WO2019171819A1 - ステアリング装置 - Google Patents
ステアリング装置 Download PDFInfo
- Publication number
- WO2019171819A1 WO2019171819A1 PCT/JP2019/002708 JP2019002708W WO2019171819A1 WO 2019171819 A1 WO2019171819 A1 WO 2019171819A1 JP 2019002708 W JP2019002708 W JP 2019002708W WO 2019171819 A1 WO2019171819 A1 WO 2019171819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- buffer
- main body
- reference axis
- ball joint
- radial direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D3/00—Steering gears
- B62D3/02—Steering gears mechanical
- B62D3/12—Steering gears mechanical of rack-and-pinion type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F7/00—Vibration-dampers; Shock-absorbers
Definitions
- the present invention relates to a steering device.
- a steering device for example, a steering device described in Patent Document 1 below is known.
- a buffer member made of an elastic material is attached to an end of a rack housing that houses the rack bar.
- the buffer member has a substantially uniform thickness along the axial direction of the rack bar.
- the buffer member is compressed and deformed at the time of collision with the ball joint, and a portion in which the buffer member is excessively compressed is generated by this compression deformation.
- This excessively compressed portion causes plastic deformation of the buffer member, which may reduce the buffer performance of the buffer member.
- the present invention has been devised in view of conventional circumstances, and an object thereof is to provide a steering device that can suppress a decrease in the buffer performance of the buffer member.
- the buffer member includes a base portion and a buffer portion, and is formed in an annular shape so as to surround the reference axis of the rack housing, and the buffer portion includes the buffer portion main body and the buffer portion protrusion.
- the buffer portion protruding portion has a shape protruding toward the inside in the radial direction.
- FIG. 2 is an enlarged cross-sectional view of an end portion on the steering mechanism side of the rack housing of FIG. 1. It is explanatory drawing which showed distribution of the load concerning the buffer member of the comparative example in an uncompressed state. It is explanatory drawing which showed distribution of the load concerning the buffer member of the comparative example in a compression state. It is explanatory drawing which showed distribution of the load concerning the buffer member of a present Example in an uncompressed state.
- FIG. 7A It is a figure which shows the buffer member and shaping
- FIG. 1 is a schematic view of a steering device 1 according to the present embodiment, in which a part of the steering device 1 is shown in cross section.
- the steering device 1 includes a steering mechanism 2 that transmits a steering force from the driver, and a steering assist mechanism 3 that assists the steering operation of the driver.
- the steering mechanism 2 mechanically connects a steering wheel (not shown) disposed in the cab of the vehicle and two steered wheels (not shown) that are front wheels of the vehicle.
- the steering mechanism 2 includes a steering shaft 6 having an input shaft 4 to which a rotational force from a steering wheel is transmitted, and an output shaft 5 connected to the input shaft 4 via a torsion bar (not shown), and the steering.
- a transmission mechanism 7 that transmits the rotation of the shaft 6 to the steered wheels.
- the transmission mechanism 7 includes a rack and pinion mechanism (rack and pinion gear) including a pinion (not shown) provided on the outer periphery of the output shaft 5 and a rack (not shown) provided on the outer periphery of the rack bar 8.
- the rack bar 8 is accommodated in an elongated cylindrical rack housing 9 through a rack bush (not shown) so as to be movable.
- the rack ends 10, 10 are fixed to the both ends 8 a, 8 a of the rack bar 8 by engaging the female threads formed at both ends 8 a, 8 a of the rack bar 8 with the male threads of the rack ends 10, 10. Yes.
- the rack end 10 has a concave portion 10a that is recessed in an arc shape, and the spherical end portion 11a of the tie rod 11 is fitted into the concave portion 10a.
- the ball joint 12 is configured by combining the concave portion 10 a and the spherical end portion 11 a, and the rack bar 8 and the tie rod 11 are connected via the ball joint 12.
- the tie rod 11 is connected to a corresponding steered wheel via a knuckle arm (not shown).
- buffer members 13 are provided to alleviate the impact when the rack end 10 (ball joint 12) and the rack housing 9 collide. .
- bellows-like boots 14 covering the outer periphery of the ball joint 12 are respectively installed at both ends of the rack housing 9 in the axial direction.
- the boot 14 is formed by an elastic material such as a synthetic rubber material so as to ensure predetermined flexibility, and prevents entry of water, dust, or the like into the rack bar 8 or the like.
- mount brackets 15 for attaching the rack housing 9 to the vehicle body are provided at both ends of the rack housing 9 in the axial direction.
- the mount bracket 15 is provided with a rubber bush (not shown), and the rack housing 9 is attached to the vehicle body via the rubber bush.
- the axis is defined as “reference axis M”.
- a direction parallel to the reference axis M is defined as an “axial direction”.
- a direction orthogonal to the reference axis M is defined as a “radial direction” with respect to the reference axis M.
- the steering assist mechanism 3 includes a motor 16 that is an electric motor that applies a steering force to the steering mechanism 2, and the motor 16 is configured integrally with an electronic control unit (ECU) 17.
- ECU electronice control unit
- the electronic control unit 17 has a function of storing and executing various control processes, and drives and controls the motor 16 based on a steering torque signal from a torque sensor (not shown).
- FIG. 2 is a cross-sectional view of the buffer member 13 of the present embodiment when cut along the reference axis M.
- FIG. 2 Although the buffer member 13 is formed in an annular shape, only a partial cross section of the buffer member 13 is shown for convenience of explanation.
- the end surface 19 e is on the side in contact with the ball joint 12.
- the buffer member 13 is made of an elastic material, and has a base portion 18 formed in an annular shape so as to surround the reference axis M, and is formed integrally with the base portion 18 and is provided on the inner peripheral side of the base portion 18 in the radial direction.
- An annular buffer portion 19 The buffer member 13 has a shape symmetrical with respect to the direction of the reference axis M in a cross section passing through the reference axis M. With this configuration, there is no need to inquire about the mounting direction of the buffer member 13.
- the base 18 has a substantially square cross section cut along the reference axis M.
- the base portion 18 includes an annular positioning convex portion 18 b that protrudes outward from the contact surface 18 a of the base portion 18 in the middle in the axial direction along the reference axis M.
- the positioning convex portion 18b is formed so that a cross section cut along the reference axis M is substantially semicircular.
- the buffer part 19 includes a buffer part body part 19a and a buffer part protruding part 19b.
- the buffer body 19a is provided inside the base 18 in the radial direction on the reference axis M, and is formed in an annular shape.
- the buffer section main body 19a is substantially rectangular in cross section cut along the reference axis M, and is arranged in a posture in which the long side of the buffer section main body 19a extends in the axial direction.
- the width L1 in the axial direction of the buffer body 19a is larger than the width L2 in the axial direction of the base 18 (L1> L2).
- the width L2 of the base 18 in the direction of the reference axis M is greater than one half of the width L1 in the direction of the reference axis of the buffer body 19a (L2> L1 / 2).
- the buffer body 19a includes an axial end surface 18c (indicated by a broken line in FIG. 2) of the base portion 18 and a radially outer end surface 19c of the buffer portion 19 in an axial section passing through the reference axis M.
- the minor angle ⁇ is formed to be an obtuse angle. That is, the end surfaces 19c and 19d on the radially outer side of the buffer body 19a are inclined at a minor angle ⁇ toward the reference axis M so as to be symmetrical in the axial direction with the base 18 in between.
- the end surface 18c serves as a boundary portion between the base portion 18 and the buffer portion main body portion 19a, and this boundary portion has an arc shape that is recessed toward the center of the buffer portion main body portion 19a.
- the arc-shaped curvature radius of the boundary portion between the base portion 18 and the buffer portion main body portion 19a is defined as “second curvature radius r2”.
- the gap between the end face 19c of the buffer body 19a and the end face 19e on the end face 19c side (the side close to the ball joint 12) and between the end face 19d and the end face 19f on the end face 19d side are radially outward. It is provided at the corner, protrudes toward the outside of the buffer body 19a, and is connected in an arc shape.
- the convex portion formed in the arc shape is defined as “first radius of curvature r1”.
- the second curvature radius r2 has a shape larger than the first curvature radius r1 (r2> r1).
- the end surface 19c of the buffer body 19a has a radially outer shape (end surface 19c) in the cross section passing through the reference axis M from the portion closer to the center of the buffer member 13 in the direction of the reference axis M in the direction of the ball joint 12 ( It has a shape that is inclined with respect to the reference axis M so as to approach the reference axis M toward the end surface 19e side).
- the buffer protrusion 19b is provided on the inner side in the radial direction than the contact portion when the buffer body main body 19a is in contact with the cylindrical main body 23 (FIG. 4) without being compressed and deformed, and faces the inner side in the radial direction. And has a protruding shape.
- the top portion 19b1 of the protruding portion of the buffer portion protruding portion 19b is formed at the central portion of the buffer member 13 in the direction of the reference axis M.
- the inner side in the radial direction with respect to the contact portion when the buffer portion main body portion 19a is in contact with the cylindrical main body portion 23 without being compressed is the radial direction from any portion of the contact portion (the innermost portion in the radial direction) Means inside.
- the buffer main body 19a has a radially inner shape (end face 19g) from the central portion of the buffer member 13 in the direction of the reference axis M to the ball joint 12 direction (end face 19e side).
- the inclination angle with respect to the reference axis M so as to move away from the reference axis M as it goes toward the outermost angle, and the minor inclination of the angle between the axis along the outer shape in the radial direction and the reference axis M is the outer inclination angle ⁇ 1.
- the outer inclination angle ⁇ 1 is larger than the inner inclination angle ⁇ 2. ( ⁇ 1> ⁇ 2).
- FIG. 3 is a cross-sectional view of the buffer member 21 of the comparative example when the buffer member 21 of the comparative example corresponding to the conventional buffer member is cut along the reference axis M. Although the buffer member 21 is formed in an annular shape, only a partial cross section of the buffer member 21 is shown.
- the buffer member 21 of the comparative example has a base portion 18 configured similarly to the base portion 18 of the buffer member 13 of the present embodiment.
- the buffer part 22 does not have the buffer part protrusion part 19b of the buffer part 19 of a present Example, and is formed in the substantially rectangular shape.
- the end surface 22 a of the buffer portion 22 is formed in a flat shape extending along the reference axis M between both end surfaces 22 b and 22 c of the buffer portion 22.
- FIG. 4 is an enlarged cross-sectional view at the end of the rack housing 9 of FIG. 1 on the steering mechanism 2 side.
- the rack housing 9 is formed of a metal material by casting, and includes a cylindrical main body portion 23 in which the rack bar 8 moves through the inside, and a buffer member accommodating portion 24 formed integrally with the cylindrical main body portion 23. Similarly, a stopper portion 25 formed integrally with the cylindrical main body portion 23 is provided.
- the cylindrical main body 23 has an elongated cylindrical shape and supports the rack bar 8 so as to be movable via a rack bush (not shown).
- the end portion 8a of the rack bar 8 is provided with a concave portion 10a that is recessed in an arc shape, and the spherical end portion 11a of the tie rod 11 is fitted into the concave portion 10a.
- the ball joint 12 is configured by combining the concave portion 10a and the spherical end portion 11a.
- the buffer member accommodating portion 24 is located on the outer peripheral side of the cylindrical main body portion 23, and protrudes in a cylindrical shape from the end portion 23 a of the cylindrical main body portion 23 toward the rack end 10 (see FIG. 1). Open to the side.
- a buffer member holding portion 24 a which is an annular groove opened on the rack bar 8 side is formed on the inner peripheral surface of the buffer member housing portion 24 at a position close to the end portion 23 a of the cylindrical main body portion 23.
- the buffer member holding portion 24 a is provided on the inner peripheral side of the cylindrical main body portion 23 and constitutes a recess that opens toward the inside in the radial direction on the reference axis M.
- the buffer member holding portion 24 a has an outer diameter larger than the annular positioning convex portion 18 b of the base portion 18 of the buffer member 13.
- the positioning convex portion 18b that protrudes radially outward from the base portion 18 of the buffer member 13 is inserted into the concave portion of the buffer member holding portion 24a and positioned.
- the positioning convex portion 18b of the base portion 18 includes a positioning convex portion 18b and a buffer member holding portion 24a as shown in FIGS. 4 and 6A. Between the contact surface 18a and the inner peripheral surface 24b so that a slight gap remains between the contact surface 18a and the inner peripheral surface 24b.
- the contact surface 18a is provided on both sides of the positioning projection 18b in the direction of the reference axis M.
- the contact surface 18 a can hold the buffer member 13 with respect to the cylindrical main body 23 by a frictional force between the contact surface 18 a and the inner peripheral surface 24 b of the cylindrical main body 23.
- the end surface 19 f of the buffer portion 19 is in contact with the cylindrical main body portion 23, and the end surface 19 h on the inner peripheral side of the buffer portion 19 is spaced radially outward from the stopper portion 25.
- the contact surfaces 18a on both sides of the positioning convex portion 18b, it is possible to suppress the shock-absorbing member from collapsing during the compression deformation of the shock-absorbing body body 19a. Further, by holding the buffer member 13 with the contact surface 18a instead of the positioning convex portion 18b, the stress concentration of the positioning convex portion 18b can be alleviated and damage to the positioning convex portion 18b can be suppressed.
- the buffer portion 19 is located between the rack end 10 (ball joint 12) and the cylindrical main body portion 23 in the axial direction. It is compressed and deformed and abuts against the buffer member holding portion 24a in a compressed state. That is, when the buffer member 13 is compressed and deformed, the positioning convex portion 18b and the buffer member holding portion 24a are in close contact with each other, and the contact surface 18a and the inner peripheral surface 24b are in close contact with each other (see FIG. 6B).
- the stopper portion 25 is located on the inner peripheral side of the cylindrical main body portion 23 and protrudes in an annular shape from the end portion 23a of the cylindrical main body portion 23 toward the rack end 10 side.
- the protruding length of the stopper portion 25 is shorter than the protruding length of the buffer member housing portion 24.
- the stopper portion 25 overlaps the buffer member housing portion 24 when viewed from the radial direction.
- the stopper portion 25 restricts the movement of the rack end 10 toward the cylindrical main body portion 23 side at the time of collision with the rack end 10 (ball joint 12).
- FIG. 5A is an explanatory view showing a state of the buffer member 21 of the comparative example in the non-compressed state.
- FIG. 5A shows a state in which the rack end 10 (ball joint 12) (not shown) does not collide with the end surface 22b of the buffer portion 22 of the buffer member 21 of the comparative example.
- no load is applied to the buffer member 21, and the annular positioning convex portion 18 b of the base portion 18 is not in contact with the buffer member holding portion 24 a that is an annular groove.
- the end surface 22 c of the buffer portion 22 is in contact with the cylindrical main body portion 23, and the end surface 22 a on the inner peripheral side of the buffer portion 19 is separated from the stopper portion 25 radially outward.
- 5A is a line along the end surface 22b of the buffer portion 22, and the collision start line S when the rack end 10 (ball joint 12) (not shown) collides with the buffer member 21. The starting position is indicated.
- FIG. 5B is an explanatory diagram showing a state of the buffer member 21 of the comparative example in the compressed state.
- FIG. 5B shows a state in which the rack end 10 (ball joint 12) (not shown) is colliding with the end surface 22b of the buffer portion 22 of the buffer member 21 of the comparative example.
- the shock absorber 21 is compressed and deformed by the rack end 10 (ball joint 12) colliding with the end face 22b and moving from the collision start line S by the distance Dj toward the cylindrical main body 23 side.
- the annular positioning convex portion 18b of the base portion 18 is in contact with the buffer member holding portion 24a in a compressed state with respect to the buffer member holding portion 24a that is an annular groove, and the contact surface 18a of the base portion 18 is The inner surface 24b of the buffer member accommodating portion 24 is in contact with the inner surface 24b in a compressed state.
- the buffer part 22 is crushed in the axial direction, and the end face 22b and the end face 22c extend radially outward.
- the end surface 22a on the inner peripheral side of the buffer portion 19 is bent, the central portion in the axial direction is spaced radially outward from the stopper portion 25, and a concave portion 22a1 that is recessed outward in the radial direction is formed.
- the buffer member 21 is excessively compressed to form the recess 22a1.
- the formation of the recess 22a1 may cause plastic deformation of the buffer member 21, and the buffer performance of the buffer member 21 may be reduced. A structure for solving this problem will be described below.
- FIG. 6A is an explanatory view showing a state of the buffer member 13 of the present embodiment in an uncompressed state.
- FIG. 6A shows a state in which the ball joint 12 (rack end 10) (not shown) has started to contact the end surface 19c of the buffer portion 19 of the buffer member 13 of the present embodiment.
- the ball joint 12 rack end 10
- the annular positioning convex portion 18b of the base portion 18 is not in contact with the buffer member holding portion 24a which is an annular groove.
- the end surface 19 f of the buffer portion 19 is in contact with the end portion 23 a of the cylindrical main body portion 23, and the end surfaces 19 g and 19 h on the inner peripheral side of the buffer portion 19 are spaced radially outward from the stopper portion 25.
- top part 19b1 of the buffer part protrusion part 19b is spaced apart from the stopper part 25 radially outward.
- a space 23 b is formed between the base 18 and the cylindrical main body 23.
- a space 23 c is formed between the buffer protrusion 19 b and the stopper 25.
- the buffer body 19a has a portion A that does not come into contact with the ball joint 12 on the outer side in the radial direction from the ball joint 12 in a state of coming into contact with the ball joint 12.
- the volume of the buffer main body 19a can be secured, and a sufficient buffering effect can be obtained. Can be obtained.
- an intermediate portion in the radial direction between the end surface 18c and the end surface 19j, that is, an axial line passing through the intermediate portion in the radial direction of the buffer portion main body 19a is defined as an intermediate line 19K.
- L3 L4
- L4 L4
- a portion where the end surface 19e of the buffer body 19a and the intermediate line 19K intersect is defined as a point P.
- the point P is a half point in the radial direction of the buffer body 19a.
- the buffer body 19a can contact the ball joint 12 to the outside in the radial direction from the half point P in the radial direction.
- the stopper portion 25 is provided on the cylindrical main body portion 23 on the inner side of the buffer member 13 in the radial direction, and has a shape protruding from the cylindrical main body portion 23 toward the ball joint 12 in the direction of the reference axis M. doing.
- the buffer portion protrusion 19b has a shape in which the portion (the top portion 19b1) that protrudes most inward in the radial direction is located on the inner side of the end portion 25a on the side close to the ball joint of the stopper portion 25 in the direction of the reference axis M. Have. By comprising in this way, it can suppress that the part protruded inside the buffer part protrusion part 19b is pinched
- the buffer body 19a has a shape that protrudes in the direction of the reference axis M from the base 18 toward the cylindrical body 23.
- the cylindrical main body 23 has a shape in which a space 23 b is formed between the base 18 and the cylindrical main body 23.
- FIG. 6B is an explanatory view showing a state of the buffer member 13 of the present embodiment in the compressed state.
- the buffer body 19a is most compressed and deformed between the ball joint 12 and the cylindrical body 23.
- the state in which the buffer body 19a is most compressed and deformed means, for example, a state in which the rack housing has a stopper portion and the ball joint is in contact with the stopper portion.
- the buffer body 19a may be in a state of being compressed and deformed to such an extent that the stroke of the rack bar is stopped in a normal steering operation.
- the ball joint 12 collides with the end surface 19e of the buffer part main body part 19a, and the buffer part main body part 19a moves from the collision start position to the end part 25a of the stopper part 25, whereby the buffer member 13 is compressed and deformed.
- end surfaces 19 g and 19 h on the inner peripheral side of the buffer portion 19 come into contact with the stopper portion 25.
- the top portion 19 b 1 of the buffer portion protrusion portion 19 b contacts the stopper portion 25. That is, the end surfaces 19g and 19h on the inner peripheral side of the buffer part 19 and the top part 19b1 of the buffer part protruding part 19b are substantially linear and come into contact with the stopper part 25.
- the buffer protrusion 19b is compressed and deformed to move to the space 23c so as to fill the space 23c.
- the formation of the recessed portion 22a1 that is spaced radially outward from the stopper portion 25 and recessed toward the radially outer side as in the comparative example is suppressed.
- the buffering portion protruding portion 19b is configured such that the buffering portion main body portion 19a contacts the cylindrical main body portion 23 in a state where the buffering portion main body portion 19a is most compressed and deformed between the ball joint 12 and the cylindrical main body portion 23. It has a portion remaining inside the radial direction from the contact portion at the time.
- the buffer main body 19a is provided by providing the buffer protrusion 19b to the extent that a portion remaining radially inward of the contact portion is formed. Therefore, the deformation of the material of the buffer body 19a can be reduced.
- the cylindrical main body portion 23 of the present embodiment has a shape in which a space 23b is formed between the base portion 18 and the cylindrical main body portion 23.
- the space 23b is filled with the buffer member 13.
- the buffer member 13 when the space 23b is filled with the buffer member 13, the movement of the buffer member 13 in the direction of the reference axis M is restricted. Therefore, the buffer member 13 can be prevented from falling off the cylindrical main body 23 and the positional deviation in the reference axis M direction.
- FIGS. 7A and 7B are views of the ball joint 12 as seen from the axial direction of the reference axis M.
- FIG. FIG. 7B is an enlarged view of a main part in the X part of FIG. 7A.
- the ball joint 12 of the present embodiment has a polygonal shape.
- the apex portion has the largest outer diameter
- the middle portion of the side has the smallest outer diameter. That is, the length L6 from the center point O of the ball joint 12 to the middle part of the side is smaller than the length L5 from the center point O to the vertex of the ball joint 12 (L5> L6).
- the ball joint 12 includes a contact surface 12 a that contacts the buffer portion 19 of the buffer member 13.
- the contact surface 12a forms a side portion of the polygonal ball joint 12.
- the portion between the two broken lines is the end surface 19e of the buffer body 19a.
- a portion where the contact surface 12a and the end surface 19e overlap is a portion where the ball joint 12 and the buffer member 13 are in contact.
- the broken line 12b is a line that passes through the central portion of the side of the ball joint 12.
- the point P is a half point in the radial direction of the buffer body 19a described with reference to FIG. 6A.
- the buffer body 19a of the present embodiment can be in contact with the ball joint 12 to the outside in the radial direction from a half point P in the radial direction at the side portion of the polygonal shape.
- the apex portion has the largest outer diameter
- the middle portion of the side has the smallest outer diameter. Even in this side portion, the ball joint 12 can be contacted in more than half of the radial direction, so that a portion of the buffer body 19a is deformed so as to escape into the gap between the ball joint 12 and the cylindrical body 23. This can be suppressed.
- FIG. 8 shows the buffer member 13 and the mold.
- the buffer member 13 of the present embodiment is formed by molding.
- the buffer member 13 is formed by pouring a material (synthetic rubber) constituting the buffer member into a mold and applying heat and pressure to the mold.
- the buffer member 13 is formed in an annular shape, and a plurality of molds for forming the buffer member 13 are prepared along the annular formation of the buffer member 13.
- the mold is disposed in the axial direction of the reference axis M, and is divided and disposed so as to sandwich the buffer member 13.
- two (plural) molds 30 (30a, 30b) are used in this embodiment.
- the inner surface of 0 (30a, 30b) is formed in accordance with the outer diameter shape of the buffer member 13.
- a line D1 is a line passing through the top portion 19b1 of the buffer portion protruding portion 19b and the top portion 18b1 of the positioning convex portion 18b of the base portion 18.
- the line D1 is at a position passing through the center point in the direction of the reference axis M.
- the buffer member 13 is formed on the line D1.
- the mold is created with this line D1 as a dividing line.
- the undercut region is not formed.
- burrs are likely to occur at the position of the dividing line, if a mold is formed using the line D1 as the dividing line, there is a possibility that burrs may occur at the top 19b1 of the buffer member 13.
- the top part 19b1 of the buffer part protrusion part 19b is the part that protrudes most radially inward in the buffer member 13, when the buffer part protrusion part 19b is compressively deformed, it comes into contact with the stopper part 25 and slides. .
- produced in the top part 19b1 of the buffer part protrusion part 19b has a possibility of preventing the smooth compression deformation of the buffer member 13.
- the mold 30a of the present embodiment has inner surfaces 31a1, 31d, 31f, 31h1 for forming the contact surface 18a and end surfaces 19d, 19f, 19h of the buffer member 13, respectively.
- the die 30b has inner surfaces 31a2, 31c, 31e, 31g, 31h2 and a concave surface 31b for forming the contact surface 18a and end surfaces 19c, 19e, 19g, 19h and the positioning convex portion 18b of the buffer member 13, respectively. doing.
- the inner surface 31h2 and the concave surface 31b are undercut regions, and it is usually difficult to take out the molded product from the mold.
- the buffer member 13 which is the molded product of this embodiment has elasticity, it is easy to be elastically deformed, and the buffer member 13 can be easily taken out from the mold 30b while being elastically deformed.
- the buffer member 13 of the present embodiment is formed by molding, and has a dividing line (line D2) corresponding to the mating surfaces of the plurality of molds 30a and 30b, and the dividing line (line D2) is the direction of the reference axis M It is provided at a position shifted from the center point.
- the buffer member 13 since the buffer member 13 has a symmetrical shape in the direction of the reference axis M, the most protruding portion (top 19b1) of the buffer protrusion 19b is located at the center point in the direction of the reference axis M. It becomes.
- the burr protrudes radially inward, which may hinder smooth compression deformation of the buffer member 13. Therefore, in this embodiment, the occurrence of the above problem can be suppressed by shifting the dividing line (line D2) from the center point.
- the buffer portion 22 of the buffer member 21 at the time of a rack end collision (not shown).
- a portion where the load such that the recess 22a1 is formed is excessively high, that is, a portion where the compression rate of the buffer portion 22 is excessively high is generated.
- the buffer portion 22 is plastically deformed by a portion where the compression rate is excessively high, and thus the buffer performance of the buffer member of the buffer member 21 may be suppressed.
- the steering device 1 of the present embodiment is a rack housing 9, which includes a cylindrical main body 23 and a buffer member holding portion 24a, a rack bar 8, and a ball bar.
- a rack bar 8 that can be connected to the joint 12 and is movably provided in the cylindrical main body 23, a buffer member 13, and includes a base 18 and a buffer 19, and is formed of an elastic material.
- the axis that passes through the center of a circle formed by the inner peripheral surface of the rack housing 9 in a cross section perpendicular to the moving direction of the rack bar 8 relative to the rack housing 9 and that is parallel to the moving direction of the rack bar 8 is the reference axis M.
- the base portion 18 is formed in an annular shape so as to surround the reference axis M, and is held by the buffer member holding portion 24a.
- the buffer portion 19 includes the buffer portion main body portion 19a,
- the buffer portion main body portion 19a is provided inside the base portion 18 in the radial direction with respect to the reference axis M, is annular, and has a dimension in the direction of the reference axis M larger than that of the base portion 18. And can be compressed and deformed when sandwiched between the ball joint 12 and the cylindrical main body 23 in the direction of the reference axis M, and the shock-absorbing protrusion 19b is in a state in which the shock-absorbing main body 19a is not compressed and deformed. It has a buffer member 13 which is provided on the inner side in the radial direction than the contact portion when contacting the cylindrical main body 23 and has a shape protruding toward the inner side in the radial direction.
- the buffer main body 19a When the buffer main body 19a is compressed and deformed, a part of the buffer main body 19a is deformed so as to escape toward the space between the base 18 and the cylindrical main body 23. The radially inner part is also dragged in the same direction. Therefore, the entire buffer portion main body 19a is bent in a mountain fold, and fatigue of the material of the buffer portion main body 19a proceeds. Therefore, in the present embodiment, by providing the buffer portion protrusion 19b, the rigidity of the radially inner portion in the buffer portion main body 19a is improved, the bending deformation of the buffer portion main body 19a is suppressed, and the buffer portion main body is suppressed. Fatigue of the material of the part 19a can be reduced.
- the buffering portion projecting portion 19b is configured such that the buffering portion main body portion 19a is cylindrical when the buffering portion main body portion 19a is most compressed and deformed between the ball joint 12 and the cylindrical main body portion 23. It has a portion remaining on the inner side in the radial direction from the contact portion when contacting the main body portion 23.
- the buffer main body 19a is provided by providing the buffer protrusion 19b to the extent that a portion remaining radially inward of the contact portion is formed. Therefore, the deformation of the material of the buffer body 19a can be reduced.
- the buffer body 19a has a portion that does not come into contact with the ball joint 12 on the outer side in the radial direction from the ball joint 12 in a state of being in contact with the ball joint 12. .
- the buffer portion main body portion 19a by providing the buffer portion main body portion 19a so as to protrude outward in the radial direction from the outer peripheral edge of the ball joint 12, the volume of the buffer portion main body portion 19a can be secured, and sufficient A buffering effect can be obtained.
- the buffer body 19a can be in contact with the ball joint 12 to the outside in the radial direction from a half point in the radial direction.
- the buffer body 19a can contact the ball joint 12 in more than half of the radial direction, a part of the buffer body 19a is located between the ball joint 12 and the cylindrical body 23. It is possible to suppress deformation so as to escape into the gap, and it is possible to suppress bending deformation of the buffer body 19a.
- the ball joint 12 has a polygonal outer shape in a cross section perpendicular to the reference axis M, and the buffer body 19a has a diameter at the side of the polygonal shape.
- the ball joint 12 can be brought into contact with the outer side in the radial direction from a half point in the direction.
- the apex portion has the largest outer diameter
- the middle portion of the side has the smallest outer diameter. According to the present embodiment, even in the side portion, it is possible to contact the ball joint 12 in more than half of the radial direction, so that a part of the buffer portion main body portion 19a is located between the ball joint 12 and the cylindrical main body portion 23. It is possible to suppress deformation so as to escape into the gap.
- the buffer body 19a is configured so that the outer shape in the radial direction of the cross section passing through the reference axis M extends from the portion closer to the center of the buffer member 13 in the direction of the reference axis M.
- the shape is inclined with respect to the reference axis M so as to approach the reference axis M as it goes in the direction of.
- the buffer body 19a is configured such that, in a cross section passing through the reference axis M, the outer shape (end surface 19g) in the radial direction is from the central portion of the buffer member 13 in the direction of the reference axis M It has a shape that is inclined with respect to the reference axis M so as to move away from the reference axis M toward the direction of the ball joint 12 (on the end face 19e side), and between the axis along the outer shape in the radial direction and the reference axis M Out of the angles, the inferior angle is defined as the outer inclination angle ⁇ 1, and the inferior angle among the angles between the axis along the outer diameter on the radially inner side and the reference axis M is defined as the inner inclination angle ⁇ 2. It has a shape larger than the inclination angle ⁇ 2 ( ⁇ 1> ⁇ 2).
- the outer inclination angle ⁇ 1 is sufficiently inclined so as to be larger than the inner inclination angle ⁇ 2, thereby preventing the boundary portion between the buffer portion main body portion 19a and the base portion 18 from being bent so as to be recessed. can do.
- the buffer member 13 is provided at the boundary portion between the base 18 and the buffer body body 19a in the cross section passing through the reference axis M, and in the direction of the center of the buffer body body 19a. It has an arc shape that is recessed toward it.
- the base portion 18 and the buffer portion main body at the time of deformation of the buffer member 13 are formed by making the arc shape compared to the case where the boundary portion between the base portion 18 and the buffer portion main body portion 19a is formed in an angular shape.
- the stress concentration between the portions 19a can be relaxed.
- the buffer body 19a is provided in the cross section passing through the reference axis M at the corner near the ball joint 12 in the direction of the reference axis M and at the radially outer corner. It protrudes toward the outside of the main part 19a, has an arc shape with a first radius of curvature r1, and the arc-shaped radius of curvature at the boundary between the base 18 and the buffer main part 19a is a second radius of curvature r2. In this case, the second curvature radius r2 is larger than the first curvature radius r1.
- the buffer member 13 is deformed by setting the arc shape of the boundary portion between the base 18 and the buffer body body 19a to a radius of curvature larger than the first radius of curvature r1.
- the stress concentration between the base portion 18 and the buffer portion main body portion 19a can be sufficiently relaxed.
- the buffer body 19a is provided at a corner close to the ball joint 12 in the direction of the reference axis M and in the radially inner corner in the cross section passing through the reference axis M. It has an arc shape that is convex toward the outside of the main body 19a.
- the stress concentration at the corner portion can be relaxed.
- the rack housing 9 has a stopper portion 25, and the stopper portion 25 is provided on the cylindrical main body portion 23 on the inner side of the buffer member 13 in the radial direction, and the direction of the reference axis M 1 has a shape projecting from the cylindrical main body 23 toward the ball joint 12, and the buffer projecting portion 19b has a portion that projects most radially inward (the top portion 19b1) as a reference axis.
- the stopper portion 25 has a shape located on the inner side from the end portion on the side close to the ball joint 12.
- the buffer body 19a has a shape protruding in the direction of the reference axis M from the base 18 toward the cylindrical body 23, and the cylindrical body 23 Has a shape in which a space is formed between the base 18 and the cylindrical main body 23.
- the buffer main body 19a when the buffer main body 19a is compressed and deformed, a part of the buffer main body 19a moves to the space between the cylindrical main body 23 and the base 18 so that the buffer main body 19a A sufficient buffering effect can be exhibited.
- the movement of the buffer member 13 in the direction of the reference axis M is restricted. Therefore, according to the present embodiment, it is possible to suppress the buffer member 13 from being detached from the cylindrical main body 23 and the positional deviation in the reference axis direction.
- the buffer member 13 has a symmetrical shape in the direction of the reference axis M in a cross section passing through the reference axis M.
- the buffer member 13 can be attached to the cylindrical main body 23 regardless of the assembly direction of the buffer member 13.
- the buffer member 13 is formed by molding, has a dividing line (line D2) corresponding to the mating surfaces of the plurality of molds (30a, 30b), and the dividing line (line D2). ) Is provided at a position shifted from the center point in the direction of the reference axis M.
- the buffer member 13 Since the buffer member 13 has a symmetrical shape in the direction of the reference axis M, the most protruding portion (top 19b1) of the buffer protrusion 19b is located at the center point in the direction of the reference axis M.
- the burr protrudes radially inward, which may hinder smooth compression deformation of the buffer member 13. Therefore, in the present embodiment, the occurrence of the above-described problem can be suppressed by shifting the dividing line (line D2) from the center point.
- the base 18 has a width L2 in the direction of the reference axis M that is larger than a half length of the width L1 in the direction of the reference axis M in the buffer main body 19a (L1>). L2 / 2).
- the base 18 since the base 18 has a sufficient width, the fall of the base 18 can be suppressed.
- the buffer member holding portion 24a is a recess that is provided on the inner peripheral side of the cylindrical main body portion 23 and opens toward the inside in the radial direction of the reference axis M.
- 13 has a positioning projection 18b that protrudes radially outward from the base 18 and is inserted into the recess, and the base 18 is on both sides of the positioning projection 18b in the direction of the reference axis M, and has a cylindrical body.
- the abutting surface 18 a that abuts against the inner peripheral surface of the portion 23, and the abutting surface 18 a holds the buffer member 13 against the cylindrical main body portion 23 by a frictional force between the inner peripheral surface of the cylindrical main body portion 23. It was possible to hold.
- the shock absorber 13 can be prevented from falling when the shock absorber main body 19a is compressed and deformed. Further, according to the present embodiment, the buffer member 13 is held not by the positioning convex portion 18b but by the contact surface 18a, so that the stress concentration of the positioning convex portion 18b is alleviated and damage to the positioning convex portion 18b is suppressed. be able to.
- the steering device is a rack housing, the rack housing including a cylindrical main body portion and a buffer member holding portion, a rack bar, and connectable to a ball joint.
- the rack bar movably provided in the cylindrical main body, a buffer member, comprising a base and a buffer, formed of an elastic material, and the moving direction of the rack bar relative to the rack housing
- the base portion surrounds the reference axis when an axis that passes through the center of a circle formed by the inner peripheral surface of the rack housing in a cross section perpendicular to the axis and is parallel to the moving direction of the rack bar is a reference axis.
- the buffer portion includes a buffer portion main body portion and a buffer portion protrusion
- the main part is provided inside the base in the radial direction of the reference axis, is annular, and has a dimension in the direction of the reference axis that is larger than the base, and in the direction of the reference axis It is compressible when being sandwiched between the ball joint and the cylindrical main body part, and the buffer part protruding part is in contact with the cylindrical main body part in a state where the buffer part main body part is not compressed and deformed.
- a shock-absorbing member provided on the inner side in the radial direction than the contact portion and having a shape protruding toward the inner side in the radial direction.
- the buffer portion projecting portion is configured such that the buffer portion main body portion is in the state where the buffer portion main body portion is most compressed and deformed between the ball joint and the cylindrical main body portion. A portion that remains on the inner side in the radial direction from the contact portion when contacting the portion.
- the buffer portion main body abuts on the ball joint at a radially outer side than the ball joint in a state of abutting on the ball joint. It has a part that does not.
- the buffer portion main body can be brought into contact with the ball joint to the outside in the radial direction from a half point in the radial direction.
- the ball joint has a polygonal shape in a cross section perpendicular to the reference axis, and the buffer portion main body portion is the polygonal shape. In this side portion, the ball joint can be brought into contact with the outer side in the radial direction from a half point in the radial direction.
- the buffer body portion is a portion of an outer shape in the radial direction near the center of the buffer member in the direction of the reference axis in a cross section passing through the reference axis.
- the shock absorber main body has a cross section passing through the reference axis, and an outer shape inside the radial direction is a center of the buffer member in the direction of the reference axis.
- the outer inclination angle is the outer inclination angle
- the outer inclination angle is the inner inclination when the inferior angle is the inner inclination angle among the angles between the axis along the outer diameter on the radially inner side and the reference axis line. It has a shape larger than the corner.
- the buffer member is provided at a boundary portion between the base portion and the buffer body portion in a cross section passing through the reference axis, and the center of the buffer portion body portion. It has an arc shape that is recessed in the direction of.
- the buffer portion main body portion is on a side close to the ball joint in the direction of the reference axis and outside in the radial direction in a cross section passing through the reference axis.
- Provided in the corner of the buffer portion, and convex toward the outside of the buffer portion main body portion, has an arc shape with a first radius of curvature, and has an arc shape radius of curvature at a boundary portion between the base portion and the buffer portion main body portion. Is the second curvature radius, the second curvature radius is larger than the first curvature radius.
- the buffer body portion is provided at a corner closer to the ball joint in the direction of the reference axis and at a radially inner corner in a cross section passing through the reference axis. And has an arc shape that is convex toward the outside of the buffer body.
- the rack housing includes a stopper portion, and the stopper portion is provided on the cylindrical main body portion on the inner side of the buffer member in the radial direction, It has a shape that protrudes in the direction of the axis from the cylindrical main body toward the direction of the ball joint, and the buffer protrusion has a portion that protrudes most inward in the radial direction.
- the stopper portion has a shape located on the inner side of the end portion on the side close to the ball joint.
- the buffer body portion has a shape protruding in the direction of the reference axis from the base portion toward the tubular body portion, and
- the main body has a shape in which a space is formed between the base and the cylindrical main body.
- the space is filled with the buffer member when the buffer body portion is compressively deformed.
- the buffer member has a shape symmetrical to the direction of the reference axis in a cross section passing through the reference axis.
- the buffer member is formed by molding, and has a dividing line corresponding to a mating surface of a plurality of molds, and the dividing line is the reference axis. It is provided at a position shifted from the center point in the direction of.
- the base has a width in the direction of the reference axis larger than a half length of the width in the direction of the reference axis in the buffer body. did.
- the buffer member holding portion is a recess provided on an inner peripheral side of the cylindrical main body portion and opening toward a radially inner side of the reference axis.
- the buffer member has a positioning convex portion that protrudes outward in the radial direction from the base portion and is inserted into the concave portion, and the base portion is on both sides of the positioning convex portion in the direction of the reference axis.
- an abutting surface that abuts against the inner peripheral surface of the cylindrical main body, and the abutting surface is in contact with the cylindrical main body by the frictional force with the inner peripheral surface of the cylindrical main body.
- the buffer member can be held.
- SYMBOLS 1 Steering device, 8 ... Rack bar, 9 ... Rack housing, 10 ... Rack end, 12 ... Ball joint, 13 ... Buffer member, M ... Reference
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Vibration Dampers (AREA)
- Power Steering Mechanism (AREA)
Abstract
ステアリング装置1は、ボールジョイント12と接続されるラックバー8と、ラックバー8を取り囲むラックハウジング9と、ラックハウジング9の筒状本体部23の端部に設けられた緩衝部材13と、を備えている。緩衝部材13は、弾性材料で形成されており、基準軸線Mを包囲するように環状に形成された基部18と、基部18と一体に形成され、径方向において基部18の内周側に設けられた環状の緩衝部19と、を備える。緩衝部19は、緩衝部本体部19aと、緩衝部突出部19bとを備えている。緩衝部突出部19bは、緩衝部本体部19aが圧縮変形しない状態で筒状本体部23と接触するときの接触部分よりも径方向における内側に設けられ、径方向の内側に向かって突出する形状を有している。この構成によって、緩衝部材の緩衝性能の低下を抑制することができる。
Description
本発明は、ステアリング装置に関する。
ステアリング装置としては、例えば以下の特許文献1に記載されたステアリング装置が知られている。
特許文献1に記載のステアリング装置は、ラックバーを収容するラックハウジングの端部に弾性材料からなる緩衝部材が取り付けられている。この緩衝部材は、ラックバーの軸方向に沿って概ね一様な厚さを有している。
特許文献1のステアリング装置では、緩衝部材は、ボールジョイントとの衝突時に圧縮変形し、この圧縮変形により、緩衝部材が過度に圧縮される部分が生じる。この過度に圧縮される部分によって、緩衝部材の塑性変形が生じ、緩衝部材の緩衝性能が低下する虞がある。
本発明は、従来の実情に鑑みて案出されたもので、緩衝部材の緩衝性能の低下を抑制することができるステアリング装置を提供することを目的としている。
本発明によれば、その一つの態様において、緩衝部材は、基部と緩衝部を備え、ラックハウジングの基準軸線を包囲するように環状に形成され、緩衝部は緩衝部本体と緩衝部突出部を備え、緩衝部突出部は、径方向の内側に向かって突出する形状を有する。
本発明によれば、緩衝部材の緩衝性能の低下が抑制される。
以下、本発明のステアリング装置の一実施例を図面に基づき説明する。
(ステアリング装置の構成)
図1は、本実施例のステアリング装置1の概略図であって、ステアリング装置1の一部を断面で示してある。
図1は、本実施例のステアリング装置1の概略図であって、ステアリング装置1の一部を断面で示してある。
図1に示すように、ステアリング装置1は、運転者からの操舵力を伝達する操舵機構2と、運転者の操舵操作を補助する操舵アシスト機構3と、を備えている。
操舵機構2は、車両の運転室内に配置された図示せぬステアリングホイールと、車両の前輪である図示せぬ2つの転舵輪と、を機械的に連結している。操舵機構2は、ステアリングホイールからの回転力が伝達される入力軸4と、図示せぬトーションバーを介して入力軸4に接続された出力軸5と、を有した操舵軸6、およびこの操舵軸6の回転を転舵輪に伝達する伝達機構7と、を備えている。伝達機構7は、出力軸5の外周に設けられた図示せぬピニオンと、ラックバー8の外周に設けられた図示せぬラックと、からなるラック&ピニオン機構(ラック&ピニオン・ギヤ)により構成されている。
ラックバー8は、細長い円筒状のラックハウジング9内に、図示せぬラックブッシュを介して移動可能に収容されている。ラックエンド10,10は、ラックバー8の両端部8a,8aに形成された雌ねじ部がラックエンド10,10の雄ねじ部と噛み合うことにより、ラックバー8の両端部8a,8aにそれぞれ固定されている。ラックバー8の両端部8a,8aにおいて、ラックエンド10は、円弧状に窪んだ凹部10aをそれぞれ有しており、この凹部10aに、タイロッド11の球状端部11aが嵌め込まれる。このように、凹部10aと球状端部11aとを組み合わせることによって、ボールジョイント12が構成されており、このボールジョイント12を介して、ラックバー8とタイロッド11が接続されている。タイロッド11は、図示せぬナックルアームを介して対応する転舵輪に連結されている。
ラックハウジング9の軸方向両端には、ラックエンド10(ボールジョイント12)とラックハウジング9との衝突時における衝撃を緩和する後述する緩衝部材13(図2および図4参照)がそれぞれ設けられている。
さらに、ラックハウジング9の軸方向両端には、ボールジョイント12の外周を覆う蛇腹状のブーツ14がそれぞれ設置されている。ブーツ14は、弾性材料である例えば合成ゴム材料により所定の可撓性を確保するように形成されており、ラックバー8等への水や埃等の浸入を防止している。
また、ラックハウジング9の軸方向両端部には、このラックハウジング9を車体に取り付けるためのマウントブラケット15がそれぞれ設けられている。マウントブラケット15には、図示せぬゴムブッシュが設置され、このゴムブッシュを介して、ラックハウジング9が車体に取り付けられる。
ここで、以下の説明の便宜上、ラックハウジング9に対するラックバー8の移動方向に直交する断面においてラックハウジング9の内周面によって形成される円の中心を通り、ラックバー8の移動方向と平行な軸線を「基準軸線M」と定義する。また、基準軸線Mと平行な方向を「軸方向」と定義する。さらに、基準軸線Mと直交する方向を基準軸線Mに対する「径方向」と定義する。
操舵アシスト機構3は、操舵機構2に操舵力を付与する電動モータであるモータ16を備えており、このモータ16は、電子制御ユニット(ECU)17と一体に構成されている。
電子制御ユニット17は、各種制御処理を記憶および実行する機能を有し、図示せぬトルクセンサからの操舵トルクの信号等に基づいてモータ16を駆動制御する。
かかるステアリング装置1の構成から、運転者がステアリングホイールを回転操作すると、入力軸4が回転してトーションバーが捩られ、これにより生じるトーションバーの弾性力によって、出力軸5が回転する。そして、出力軸5の回転運動が上記ラック&ピニオン機構によりラックバー8の軸方向に沿う直線運動に変換され、タイロッド11,11を介して図示せぬナックルアームが車幅方向へと押し引きされることによって、対応した方向に転舵輪の向きが変更される。
(本実施例の緩衝部材の構造)
図2は、基準軸線Mに沿って切断したときの本実施例の緩衝部材13の断面図である。なお、緩衝部材13は、環状に形成されているが、説明の都合上、緩衝部材13の一部断面のみを示してある。図2において、端面19eがボールジョイント12と接触する側となる。
図2は、基準軸線Mに沿って切断したときの本実施例の緩衝部材13の断面図である。なお、緩衝部材13は、環状に形成されているが、説明の都合上、緩衝部材13の一部断面のみを示してある。図2において、端面19eがボールジョイント12と接触する側となる。
緩衝部材13は、弾性材料で形成されており、基準軸線Mを包囲するように環状に形成された基部18と、この基部18と一体に形成され、径方向において基部18の内周側に設けられた環状の緩衝部19と、を備えている。緩衝部材13は、基準軸線Mを通る断面において、基準軸線Mの方向に対称な形状を有している。この構成により、緩衝部材13の組付け方向を問う必要がない。
基部18は、基準軸線Mに沿って切断した断面が概ね正方形に形成されている。基部18は、基準軸線Mに沿った軸方向の中間において基部18の当接面18aから外側に突出した環状の位置決め凸部18bを備えている。位置決め凸部18bは、基準軸線Mに沿って切断した断面が概ね半円状となるように形成されている。
緩衝部19は、緩衝部本体部19aと、緩衝部突出部19bを備えている。緩衝部本体部19aは、基準軸線Mにおける径方向において基部18の内側に設けられ、環状に形成されている。また、緩衝部本体部19aは、基準軸線Mに沿って切断した断面が概ね長方形であり、緩衝部本体部19aの長辺が軸方向に延びる姿勢で配置されている。緩衝部本体部19aの軸方向における幅L1は、基部18の軸方向における幅L2よりも大きくなっている(L1>L2)。ただし、基部18は、基準軸線Mの方向における幅L2が、緩衝部本体部19aにおける基準軸線の方向における幅L1の二分の一の長さより大きい(L2>L1/2)。これにより、基部18が充分な幅を有することにより、基部18の倒れを抑制することができる。
また、緩衝部本体部19aは、基準軸線Mを通る軸方向断面において、基部18のうち軸方向の端面18c(図2に破線で示す)と、緩衝部19のうち径方向外側の端面19c,19dとの間の角度のうち劣角αが鈍角となるように形成されている。即ち、緩衝部本体部19aの径方向外側の端面19c,19dは、基部18を挟んで軸方向に対称となるように基準軸線M側に劣角αで傾斜している。
端面18cは、基部18と緩衝部本体部19aの境界部分となり、この境界部分は緩衝部本体部19aの中心の方向に向かって凹む円弧形状を有している。本実施例においては、基部18と緩衝部本体部19aの境界部分の円弧形状の曲率半径を「第2曲率半径r2」と定義する。
また、緩衝部本体部19aの端面19cとこの端面19c側の端面19eとの間(ボールジョイント12に近い側)、ならびに端面19dとこの端面19d側の端面19fとの間は、径方向外側の隅に設けられ、緩衝部本体部19aの外側に向かって凸となり、円弧状に接続されている。本実施例においては、この円弧状に形成された凸部分を「第1曲率半径r1」と定義する。第2曲率半径r2は、第1曲率半径r1よりも大きい形状を有している(r2>r1)。
緩衝部本体部19aの端面19cは、基準軸線Mを通る断面において、径方向の外側における外形(端面19c)が基準軸線Mの方向における緩衝部材13の中央寄りの部分からボールジョイント12の方向(端面19e側)に向かうに従い基準軸線Mに近づくように基準軸線Mに対し傾斜する形状を有している。
緩衝部突出部19bは、緩衝部本体部19aが圧縮変形しない状態で筒状本体部23(図4)と接触するときの接触部分よりも径方向における内側に設けられ、径方向の内側に向かって突出する形状を有している。緩衝部突出部19bの突出部分の頂部19b1は、基準軸線Mの方向における緩衝部材13の中央部分に形成される。ここで、緩衝部本体部19aが圧縮しない状態で筒状本体部23と接触するときの接触部分よりも径方向内側とは、接触部分のいかなる部分(最も径方向内側の部分)よりも径方向内側であることを意味する。
緩衝部突出部19bの端面19gとこの端面19g側の端面19eとの間(ボールジョイント12に近い側)、ならびに端面19hとこの端面19h側の端面19fとの間は、径方向内側の隅に設けられ、緩衝部本体部19aの外側に向かって凸となり、円弧状に接続されている。このように構成することにより、緩衝部材の変形時において、この隅部分における応力集中を緩和することができる。
緩衝部本体部19aは、基準軸線Mを通る断面において、径方向の内側における外形(端面19g)が基準軸線Mの方向における緩衝部材13の中央の部分からボールジョイント12の方向(端面19e側)に向かうに従い基準軸線Mから遠ざかるように基準軸線Mに対し傾斜する形状を有し、径方向の外側における外形に沿った軸線と基準軸線Mとの間の角度のうち劣角を外側傾斜角α1とし、径方向内側における外径に沿った軸線と基準軸線Mとの間の角度のうち劣角を内側傾斜角α2としたとき、外側傾斜角α1が内側傾斜角α2よりも大きい形状を有している(α1>α2)。
(比較例の緩衝部材の構造)
図3は、従来の緩衝部材に相当する比較例の緩衝部材21を示し、基準軸線Mに沿って切断したときの比較例の緩衝部材21の断面図である。なお、緩衝部材21は、環状に形成されているが、緩衝部材21の一部断面のみを示してある。
図3は、従来の緩衝部材に相当する比較例の緩衝部材21を示し、基準軸線Mに沿って切断したときの比較例の緩衝部材21の断面図である。なお、緩衝部材21は、環状に形成されているが、緩衝部材21の一部断面のみを示してある。
図3に示すように、比較例の緩衝部材21は、基部18が、上記本実施例の緩衝部材13の基部18と同様に構成されている。一方、緩衝部22は、本実施例の緩衝部19の緩衝部突出部19bを有しておらず、概ね長方形の形状に形成されている。換言すれば、緩衝部22の端面22aは、緩衝部22の両端面22b,22cの間で基準軸線Mに沿って延びる平坦状に形成されている。
図4は、図1のラックハウジング9の操舵機構2側の端部における拡大断面図である。ラックハウジング9は、金属材料によって鋳造で形成されており、ラックバー8が内部を通って移動する筒状本体部23と、該筒状本体部23と一体に形成された緩衝部材収容部24と、同じく筒状本体部23と一体に形成されたストッパ部25と、を備えている。
筒状本体部23は、細長い筒状をなしており、図示せぬラックブッシュを介してラックバー8を移動可能に支持する。ラックバー8の端部8aには、円弧状に窪んだ凹部10aが備えられており、この凹部10aにタイロッド11の球状端部11aが嵌め込まれている。凹部10aと球状端部11aを組み合わせることにより、ボールジョイント12が構成されている。
緩衝部材収容部24は、筒状本体部23の外周側に位置し、筒状本体部23の端部23aからラックエンド10(図1参照)側に筒状に突出することで、ラックエンド10側に開口している。緩衝部材収容部24の内周面には、筒状本体部23の端部23aに寄った位置に、ラックバー8側に開口した環状溝である緩衝部材保持部24aが形成されている。換言すると、緩衝部材保持部24aは、筒状本体部23の内周側に設けられ、基準軸線Mにおける径方向の内側に向かって開口する凹部を構成している。緩衝部材保持部24aは、緩衝部材13の基部18の環状の位置決め凸部18bよりも大きい外径を有している。緩衝部材13の基部18から径方向外側に向かって突出した位置決め凸部18bは、緩衝部材保持部24aの凹部に挿入され、位置決めされる。緩衝部材収容部24内に緩衝部材13が非圧縮状態で収容された状態では、基部18の位置決め凸部18bは、図4及び図6Aに示すように、位置決め凸部18bと緩衝部材保持部24aとの間ならびに当接面18aと内周面24bとの間に多少の隙間が残存する形で、緩衝部材保持部24aに保持されている。
当接面18aは、基準軸線Mの方向において位置決め凸部18bの両側に設けられている。そして、当接面18aは筒状本体部23の内周面24bとの間の摩擦力によって筒状本体部23に対して緩衝部材13を保持可能としている。また、この状態では、緩衝部19の端面19fが筒状本体部23に当接しており、緩衝部19の内周側の端面19hがストッパ部25から径方向外側に離間している。
本実施例では、当接面18aを位置決め凸部18bの両側に設けることにより、緩衝部本体部19aの圧縮変形時における緩衝部材の倒れを抑制することができる。また、位置決め凸部18bではなく、当接面18aにより緩衝部材13を保持することにより、位置決め凸部18bの応力集中を緩和し、位置決め凸部18bの損傷を抑制することができる。
一方、ラックエンド10(図1参照)が緩衝部19の端面19cに衝突しているときには、緩衝部19は、軸方向においてラックエンド10(ボールジョイント12)と筒状本体部23との間で圧縮変形し、緩衝部材保持部24aに対し圧縮した状態で当接する。つまり、緩衝部材13の圧縮変形時に、位置決め凸部18bと緩衝部材保持部24aとが密着し、さらに、当接面18aと内周面24bとが密着した状態となる(図6B参照)。
ストッパ部25は、筒状本体部23の内周側に位置し、筒状本体部23の端部23aからラックエンド10側に環状に突出している。ストッパ部25の突出長さは、緩衝部材収容部24の突出長さよりも短くなっている。ストッパ部25は、径方向から見て緩衝部材収容部24とオーバラップしている。ストッパ部25は、ラックエンド10(ボールジョイント12)との衝突時に、ラックエンド10の筒状本体部23側へ向かう移動を規制する。
図5Aは、非圧縮状態における比較例の緩衝部材21の状態を示した説明図である。
図5Aでは、図示省略するラックエンド10(ボールジョイント12)が比較例の緩衝部材21の緩衝部22の端面22bに衝突していない状態を示している。この状態では、緩衝部材21に荷重が全く掛かっておらず、基部18の環状の位置決め凸部18bが、環状溝である緩衝部材保持部24aと接触していない。また、緩衝部22の端面22cが筒状本体部23に当接しており、緩衝部19の内周側の端面22aがストッパ部25から径方向外側に離間している。
なお、図5Aに仮想線で示す衝突開始線Sは、緩衝部22の端面22bに沿った線であり、図示省略するラックエンド10(ボールジョイント12)が緩衝部材21に衝突するときの衝突の開始となる位置を示している。
図5Bは、圧縮状態における比較例の緩衝部材21の状態を示した説明図である。
図5Bでは、図示省略するラックエンド10(ボールジョイント12)が比較例の緩衝部材21の緩衝部22の端面22bに衝突している状態を示している。この状態では、ラックエンド10(ボールジョイント12)が端面22bに衝突して、衝突開始線Sから筒状本体部23側に距離Djだけ移動することで、緩衝部材21が圧縮変形する。このとき、基部18の環状の位置決め凸部18bは、環状溝である緩衝部材保持部24aに対し圧縮した状態で緩衝部材保持部24aに当接しており、さらに、基部18の当接面18aは、緩衝部材収容部24の内周面24bに対し圧縮した状態で内周面24bに当接している。
また、緩衝部22は軸方向に潰れて端面22b及び端面22cは径方向外側に伸びる。緩衝部19の内周側の端面22aは撓み、軸方向の中央部分はストッパ部25から径方向外側に離間し、径方向外側に向かって凹んだ凹部22a1が形成される。このように比較例では、緩衝部材21が過度に圧縮されることにより、凹部22a1が形成される。比較例の構成では、凹部22a1が形成されることにより緩衝部材21の塑性変形が生じ、緩衝部材21の緩衝性能が低下する恐れがある。この課題を解決する構造について以下説明する。
(本実施例の緩衝部材の構造)
図6Aは、非圧縮状態における本実施例の緩衝部材13の状態を示した説明図である。
図6Aは、非圧縮状態における本実施例の緩衝部材13の状態を示した説明図である。
図6Aでは、図示省略するボールジョイント12(ラックエンド10)が本実施例の緩衝部材13の緩衝部19の端面19cに当接し始めた状態を示している。この状態では、緩衝部材13に荷重が掛かっておらず、基部18の環状の位置決め凸部18bが、環状溝である緩衝部材保持部24aと接触していない。また、緩衝部19の端面19fが筒状本体部23の端部23aに当接しており、緩衝部19の内周側の端面19g、19hがストッパ部25から径方向外側に離間している。さらに緩衝部突出部19bの頂部19b1はストッパ部25から径方向外側に離間している。基部18と筒状本体部23の間には空間23bが形成される。また、緩衝部突出部19bとストッパ部25との間には、空間23cが形成される。
緩衝部本体部19aは、ボールジョイント12と当接した状態において、ボールジョイント12よりも径方向の外側においてボールジョイント12と当接しない部分Aを有している。本実施例では、ボールジョイント12の外周縁よりも径方向外側にまで張り出すように緩衝部本体部19aを設けることにより、緩衝部本体部19aのボリュームを確保することができ、充分な緩衝効果を得ることができる。
また、基部18と緩衝部19(緩衝部本体部19a)との境界となる部分を「端面18c」とし、緩衝部本体部19aと緩衝部突出部19bとの境界となる部分を「端面19j」とした時、端面18cと端面19jとの間の径方向における中間部分、すなわち緩衝部本体部19aの径方向における中間部分を通る軸方向の線を中間線19Kとする。端面18cと中間線19Kとの距離をL3とし、端面19jと中間線19Kとの距離をL4とした時、L3とL4の長さは等しい関係にある(L3=L4)。緩衝部本体部19aの端面19eと中間線19Kとが交わる部分を点Pとする。点Pは、緩衝部本体部19aにおける径方向の二分の一の点となる。本実施例では、緩衝部本体部19aは、径方向における二分の一の点Pよりも径方向の外側までボールジョイント12と当接可能としている。このように構成することにより、緩衝部本体部19aが径方向の半分以上においてボールジョイント12と当接可能であるため、緩衝部本体部19aの一部分がボールジョイント12と筒状本体部23の間の隙間に逃げるように変形することを抑制することができ、緩衝部本体部19aの曲げ変形を抑制することができる。
ストッパ部25は、径方向において緩衝部材13より内側において筒状本体部23に設けられており、基準軸線Mの方向において筒状本体部23からボールジョイント12の方向に向かって突出する形状を有している。緩衝部突出部19bは、径方向の内側に向かって最も突出した部分(頂部19b1)が、基準軸線Mの方向においてストッパ部25のボールジョイントに近い側の端部25aより内側に位置する形状を有している。このように構成することにより、緩衝部突出部19bの内側に突出した部分がストッパ部25とボールジョイント12の間に挟まれることを抑制することができる。
緩衝部本体部19aは、基準軸線Mの方向において、基部18よりも筒状本体部23の方向に向かって突出する形状を有している。筒状本体部23は、基部18と筒状本体部23の間に空間23bが形成される形状を有している。この空間を確保することにより、緩衝部本体部19aの圧縮変形時において緩衝部本体部19aの一部が筒状本体部23と基部18の間の空間に移動することにより、緩衝部19により充分な緩衝効果を発揮させることができる。
次に、緩衝部材13に荷重が掛かった状態について図6Bにて説明する。図6Bは圧縮状態における本実施例の緩衝部材13の状態を示した説明図である。図6Bでは、緩衝部本体部19aがボールジョイント12と筒状本体部23の間で最も圧縮変形した状態をしている。緩衝部本体部19aが最も圧縮変形した状態とは、例えば、ラックハウジングがストッパ部を有しており、ボールジョイントがこのストッパ部に当接する状態を意味する。また、ストッパ部が無い場合には、通常の操舵操作において、ラックバーのストロークが停止する程度に緩衝部本体部19aが圧縮変形した状態であっても良い。
図6Bにおいて、ボールジョイント12が緩衝部本体部19aの端面19eに衝突して、緩衝部本体部19aが衝突開始位置からストッパ部25の端部25aまで移動することで、緩衝部材13が圧縮変形する。圧縮変形した緩衝部19は、緩衝部19の内周側の端面19g、19hがストッパ部25に接触する。さらに緩衝部突出部19bの頂部19b1はストッパ部25に接触する。すなわち、緩衝部19の内周側の端面19g、19h及び緩衝部突出部19bの頂部19b1は、概ね直線上になり、ストッパ部25に接触する。緩衝部突出部19bは圧縮変形することにより、空間23cを埋めるように空間23cへ移動する。本実施例の構成では、比較例のようにストッパ部25から径方向外側に離間し、径方向外側に向かって凹んだ凹部22a1が形成されることが抑制される。換言すれば、緩衝部突出部19bは、緩衝部本体部19aがボールジョイント12と筒状本体部23の間で最も圧縮変形した状態において、緩衝部本体部19aが筒状本体部23と接触するときの接触部分よりも前記径方向の内側に残る部分を有している。
本実施例によれば、緩衝部本体部19aが最も圧縮変形した状態においても、接触部分よりも径方向内側に残る部分ができる程度に緩衝部突出部19bを設けることにより、緩衝部本体部19aの曲げの変形が抑制され、緩衝部本体部19aの材料の疲労を低減することができる。
また、本実施例の筒状本体部23は、基部18と筒状本体部23の間に空間23bが形成される形状を有している。緩衝部本体部19aが圧縮変形するとき、空間23bは緩衝部材13が充満した状態となる。
本実施例によれば、空間23bが緩衝部材13によって充満した状態においては、緩衝部材13の基準軸線Mの方向における移動が規制される。よって、緩衝部材13の筒状本体部23からの脱落や基準軸線M方向における位置ずれを抑制することができる。
次に緩衝部材13と当接するボールジョイント12の構成について、図7A及び図7Bを用いて説明する。図7Aはボールジョイント12を基準軸線Mの軸方向から見た図である。図7Bは図7AのX部における要部拡大図である。
図7Aにおいて、本実施例のボールジョイント12は多角形形状を有している。ボールジョイント12が多角形形状を有する場合、頂点の部分が最も外径が大きく、辺の真ん中の部分が最も外径が小さい。すなわち、ボールジョイント12の中心点Oから頂点までの長さL5に対し、ボールジョイント12の中心点Oから辺の真ん中部分までの長さL6が小さい(L5>L6)。
ボールジョイント12は、緩衝部材13の緩衝部19と当接する当接面12aを備えている。この当接面12aは、多角形形状のボールジョイント12の辺の部分を形成する。図7Bにおいて、2つの破線に挟まれる部分は緩衝部本体部19aの端面19eである。当接面12aと端面19eの重なる部分が、ボールジョイント12と緩衝部材13とが当接している部分となる。また、破線12bはボールジョイント12の辺の中央部分を通る線である。点Pは、図6Aにて説明した緩衝部本体部19aにおける径方向の二分の一の点である。本実施例の緩衝部本体部19aは、多角形形状の辺の部分において、径方向の二分の一の点Pよりも径方向の外側までボールジョイント12と当接可能となっている。
ボールジョイント12が多角形形状を有する場合、頂点の部分が最も外径が大きく、辺の真ん中の部分が最も外径が小さい。この辺の部分においても、径方向の半分以上においてボールジョイント12と当接可能であるため、緩衝部本体部19aの一部分がボールジョイント12と筒状本体部23の間の隙間に逃げるように変形することを抑制することができる。
(緩衝部材の成型方法)
次に緩衝部材13の成形方法について説明する。図8は緩衝部材13と成形型を示す図である。
次に緩衝部材13の成形方法について説明する。図8は緩衝部材13と成形型を示す図である。
本実施例の緩衝部材13は、型成形によって形成される。例えばその一例として、緩衝部材13は型中に緩衝部材を構成する材料(合成ゴム)を流し込み、その型に熱と圧力を加えることにより成形する。緩衝部材13は環状の形成されており、緩衝部材13を成形するための型は緩衝部材13の環状形成に沿って複数用意される。換言すると、型は基準軸線Mの軸方向に配置され、緩衝部材13を挟むように分割して配置される。
複数の型を用いて型成形を行う場合、型から成型品を取り出し易くし生産性向上をはかることから、アンダーカット領域ができないように型設計を行うことが好ましい。一方、型が複数に分割される分割線においては、分割線に沿って成形材料の一部が漏れ出して形成される所謂バリが発生する。成形品が摺動部分に使用される場合、バリが摺動する動作を妨げる虞がある。この課題を解決するための構成について、図8を用いて説明する。
緩衝部材13を成形するために、本実施例では2つ(複数)の型30(30a、30b)が用いられる。0(30a、30b)の内面は、緩衝部材13の外径形状に合わせて形成されている。
図8において、線D1は緩衝部突出部19bの頂部19b1と、基部18の位置決め凸部18bの頂部18b1を通る線である。換言すると、線D1は基準軸線Mの方向の中央の点を通る位置にある。緩衝部材13は、この線D1に対して対象に形成される。緩衝部材13を成形するための型を作成する場合、一般的にはこの線D1を分割線として型を作成する。線D1を型の分割線とする場合、アンダーカット領域は形成されない。しかしながら、分割線の位置にはバリが発生し易いので、線D1を分割線として型を作成すると、緩衝部材13の頂部19b1にはバリが発生する可能性がある。
緩衝部突出部19bの頂部19b1は、緩衝部材13において最も径方向内側に張り出した部分であるので、緩衝部突出部19bが圧縮変形した時、ストッパ部25に当接して摺動することになる。このため、緩衝部突出部19bの頂部19b1に発生したバリが、緩衝部材13のスムーズな圧縮変形を妨げる虞がある。そこで本実施例では、分割線を基準軸線Mの方向の中央の点からずれた位置に設けている。
本実施例の型30aには、緩衝部材13の当接面18a及び端面19d、19f、19hをそれぞれ形成するための内面31a1、31d、31f、31h1を有している。一方、型30bには、緩衝部材13の当接面18a及び端面19c、19e、19g、19h及び位置決め凸部18bをそれぞれ形成するための内面31a2、31c、31e、31g、31h2及び凹面31bを有している。
型30bのうち、内面31h2及び凹面31bはアンダーカット領域となり、通常、成形品が型から取り出し難くなる。しかしながら、本実施例の成形品である緩衝部材13は弾性を有しているので、弾性変形させることが容易であり、弾性変形させながら緩衝部材13を容易に型30bから取り出すことができる。
本実施例の緩衝部材13は、型成形によって形成され、複数の型30a、30bの合わせ面に対応する分割線(線D2)を有し、分割線(線D2)は、基準軸線Mの方向の中央の点からずれた位置に設けている。本実施例では、緩衝部材13は基準軸線Mの方向に対称な形状を有するため、緩衝部突出部19bの最も突出した部分(頂部19b1)は基準軸線Mの方向の中央の点に位置することとなる。その点と分割線が一致する場合であって、分割線において所謂バリが発生している場合、バリが径方向内側に張り出すこととなり、緩衝部材13のスムーズな圧縮変形を妨げる虞がある。そこで、本実施例では分割線(線D2)を中央の点からずらすことにより、上記課題の発生を抑制することができる。
(本実施例の効果)
特許文献1のステアリング装置では、弾性材料からなる緩衝部材が、ラックバーの軸方向に沿って概ね一様な厚さを有しているので、ボールジョイントの衝突時に、緩衝部材に過度に荷重が掛かり圧縮される部分、つまり緩衝部材の圧縮率が過度に高い部分が生じる。この圧縮率が過度に高い部分によって、緩衝部材が塑性変形し、これにより、緩衝部材の緩衝性能が抑制される虞がある。
特許文献1のステアリング装置では、弾性材料からなる緩衝部材が、ラックバーの軸方向に沿って概ね一様な厚さを有しているので、ボールジョイントの衝突時に、緩衝部材に過度に荷重が掛かり圧縮される部分、つまり緩衝部材の圧縮率が過度に高い部分が生じる。この圧縮率が過度に高い部分によって、緩衝部材が塑性変形し、これにより、緩衝部材の緩衝性能が抑制される虞がある。
具体的には、図5Bに示す比較例の緩衝部材21のように、緩衝部突出部19bを有しない従来の緩衝部材21では、図示省略したラックエンドの衝突時に、緩衝部材21の緩衝部22に、凹部22a1が形成されるような荷重が過度に高い部分、つまり緩衝部22の圧縮率が過度に高い部分が生じる。このため、比較例の緩衝部材21では、この圧縮率が過度に高い部分によって、緩衝部22が塑性変形し、これにより、緩衝部材21の緩衝部材の緩衝性能が抑制される虞がある。
これに対し、本実施例のステアリング装置1は、ラックハウジング9であって、筒状本体部23と、緩衝部材保持部24aと、を備えたラックハウジング9と、ラックバー8であって、ボールジョイン12トと接続可能であり、筒状本体部23内に移動可能に設けられているラックバー8と、緩衝部材13であって、基部18と、緩衝部19を備え、弾性材料で形成されており、ラックハウジング9に対するラックバー8の移動方向に対し直角な断面においてラックハウジング9の内周面によって形成される円の中心を通り、ラックバー8の移動方向と平行な軸線を基準軸線Mとしたとき、基部18は、基準軸線Mを包囲するように環状に形成されており、緩衝部材保持部24aに保持されており、緩衝部19は、緩衝部本体部19aと、緩衝部突出部19bを備え、緩衝部本体部19aは、基準軸線Mにおける径方向において基部18の内側に設けられ、環状であって、かつ基準軸線Mの方向の寸法が基部18よりも大きく形成されており、基準軸線Mの方向においてボールジョイント12と筒状本体部23との間で挟まれるとき圧縮変形可能であり、緩衝部突出部19bは、緩衝部本体部19aが圧縮変形しない状態で筒状本体部23と接触するときの接触部分よりも径方向における内側に設けられ、径方向の内側に向かって突出する形状を有する、緩衝部材13と、を有している。
緩衝部本体部19aが圧縮変形する際、緩衝部本体部19aの一部分が、基部18と筒状本体部23の間の空間の方へ逃げるように変形するため、緩衝部本体部19aの中の径方向内側の部分も同じ方へ引きずられる。そのため、緩衝部本体部19a全体が山折りの曲げ状態となり、緩衝部本体部19aの材料の疲労が進行する。そこで、本実施例では緩衝部突出部19bを設けることで、緩衝部本体部19aの中の径方向内側の部分の剛性が向上し、緩衝部本体部19aの曲げ変形が抑制され、緩衝部本体部19aの材料の疲労を低減することができる。
また、本実施例では上記に加え、緩衝部突出部19bは、緩衝部本体部19aがボールジョイント12と筒状本体部23の間で最も圧縮変形した状態において、緩衝部本体部19aが筒状本体部23と接触するときの接触部分よりも径方向の内側に残る部分を有している。
本実施例によれば、緩衝部本体部19aが最も圧縮変形した状態においても、接触部分よりも径方向内側に残る部分ができる程度に緩衝部突出部19bを設けることにより、緩衝部本体部19aの曲げの変形が抑制され、緩衝部本体部19aの材料の疲労を低減することができる。
また、本実施例では上記に加え、緩衝部本体部19aは、ボールジョイント12と当接した状態において、ボールジョイント12よりも径方向の外側においてボールジョイント12と当接しない部分を有している。
本実施例によれば、ボールジョイント12の外周縁よりも径方向外側にまで張り出すように緩衝部本体部19aを設けることにより、緩衝部本体部19aのボリュームを確保することができ、充分な緩衝効果を得ることができる。
また、本実施例では上記に加え、緩衝部本体部19aは、径方向における二分の一の点よりも径方向の外側までボールジョイント12と当接可能とした。
本実施例によれば、緩衝部本体部19aが径方向の半分以上においてボールジョイント12と当接可能であるため、緩衝部本体部19aの一部分がボールジョイント12と筒状本体部23の間の隙間に逃げるように変形することを抑制することができ、緩衝部本体部19aの曲げ変形を抑制することができる。
また、本実施例では上記に加え、ボールジョイント12は、基準軸線Mに対し直角な断面における外形が多角形形状を有し、緩衝部本体部19aは、多角形形状の辺の部分において、径方向の二分の一の点よりも径方向の外側までボールジョイント12と当接可能とした。
ボールジョイント12が多角形形状を有する場合、頂点の部分が最も外径が大きく、辺の真ん中の部分が最も外径が小さい。本実施例によれば、辺の部分においても、径方向の半分以上においてボールジョイント12と当接可能であるため、緩衝部本体部19aの一部分がボールジョイント12と筒状本体部23の間の隙間に逃げるように変形することを抑制することができる。
また、本実施例では上記に加え、緩衝部本体部19aは、基準軸線Mを通る断面において、径方向の外側における外形が基準軸線Mの方向における緩衝部材13の中央寄りの部分からボールジョイント12の方向に向かうに従い基準軸線Mに近づくように基準軸線Mに対し傾斜する形状を有している。
本実施例によれば、緩衝部本体部19aと基部18の境界の部分が凹むように折れ曲がることを抑制することができる。
また、本実施例では上記に加え、緩衝部本体部19aは、基準軸線Mを通る断面において、径方向の内側における外形(端面19g)が基準軸線Mの方向における緩衝部材13の中央の部分からボールジョイント12の方向(端面19e側)に向かうに従い基準軸線Mから遠ざかるように基準軸線Mに対し傾斜する形状を有し、径方向の外側における外形に沿った軸線と基準軸線Mとの間の角度のうち劣角を外側傾斜角α1とし、径方向内側における外径に沿った軸線と基準軸線Mとの間の角度のうち劣角を内側傾斜角α2としたとき、外側傾斜角α1が内側傾斜角α2よりも大きい形状を有している(α1>α2)。
本実施例によれば、外側傾斜角α1が内側傾斜角α2に対して大きくなるように充分に傾斜させることにより、緩衝部本体部19aと基部18の境界の部分が凹むように折れ曲がることを抑制することができる。
また、本実施例では上記に加え、緩衝部材13は、基準軸線Mを通る断面において、基部18と緩衝部本体部19aの間の境界部分に設けられ、緩衝部本体部19aの中心の方向に向かって凹む円弧形状を有している。
本実施例によれば、基部18と緩衝部本体部19aの間の境界部分を角ばった形状とする場合に比べ、円弧形状とすることにより、緩衝部材13の変形時における基部18と緩衝部本体部19aの間の応力集中を緩和することができる。
また、本実施例では上記に加え、緩衝部本体部19aは、基準軸線Mを通る断面において、基準軸線Mの方向においてボールジョイント12に近い側でかつ径方向の外側の隅に設けられ、緩衝部本体部19aの外側に向かって凸となり、第1曲率半径r1の円弧形状を有し、基部18と緩衝部本体部19aの間の境界部分の円弧形状の曲率半径を第2曲率半径r2としたとき、第2曲率半径r2が第1曲率半径r1よりも大きい形状を有している。(r2>r1) 本実施例によれば、基部18と緩衝部本体部19aの間の境界部分の円弧形状を、第1曲率半径r1より大きな曲率半径とすることにより、緩衝部材13の変形時における基部18と緩衝部本体部19aの間の応力集中を充分に緩和することができる。
また、本実施例では上記に加え、緩衝部本体部19aは、基準軸線Mを通る断面において、基準軸線Mの方向においてボールジョイント12に近い側でかつ径方向内側の隅に設けられ、緩衝部本体部19aの外側に向かって凸となる円弧形状を有している。
本実施例によれば、緩衝部材13の変形時において、この隅部分における応力集中を緩和することができる。
また、本実施例では上記に加え、ラックハウジング9は、ストッパ部25を有し、ストッパ部25は、径方向において緩衝部材13より内側において筒状本体部23に設けられ、基準軸線Mの方向において筒状本体部23からボールジョイント12の方向に向かって突出する形状を有しており、緩衝部突出部19bは、径方向の内側に向かって最も突出した部分(頂部19b1)が、基準軸線Mの方向においてストッパ部25のボールジョイント12に近い側の端部より内側に位置する形状を有している。
本実施例によれば、緩衝部突出部19bの内側に突出した部分がストッパ部25とボールジョイント12の間に挟まれることを抑制することができる。
また、本実施例では上記に加え、緩衝部本体部19aは、基準軸線Mの方向において、基部18よりも筒状本体部23の方向に向かって突出する形状を有し、筒状本体部23は、基部18と筒状本体部23の間に空間が形成される形状を有している。
本実施例によれば、緩衝部本体部19aの圧縮変形時において緩衝部本体部19aの一部が筒状本体部23と基部18の間の空間に移動することにより、緩衝部本体部19aにより充分な緩衝効果を発揮させることができる。
また、本実施例では上記に加え、緩衝部本体部19aが圧縮変形するとき、空間は前記緩衝部材13が充満した状態となるようにした。
空間が緩衝部材13によって充満した状態においては、緩衝部材13の基準軸線Mの方向における移動が規制される。よって、本実施例によれば、緩衝部材13の筒状本体部23からの脱落や基準軸線方向における位置ずれを抑制することができる。
また、本実施例では上記に加え、緩衝部材13は、基準軸線Mを通る断面において、基準軸線Mの方向に対称な形状を有している。
本実施例によれば、緩衝部材13の組付け方向を問わずに、緩衝部材13を筒状本体部23に装着できる。
また、本実施例では上記に加え、緩衝部材13は、型成形によって形成され、複数の型(30a、30b)の合わせ面に対応する分割線(線D2)を有し、分割線(線D2)は、基準軸線Mの方向の中央の点からずれた位置に設けるようにした。
緩衝部材13は基準軸線Mの方向に対称な形状を有するため、緩衝部突出部19bの最も突出した部分(頂部19b1)は基準軸線Mの方向の中央の点に位置することとなる。その点と分割線が一致する場合であって、分割線において所謂バリが発生している場合、バリが径方向内側に張り出すこととなり、緩衝部材13のスムーズな圧縮変形を妨げる虞がある。そこで、本実施例では、分割線(線D2)を中央の点からずらすことにより、上記課題の発生を抑制することができる。
また、本実施例では上記に加え、基部18は、基準軸線Mの方向における幅L2が、緩衝部本体部19aにおける基準軸線Mの方向における幅L1の二分の一の長さより大きくした(L1>L2/2)。
本実施例によれば、基部18が充分な幅を有することにより、基部18の倒れを抑制することができる。
また、本実施例では上記に加え、緩衝部材保持部24aは、筒状本体部23の内周側に設けられ、基準軸線Mにおける径方向の内側に向かって開口する凹部であって、緩衝部材13は、基部18から径方向外側に向かって突出し、凹部に挿入される位置決め凸部18bを有し、基部18は、基準軸線Mの方向において位置決め凸部18bの両側であって、筒状本体部23の内周面と当接する当接面18aを有し、当接面18aは、筒状本体部23の内周面との間の摩擦力によって筒状本体部23に対し緩衝部材13を保持可能とした。
本実施例によれば、当接面18aを位置決め凸部18bの両側に設けることにより、緩衝部本体部19aの圧縮変形時における緩衝部材13の倒れを抑制することができる。また、本実施例によれば、位置決め凸部18bではなく、当接面18aにより緩衝部材13を保持することにより、位置決め凸部18bの応力集中を緩和し、位置決め凸部18bの損傷を抑制することができる。
以上説明した実施例に基づくステアリング装置としては、例えば以下に述べられる態様のものが考えられる。
ステアリング装置は、その一つの態様において、ラックハウジングであって、筒状本体部と、緩衝部材保持部と、を備えた前記ラックハウジングと、ラックバーであって、ボールジョイントと接続可能であり、前記筒状本体部内に移動可能に設けられている前記ラックバーと、緩衝部材であって、基部と、緩衝部を備え、弾性材料で形成されており、前記ラックハウジングに対する前記ラックバーの移動方向に対し直角な断面において前記ラックハウジングの内周面によって形成される円の中心を通り、前記ラックバーの移動方向と平行な軸線を基準軸線としたとき、前記基部は、前記基準軸線を包囲するように環状に形成されており、前記緩衝部材保持部に保持されており、前記緩衝部は、緩衝部本体部と、緩衝部突出部を備え、前記緩衝部本体部は、前記基準軸線における径方向において前記基部の内側に設けられ、環状であって、かつ前記基準軸線の方向の寸法が前記基部よりも大きく形成されており、前記基準軸線の方向において前記ボールジョイントと前記筒状本体部との間で挟まれるとき圧縮変形可能であり、前記緩衝部突出部は、前記緩衝部本体部が圧縮変形しない状態で前記筒状本体部と接触するときの接触部分よりも前記径方向における内側に設けられ、前記径方向の内側に向かって突出する形状を有する、緩衝部材と、を有している。
前記ステアリング装置の好ましい態様において、前記緩衝部突出部は、前記緩衝部本体部が前記ボールジョイントと前記筒状本体部の間で最も圧縮変形した状態において、前記緩衝部本体部が前記筒状本体部と接触するときの接触部分よりも前記径方向の内側に残る部分を有している。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記緩衝部本体部は、前記ボールジョイントと当接した状態において、前記ボールジョイントよりも前記径方向の外側において前記ボールジョイントと当接しない部分を有している。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記緩衝部本体部は、前記径方向における二分の一の点よりも前記径方向の外側まで前記ボールジョイントと当接可能とした。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記ボールジョイントは、前記基準軸線に対し直角な断面における外形が多角形形状を有し、前記緩衝部本体部は、前記多角形形状の辺の部分において、前記径方向の二分の一の点よりも前記径方向の外側まで前記ボールジョイントと当接可能とした。
別の好ましい態様では、前記ステアリング装置の態様において、前記緩衝部本体部は、前記基準軸線を通る断面において、前記径方向の外側における外形が前記基準軸線の方向における前記緩衝部材の中央寄りの部分から前記ボールジョイントの方向に向かうに従い前記基準軸線に近づくように前記基準軸線に対し傾斜する形状を有している。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記緩衝部本体部は、前記基準軸線を通る断面において、前記径方向の内側における外形が前記基準軸線の方向における前記緩衝部材の中央の部分から前記ボールジョイントの方向にむかうに従い前記基準軸線から遠ざかるように前記基準軸線に対し傾斜する形状を有し、前記径方向の外側における外形に沿った軸線と前記基準軸線との間の角度のうち劣角を外側傾斜角とし、前記径方向内側における外径に沿った軸線と前記基準軸線との間の角度のうち劣角を内側傾斜角としたとき、前記外側傾斜角が前記内側傾斜角よりも大きい形状を有している。
別の好ましい態様では、前記ステアリング装置の態様において、前記緩衝部材は、前記基準軸線を通る断面において、前記基部と前記緩衝部本体部の間の境界部分に設けられ、前記緩衝部本体部の中心の方向に向かって凹む円弧形状を有している。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記緩衝部本体部は、前記基準軸線を通る断面において、前記基準軸線の方向において前記ボールジョイントに近い側でかつ前記径方向の外側の隅に設けられ、前記緩衝部本体部の外側に向かって凸となり、第1の曲率半径の円弧形状を有し、前記基部と前記緩衝部本体部の間の境界部分の円弧形状の曲率半径を第2曲率半径としたとき、前記第2曲率半径が前記第1曲率半径よりも大きい形状を有している。
別の好ましい態様では、前記ステアリング装置の態様において、前記緩衝部本体部は、前記基準軸線を通る断面において、前記基準軸線の方向において前記ボールジョイントに近い側でかつ前記径方向内側の隅に設けられ、前記緩衝部本体部の外側に向かって凸となる円弧形状を有している。
別の好ましい態様では、前記ステアリング装置の態様において、前記ラックハウジングは、ストッパ部を有し、前記ストッパ部は、前記径方向において前記緩衝部材より内側において前記筒状本体部に設けられ、前記基準軸線の方向において前記筒状本体部から前記ボールジョイントの方向に向かって突出する形状を有しており、前記緩衝部突出部は、前記径方向の内側に向かって最も突出した部分が、前記基準軸線の方向において前記ストッパ部の前記ボールジョイントに近い側の端部より内側に位置する形状を有している。
別の好ましい態様では、前記ステアリング装置の態様において、前記緩衝部本体部は、前記基準軸線の方向において、前記基部よりも前記筒状本体部の方向に向かって突出する形状を有し、前記筒状本体部は、前記基部と前記筒状本体部の間に空間が形成される形状を有している。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記緩衝部本体部が圧縮変形するとき、前記空間は前記緩衝部材が充満した状態となる。
別の好ましい態様では、前記ステアリング装置の態様において、前記緩衝部材は、前記基準軸線を通る断面において、前記基準軸線の方向に対称な形状を有している。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記緩衝部材は、型成形によって形成され、複数の型の合わせ面に対応する分割線を有し、前記分割線は、前記基準軸線の方向の中央の点からずれた位置に設けられている。
別の好ましい態様では、前記ステアリング装置の態様の何れかにおいて、前記基部は、前記基準軸線の方向における幅が、前記緩衝部本体部における前記基準軸線の方向における幅の二分の一の長さより大きくした。
別の好ましい態様では、前記ステアリング装置の態様において、前記緩衝部材保持部は、前記筒状本体部の内周側に設けられ、前記基準軸線における径方向の内側に向かって開口する凹部であって、前記緩衝部材は、前記基部から前記径方向外側に向かって突出し、前記凹部に挿入される位置決め凸部を有し、前記基部は、前記基準軸線の方向において前記位置決め凸部の両側であって、前記筒状本体部の内周面と当接する当接面を有し、前記当接面は、前記筒状本体部の内周面との間の摩擦力によって前記筒状本体部に対し前記緩衝部材を保持可能である。
1…ステアリング装置、8…ラックバー、9…ラックハウジング、10…ラックエンド、12…ボールジョイント、13…緩衝部材、M…基準軸線、18…基部、18a…当接面、18b…位置決め凸部、19…緩衝部、19a…緩衝部本体部、19b…緩衝部突出部、23…筒状本体部、24a…緩衝部材保持部。
Claims (17)
- ステアリング装置であって、
ラックハウジングであって、筒状本体部と、緩衝部材保持部と、を備えた前記ラックハウジングと、
ラックバーであって、ボールジョイントと接続可能であり、前記筒状本体部内に移動可能に設けられている前記ラックバーと、
緩衝部材であって、基部と、緩衝部を備え、弾性材料で形成されており、
前記ラックハウジングに対する前記ラックバーの移動方向に対し直角な断面において前記ラックハウジングの内周面によって形成される円の中心を通り、前記ラックバーの移動方向と平行な軸線を基準軸線としたとき、
前記基部は、前記基準軸線を包囲するように環状に形成されており、前記緩衝部材保持部に保持されており、
前記緩衝部は、緩衝部本体部と、緩衝部突出部を備え、
前記緩衝部本体部は、前記基準軸線における径方向において前記基部の内側に設けられ、環状であって、かつ前記基準軸線の方向の寸法が前記基部よりも大きく形成されており、前記基準軸線の方向において前記ボールジョイントと前記筒状本体部との間で挟まれるとき圧縮変形可能であり、
前記緩衝部突出部は、前記緩衝部本体部が圧縮変形しない状態で前記筒状本体部と接触するときの接触部分よりも前記径方向における内側に設けられ、前記径方向の内側に向かって突出する形状を有する、緩衝部材と、
を有することを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部突出部は、前記緩衝部本体部が前記ボールジョイントと前記筒状本体部の間で最も圧縮変形した状態において、前記緩衝部本体部が前記筒状本体部と接触するときの接触部分よりも前記径方向の内側に残る部分を有することを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部本体部は、前記ボールジョイントと当接した状態において、前記ボールジョイントよりも前記径方向の外側において前記ボールジョイントと当接しない部分を有することを特徴とするステアリング装置。 - 請求項3に記載のステアリング装置において、
前記緩衝部本体部は、前記径方向における二分の一の点よりも前記径方向の外側まで前記ボールジョイントと当接可能であることを特徴とするステアリング装置。 - 請求項4に記載のステアリング装置において、
前記ボールジョイントは、前記基準軸線に対し直角な断面における外形が多角形形状を有し、前記緩衝部本体部は、前記多角形形状の辺の部分において、前記径方向の二分の一の点よりも前記径方向の外側まで前記ボールジョイントと当接可能であることを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部本体部は、前記基準軸線を通る断面において、前記径方向の外側における外形が前記基準軸線の方向における前記緩衝部材の中央寄りの部分から前記ボールジョイントの方向に向かうに従い前記基準軸線に近づくように前記基準軸線に対し傾斜する形状を有することを特徴とするステアリング装置。 - 請求項6に記載のステアリング装置において、
前記緩衝部本体部は、前記基準軸線を通る断面において、前記径方向の内側における外形が前記基準軸線の方向における前記緩衝部材の中央の部分から前記ボールジョイントの方向に向かうに従い前記基準軸線から遠ざかるように前記基準軸線に対し傾斜する形状を有し、前記径方向の外側における外形に沿った軸線と前記基準軸線との間の角度のうち劣角を外側傾斜角とし、前記径方向の内側における外径に沿った軸線と前記基準軸線との間の角度のうち劣角を内側傾斜角としたとき、前記外側傾斜角が前記内側傾斜角よりも大きい形状を有することを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部材は、前記基準軸線を通る断面において、前記基部と前記緩衝部本体部の間の境界部分に設けられ、前記緩衝部本体部の中心の方向に向かって凹む円弧形状を有することを特徴とするステアリング装置。 - 請求項8に記載のステアリング装置において、
前記緩衝部本体部は、前記基準軸線を通る断面において、前記基準軸線の方向において前記ボールジョイントに近い側でかつ前記径方向の外側の隅に設けられ、前記緩衝部本体部の外側に向かって凸となり、第1曲率半径の円弧形状を有し、前記基部と前記緩衝部本体部の間の境界部分の円弧形状の曲率半径を第2曲率半径としたとき、前記第2曲率半径が前記第1曲率半径よりも大きい形状を有することを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部本体部は、前記基準軸線を通る断面において、前記基準軸線の方向において前記ボールジョイントに近い側でかつ前記径方向の内側の隅に設けられ、前記緩衝部本体部の外側に向かって凸となる円弧形状を有することを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記ラックハウジングは、ストッパ部を有し、
前記ストッパ部は、前記径方向において前記緩衝部材より内側において前記筒状本体部に設けられ、前記基準軸線の方向において前記筒状本体部から前記ボールジョイントの方向に向かって突出する形状を有しており、
前記緩衝部突出部は、前記径方向の内側に向かって最も突出した部分が、前記基準軸線の方向において前記ストッパ部の前記ボールジョイントに近い側の端部より内側に位置する形状を有することを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部本体部は、前記基準軸線の方向において、前記基部よりも前記筒状本体部の方向に向かって突出する形状を有し、
前記筒状本体部は、前記基部と前記筒状本体部の間に空間が形成される形状を有することを特徴とするステアリング装置。 - 請求項12に記載のステアリング装置において、
前記緩衝部本体部が圧縮変形するとき、前記空間は前記緩衝部材が充満した状態となることを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部材は、前記基準軸線を通る断面において、前記基準軸線の方向に対称な形状を有することを特徴とするステアリング装置。 - 請求項14に記載のステアリング装置において、
前記緩衝部材は、型成形によって形成され、複数の型の合わせ面に対応する分割線を有し、前記分割線は、前記基準軸線の方向の中央の点からずれた位置に設けられていることを特徴とするステアリング装置。 - 請求項14に記載のステアリング装置において、
前記基部は、前記基準軸線の方向における幅が、前記緩衝部本体部における前記基準軸線の方向における幅の二分の一の長さより大きいことを特徴とするステアリング装置。 - 請求項1に記載のステアリング装置において、
前記緩衝部材保持部は、前記筒状本体部の内周側に設けられ、前記基準軸線における径方向の内側に向かって開口する凹部であって、
前記緩衝部材は、前記基部から前記径方向の外側に向かって突出し、前記凹部に挿入される位置決め凸部を有し、
前記基部は、前記基準軸線の方向において前記位置決め凸部の両側であって、前記筒状本体部の内周面と当接する当接面を有し、
前記当接面は、前記筒状本体部の内周面との間の摩擦力によって前記筒状本体部に対し前記緩衝部材を保持可能であることを特徴とするステアリング装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-041648 | 2018-03-08 | ||
JP2018041648A JP2019155982A (ja) | 2018-03-08 | 2018-03-08 | ステアリング装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019171819A1 true WO2019171819A1 (ja) | 2019-09-12 |
Family
ID=67846030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002708 WO2019171819A1 (ja) | 2018-03-08 | 2019-01-28 | ステアリング装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019155982A (ja) |
WO (1) | WO2019171819A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021034659A (ja) | 2019-08-28 | 2021-03-01 | パナソニック株式会社 | 太陽電池モジュール |
JP6768181B1 (ja) * | 2020-06-16 | 2020-10-14 | 株式会社ショーワ | 車両用ステアリング装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59156858U (ja) * | 1983-04-07 | 1984-10-22 | 豊田工機株式会社 | ラツクアンドピニオン形動力舵取装置 |
JPH09663A (ja) * | 1995-06-21 | 1997-01-07 | Bridgestone Sports Co Ltd | ゴルフボール用金型及びゴルフボール |
JP2001500598A (ja) * | 1996-09-19 | 2001-01-16 | ザクセンリング アウトモービルテヒニク アクチエンゲゼルシャフト | 玉継手並びに玉継手の製法 |
JP2008049798A (ja) * | 2006-08-24 | 2008-03-06 | Hitachi Ltd | ステアリング装置 |
JP2009286679A (ja) * | 2008-05-30 | 2009-12-10 | Ohara Inc | ガラス成形体製造方法及びガラス成形体製造装置 |
JP2015112959A (ja) * | 2013-12-10 | 2015-06-22 | 株式会社ショーワ | 操舵装置 |
JP2015112960A (ja) * | 2013-12-10 | 2015-06-22 | 株式会社ショーワ | 操舵装置 |
JP2016165914A (ja) * | 2015-03-09 | 2016-09-15 | 株式会社ショーワ | 転舵装置 |
JP2017077874A (ja) * | 2015-10-22 | 2017-04-27 | 株式会社ジェイテクト | ダンパ装置及びステアリング装置 |
-
2018
- 2018-03-08 JP JP2018041648A patent/JP2019155982A/ja active Pending
-
2019
- 2019-01-28 WO PCT/JP2019/002708 patent/WO2019171819A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59156858U (ja) * | 1983-04-07 | 1984-10-22 | 豊田工機株式会社 | ラツクアンドピニオン形動力舵取装置 |
JPH09663A (ja) * | 1995-06-21 | 1997-01-07 | Bridgestone Sports Co Ltd | ゴルフボール用金型及びゴルフボール |
JP2001500598A (ja) * | 1996-09-19 | 2001-01-16 | ザクセンリング アウトモービルテヒニク アクチエンゲゼルシャフト | 玉継手並びに玉継手の製法 |
JP2008049798A (ja) * | 2006-08-24 | 2008-03-06 | Hitachi Ltd | ステアリング装置 |
JP2009286679A (ja) * | 2008-05-30 | 2009-12-10 | Ohara Inc | ガラス成形体製造方法及びガラス成形体製造装置 |
JP2015112959A (ja) * | 2013-12-10 | 2015-06-22 | 株式会社ショーワ | 操舵装置 |
JP2015112960A (ja) * | 2013-12-10 | 2015-06-22 | 株式会社ショーワ | 操舵装置 |
JP2016165914A (ja) * | 2015-03-09 | 2016-09-15 | 株式会社ショーワ | 転舵装置 |
JP2017077874A (ja) * | 2015-10-22 | 2017-04-27 | 株式会社ジェイテクト | ダンパ装置及びステアリング装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2019155982A (ja) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4828353B2 (ja) | ステアリング装置 | |
JP5645070B2 (ja) | 電動パワーステアリング装置 | |
EP2733048B1 (en) | Steering System | |
JP4571341B2 (ja) | ステアリング装置のダンパ機構 | |
CN107401583B (zh) | 汽车减速器 | |
WO2019171819A1 (ja) | ステアリング装置 | |
WO2019031100A1 (ja) | ステアリング装置 | |
WO2011077614A1 (ja) | ラック・アンド・ピニオン式ステアリング機構の衝撃緩衝装置 | |
WO2012147724A1 (ja) | ラックピニオン式ステアリングギヤユニット | |
US20120301213A1 (en) | Ball joint apparatus | |
JP2013159293A (ja) | ステアリング装置 | |
JP5934733B2 (ja) | ステアリング装置 | |
JP7217159B2 (ja) | ステアリング装置、及びステアリング装置の製造方法 | |
KR101450329B1 (ko) | 랙 피니언 방식 조향장치의 타이로드 | |
JP2019048493A (ja) | ステアリング装置 | |
WO2018139569A1 (ja) | ステアリング装置 | |
JP5479159B2 (ja) | 車両用ミラー | |
JP5445511B2 (ja) | ステアリング装置 | |
JP2015214249A (ja) | 電動パワーステアリング装置およびその組付方法 | |
WO2023067716A1 (ja) | 連結部材 | |
JP7488905B2 (ja) | ステアリング装置 | |
WO2024214675A1 (ja) | ウォーム減速機 | |
WO2024029451A1 (ja) | ウォーム減速機 | |
WO2024058015A1 (ja) | 操舵装置 | |
KR20150024553A (ko) | 랙 피니언 방식 조향장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19764371 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19764371 Country of ref document: EP Kind code of ref document: A1 |