TW200415373A - Process for producing phase difference plate and phase difference plate produced by the process - Google Patents

Process for producing phase difference plate and phase difference plate produced by the process Download PDF

Info

Publication number
TW200415373A
TW200415373A TW092126428A TW92126428A TW200415373A TW 200415373 A TW200415373 A TW 200415373A TW 092126428 A TW092126428 A TW 092126428A TW 92126428 A TW92126428 A TW 92126428A TW 200415373 A TW200415373 A TW 200415373A
Authority
TW
Taiwan
Prior art keywords
optically anisotropic
anisotropic layer
liquid crystal
film
group
Prior art date
Application number
TW092126428A
Other languages
Chinese (zh)
Other versions
TWI293373B (en
Inventor
Tadashi Ito
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Publication of TW200415373A publication Critical patent/TW200415373A/en
Application granted granted Critical
Publication of TWI293373B publication Critical patent/TWI293373B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The purpose of the present invention is to provide a process for easily producing a phase difference plate at low cost, which has high precision of liquid crystal orientation and less orientation deficiency. The present invention relates to a process for producing a phase difference plate which has a long roll-type transparent support and on at least one side thereof two optically anisotropic layers of liquid crystalline compound, the process comprising the steps of coating an orientation film on a continuously moving support, (a) rubbing a surface of support having the orientation film, (b) coating a liquid crystalline compound-containing composition on the rubbed surface, and (c) curing the coated composition in step (b) to form an optically anisotropic layer, and (d) repeating steps (a) to (c) at least one times without rolling up the support, and (e) rolling up the support.

Description

200415373 玖、發明說明: (一) 發明所屬之技術領域 本發明係有關一種具有2層以上由液晶性化合物所成 光學異方向性層之相位差板的製法。而且,本發明另有關 一種藉由上述方法所得的相位差板,特別是作爲反射型液 晶顯示裝置、光碟記錄用拾取器、或抗反射膜所利用λ/4 板極爲有效的相位差板。 (二) 先前技術 本發明之對象的相位差板,即λ / 4板,有非常多的用 途’已實際被使用。在廣泛波長範圍中可達成λ / 4之習知 技術有使二張具有光學異方向性之聚合物薄膜積層的方法( 例如參照專利文獻1及2 )、至少設置2層含有液晶性化合 物之光學異方向性層的方法(例如參照專利文獻3〜6 )。然 而’積層二張具有光學異方向性之聚合物薄膜的方法,爲 g周節一張聚合物薄膜之光學方向(光軸與遲相軸)時,必須 使二張聚合物薄膜切成所定角度,使所得晶片貼合。以晶 片貼合製造相位差板時,處理繁雜、因軸脫離容易引起品 質降低、處理性降低、成本增加,因污染容易引起惡化問 題。而且’聚合物薄膜不易使λ / 4板嚴格調節爲必要的遲 滯値。 另外’至少設置2層含液晶性化合物之光學異方向性 層的方法,雖可提供較簡單的廣範圍λ / 4 •板,惟設置2層 以上由液晶性化合物所成的光學異方向性層於積層由該液 晶性化合物所成的光學異方向性層時必須每次設定配向膜 -6 - 200415373 ’在製造成本上會有問題。另外,在沒有配向膜下塗覆第2 層光學異方向性層時,會降低液晶配向之精度或均一性, 且會有多發配向缺陷的問題,故於積層由液晶性化合物所 成光學異方向性層時必須每次塗覆配向膜。 【專利文獻1】 曰本特開平1 0 - 6 8 8 1 6號公報 【專利文獻2】 曰本特開平1 0 - 9 0 5 2 1號公報 【專利文獻3】 曰本特開2 0 0 0 - 2 0 6 3 3 1號公報 【專利文獻4】 曰本特開2 0 0 1 - 4 8 3 7號公報 【專利文獻5】 曰本特開200 1 - 2 1 720號公報 【專利文獻6】 曰本特開200 1 - 9 1 74 1號公報 (三)發明內容 本發明之課題係爲解決上述問題的製法,換言之係提 供一種設置2層以上由液晶性化合物所成光學異方向性層 時,液晶配向精度及均一性高、配向缺陷少、於成本上有 利的製法。本發明之另一課題係提供一種藉由該製法所得 的相位差板。 本發明之課題係藉由下述方法予以解決。換言之,藉 由下述(1 )〜(4 )之相位差板的製法及下述(5 )之相位差板可 -7 - 200415373 以達成。 (1) 一種製造相位差板之方法,該相位差板具有長條輥 狀透明載體及在其一側上的由2層以上液晶性化合物所成 之光學異方向性層,該方法包括: 在連續移動的載體上塗覆配向膜, (a )對該載體之形成有配向膜側的表面作摩擦, (b )在經摩擦的表面上塗覆含有液晶性化合物的組成物, (c )使以步驟(b )塗覆的組成物硬化形成光學異方向性 層, (d )在沒有將該載體捲取下,重複步驟(a )〜(c )至少一 次, (e )捲取該載體, 之步驟。 (2 )如(1 )記載之製法,其中於重複進行步驟(a )〜(c ) 時,在至少一次的步驟(a )中摩擦光學異方向性層之表面、 且該光學異方方性層含有具有碳原子數9以下之烴基的改 質聚乙烯醇。 (3 )如(1 )或(2 )記載之製法,其中在至少一次的步驟(b ) 中所使用的液晶性化合物係具有聚合性基之棒狀液晶性化 合物。 (4 )如(1 )或(2 )記載之製法,其中在至少一次的步驟(b ) 中所使用的液晶性化合物爲具有聚合性基之圓盤狀液晶性 化合物。 (5 ) —種相位差板,其係由如(1 )〜(4 )中任一項記載的 一 8 - 200415373 方法所製造。 於本說明書中,有關角度之「實質上」係指小於嚴密 角度±5°之範圍。嚴密角度之誤差以小於4°較佳、更佳者 小於3 °。而且,於本說明書中「實質上垂直配向」係不僅 爲嚴密的垂直配向且包含平均角度(平均傾斜角)爲50°〜 90〇之配向,「實質上水平配向」係不僅爲嚴密的水平配向 且包含平均角度(平均傾斜角)爲0°〜40°之配向。 此外,於本說明書中「遲相軸」係指折射率最大的方 向。 (四)實施方式 [相位差板之製法] 本發明相位差板之製法例如第1圖所示。第1圖係爲 具有2層光學異方向性層之相位差板的製造例。 首先,連續移動長條輥狀(圖中沒有表示)之透明載體 ’且在該透明載體1上塗覆含有改質聚乙烯醇等之配向膜 形成用塗覆液以形成配向膜2。其次,使配向膜2之表面使 用例如摩擦輥3等作摩擦(步驟(a ))。在摩擦的表面上塗覆 含有液晶性化合物之組成物以形成塗覆層4 ’(步驟(b ))。塗 覆層4 ’中之液晶性化合物藉由配向膜2之表面性狀,及視 摩擦方向而定形成所定配向狀態。然後,使塗覆層4,照射 熱及/或活性放射線等,使液晶性化合物固定成該配向狀態 以形成光學異方向性層4。如此可連續製作具有2層光學異 方向性層之相位差板。形成光學異方向性層5後,相位差 板捲取成輥狀,於保管及搬送等後視其所需切成各種形狀 一 9 一 200415373 ’提供給使用用途。 第1圖例係爲具有2層光學異方向性層之相位差板的 製作例,可藉由使步驟(a )〜(c )經由η次(η爲2以上之整數 °以下皆相同),連續製作具有η層光學異方向性層之相位 差板。於本發明中,直至形成全部光學異方向性層爲止, _由沒有捲取成輥狀(即沒有實施步驟(e )),即使在光學異 方向性層間(第1圖爲層4與層5之間)沒有形成配向膜時 ’可形成使液晶之配向精度及配向均一性維持於高値且配 (¾缺陷情形很少的光學異方向性層。結果,可省略在光學 異方向性層間形成配向膜的步驟,以減輕製造成本。 本發明中有關第1〜η次步驟(a )〜(c ),可各獨立選擇 條件及材料。例如以步驟(a )進行的摩擦方向、或以步驟(b ) 所使用的液晶性化合物之種類等,於第1〜η次中可相同或 各不相同。 於下述中更詳細說明有關各步驟、及各步驟使用的各 種部材及材料。 [透明載體] 本發明中使用透明載體。透明載體係指光透射率爲8〇% 以上之載體。而且,以透明載體之波長分散小者較佳,具 體而θ R e 4 0 〇 / R e 7 〇 〇之比以小於1 . 2較佳。另外,透明載 體以光學異方向性小者較佳,具體而言面內遲滯値(Re )以 20nm以下較佳、更佳者爲10nm以下。 上辻k明載體以聚合物薄腠較佳。聚合物例如纖維素 酉曰a碳酞酯、聚楓、聚醚碾、聚丙烯酸酯及聚甲基丙烯 -1 0- 200415373 酸酯。以纖維素酯較佳、更佳者爲乙醯基纖維素、最佳者 爲三乙醯基纖維素。特別是使用三乙醯基纖維素時’醋化 度以6 0 . 2 5〜6 1 . 5 0較佳。聚合物薄膜以藉由溶劑鑄造法形 成較佳。 本發明係使用長條輥狀載體,連續塗覆光學異方向性 層。以形成光學異方向性層後,裁成必要大小的尺寸較佳 。透明載體之厚度以20〜500 μηι較佳、更佳者爲40〜200 。此外,爲改善在透明載體與其上設置的層(黏合層、水平 配向膜、垂直配向膜或光學異方向性層)之黏合性時,可在 透明載體上實施表面處理(例如輝光放電處理、電暈放電處 理、紫外線(UV )處理、火焰處理、皂化處理),亦可在透明 載體上設置黏合層(底塗層)。表面處理以巷化處理較佳。 [配向膜] 本發明係連續移動上述透明載體,且在載體表面上形 成配向膜。配向膜具有使光學異方向性層中液晶性化合物 爲企求的配向狀態功能。配向膜使用藉由有機化合物(較佳 者爲聚合物)之摩擦處理產生配向功能之配向膜。形成配向 膜之聚合物種類係式液晶性化合物之配向(特別是平均傾斜 角)而決定。 爲液晶性化合物水平配向時,使用配向膜之表面能量 不會降低的聚合物(一般的配向用聚合物)。摩擦處理時較 佳的聚合物例如聚乙烯醇、聚醯亞胺衍生物、耐龍。摩擦 處理可藉由使此等聚合物層之表面以紙或布朝一定方向擦 拭數次,改變對膜平面而言之液晶性化合物的預傾角。 -11- 200415373 以改善與上方形成的液晶性化合物層之密接性爲目的 時’配向膜以具有聚合性基較佳。聚合性基可以在側鏈導 入具有聚合性基之重複單位,或導入作爲環狀基之取代基 。在界面上使用液晶性化合物與形成化學鍵之配向膜更佳 ’該配向膜如特開平9 - 1 5 2 5 0 9號公報記載。 配向膜的厚度較佳爲〇 . 01〜5μιπ,更佳爲〇 . 05〜3μΐΏ。 本發明中摩擦透明載體表面上形成的配向膜、或經由 步驟(a )〜(c )形成的光學異方向性層之表面(步驟(a ))。 [摩擦處理] 摩擦處理可以對長條輥狀載體之MD方向而言所定任意 角度進行。對MD方向而言摩擦方向之角度以對MD方向而 言相同方向或傾斜方向摩擦較佳。傾斜方向之角度以_ 4 5度 〜+ 4 5度較佳。 摩擦處理可以任意方法進行,惟以至少藉由一個摩擦 輥進行較佳。例如可在使長條薄膜朝MD方向搬送的台上以 對長條薄膜之MD方向而言任意角度配置摩擦輥,且使該薄 膜朝MD方向搬送且使該摩擦輥回轉,對透明載體之配向膜 表面作摩擦處理。以具備可自由調整摩擦輥與台之移動方 向所成角度的機構較佳。而且,摩擦輥係指在表面上貼覆 適當摩擦布材的輥。 其次,在摩擦的表面上塗覆含有液晶性化合物之組成 物(步驟(b ))、另使該組成物硬化形成光學異方向性層(步 驟(c ))。 [由液晶性化合物所成的光學異方向性層] - 12- 200415373 本發明步驟(b)所使用的液晶性化合物以棒狀液晶性化 合物或圓盤狀液晶性化合物較佳,更佳者爲具有聚合性基 之棒狀液晶性化合物或圓盤狀液晶性化合物。 棒狀液晶性化合物以使用偶氮次甲基 '偶氮氧基、氰 基聯苯基類、氰基苯基酯類、苯甲酸酯類、環己烷羧酸苯 酉曰通、氰基本基5哀己垸類、氰基取代苯基嘧陡類、院氧基 取代苯基嘧啶類、苯基二噁烷類、二苯乙炔類及_基環己 基苯并腈類較佳。不僅可使用上述低分子液晶性分子,亦 可使用局分子液晶性分子。更佳的具有低分子聚合性基之 棒狀液晶性化合物爲下述通式(I )所示化合物。 式(I) Q1 — L1一 A^L3 — Μ— L4一 A2 — L2 — Q2 (其中,Q1及Q2係各表示獨立的聚合性基,Ll、L2、L3 及L4係各表示單鍵或二價鍵結基,L3及l4中至少一方表示 -0-C0-0·。A1及A2係各表示碳原子數2〜2〇之間隔基,μ 係表示間隔基) 於下述中更詳細說明有關上述式(丨)所示具有聚合性基 之棒狀液晶性化合物。 其中,Q1及Q2係各表示獨立的聚合性基。聚合性基之 聚合反應以加成聚合(包含開環聚合)或縮合聚合較佳。換 g之’聚合性基以可加成聚合反應或縮合聚合反應之官能 基較佳。下述爲聚合性基之例。 【化1】 - 1 3- 200415373 Η h3c.c^c. Η Η Et、〇〜C’ Η200415373 (1) Technical description of the invention: The present invention relates to a method for manufacturing a retardation plate having two or more optically anisotropic layers made of a liquid crystal compound. Furthermore, the present invention relates to a retardation plate obtained by the above method, particularly a retardation plate which is extremely effective as a reflection type liquid crystal display device, a disc recording pickup, or an λ / 4 plate for an antireflection film. (2) Prior art The phase difference plate of the present invention, that is, the λ / 4 plate, has many uses' and has been actually used. A conventional technique capable of achieving λ / 4 in a wide wavelength range includes a method of laminating two polymer films having optical anisotropy (for example, refer to Patent Documents 1 and 2), and providing at least two optical layers containing a liquid crystal compound. A method of the anisotropic layer (for example, refer to Patent Documents 3 to 6). However, in the method of laminating two polymer films having optical anisotropy, when the optical direction (optical axis and late phase axis) of one polymer film in the g week is used, the two polymer films must be cut to a predetermined angle. , The resulting wafers are bonded. When the retardation plate is manufactured by wafer bonding, the processing is complicated, the quality is lowered due to the detachment of the shaft, the handleability is lowered, the cost is increased, and the deterioration is easily caused by pollution. Furthermore, the 'polymer film does not easily adjust the λ / 4 plate to the necessary hysteresis. In addition, the method of providing at least two optically anisotropic layers containing a liquid crystal compound can provide a relatively simple wide-range λ / 4 plate, but providing two or more optically anisotropic layers made of a liquid crystal compound When laminating an optically anisotropic layer made of the liquid crystalline compound, it is necessary to set the alignment film every time-200415373 'There is a problem in manufacturing cost. In addition, when the second optically anisotropic layer is not coated under the alignment film, the accuracy or uniformity of the liquid crystal alignment will be reduced, and there will be problems of multiple alignment defects. Therefore, the optical anisotropy formed by the liquid crystal compound in the laminate The alignment film must be applied each time the layer is applied. [Patent Document 1] Japanese Patent Application Laid-open No. 1 0-6 8 8 1 6 [Patent Literature 2] Japanese Patent Application Laid-open No. 1 0-9 0 5 2 1 Japanese Patent Application [Patent Literature 3] Japanese Patent Laid-Open No. 2 0 0 0-2 0 6 3 3 1 [Patent Document 4] Japanese Patent Publication No. 2 0 0 1-4 8 3 7 [Patent Literature 5] Japanese Patent Publication No. 200 1-2 1 720 [Patent Literature 6] Japanese Patent Application Laid-Open No. 200 1-9 1 74 (3) Summary of the Invention The subject of the present invention is a production method for solving the above problems, in other words, providing an optical anisotropy formed by a liquid crystal compound in two or more layers In the case of a layer, a manufacturing method with high alignment accuracy and uniformity of the liquid crystal, fewer alignment defects, and favorable cost. Another object of the present invention is to provide a retardation plate obtained by the manufacturing method. The problems of the present invention are solved by the following methods. In other words, by the method of manufacturing the retardation plate (1) to (4) below and the retardation plate (5) below, it can be achieved by -7-200415373. (1) A method for manufacturing a retardation plate having a long roll-shaped transparent carrier and an optically anisotropic layer made of two or more liquid crystal compounds on one side thereof, the method comprising: An alignment film is coated on the continuously moving carrier, (a) rubbing the surface of the carrier on which the alignment film is formed, (b) coating the rubbed surface with a composition containing a liquid crystal compound, and (c) applying the steps (B) the coated composition is hardened to form an optically anisotropic layer, (d) without taking off the carrier, repeat steps (a) to (c) at least once, (e) a step of winding the carrier, . (2) The method according to (1), wherein when steps (a) to (c) are repeated, the surface of the optically anisotropic layer is rubbed at least once in step (a), and the optical anisotropy The layer contains modified polyvinyl alcohol having a hydrocarbon group having 9 or less carbon atoms. (3) The method according to (1) or (2), wherein the liquid crystal compound used in step (b) at least once is a rod-like liquid crystal compound having a polymerizable group. (4) The method according to (1) or (2), wherein the liquid crystal compound used in step (b) at least once is a discotic liquid crystal compound having a polymerizable group. (5) A phase difference plate manufactured by the method of 8-200415373 as described in any one of (1) to (4). In this specification, the "substantially" of the angle refers to a range smaller than the tight angle ± 5 °. The tight angle error is preferably less than 4 °, and more preferably less than 3 °. Moreover, in this specification, "substantially vertical alignment" refers to not only strict vertical alignment but also alignments with an average angle (average tilt angle) of 50 ° to 90 °, and "substantially horizontal alignment" refers to not only strict horizontal alignment. And includes an orientation with an average angle (average tilt angle) of 0 ° ~ 40 °. In addition, the "late phase axis" in this specification means the direction in which the refractive index is the largest. (4) Embodiment [Method of manufacturing retardation plate] An example of the method of manufacturing the retardation plate of the present invention is shown in FIG. Fig. 1 is a manufacturing example of a retardation plate having two optically anisotropic layers. First, a long roll-shaped (not shown) transparent carrier ′ is continuously moved, and the transparent carrier 1 is coated with an alignment film-forming coating liquid containing modified polyvinyl alcohol or the like to form an alignment film 2. Next, the surface of the alignment film 2 is rubbed using, for example, a rubbing roller 3 or the like (step (a)). A composition containing a liquid crystalline compound is coated on the rubbed surface to form a coating layer 4 '(step (b)). The liquid crystal compound in the coating layer 4 'forms a predetermined alignment state depending on the surface properties of the alignment film 2 and depending on the rubbing direction. Then, the coating layer 4 is irradiated with heat and / or active radiation to fix the liquid crystal compound in the alignment state to form the optically anisotropic layer 4. In this way, a retardation plate having two optically anisotropic layers can be continuously produced. After the optically anisotropic layer 5 is formed, the retardation plate is rolled into a roll shape and cut into various shapes depending on its needs after storage and transportation, etc.-9-200415373 'for use. The first example is a production example of a retardation plate having two optically anisotropic layers. The steps (a) to (c) can be performed η times (η is the same as an integer greater than or equal to 2) and continuously A phase difference plate having an n-layer optically anisotropic layer was produced. In the present invention, until all the optically anisotropic layers are formed, _ has not been rolled into a roll shape (ie, step (e) has not been implemented), even between the optically anisotropic layers (the first figure is layers 4 and 5) In the case where an alignment film is not formed, an optically anisotropic layer that maintains the alignment accuracy and alignment uniformity of the liquid crystal at a high level and has a small number of defects (¾). As a result, formation of an alignment between the optically anisotropic layers can be omitted. Film to reduce manufacturing costs. In the present invention, the first to nth steps (a) to (c) can be independently selected for conditions and materials. For example, the rubbing direction in step (a), or the step ( b) The type and the like of the liquid crystalline compound used may be the same or different from the 1st to η times. Each step and the various materials and materials used in each step will be described in more detail below. [Transparent carrier [The transparent carrier is used in the present invention. A transparent carrier refers to a carrier having a light transmittance of 80% or more. In addition, it is preferable that the wavelength dispersion of the transparent carrier is small, and specifically, θ R e 4 0 0 / R e 7 〇〇 Ratio is less than 1.2 In addition, the transparent carrier is preferably one with small optical anisotropy, and specifically, the in-plane hysteresis (Re) is preferably 20 nm or less, and more preferably 10 nm or less. The polymer carrier is thinner than the carrier. Polymers such as cellulose, a carbon phthalate ester, polymaple, polyether mill, polyacrylate, and polymethacryl-1 0-200415373. Cellulose ester is preferred, and the more preferred is ethyl acetate. Cellulose is the best, and triethyl cellulose is the best. Especially when triethyl cellulose is used, the degree of vinegarization is preferably 60.25 to 61.5. The polymer film is prepared by The solvent casting method is preferred. The invention uses a long roll carrier to continuously coat the optically anisotropic layer. After forming the optically anisotropic layer, it is preferably cut to the necessary size. The thickness of the transparent carrier is 20 ~ 500 μηι is better and more preferably 40 ~ 200. In addition, in order to improve the adhesion between the transparent carrier and the layer (adhesive layer, horizontal alignment film, vertical alignment film, or optically anisotropic layer) provided thereon, Surface treatment (such as glow discharge treatment, corona discharge) on a transparent carrier Treatment, ultraviolet (UV) treatment, flame treatment, saponification treatment), or an adhesive layer (undercoat layer) can be provided on a transparent carrier. The surface treatment is preferably a lane treatment. [Alignment film] The present invention continuously moves the above-mentioned transparent A support, and an alignment film is formed on the surface of the support. The alignment film has a function of making the liquid crystal compound in the optically anisotropic layer into a desired alignment state. The alignment film is produced by rubbing treatment of an organic compound (preferably a polymer). Alignment film with alignment function. The type of polymer that forms the alignment film is determined by the alignment of the liquid crystal compound (especially the average tilt angle). When the liquid crystal compound is aligned horizontally, the polymer whose surface energy does not decrease (General alignment polymer). Polymers which are better in the rubbing treatment such as polyvinyl alcohol, polyimide derivatives, and nylon. The rubbing treatment can change the pretilt angle of the liquid crystal compound with respect to the plane of the film by rubbing the surface of these polymer layers with paper or cloth several times in a certain direction. -11- 200415373 In order to improve the adhesion with the liquid crystal compound layer formed above, the 'alignment film preferably has a polymerizable group. The polymerizable group may introduce a repeating unit having a polymerizable group into a side chain, or introduce a substituent as a cyclic group. It is more preferable to use an alignment film that forms a chemical bond with a liquid crystal compound at the interface. 'This alignment film is described in Japanese Patent Application Laid-Open No. 9-15 2 5 0 9. The thickness of the alignment film is preferably 0.01 to 5 μm, and more preferably 0.05 to 3 μΐΏ. In the present invention, the surface of the alignment film formed on the surface of the transparent support or the optically anisotropic layer formed through steps (a) to (c) is rubbed (step (a)). [Friction treatment] The friction treatment can be performed at an arbitrary angle with respect to the MD direction of the long roll-shaped carrier. For the MD direction, the angle of the rubbing direction is preferably the same as the MD direction or the oblique direction. The angle of the tilt direction is preferably _ 4 5 degrees to + 45 degrees. The rubbing treatment can be performed by any method, but it is preferably performed by at least one rubbing roller. For example, a rubbing roller can be arranged on the table for conveying the long film in the MD direction at an arbitrary angle to the MD direction of the long film, and the film can be conveyed in the MD direction and the rubbing roller can be rotated to align the transparent carrier The film surface is rubbed. It is preferable to have a mechanism capable of freely adjusting the angle formed by the movement direction of the friction roller and the table. The rubbing roller refers to a roller that covers the surface with a suitable rubbing cloth. Next, a composition containing a liquid crystal compound is coated on the rubbed surface (step (b)), and the composition is hardened to form an optically anisotropic layer (step (c)). [Optical anisotropic layer made of liquid crystal compound]-12- 200415373 The liquid crystal compound used in step (b) of the present invention is preferably a rod-shaped liquid crystal compound or a disc-shaped liquid crystal compound, more preferably A rod-shaped liquid crystalline compound or a disc-shaped liquid crystalline compound having a polymerizable group. As the rod-like liquid crystalline compound, an azomethine group, a cyanobiphenyl group, a cyanophenyl ester group, a benzoate group, a cyclohexanecarboxylic acid benzoyl group, and a cyano basic group are used. 5 Hexamidines, cyano-substituted phenylpyrimidines, oxo-substituted phenylpyrimidines, phenyldioxanes, diphenylacetylenes, and -cyclohexylbenzonitrile are preferred. Not only the above low-molecular liquid crystal molecules but also local molecular liquid crystal molecules can be used. More preferably, the rod-like liquid crystalline compound having a low-molecular polymerizable group is a compound represented by the following general formula (I). Formula (I) Q1 — L1 — A ^ L3 — M — L4 — A2 — L2 — Q2 (where Q1 and Q2 each represent an independent polymerizable group, and L1, L2, L3, and L4 each represent a single bond or two Valence bonding group, at least one of L3 and l4 represents -0-C0-0 ·. A1 and A2 each represent a spacer with 2 to 20 carbon atoms, and μ represents a spacer) will be described in more detail below. This is a rod-shaped liquid crystalline compound having a polymerizable group represented by the formula (丨). However, each of Q1 and Q2 represents an independent polymerizable group. The polymerization reaction of the polymerizable group is preferably addition polymerization (including ring-opening polymerization) or condensation polymerization. It is preferred that the polymerizable group of g is a functional group capable of addition polymerization reaction or condensation polymerization reaction. The following are examples of polymerizable groups. [化 1]-1 3- 200415373 Η h3c.c ^ c. Η Η Et, 〇 ~ C ’Η

H5C ch3 h2cH5C ch3 h2c

Cl 、 h3c、c々c, ch3 Η f>Pr、c〜C、 Η HC〆人 〇 / \ h2c-ch,Cl, h3c, c々c, ch3 Η f > Pr, c ~ C, Η HC〆 人 〇 / \ h2c-ch,

HH

N / \ h2c-ch.N / \ h2c-ch.

•OH• OH

—SH—SH

一 COne C

OHOH

—s // v O OH N=C=0--S // v O OH N = C = 0

N=C=S L1、L2、L3及L4所示的二價鍵結基以N = C = S The divalent bond bases shown by L1, L2, L3, and L4 start with

、-c〇-、 -NR2- 、 -C0-0- 、-〇-C〇 -0-、 -c〇 、-0-C◦- 、-0-C0-NR2- > -NR2-C〇 -0 -、 -NR, -C〇-, -NR2-, -C0-0-, -〇-C〇-0-, -c〇, -0-C◦-, -0-C0-NR2- > -NR2-C〇 -0-, -NR

之二價鍵結基較佳。上述R2係爲碳原子數 氫原子。此時,L3及L4中至少一方爲- 0-C 上述式(I)中,Qi-L1-及 Q2-L2 -以 CH2=C(CH3)-C0-0-及 CH2=C(Cl)-C0-0-較 CH2=CH-C〇-〇-。 A1及A2係表示具有碳原子數2〜20之 子數2〜1 2脂肪族基較佳、更佳者爲伸烷 選自於-0 -、- s --NR2-、-NR2-C〇-2-CO-NR2-及單鍵 1〜7之烷基或 )-CO -(碳酸酯基) CH2=CH-C0-0-、 佳,更佳者爲 間隔基。以碳原 基。間隔基以鏈 -14- 200415373 狀較佳’可以含有不鄰接氧原子或硫原子。上述間隔基可 以具有取代基、亦可以鹵素原子(氟原子、氯原子、溴原子) 、氰基、甲基、乙基取代。 Μ所示之間隔基例如全部習知的間隔基。特別是以下述 式(I I )所示之基較佳。 式(II) 一(一W1—L5) — 其中,W1及W2係各表示獨立的二價環狀脂肪族基、二 價芳香族基或二價雜環基,L5係表示單鍵或鍵結基,鍵結 基之具體例如上述式(I )中L1〜L4所示基之具體例、及_ CH2-0-、-0-CH2-。η 係表示 1 或 2 或 3。 W1及W2例如1,4 -環己院二基、1,4 -伸苯基、嘧卩定-2,5 -二基、吡啶-2,5 -二基、1,3,4 -噻二唑-2,5 -二基、1,3 , 4 -噁二唑-2,5 -二基、萘-2, 6 -二基、萘-1,5 -二基、噻吩- 2,5-二基、噠畊-3 , 6 -二基。爲1 , 4 -環己烷二基時,有反式及順 序構造異構物,本發明可以爲任何異構物,亦可以任意比 例之混合物。以反式構造物更佳。W1及W2可各具有取代基 ,取代基例如鹵素原子(氟、氯、溴、碘)、氰基、碳原子 數1〜10之烷基(甲基、乙基、丙基等)、碳原子數1〜1〇 之院氧基(甲氧基、乙氧基等)、原子數1〜1〇之酸基(甲 醯基、乙醯基等)、碳原子數1〜10之烷氧基羰基(甲氧基 羰基、乙氧基羰基等)、碳原子數1〜10之醯氧基(乙醯氧 基、丙醯氧基等)、硝基、三氟甲基、二氟甲基等。 上述式(11)所示間隔基之基本架構中以下述例示者較 - 1 5 - 200415373Bivalent bond groups are preferred. The R2 is a carbon atom and a hydrogen atom. At this time, at least one of L3 and L4 is -0-C. In the above formula (I), Qi-L1- and Q2-L2-with CH2 = C (CH3) -C0-0- and CH2 = C (Cl)- C0-0- vs. CH2 = CH-C0-〇-. A1 and A2 indicate that they have a carbon number of 2 to 20 and a child number of 2 to 12. 2 Aliphatic radicals are preferred, and more preferred are alkylenes selected from -0, -s, -NR2-, -NR2-C〇- 2-CO-NR2- and the alkyl group of single bond 1 to 7) -CO- (carbonate group) CH2 = CH-C0-0-, preferably, more preferably a spacer. Based on carbon. The spacer is preferably in the form of a chain -14-200415373 'and may contain no adjacent oxygen or sulfur atoms. The spacer may have a substituent, or may be substituted with a halogen atom (fluorine atom, chlorine atom, bromine atom), a cyano group, a methyl group, or an ethyl group. The spacers shown by M are, for example, all conventional spacers. In particular, a base represented by the following formula (I I) is preferred. Formula (II) One (one W1-L5) — wherein W1 and W2 each represent an independent divalent cyclic aliphatic group, a divalent aromatic group, or a divalent heterocyclic group, and L5 represents a single bond or a bond Specific examples of the group and the bonding group include specific examples of the groups represented by L1 to L4 in the formula (I), and _CH2-0-, -0-CH2-. η means 1 or 2 or 3. W1 and W2 are, for example, 1,4-cyclohexyldiyl, 1,4-phenylene, pyrimidine-2,5-diyl, pyridine-2,5-diyl, 1,3,4-thiadi Azole-2,5-diyl, 1,3,4-oxadiazole-2,5-diyl, naphthalene-2,6-diyl, naphthalene-1,5-diyl, thiophene-2,5- Diji, Dagen-3, 6-diji. In the case of 1,4-cyclohexanediyl, there are trans and sequential structural isomers. The present invention may be any isomers or mixtures of any proportion. It is better to use a trans structure. W1 and W2 may each have a substituent. Examples of the substituent include a halogen atom (fluorine, chlorine, bromine, iodine), a cyano group, an alkyl group (methyl, ethyl, propyl, etc.) having 1 to 10 carbon atoms, and a carbon atom. An oxy group (such as methoxy, ethoxy, etc.) having a number of 1 to 10, an acid group (such as a methyl group, an ethoxy group, etc.) having 1 to 10 atoms, and an alkoxy group having 1 to 10 carbon atoms Carbonyl (methoxycarbonyl, ethoxycarbonyl, etc.), fluorenyloxy (acetoxy, propionyloxy, etc.) having 1 to 10 carbon atoms, nitro, trifluoromethyl, difluoromethyl, etc. . The basic structure of the spacer shown in the above formula (11) is compared with the following example-1 5-200415373

-16- 200415373 下述係爲上述式(i)所示化合物之具體例,惟本發明不 受此等所限制。而且,式(I )所示化合物可以特表平11-5 1 3 0 1 9號公報記載的方法合成。 【化3】-16- 200415373 The following are specific examples of the compound represented by the above formula (i), but the present invention is not limited thereto. The compound represented by the formula (I) can be synthesized by the method described in Japanese Patent Publication No. 11-5 1 3 0 1. [Chemical 3]

200415373 【化4】 1-8 Ο200415373 [Chem 4] 1-8 Ο

-18- 200415373-18- 200415373

M6 〇M6 〇

-19- 200415373 於本發明中以使用圓盤狀液晶性化合物作爲液晶性化 合物較佳。圓盤狀液晶性化合物對聚合物薄膜面而言以實 質上垂直(5 0〜9 0度範圍之平均傾斜角)配向較佳。圓盤狀 液晶性化合物於各種文獻(C . D e s t r a d e e t a 1 .,Μ ο 1 . C 1. y s r . Liq. Cryst. , vol. 71 , pagelll(1981);日本化學會編、 季刊化學總說、No · 22、液晶化學、第5章、第1 〇章第2 節(1994); B· Kohne et al.,Angew. Chem· Soc· Chem. Comm. ,pagel794(1985) ; J . Zhang e t al.,J . Am . Chem· Soc· ,vol,1 16,page26 5 5 ( 1 9 94 ))中記載。有關圓盤狀液晶性 化合物記載於特開平8 - 2 7284號公報。 圓盤狀液晶性化合物以可藉由聚合下具有聚合性基較 佳。例如在圓盤狀液晶性化合物之圓盤狀芯上鍵結作爲取 代基的聚合性基的構造,惟在圓盤狀芯上直接鍵結聚合性基 時,於聚合反應中不易保持配向狀態。此處,以圓盤狀芯與 聚合性基之間具有鍵結基的構造較佳。換言之,具有聚合性 基之圓盤狀液晶性化合物以下述式(I I I )所示化合物較佳。 原文P15之式(III) 其中,D係爲圓盤狀芯,L係表示二價鍵結基,P係爲 聚合性基,η係表示4〜1 2之整數。 上述式(I I I )中圓盤狀芯(D )、二價鍵結基(L )、及聚合 性基(Ρ)之較佳具體例各爲特開200 1 - 48 37號公報中記載的 (D1)〜(D15)、(L1)〜(L2 5)、(Ρ1)〜(Ρ18),同公報中記載 的內容可使用較佳。 - 20 - 200415373 此等液晶性化合物係在光學異方向性層中以實質上均 一配向較佳,更佳者實質上均一配向的狀態固定,最佳者 藉由聚合反應使液晶性分子固定。 爲具有聚合性基之棒狀液晶性化合物時,以實質上水 平配向固定化較佳。實質上水平係指棒狀液晶性化合物之 長軸方向與光學異方向性層面的平均角度(平均傾斜角)爲 〜4(Γ之範圍。可以使棒狀液晶性化合物傾斜配向,亦可 以徐徐地變化傾斜角(混合配向)。傾斜配向或混合配向時 ,平均傾斜角以0 °〜4 0。較佳。 爲具有聚合性基之圓盤狀液晶性化合物時,以實質上 垂直配向較佳。實質上垂直係指圓盤狀液晶性化合物之圓 盤面與光學異方向性層面的平均角度(平均傾斜角)爲50。〜 90°之範圍。可以使圓盤狀液晶性化合物傾斜配向,亦可以 徐徐地變化傾斜角(混合配向)。傾斜配向或混合配向時, 平均傾斜角以50°〜90。較佳。 本發明中進行η次步驟(a)〜步驟(c)(n爲2以上之整 數)以形成η層光學異方向性層,惟以各使第1次〜第^ 一 ! 次之步驟(a )〜步驟(c )形成光學異方向性層具有經由第2 次〜第η次步驟(a )〜步驟(c )所形成的光學異方向性層的 配向膜之功能時,於步驟(b )中以使用含有液晶性化合物、 與具有碳原子數9以下烴基的改質聚乙烯醇之組成物,經 由步驟(Ο形成光學異方向性層,然後於繼後的實施步驟(a ) 中對該光學異方向性層表面進行摩擦較佳。 說明有關與液晶性化合物同時使用的上述具有碳原子 - 2 1 - 200415373 數9以下烴基的改質聚乙烯醇。 較佳的改質聚乙烯醇係爲下述式(PX )所示者。 (PX) -(VA1) (HyD) y— (VAc) z — 其中,VA1係爲乙烯醇之重複單位,HyD係爲具有碳原 子數9以下烴基之重複單位,v a c係爲醋酸乙烯酯重複單位 ,X係爲20〜95質量%(較佳者爲25〜90質量%),y係爲2 〜9 8質量% (較佳者爲丨〇〜8 〇質量% ),z係爲0〜3 0質量% ( 較佳者爲2〜2 0質量% )。-19- 200415373 In the present invention, it is preferable to use a discotic liquid crystalline compound as the liquid crystalline compound. The discotic liquid crystalline compound is preferably aligned at a substantially vertical angle (average inclination angle in the range of 50 to 90 degrees) to the polymer film surface. Discotic liquid crystalline compounds have been published in various literatures (C. Destradeeta 1, M ο 1. C 1. ysr. Liq. Cryst., Vol. 71, pagelll (1981); edited by the Chemical Society of Japan, quarterly journal of general chemistry, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Pagel794 (1985); J. Zhang et al. J. Am. Chem. Soc., Vol. 116, page 26 5 5 (19 94)). The discotic liquid crystalline compound is described in Japanese Patent Application Laid-Open No. 8-2 7284. It is preferred that the discotic liquid crystalline compound has a polymerizable group under polymerization. For example, a structure in which a polymerizable group as a substituent is bonded to a discotic core of a discotic liquid crystalline compound. However, when a polymerizable group is directly bonded to the discotic core, it is difficult to maintain an alignment state during a polymerization reaction. Here, a structure having a bonding group between the disc-shaped core and the polymerizable group is preferred. In other words, a discotic liquid crystalline compound having a polymerizable group is preferably a compound represented by the following formula (I I I). In the original formula (III) of P15, D is a disc-shaped core, L is a divalent bonding group, P is a polymerizable group, and η is an integer of 4 to 12. Preferable specific examples of the disc-shaped core (D), the divalent bonding group (L), and the polymerizable group (P) in the above formula (III) are each described in Japanese Patent Application Laid-Open No. 200 1-48 37 ( D1) to (D15), (L1) to (L2 5), (P1) to (P18), the content described in the bulletin can be used preferably. -20-200415373 These liquid crystal compounds are preferably substantially uniformly aligned in the optically anisotropic layer, more preferably, they are fixed in a substantially uniformly aligned state, and the best is to fix the liquid crystal molecules by polymerization. In the case of a rod-like liquid crystalline compound having a polymerizable group, it is preferable to be fixed by substantially horizontal alignment. Substantially horizontal means that the average angle (average tilt angle) of the major axis direction of the rod-like liquid crystalline compound and the optically anisotropic plane is in the range of ~ 4 (Γ. The rod-like liquid crystalline compound can be tilted or slowly Change the tilt angle (mixed alignment). When tilted alignment or mixed alignment, the average tilt angle is from 0 ° to 40. It is preferred. When it is a discotic liquid crystalline compound with a polymerizable group, it is preferably aligned substantially vertically. Substantially vertical means that the average angle (average tilt angle) between the disc surface and the optically anisotropic plane of the discotic liquid crystalline compound is in the range of 50. to 90 °. The tilt angle (mixed alignment) can be changed slowly. When tilted alignment or mixed alignment, the average tilt angle is 50 ° ~ 90. It is preferred. In the present invention, η steps (a) to (c) (n is 2 or more) (Integer)) to form the η layer optically anisotropic layer, but each of the first to the first ^! The next step (a) to step (c) to form the optically anisotropic layer has the second to nth Sub-step (a) ~ When the function of the alignment film of the optically anisotropic layer formed in step (c) is used in step (b), a composition containing modified polyvinyl alcohol containing a liquid crystal compound and a hydrocarbon group having a carbon number of 9 or less is used, It is better to form the optically anisotropic layer through step (0), and then to rub the surface of the optically anisotropic layer in the subsequent step (a). It will be explained that the above-mentioned carbon atom-2 which is used simultaneously with the liquid crystalline compound is used. 1-200415373 Modified polyvinyl alcohol having a hydrocarbon group of 9 or less. A preferred modified polyvinyl alcohol is one represented by the following formula (PX). (PX)-(VA1) (HyD) y-(VAc) z — Among them, VA1 is a repeating unit of vinyl alcohol, HyD is a repeating unit having a hydrocarbon group having a carbon number of 9 or less, vac is a vinyl acetate repeating unit, and X is 20 to 95% by mass (preferably 25 to 25%) 90% by mass), y is 2 to 98% by mass (preferably 丨 0 to 80% by mass), and z is 0 to 30% by mass (preferably 2 to 20% by mass).

HyD所含的烴基係爲脂肪族基、芳香族基或此等組合。 脂肪族基可以環狀、支鏈或直鏈狀。脂肪族基以烷基(可以 爲環院基)或烯基(可以爲環烯基)較佳。上述烴基可以具有 取代基。上述烴基之碳原子數爲1〜9,以1〜8較佳° 之較丨土例如以下述式(HyD-I)及(HyD-II)表示。 (HyD-I)The hydrocarbon group contained in HyD is an aliphatic group, an aromatic group, or a combination thereof. The aliphatic group may be cyclic, branched, or linear. The aliphatic group is preferably an alkyl group (which may be a cycloalkenyl group) or an alkenyl group (which may be a cycloalkenyl group). The hydrocarbon group may have a substituent. The number of carbon atoms of the above-mentioned hydrocarbon group is 1 to 9, and 1 to 8 is preferred. Comparative soil is represented by the following formulae (HyD-I) and (HyD-II), for example. (HyD-I)

(HyM)(HyM)

其中’ L1係爲選自於_〇-、-co-、-S〇2_、-NH-、伸烷 基、伸芳基及此等組合之二價鍵結基,L2係選自於單鍵、 或、-C0—、-S02-、-NH-、伸烷基、伸芳基及此等組合 之二價鍵結基,R1及R2係各爲碳原子數9以下之烴菡。下 述係爲藉由上述組合形成的二價鍵結基例。 L1 : -22- 200415373 L2 : -0- C〇-伸烷基- 〇-L3 : -0-C0-伸烷基-ΟΟ-ΝΗ-ΐ^: -〇-C〇-伸烷基 -NH-S02-伸芳基 -0-L5 :-伸芳基-NH-C〇_ L6 :-伸芳基- C〇-〇- L7 :-伸芳基-C0-NH- L 8 :-伸芳基-〇- L9 : -0-C0-NH-伸芳基-NH-C0- 下述係爲HyD之具體例。Where 'L1 is a bivalent bonding group selected from _〇-, -co-, -S〇2_, -NH-, alkylene, arylene, and combinations thereof, and L2 is selected from a single bond , Or, -C0-, -S02-, -NH-, alkylene, arylene, and divalent bonding groups of these combinations, R1 and R2 are each a hydrocarbon fluorene having 9 or less carbon atoms. The following is an example of a divalent bond formed by the above combination. L1: -22- 200415373 L2: -0- C〇-alkylene- 〇-L3: -0-C0-alkylene-〇Ο-ΝΗ-ΐ ^: -〇-C〇-alkylene-NH- S02-arylene-0-L5: -arylene-NH-CO-L6: -arylene-Co--0-L7: -arylene-C0-NH-L8: -arylene -〇- L9: -0-C0-NH-arylene-NH-C0- The following are specific examples of HyD.

HyD-l Η —C —C 一 h2 ό 丫 c2h5 〇HyD-l Η —C —C a h2 ό aya c2h5 〇

HyD-2HyD-2

HyD-3HyD-3

H —C-C— 一C-C—H —C-C— One C-C—

H 2 O C3H7T 〇 V1H 2 O C3H7T 〇 V1

HyD-4 H —C-C— C4H9 h2 0 c6h13T oHyD-4 H —C-C— C4H9 h2 0 c6h13T o

HyD-5HyD-5

HyD - 6HyD-6

HyD-7HyD-7

HyD-8HyD-8

HH

HH

H —C-C— 〇H —C-C— 〇

OO

O 〇O 〇

H -C—C一 LJ 11 I 鬥 m2 〇 N 丫、c3h7 〇H -C—C-LJ 11 I bucket m2 〇 N y, c3h7 〇

HyD-9HyD-9

HyD-10HyD-10

HH

一C 一C— H U 1 H2〇 一 N -C-C —One C one C— H U 1 H2〇 one N -C-C —

TO TOTO TO

HyD-11 H2 HyD>12 H2 HyD-13 H2^CY^Y 0 0 0 0 0 O CH3 C3H7 -23 200415373HyD-11 H2 HyD > 12 H2 HyD-13 H2 ^ CY ^ Y 0 0 0 0 0 O CH3 C3H7 -23 200415373

上述改質聚乙烯醇之聚合度以200〜5000較佳、更佳 者爲300〜3000。聚合物之分子量以900〜200000較佳、更 佳者爲1 3 0 0 0〜1 3 0 0 0 0。可以倂用二種以上聚合物。 於下述中爲較佳的改質聚乙烯醇之具體例,惟本發明 不受此等所限制。 PX-l:—(VAl)21—(HyD—13)77-(VAc)2 — PX—2 : -(VA1) 14-·(HyD- 1 3) S4— (VAc) 2- PX—3 : -(VA1) 21 —(HyD - 16) 77 -(VAc) 2 - PX-4 卜(VA1) 34— (HyD—l 5) (VAc) 2- PX-5 : - (VA1) (HyD~l 2) (VAc) 2- PX~6 : - (VAl) (HyD-1 4).52~ (VAc) 2- PX—7:—(VAl)21-(HyD—2)77—(VAc)2 — PX — 8 : -(VA I ) —(Hy D — 8) S5- (VAc) 2 — PX — 9 : -(VA 1 ) 21-(HyD - 1 3) 77-(VAc) 2- PX一10: — (VAl) 46一 (HyD—9) 52— (VAc) 2一 上述改質聚乙烯醇之添加量對該控制劑之添加的液晶 性化合物而言以添加〇 · 〇5〜1 〇質量%較佳,更佳者爲〇 . i〜 5質量% 〇 -24- 200415373 上述改質聚乙烯醇可倂用縮合劑。縮合劑以在末端具 有異氰酸酯基或甲醯基之化合物較佳。於下述中爲具體的 化合物,惟不受此等所限制。 聚(1,4 - 丁二醇)、異佛爾酮二異氰酸酯末端 聚(1,4 - 丁二醇)、伸甲基-2,4 _二異氰酸酯末端 聚(己二酸乙二酯)、伸甲基-2,4 _二異氰酸酯末端 聚(丙二醇)、伸甲基-2 , 4 _二異氰酸酯末端 1,6 -二異氰酸酯己烷 1,8 -二異氰酸酯辛烷 1,1 2 -二異氰酸酯十二烷 異佛爾酮二異氰酸酯 乙二醛 步驟(b )以使上述液晶性化合物、視其所需上述改質聚 乙烯醇、及下述聚合起始劑或其他添加劑溶解於溶劑的塗 覆液塗覆於摩擦表面較佳。調製塗覆液使用的溶劑以使用 有機溶劑較佳。有機溶劑例如醯胺(例如N,N -二甲基甲醯胺) 、亞碾(例如二甲基亞碾)、雜環化合物(例如吡啶)、烴(例 如苯、己烷)、鹵化烷基(例如氯仿、二氯甲烷)、酯(例如 醋酸甲酯、醋酸丁酯)、酮(例如丙酮、甲基乙酮)、醚(例 如四氫呋喃、1,2 -二甲氧基乙烷)。以鹵化烷基及酮較佳。 可倂用二種以上有機溶劑。塗覆液之塗覆可藉由習知方法( 例如押出塗覆法、直接照相凹版塗覆法、可逆照相凹版塗 覆法、塑模塗覆法)實施。 [液晶性化合物之配向狀態固定化] -25- 200415373 步驟(C )係使上述塗覆液塗覆於摩擦表面後,硬化形成 光學異方向性層。液晶性化合物係視配向膜之性質及摩擦 方向而定,成所定配向。在維持該配向狀態下,使液晶性 化合物固定,且形成光學異方向性層較佳。固定化以使導 入液晶性化合物之聚合性基藉由聚合反應予以實施較佳。 聚合反應包含使用熱聚合起始劑、藉由熱曝曬以開始聚合 反應之熱聚合反應,與使用光聚合起始劑、藉由活性放射 線曝曬以開始聚合反應之光聚合反應,以光聚合反應更佳 。光聚合起始劑例如α-羰基化合物(美國專利2367 66 1號、 同2 3 6 7 6 7 0號各說明書記載)、偶姻醚(美國專利2448828 號說明書記載)、α -烴基取代芳香族偶姻化合物(美國專利 2 722 5 1 2號說明書記載)、多核醌化合物(美國專利3046 1 27 號、同2 9 5 1 7 5 8號各說明書記載)、三芳基咪唑二聚物與ρ -胺基苯基酮之組合(美國專利3 5 49 3 67號說明書記載)、吖 啶及吩畊化合物(特開昭 6 0 - 1 0 5 6 6 7號公報、美國專利 42 3 9850號說明書記載)及噁二唑化合物(美國專利42 1 2970 號說明書記載)。 光聚合起始劑之使用量以塗覆液之固成份的0 . 0 1〜20 質量%較佳,更佳者爲0 . 5〜5質量%。爲使液晶性化合物聚 合之光照射以使用紫外線較佳。照射能量以20m:T / cm2〜 5 0J/cm2較佳,更佳者爲1〇〇〜800mJ/cm2。爲促進光聚合反 應時,在加熱條件下實施光照射。光學異方向性層之厚度 以0.1〜ΙΟμιτι較佳、更佳者爲0.5〜5μπι。 [相位差板之光學性質] 200415373 藉由上述步驟形成的光學異方向性層,於特定波長中 以實質上達成π或π / 2之相位差板較佳。於特定波長(λ )中 爲達成相位差π時,可使特定波長(λ )中測定的偏光子之遲 滯値調整爲λ / 2,於特定波長(λ )中爲達成相位差π / 2時, 可使特定波長(λ )中測定的偏光子之遲滯値調整爲λ / 4。惟 於可視光範圍之中間波長的5 5 0nm中,一方之相位差達成π 及另一方達成π / 2較佳。例如重複2次步驟(a )〜步驟(c ) 形成2層光學異方向性層時,一方之光學異方向性層(第1 光學異方向性層)以波長5 5 0nm測定的遲滯値爲240〜290nm 較佳,更佳者爲2 5 0〜280nm,另一方之光學異方向性層(第 2光學異方向性層)以波長 5 5 0nm測定的遲滯値以110〜 145nm較佳、更佳者爲120〜140nm。 遲滯値係指對自光學異方向性層之法線方向入射的光 而言面內之遲滯値。具體而言係爲藉由下述式定義的値。 遲滯値(Re) = (nx-ny) Xd 其中,nx及ny係爲光學異方向性層之面內主折射率, d係爲光學異方向性層之厚度(n m )。 上述第1及第2光學異方向性層之厚度係各層在具有 企求的遲滯値範圍內任意決定。例如,使相同棒狀液晶性 化合物水平配向,各形成第1及第2光學異方向性層時, 以使相位差爲π之光學異方向性層的厚度爲相位差7C / 2之光 學異方向性的厚度的倍率較佳。各光學異方向性層之厚度 的較佳範圍係視使用的液晶性化合物之種類而不同.,一般 而言爲0.1〜ΙΟμηι,較佳0.2〜0.8μηι,更佳0.5〜5μΐΏ。 - 27_ 200415373 [相位差板之構成] 第2圖係爲使用棒狀液晶性化合物時本發明相位差板 之典型構成之示意圖。第2圖之基本相位差板係除長條狀 透明載體(S)及第1之光學異方向性層(A)外,另具有第2 光學異方向性層(B )。第1光學異方向性層(A )之相位差爲π 。第2光學異方向性層(Β)之相位差爲π/2。透明載體(S)之 長度方向與第1光學異方向性層(A )的遲相軸(a )所成的角 度爲30°。第2光學異方向性層(B)之遲相軸(b)與第1光學 異方向性層(A )之遲相軸(a )的角度.(γ)爲6 0。。第2圖所示 第1光學異方向性層(Α)及第2光學異方向性層(Β)各包含 棒狀液晶性化合物(c 1及c 2 )。棒狀液晶性化合物c 1及c 2 朝水平配向。棒狀液晶性化合物之長軸方向爲光學異方向 性層之遲相軸(a及b )。 另外,第2圖中爲成本低時,可以爲在較靠近透明載 體S上設置光學異方向性層A(相位差板爲π )、在其外側設 置光學異方向性層Β (相位差爲π / 2 )之相位差板及圓偏光板 的構成,可以使光學異方向性層Α與光學異方向性層Β之 位置互相變換的構成,以在較靠近透明載體S上設置光學 異方向性層A (相位差板爲π )、在其外側設置光學異方向性 層Β (相位差爲π / 2 )之構成較佳。 於下述第3圖中亦相同。 [圓偏光板] 本發明之相位差板可利用作爲反射型液晶顯示裝置使 用的λ / 4、光碟記錄用拾取器使用的λ / 4、或作爲抗反射膜 -28- 200415373 之λ / 4,特別有用。λ / 4板一般使用與偏光膜組合的圓偏光 板。因此,組合相位差板與偏光膜之圓偏光板之構成時, 可容易組入如反射型液晶顯示裝置之用途裝置。偏光膜有 碘系偏光膜、使用二色性染料之染料系偏光膜或聚烯系偏 光膜。碘系偏光膜及染料系偏光膜一般使用聚乙烯醇系薄 膜予以製作。 [圓偏光板之構成] 第3圖係爲使用本發明之相位差板(使用棒狀液晶性化 合物之相位差板)之圓偏光板的典型構成示意圖。第3圖所 示之圓偏光板係除第2圖所示的透明載體(S )、第1光學異 方向性層(A )及第2光學異方向性層(B )外,另具有偏光膜(P ) 。偏光膜之偏光透射軸(p )係爲透明載體(S )之長度方向(s ) 所成角度爲4 5 °,偏光透射軸與光學異方向性層(A )之遲相 軸(a )所成角度爲1 5 °,與第2圖相同地,光學異方向性層(A ) 之遲相軸(a )與光學異方向性層(B )之遲相軸(b )所成角度爲 6 0°。第3圖所示第1光學異方向性層(A)及第2光學異方 向性層(B )包含棒狀液晶性化合物(c 1及c 2 )。棒狀液晶性 化合物(c 1及c 2 )各朝水平配向。棒狀液晶性化合物(c 1及 c2)之長度方向相當於光學異方向性層(A及B)面內之遲相 軸(a及b )。 有關與本發明之相位差板組合的偏光膜,沒有特別的 限制,可使用碘系偏光膜、使用二色性染料之染料系偏光 膜或聚烯系偏光膜。碘系偏光膜及染料系偏光膜,一般使 用聚乙烯醇系薄膜製造。對本發明相位差板之透明載體長 -2 9 - 200415373 度方向而言以使偏光膜之透射軸成4 5。積層較佳。對長度方 向而言使用實質上在45。方向具有偏光之透射軸的偏光膜( 以下_爲45。偏光膜)時’不需調整積層時之角度,可容易 地製作本發明之圓偏光板。由延伸薄膜所成偏光膜之透射 軸’由於實質上與延伸方向一致,使薄膜對長度方向而言4 5。 方向延伸處理,可製作4 5。偏光膜。如此實質上朝4 5。方 向具有偏光透射軸之偏光膜(以下稱爲4 5。偏光膜)可藉由特 開2002 - 865 54號公報中記載藉由傾斜延伸方法製作,可參 考桌0 0 0 9欄〜第0 0 4 5欄記載的條件、使用裝置之構成等 製作。 有關作爲偏光膜使用的較佳聚合物薄膜,沒有特別的 限制,可使用熱塑性、由適當聚合物所成的薄膜。聚合物 例如聚乙烯醇(PV A )、聚碳酸酯、纖維素醯酸酯、聚碾等。 聚合物以使用PVA較佳。PVA —般爲使聚醋酸乙烯酯皂化者 ’例如亦可含有如不飽和羧酸、不飽和磺酸、烯烴類、乙 烯醚類之可與醋酸乙烯酯共聚合的成分。而且,可使用含 有乙醯乙醯基、磺酸基、羧基、環氧烷基等之改質PVA。 PVA之皂化度沒有特別的限制,就溶解性等而言80〜 lOOmol%較佳、更佳者爲 90〜lOOmol%。此外,PVA之聚合 度沒有特別的限制,以1 000〜1 0000較佳,更佳者爲1500 〜50 00。The polymerization degree of the modified polyvinyl alcohol is preferably 200 to 5,000, and more preferably 300 to 3,000. The molecular weight of the polymer is preferably 900 to 200,000, and more preferably 1 3 0 0 to 1 3 0 0 0. Two or more polymers can be used. Specific examples of preferred modified polyvinyl alcohols are described below, but the present invention is not limited thereto. PX-l :—( VAl) 21— (HyD—13) 77- (VAc) 2 — PX—2:-(VA1) 14- · (HyD- 1 3) S4— (VAc) 2- PX-3: -(VA1) 21 — (HyD-16) 77-(VAc) 2-PX-4 (VA1) 34 — (HyD—l 5) (VAc) 2- PX-5:-(VA1) (HyD ~ l 2) (VAc) 2- PX ~ 6:-(VAl) (HyD-1 4) .52 ~ (VAc) 2- PX—7 :—( VAl) 21- (HyD-2) 77— (VAc) 2 — PX — 8:-(VA I) — (Hy D — 8) S5- (VAc) 2 — PX — 9:-(VA 1) 21- (HyD-1 3) 77- (VAc) 2- PX 一10: — (VAl) 46— (HyD—9) 52— (VAc) 2—The added amount of the modified polyvinyl alcohol described above is added to the liquid crystal compound of the control agent in an amount of 0.5 to 0.5 The mass% is better, and more preferably 0.1 to 5 mass%. 〇-24- 200415373 The above modified polyvinyl alcohol can be used as a condensing agent. The condensing agent is preferably a compound having an isocyanate group or a methyl group at the terminal. The following are specific compounds, but are not limited thereto. Poly (1,4-butanediol), isophorone diisocyanate-terminated poly (1,4-butanediol), methyl-2,4-diisocyanate-terminated poly (ethylene adipate), Methylene-2,4-diisocyanate-terminated poly (propylene glycol), Methylene-2,4-diisocyanate-terminated 1,6-diisocyanate hexane 1,8-diisocyanate octane 1,1,2-diisocyanate Coating of dodecane isophorone diisocyanate glyoxal in step (b) to dissolve the liquid crystalline compound, the modified polyvinyl alcohol as required, and the following polymerization initiator or other additives in a solvent Liquid coating on the friction surface is preferred. The solvent used in the coating solution is preferably an organic solvent. Organic solvents such as ammonium (eg, N, N-dimethylformamide), methylene (eg, dimethyl methylene), heterocyclic compounds (eg, pyridine), hydrocarbons (eg, benzene, hexane), halogenated alkyl (E.g. chloroform, dichloromethane), esters (e.g. methyl acetate, butyl acetate), ketones (e.g. acetone, methyl ethyl ketone), ethers (e.g. tetrahydrofuran, 1,2-dimethoxyethane). Halogenated alkyl and ketones are preferred. Two or more organic solvents can be used. The coating liquid can be applied by conventional methods (for example, extrusion coating method, direct photogravure coating method, reversible photogravure coating method, and mold coating method). [Fixing the alignment state of the liquid crystal compound] -25- 200415373 Step (C) is to apply the coating liquid to the friction surface, and then harden to form an optically anisotropic layer. The liquid crystalline compound depends on the nature of the alignment film and the rubbing direction, and becomes a predetermined alignment. While maintaining the alignment state, it is preferable to fix the liquid crystal compound and form an optically anisotropic layer. The immobilization is preferably performed by polymerizing a polymerizable group into which a liquid crystal compound is introduced. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and initiating a polymerization reaction by heat exposure, and a photopolymerization reaction using a photopolymerization initiator and initiating a polymerization reaction by exposure to active radiation, and the photopolymerization reaction is more effective. good. Photopolymerization initiators, for example, α-carbonyl compounds (described in US Pat. No. 2,367, 66 and 2 3 6 7 6 70), indole ethers (described in US Pat. No. 2448828), and α-hydrocarbon-substituted aromatics Marriage compound (described in US Patent No. 2 722 5 1 2), polynuclear quinone compound (US Patent No. 3046 1 27, described in the same specification as No. 2 9 5 1 7 5 8), triarylimidazole dimer and ρ- Combinations of aminophenyl ketones (described in US Patent No. 3 5 49 3 67), acridine and phenoxine compounds (Japanese Patent Publication No. 6 0-1 0 5 6 6 7 and US Patent No. 42 3 9850 ) And oxadiazole compounds (described in US Patent No. 42 1 2970). The amount of the photopolymerization initiator used is preferably from 0.01 to 20% by mass of the solid content of the coating solution, and more preferably from 0.5 to 5% by mass. In order to irradiate the liquid crystal compound with light, ultraviolet rays are preferably used. The irradiation energy is preferably 20 m: T / cm2 to 50 J / cm2, and more preferably 100 to 800 mJ / cm2. In order to promote the photopolymerization reaction, light irradiation is performed under heating conditions. The thickness of the optically anisotropic layer is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm. [Optical properties of retardation plate] 200415373 The optical anisotropic layer formed by the above steps is preferably a retardation plate that achieves substantially π or π / 2 at a specific wavelength. When the phase difference π is reached at a specific wavelength (λ), the hysteresis 値 of the polarized photons measured at the specific wavelength (λ) can be adjusted to λ / 2, and when the phase difference π / 2 is reached at a specific wavelength (λ) , The hysteresis 値 of the polarized photons measured at a specific wavelength (λ) can be adjusted to λ / 4. However, at 550 nm, which is the middle wavelength of the visible light range, it is preferable that one of the phase difference reaches π and the other reaches π / 2. For example, when repeating steps (a) to (c) twice to form two optically anisotropic layers, the retardation chirp of one optically anisotropic layer (the first optically anisotropic layer) measured at a wavelength of 5 50 nm is 240. ~ 290nm is more preferred, and more preferably is 250 ~ 280nm. The other optically anisotropic layer (second optically anisotropic layer) is measured at a wavelength of 5500nm, and the hysteresis is preferably 110 ~ 145nm. It is 120 ~ 140nm. The hysteresis chirp is the in-plane hysteresis for light incident from the normal direction of the optically anisotropic layer. Specifically, it is 値 defined by the following formula. Hysteresis (Re) = (nx-ny) Xd where nx and ny are the in-plane principal refractive index of the optically anisotropic layer, and d is the thickness (n m) of the optically anisotropic layer. The thicknesses of the first and second optically anisotropic layers are determined arbitrarily within the range of the desired hysteresis. For example, when the same rod-shaped liquid crystalline compound is aligned horizontally and the first and second optically anisotropic layers are formed, the thickness of the optically anisotropic layer having a phase difference of π is an optically different direction having a phase difference of 7C / 2 The thickness of the thickness is better. The preferred range of the thickness of each optically anisotropic layer varies depending on the type of liquid crystal compound used. Generally, it is 0.1 to 10 μm, preferably 0.2 to 0.8 μm, and more preferably 0.5 to 5 μΐΏ. -27_ 200415373 [Configuration of retardation plate] Fig. 2 is a schematic diagram of a typical configuration of the retardation plate of the present invention when a rod-shaped liquid crystalline compound is used. The basic retardation plate in FIG. 2 includes a long transparent carrier (S) and a first optically anisotropic layer (A), and a second optically anisotropic layer (B). The phase difference of the first optically anisotropic layer (A) is π. The phase difference of the second optically anisotropic layer (B) is π / 2. The angle formed by the longitudinal direction of the transparent carrier (S) and the late phase axis (a) of the first optically anisotropic layer (A) was 30 °. The angle between the late phase axis (b) of the second optical anisotropic layer (B) and the late phase axis (a) of the first optical anisotropic layer (A). (Γ) is 60. . As shown in Fig. 2, each of the first optically anisotropic layer (A) and the second optically anisotropic layer (B) contains a rod-like liquid crystalline compound (c 1 and c 2). The rod-like liquid crystalline compounds c 1 and c 2 are aligned horizontally. The major axis direction of the rod-shaped liquid crystalline compound is the slow phase axis (a and b) of the optically anisotropic layer. In addition, in the second figure, when the cost is low, an optically anisotropic layer A (a phase difference plate is π) may be provided on the transparent carrier S, and an optically anisotropic layer B (a phase difference π) may be provided on the outer side thereof. / 2) The configuration of the retardation plate and the circular polarizer can change the positions of the optically anisotropic layer A and the optically anisotropic layer B to each other, so as to provide an optically anisotropic layer on a transparent carrier S. A (phase difference plate is π), and an optically anisotropic layer B (phase difference is π / 2) is preferably provided on the outside. The same applies to the third figure below. [Circular Polarizer] The retardation plate of the present invention can use λ / 4 used as a reflective liquid crystal display device, λ / 4 used in a pickup for optical disc recording, or λ / 4 used as an anti-reflection film -28- 200415373. Especially useful. The λ / 4 plate is generally a circular polarizer combined with a polarizing film. Therefore, when the structure of a circular polarizing plate that combines a retardation plate and a polarizing film is combined, it can be easily incorporated into a device such as a reflective liquid crystal display device. The polarizing film includes an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, or a polyolefin-based polarizing film. Iodine-based polarizing films and dye-based polarizing films are generally produced using polyvinyl alcohol-based films. [Configuration of Circular Polarizing Plate] FIG. 3 is a schematic diagram showing a typical configuration of a circular polarizing plate using the retardation plate (a retardation plate using a rod-shaped liquid crystal compound) of the present invention. The circular polarizing plate shown in FIG. 3 has a polarizing film in addition to the transparent carrier (S), the first optically anisotropic layer (A), and the second optically anisotropic layer (B) shown in FIG. (P). The polarization transmission axis (p) of the polarizing film is the angle formed by the length direction (s) of the transparent carrier (S) at 45 °, and the polarization transmission axis and the late phase axis (a) of the optically anisotropic layer (A). The angle is 15 °. As in Figure 2, the angle between the late phase axis (a) of the optically anisotropic layer (A) and the late phase axis (b) of the optically anisotropic layer (B) is 6 0 °. The first optically anisotropic layer (A) and the second optically anisotropic layer (B) shown in Fig. 3 include rod-like liquid crystalline compounds (c 1 and c 2). The rod-like liquid crystalline compounds (c 1 and c 2) are aligned horizontally. The length direction of the rod-like liquid crystalline compounds (c 1 and c2) corresponds to the late phases (a and b) in the plane of the optically anisotropic layers (A and B). The polarizing film combined with the retardation plate of the present invention is not particularly limited, and an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, or a polyolefin-based polarizing film can be used. Iodine-based polarizing films and dye-based polarizing films are generally manufactured using polyvinyl alcohol-based films. For the transparent carrier of the retardation plate of the present invention in the direction of -2 9-200415373 degrees, the transmission axis of the polarizing film is 45. Lamination is better. For the length direction, use is substantially 45. In the case of a polarizing film having a transmission axis of polarized light in the direction (the following _ is 45. A polarizing film) ', the circular polarizing plate of the present invention can be easily manufactured without adjusting the angle during lamination. Since the transmission axis' of the polarizing film formed of the stretched film is substantially the same as the stretched direction, the film is 4 to 5 in the longitudinal direction. Directional extension processing can be made 4 5. Polarizing film. So essentially towards 4 5. A polarizing film having a polarized light transmission axis in the direction (hereinafter referred to as 4 5. A polarizing film) can be produced by an oblique extension method described in JP-A-2002-865 54, and can be referred to Table 0 0 0 9 to 0 0 45 The conditions described in the 5th column, the structure of the device used, etc. The polymer film used as the polarizing film is not particularly limited, and a thermoplastic film made of a suitable polymer can be used. Polymers such as polyvinyl alcohol (PV A), polycarbonate, cellulose acetate, polymill and the like. The polymer is preferably PVA. PVA is generally a saponifier of polyvinyl acetate. For example, it may contain components copolymerizable with vinyl acetate such as unsaturated carboxylic acid, unsaturated sulfonic acid, olefins, and vinyl ethers. Further, a modified PVA containing an ethylamidine group, a sulfonic acid group, a carboxyl group, an alkylene oxide group, or the like can be used. The degree of saponification of PVA is not particularly limited. In terms of solubility and the like, 80 to 100 mol% is preferable, and 90 to 100 mol% is more preferable. In addition, the degree of polymerization of PVA is not particularly limited, but is preferably 1,000 to 10,000, and more preferably 1,500 to 50,000.

使PVA染色製得偏光膜係可藉由染色步驟或氣相或液 相吸附進行。以液相進行時例如使用碘時在碘-碘化鉀水溶 液浸漬PVA薄膜進行。碘爲0.1〜20g/L、碘化鉀爲1〜100g/L - 30- 200415373 、碘與碘化鉀之重量比以1〜1 0 0較佳。染色時間以3 0〜 5 0 0 0秒較佳,液溫以5〜5 0 °C較佳。染色方法不僅可使用 浸漬、且可使用碘或染料溶液之塗覆或噴霧等任意手段。 染色步驟可以在延伸步驟前後,由於適當使膜膨脹的延伸 ,以延伸步驟前液相染色更佳。 除碘外以二色性色素染色較佳。二色性色素之具體例 如偶氮系色素、1,2 -二苯乙烯系、吡唑啉-5 -酮系色素、三 苯基甲烷系色素系色素、喹啉系色素、噁二哄系色素、噻 哄系色素、惠醒系色素等之色素系化合物。水溶性者較佳, 惟不受此所限制。而且,以在此等二色性分子中導入磺酸 基、胺基、羥基等之親水性取代基較佳。二色性分子之具 體例如 C. I. Direct. Yellowl2、C. I. Direct.Oraiige39 、C . I. Direct. 〇range72、C· I. Direct. Red39、C. I. Direct. Red79、C . I. Direct. Red81、C. I . Direct. Red83 、C . I. Direct. Red89、C. I. Direct. Vi〇let48、C. I . Direct. Blue67、C· I. Direct. Blue90、C. I. Direct. Gi:een59、C · I · Ac id · Red37 等,此外,日本特開平 1 - 161202 號公報、特開平1 - 1 72906號公報、特開平1 - 1 72907號公 報、特開平1 - 1 83602號公報、特開平1 - 2 48 1 0 5號公報、 特開平1 - 2 6 5 2 0 5號公報、特開平7 - 2 6 1 0 2 4號公報、各公 報記載的色素等。此等之二色性分子使用游離酸、或鹼金 屬鹽、銨鹽、胺類之鹽。此等之二色性分子可藉由配合2 種以上’可製造具有各種色相之偏光子。作爲偏光子或偏 光板使偏光軸直交時,使呈現黑色之化合物(色素)或呈現 200415373 黑色之各種二色性分子配合者,以單板透射率、偏光率皆 優異較佳。 使PVA延伸以製造偏光膜的過程係以使用在PVA中交 聯的添加物較佳。特別是使用本發明之傾斜延伸法時,以 延伸步驟出口 PVA沒有充分硬膜時,由於步驟之拉力、PVA 之配向方向脫離,延伸前步驟或延伸步驟中浸漬於交聯劑 溶液,或塗覆溶液、包含交聯劑較佳。交聯劑可使用美國 專利第23 2897號記載者,以硼酸類最佳。 而且,使PVA、聚氯化乙烯藉由脫水、脫氯形成聚烯構 造,藉由共軛雙鍵可得偏光、即製造聚次乙烯系偏光膜, 使用本發明之延伸法較佳。 藉由上述傾斜延伸法製造的偏光膜可直接以該形態作 爲偏光板使用於本發明之相位差板,在兩面或單面上貼附 保護薄膜使用作爲偏光板。保護薄膜之種類沒有特別的限 制,可使用纖維素乙酸酯、纖維素乙酸酯丁酸酯、纖維素 丙酸酯等之纖維素酯類、聚碳酸酯、聚烯烴、聚苯乙烯、 聚酯等,保護薄膜之遲滯値爲一定値以上時,由於偏光軸 與保護薄膜之配向軸傾斜脫離,直線偏光變化成橢圓偏光 ,故不爲企求。因此,以保護薄膜之遲滯値低者較佳。例 如,於63 2.8nm中以10nm以下較佳、更佳者爲5nm以下。 爲可得該低遲滯値時,作爲保護薄膜使用的聚合物以纖維 素三乙酸酯更佳。而且,以傑恩尼克斯(譯音)、傑恩羅歐( 譯音)(同爲傑恩(譯音)(股)製)、ART0N(】SR(股)製)之聚烯 烴類較佳。其他例如特開平8 - 1 1 0 4 0 2號公報或特開平11- - 32- 200415373 2 9 3 Π 6號公報記載的非複折射性光學樹脂材料。 偏光膜與保護層之黏合劑沒有特別的限制,例如PVA 系樹脂(包含乙醯基乙醯基、磺酸基、羧基、環氧乙烷基等 改質PVA )、或硼化合物水溶液等,其中以PVA系樹脂較佳 。黏合劑層厚度於乾燥後以 0 . 0 1〜1 0μπι較佳,更佳者爲 0 · 0 5 〜5 μηι 〇 延伸前薄膜之厚度沒有特別的限制,就保持薄膜之安 定性、延伸之均質性而言以1 μιτι〜1 mm較佳,更佳者爲2 0 〜2 0 0 μπι 〇 第4圖係表示習知偏光板之穿孔例,第5圖係表示本 發明偏光板之穿孔例。對習知偏光板係如第4圖所示偏光 之吸收軸7 1、即延伸軸與長度方向7 2 —致而言,本發明之 偏光板係如第5圖所示偏光之吸收軸8 1、即延伸軸對長度 方向82而言傾斜45°,該角度由於貼合於LCD之液晶晶胞 時偏光軸之吸收軸、與液晶晶胞本身之縱與橫方向所成角 度一致,故於穿孔步驟中不需傾斜穿孔。而且,如第5圖 可知本發明之偏光板沿著長度方向切斷成一直線,藉由沒 有穿孔下沿著長度方向形成間隙予以製造,故生產性更爲 優異。 本發明較佳的偏光膜,就提高液晶顯示裝置之對比而 言透射率高者較佳,偏光度高者較佳。透射率在5 5 0nm爲30% 以上較佳,更佳者爲40%以上。偏光度在5 5 0nm爲95 . 0%以 上較佳、更佳者爲99%以上,最佳者爲99. 9%以上。 偏光膜一般在兩側具有保護膜,惟本發明之位差相差 - 33 - 200415373 板可作爲偏光膜之一側保護膜的功能。使用45°偏光膜作 成偏光板時,藉由改變重合可容易製作右及左圓偏光板。 [圓偏光板之構成] 第6圖係表示使用本發明相位差板之圓偏光板形態的 槪念圖。 第6圖所示圓偏光板係在本發明相位差板上積層4 5 °偏 光膜P及保護膜G之構成。相位差板係由光學異方向性層A 及B (惟圖中以一層表示)、與透明載體S所成。相位差板係 使透明載體S沒有設置光學異方向性層A及B之側面朝45° 偏光膜P積層。於該構成中上述相位差板具有作爲4 5 °偏光 膜P之保護膜的功能。第6圖中係合倂透明載體S之長度 方向s、與光學異方向性層A及B之遲相軸a及b、與45° 偏光膜P之透射軸P的關係。 使第6圖之圓偏光板組入顯示裝置時,使保護膜P側 爲顯示面側(圖中箭頭所示方向係爲所見方向)。由第6圖 構成所得的圓偏光板爲右圓偏光。第6圖中由箭頭方向入 射的光係藉由順序通過偏光膜P、光學異方向性層A及B, 形成右圓偏光入射。 使用本發明相位差板之圓偏光板的其他構成如第7圖 所示。第7圖所示之圓偏光板係爲取代第6圖所示圓偏光 板之保護膜G與相位差板的位置之構成,第7圖中自下方 積層保護膜G、45°偏光膜P、透明載體s及光學異方向性 層A及B之構成。該構成之圓偏光板可得左圓偏光。 如此,在4 5偏先fl吴上貼合保護層與相位差板時,僅以 -34 - 200415373 變換上下貼合可製造右圓偏光與左圓偏光。 透明載體另使用保護膜時,係使用作爲保護膜之光學 等方性高的纖維素酯薄膜,尤其以三乙醯基纖維素薄膜較 佳。 使用本發明之相位差板及上述偏光板所得的廣範圍入/ 4 ,具體而言係指在波長450nm、5 5 0 nm及6 5 0nm測定的遲滯 値/波長之値皆爲0 . 2〜0 · 3之範圍。遲滯値/波長之値以 0.21〜0.29較佳、更佳者爲0.22〜0.28、尤佳者爲0.23〜 0.27、最佳者爲0.24〜0.26。 【實施例】 於下述中藉由實施例等更具體地說明本發明。下述實 施例所示材料、試藥、物質量與其比例、操作等,在不會 脫離本發明主旨之範圍下可適當改變,因此本發明之範圍 不受下述具體例所限制。 [實施例1 ] 使用厚度80μιη、寬度680mm、長度500m之光學等方性 之三乙醯基纖維素薄膜(醋化度60 . 9 ±0 . 2%、遲滯値6 . Onm) 作爲透明載體。使該透明載體之兩面皂化處理後,在透明 載體一面上連續塗覆下述組成之配向膜塗覆液A (以NH40H 使pH値調整爲4〜5 ),予以乾燥以形成厚度1 μηι之配向膜 。然後’對透明載體之長度方向而言30°方向連續在配向 膜上實施摩擦處理。 配向膜塗覆液Α組成 200415373 4質量% 7 2 . 6質量% 2 3 . 3質量% 〇.2質量% 下述改質聚乙烯醇 水 甲醇 戊二醛 【化8】The polarizing film system prepared by dyeing PVA can be carried out by a dyeing step or gas-phase or liquid-phase adsorption. In the liquid phase, for example, when using iodine, the PVA film is immersed in an iodine-potassium iodide aqueous solution. Iodine is 0.1 to 20 g / L, potassium iodide is 1 to 100 g / L-30 to 200415373, and the weight ratio of iodine to potassium iodide is preferably 1 to 100. The dyeing time is preferably 30 to 5000 seconds, and the liquid temperature is preferably 5 to 50 ° C. The dyeing method may be any method such as dipping, coating or spraying with iodine or a dye solution. The dyeing step can be performed before and after the stretching step, because the film is properly expanded and stretched, and the liquid phase dyeing before the stretching step is better. Dyeing with dichroic pigments other than iodine is preferred. Specific examples of the dichroic pigment include azo-based pigments, 1,2-stilbene-based pigments, pyrazolin-5-one-based pigments, triphenylmethane-based pigments, quinoline-based pigments, and dioxin-based pigments. Pigment compounds such as thiophene-based pigments and awakening-based pigments. Those which are water-soluble are preferred, but are not limited thereby. Furthermore, it is preferable to introduce a hydrophilic substituent such as a sulfonic acid group, an amine group, or a hydroxyl group into these dichroic molecules. Specific examples of dichroic molecules are CI Direct. Yellowl2, CI Direct. Oraiige39, C. I. Direct. 〇range72, C. I. Direct. Red39, CI Direct. Red79, C. I. Direct. Red81, C. I Direct. Red83, C. I. Direct. Red89, CI Direct. Violet48, C. I. Direct. Blue67, C. I. Direct. Blue90, CI Direct. Gi: een59, C. I. Ac id. Red37, etc. In addition, Japanese Patent Application Laid-Open No. 1-161202, Japanese Patent Application Laid-Open No. 1-1 72906, Japanese Patent Application Laid-Open No. 1-1 72907, Japanese Patent Application Laid-Open No. 1-1 83602, Japanese Patent Application Laid-Open No. 1-2 48 1 0 5 Japanese Unexamined Patent Publication No. 1-2 6 5 2 0 5, Japanese Unexamined Patent Publication No. 7-2 6 1 0 24, and pigments described in each publication. As these dichroic molecules, free acids, or alkali metal salts, ammonium salts, and amine salts are used. These dichroic molecules can be used to produce two or more types of polarized photons having various hue. When the polarizing axis is orthogonally crossed as a polarizer or a polarizing plate, a compound (pigment) exhibiting black or various dichroic molecules exhibiting 200415373 black is used, and the single-plate transmittance and polarization ratio are both excellent. The process of extending PVA to produce a polarizing film is preferably using an additive crosslinked in PVA. Especially when the oblique stretching method of the present invention is used, when the PVA at the exit of the stretching step is not sufficiently hard, due to the pulling force of the step and the orientation direction of the PVA detached, the crosslinking agent solution is immersed in the pre-stretching step or the stretching step, or coated. Solutions and cross-linking agents are preferred. As the cross-linking agent, those described in U.S. Patent No. 23 2897 can be used, and boric acids are most preferred. In addition, PVA and polyvinyl chloride are formed by dehydration and dechlorination to form a polyene structure, and polarized light can be obtained by a conjugated double bond, that is, a polyvinylidene-based polarizing film is produced. It is preferable to use the stretching method of the present invention. The polarizing film manufactured by the above-mentioned oblique extension method can be directly used in this form as a polarizing plate for the retardation plate of the present invention, and a protective film can be attached to both sides or one side and used as a polarizing plate. The type of the protective film is not particularly limited, and cellulose esters such as cellulose acetate, cellulose acetate butyrate, cellulose propionate, polycarbonate, polyolefin, polystyrene, poly When the retardation 保护 of the protective film is equal to or more than 値, the polarizing axis is inclined away from the alignment axis of the protective film, and the linearly polarized light changes into elliptical polarized light, so it is not desirable. Therefore, the lower the hysteresis of the protective film is, the better. For example, the 63 2.8 nm is preferably 10 nm or less, and more preferably 5 nm or less. In order to obtain this low hysteresis, cellulose triacetate is more preferred as the polymer used as the protective film. In addition, polyolefins based on Jaynex (Transliteration), Jayne Rou (translated by Jayne), and ART0N () (SR) are preferred. Other examples are non-refractive optical resin materials described in JP-A No. 8-1 1 0 4 0 2 or JP 11--32- 200415373 2 9 3 Π 6. The adhesive of the polarizing film and the protective layer is not particularly limited, for example, PVA-based resins (including modified PVA such as ethenylacetamido, sulfonic acid, carboxyl, and ethylene oxide groups), or aqueous solutions of boron compounds, etc., among which PVA-based resin is preferred. After drying, the thickness of the adhesive layer is preferably from 0.01 to 10 μm, and more preferably from 0. 0 to 5 μm. There is no particular limitation on the thickness of the film before stretching, so as to maintain the stability and uniformity of the film. In terms of properties, 1 μm to 1 mm is preferred, and more preferably 20 to 200 μm. Figure 4 shows a perforation example of a conventional polarizing plate, and Figure 5 shows a perforation example of a polarizing plate of the present invention. As for the conventional polarizing plate, as shown in FIG. 4, the absorption axis 7 1 of polarized light, that is, the extension axis and the length direction 7 2-to the extent that the polarizing plate of the present invention is the absorption axis 8 1 of polarized light as shown in FIG. 5. That is, the extension axis is inclined 45 ° with respect to the length direction 82. This angle is consistent with the angle formed by the absorption axis of the polarization axis of the LCD cell and the vertical and horizontal directions of the liquid crystal cell itself, so it is perforated. No oblique perforation is required in the step. Further, as shown in Fig. 5, it can be seen that the polarizing plate of the present invention is cut into a straight line along the longitudinal direction and is manufactured by forming a gap along the longitudinal direction without perforation, so the productivity is more excellent. The preferred polarizing film of the present invention is better in terms of improving the contrast of the liquid crystal display device, and the one having the higher transmittance is preferable, and the one having the higher polarization is better. The transmittance is preferably 30% or more at 550 nm, and more preferably 40% or more. The degree of polarization is preferably 95.0% or more at 550nm, more preferably 99% or more, and 99.9% or more. Polarizing films generally have protective films on both sides, but the phase difference of the present invention can be used as a protective film on one side of the polarizing film. When a 45 ° polarizing film is used as the polarizing plate, right and left circular polarizing plates can be easily manufactured by changing the overlap. [Configuration of Circular Polarizer] Fig. 6 is a schematic view showing the configuration of a circular polarizer using the retardation plate of the present invention. The circular polarizing plate shown in FIG. 6 is formed by laminating a 45 ° polarizing film P and a protective film G on the retardation plate of the present invention. The retardation plate is made of optically anisotropic layers A and B (only one layer is shown in the figure) and a transparent carrier S. The retardation plate is a polarizing film P laminated on the transparent carrier S without the optically anisotropic layers A and B on its side facing 45 °. In this configuration, the retardation plate has a function as a protective film of a 45 ° polarizing film P. Fig. 6 shows the relationship between the length direction s of the transparent carrier S, the retardation axes a and b of the optically anisotropic layers A and B, and the transmission axis P of the 45 ° polarizing film P. When the circular polarizing plate of FIG. 6 is incorporated in a display device, the protective film P side is the display surface side (the direction shown by the arrow in the figure is the direction of view). The circularly polarizing plate obtained from Fig. 6 is right circularly polarized. The light incident in the direction of the arrow in Fig. 6 passes through the polarizing film P, the optically anisotropic layers A and B in order to form a right circularly polarized light. The other structure of the circularly polarizing plate using the retardation plate of the present invention is shown in FIG. The circular polarizing plate shown in FIG. 7 is a structure that replaces the positions of the protective film G and the retardation plate of the circular polarizing plate shown in FIG. 6. In FIG. 7, the protective film G, 45 ° polarizing film P, and The configuration of the transparent carrier s and the optically anisotropic layers A and B. The circularly polarizing plate of this structure can obtain left circularly polarized light. In this way, when the protective layer and the retardation plate are bonded on the 4th and 5th polarities, only right-to-left polarized light and left-to-circular polarized light can be manufactured by up-and-down bonding with -34-200415373 transformation. When a protective film is additionally used for the transparent support, a cellulose ester film having high optical isotropy as a protective film is used, and a triethylfluorene-based cellulose film is particularly preferred. Using the retardation plate of the present invention and the above-mentioned polarizing plate to obtain a wide range of λ / 4, specifically means that the hysteresis 値 / wavelength 测定 measured at the wavelengths of 450 nm, 5 50 nm, and 6 50 nm are all 0.2 ~ 0 · 3 range. The hysteresis chirp / wavelength chirp is preferably 0.21 to 0.29, more preferably 0.22 to 0.28, even more preferably 0.23 to 0.27, and most preferably 0.24 to 0.26. [Examples] The present invention will be described more specifically with examples and the like in the following. The materials, reagents, substance amounts, ratios, operations, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited by the following specific examples. [Example 1] An optically isotropic triethylfluorinated cellulose film (having an acetic acid degree of 60.9 ± 0.2%, a hysteresis of 6. Onm) having a thickness of 80 μm, a width of 680 mm, and a length of 500 m was used as a transparent carrier. After saponifying both sides of the transparent carrier, an alignment film coating solution A (with NH40H adjusted to pH 4 to 4 to 5) was continuously applied to one side of the transparent carrier, and dried to form an alignment having a thickness of 1 μm. membrane. Then, the rubbing treatment is continuously performed on the alignment film in the direction of 30 ° with respect to the length direction of the transparent carrier. Composition of alignment film coating solution A 200415373 4% by mass 7 2. 6% by mass 2 3.3% by mass 0.2% by mass The following modified polyvinyl alcohol water methanol glutaraldehyde [Chemical 8]

在配向膜上使用棒塗覆器連續塗覆下述組成之塗覆液 ,予以乾燥及加熱(配向熟成),且紫外線照射以形成厚度 2 . 1 μπι之光學異方向性層(A )。光學異方向性層在對透明載 體之長度方向而言30°方向具有遲相軸。5 5 0nm之遲滯値 (R e 5 5 0 )爲 2 5 9 n m。 光學異方向性層(A )用塗覆液組成 38. 1質量% 0 . 3 8質量% 1 . 1 4質量% 0 . 1 9質量% 0 . 0 4質量% 6 0 . 1質量% 本說明書中棒狀液晶性化合物(例示化合物I - 2 ) 下述增感劑A 下述光聚合起始劑B 本說明書中例示的化合物(PX - 9 ) 戊二醛 甲基乙酮 200415373 增感劑A 【化9】 ΟA coating solution with the following composition was continuously applied on the alignment film using a rod coater, dried and heated (alignment maturation), and irradiated with ultraviolet rays to form an optically anisotropic layer (A) having a thickness of 2.1 μm. The optically anisotropic layer has a slow phase axis in the 30 ° direction with respect to the longitudinal direction of the transparent carrier. The hysteresis (R e 5 5 0) of 5 5 0 nm is 2 5 9 n m. The coating solution for the optically anisotropic layer (A) has a composition of 38.1% by mass, 0.38% by mass, 1.4% by mass, 0.19% by mass, 0.4% by mass, and 6.0% by mass, and this specification Medium rod-shaped liquid crystalline compound (exemplified compound I-2) The following sensitizer A The following photopolymerization initiator B The compound (PX-9) exemplified in the present specification glutaraldehyde methyl ethyl ketone 200415373 sensitizer A [Chemical formula 9] Ο

光聚合起始劑Β 【化1 〇】Photopolymerization initiator B [Chem 1]

對上述製作的光學異方向性層(A )之遲相軸而言-6 0。, 且對光學異方向性層(A)之長度方向而言- 30。下,光學異方 向性層(A )塗覆後在沒有捲取下連續在光學異方向性層(a ) 上實施摩擦處理。 摩擦處理的光學異方向性層(A )上使下述組成之塗覆液 使用棒塗覆器摩擦處理後,在沒有捲取下連續塗覆、乾燥 、及加熱(配向熟成),另紫外線照射以形成厚度1 . ΟμΓη之 先學異方向性層(Β ) ’製作相位差板(λ / 4板)。在5 5 0 n Hi之 平均遲滯値(Re550)爲136nm。透明載體之長度方向與光學 異方向性層(B )之遲相軸的角度如表1所示。 光學異方向性層(B )用塗覆液組成 本發明之棒狀液晶性化合物(例示化合物 I - 2 ) 38.4質量% 增感劑A 0 · 3 8質量% 1 . 1 5質量%For the late phase axis of the optically anisotropic layer (A) produced as described above, −60. And for the length direction of the optically anisotropic layer (A)-30. Then, after the optical anisotropic layer (A) is coated, a rubbing treatment is continuously performed on the optical anisotropic layer (a) without being unrolled. The rubbing-treated optically anisotropic layer (A) was rubbed with a coating liquid having the following composition using a rod coater, and then continuously coated, dried, and heated without being unrolled (oriented maturation), and ultraviolet ray was irradiated. A phase difference plate (λ / 4 plate) was formed by forming a pre-existing anisotropic layer (B) ′ having a thickness of 1.0 μμη. The average hysteresis (Re550) at 550 n Hi is 136 nm. The angle of the length direction of the transparent carrier and the retardation axis of the optically anisotropic layer (B) is shown in Table 1. Composition of coating liquid for optically anisotropic layer (B) The rod-like liquid crystalline compound (Exemplary Compound I-2) of the present invention 38.4% by mass Sensitizer A 0 · 3 8% by mass 1. 1.5% by mass

光聚合起始劑B -37 - 200415373 〇 . 〇 6質量% 6 〇 . 0質量% 配向控制劑c 甲基乙基酮 配向控制劑C 【化11】Photopolymerization initiator B -37-200415373 〇 .〇 6% by mass 6 〇 .0% by mass Alignment control agent c Methyl ethyl ketone Alignment control agent C [Chem. 11]

[比較例1 ][Comparative Example 1]

於貫施例1中使光學異方向性層(a )形成後,直接捲取 載體,以捲取的輥狀態放置於表1所示時間、溫度2 5 °C、 相對濕度60%RH氣氛下。然後,與實施例1相同地對光學 異方向性層(A)之表面進行摩擦處理,塗覆光學異方向性層 (B )以製作相位差板,各爲比較例1〜3。有關各試樣,透明 載體之長度方向與光學異方向性層(B)之遲相軸的角度如表 1所示。 -38- 200415373 表1 捲取後經時時間 透明載體之長度方向 與光學異方向性層(B) 之遲相軸的角度 實施例1 〇小時(沒有捲取) -30。(土 1。) 比較例1 1小時 -25〜30° (面內有不齊情形) 比較例2 6小時 -20〜30° (面內不齊情形多) 比較例3 24小時 -20〜30° (面內不齊情形多) 理想値 -30。 由上表可知,使光學異方向性層(A )形成後,在捲取的 狀態下沒有經時放置者,面內透明載體之長度方向與光學 異方向性層(B )之遲相軸的角度不齊性小,液晶性化合物均 一、以理想値配向。因此可知本發明之效果。 而且,使光學異方向性層(A )塗覆後,在乾燥後厚度1 μη) 下使上述配向膜塗覆液Α塗覆,然後與比較例1〜3相同地 塗覆光學異方向性層(B )時,如表1在面內透明載體之長度 方向與光學異方向性層(B )之遲相軸的角度,於捲取後不會 因經時產生稱雌不齊情形,與實施例1有相同的結果。藉 此可知,表1於捲取後因經時之角度稱雌不齊情形,由於 沒有使配向膜塗覆於光學異方向性層(A )上,會產生很多問 題,沒有塗覆配向膜時本發明極爲有效。 [實施例2 ] 使PVA薄膜在碘2.0g/L、碘化鉀4.0g/L之水溶液,在 2 5 °C下浸漬2 4 0秒,另在硼酸1 0 g / L之水溶液中、在2 5 °C 下浸漬6 0秒鐘後,導入特開2 0 0 2 - 8 6 5 5 4號公報中第2圖 形態的拉幅器延伸機中,延伸成5 . 3倍,使拉幅器對延伸 - 3 9 - 200415373 方向而言彎曲成特開2 0 0 2 - 8 6 5 5 4號公報之第2圖所示,以 下使寬度保持一定、收縮且在80 °C之氣氛下乾燥後,自拉 幅器脫離。延伸開始前PVA薄膜之含水率爲3 1 %,乾燥後之 含水率爲1 . 5 %。 左右拉幅器夾子之搬送速度差小於〇.〇5%,導入薄膜之 中心線與繼後步驟中搬送薄膜之中心線所成角度爲46。。此 處,|L1-L2| 爲 〇.7m、W 爲 0.7m,|L1-L2|=W 之關係。 拉幅器出口之實質延伸方向Ax - Cx對送至繼後步驟之薄膜 中心線22而言傾斜45。。拉幅器出口沒有皺摺、薄膜變形 情形。 另外,使PVA((股)可樂麗(譯音)製PVA-117H)3%水溶 液作爲黏合劑,與皂化處理的富士照片軟片(股)製富吉塔 克(譯音)(纖維素三乙酸酯、遲滯値3 . Onm)貼合,另在80 °C下乾燥以製得有效寬度6 5 0 ηπι之偏光板。 所得偏光板之吸收軸方向對長度方向而言傾斜45°。該 偏光板在5 5 0nm之透射率爲43.7%、偏光度爲99.97%。另 外,如第5圖所示裁成3 1 0 X 2 3 3mm尺寸時,可製得以91 . 5% 面積效率、對邊而言傾斜4 5 °吸收軸的偏光板。 然後,如第8圖在上述製作的碘系偏光薄膜91之一面 上積層實施例1製作的相位差板96,另在一面上貼合皂化 處理的防眩性抗反射薄膜9 7,製作圓偏光板9 2。除使相位 差板96各取代成比較例1〜3外,同樣地各製作圓偏光板93 〜9 5。於製作任何偏光板中,偏光膜與相位差板之長度方 向一致下貼合,製作圓偏光板。 一 4 〇 - 200415373 有關所得的圓偏光板9 2〜9 5中,自防眩性抗反射薄膜 97照射光(測定波長爲45 0ηιπ、5 5 0 11ΙΏ及6 50nm),使通過的 光之相位差任意選擇寬度6 5 0 n m、長度1 0 0 〇 m m之2 0點予以 測定,以其最大値、最小値表示參差不齊性。結果如表2 所示。 表2 圓偏光板 相位差板 Re Re Re No. 種類 (450nm) (550nm) (650nm) 92 實施例1 109〜11lnm 133〜137nm 150〜155nm 93 比較例1 108〜112nm 133〜141nm 150〜160nm 94 比較例2 108 〜116nm 133〜149nm 150〜167nm 95 比較例3 108 〜118nm 133〜153nm 150〜171nm 理想値 112.5nm 137.5nm 157.5nm 如表2所示’藉由本發明之製法可製作面內之Re不齊 情形少的圓偏光板。 [實施例3 ] (反射形液晶顯示裝置之製作) 使圓偏光板92取代市售的反射型液晶顯示裝置(彩色 拉魯斯(譯音)Μ卜3 1 0、s h a 1. p (股)製)之偏光板與相位差板 剝離,捲取取代的實施例2製作的圓偏光板92。 有關製作的反射型液晶顯示裝置以目視評估時,可知 於白顯示、黑顯示、中間色調皆沒有色調,顯示中性灰色 〇 其次,使用測定機(EZ c ο n t 1· a s t 1 6 0D、E 1 d i m公司製) 測定反射亮度之對比。自正面之對比爲1 0,係爲實用上充 -41- 200415373 分的對比。 【發明效果】 藉由本發明可容易且低價製作液晶配向之精度高、且 配向缺陷少的相位差板。 (五)圖式簡單說明 第1圖係本發明相位差板之製作例的流程示意圖。 第2圖係本發明相位差板例之簡略圖。 第3圖係使用本發明相位差板之圓偏光板例的簡略圖。 第4圖係使習知偏光板穿孔之簡略平面圖。 第5圖係使本發明使用的4 5 °偏光板穿孔之簡略平面圖 〇 第6圖係使用本發明相位差板之圓偏光板的層構成簡 略平面圖。 第7圖係使用本發明相位差板之圓偏光板的層構成另 一例之簡略平面圖。 第8圖係實施例2製作的圓偏光板之層構成簡略平面 圖。 【符號說明】 1 透明載體 2 配向膜 3 摩擦輥 4,5 光學異方向性層 - 42 - 200415373 s 透 明 載 體 A 第 1 光 學 異 方向 性 層 B 第 2 光 學 異 方向 性 層 s 透 明 載 體 之 長度 方 向 a 第 1 光 學 異 方向 性 層 之 遲 相 軸 b 第 2 光 學 異 方向 性 層 之 遲 相 軸 cl 棒 狀 液 晶 性 化合 物 c 2 棒 狀 液 晶 性 化合 物 71 吸 收 軸 (延伸軸) 72 長 度 方 向 81 吸 收 軸 (延伸軸) 82 長 度 方 向 91 實 施 例 2 製 作的 偏 光 膜 92 使 用 實 施 例 1之 相 位 差 板 的 圓偏光板 96 實 施 例 1 製 作的 相 位 差 板 97 防 眩 性 抗 反 射薄 膜After the optically anisotropic layer (a) was formed in Example 1, the carrier was directly wound up, and it was placed in a rolled-up roll state under the atmosphere shown in Table 1 at a temperature of 25 ° C and a relative humidity of 60% RH. . Then, the surface of the optically anisotropic layer (A) was subjected to a rubbing treatment in the same manner as in Example 1, and an optically anisotropic layer (B) was applied to prepare a retardation plate, each of which is Comparative Examples 1 to 3. For each sample, the angle between the length direction of the transparent support and the retardation axis of the optically anisotropic layer (B) is shown in Table 1. -38- 200415373 Table 1 Elapsed time after coiling The angle between the length direction of the transparent carrier and the retardation axis of the optically anisotropic layer (B) Example 10 hours (without coiling) -30. (Soil 1.) Comparative Example 1 1 hour -25 to 30 ° (in-plane irregularities) Comparative Example 2 6 hours -20 to 30 ° (mostly in-plane irregularities) Comparative Example 3 24 hours -20 to 30 ° (there are many cases of in-plane irregularities) Ideal 値 -30. As can be seen from the table above, after the optically anisotropic layer (A) is formed, if it is not placed in the rolled state over time, the length of the transparent carrier in the plane and the late phase of the optically anisotropic layer (B) are The angular irregularity is small, and the liquid crystal compound is uniform and aligned with an ideal 値. Therefore, the effect of the present invention is known. After the optically anisotropic layer (A) was applied, the alignment film coating solution A was applied at a thickness of 1 μηη after drying, and then the optically anisotropic layer was applied in the same manner as in Comparative Examples 1 to 3. (B), as shown in Table 1, the angle between the length direction of the transparent carrier in the plane and the late phase axis of the optical anisotropic layer (B) will not cause the phenomenon of feminine inhomogeneity after rolling, and implementation Example 1 has the same result. From this, it can be known that Table 1 is called the female heterogeneity due to the time angle after winding. Since the alignment film is not coated on the optically anisotropic layer (A), many problems will occur. When the alignment film is not coated, The present invention is extremely effective. [Example 2] A PVA film was immersed in an aqueous solution of 2.0 g / L of iodine and 4.0 g / L of potassium iodide at 25 ° C for 240 seconds, and in an aqueous solution of boric acid 10 g / L at 25 After being immersed at 60 ° C for 60 seconds, it was introduced into the tenter stretcher of the shape shown in Fig. 2 of JP-A No. 2002-8 6 5 5 4 to extend it by 5.3 times. Extending-3 9-200415373 In the direction shown in Fig. 2 of Japanese Unexamined Patent Publication No. 2 0 0 2-8 6 5 54, the width is kept constant, the shrinkage is performed, and after drying in an atmosphere of 80 ° C, Disengaged from the tenter. The moisture content of the PVA film before stretching started was 31%, and the moisture content after drying was 1.5%. The difference in conveying speed between the left and right tenter clips is less than 0.05%, and the angle formed by the center line of the introduced film and the center line of the conveyed film in the subsequent steps is 46. . Here, the relationship between | L1-L2 | is 0.7m, W is 0.7m, and | L1-L2 | = W. The direction of substantially extending Ax-Cx of the tenter exit is inclined 45 with respect to the centerline 22 of the film sent to the subsequent steps. . The tenter exit is free of wrinkles and film deformation. In addition, a 3% aqueous solution of PVA (PVA-117H manufactured by Kuraray) was used as a binder, and saponified Fuji photographic film (Fujita) manufactured by Fujitako (transliteration) (cellulose triacetate, Hysteresis (3. Onm), followed by drying at 80 ° C to obtain a polarizing plate with an effective width of 6 50 ηπι. The direction of the absorption axis of the obtained polarizing plate was inclined by 45 ° with respect to the longitudinal direction. The polarizing plate had a transmittance of 43.7% and a polarization degree of 99.97% at 550 nm. In addition, when the dimensions are 3 1 0 X 2 3 3 mm as shown in Fig. 5, a polarizing plate having an area efficiency of 91.5% and an inclined absorption axis of 45 ° to the side can be manufactured. Then, as shown in FIG. 8, the retardation plate 96 produced in Example 1 was laminated on one surface of the iodine-based polarizing film 91 produced as described above, and the saponified anti-glare anti-reflection film 97 was laminated on the other surface to produce circularly polarized light. Plate 9 2. Except that the retardation plates 96 were each replaced with Comparative Examples 1 to 3, circular polarizing plates 93 to 95 were produced in the same manner. In making any polarizing plate, the polarizing film and the retardation plate are adhered in the same length direction to make a circular polarizing plate. 1 4 0- 200415373 In the obtained circular polarizing plates 9 2 to 95, light was irradiated from the anti-glare anti-reflection film 97 (the measurement wavelengths were 45 0ηι, 5 5 0 11 1Ώ, and 6 50 nm), and the phase of the light passing therethrough was adjusted. The difference is arbitrarily selected at 20 points with a width of 650 nm and a length of 100 mm. The maximum and minimum 値 are used to indicate unevenness. The results are shown in Table 2. Table 2 Circular polarizer retardation plate Re Re Re No. Type (450nm) (550nm) (650nm) 92 Example 1 109 ~ 11lnm 133 ~ 137nm 150 ~ 155nm 93 Comparative Example 1 108 ~ 112nm 133 ~ 141nm 150 ~ 160nm 94 Comparative Example 2 108 to 116 nm 133 to 149 nm 150 to 167 nm 95 Comparative Example 3 108 to 118 nm 133 to 153 nm 150 to 171 nm Ideal 値 112.5 nm 137.5 nm 157.5 nm As shown in Table 2 'Re-in-plane can be produced by the production method of the present invention Circular polarizer with few irregularities. [Example 3] (Production of a reflective liquid crystal display device) A circularly polarizing plate 92 was used in place of a commercially available reflective liquid crystal display device (color Larus (transliteration) Mbu 3 1 0, sha 1. p (stock)) ), The polarizing plate and the retardation plate are peeled off, and the circular polarizing plate 92 produced in Example 2 is wound up. When the produced reflective liquid crystal display device was visually evaluated, it was found that the white display, the black display, and the halftone had no color tone, and a neutral gray was displayed. Secondly, a measuring machine (EZ c ο nt 1 · ast 1 6 0D, E (1 dim Corporation) The contrast of the reflection brightness was measured. The comparison from the front is 10, which is a comparison of practical charge -41- 200415373 points. [Effects of the Invention] According to the present invention, a phase difference plate with high accuracy of liquid crystal alignment and few alignment defects can be easily and inexpensively manufactured. (V) Brief Description of Drawings FIG. 1 is a schematic flow chart of a manufacturing example of the phase difference plate of the present invention. Fig. 2 is a schematic diagram of an example of a retardation plate according to the present invention. Fig. 3 is a schematic diagram of an example of a circularly polarizing plate using a retardation plate of the present invention. Fig. 4 is a schematic plan view of perforating a conventional polarizing plate. Fig. 5 is a schematic plan view of perforating a 45 ° polarizing plate used in the present invention. Fig. 6 is a schematic plan view of the layer constitution of a circular polarizing plate using the retardation plate of the present invention. Fig. 7 is a schematic plan view of another example of the layer constitution of the circular polarizer using the retardation plate of the present invention. Fig. 8 is a schematic plan view of the layer structure of the circular polarizing plate prepared in Example 2. [Symbol description] 1 Transparent carrier 2 Alignment film 3 Friction roller 4, 5 Optical anisotropic layer-42-200415373 s Transparent carrier A First optical anisotropic layer B Second optical anisotropic layer s Length direction of the transparent carrier a Late phase axis of the first optical anisotropic layer b Late phase axis of the second optical anisotropic layer cl rod-shaped liquid crystalline compound c 2 rod-shaped liquid crystalline compound 71 absorption axis (extension axis) 72 length direction 81 absorption axis (Extended axis) 82 Length direction 91 Polarizing film produced in Example 2 92 Circular polarizing plate using retardation plate of Example 96 Phase difference plate produced in Example 1 97 Anti-glare anti-reflection film

Claims (1)

200415373 拾、申請專利範圍: 1 . 一種製造相位差板之方法,該相位差板具有長條輥狀透 明載體及在其一側上的由2層以上液晶性化合物所成之 光學異方向性層,該方法包括: 在連續移動的載體上塗覆配向膜, (a )對該載體之形成有配向膜側的表面作摩擦, (b )在經摩擦的表面上塗覆含有液晶性化合物的組成物, (c )使以步驟(b )塗覆的組成物硬化形成光學異方向性層, (d )在沒有將該載體捲取下,重複步驟(a )〜(c )至少一次, · (e)捲取該載體, 之步驟。 2 ·如申請專利範圍第1項之方法,其中於重複進行步驟(a ) 〜(c )時,至少一次的步驟(a )中摩擦光學異方向性層之 表面,且該光學異方向性層含有具有碳原子數9以下烴 基的改質聚乙烯醇。 3 ·如申g靑專利範圍第1或2項之方法,其中在至少一次的 步驟(b )中所使用的液晶性化合物係具有聚合性基之棒狀 液晶性化合物。 4 ·如申請專利範圍第1或2項之方法,其中在至少一次的 步驟(b )中所使用的液晶性化合物係具有聚合性基之圓盤 狀液晶性化合物。 5 · —種相位差板’其係由如申請專利範圍第1至4項中任 一項之方法所製造。 一 44-200415373 Scope of patent application: 1. A method for manufacturing a retardation plate having a long roll-shaped transparent carrier and an optically anisotropic layer made of two or more liquid crystal compounds on one side thereof The method includes: coating an alignment film on a continuously moving carrier, (a) rubbing the surface of the carrier on which the alignment film is formed, and (b) coating the rubbed surface with a composition containing a liquid crystal compound, (c) hardening the composition applied in step (b) to form an optically anisotropic layer, (d) repeating steps (a) to (c) at least once without taking off the carrier, and (e) Steps of taking up the carrier. 2 · The method according to item 1 of the scope of patent application, wherein when steps (a) to (c) are repeated, the surface of the optically anisotropic layer is rubbed at least once in step (a), and the optically anisotropic layer It contains modified polyvinyl alcohol having a hydrocarbon group having 9 or less carbon atoms. 3. The method of claim 1 or 2, wherein the liquid crystal compound used in step (b) at least once is a rod-shaped liquid crystal compound having a polymerizable group. 4. The method of claim 1 or 2, wherein the liquid crystal compound used in step (b) at least once is a discotic liquid crystal compound having a polymerizable group. 5 · A retardation plate 'is manufactured by a method according to any one of claims 1 to 4 of the scope of patent application. One 44-
TW092126428A 2002-09-26 2003-09-25 Process for producing phase difference plate and phase difference plate produced by the process TWI293373B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280795A JP4117173B2 (en) 2002-09-26 2002-09-26 Production method of retardation plate and retardation plate produced by the method

Publications (2)

Publication Number Publication Date
TW200415373A true TW200415373A (en) 2004-08-16
TWI293373B TWI293373B (en) 2008-02-11

Family

ID=32040497

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092126428A TWI293373B (en) 2002-09-26 2003-09-25 Process for producing phase difference plate and phase difference plate produced by the process

Country Status (6)

Country Link
JP (1) JP4117173B2 (en)
KR (1) KR100970355B1 (en)
CN (1) CN1685252B (en)
AU (1) AU2003264944A1 (en)
TW (1) TWI293373B (en)
WO (1) WO2004029695A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384305B (en) * 2005-06-23 2013-02-01 Sumitomo Chemical Co Method of producing otpical film
TWI452353B (en) * 2007-08-23 2014-09-11 Konica Minolta Opto Inc A strip-shaped thin film, an elongated elliptical polarizing film, an elliptically polarizing plate, and an image display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021248A1 (en) * 2004-04-30 2005-11-24 Giesecke & Devrient Gmbh Security element and method for its production
JP4485350B2 (en) * 2004-12-28 2010-06-23 大日本印刷株式会社 Method for producing retardation film
JP2006220682A (en) * 2005-02-08 2006-08-24 Fuji Photo Film Co Ltd Optical compensation sheet and manufacturing method for the same, polarizing plate and liquid crystal display
MX2019000869A (en) * 2018-01-30 2019-12-19 Viavi Solutions Inc Optical device having optical and mechanical properties.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853801A (en) * 1995-09-04 1998-12-29 Fuji Photo Film Co., Ltd. Process for the preparation of continuous optical compensatory sheet
JP2001091741A (en) * 1999-09-22 2001-04-06 Fuji Photo Film Co Ltd Phase difference plate and circularly polarizing plate
TWI243264B (en) * 2000-12-04 2005-11-11 Fuji Photo Film Co Ltd Optical compensating sheet and process for producing it, polarizing plate and liquid crystal display device
JP3728212B2 (en) * 2001-03-05 2005-12-21 大日本印刷株式会社 Circularly polarized light extracting optical element, polarized light source device, and liquid crystal display device
EP1345049B1 (en) * 2000-12-20 2010-11-24 Dai Nippon Printing Co., Ltd. Circularly polarized light extraction optical element and method of manufacturing the optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384305B (en) * 2005-06-23 2013-02-01 Sumitomo Chemical Co Method of producing otpical film
TWI452353B (en) * 2007-08-23 2014-09-11 Konica Minolta Opto Inc A strip-shaped thin film, an elongated elliptical polarizing film, an elliptically polarizing plate, and an image display device

Also Published As

Publication number Publication date
CN1685252A (en) 2005-10-19
TWI293373B (en) 2008-02-11
KR20050073460A (en) 2005-07-13
KR100970355B1 (en) 2010-07-15
AU2003264944A1 (en) 2004-04-19
JP2004151122A (en) 2004-05-27
AU2003264944A8 (en) 2004-04-19
WO2004029695A3 (en) 2004-07-08
JP4117173B2 (en) 2008-07-16
WO2004029695A2 (en) 2004-04-08
CN1685252B (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP6231293B2 (en) Liquid crystal composition, retardation plate, circularly polarizing plate, and image display device
TWI271538B (en) Phase difference plate and circular polarizing plate
JP7346863B2 (en) electroluminescent display device
WO2000055657A1 (en) Elliptic polarizer formed of transparent protective layer, polarizer layer, transparent support and optical anisotropic layer of liquid-crystal molecules
JP2004046194A (en) Manufacturing method for optical compensator
JP6193192B2 (en) Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
JP2010026498A (en) Polarizing plate and method of manufacturing the same
JP2014214177A (en) Liquid crystal composition, retardation plate, circular polarization plate, image display device, production method of retardation plate
JP2008107501A (en) Polarizing plate and liquid crystal display device
JP2002303722A (en) Optical compensation sheet
JP2004226591A (en) Liquid crystal display device and polarizing plate
JP2004046195A (en) Manufacturing method for optical compensator
JP6711283B2 (en) Multilayer film, and method for manufacturing multilayer film, optically anisotropic laminate, circularly polarizing plate, and organic electroluminescence display
TW200415373A (en) Process for producing phase difference plate and phase difference plate produced by the process
TWI403754B (en) Optical film, polarizing plate and liquid crystal display device
JP4756111B2 (en) Method for producing polyvinyl alcohol film
JP4330321B2 (en) Retardation plate, manufacturing method thereof, and circularly polarizing plate using the same
TW200813500A (en) Optical compensation film and method of producing the same, polarizing plate and liquid crystal display
JP2005321527A (en) Liquid crystal display
TW562979B (en) Liquid crystal display and method of making the same
JP2007086511A (en) Optical functional material, its manufacturing method, optical compensation sheet, polarizing plate and liquid crystal display device
TW200919037A (en) Laminated optical film, polarizing plate and liquid crystal display device
JP2004184964A (en) lambda/4 PLATE
JP6434776B2 (en) Retardation film, composition, method for producing retardation film, polarizing plate and liquid crystal display
JP2004145071A (en) Optical retardation plate and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees