも高い温度に第1温度T1を設定する。全ての二色性化合物31を溶融するためである。また、第1冷却工程P2においては、少なくとも二色性化合物31の結晶化温度Tcの最低値よりも低い温度に第2温度T2を設定する。全ての二色性化合物31を固化し、運動性を抑止するためである。但し、多くの場合、二色性化合物31の結晶化温度Tcよりも液晶性ポリマー21の結晶化温度Tsの方が低いので、液晶性ポリマー21の結晶化温度Tsよりも低値に第2温度T2を設定することで、全ての二色性化合物31を固化することができる。また、第2加熱工程P3においては、会合性を有する二色性化合物31の結晶化温度Tcのうち最低値より低く、かつ、液晶性ポリマー21のネマチック転移温度Tneよりも低い値に第3温度T3を設定する。空隙26内という位置的な制約を課したまま、全ての会合性を有する二色性化合物31に運動性を与え、会合を促進するためである。
 [実施例]
 製造装置40を用い、第1冷却工程P2における冷却の条件を表1に示す条件にし、実施例の積層体10及び比較例の積層体を製造した。各実施例の積層体10及び各比較例の積層体は、表1に示す条件以外の製造条件及び構成は共通である。具体的には、基材11はTACフィルムで形成し、第1保護層12はPVAで形成し、配向膜13はアゾベンゼンを用いた光配向膜であり、かつ、第2保護層15はエポキシ系モノマー重合体である。塗布光学膜14に使用した液晶性ポリマー21は下記L1である。L1の液晶性ポリマー21は、(1)で示す繰り返しユニットと、(2)で示す繰り返しユニットとから構成されている。1分子における(1)で示す繰り返しユニットと(2)で示す繰り返しユニットとの割合は、{(1)で示す繰り返しユニット}:{(2)で示す繰り返しユニット}=80:20である。下記L1の液晶性ポリマー21は、ネマチック転移温度Tneは約97℃、かつ、結晶化温度Tsは約67℃である。塗布光学膜14に使用した二色性化合物31は下記D1である。下記D1の二色性化合物31は、融点Tmは約140℃、結晶化温度Tcは約85℃、冷却時の結晶化開始温度Tc1は90℃、結晶化完了温度Tc2は70℃である。第3温度T3は、80℃である。第2加熱工程P3における加熱速度は約2.0℃/秒であり、加熱時間は少なくとも1秒以上である。また、下記D1に示す二色性化合物31の会合促進温度範囲RTは約50℃以上約80℃以下である。また、本実施例では、冷却速度は温度がTc1からTc2に到達するときの平均速度で定義する。表1の「維持工程の有無」欄の括弧( )書きは、第1温度T1を維持した時間である。
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
 また、実施例の積層体10及び比較例の積層体を、下記の方法により、配向度を用いて評価した。
 <配向度の測定方法>
 得られた積層体10から第2保護層15を剥離した。その後、光学顕微鏡(株式会社ニコン製、製品名「ECLIPSE E600 POL」)の光源側に直線偏光子を挿入した状態で、サンプル台に実施例および比較例の「第2保護層15を剥離した積層体10」をセットし、マルチチャンネル分光器(Ocean Optics社製、製品名「QE65000」)を用いて、400~700nmの波長域における吸光度を測定し、以下の式により配向度を算出した。結果を下記表1に示す。
  配向度:S=[(Az0/Ay0)-1]/[(Az0/Ay0)+2]
  Az0:吸収軸方向の偏光に対する吸光度
  Ay0:偏光軸方向の偏光に対する吸光度
 <評価方法>
 0.95以上の配向度を評価A、0.95未満かつ0.92以上の配向度を評価B、0.92未満の配向度をCとした。配向度の点で、評価A及び評価Bは合格であり、評価Cは不合格である。
Figure JPOXMLDOC01-appb-T000003
 
 10 積層体
 11 基材
 12 第1保護層
 13 配向膜
 14 塗布光学膜
 15 第2保護層
 21 液晶性ポリマー
 22 主鎖
 23 メソゲン基
 24 側鎖
 26 空隙
 31 二色性化合物
 32 会合体
 40 製造装置
 41 第1保護層形成部
 42 配向膜形成部
 43 塗布光学膜形成部
 44 第2保護層形成部
 51、61、91 塗膜形成部
 52、62、92 乾燥部
 53、66、94 塗布液
 54、67、96 塗膜
 63 光照射部
 68、97 乾燥塗膜
 93 温度管理部
 101 第1加熱部
 102 第1冷却部
 103 第2加熱部
 104 第2冷却部
 110 中間積層体
 A、B 配向度の評価
 Dc 搬送方向
 P1 第1加熱工程
 P1 第1冷却工程
 P1a、P3a 昇温工程
 P1b、P3b 温度維持工程
 P2 第1冷却工程
 P3 第2加熱工程
 t1~t8 経過時間
 T1 第1温度
 T2 第2温度
 T3 第3温度
 Tc 二色性化合物の結晶化温度
 Tm 二色性化合物の融点
 Tne 液晶性ポリマーのネマチック転移温度
 To 常温
 Ts 液晶性ポリマーの結晶化温度
 RT 会合促進温度範囲
 

Claims (6)

  1.  液晶性化合物と、二色性化合物と、前記液晶性化合物及び前記二色性化合物を溶解する溶媒と、を含有する塗布液を配向膜上に塗布することにより、塗膜を形成する塗膜形成工程と、
     前記塗膜から前記溶媒を減少させる乾燥工程と、
     前記溶媒が減少した前記塗膜を加熱し、前記二色性化合物の融点よりも高い第1温度にする第1加熱工程と、
     前記第1加熱工程を経た前記塗膜を冷却し、前記第1温度から、前記二色性化合物の結晶化温度よりも低く、かつ、前記液晶性化合物の結晶化温度よりも低い第2温度にする冷却工程と、
     を有する積層体の製造方法。
  2.  さらに、前記冷却工程を経た前記塗膜を加熱し、前記液晶性化合物のネマチック転移温度よりも低い第3温度にする第2加熱工程を有する請求項1に記載の積層体の製造方法。
  3.  前記第1加熱工程は、
     前記第1温度未満の前記塗膜を前記第1温度に昇温する昇温工程と、
     前記塗膜を前記第1温度で維持する温度維持工程と、
     を有する請求項1または2に記載の積層体の製造方法。
  4.  前記冷却工程は、前記第1加熱工程の次工程である請求項1~3のいずれか1項に記載の積層体の製造方法。
  5.  前記冷却工程は、1℃/秒以上の冷却速度で前記塗膜を冷却する請求項1~4のいずれか1項に記載の積層体の製造方法。
  6.  前記冷却工程は、前記第1温度から前記第2温度まで110秒以内に前記塗膜を冷却する請求項1~5のいずれか1項に記載の積層体の製造方法。
     
PCT/JP2019/004545 2018-03-06 2019-02-08 積層体の製造方法 WO2019171876A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207021334A KR102445632B1 (ko) 2018-03-06 2019-02-08 적층체의 제조 방법
JP2020504877A JP6741898B2 (ja) 2018-03-06 2019-02-08 積層体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-040246 2018-03-06
JP2018040246 2018-03-06

Publications (1)

Publication Number Publication Date
WO2019171876A1 true WO2019171876A1 (ja) 2019-09-12

Family

ID=67847138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004545 WO2019171876A1 (ja) 2018-03-06 2019-02-08 積層体の製造方法

Country Status (3)

Country Link
JP (1) JP6741898B2 (ja)
KR (1) KR102445632B1 (ja)
WO (1) WO2019171876A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081576A (ja) * 2019-11-19 2021-05-27 日東電工株式会社 偏光板および偏光板ロール
WO2021100633A1 (ja) * 2019-11-19 2021-05-27 日東電工株式会社 偏光板および偏光板ロール

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033249A (ja) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd 偏光素子、円偏光板及びそれらの製造方法
WO2017090668A1 (ja) * 2015-11-24 2017-06-01 富士フイルム株式会社 2色性色素化合物、2色性色素組成物、光吸収異方性膜、偏光素子および画像表示装置
WO2017154907A1 (ja) * 2016-03-08 2017-09-14 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置
WO2017195833A1 (ja) * 2016-05-12 2017-11-16 富士フイルム株式会社 着色組成物、2色性色素化合物、光吸収異方性膜、積層体および画像表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404624B2 (ja) 2003-12-25 2010-01-27 日東電工株式会社 楕円偏光板および画像表示装置
JP5566178B2 (ja) * 2010-05-07 2014-08-06 富士フイルム株式会社 光吸収異方性膜、その製造方法、及びそれを用いた液晶表示装置
JP6268730B2 (ja) 2012-03-30 2018-01-31 住友化学株式会社 円偏光板及びその製造方法
SE542248C2 (en) * 2016-12-28 2020-03-24 3Eflow Ab A dampening valve unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033249A (ja) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd 偏光素子、円偏光板及びそれらの製造方法
WO2017090668A1 (ja) * 2015-11-24 2017-06-01 富士フイルム株式会社 2色性色素化合物、2色性色素組成物、光吸収異方性膜、偏光素子および画像表示装置
WO2017154907A1 (ja) * 2016-03-08 2017-09-14 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置
WO2017195833A1 (ja) * 2016-05-12 2017-11-16 富士フイルム株式会社 着色組成物、2色性色素化合物、光吸収異方性膜、積層体および画像表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081576A (ja) * 2019-11-19 2021-05-27 日東電工株式会社 偏光板および偏光板ロール
WO2021100633A1 (ja) * 2019-11-19 2021-05-27 日東電工株式会社 偏光板および偏光板ロール
JP2021081577A (ja) * 2019-11-19 2021-05-27 日東電工株式会社 偏光板および偏光板ロール
WO2021100632A1 (ja) * 2019-11-19 2021-05-27 日東電工株式会社 偏光板および偏光板ロール
CN114730038A (zh) * 2019-11-19 2022-07-08 日东电工株式会社 偏光板及偏光板卷
CN114746781A (zh) * 2019-11-19 2022-07-12 日东电工株式会社 偏光板及偏光板卷
JP7412972B2 (ja) 2019-11-19 2024-01-15 日東電工株式会社 偏光板および偏光板ロール
JP7412973B2 (ja) 2019-11-19 2024-01-15 日東電工株式会社 偏光板および偏光板ロール

Also Published As

Publication number Publication date
KR20200100800A (ko) 2020-08-26
KR102445632B1 (ko) 2022-09-21
JPWO2019171876A1 (ja) 2020-07-27
JP6741898B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
TWI547735B (zh) 液晶裝置
WO2019171876A1 (ja) 積層体の製造方法
KR102042325B1 (ko) 위상차 필름의 제조 방법
JP2014194484A (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP2014238524A (ja) 位相差フィルムの製造方法および円偏光板の製造方法
EP2042895B1 (en) Method for producing circularly polarized light isolation sheet, and apparatus for coating film formation
JP7376494B2 (ja) 偏光板およびその製造方法、ならびに該偏光板を含む画像表示装置
JP2010256625A (ja) 断熱部材
JP2003207642A (ja) 光学素子
WO2019171877A1 (ja) 積層体の製造方法
WO2014156623A1 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
WO2011007796A1 (ja) 断熱部材
JP7113962B2 (ja) コレステリック液晶膜の製造方法
WO2016052404A1 (ja) コレステリック液晶層を含む光学フィルム、およびコレステリック液晶層を含む光学フィルムの製造方法
WO2019171760A1 (ja) 光配向膜の形成方法及び積層体の製造方法
JP6970811B2 (ja) 光配向膜の形成方法及び積層体の製造方法
JP4592046B2 (ja) 光学フィルムの製造方法
JP6576637B2 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP7113961B2 (ja) コレステリック液晶膜の製造方法
WO2016171127A1 (ja) 高いリタデーションを有するフィルムと、二色性色素を含有する層とが積層されてなる偏光素子、並びにこれを設けた表示装置
TW200415373A (en) Process for producing phase difference plate and phase difference plate produced by the process
JP4826182B2 (ja) 塗膜形成装置
CN114341685B (zh) 光学膜及光学膜的制造方法
WO2021220907A1 (ja) 偏光板および該偏光板を用いた画像表示装置
KR20160069835A (ko) 편광 필름의 제조방법 및 이에 따라 제조된 편광 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504877

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207021334

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763511

Country of ref document: EP

Kind code of ref document: A1