WO2019171698A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2019171698A1
WO2019171698A1 PCT/JP2018/045732 JP2018045732W WO2019171698A1 WO 2019171698 A1 WO2019171698 A1 WO 2019171698A1 JP 2018045732 W JP2018045732 W JP 2018045732W WO 2019171698 A1 WO2019171698 A1 WO 2019171698A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power storage
pair
stacking direction
termination
Prior art date
Application number
PCT/JP2018/045732
Other languages
English (en)
French (fr)
Inventor
祐貴 中條
貴之 弘瀬
中村 知広
正博 山田
伸烈 芳賀
素宜 奥村
卓郎 菊池
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Priority to CN201880090812.6A priority Critical patent/CN111819723A/zh
Priority to DE112018007256.8T priority patent/DE112018007256T5/de
Priority to US16/978,282 priority patent/US20200411809A1/en
Publication of WO2019171698A1 publication Critical patent/WO2019171698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • One aspect of the present invention relates to a power storage device.
  • a device including a so-called bipolar power storage module having a bipolar electrode in which a positive electrode is formed on one surface of an electrode plate and a negative electrode is formed on the other surface is known (see Patent Document 1). .
  • Such a power storage module includes an electrode stack formed by stacking a plurality of bipolar electrodes.
  • a sealing body that seals between bipolar electrodes adjacent in the stacking direction is provided around the electrode stack.
  • An electrolytic solution is accommodated in an internal space formed between the bipolar electrodes by the sealing body.
  • the internal pressure in the internal space between the bipolar electrodes may increase depending on usage conditions and the like.
  • a termination electrode an electrode located at the end of the electrode stack (hereinafter referred to as a termination electrode) is greatly deformed outside the electrode stack along the stacking direction.
  • the stress applied to the sealing body increases and the sealing body may be broken. There may be a gap between the sealing body and the terminal electrode. The breakage of the sealing body can cause leakage of the electrolyte solution to the outside of the electrode stack. Formation of a gap between the sealing body and the termination electrode can also cause leakage of the electrolyte solution to the outside of the electrode stack.
  • An aspect of the present invention has been made to solve the above-described problem, and provides a power storage device that can suppress excessive deformation of a termination electrode even when an internal pressure increases.
  • a power storage device includes a power storage module and a pair of conductive plates that sandwich the power storage module.
  • the power storage module includes an electrode stack and a sealing body that seals the electrode stack.
  • the electrode stack includes a plurality of stacked bipolar electrodes and a pair of termination electrodes.
  • the pair of termination electrodes are disposed at the stack end of the electrode stack, and include an electrode plate and an active material layer.
  • the active material layer is provided on the surface of the electrode plate that faces the inside of the electrode laminate.
  • a sealing body has a pair of resin part provided in the edge of the termination electrode.
  • At least one of the pair of conductive plates is opposed to the corresponding termination electrode of the pair of termination electrodes in the stacking direction of the electrode laminate, and corresponds to the corresponding resin portion of the pair of resin portions as viewed from the stacking direction. It is arranged to overlap.
  • At least one conductive plate is arranged so as to overlap with the corresponding resin portion. Therefore, even when the internal pressure of the power storage module increases, excessive deformation of the termination electrode can be suppressed by the conductive plate.
  • One conductive plate may be disposed so as to overlap the corresponding resin portion over the entire circumference of the edge portion of the corresponding termination electrode when viewed from the stacking direction. In this case, excessive deformation of the termination electrode can be further suppressed by the conductive plate.
  • the length in the stacking direction of the edge portion of the electrode stack may be shorter than the length in the stacking direction of the central portion of the electrode stack. In this case, even if the resin portion is provided on the surface of the electrode plate of the termination electrode facing the outside of the electrode laminate, the conductive plate can be brought into contact with the termination electrode.
  • One conductive plate may be in contact with the corresponding resin portion. In this case, excessive deformation of the termination electrode can be further suppressed by the conductive plate.
  • Each of the pair of conductive plates may be disposed so as to face each of the pair of termination electrodes in the stacking direction of the electrode stack and to overlap each of the pair of resin portions as viewed from the stacking direction. In this case, excessive deformation of the pair of termination electrodes can be suppressed by the pair of conductive plates.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a power storage device.
  • the power storage device 1 shown in FIG. 1 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
  • the power storage device 1 includes a power storage module stack 2 including a plurality of stacked power storage modules 4 and a restraining member 3 that applies a restraining load to the power storage module stack 2 in the stacking direction.
  • the power storage module laminate 2 is composed of, for example, a plurality (three in the present embodiment) of power storage modules 4 and a plurality (four in the present embodiment) of conductive plates 5.
  • the power storage module 4 is, for example, a bipolar battery including a bipolar electrode 14 described later.
  • the power storage module 4 has a rectangular shape when viewed from the stacking direction.
  • the power storage module 4 is, for example, a secondary battery such as a nickel hydride secondary battery or a lithium ion secondary battery, or an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated.
  • the storage modules 4, 4 adjacent in the stacking direction are electrically connected via the conductive plate 5.
  • the conductive plates 5 are respectively disposed between the power storage modules 4 and 4 adjacent in the stacking direction and the outside of the power storage module 4 positioned at the stacking end. It can be said that each power storage module 4 is sandwiched between a pair of conductive plates 5.
  • a positive electrode terminal 6 is connected to one conductive plate 5 disposed outside the power storage module 4 located at the end of the stack.
  • a negative electrode terminal 7 is connected to the other conductive plate 5 disposed outside the power storage module 4 located at the stacking end.
  • the positive electrode terminal 6 and the negative electrode terminal 7 are drawn out, for example, from the edge of the conductive plate 5 in a direction crossing the stacking direction.
  • the power storage device 1 is charged and discharged by the positive electrode terminal 6 and the negative electrode terminal 7.
  • each conductive plate 5 a plurality of flow paths 5a for circulating a refrigerant such as air are provided.
  • Each flow path 5a extends in parallel to each other in a direction orthogonal to, for example, the stacking direction and the drawing direction of the positive electrode terminal 6 and the negative electrode terminal 7.
  • the conductive plate 5 functions as a connecting member that electrically connects the power storage modules 4 and 4 and also dissipates heat generated in the power storage module 4. It also has the function as The area of the conductive plate 5 viewed from the stacking direction is smaller than the area of the power storage module 4, for example.
  • the restraining member 3 includes a pair of end plates 8 and 8 that sandwich the power storage module stack 2 in the stacking direction, and a fastening bolt 9 and a nut 10 that fasten the end plates 8 and 8 together.
  • the end plate 8 is a rectangular metal plate having an area that is slightly larger than the areas of the power storage module 4 and the conductive plate 5 as viewed from the stacking direction.
  • an electrically insulating film F is provided, and the end plate 8 and the conductive plate 5 are electrically insulated. .
  • an insertion hole 8 a is provided at a position outside the power storage module stack 2.
  • the fastening bolt 9 is passed from the insertion hole 8 a of one end plate 8 toward the insertion hole 8 a of the other end plate 8, and at the tip of the fastening bolt 9 protruding from the insertion hole 8 a of the other end plate 8.
  • the nut 10 is screwed together.
  • the power storage module 4 and the conductive plate 5 are sandwiched between the end plates 8 and 8 and unitized as the power storage module stack 2, and a restraining load is applied to the power storage module stack 2 in the stacking direction.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a power storage module.
  • the power storage module 4 includes an electrode laminate 11 and a resin sealing body 12 that seals the electrode laminate 11.
  • the electrode laminate 11 is configured by laminating a plurality of bipolar electrodes 14, a negative electrode termination electrode 18, and a positive electrode termination electrode 19 through a separator 13. That is, the electrode laminate 11 includes a plurality of bipolar electrodes 14, a negative electrode termination electrode 18, and a positive electrode termination electrode 19 that are laminated via a separator 13.
  • the stacking direction D of the electrode stack 11 and the stacking direction of the power storage module stack 2 are the same.
  • the electrode stack 11 has a side surface 11a extending in the stacking direction D.
  • the bipolar electrode 14 includes an electrode plate 15, a positive electrode 16 provided on one surface 15 a of the electrode plate 15, and a negative electrode 17 provided on the other surface 15 b of the electrode plate 15.
  • the positive electrode 16 is a positive electrode active material layer formed by coating a positive electrode active material.
  • the negative electrode 17 is a negative electrode active material layer formed by coating a negative electrode active material.
  • the positive electrode 16 of one bipolar electrode 14 faces the negative electrode 17 of one bipolar electrode 14 adjacent in the stacking direction D across the separator 13.
  • the negative electrode 17 of one bipolar electrode 14 faces the positive electrode 16 of the other bipolar electrode 14 adjacent in the stacking direction D with the separator 13 interposed therebetween.
  • the negative electrode termination electrode 18 is disposed at one end of the electrode stack 11.
  • the negative electrode termination electrode 18 includes an electrode plate 15 and a negative electrode 17 provided on the other surface 15 b of the electrode plate 15.
  • One surface 15 a of the electrode plate 15 in the negative electrode termination electrode 18 is a surface (outer surface) facing the outer side of the electrode stack 11, and the other surface 15 b is a surface (inner surface) facing the inner side of the electrode stack 11.
  • the negative electrode 17 of the negative electrode termination electrode 18 faces the positive electrode 16 of the bipolar electrode 14 via the separator 13.
  • the positive electrode termination electrode 19 is disposed at the other laminated end of the electrode laminated body 11.
  • the positive electrode termination electrode 19 includes an electrode plate 15 and a positive electrode 16 provided on one surface 15 a of the electrode plate 15.
  • One surface 15 a of the electrode plate 15 in the positive electrode termination electrode 19 is a surface (inner surface) facing the inner side of the electrode stack 11, and the other surface 15 b is a surface (outer surface) facing the outer side of the electrode stack 11.
  • the positive electrode 16 of the positive electrode termination electrode 19 faces the negative electrode 17 of the bipolar electrode 14 through the separator 13.
  • the electrode plate 15 is made of, for example, a metal foil made of nickel or a nickel-plated steel plate and has a rectangular shape.
  • the edge 15c of the electrode plate 15 is a region (an uncoated region) where the positive electrode active material and the negative electrode active material are not provided on either one surface 15a or the other surface 15b.
  • the central portion 15d surrounded by the edge 15c of the electrode plate 15 is a region (coating region) in which at least one of the positive electrode active material or the negative electrode active material is provided on at least one of the one surface 15a and the other surface 15b. ing.
  • the central portion 15 d constitutes electrode portions of the bipolar electrode 14, the negative electrode termination electrode 18, and the positive electrode termination electrode 19.
  • the positive electrode active material constituting the positive electrode 16 examples include nickel hydroxide.
  • a negative electrode active material which comprises the negative electrode 17 a hydrogen storage alloy is mentioned, for example.
  • the formation region of the negative electrode 17 on the other surface 15 b of the electrode plate 15 is slightly larger than the formation region of the positive electrode 16 on the one surface 15 a of the electrode plate 15. Therefore, the size of the central portion 15 d of the bipolar electrode 14 is the size of the formation region of the negative electrode 17 on the other surface 15 b of the electrode plate 15.
  • the separator 13 is formed in a sheet shape, for example.
  • the separator 13 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like.
  • the separator 13 may be reinforced with a vinylidene fluoride resin compound.
  • the separator 13 is not limited to a sheet shape, and a bag shape may be used.
  • the sealing body 12 includes the electrode termination body 11 between the bipolar electrodes 14 and 14 adjacent in the stacking direction D, between the negative electrode termination electrode 18 and the bipolar electrode 14 adjacent in the stacking direction D, and the positive electrode termination adjacent in the stacking direction D.
  • the gap between the electrode 19 and the bipolar electrode 14 is sealed.
  • the sealing body 12 is formed in a rectangular cylindrical shape with an insulating resin, for example.
  • the sealing body 12 is configured to hold the edge 15c of the electrode plate 15 on the side surface 11a of the electrode stack 11 extending in the stacking direction D and surround the side surface 11a.
  • the sealing body 12 includes the first resin portion 21 provided on the edge portion 15c of each electrode plate 15 of the bipolar electrode 14, the negative electrode termination electrode 18, and the positive electrode termination electrode 19, and the entire first resin portion 21 from the outside. It is comprised by the 2nd resin part 22 provided so that it might surround.
  • the first resin portion 21 is formed by, for example, resin injection molding, and is continuously provided over all sides of the electrode plate 15 at the edge portion 15c (uncoated region) on the one surface 15a side of the electrode plate 15. Yes.
  • the first resin portion 21 is firmly bonded to the edge portion 15c, for example, by welding using ultrasonic waves or heat.
  • the first resin portion 21 functions as a spacer between the electrode plates 15 and 15 adjacent to each other in the stacking direction D, in addition to sealing the electrode stack 11.
  • the first resin portion 21 has a first portion 21 a that overlaps the edge portion 15 c of the electrode plate 15 and a second portion 21 b that projects outward from the edge of the electrode plate 15 when viewed from the stacking direction D. .
  • the length of the second portion 21b in the stacking direction D is longer than the length of the first portion 21a in the stacking direction D.
  • the 1st resin part 21 has the level
  • the step surface 21c covers the entire end surface of the electrode plate 15 (that is, a part of the side surface 11a).
  • the first resin portion 21 is provided apart from the positive electrode 16 and the negative electrode 17 in the direction orthogonal to the stacking direction D.
  • the coupling surface of the electrode plate 15 to the first resin portion 21 is a rough plating surface provided with a plurality of fine protrusions.
  • the entire surface of the one surface 15a of the electrode plate 15 on which the positive electrode 16 is provided is a rough plating surface.
  • the fine protrusion is, for example, a protrusion-like deposited metal (including an imparted substance) formed by electrolytic plating on the electrode plate 15.
  • the resin material constituting the first resin portion 21 enters the gaps between the fine protrusions, so that an anchor effect occurs, and the bonding strength and liquid tightness between the electrode plate 15 and the first resin portion 21 are generated. The improvement of the property is achieved.
  • the second resin part 22 surrounds the first resin part 21 from the outside and constitutes the outer wall (housing) of the power storage module 4.
  • the second resin portion 22 is formed by, for example, resin injection molding, and extends over the entire length in the stacking direction D of the electrode stack 11.
  • the 2nd resin part 22 has the side part 22a and a pair of overhang
  • the side surface portion 22a is provided along the side surface 11a of the electrode stack 11 and couples the plurality of first resin portions 21 arranged in the stacking direction D to each other.
  • the projecting portion 22b projects from the end portion 22c in the stacking direction D of the side surface portion 22a onto the end surface in the stacking direction D of the second portion 21b of the first resin portion 21.
  • the overhanging portion 22 b is continuously provided over all sides of the electrode plate 15.
  • the second resin part 22 is welded to the outer surface of the first resin part 21, for example, by heat during injection molding.
  • the resin constituting the first resin part 21 and the resin constituting the second resin part 22 are compatible resins, for example, the same resin.
  • Examples of the resin constituting the first resin portion 21 and the secondary sealing body include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE).
  • an internal space V defined by the distance between the first resin portions 21 and 21 in the stacking direction D is formed.
  • an electrolytic solution E made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated.
  • the electrolytic solution E is impregnated in the separator 13, the positive electrode 16, and the negative electrode 17.
  • the sealing body 12 is provided with a plurality of communication holes (not shown) that communicate with the internal spaces V.
  • the communication hole functions as a liquid injection port for injecting the electrolytic solution E into each internal space V, and also functions as a connection port for a pressure regulating valve (not shown) after the electrolytic solution E is injected.
  • the power storage module 4 is sandwiched between the pair of conductive plates 5.
  • One conductive plate 5 faces the one surface 15a of the negative electrode termination electrode 18 in the stacking direction D, and when viewed from the stacking direction D, the first resin portion 21 (hereinafter referred to as the edge portion 15c) of the negative electrode termination electrode 18 is provided.
  • the first resin portion 21) of the negative electrode termination electrode 18 is disposed so as to overlap. Specifically, the outer edge portion of one conductive plate 5 overlaps with the inner edge portion of the first portion 21 a in the first resin portion 21 of the negative electrode termination electrode 18 when viewed from the stacking direction D.
  • One conductive plate 5 is disposed so as to overlap the first resin portion 21 of the negative electrode termination electrode 18 over the entire circumference of the edge portion 15 c of the negative electrode termination electrode 18 when viewed from the stacking direction D.
  • the other conductive plate 5 opposes the other surface 15b of the positive electrode termination electrode 19 in the stacking direction D and, when viewed from the stacking direction D, the first resin portion 21 (hereinafter referred to as the first resin portion 21 provided on the edge 15c of the positive electrode termination electrode 19).
  • the first resin portion 21 of the positive electrode termination electrode 19 is disposed so as to overlap. Specifically, the outer edge portion of the other conductive plate 5 overlaps with the inner edge portion of the first portion 21 a in the first resin portion 21 of the positive electrode termination electrode 19 when viewed from the stacking direction D.
  • One conductive plate 5 is disposed so as to overlap the first resin portion 21 of the positive electrode termination electrode 19 over the entire circumference of the edge portion 15 c of the positive electrode termination electrode 19 when viewed from the stacking direction D.
  • the electrode stack 11 has a shape that swells in the stacking direction D at the center 11c rather than the edge 11b. That is, the length L1 in the stacking direction D of the edge portion 11b of the electrode stack 11 is shorter than the length L2 in the stacking direction D of the central portion 11c of the electrode stack 11.
  • the central portion 15 d on the one surface 15 a side of the negative electrode termination electrode 18 is in contact with one of the conductive plates 5 adjacent to the power storage module 4 in the stacking direction D.
  • the central portion 15 d on the other surface 15 b side of the positive electrode termination electrode 19 is in contact with the other conductive plate 5 adjacent to the power storage module 4 in the stacking direction D.
  • the edge 11b of the electrode laminate 11 includes the edge 15c of each electrode plate 15.
  • the center part 11 c of the electrode laminate 11 includes a center part 15 d of each electrode plate 15 and constitutes an electrode part of the electrode laminate 11.
  • the shape of the electrode laminate 11 such that the length L1 is shorter than the length L2 is the thickness of the first resin portion 21, the electrode plate 15, the positive electrode 16, the negative electrode 17, and the separator 13 (the length in the lamination direction D). ) Is adjusted. Specifically, the thickness of the second portion 21 b of the first resin portion 21 may be adjusted to be smaller than the sum of the thicknesses of the electrode plate 15, the positive electrode 16, the negative electrode 17, and the separator 13.
  • the amount of swelling of the central portion 15d with respect to the edge portion 15c of the negative electrode termination electrode 18 (the separation distance in the stacking direction D between the edge portion 15c on the one surface 15a side of the negative electrode termination electrode 18 and the central portion 15d on the one surface 15a side) It is equal to or greater than the thickness of the first portion 21a (the length in the stacking direction D) of the first resin portion 21 of the termination electrode 18, for example, 0.2 mm. Accordingly, the central portion 15d of the negative electrode termination electrode 18 can be brought into contact with one of the conductive plates 5 without being caught by the first portion 21a. Thus, in the electrode laminated body 11 of the electrical storage module 4, the electrode plate 15 is laminated in a slightly deformed state.
  • the amount of deformation of the electrode plate 15 increases from the intermediate layer of the electrode stack 11 toward the stack end.
  • one conductive plate 5 is also in contact with the first portion 21a.
  • the pair of conductive plates 5 are not in contact with the second resin portion 22.
  • the amount of swelling of the central portion 15d with respect to the edge portion 15c of the positive electrode termination electrode 19 is, for example, This is equivalent to the amount of swelling of the central portion 15d with respect to the edge portion 15c of the negative electrode termination electrode 18.
  • FIG. 3 is an enlarged cross-sectional view of a main part illustrating a state of the negative electrode termination electrode when the internal pressure of the power storage module in the power storage device according to the reference example is increased.
  • FIG. 4 is an essential part enlarged cross-sectional view showing a state of the positive electrode termination electrode when the internal pressure of the power storage module in the power storage device according to the reference example is increased.
  • the pair of conductive plates 105 are provided on the edge 15c of the negative electrode termination electrode 18 and the positive electrode termination electrode 19 facing each other in the stacking direction D.
  • the pair of conductive plates 105 is slightly smaller than the conductive plate 5 of the embodiment when viewed from the stacking direction D.
  • the pair of conductive plates 105 are separated from the first resin portion 21 in the direction orthogonal to the stacking direction D.
  • the pair of conductive plates 105 is, for example, the same size as the central portion 11 c of the electrode stack 11 when viewed from the stacking direction D.
  • the pair of conductive plates 105 are arranged so as to sandwich the central portion 11 c of the electrode laminate 11.
  • the pair of conductive plates 105 are in contact with the central portion 11 c of the electrode laminate 11.
  • the internal pressure of the internal space V between the electrode plates 15, 15 of the power storage module 4 increases due to usage conditions or the like, the internal pressure of the internal space V adjacent to the stacking direction D in the intermediate layer of the electrode stack 11. The load due to is canceled. Since the internal space V itself is also a small space, the bipolar electrode 14 is hardly deformed.
  • the load due to the internal pressure of the internal space V is not canceled in the negative electrode termination electrode 18 and the positive electrode termination electrode 19 positioned at the lamination end of the electrode laminate 11.
  • the negative electrode termination electrode 18 and the positive electrode termination electrode 19 may be excessively deformed along the lamination direction D to the outside of the electrode laminate 11. It is done. If excessive deformation occurs in the negative electrode termination electrode 18 and the positive electrode termination electrode 19, excessive stress is applied to the first resin portion 21, and the first resin portion 21 may be broken. There may be a gap between the first resin portion 21 and the negative electrode termination electrode 18 and the positive electrode termination electrode 19.
  • the first resin portion 21 easily breaks at the boundary portion between the portion of the second resin portion 22 covered by the protruding portion 22b and the portion not covered by the protruding portion 22b.
  • the breakage of the first resin portion 21 can cause leakage of the electrolytic solution E to the outside of the electrode laminate 11. Formation of a gap between the first resin portion 21 and the negative electrode termination electrode 18 and the positive electrode termination electrode 19 can also cause leakage of the electrolytic solution E to the outside of the electrode laminate 11.
  • the pair of conductive plates 5 are arranged so as to overlap the first resin portion 21 of the pair of termination electrodes when viewed from the stacking direction D. Therefore, even when the internal pressure of the power storage module 4 rises, excessive deformation of the negative electrode termination electrode 18 and the positive electrode termination electrode 19 can be suppressed by the conductive plate 5. Thereby, the breakage of the first resin portion 21 can be suppressed. Formation of a gap between the first resin portion 21 and the negative electrode termination electrode 18 and the positive electrode termination electrode 19 can also be suppressed. As a result, leakage of the electrolytic solution E to the outside of the electrode laminate 11 can be prevented.
  • the pair of conductive plates 5 are arranged so as to overlap the first resin portion 21 over the entire periphery of the edge portion 15 c of the negative electrode termination electrode 18 and the positive electrode termination electrode 19 when viewed from the stacking direction D. Thereby, excessive deformation of the negative electrode termination electrode 18 and the positive electrode termination electrode 19 can be further suppressed by the pair of conductive plates 5.
  • the length L1 in the stacking direction D of the edge portion 11b of the electrode stack 11 is shorter than the length L2 in the stacking direction D of the central portion 11c of the electrode stack 11.
  • One conductive plate 5 is in contact with the first resin portion 21. For this reason, excessive deformation of the negative electrode termination electrode 18 can be further suppressed by the one conductive plate 5.
  • the power storage device 1 includes a plurality of power storage modules 4 and a plurality of conductive plates 5, but the power storage device 1 includes at least one power storage module 4 and a pair of conductive plates 5. It only has to have.
  • At least one of the pair of conductive plates 5 is disposed so as to overlap with the first resin portion 21 of the terminal electrode facing in the stacking direction D when viewed from the stacking direction D.
  • the remaining one of the pair of conductive plates 5 may not overlap the first resin portion 21 of the terminal electrode facing in the stacking direction D when viewed from the stacking direction D.
  • the first resin portion 21 having the same shape is provided on all of the bipolar electrode 14, the negative electrode termination electrode 18, and the positive electrode termination electrode 19.
  • the pair of conductive plates 5 overlaps the first resin portion 21 other than the first resin portion 21 of the terminal electrode facing in the stacking direction D as viewed from the stacking direction D, but it does not need to overlap.
  • the first resin portion 21 having the same shape may not be provided on all of the bipolar electrode 14, the negative electrode termination electrode 18, and the positive electrode termination electrode 19.
  • SYMBOLS 1 Power storage device, 4 ... Power storage module, 5 ... Conductive plate, 11 ... Electrode laminated body, 11b ... Edge part, 11c ... Edge part, 12 ... Sealing body, 13 ... Separator, 14 ... Bipolar electrode, 15 ... Electrode plate 15a ... one side, 15b ... the other side, 15c ... edge, 16 ... positive electrode, 17 ... negative electrode, 18 ... negative electrode termination electrode, 19 ... positive electrode termination electrode, 21 ... first resin part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

蓄電装置は、蓄電モジュールと、蓄電モジュールを挟持する一対の導電板と、を備える。蓄電モジュールは、電極積層体と、電極積層体を封止する封止体と、を有する。電極積層体は、積層された複数のバイポーラ電極及び一対の終端電極を含む。一対の終端電極は、電極積層体の積層端に配置され、電極板と、活物質層と、を含む。活物質層は、電極板における電極積層体の内側を向く面に設けられている。封止体は、終端電極の縁部に設けられた一対の樹脂部を有する。一対の導電板のうち少なくとも一方の導電板は、電極積層体の積層方向において終端電極と対向すると共に、積層方向から見て一対の樹脂部のうち対応する樹脂部と重なるように配置されている。

Description

蓄電装置
 本発明の一側面は、蓄電装置に関する。
 従来の蓄電装置として、電極板の一方面に正極が形成され、他方面に負極が形成されたバイポーラ電極を有する、いわゆるバイポーラ型の蓄電モジュールを備えるものが知られている(特許文献1参照)。かかる蓄電モジュールは、複数のバイポーラ電極を積層してなる電極積層体を備えている。電極積層体の周囲には、積層方向で隣り合うバイポーラ電極間を封止する封止体が設けられている。封止体によってバイポーラ電極間に形成された内部空間には電解液が収容されている。
特開2011-204386号公報
 上述した蓄電モジュールでは、使用条件等によりバイポーラ電極間の内部空間の内圧が上昇する場合がある。内圧が上昇した場合に、電極積層体の積層端に位置する電極(以下、終端電極と称す)が積層方向に沿って電極積層体の外側に大きく変形することが考えられる。
 終端電極に過大な変形が生じると、封止体にかかる応力が増し、封止体が破断するおそれがある。封止体と終端電極との間に隙間が生じるおそれもある。封止体の破断は、電極積層体の外部への電解液の漏出の原因となり得る。封止体と終端電極との間の隙間の形成も電極積層体の外部への電解液の漏出の原因となり得る。
 本発明の一側面は、上記課題の解決のためになされたものであり、内圧の上昇時においても終端電極の過大な変形を抑制できる蓄電装置を提供する。
 本発明の一側面に係る蓄電装置は、蓄電モジュールと、蓄電モジュールを挟持する一対の導電板と、を備える。蓄電モジュールは、電極積層体と、電極積層体を封止する封止体と、を有する。電極積層体は、積層された複数のバイポーラ電極及び一対の終端電極を含む。一対の終端電極は、電極積層体の積層端に配置され、電極板と、活物質層と、を含む。活物質層は、電極板における電極積層体の内側を向く面に設けられている。封止体は、終端電極の縁部に設けられた一対の樹脂部を有する。一対の導電板のうち少なくとも一方の導電板は、電極積層体の積層方向において一対の終端電極のうち対応する終端電極と対向すると共に、積層方向から見て一対の樹脂部のうち対応する樹脂部と重なるように配置されている。
 この蓄電装置では、少なくとも一方の導電板が対応する樹脂部と重なるように配置されている。したがって、蓄電モジュールの内圧が上昇した場合であっても、終端電極の過大な変形を導電板によって抑制できる。
 一方の導電板は、積層方向から見て対応する終端電極の縁部の全周にわたって対応する樹脂部と重なるように配置されていてもよい。この場合、終端電極の過大な変形を導電板によって更に抑制することができる。
 電極積層体の縁部の積層方向における長さは、電極積層体の中央部の積層方向における長さよりも短くてもよい。この場合、終端電極の電極板における電極積層体の外側を向く面に樹脂部が設けられていたとしても、導電板を終端電極に接触させることができる。
 一方の導電板は、対応する樹脂部に接触していてもよい。この場合、終端電極の過大な変形を導電板によって更に抑制することができる。
 一対の導電板のそれぞれは、電極積層体の積層方向において一対の終端電極のそれぞれと対向すると共に、積層方向から見て一対の樹脂部のそれぞれと重なるように配置されていてもよい。この場合、一対の終端電極の過大な変形を一対の導電板によって抑制できる。
 本発明の一側面によれば、内圧の上昇時においても終端電極の過大な変形を抑制できる。
蓄電装置の一実施形態を示す概略断面図である。 蓄電モジュールの一実施形態を示す概略断面図である。 参考例に係る蓄電装置における蓄電モジュールの内圧上昇時の負極終端電極の様子を示す要部拡大断面図である。 参考例に係る蓄電装置における蓄電モジュールの内圧上昇時の正極終端電極の様子を示す要部拡大断面図である。
 以下、添付図面を参照して、実施形態について詳細に説明する。説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
[蓄電装置の構成]
 図1は、蓄電装置の一実施形態を示す概略断面図である。同図に示される蓄電装置1は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる。蓄電装置1は、積層された複数の蓄電モジュール4を含む蓄電モジュール積層体2と、蓄電モジュール積層体2に対して積層方向に拘束荷重を付加する拘束部材3とを備える。
 蓄電モジュール積層体2は、例えば、複数(本実施形態では3体)の蓄電モジュール4と、複数(本実施形態では4枚)の導電板5とによって構成されている。蓄電モジュール4は、例えば後述するバイポーラ電極14を備えたバイポーラ電池である。蓄電モジュール4は、積層方向から見て矩形状である。蓄電モジュール4は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池、又は電気二重層キャパシタである。以下の説明では、ニッケル水素二次電池を例示する。
 蓄電モジュール積層体2において、積層方向に隣り合う蓄電モジュール4,4同士は、導電板5を介して電気的に接続されている。導電板5は、積層方向に隣り合う蓄電モジュール4,4間と、積層端に位置する蓄電モジュール4の外側とにそれぞれ配置されている。各蓄電モジュール4は、一対の導電板5によって挟持されていると言える。積層端に位置する蓄電モジュール4の外側に配置された一方の導電板5には、正極端子6が接続されている。積層端に位置する蓄電モジュール4の外側に配置された他方の導電板5には、負極端子7が接続されている。正極端子6及び負極端子7は、例えば導電板5の縁部から積層方向に交差する方向に引き出されている。正極端子6及び負極端子7により、蓄電装置1の充放電が実施される。
 各導電板5の内部には、空気等の冷媒を流通させる複数の流路5aが設けられている。各流路5aは、例えば積層方向と、正極端子6及び負極端子7の引き出し方向とにそれぞれ直交する方向に互いに平行に延在している。これらの流路5aに冷媒を流通させることで、導電板5は、蓄電モジュール4,4同士を電気的に接続する接続部材としての機能のほか、蓄電モジュール4で発生した熱を放熱する放熱板としての機能を併せ持つ。積層方向から見た導電板5の面積は、例えば、蓄電モジュール4の面積よりも小さい。
 拘束部材3は、蓄電モジュール積層体2を積層方向に挟む一対のエンドプレート8,8と、エンドプレート8,8同士を締結する締結ボルト9及びナット10とによって構成されている。エンドプレート8は、積層方向から見た蓄電モジュール4及び導電板5の面積よりも一回り大きい面積を有する矩形の金属板である。エンドプレート8の内側面(蓄電モジュール積層体2側の面)には、電気絶縁性を有するフィルムFが設けられており、エンドプレート8と導電板5との間が電気的に絶縁されている。
 エンドプレート8の縁部には、蓄電モジュール積層体2よりも外側となる位置に挿通孔8aが設けられている。締結ボルト9は、一方のエンドプレート8の挿通孔8aから他方のエンドプレート8の挿通孔8aに向かって通され、他方のエンドプレート8の挿通孔8aから突出した締結ボルト9の先端部分には、ナット10が螺合されている。これにより、蓄電モジュール4及び導電板5がエンドプレート8,8によって挟持されて蓄電モジュール積層体2としてユニット化されると共に、蓄電モジュール積層体2に対して積層方向に拘束荷重が付加される。
[蓄電モジュールの構成]
 次に、蓄電モジュール4の構成について説明する。図2は、蓄電モジュールの一実施形態を示す概略断面図である。同図に示すように、蓄電モジュール4は、電極積層体11と、電極積層体11を封止する樹脂製の封止体12とを有している。
 電極積層体11は、セパレータ13を介して複数のバイポーラ電極14、負極終端電極18、及び正極終端電極19が積層されることによって構成されている。すなわち、電極積層体11は、セパレータ13を介して積層された複数のバイポーラ電極14、負極終端電極18、及び正極終端電極19を含んでいる。本実施形態では、電極積層体11の積層方向Dと蓄電モジュール積層体2の積層方向とが一致している。電極積層体11は、積層方向Dに延びる側面11aを有している。バイポーラ電極14は、電極板15と、電極板15の一方面15aに設けられた正極16と、電極板15の他方面15bに設けられた負極17とを含んでいる。正極16は、正極活物質が塗工されてなる正極活物質層である。負極17は、負極活物質が塗工されてなる負極活物質層である。電極積層体11において、一のバイポーラ電極14の正極16は、セパレータ13を挟んで積層方向Dに隣り合う一方のバイポーラ電極14の負極17と対向している。電極積層体11において、一のバイポーラ電極14の負極17は、セパレータ13を挟んで積層方向Dに隣り合う他方のバイポーラ電極14の正極16と対向している。
 負極終端電極18は、電極積層体11の一方の積層端に配置されている。負極終端電極18は、電極板15と、電極板15の他方面15bに設けられた負極17とを含んでいる。負極終端電極18における電極板15の一方面15aは、電極積層体11の外側を向く面(外面)であり、他方面15bは、電極積層体11の内側を向く面(内面)である。負極終端電極18の負極17は、セパレータ13を介してバイポーラ電極14の正極16と対向している。
 正極終端電極19は、電極積層体11の他方の積層端に配置されている。正極終端電極19は、電極板15と、電極板15の一方面15aに設けられた正極16とを含んでいる。正極終端電極19における電極板15の一方面15aは、電極積層体11の内側を向く面(内面)であり、他方面15bは、電極積層体11の外側を向く面(外面)である。正極終端電極19の正極16は、セパレータ13を介してバイポーラ電極14の負極17と対向している。
 電極板15は、例えばニッケルからなる金属箔、或いはニッケルメッキ鋼板からなり、矩形状である。電極板15の縁部15cは、一方面15a及び他方面15bのいずれにも、正極活物質及び負極活物質が設けられていない領域(未塗工領域)となっている。電極板15の縁部15cに囲まれた中央部15dは、一方面15a及び他方面15bの少なくとも一方に、正極活物質又は負極活物質の少なくとも一方が設けられた領域(塗工領域)となっている。中央部15dは、バイポーラ電極14、負極終端電極18、及び正極終端電極19の電極部を構成している。
 正極16を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極17を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。本実施形態では、電極板15の他方面15bにおける負極17の形成領域は、電極板15の一方面15aにおける正極16の形成領域に対して一回り大きくなっている。したがって、バイポーラ電極14の中央部15dの大きさは、電極板15の他方面15bにおける負極17の形成領域の大きさとなっている。
 セパレータ13は、例えばシート状に形成されている。セパレータ13としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。セパレータ13は、フッ化ビニリデン樹脂化合物で補強されたものであってもよい。セパレータ13は、シート状に限られず、袋状のものを用いてもよい。
 封止体12は、電極積層体11において積層方向Dで隣り合うバイポーラ電極14,14間と、積層方向Dで隣り合う負極終端電極18及びバイポーラ電極14間と、積層方向Dで隣り合う正極終端電極19及びバイポーラ電極14間とを封止している。封止体12は、例えば絶縁性の樹脂によって矩形の筒状に形成されている。封止体12は、積層方向Dに延びる電極積層体11の側面11aにおいて電極板15の縁部15cを保持すると共に、側面11aを取り囲むように構成されている。
 封止体12は、バイポーラ電極14、負極終端電極18、及び正極終端電極19の各電極板15の縁部15cに設けられた第一樹脂部21と、第一樹脂部21の全体を外側から包囲するように設けられた第二樹脂部22とによって構成されている。第一樹脂部21は、例えば樹脂の射出成形によって形成され、電極板15の一方面15a側の縁部15c(未塗工領域)において、電極板15の全ての辺にわたって連続的に設けられている。第一樹脂部21は、例えば超音波又は熱を用いた溶着により、縁部15cに対して強固に結合している。第一樹脂部21は、電極積層体11を封止するほか、積層方向Dに隣り合う各電極板15,15間のスペーサとして機能する。
 第一樹脂部21は、積層方向Dから見て、電極板15の縁部15cに重なった第一部分21aと、電極板15の縁よりも外側に張り出した第二部分21bとを有している。第二部分21bの積層方向Dにおける長さは、第一部分21aの積層方向Dにおける長さよりも長い。このため、第一樹脂部21は、第一部分21aと第二部分21bとの間に段差面21cを有している。段差面21cは、電極板15の端面(つまり側面11aの一部)の全体を覆っている。第一樹脂部21は、積層方向Dに直交する方向において、正極16及び負極17から離間して設けられている。
 第一樹脂部21と電極板15との結合にあたって、電極板15における第一樹脂部21との結合面は、複数の微細突起が設けられた粗化メッキ面となっている。本実施形態では、正極16が設けられている電極板15の一方面15aの全面が粗化メッキ面となっている。微細突起は、例えば電極板15に対する電解メッキによって形成された突起状の析出金属(付与物を含む)である。粗化メッキ面においては、第一樹脂部21を構成する樹脂材料が微細突起間の隙間に入り込むことでアンカー効果が生じ、電極板15と第一樹脂部21との間の結合強度及び液密性の向上が図られる。
 第二樹脂部22は、第一樹脂部21を外側から取り囲み、蓄電モジュール4の外壁(筐体)を構成している。第二樹脂部22は、例えば樹脂の射出成形によって形成され、電極積層体11における積層方向Dの全長にわたって延在している。第二樹脂部22は、側面部分22aと、一対の張出部分22bと、を有している。側面部分22aは、電極積層体11の側面11aに沿って設けられ、積層方向Dに並ぶ複数の第一樹脂部21同士を互いに結合している。張出部分22bは、側面部分22aの積層方向Dの端部22cから、第一樹脂部21の第二部分21bの積層方向Dの端面上に張り出している。張出部分22bは、電極板15の全ての辺にわたって連続的に設けられている。第二樹脂部22は、例えば射出成型時の熱により、第一樹脂部21の外表面に溶着されている。
 第一樹脂部21を構成する樹脂、及び第二樹脂部22を構成する樹脂は、互いに相溶性を有する樹脂であり、例えば互いに同じ樹脂である。第一樹脂部21及び二次封止体を構成する樹脂としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)などが挙げられる。
 電極板15,15間には、積層方向Dにおける第一樹脂部21,21の間隔によって規定される内部空間Vが形成されている。当該内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液Eが収容されている。電解液Eは、セパレータ13、正極16及び負極17内に含浸されている。封止体12には、各内部空間Vに連通する複数の連通孔(不図示)が設けられている。この連通孔は、各内部空間Vに電解液Eを注入するための注液口として機能すると共に、電解液Eが注入された後は、圧力調整弁(不図示)の接続口として機能する。
 続いて、導電板5と蓄電モジュール4との位置関係について説明する。上述のように、蓄電モジュール4は、一対の導電板5によって挟持されている。一方の導電板5は、積層方向Dにおいて負極終端電極18の一方面15aと対向すると共に、積層方向Dから見て、負極終端電極18の縁部15cに設けられた第一樹脂部21(以下、負極終端電極18の第一樹脂部21)と重なるように配置されている。具体的には、一方の導電板5の外縁部が、積層方向Dから見て、負極終端電極18の第一樹脂部21における第一部分21aの内縁部と重なっている。一方の導電板5は、積層方向Dから見て、負極終端電極18の縁部15cの全周にわたって、負極終端電極18の第一樹脂部21と重なるように配置されている。
 他方の導電板5は、積層方向Dにおいて正極終端電極19の他方面15bと対向すると共に、積層方向Dから見て、正極終端電極19の縁部15cに設けられた第一樹脂部21(以下、正極終端電極19の第一樹脂部21)と重なるように配置されている。具体的には、他方の導電板5の外縁部が、積層方向Dから見て、正極終端電極19の第一樹脂部21における第一部分21aの内縁部と重なっている。一方の導電板5は、積層方向Dから見て、正極終端電極19の縁部15cの全周にわたって、正極終端電極19の第一樹脂部21と重なるように配置されている。
 蓄電モジュール4では、電極積層体11は、縁部11bよりも中央部11cにおいて積層方向Dに膨らんだ形状となっている。すなわち、電極積層体11の縁部11bの積層方向Dにおける長さL1は、電極積層体11の中央部11cの積層方向Dにおける長さL2よりも短い。これにより、負極終端電極18の一方面15a側の中央部15dは、蓄電モジュール4と積層方向Dにおいて隣り合う一方の導電板5と接触している。正極終端電極19の他方面15b側の中央部15dは、蓄電モジュール4と積層方向Dにおいて隣り合う他方の導電板5と接触している。
 電極積層体11の縁部11bは、各電極板15の縁部15cを含んでいる。電極積層体11の中央部11cは、各電極板15の中央部15dを含み、電極積層体11の電極部を構成している。長さL1が長さL2よりも短くなるような電極積層体11の形状は、第一樹脂部21、電極板15、正極16、負極17、及びセパレータ13の厚さ(積層方向Dにおける長さ)を調整することにより得られる。具体的には、第一樹脂部21の第二部分21bの厚さが、電極板15、正極16、負極17、及びセパレータ13の厚さの和よりも小さくなるように調整すればよい。
 負極終端電極18の縁部15cに対する中央部15dの膨らみ量(負極終端電極18の一方面15a側の縁部15cと一方面15a側の中央部15dとの積層方向Dにおける離間距離)は、負極終端電極18の第一樹脂部21における第一部分21aの厚さ(積層方向Dにおける長さ)以上であり、例えば、0.2mmである。これにより、第一部分21aに引っ掛かることなく、負極終端電極18の中央部15dを一方の導電板5と接触させることができる。このように、蓄電モジュール4の電極積層体11では、電極板15がわずかに変形した状態で積層されている。電極板15の変形量は、電極積層体11の中間層から積層端に向かうにつれて大きくなる。本実施形態では、一方の導電板5は、第一部分21aにも接触している。一対の導電板5は、第二樹脂部22には接触していない。
 正極終端電極19の縁部15cに対する中央部15dの膨らみ量(正極終端電極19の他方面15b側の縁部15cと他方面15b側の中央部15dとの積層方向Dにおける離間距離)は、例えば、負極終端電極18の縁部15cに対する中央部15dの膨らみ量と同等である。
 図3は、参考例に係る蓄電装置における蓄電モジュールの内圧上昇時の負極終端電極の様子を示す要部拡大断面図である。図4は、参考例に係る蓄電装置における蓄電モジュールの内圧上昇時の正極終端電極の様子を示す要部拡大断面図である。参考例に係る蓄電装置100では、実施形態に係る蓄電装置1とは異なり、一対の導電板105が、積層方向Dで対向する負極終端電極18及び正極終端電極19の縁部15cに設けられた第一樹脂部21(以下、一対の終端電極の第一樹脂部21)と、積層方向Dから見て重ならないように配置されている。一対の導電板105は、積層方向Dから見て、実施形態の導電板5よりも一回り小さい。一対の導電板105は、積層方向Dに直交する方向において、第一樹脂部21から離間している。一対の導電板105は、積層方向Dから見て、例えば電極積層体11の中央部11cと同等の大きさである。一対の導電板105は、電極積層体11の中央部11cを挟持するように配置されている。一対の導電板105は、電極積層体11の中央部11cに接触している。
 蓄電装置100において、使用条件等により蓄電モジュール4の電極板15,15間の内部空間Vの内圧が上昇した場合、電極積層体11の中間層では、積層方向Dに隣り合う内部空間Vの内圧による荷重がキャンセルされる。内部空間V自体もわずかな空間であるため、バイポーラ電極14の変形は比較的生じ難い。
 一方、電極積層体11の積層端に位置する負極終端電極18及び正極終端電極19では、中間層とは異なり、内部空間Vの内圧による荷重はキャンセルされない。このため、図3及び図4に示すように、内圧が上昇した場合に、負極終端電極18及び正極終端電極19が積層方向Dに沿って電極積層体11の外側に過大に変形することが考えられる。負極終端電極18及び正極終端電極19に過大な変形が生じると、第一樹脂部21に過大な応力がかかり、第一樹脂部21が破断するおそれがある。第一樹脂部21と負極終端電極18及び正極終端電極19との間に隙間が生じるおそれもある。特に、第一樹脂部21は、第二樹脂部22の張出部分22bに覆われた部分と、張出部分22bに覆われていない部分との境界部で破断し易い。第一樹脂部21の破断は、電極積層体11の外部への電解液Eの漏出の原因となり得る。第一樹脂部21と負極終端電極18及び正極終端電極19との間の隙間の形成も、電極積層体11の外部への電解液Eの漏出の原因となり得る。
 これに対し、蓄電装置1では、一対の導電板5が、積層方向Dから見て、一対の終端電極の第一樹脂部21と重なるように配置されている。したがって、蓄電モジュール4の内圧が上昇した場合であっても、負極終端電極18及び正極終端電極19の過大な変形を導電板5によって抑制できる。これによって、第一樹脂部21の破断を抑制できる。第一樹脂部21と負極終端電極18及び正極終端電極19との間の隙間の形成も抑制できる。この結果、電極積層体11の外部への電解液Eの漏出を防止できる。
 一対の導電板5は、積層方向Dから見て負極終端電極18及び正極終端電極19の縁部15cの全周にわたって第一樹脂部21と重なるように配置されている。これにより、負極終端電極18及び正極終端電極19の過大な変形を一対の導電板5によって更に抑制することができる。
 電極積層体11の縁部11bの積層方向Dにおける長さL1は、電極積層体11の中央部11cの積層方向Dにおける長さL2よりも短い。これにより、第一樹脂部21が負極終端電極18の一方面15a側の縁部15cに設けられていても、一方の導電板5を負極終端電極18の一方面15a側の中央部15dに接触させることができる。本実施形態では、第一樹脂部21が正極終端電極19においても、一方面15aに設けられているが、仮に他方面15bに設けられていても、長さL1は長さL2よりも短い。したがって、他方の導電板5を正極終端電極19に接触させ易い。
 一方の導電板5は、第一樹脂部21に接触している。このため、負極終端電極18の過大な変形を一方の導電板5によって更に抑制することができる。
 本発明は、上記実施形態に限られない。例えば、実施形態に係る蓄電装置1は、複数の蓄電モジュール4と、複数の導電板5とを備えているが、蓄電装置1は、少なくとも一つの蓄電モジュール4と、一対の導電板5とを備えていればよい。
 一対の導電板5のうち少なくともいずれか一方が、積層方向Dにおいて対向する終端電極の第一樹脂部21と、積層方向Dから見て、重なるように配置されていればよい。すなわち、一対の導電板5の残りの一方が、積層方向Dにおいて対向する終端電極の第一樹脂部21と、積層方向Dから見て、重なっていなくてもよい。
 上記実施形態では、バイポーラ電極14、負極終端電極18、及び正極終端電極19の全てに同じ形状の第一樹脂部21が設けられている。このため、一対の導電板5は、積層方向Dにおいて対向する終端電極の第一樹脂部21以外の第一樹脂部21とも、積層方向Dから見て重なっているが、重なっていなくてもよい。すなわち、バイポーラ電極14、負極終端電極18、及び正極終端電極19の全てに同じ形状の第一樹脂部21が設けられていなくてもよい。
1…蓄電装置、4…蓄電モジュール、5…導電板、11…電極積層体、11b…縁部、11c…中央部、12…封止体、13…セパレータ、14…バイポーラ電極、15…電極板、15a…一方面、15b…他方面、15c…縁部、16…正極、17…負極、18…負極終端電極、19…正極終端電極、21…第一樹脂部。

Claims (5)

  1.  蓄電モジュールと、前記蓄電モジュールを挟持する一対の導電板と、を備え、
     前記蓄電モジュールは、積層された複数のバイポーラ電極、及び一対の終端電極を含む電極積層体と、前記電極積層体を封止する封止体と、を有し、
     前記一対の終端電極は、前記電極積層体の積層端に配置され、電極板と、前記電極板における前記電極積層体の内側を向く面に設けられた活物質層と、を含み、
     前記封止体は、前記一対の終端電極の縁部に設けられた一対の樹脂部を有し、
     前記一対の導電板のうち少なくとも一方の導電板は、前記電極積層体の積層方向において前記一対の終端電極のうち対応する終端電極と対向すると共に、前記積層方向から見て前記一対の樹脂部のうち対応する樹脂部と重なるように配置されている、蓄電装置。
  2.  前記一方の導電板は、前記積層方向から見て前記対応する終端電極の縁部の全周にわたって前記対応する樹脂部と重なるように配置されている、請求項1に記載の蓄電装置。
  3.  前記電極積層体の縁部の前記積層方向における長さは、前記電極積層体の中央部の前記積層方向における長さよりも短い、請求項1又は2に記載の蓄電装置。
  4.  前記一方の導電板は、前記対応する樹脂部に接触している、請求項1~3のいずれか一項に記載の蓄電装置。
  5.  前記一対の導電板のそれぞれは、前記電極積層体の積層方向において前記一対の終端電極のそれぞれと対向すると共に、前記積層方向から見て前記一対の樹脂部のそれぞれと重なるように配置されている、請求項1~4のいずれか一項に記載の蓄電装置。
PCT/JP2018/045732 2018-03-09 2018-12-12 蓄電装置 WO2019171698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880090812.6A CN111819723A (zh) 2018-03-09 2018-12-12 蓄电装置
DE112018007256.8T DE112018007256T5 (de) 2018-03-09 2018-12-12 Energiespeichervorrichtung
US16/978,282 US20200411809A1 (en) 2018-03-09 2018-12-12 Power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042897A JP6899347B2 (ja) 2018-03-09 2018-03-09 蓄電装置
JP2018-042897 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171698A1 true WO2019171698A1 (ja) 2019-09-12

Family

ID=67846161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045732 WO2019171698A1 (ja) 2018-03-09 2018-12-12 蓄電装置

Country Status (5)

Country Link
US (1) US20200411809A1 (ja)
JP (1) JP6899347B2 (ja)
CN (1) CN111819723A (ja)
DE (1) DE112018007256T5 (ja)
WO (1) WO2019171698A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067362B2 (ja) * 2018-08-22 2022-05-16 株式会社豊田自動織機 蓄電モジュール、蓄電装置及び蓄電装置の製造方法
JP7366769B2 (ja) * 2020-01-24 2023-10-23 株式会社豊田自動織機 蓄電装置
JP7299849B2 (ja) * 2020-01-24 2023-06-28 株式会社豊田自動織機 蓄電装置
JP7420566B2 (ja) * 2020-01-24 2024-01-23 株式会社豊田自動織機 蓄電装置
JP7276174B2 (ja) * 2020-01-24 2023-05-18 株式会社豊田自動織機 蓄電装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259379A (ja) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd バイポーラ電池
WO2006062204A1 (ja) * 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. バイポーラ電池
JP2007026734A (ja) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd バイポーラ電池、組電池及びそれらの電池を搭載した車両
JP2013232374A (ja) * 2012-05-01 2013-11-14 Toyota Industries Corp 蓄電装置
WO2018074135A1 (ja) * 2016-10-17 2018-04-26 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2018101599A (ja) * 2016-12-20 2018-06-28 株式会社豊田自動織機 蓄電モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519958C2 (sv) * 2001-09-20 2003-04-29 Nilar Europ Ab Ett bipolärt batteri och en biplåtsammansättning
JP4571030B2 (ja) * 2005-07-12 2010-10-27 株式会社岡村製作所 照明装置
JP4462245B2 (ja) * 2006-07-19 2010-05-12 トヨタ自動車株式会社 2次電池、積層2次電池および組電池
JP5061753B2 (ja) * 2007-06-29 2012-10-31 トヨタ自動車株式会社 蓄電装置
JP2009117105A (ja) * 2007-11-05 2009-05-28 Toyota Motor Corp 電池ユニット
JP6659254B2 (ja) * 2015-06-30 2020-03-04 日産自動車株式会社 二次電池およびその製造方法
JP6579694B2 (ja) * 2015-06-30 2019-09-25 日産自動車株式会社 二次電池
JP2017191869A (ja) * 2016-04-14 2017-10-19 株式会社村田製作所 積層セラミックコンデンサの実装構造
CN107305939B (zh) * 2016-04-25 2021-12-03 松下知识产权经营株式会社 电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259379A (ja) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd バイポーラ電池
WO2006062204A1 (ja) * 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. バイポーラ電池
JP2007026734A (ja) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd バイポーラ電池、組電池及びそれらの電池を搭載した車両
JP2013232374A (ja) * 2012-05-01 2013-11-14 Toyota Industries Corp 蓄電装置
WO2018074135A1 (ja) * 2016-10-17 2018-04-26 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2018101599A (ja) * 2016-12-20 2018-06-28 株式会社豊田自動織機 蓄電モジュール

Also Published As

Publication number Publication date
DE112018007256T5 (de) 2020-11-19
CN111819723A (zh) 2020-10-23
US20200411809A1 (en) 2020-12-31
JP2019160481A (ja) 2019-09-19
JP6899347B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2019171698A1 (ja) 蓄電装置
JP7106967B2 (ja) 蓄電モジュール
WO2019151193A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
CN111201657B (zh) 蓄电模块
JP6989436B2 (ja) 蓄電モジュール
JP6959514B2 (ja) 蓄電モジュール、蓄電モジュールの製造方法、及び、蓄電装置の製造方法
JP2019204669A (ja) 蓄電装置
JP2019129031A (ja) 蓄電モジュール
JP7100538B2 (ja) 蓄電モジュール
JP6915567B2 (ja) 蓄電モジュール
JP2020053134A (ja) 蓄電モジュール
JP7420566B2 (ja) 蓄電装置
JP6840065B2 (ja) 蓄電モジュール
JP7070279B2 (ja) 蓄電モジュール
JP6924673B2 (ja) 蓄電モジュール
JP7056167B2 (ja) 蓄電モジュール、及び、蓄電モジュールの製造方法
JP2020024871A (ja) 蓄電モジュール、及び、電極ユニット
JP2020030983A (ja) 蓄電モジュール
JP6989461B2 (ja) 蓄電モジュール
JP7042193B2 (ja) 蓄電モジュール
JP7014688B2 (ja) 蓄電モジュール
JP7056357B2 (ja) 蓄電モジュールの製造方法、蓄電装置の製造方法、及び、蓄電装置
JP6942083B2 (ja) 蓄電モジュール
JP2019204667A (ja) 蓄電装置
JP7077660B2 (ja) 蓄電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909159

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18909159

Country of ref document: EP

Kind code of ref document: A1