WO2019169831A1 - 食品料理机及其转速增大控制方法、装置 - Google Patents
食品料理机及其转速增大控制方法、装置 Download PDFInfo
- Publication number
- WO2019169831A1 WO2019169831A1 PCT/CN2018/099233 CN2018099233W WO2019169831A1 WO 2019169831 A1 WO2019169831 A1 WO 2019169831A1 CN 2018099233 W CN2018099233 W CN 2018099233W WO 2019169831 A1 WO2019169831 A1 WO 2019169831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- food
- stator
- drive motor
- rotational speed
- food processor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/06—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
- H02P7/18—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
- H02P7/24—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
- H02P7/28—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
- H02P7/285—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
- H02P7/29—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
- H02P7/2913—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J43/00—Implements for preparing or holding food, not provided for in other groups of this subclass
- A47J43/04—Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
- A47J43/046—Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven with tools driven from the bottom side
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J43/00—Implements for preparing or holding food, not provided for in other groups of this subclass
- A47J43/04—Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
- A47J43/07—Parts or details, e.g. mixing tools, whipping tools
- A47J43/0716—Parts or details, e.g. mixing tools, whipping tools for machines with tools driven from the lower side
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J43/00—Implements for preparing or holding food, not provided for in other groups of this subclass
- A47J43/04—Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
- A47J43/07—Parts or details, e.g. mixing tools, whipping tools
- A47J43/0716—Parts or details, e.g. mixing tools, whipping tools for machines with tools driven from the lower side
- A47J43/0722—Mixing, whipping or cutting tools
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J43/00—Implements for preparing or holding food, not provided for in other groups of this subclass
- A47J43/04—Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
- A47J43/07—Parts or details, e.g. mixing tools, whipping tools
- A47J43/075—Safety devices
- A47J43/0761—Safety devices for machines with tools driven from the lower side
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J43/00—Implements for preparing or holding food, not provided for in other groups of this subclass
- A47J43/04—Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
- A47J43/07—Parts or details, e.g. mixing tools, whipping tools
- A47J43/08—Driving mechanisms
- A47J43/085—Driving mechanisms for machines with tools driven from the lower side
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/16—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/0086—Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed
- H02P23/009—Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed using field weakening
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Definitions
- the present application relates to the technical field of household appliances, and in particular, to a method for controlling an increase in the rotational speed of a food processor, a control device for increasing the rotational speed of a food processor, and a food cooking machine.
- the cooking machine is a household appliance that combines the functions of soy milk, dried powder, juice, meat filling, shaved ice, etc., and is used to make various foods such as juice, soy milk, jam, dry powder, shaved ice, meat stuffing, etc. Have to be more diversified products.
- the cooking machine is favored by users by controlling the high speed operation of the motor to break the cell wall of the food, so that the nutrition of the food is fully released.
- the motor used for the cooking machine has been changed from the original AC series motor to the brushless DC motor.
- the brushless DC motor can not only achieve positive and negative rotation, but also has noise. Small, no toner, etc., and thus gradually become widely used, but the maximum speed under no-load or light-load conditions is still limited, so how to effectively improve the maximum speed under no-load or light-load conditions is currently urgently needed to be solved. technical problem.
- the present application aims to solve at least one of the technical problems in the above-mentioned techniques to some extent.
- the first object of the present application is to provide a method for controlling the increase in the rotational speed of a food processor that is capable of achieving a high rotational speed of the drive motor within a maximum threshold range allowed by the drive motor.
- a second object of the present application is to propose a non-transitory computer readable storage medium.
- a third object of the present application is to provide a rotational speed increase control device for a food processor.
- a fourth object of the present application is to propose a food cooking machine.
- a fifth object of the present application is to propose another food cooking machine.
- the first aspect of the present application provides a method for controlling an increase in the rotational speed of a food processor, the food cooking machine comprising a cooking container, a driving motor, and a food processing member for processing the food.
- a food accommodating chamber for holding food is formed in the cooking container, and the food processing member extends into the food accommodating chamber and is rotated relative to the food container by the driving motor, and the rotation speed is increased.
- the control method includes the steps of: acquiring a rotation speed command when the food cooking machine is in an empty or light load state; parsing the rotation speed command to obtain a target rotation speed of the driving motor, and generating a PWM according to the target rotation speed Controlling a signal to control the driving motor; during the controlling of the driving motor, gradually increasing the duty ratio of the PWM control signal in a step increment manner until the PWM control signal is The duty ratio reaches 1, and the drive motor is subjected to field weakening control to rapidly increase the rotational speed of the drive motor.
- the rotation speed command is acquired, and the rotation speed command is analyzed to obtain the target rotation speed of the driving motor, and according to the target
- the rotational speed generates a PWM control signal to control the drive motor.
- the duty ratio of the PWM control signal is gradually increased according to the step increment until the duty ratio of the PWM control signal reaches 1, and the drive motor is weakly controlled to be fast. Increase the speed of the drive motor.
- the rotational speed of the drive motor can be made very high within the maximum threshold range allowed by the drive motor.
- the method for controlling the rotation speed increase of the food processor according to the above embodiment of the present application may further have the following additional technical features:
- the stator winding of the driving motor in the process of performing field weakening of the driving motor, generates a magnetic field in a reverse direction by increasing the Hall advance angle to weaken the driving.
- the rotor magnetic field of the motor in the process of performing field weakening of the driving motor, the stator winding of the driving motor generates a magnetic field in a reverse direction by increasing the Hall advance angle to weaken the driving.
- the Hall advance angle is increased to a maximum of 50°.
- the drive motor is a brushless DC motor.
- the second aspect of the present application provides a non-transitory computer readable storage medium having stored thereon a computer program, which is implemented by the processor to implement the above-described rotation speed increase control of the food processor. method.
- the rotational speed of the drive motor can be made high within the maximum threshold range allowed by the drive motor.
- the third aspect of the present application provides a rotation speed increasing control device for a food processing machine, which includes a cooking container, a driving motor, and a food processing member for processing food.
- a food accommodating chamber for holding food is formed in the cooking container, and the food processing member extends into the food accommodating chamber and is rotated relative to the food container by the driving motor, and the rotation speed is increased.
- the control device includes: an instruction acquisition module, configured to acquire a rotation speed command when the food cooking machine is in an empty or light load state; and a control module configured to analyze the rotation speed instruction to obtain a target rotation speed of the driving motor, And generating a PWM control signal according to the target rotational speed to control the driving motor, and gradually increasing the duty of the PWM control signal according to a step increment in a process of controlling the driving motor Comparing, until the duty ratio of the PWM control signal reaches 1, and performing weak field control on the driving motor to rapidly increase the driving motor Rotating speed.
- the rotation speed increasing control device of the food processor of the embodiment of the present invention when the food cooking machine is in an empty or light load state, the rotation speed command is obtained by the instruction acquisition module, and the rotation speed command is analyzed by the control module to obtain the driving motor.
- the target speed is generated, and a PWM control signal is generated according to the target speed to control the driving motor, and in the process of controlling the driving motor, the duty ratio of the PWM control signal is gradually increased according to the step increment until the PWM
- the duty cycle of the control signal reaches 1, and the drive motor is weakly magnetized to quickly increase the speed of the drive motor.
- the rotational speed of the drive motor can be made very high within the maximum threshold range allowed by the drive motor.
- the rotation speed increase control device of the food processor according to the above embodiment of the present application may further have the following additional technical features:
- control module is further configured to increase the Hall advance angle by increasing the Hall advance angle during the field weakening control of the drive motor to reverse the stator winding of the drive motor A directional magnetic field to weaken the rotor magnetic field of the drive motor.
- the Hall advance angle is increased to a maximum of 50°.
- the drive motor is a brushless DC motor.
- the fourth aspect of the present application provides a food cooking machine comprising the above-described rotational speed increasing control device for a food processing machine.
- the rotation speed increase control means of the food processor can achieve a high rotation speed of the drive motor within a maximum threshold range allowed by the drive motor.
- the fifth aspect of the present application provides a food cooking machine including a cooking container, a driving motor, and a food processing member for processing the food, wherein the cooking container is formed into a useful one.
- a food receiving chamber for containing food the food processing member extending into the food receiving chamber and rotating relative to the cooking container by the driving motor
- the food processor further comprising a memory, a processor And a rotational speed increase control program of the food processor stored on the memory and operable on the processor, wherein the rotational speed increase control program is implemented by the processor to implement the above-described food processor Speed increase control method.
- the rotational speed increase control method of the food processor can achieve a high rotational speed of the drive motor within a maximum threshold range allowed by the drive motor.
- the food processor according to the above application may further have the following additional technical features:
- the drive motor includes: a stator core including an annular stator yoke portion and a plurality of stator teeth portions provided on an inner circumferential surface of the stator yoke portion, a stator slot is formed between two adjacent stator teeth, and the plurality of stator teeth define a stator hole coaxial with the stator yoke, the maximum radial dimension of the stator yoke is D; a rotor core rotatably disposed in the stator bore and coaxial with the stator bore, the rotor core having a maximum radial dimension d, wherein D and d satisfy: 0.4 ⁇ d/D ⁇ 0.55.
- FIG. 1 is a schematic structural view of a food processor according to an embodiment of the present application.
- FIG. 2 is a circuit diagram of a power supply circuit of a food processor according to an embodiment of the present application
- FIG. 3 is a flow chart of a method for controlling a rotation speed increase of a food processor according to an embodiment of the present application
- FIG. 4 is a flow chart of a method for controlling a rotation speed increase of a food processor according to an embodiment of the present application
- FIG. 5 is a schematic view showing the assembly of a stator core and a rotor core of a motor according to an embodiment of the present application
- FIG. 6 is a schematic structural view of a rotor core of a motor according to an embodiment of the present application.
- FIG. 7 is a schematic structural view of a rotor core of a motor according to another embodiment of the present application.
- FIG. 8 is a block diagram of a rotational speed increase control device for a food processor according to an embodiment of the present application.
- FIG. 9 is a block schematic diagram of a food processor in accordance with one embodiment of the present application.
- the food processor 200 may include: a cooking container 210, a driving motor 100, and a food processing member (not shown) for processing the food, and the cooking container 210 may be A food accommodating chamber for holding the food is formed, and the food processing member can be inserted into the food accommodating chamber and rotated relative to the food container 210 by the driving motor 100, so that the food in the food accommodating chamber can be processed.
- the food processor 200 may further include a base 220.
- the cooking container 210 may be a cup assembly, and the cup assembly is detachably disposed on the base 220 to facilitate food handling and cleaning of the cup assembly.
- the driving motor 100 can be mounted on the base 220.
- the food processing component can be a knife assembly connected to the cup assembly. When the cup assembly is disposed on the base 220, the driving motor 100 can be drivingly connected with the knife assembly, thereby driving the motor. 100 can drive the knife assembly to rotate relative to the cup assembly such that the knife assembly can cut food and the like.
- the food processor 200 can also include an electronic control system 230 and a display assembly 240.
- the electronic control system 230 includes a circuit board on which a power supply circuit of the food processor 200 and a motor control board are disposed.
- the circuit board can be mounted on the base 220, and the circuit board is electrically connected to the drive motor 100 to control the drive motor 100. jobs.
- Display assembly 240 can also be mounted to base 220, and display assembly 240 can be electrically coupled to electronic control system 230, which can be used to display the operational status of food processor 200, and in a further embodiment of the present application,
- the display component 240 can have an operation button, and the user can control the electronic control system 230 by operating the button, thereby controlling the working mode and state of the food processor 200, and the use is more convenient.
- the power supply circuit 231 of the food processor 200 includes: a rectifier bridge 2311 and an electrolytic capacitor 2312, wherein the first input end of the rectifier bridge 2311 is connected to the live line AC_L of the input AC power source, The second input of the rectifier bridge 2311 is connected to the neutral line AC_N of the AC power source, and the rectifier bridge 2311 converts the AC power to a DC power source.
- the positive end of the electrolytic capacitor 2312 is connected to the first output end of the rectifier bridge 2311, the negative end of the electrolytic capacitor 2312 is connected to the second output end of the rectifier bridge 2311 and then connected to the ground GND, and the two ends of the electrolytic capacitor 2312 are also connected with motor control.
- the board 232, the motor control board 232 is connected to the driving motor 100, the electrolytic capacitor 2312 is used for voltage regulating processing of the DC power source, and the regulated DC power is supplied to the motor control board 232 to drive the motor through the motor control board 232. 100 for control.
- the rectifier bridge 2311 rectifies the AC power source into a DC power source (the voltage may be 310V), and the DC power source charges the electrolytic capacitor 2312 until the voltage corresponding to the DC power source is charged ( 310V), when it is required to control the operation of the drive motor 100, the motor control board 232 applies a DC power source to the drive motor 100 in the form of a PWM waveform to operate the drive motor 100 at a predetermined rotational speed.
- the drive motor 100 for the cooking machine has been changed from the original AC series motor to the brushless DC motor, and the brushless DC motor can not only realize the forward and reverse rotation, but also It has the advantages of low noise and no toner, so it is widely used, but its maximum speed under no-load or light-load conditions is still limited. Therefore, how to effectively increase the maximum speed under no-load or light-load conditions is required below. Detailed description.
- FIG. 3 is a flow chart of a method for controlling a rotation speed increase of a food processor according to an embodiment of the present application. As shown in FIG. 3, the method for controlling the rotation speed increase of the food processor of the embodiment of the present application includes the following steps:
- the user can set the working mode and the rotation speed of the food processor through the above display component, and select the start button to start the food processor, for example, when the user needs the food processor When cleaning, the cleaning mode can be selected.
- the food processor is in an empty or light load state; for example, when the user needs to whipped the juice, the vegetable juice mode can be selected.
- the food cooking machine can firstly use low speed and high torque.
- the food processor can be considered to be in an empty or light load state (in practical applications, it can be judged according to the load torque or the operating current of the driving motor).
- the rotational speed command of the driving motor is obtained, wherein when the user selects the cleaning mode, the rotational speed command may be a rotational speed command set by the user or a default rotational speed command of the system; when the user selects the fruit and vegetable In the juice mode, etc., the speed command can be a preset speed command in the system.
- the step increment method refers to gradually increasing the duty ratio of the PWM control signal according to a certain step size.
- the stator winding of the drive motor is caused to generate an opposite direction magnetic field by increasing the Hall advance angle to weaken the rotor magnetic field of the drive motor.
- the Hall advance angle refers to a certain angle of the Hall signal outputted in advance of the Hall sensor.
- the rotation speed command is obtained, and the rotation speed command is analyzed.
- the target motor speed of the driving motor is obtained, and a PWM control signal is generated according to the target speed to control the driving motor.
- the duty ratio of the PWM control signal can be gradually increased according to a certain step size until the duty ratio of the PWM control signal reaches 1, that is, the fully open state is reached, and the actual Hall sensor is simultaneously
- the output Hall signal compensates for the advance angle to achieve the opposite magnetic field generated by the stator windings, which can weaken the rotor magnetic field, and the Lorentz force of the rotor in the spatial magnetic field is increased, thereby achieving a sharp increase in the rotational speed.
- FIG. 4 is a flow chart of a method for controlling the rotation speed increase of a food processor according to an embodiment of the present application. As shown in FIG. 4, the method for controlling the rotation speed increase of the food processor includes the following steps:
- the display component sends a high value signal of the motor whipping speed.
- the MCU of the motor control board parses out the motor whipping speed high value signal and generates a PWM control signal.
- the software algorithm increases the Hall advance angle, and the Hall advance angle is increased to a maximum of 50°.
- the duty ratio of the PWM control signal is gradually increased by step increment. And when the duty ratio of the PWM control signal reaches the maximum value of 1, the Hall advance angle is increased to increase the rotational speed of the drive motor, thereby realizing the improvement of the motor speed under no-load or light load.
- the driving motor 100 for the food processor 200 may include: a stator core 10 and a rotor core 20.
- the stator core 10 may include a stator yoke portion 11 and a plurality of stator tooth portions 12, the stator yoke portion 11 may be annular, and the plurality of stator tooth portions 12 may be disposed on the inner circumferential surface of the stator yoke portion 11, and a plurality of The stator tooth portion 12 can define a stator bore 102 that is coaxial with the stator yoke portion 11.
- the stator yoke portion 11 can provide mechanical support for the plurality of stator tooth portions 12 to position the stator tooth portion 12.
- the plurality of stator tooth portions 12 may be spaced apart in the circumferential direction of the stator yoke portion 11, and the stator tooth grooves 101 may be formed between the adjacent two stator tooth portions 12, and the windings 14 of the drive motor 100 may be wound through the stator slots 101.
- the stator tooth portion 12 may be spaced apart in the circumferential direction of the stator yoke portion 11, and the stator tooth grooves 101 may be formed between the adjacent two stator tooth portions 12, and the windings 14 of the drive motor 100 may be wound through the stator slots 101.
- stator teeth 12 can be flexibly set according to actual conditions, and the stator teeth 12 in FIG. 5 are six for illustrative purposes only, in other embodiments of the present application.
- the stator teeth 12 may also be two, four or more, which are all within the scope of the present application.
- the ratio of the yoke width to the tooth width of the stator of the driving motor has no fixed value, and the ratio is usually 0.4-0.6, so that the stator yoke portion bears a larger proportion of iron loss to reduce the heating temperature of the stator teeth. Lit, but it will bring about the problem that the temperature rise of the stator yoke is too high. If the above problem is solved by applying a magnetically permeable outer casing to the driving motor, the magnetic flux density of the stator yoke portion can be reduced to some extent, and the iron loss of the stator yoke portion can be reduced, but the material and process cost are increased.
- each of the stator teeth 12 may include a stator tooth body 121 and a stator tooth shoe 122.
- the stator tooth body 121 is connected to the stator yoke 11 so that the stator tooth portion 12 and the stator yoke portion 11 can be integrally connected.
- the stator toothed shoe 122 is provided at the inner end of the stator tooth main body 121, so that the air gap magnetic resistance between the stator tooth portion 12 and the rotor core 20 can be reduced, and the magnetic field distribution can be improved.
- the width of the stator yoke portion 11 is W
- the width of each of the stator tooth portion main bodies 121 is V.
- stator slots 101 between the adjacent two stator tooth portions 12 are too small, and the distance between the adjacent two stator tooth portions 12 is too short, so that an electromagnetic circuit is easily formed, thereby reducing the energy efficiency of the stator core 10. If W: V is too large, the magnetic flux density of the stator yoke 11 is too high, and even the magnetic flux density is saturated. During the operation of the stator core 10, the iron loss of the stator yoke 11 is large and the temperature rise occurs. Too high a phenomenon.
- the magnetic flux density of the stator core 10 is reasonably distributed to prevent the local temperature rise of the stator core 10 to be higher, and the temperature rise of the stator core 10 is more balanced to improve the service life and safety performance of the stator core 10.
- the ratio W:V of the width W of the stator yoke 11 to the width V of the stator tooth body 121 may be 0.6, 0.62, 0.65, 0.68, and 0.7, respectively.
- the width W of the stator yoke portion 11 can be understood as the distance between the inner circumferential surface and the outer circumferential surface of the annular stator yoke portion 11, and the width V of the stator tooth portion main body 121 can be understood as a stator. The distance between the two side faces of the tooth main body 121 in the circumferential direction of the stator yoke portion 11.
- the distance between the inner circumferential surface and the outer circumferential surface of the annular stator yoke portion 11 may be the same everywhere.
- the distance between the inner circumferential surface and the outer circumferential surface of the annular stator yoke portion 11 may not be completely the same.
- the distance between the inner circumferential surface and the outer circumferential surface of the annular stator yoke portion 11 may or may not be the same everywhere.
- the widths of the stator yokes 11 may be equal everywhere, and the width of each of the stator tooth main bodies 121 may be equal everywhere to facilitate the mold design of the stator core 10 forming process, the process It's even simpler.
- the stator yoke portion 11 may have a circular shape in which the inner contour and the outer contour are both circular, and the stator yoke portion 11 has a simple structure and is convenient for molding.
- each of the stator tooth main bodies 121 may pass through the center of the stator hole 102, that is, each stator tooth main body 121 extends in the radial direction of the stator hole 102, which is advantageous in making the magnetic field distribution more symmetrical and uniform.
- the two ends of the stator toothed shoes 122 may extend beyond the stator tooth main body 121, respectively, and the adjacent ends of the adjacent two stator toothed shoes 122 are spaced apart or Connected.
- the winding 14 wound around the stator tooth portion 12 can be fixed to prevent the winding 14 from being loosened by the inner end of the stator tooth portion 12, and the winding 14 is more reliably fixed.
- the stator core 10 may further include a plurality of positioning projections 13 which may be circumferentially spaced apart from each other along the circumferential direction of the stator yoke portion 11 on the outer circumferential surface of the stator yoke portion 11, and each positioning The projection 13 may extend in the radial direction of the stator yoke portion 11. Therefore, when the driving motor 100 is assembled, the stator core 10 can be positioned by the positioning protrusion 13 and the bracket of the driving motor 100, so that the driving motor 100 is assembled more easily and conveniently and accurately positioned.
- the number and positioning positions of the positioning protrusions 13 are not particularly limited in the present application.
- the number of the positioning protrusions 13 is equal to the number of the stator teeth 12
- the positioning projections 13 are disposed in one-to-one correspondence with the positions of the stator teeth 12 on the outer circumferential surface of the stator yoke portion 11, facilitating the mold design and molding of the stator core 10.
- the number and position of the positioning protrusions 13 may not be in one-to-one correspondence with the stator teeth 12, and only the positioning protrusions 13 are required to be spaced apart from the outer circumferential surface of the stator yoke 11. The requirement for positioning the stator core 10 can be achieved.
- the rotor core 20 may be disposed within the stator bore 102, and the rotor core 20 may be coaxial with the stator bore 102.
- the rotor core 20 is rotatable about the axis within the stator bore 102, and the rotor core 20 is spaced apart from the inner peripheral surface of the stator bore 102 by a predetermined distance to make the rotor core 20 rotate more smoothly.
- the plurality of stator teeth 12 form a plurality of pairs of magnetic poles, and a magnetic field is generated in the stator holes 102.
- the rotor core 20 located in the stator hole 102 can be wound by the magnetic field.
- the axis rotates to achieve the conversion and output of electrical energy.
- the ratio of the rotor diameter to the stator diameter of the drive motor has no fixed value, and is usually 0.60-0.75. In this range, although the drive motor can output a large torque, the high-speed performance of the drive motor is poor, and The cogging torque of the drive motor is increased, and the drive motor is prone to vibration and loud noise. If the above problem is solved by adding a weak magnetic effect in the algorithm of the drive control circuit, the energy efficiency of the drive motor is lowered.
- the maximum radial dimension D of the stator yoke 11 and the maximum radial dimension d of the rotor core 20 satisfy 0.4 ⁇ d / D ⁇ 0.55.
- the ratio d/D of the maximum radial dimension D of the stator yoke 11 to the maximum radial dimension d of the rotor core 20 may be 0.45, 0.48, 0.51, and 0.54, respectively.
- the maximum radial dimension D of the stator yoke portion 11 is constant
- the d/D is too small (for example, less than 0.4)
- the maximum radial dimension d of the rotor core 20 is too small. If the driving motor 100 is running at a low speed, for example, the rotational speed of the driving motor 100 is less than 5000 rpm, the load capacity of the rotor core 20 is too small, and under the condition of driving the same load, the rotor core 20 whose outer radial dimension d is too small may be severely heated. It affects the normal operation of the drive motor 100, reduces the efficiency of the drive motor 100, and may even cause damage.
- the drive motor 100 When the d/D is too large (for example, greater than 0.55), the cogging torque of the driving motor 100 becomes large, and the moment of inertia of the rotor core 20 becomes large, and if the driving motor 100 is operated at a high speed, for example, the driving motor 100 When the rotational speed is >10000 rpm, the drive motor 100 generates vibration, which in turn generates a large noise, affecting the performance of the drive motor 100 and the user's feeling of use.
- the rotational speed is >10000 rpm
- the maximum radial dimension D of the stator yoke 11 and the maximum radial dimension d of the rotor core 20 may satisfy 0.4 ⁇ d / D ⁇ 0.55, and the rotor iron of the drive motor 100 may be improved.
- the output force of the core 20 drives the motor 100 more efficiently, prevents the rotor core 20 from heating up, is safer, and can reduce the maximum radial dimension d of the rotor core 20 to eliminate the rotor core 20 generated during high-speed rotation.
- the inertia prevents the drive motor 100 from generating large vibration noise.
- the outer contours of the stator core 10 and the rotor core 20 are circular, and the maximum radial dimension specifies the circular shape of the sub-core 10 and the rotor core 20.
- the diameter of the outer contour In still other embodiments of the present application, the outer contours of the stator core 10 and the rotor core 20 are not circular, and the maximum radial dimension can be understood as the over-axis of the outer contours of the stator core 10 and the rotor core 20.
- the size of the radial position is the largest position.
- the maximum radial dimension D of the stator yoke portion 11 of the drive motor 100 for the food processor 200 according to the embodiment of the present application and the maximum radial dimension d of the rotor core 20 satisfy 0.4 ⁇ d / D ⁇ 0.55, which effectively solves
- the low speed output force of the drive motor 100 and the high speed vibration noise increase the efficiency and safety performance of the drive motor 100.
- the maximum radial dimension D of the stator yoke 11 and the maximum radial dimension d of the rotor core 20 may be further Satisfied: 0.5 ⁇ d / D ⁇ 0.55.
- a plurality of magnet slots 23 may be disposed in the rotor core 20, and the plurality of magnet slots 23 may be spaced apart along the circumferential direction of the rotor core 20, and Both ends of the magnet groove 23 may extend to the axial ends of the rotor core 20, respectively, and the plurality of permanent magnets 25 may be inserted into the plurality of magnet slots 23 in one-to-one correspondence.
- the permanent magnet 25 can extend to both axial ends of the rotor core 20 in the magnet groove 23, and the position of the permanent magnet 25 is fixed and reliable, and the permanent magnet 25 can be effectively prevented from coming loose.
- the plurality of permanent magnets 25 can form a plurality of pairs of magnetic poles to generate a magnetic field, thereby generating an induced electromotive force to realize conversion of electric energy.
- the rotor core 20 using the permanent magnet 25 does not need to be provided with an exciting coil, which is advantageous in reducing the weight of the driving motor 100, reducing the volume of the driving motor 100, and eliminating the need to start excitation at the time of starting, which is quicker and more energy efficient.
- the number of the magnet slots 23 and the permanent magnets 25 is not particularly limited in the present application, and only a plurality of permanent magnets 25 are required to be inserted into the plurality of magnet slots 23 one by one to realize the fixing of the permanent magnets 25 . And the requirements of forming a plurality of magnetic poles can be.
- the magnet slots 23 and the permanent magnets 25 are respectively four, and the four permanent magnets 25 are respectively inserted in the four magnet slots 23.
- the magnet slots 23 and the permanent magnets 25 may also be two, six, eight or more, respectively, which are all within the scope of the present application.
- each of the magnet slots 23 may be provided with a positioning groove 24 at least at one end in the circumferential direction of the rotor core 20, and the permanent magnet 25 may be inserted into the positioning groove 24 while being inserted into the magnet groove 23, and the positioning groove 24 may further define the permanent magnet 25 The position of the permanent magnet 25 is fixed more accurately and firmly.
- the linear distance of each of the magnet slots 23 at both ends in the circumferential direction of the rotor core 20 is b, and the center of the rotor core 20 is the largest diameter from the outer peripheral surface of the rotor core 20.
- b: R ⁇ 0.95 the length of the permanent magnet 25 in the magnet slot 23 is too short, reducing the utilization of the rotor core 20, thereby reducing the energy efficiency of the drive motor 100; when b: R > 1, the rotor is increased.
- the magnetic flux leakage of the iron core 20 also reduces the energy efficiency of the drive motor 100.
- b: R 0.95-1.0
- b:R 0.95-1.0
- b:R 0.95, 0.96, 0.97, 0.98, 0.99, and 1.0, respectively. , effectively ensuring the energy efficiency of the drive motor 100.
- the minimum distance between the magnet groove 23 and the outer circumferential surface of the rotor core 20 is a1, and the minimum distance between the stator groove 24 and the outer circumferential surface of the rotor core 20 is a2.
- the minimum distance between the permanent magnet 25 and the outer circumferential surface of the rotor core 20 can be understood as the value of the smaller one of a1 and a2, that is, min(a1, a2).
- min(a1, a2) is too small, the mechanical strength of the rotor core 20 is lowered, thereby reducing the reliability of the rotor core 20; and when min(a1, a2) is too large, the leakage of the rotor core 20 is increased.
- min(a1, a2) 0.8 mm - 1.8 mm while ensuring the mechanical strength and energy efficiency of the rotor core 20.
- min(a1, a2) may be 0.8 mm, 1.0 mm, 1.2 mm, 1.4 mm, 1.6 mm, and 1.8 mm, respectively.
- the shape of the magnet groove 23 is not particularly limited in the present application, and it is only required to satisfy the requirement that the bisector of the longitudinal direction of the magnet groove 23 passes through the center of the rotor core 20, and the magnetic field generated by the permanent magnet 25 in the magnet groove 23 is obtained.
- the distribution is more uniform.
- the magnet groove 23 is an elongated linear groove extending in the chord direction of the rotor core 20, and the distance b between both ends of the linear groove is the extension length of the linear groove.
- the magnet groove 23 is an elongated arcuate groove extending in the circumferential direction of the rotor core 20, and the distance b between both ends of the arcuate groove is the chord of the curved groove. long.
- the outer peripheral edge of the rotor core 20 may be formed with a plurality of pole teeth 21, which may be distributed along the circumferential direction of the rotor core 20 and Protruding outwardly, a tooth groove 22 is formed between adjacent two pole teeth 21, and in the embodiment having a plurality of magnet slots 23, the magnet groove 23 and the pole teeth 21 can be disposed in one-to-one correspondence.
- the rotor core 20 is formed as a salient pole structure rotor, and the salient pole structure rotor can prevent leakage magnetic flux and cogging effect between the rotor poles, thereby improving the rotor core, compared with the full-circular rotor in the related art. 20 efficiency.
- the maximum outer diameter dimension d of the rotor core 20 refers to the two pole teeth 21 of the addendum that are connected to the axis of the rotor core 20.
- the connection size of the crest is the connection size of the crest.
- the normal tooth profile of the pole tooth 21 may be formed in a circular arc shape, and the outer peripheral edge of the axial section of the rotor core 20 may be sequentially connected by a plurality of arc shapes.
- a tooth groove 22 is formed in the adjacent two arc-shaped joints.
- the radius of the circle whose groove bottom is tangent and centered on the center of the rotor core 20 is r. If r: R ⁇ 0.96, the extension length of the pole teeth 21 along the circumferential direction of the rotor core 20 is too short, and the performance of the motor 100 is lowered; if r: R>0.98, the gullet 22 is too small to be driven. When the motor 100 is running, it is not possible to effectively reduce the noise interference caused by the corresponding cogging.
- r: R 0.96-0.98
- r:R may be 0.96, 0.97, and 0.98, respectively, to effectively reduce cogging At the same time, the efficiency of the drive motor 100 is ensured.
- the driving motor for the food cooking machine may be a variable frequency motor, and the variable frequency motor may provide different rotation speed, torque, time, etc. according to different types of foods to be processed by the food cooking machine, so as to have a driving motor.
- the food processor is intelligent.
- the variable frequency motor does not need to be commutated by a structure such as a carbon brush, there is no carbon brush wear, and the running noise is lower, which is beneficial to improving the service life of the food processor and improving the user's feeling of use.
- the drive The motor can be a DC brushless motor with variable frequency control.
- the food cooking machine may be a wall breaking machine, a juice machine, a juicer or a soybean milk machine or the like.
- the high speed of the broken machine can be used to treat hard foods, and it can completely release the large amount of phytochemicals present in the skin, the core and the roots of the food; the speed of the juice machine is low, and the push is squeezed.
- the driving motor according to the embodiment of the present application can be applied to a wider variety of food cooking machines to meet more use requirements and is more practical.
- the rotational speed of the driving motor can be rapidly increased within a maximum threshold range allowed by the driving motor under the condition that the food cooking machine is in an empty or light load state.
- the embodiment of the present application also proposes a non-transitory computer readable storage medium having stored thereon a computer program, which is implemented by the processor to implement the above-described method for controlling the rotational speed increase of the food processor.
- the rotational speed of the drive motor can be made high within the maximum threshold range allowed by the drive motor.
- Figure 8 is a block diagram of a rotational speed increase control device for a food processor according to an embodiment of the present application.
- the food processor 200 includes a cooking container 210, a driving motor 100, and a food processing member (not shown) for processing the food, and is formed in the cooking container 210.
- a food accommodating chamber for holding food
- the food processing member extends into the food accommodating chamber and is rotated relative to the food container 210 by the driving motor 100.
- the rotation speed increase control device of the food processor of the embodiment of the present invention includes: an instruction acquisition module 2321 and a control module 2322, wherein the instruction acquisition module 2311 is used to empty or lightly load the food processor 200. Get the speed command when the status is in progress.
- the control module 2322 is configured to parse the rotation speed command to obtain the target rotation speed of the driving motor 100, generate a PWM control signal according to the target rotation speed to control the driving motor 100, and follow the stepping process during the control of the driving motor 100.
- the duty ratio of the PWM control signal is gradually increased in an incremental manner until the duty ratio of the PWM control signal reaches 1, and the drive motor 100 is subjected to field weakening control to rapidly increase the rotational speed of the drive motor 100.
- control module 2322 is further configured to increase the Hall advance angle in the process of performing field weakening control on the driving motor 100 to generate a magnetic field in the opposite direction of the stator winding of the driving motor 100.
- the rotor magnetic field of the drive motor 100 is weakened.
- the Hall advance angle is increased up to 50°.
- the drive motor 100 is a brushless DC motor.
- the rotation speed increasing control device of the food processor of the embodiment of the present invention when the food cooking machine is in an empty or light load state, the rotation speed command is obtained by the instruction acquisition module, and the rotation speed command is analyzed by the control module to obtain the driving motor.
- the target speed is generated, and a PWM control signal is generated according to the target speed to control the driving motor, and in the process of controlling the driving motor, the duty ratio of the PWM control signal is gradually increased according to the step increment until the PWM
- the duty cycle of the control signal reaches 1, and the drive motor is weakly magnetized to quickly increase the speed of the drive motor.
- the rotational speed of the drive motor can be made very high within the maximum threshold range allowed by the drive motor.
- the embodiment of the present application also proposes a food cooking machine comprising the above-described rotational speed increasing control device of the food cooking machine.
- the rotation speed increase control means of the food processor can achieve a high rotation speed of the drive motor within a maximum threshold range allowed by the drive motor.
- FIG. 9 is a block schematic diagram of a food processor in accordance with one embodiment of the present application.
- the food processor 200 of the embodiment of the present application includes a cooking container 210, a driving motor 100, and a food processing member 250 for processing food.
- the food container 210 is formed with a food receiving chamber for holding food.
- the food processing device 250 extends into the food accommodating chamber and is rotated relative to the food container 210 by the driving motor 100.
- the food processor 200 further includes a memory 260, a processor 270, and is stored in the memory 260 and is at the processor 270.
- the rotational speed increase control program of the food processing machine that is operated, wherein the rotational speed increase control program is executed by the processor 270 to implement the above-described rotational speed increase control method of the food processor.
- the rotational speed increase control method of the food processor can achieve a high rotational speed of the drive motor within a maximum threshold range allowed by the drive motor.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
- the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
- installation can be understood on a case-by-case basis.
- the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Power Engineering (AREA)
- Food-Manufacturing Devices (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
一种食品料理机(200)及其转速增大控制方法、装置,其中,转速增大控制方法包括以下步骤:当食品料理机(200)处于空载或轻载状态时,获取转速指令(S1);对转速指令进行解析以获取驱动电机(100)的目标转速,并根据目标转速生成PWM控制信号以对驱动电机(100)进行控制(S2);在对驱动电机(100)进行控制的过程中,按照步进增量的方式逐步加大PWM控制信号的占空比,直至PWM控制信号的占空比达到1,并对驱动电机(100)进行弱磁控制,以快速提高驱动电机(100)的转速(S3),能够在驱动电机(100)允许的最大阈值范围内,使得驱动电机(100)的转速达到很高。
Description
相关申请的交叉引用
本申请基于申请号为201810186164.6、201810186163.1、201820316116.X、201810186155.7、201810187835.0,申请日均为2018年03月07日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及家用电器技术领域,特别涉及一种食品料理机的转速增大控制方法、一种食品料理机的转速增大控制装置以及一种食品料理机。
料理机是集打豆浆、磨干粉、榨果汁、打肉馅、刨冰等功能于一身,用于制作果汁、豆浆、果酱、干粉、刨冰、肉馅等多种食品的家用电器,是榨汁机变得比较多元化后的产物。通常,料理机是通过控制电机高速运转以将食物的细胞壁打破,从而使得食物的营养得以充分释放,因而备受用户青睐。
其中,随着用户要求的不断提高以及技术的不断发展,用于料理机的电机由原来的交流串激电机改为了无刷直流电机,该无刷直流电机不仅可以实现正反转,而且具有噪音小、无碳粉等优点,因而逐渐获得广泛应用,但是其空载或轻载状态下的最高转速仍受到一定限制,因此如何有效提高空载或轻载状态下的最高转速是目前亟待解决的技术问题。
发明内容
本申请旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本申请的第一个目的在于提出一种食品料理机的转速增大控制方法,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
本申请的第二个目的在于提出一种非临时性计算机可读存储介质。
本申请的第三个目的在于提出一种食品料理机的转速增大控制装置。
本申请的第四个目的在于提出一种食品料理机。
本申请的第五个目的在于提出另一种食品料理机。
为达到上述目的,本申请第一方面实施例提出了一种食品料理机的转速增大控制方法,所述食品料理机包括料理容器、驱动电机和用于对食物进行处理的食品处理件,所述料理 容器内形成有用于盛放食物的食物容纳腔,所述食品处理件伸入所述食物容纳腔内且在所述驱动电机的带动下相对于所述料理容器转动,所述转速增大控制方法包括以下步骤:当所述食品料理机处于空载或轻载状态时,获取转速指令;对所述转速指令进行解析以获取所述驱动电机的目标转速,并根据所述目标转速生成PWM控制信号以对所述驱动电机进行控制;在对所述驱动电机进行控制的过程中,按照步进增量的方式逐步加大所述PWM控制信号的占空比,直至所述PWM控制信号的占空比达到1,并对所述驱动电机进行弱磁控制,以快速提高所述驱动电机的转速。
根据本申请实施例的食品料理机的转速增大控制方法,当食品料理机处于空载或轻载状态时,获取转速指令,并对转速指令进行解析以获取驱动电机的目标转速,以及根据目标转速生成PWM控制信号以对驱动电机进行控制。在对驱动电机进行控制的过程中,按照步进增量的方式逐步加大PWM控制信号的占空比,直至PWM控制信号的占空比达到1,并对驱动电机进行弱磁控制,以快速提高驱动电机的转速。由此,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
另外,根据本申请上述实施例提出的食品料理机的转速增大控制方法还可以具有如下附加的技术特征:
根据本申请的一个实施例,在对所述驱动电机进行弱磁控制的过程中,通过加大霍尔提前角的方式以使所述驱动电机的定子绕组产生相反方向磁场,以弱化所述驱动电机的转子磁场。
根据本申请的一个实施例,所述霍尔提前角最大增加至50°。
根据本申请的一个实施例,所述驱动电机为无刷直流电机。
为达到上述目的,本申请第二方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的食品料理机的转速增大控制方法。
根据本申请实施例的非临时性计算机可读存储介质,通过执行上述的食品料理机的转速增大控制方法,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
为达到上述目的,本申请第三方面实施例提出了一种食品料理机的转速增大控制装置,所述食品料理机包括料理容器、驱动电机和用于对食物进行处理的食品处理件,所述料理容器内形成有用于盛放食物的食物容纳腔,所述食品处理件伸入所述食物容纳腔内且在所述驱动电机的带动下相对于所述料理容器转动,所述转速增大控制装置包括:指令获取模块,用于在所述食品料理机处于空载或轻载状态时获取转速指令;控制模块,用于对所述转速指令进行解析以获取所述驱动电机的目标转速,并根据所述目标转速生成PWM控制信号以对所述驱动电机进行控制,以及在对所述驱动电机进行控制的过程中,按照步进增 量的方式逐步加大所述PWM控制信号的占空比,直至所述PWM控制信号的占空比达到1,并对所述驱动电机进行弱磁控制,以快速提高所述驱动电机的转速。
根据本申请实施例的食品料理机的转速增大控制装置,在食品料理机处于空载或轻载状态时,通过指令获取模块获取转速指令,并通过控制模块对转速指令进行解析以获取驱动电机的目标转速,并根据目标转速生成PWM控制信号以对驱动电机进行控制,以及在对驱动电机进行控制的过程中,按照步进增量的方式逐步加大PWM控制信号的占空比,直至PWM控制信号的占空比达到1,并对驱动电机进行弱磁控制,以快速提高驱动电机的转速。由此,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
另外,根据本申请上述实施例提出的食品料理机的转速增大控制装置还可以具有如下附加的技术特征:
根据本申请的一个实施例,所述控制模块还用于,在对所述驱动电机进行弱磁控制的过程中,通过加大霍尔提前角的方式以使所述驱动电机的定子绕组产生相反方向磁场,以弱化所述驱动电机的转子磁场。
根据本申请的一个实施例,所述霍尔提前角最大增加至50°。
根据本申请的一个实施例,所述驱动电机为无刷直流电机。
为达到上述目的,本申请第四方面实施例提出了一种食品料理机,其包括上述的食品料理机的转速增大控制装置。
根据本申请实施例的食品料理机,通过上述的食品料理机的转速增大控制装置,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
为达到上述目的,本申请第五方面实施例提出了一种食品料理机,所述食品料理机包括料理容器、驱动电机和用于对食物进行处理的食品处理件,所述料理容器内形成有用于盛放食物的食物容纳腔,所述食品处理件伸入所述食物容纳腔内且在所述驱动电机的带动下相对于所述料理容器转动,所述食品料理机还包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的食品料理机的转速增大控制程序,其中,所述转速增大控制程序被所述处理器执行时实现上述的食品料理机的转速增大控制方法。
根据本申请实施例的食品料理机,通过上述的食品料理机的转速增大控制方法,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
另外,根据本申请上述的食品料理机还可以具有如下附加的技术特征:
根据本申请的一个实施例,所述驱动电机包括:定子铁芯,所述定子铁芯包括环形的定子轭部和多个定子齿部,所述定子轭部的宽度为W,多个所述定子齿部设于所述定子轭部的内周面,相邻两个所述定子齿部之间形成有定子齿槽,多个所述定子齿部限定出与所述定子轭部同轴的定子孔,每个所述定子齿部包括与所述定子轭部相连的定子齿部主体和 设在所述定子齿部主体的内端的定子齿靴,每个所述定子齿部主体的宽度为V,其中,W:V=0.6-0.7;转子铁芯,所述转子铁芯可转动地设在所述定子孔内且与所述定子孔同轴。
根据本申请的另一个实施例,所述驱动电机包括:定子铁芯,所述定子铁芯包括环形的定子轭部和设于所述定子轭部的内周面的多个定子齿部,相邻两个所述定子齿部之间形成有定子齿槽,多个所述定子齿部限定出与所述定子轭部同轴的定子孔,所述定子轭部的最大径向尺寸为D;转子铁芯,所述转子铁芯可转动地设在所述定子孔内且与所述定子孔同轴,所述转子铁芯的最大径向尺寸为d,其中,D和d满足:0.4≤d/D≤0.55。
图1为根据本申请一个实施例的食品料理机的结构示意图;
图2为根据本申请一个实施例的食品料理机的供电电路的电路图;
图3为根据本申请实施例的食品料理机的转速增大控制方法的流程图;
图4为根据本申请一个实施例的食品料理机的转速增大控制方法的流程图;
图5为根据本申请一个实施例的定子铁芯和电机的转子铁芯的装配示意图;
图6为根据本申请一个实施例的电机的转子铁芯的结构示意图;
图7为根据本申请另一个实施例的电机的转子铁芯的结构示意图;
图8为根据本申请实施例的食品料理机的转速增大控制装置的方框图;
图9为根据本申请一个实施例的食品料理机的方框示意图。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图来描述本申请实施例的食品料理机的转速增大控制方法、非临时性计算机可读存储介质、食品料理机的转速增大控制装置和食品料理机。
如图1所示,根据本申请实施例的食品料理机200可以包括:料理容器210、驱动电机100和用于对食物进行处理的食品处理件(图中未示出),料理容器210内可以形成有用于盛放食物的食物容纳腔,食品处理件可以伸入食物容纳腔内且在驱动电机100的带动下相对于料理容器210转动,进而可以对食物容纳腔内的食物进行处理。
进一步地,食品料理机200还可以包括机座220,料理容器210可以为杯体组件,杯体组件可拆卸地设于机座220,以便于取放食物和对杯体组件进行清洗。驱动电机100可以安装于机座220,食品处理件可以为与杯体组件相连的刀组件,在杯体组件设 于机座220时,驱动电机100可以与刀组件传动连接,由此,驱动电机100可以驱动刀组件相对于杯体组件转动,以使刀组件可以对食物进行切割等处理。
继续参照图1所示,食品料理机200还可以包括:电控系统230和显示组件240。其中,电控系统230包括电路板,电路板上设置有食品料理机200的供电电路和电机控制板,电路板可以安装于机座220,并且电路板与驱动电机100电连接以控制驱动电机100工作。显示组件240也可以安装于机座220,并且显示组件240可以与电控系统230电连接,显示组件240可以用于显示食品料理机200的工作状态,并且在本申请的进一步的实施例中,显示组件240上可以具有操作按键,用户可以通过操作按键控制电控系统230,进而控制食品料理机200的工作模式和状态等,使用更加方便。
参照图2所示,根据本申请实施例的食品料理机200的供电电路231包括:整流桥2311和电解电容2312,其中,整流桥2311的第一输入端连接到输入的交流电源的火线AC_L,整流桥2311的第二输入端连接到交流电源的零线AC_N,整流桥2311将交流电源转换为直流电源。电解电容2312的正极端与整流桥2311的第一输出端相连,电解电容2312的负极端与整流桥2311的第二输出端相连后接参考地GND,电解电容2312的两端还连接有电机控制板232,电机控制板232与驱动电机100相连,电解电容2312用以对直流电源进行稳压处理,并将稳压处理后的直流电源供给电机控制板232,以通过电机控制板232对驱动电机100进行控制。
具体而言,当交流电源接入后,整流桥2311会把交流电源整流为直流电源(其电压可以为310V),该直流电源会对电解电容2312进行充电,直至充电至直流电源对应的电压(310V),当需要控制驱动电机100工作时,电机控制板232会将直流电源以PWM波形的形式施加在驱动电机100上,以使驱动电机100按照预定转速运行。其中,随着用户要求的不断提高以及技术的不断发展,用于料理机的驱动电机100由原来的交流串激电机改为了无刷直流电机,该无刷直流电机不仅可以实现正反转,而且具有噪音小、无碳粉等优点,因而逐渐获得广泛应用,但是其空载或轻载状态下的最高转速仍受到一定限制,因此如何有效提高空载或轻载状态下的最高转速是下面需要详细说明的。
图3为根据本申请实施例的食品料理机的转速增大控制方法的流程图。如图3所示,本申请实施例的食品料理机的转速增大控制方法包括以下步骤:
S1,当食品料理机处于空载或轻载状态时,获取转速指令。
举例而言,在食品料理机上电工作后,用户可通过上述的显示组件设置食品料理机的工作模式和转速,并选择开始按键以使食品料理机开始工作,例如,当用户需要对食品料理机清洗时,可选择清洗模式,此时食品料理机处于空载或轻载状态;又如,当用户需要搅打果汁时,可选择蔬果汁模式,此时食品料理机可先以低速大扭矩来打碎食物,当食物 被粉碎到一定程度时,可认为食品料理机处于空载或轻载状态(在实际应用中,可根据负载转矩或驱动电机的工作电流等来判断)。当食品料理机处于空载或轻载状态时,获取驱动电机的转速指令,其中,当用户选择清洗模式时,该转速指令可以为用户设置的转速指令或者系统默认的转速指令;当用户选择蔬果汁模式等时,该转速指令可以为系统中预先设置的转速指令。
S2,对转速指令进行解析以获取驱动电机的目标转速,并根据目标转速生成PWM控制信号以对驱动电机进行控制。
S3,在对驱动电机进行控制的过程中,按照步进增量的方式逐步加大PWM控制信号的占空比,直至PWM控制信号的占空比达到1,并对驱动电机进行弱磁控制,以快速提高驱动电机的转速。其中,步进增量的方式是指按照一定的步长逐步加大PWM控制信号的占空比。
在本申请的一些实施例中,在对驱动电机进行弱磁控制的过程中,通过加大霍尔提前角的方式以使驱动电机的定子绕组产生相反方向磁场,以弱化驱动电机的转子磁场。其中,霍尔提前角是指提前于霍尔传感器输出的霍尔信号一定的角度,通过加大该角度可以使得驱动电机的定子绕组产生的相反方向的磁场弱化转子所产生的磁场,使得转子在空间磁场中所受到的洛伦兹力增大,从而使得驱动电机的转速得到大幅提升。通常情况下,霍尔提前角越大越好,但是一般不超过50°,即在本申请的实施例中,霍尔提前角最大增加至50°。
举例而言,在食品料理机上电工作后,判断当前食品料理机是否处于空载或轻载状态,如果食品料理机处于空载或轻载状态,则获取转速指令,并对该转速指令进行解析以获取驱动电机的目标转速,并根据目标转速生成PWM控制信号以对驱动电机进行控制。在对驱动电机进行控制的过程中,可以按照一定的步长逐步加大PWM控制信号的占空比,直至PWM控制信号的占空比达到1,即达到全开状态,同时对实际霍尔传感器输出的霍尔信号补偿提前角,以达到定子绕组产生的相反方向的磁场能够弱化转子磁场的效果,使得转子在空间磁场中所受到的洛伦兹力增大,从而实现转速大幅上升。
图4为根据本申请一个实施例的食品料理机的转速增大控制方法的流程图,如图4所示,该食品料理机的转速增大控制方法包括以下步骤:
S101,系统上电,初始化。
S102,显示组件发出电机搅打速度高值信号。
S103,电机控制板的MCU解析出电机搅打速度高值信号,并产生PWM控制信号。
S104,按照步进增量的方式逐步加大PWM控制信号的占空比至最大值1。
S105,软件算法加大霍尔提前角,霍尔提前角最大加至50°。
S106,结束。
由此,根据本申请实施例的食品料理机的转速增大控制方法,当食品料理机处于空载或轻载状态时,通过按照步进增量的方式逐步加大PWM控制信号的占空比,并在PWM控制信号的占空比达到最大值1时,通过加大霍尔提前角以使驱动电机的转速大幅上升,实现了空载或轻载下电机转速的提高。
进一步地,参照图1、图5-图7所示,根据本申请实施例的用于食品料理机200的驱动电机100可以包括:定子铁芯10和转子铁芯20。其中,定子铁芯10可以包括:定子轭部11和多个定子齿部12,定子轭部11可以为环形,多个定子齿部12可以设于定子轭部11的内周面,并且多个定子齿部12可以限定出与定子轭部11同轴的定子孔102,定子轭部11可以为多个定子齿部12提供机械支撑,使定子齿部12位置固定。多个定子齿部12可以沿定子轭部11的周向间隔开分布,相邻两个定子齿部12之间可以形成有定子齿槽101,驱动电机100的绕组14可以经过定子齿槽101缠绕在定子齿部12。
需要说明的是,在本申请中,定子齿部12的数量可以根据实际情况需要灵活设置,图5中定子齿部12为六个仅用于示例说明的目的,在本申请的另一些实施例中,定子齿部12也可以为两个、四个或者更多个,这都在本申请的保护范围之内。
在相关技术中,驱动电机定子的磁轭宽和齿部宽的比值没有固定值,通常比值多为0.4-0.6,使定子轭部承担更大比例的铁损,以降低定子齿部的发热温升,但是会带来定子轭部温升过高的问题。若通过在驱动电机上加套一个可导磁的外壳解决上述问题,在一定程度上可以降低定子轭部的磁通密度,降低定子轭部的铁损,但是会增加物料和工艺成本。
而在本申请中,参照图5所示,每个定子齿部12可以包括:定子齿部主体121和定子齿靴122。其中,定子齿部主体121与定子轭部11相连,使定子齿部12与定子轭部11可以连接为一体。定子齿靴122设在定子齿部主体121的内端,可以减小定子齿部12与转子铁芯20之间气隙磁阻,改善磁场分布。
此外,定子轭部11的宽度为W,每个定子齿部主体121的宽度为V。对于等外形的定子铁芯10,即定子铁芯10的最大径向尺寸D一定时,若W:V过小,则会导致定子齿部12的磁通密度过高,甚至出现磁通密度饱和,在定子铁芯10工作过程中,定子齿部12的铁损较大,定子齿部12的温升过高。并且,相邻两个定子齿部12之间的定子齿槽101过小,相邻两个定子齿部12距离过短,容易形成电磁回路,进而降低定子铁芯10的能效。若W:V过大,则会导致定子轭部11的磁通密度过高,甚至出现磁通密度饱和,在定子铁芯10工作过程中,定子轭部11的铁损较大而出现温升过高的现象。
因此,在本申请的一些实施例中,定子轭部11的宽度W和每个定子齿部主体121的宽 度V可以满足W:V=0.6-0.7,定子轭部11和定子齿部12可以更合理地分配定子铁芯10的磁通密度,防止定子铁芯10局部温升更高,使定子铁芯10的温升更加均衡,以提高定子铁芯10使用寿命和安全性能。例如,在本申请的一些具体实施例中,定子轭部11的宽度W与定子齿部主体121的宽度V的比值W:V可以分别为0.6、0.62、0.65、0.68和0.7等。
需要说明的是,在本申请中,定子轭部11的宽度W可以理解为环形的定子轭部11的内周面和外周面之间的距离,定子齿部主体121的宽度V可以理解为定子齿部主体121的沿定子轭部11周向的两个侧面之间的距离。
另外,环形的定子轭部11的内周面和外周面之间的距离可以处处相同,当然,环形的定子轭部11的内周面和外周面之间的距离也可以是不完全相同的,环形的定子轭部11的内周面和外周面之间的距离可以处处相同也可以不完全相同。但是,在本申请中,定子轭部11的任意位置处的宽度W和定子齿部主体121的任意位置处的宽度V都满足W:V=0.6-0.7。
根据本申请实施例的用于食品料理机200的定子铁芯10的定子轭部11的宽度W和定子齿部主体121的宽度V满足W:V=0.6-0.7,磁通密度分配更合理,温升更加均衡,有利于提高使用寿命和安全性。为进一步使定子铁芯10的温升更低,根据本申请进一步的实施例,定子轭部11的宽度W和定子齿部主体121的宽度V可以进一步满足:W:V=0.64-0.66。
根据本申请的一些实施例,如图5所示,定子轭部11的宽度可以处处相等,每个定子齿部主体121的宽度可以处处相等,以便于定子铁芯10成型过程的模具设计,工艺更加简单。
进一步地,继续参照图5所示,定子轭部11可以为内轮廓和外轮廓均为圆形的圆环形,定子轭部11的结构简单且便于成型。
此外,每个定子齿部主体121的宽度平分线可以经过定子孔102的中心,也就是说,每个定子齿部主体121沿定子孔102的径向延伸,有利于使磁场分布更对称均匀。
进一步地,参照图5所示,在定子轭部11的周向上,定子齿靴122的两端可以分别延伸超出定子齿部主体121,相邻两个定子齿靴122的相邻端间隔开或者相连。由此,可以对绕设在定子齿部12的绕组14进行固定,防止绕组14由定子齿部12的内端松脱,绕组14固定更加可靠。
根据本申请实施例的定子铁芯10还可以包括多个定位凸起13,多个定位凸起13可以沿定子轭部11的周向间隔开设于定子轭部11的外周面,并且每个定位凸起13可以沿定子轭部11的径向延伸。由此,在驱动电机100进行装配时,定子铁芯10可以通过定位凸起13与驱动电机100的支架进行定位,使驱动电机100装配更加简单方便且定位准确。
需要说明的是,本申请对定位凸起13的数量和设置位置不做特殊限制,例如,在如图5所示的具体实施例中,定位凸起13的数量与定子齿部12的数量相等,并且定位凸起13与定子齿部12位置一一对应的设置在定子轭部11的外周面,便于定子铁芯10的模具设计和成型。在本申请的一些未示出的实施例中,定位凸起13的数量和位置也可以与定子齿部12不一一对应,只需要满足定位凸起13间隔开设于定子轭部11的外周面以实现对定子铁芯10定位的要求即可。
进一步地,如图5所示,转子铁芯20可以设在定子孔102内,并且转子铁芯20可以与定子孔102同轴。转子铁芯20在定子孔102内可以绕轴线转动,并且转子铁芯20的与定子孔102的内周面之间可以间隔开预定距离,以使转子铁芯20转动更加顺畅。
由此,驱动电机100的绕组14流通电流后,会使多个定子齿部12形成多对磁极,定子孔102内产生磁场,位于定子孔102内的转子铁芯20在磁场的作用下可以绕轴线转动,以实现电能的转换和输出。
在相关技术中,驱动电机的转子直径与定子直径比值没有固定值,通常多为0.60-0.75,在此范围内,驱动电机虽然可以输出较大的扭矩,但是驱动电机的高速性能较差,并且驱动电机的齿槽转矩增大,驱动电机容易产生振动和较大的噪音。如果通过在驱动控制电路的算法中增加弱磁效果来解决上述问题,则会降低驱动电机的能效。
而在本申请中,定子轭部11的最大径向尺寸D与转子铁芯20的最大径向尺寸d满足0.4≤d/D≤0.55。例如,在本申请的一些具体实施例中,定子轭部11的最大径向尺寸D与转子铁芯20的最大径向尺寸d的比值d/D可以分别为0.45、0.48、0.51和0.54等。
对于等外形的定子铁芯10,即定子轭部11的最大径向尺寸D一定时,当d/D过小(如,小于0.4)时,转子铁芯20的最大径向尺寸d过小,如果驱动电机100低速运行,例如,驱动电机100的转速<5000rpm,转子铁芯20的负载能力过小,带动同等负载的工况下,最大径向尺寸d过小的转子铁芯20会严重发热,影响驱动电机100的正常运行,降低驱动电机100效率,甚至可能发生损坏。当d/D过大(如,大于0.55)时,会导致驱动电机100的齿槽转矩变大,转子铁芯20的转动惯量变大,如果驱动电机100高速运行,例如,驱动电机100的转速>10000rpm时,驱动电机100会产生振动,进而产生较大的噪音,影响驱动电机100性能和用户的使用感受。
因此,在本申请的一些实施例中,定子轭部11的最大径向尺寸D与转子铁芯20的最大径向尺寸d可以满足0.4≤d/D≤0.55,可以提高驱动电机100的转子铁芯20的输出力,驱动电机100效率更高,防止转子铁芯20发热,更加安全,并且可以将转子铁芯20的最大径向尺寸d做小,以消除高速转动时转子铁芯20产生的惯量,防止驱动电机100产生较大的振动噪音。
另外,需要说明的是,在本申请的一些实施例中,定子铁芯10和转子铁芯20的外轮廓为圆形,则最大径向尺寸指定子铁芯10和转子铁芯20的圆形外轮廓的直径。而在本申请的另一些实施例中,定子铁芯10和转子铁芯20的外轮廓不是圆形,则最大径向尺寸可以理解为定子铁芯10和转子铁芯20的外轮廓的过轴线的径向尺寸最大的位置的尺寸。
根据本申请实施例的用于食品料理机200的驱动电机100的定子轭部11的最大径向尺寸D与转子铁芯20的最大径向尺寸d满足0.4≤d/D≤0.55,有效解决了驱动电机100的低速输出力小和高速振动噪音大的问题,提高了驱动电机100的效率和安全性能。为进一步提高驱动电机100的低速输出力和降低驱动电机100的高速噪音,根据本申请进一步的实施例,定子轭部11的最大径向尺寸D与转子铁芯20的最大径向尺寸d可以进一步满足:0.5≤d/D≤0.55。
根据本申请的一些实施例,如图5-图7所示,转子铁芯20内可以设有多个磁体槽23,多个磁体槽23可以沿转子铁芯20的周向间隔开设置,并且磁体槽23的两端可以分别延伸至转子铁芯20的轴向两端,多个永磁体25可以一一对应地插设在多个磁体槽23内。
由此,永磁体25在磁体槽23内可以延伸至转子铁芯20的轴向两端,永磁体25的位置固定牢固可靠,可以有效防止永磁体25松脱。并且多个永磁体25可以形成多对磁极,以产生磁场,进而产生感应电动势,实现电能的转换。采用永磁体25的转子铁芯20无需设置励磁线圈,既有利于减轻驱动电机100的重量,缩小驱动电机100的体积,而且在启动时无需启动励磁,启动更加快捷,更加节能。
需要说明的是,本申请对磁体槽23和永磁体25的数量不做特殊限制,只需要满足多个永磁体25一一对应地插设在多个磁体槽23内以实现永磁体25的固定并形成多个磁极的要求即可。例如,在如图6和图7所示的具体实施例中,磁体槽23和永磁体25分别为四个,四个永磁体25分别插设在四个磁体槽23内。再例如,在本申请的另一些实施例中,磁体槽23和永磁体25也可以分别为两个、六个、八个或者更多个,这都在本申请的保护范围之内。
此外,每个磁体槽23在转子铁芯20的周向上的至少一端可以设有定位槽24,永磁体25在插入磁体槽23的同时可以插入定位槽24,定位槽24可以进一步限定永磁体25的位置,使永磁体25位置固定更加准确牢固。
进一步地,如图6和图7所示,每个磁体槽23在转子铁芯20的周向上的两端的直线距离为b,转子铁芯20的中心距离转子铁芯20的外周面的最大径向距离为R,并且b和R满足b:R=0.95-1.0。当b:R<0.95时,磁体槽23内永磁体25的长度过短,降低转子铁芯20的利用率,从而降低了驱动电机100的能效;当b:R>1时,会增大转子铁芯20的漏磁,也会降低驱动电机100的能效。因此,在本申请的一些实施例中,b:R=0.95-1.0时,例如, 在本申请的一些具体实施例中,b:R可以分别为0.95、0.96、0.97、0.98、0.99和1.0等,有效保证了驱动电机100的能效。
根据本申请的一些实施例,如图6和图7所示,磁体槽23与转子铁芯20的外周面的最小距离为a1,定子槽24与转子铁芯20的外周面的最小距离为a2,永磁体25与转子铁芯20的外周面的最小距离可以理解为a1和a2中的较小的一个的值,即min(a1,a2)。min(a1,a2)过小时,会使转子铁芯20的机械强度降低,从而降低了转子铁芯20的可靠性;而min(a1,a2)过大时,会增加转子铁芯20的漏磁,进而降低了驱动电机100的能效。因此,在本申请的一些实施例中,min(a1,a2)=0.8mm-1.8mm,同时保证了转子铁芯20的机械强度和能效。例如,在本申请的一些具体实施例中,min(a1,a2)可以分别为0.8mm、1.0mm、1.2mm、1.4mm、1.6mm和1.8mm等。
另外,本申请对磁体槽23的形状不做特殊限制,只需要满足磁体槽23的长度方向的平分线经过转子铁芯20的中心的要求即可,使磁体槽23内永磁体25产生的磁场分布更加均匀。例如,在如图6所示的示例中,磁体槽23为长条形的直线槽,直线槽沿转子铁芯20的弦线方向延伸,直线槽的两端的距离b即为直线槽的延伸长度。在如图7所示的示例中,磁体槽23为长条形的弧形槽,弧形槽沿转子铁芯20的周向延伸,弧形槽的两端的距离b即为弧形槽的弦长。
在本申请的一些实施例中,如图6和图7所示,转子铁芯20的外周沿可以形成有多个极齿21,多个极齿21可以沿转子铁芯20的周向分布且向外凸出,相邻两个极齿21之间形成有齿槽22,并且,在具有多个磁体槽23的实施例中,磁体槽23与极齿21可以一一对应的设置。此时,转子铁芯20形成为凸极结构转子,与相关技术中的全圆状的转子相比,凸极结构转子可以防止转子极间的漏磁以及齿槽效应,从而提高了转子铁芯20的效率。
另外,需要说明的是,对于具有多个极齿21的转子铁芯20,转子铁芯20的最大外径尺寸d是指齿顶的连线过转子铁芯20的轴线的两个极齿21的齿顶的连线尺寸。
进一步地,继续参照图6和图7所示,极齿21的法向齿廓可以形成为圆弧形,转子铁芯20的轴截面的外周沿可以由多个圆弧形依次相连形成,相邻两个圆弧形的连接处形成有齿槽22。
此外,如图6和图7所示,以转子铁芯20的中心为圆心且与极齿21的齿顶相切的圆的半径为R(此时,R=0.5d),与齿槽22的槽底相切且以转子铁芯20的中心为圆心的圆的半径为r。若r:R<0.96,会导致极齿21的沿转子铁芯20的周向的延伸长度过短,降低电机100的性能;若r:R>0.98,会导致齿槽22过小,在驱动电机100运行时,不能有效降低齿槽相应而产生的噪音干扰。因此,在本申请的一些实施例中,r:R=0.96-0.98,例如,在本申请的一些具体实施例中,r:R可以分别为0.96、0.97和0.98等,有效降低了齿槽 效应,同时保证了驱动电机100的效率。
根据本申请实施例的用于食品料理机的驱动电机可以为变频电机,根据食品料理机所需要处理的食物种类的不同,变频电机可以提供不同的转速、扭矩以及时间等,使具有驱动电机的食品料理机智能化。此外,变频电机无需碳刷等结构进行换向,不存在碳刷磨损,运行噪音更低,有利于提高食品料理机的使用寿命和提高用户的使用感受,在本申请的一些实施例中,驱动电机可以为变频控制的直流无刷电机。
可选地,在本申请中,食品料理机可以为破壁机、原汁机、榨汁机或者豆浆机等。破壁机转速高,可以用于处理较硬的食物,并且能够将食物中存在于果皮、果核以及根茎处的大量植化素充分破壁释放;原汁机转速较低,通过推进式挤压、低柔性提取的方式处理食物;榨汁机转速较高,可以实现更多种类的食物的粉碎混合;豆浆机转速较高,可以实现预热、打浆、煮浆和延时熬煮过程全自动化等功能。根据本申请实施例的驱动电机可以应用于更多种类的食品料理机,满足更多使用需求,实用性更强。并且,根据本申请实施例的食品料理机的转速增大控制方法,在食品料理机处于空载或轻载状态下,在驱动电机允许的最大阈值范围内,能够使得驱动电机的转速得以快速提高。
另外,本申请的实施例还提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的食品料理机的转速增大控制方法。
根据本申请实施例的非临时性计算机可读存储介质,通过执行上述的食品料理机的转速增大控制方法,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
图8为根据本申请实施例的食品料理机的转速增大控制装置的方框图。
在本申请的实施例中,如图1所示,食品料理机200包括料理容器210、驱动电机100和用于对食物进行处理的食品处理件(图中未示出),料理容器210内形成有用于盛放食物的食物容纳腔,食品处理件伸入食物容纳腔内且在驱动电机100的带动下相对于料理容器210转动。
如图8所示,本申请实施例的食品料理机的转速增大控制装置包括:指令获取模块2321和控制模块2322,其中,指令获取模块2311用于在食品料理机200处于空载或轻载状态时获取转速指令。控制模块2322用于对转速指令进行解析以获取驱动电机100的目标转速,并根据目标转速生成PWM控制信号以对驱动电机100进行控制,以及在对驱动电机100进行控制的过程中,按照步进增量的方式逐步加大PWM控制信号的占空比,直至PWM控制信号的占空比达到1,并对驱动电机100进行弱磁控制,以快速提高驱动电机100的转速。
根据本申请的一个实施例,控制模块2322还用于在对驱动电机100进行弱磁控制的过 程中,通过加大霍尔提前角的方式以使驱动电机100的定子绕组产生相反方向磁场,以弱化驱动电机100的转子磁场。
根据本申请的一个实施例,霍尔提前角最大增加至50°。
根据本申请的一个实施例,驱动电机100为无刷直流电机。
需要说明的是,本申请实施例的食品料理机的转速增大控制装置中未披露的细节,请参照本申请实施例的食品料理机的转速增大控制方法中所披露的细节,具体这里不再赘述。
根据本申请实施例的食品料理机的转速增大控制装置,在食品料理机处于空载或轻载状态时,通过指令获取模块获取转速指令,并通过控制模块对转速指令进行解析以获取驱动电机的目标转速,并根据目标转速生成PWM控制信号以对驱动电机进行控制,以及在对驱动电机进行控制的过程中,按照步进增量的方式逐步加大PWM控制信号的占空比,直至PWM控制信号的占空比达到1,并对驱动电机进行弱磁控制,以快速提高驱动电机的转速。由此,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
另外,本申请的实施例还提出了一种食品料理机,其包括上述的食品料理机的转速增大控制装置。
根据本申请实施例的食品料理机,通过上述的食品料理机的转速增大控制装置,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
图9为根据本申请一个实施例的食品料理机的方框示意图。
如图9所示,本申请实施例的食品料理机200包括料理容器210、驱动电机100和用于对食物进行处理的食品处理件250,料理容器210内形成有用于盛放食物的食物容纳腔,食品处理件250伸入食物容纳腔内且在驱动电机100的带动下相对于料理容器210转动,食品料理机200还包括存储器260、处理器270及存储在存储器260上并可在处理器270上运行的食品料理机的转速增大控制程序,其中,转速增大控制程序被处理器270执行时实现上述的食品料理机的转速增大控制方法。
根据本申请实施例的食品料理机,通过上述的食品料理机的转速增大控制方法,能够在驱动电机允许的最大阈值范围内,使得驱动电机的转速达到很高。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐 含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (13)
- 一种食品料理机的转速增大控制方法,其特征在于,所述食品料理机包括料理容器、驱动电机和用于对食物进行处理的食品处理件,所述料理容器内形成有用于盛放食物的食物容纳腔,所述食品处理件伸入所述食物容纳腔内且在所述驱动电机的带动下相对于所述料理容器转动,所述转速增大控制方法包括以下步骤:当所述食品料理机处于空载或轻载状态时,获取转速指令;对所述转速指令进行解析以获取所述驱动电机的目标转速,并根据所述目标转速生成PWM控制信号以对所述驱动电机进行控制;在对所述驱动电机进行控制的过程中,按照步进增量的方式逐步加大所述PWM控制信号的占空比,直至所述PWM控制信号的占空比达到1,并对所述驱动电机进行弱磁控制,以快速提高所述驱动电机的转速。
- 如权利要求1所述的食品料理机的转速增大控制方法,其特征在于,在对所述驱动电机进行弱磁控制的过程中,通过加大霍尔提前角的方式以使所述驱动电机的定子绕组产生相反方向磁场,以弱化所述驱动电机的转子磁场。
- 如权利要求2所述的食品料理机的转速增大控制方法,其特征在于,所述霍尔提前角最大增加至50°。
- 如权利要求1-3中任一项所述的食品料理机的转速增大控制方法,其特征在于,所述驱动电机为无刷直流电机。
- 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-4中任一项所述的食品料理机的转速增大控制方法。
- 一种食品料理机的转速增大控制装置,其特征在于,所述食品料理机包括料理容器、驱动电机和用于对食物进行处理的食品处理件,所述料理容器内形成有用于盛放食物的食物容纳腔,所述食品处理件伸入所述食物容纳腔内且在所述驱动电机的带动下相对于所述料理容器转动,所述转速增大控制装置包括:指令获取模块,用于在所述食品料理机处于空载或轻载状态时获取转速指令;控制模块,用于对所述转速指令进行解析以获取所述驱动电机的目标转速,并根据所述目标转速生成PWM控制信号以对所述驱动电机进行控制,以及在对所述驱动电机进行控制的过程中,按照步进增量的方式逐步加大所述PWM控制信号的占空比,直至所述PWM控制信号的占空比达到1,并对所述驱动电机进行弱磁控制,以快速提高所述驱动电机的转速。
- 如权利要求6所述的食品料理机的转速增大控制装置,其特征在于,所述控制模块 还用于,在对所述驱动电机进行弱磁控制的过程中,通过加大霍尔提前角的方式以使所述驱动电机的定子绕组产生相反方向磁场,以弱化所述驱动电机的转子磁场。
- 如权利要求7所述的食品料理机的转速增大控制装置,其特征在于,所述霍尔提前角最大增加至50°。
- 如权利要求6-8中任一项所述的食品料理机的转速增大控制装置,其特征在于,所述驱动电机为无刷直流电机。
- 一种食品料理机,其特征在于,包括如权利要求6-9中任一项所述的食品料理机的转速增大控制装置。
- 一种食品料理机,其特征在于,所述食品料理机包括料理容器、驱动电机和用于对食物进行处理的食品处理件,所述料理容器内形成有用于盛放食物的食物容纳腔,所述食品处理件伸入所述食物容纳腔内且在所述驱动电机的带动下相对于所述料理容器转动,所述食品料理机还包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的食品料理机的转速增大控制程序,其中,所述转速增大控制程序被所述处理器执行时实现如权利要求1-4中任一项所述的食品料理机的转速增大控制方法。
- 如权利要求11所述的食品料理机,其特征在于,所述驱动电机包括:定子铁芯,所述定子铁芯包括环形的定子轭部和多个定子齿部,所述定子轭部的宽度为W,多个所述定子齿部设于所述定子轭部的内周面,相邻两个所述定子齿部之间形成有定子齿槽,多个所述定子齿部限定出与所述定子轭部同轴的定子孔,每个所述定子齿部包括与所述定子轭部相连的定子齿部主体和设在所述定子齿部主体的内端的定子齿靴,每个所述定子齿部主体的宽度为V,其中,W:V=0.6-0.7;转子铁芯,所述转子铁芯可转动地设在所述定子孔内且与所述定子孔同轴。
- 如权利要求11所述的食品料理机,其特征在于,所述驱动电机包括:定子铁芯,所述定子铁芯包括环形的定子轭部和设于所述定子轭部的内周面的多个定子齿部,相邻两个所述定子齿部之间形成有定子齿槽,多个所述定子齿部限定出与所述定子轭部同轴的定子孔,所述定子轭部的最大径向尺寸为D;转子铁芯,所述转子铁芯可转动地设在所述定子孔内且与所述定子孔同轴,所述转子铁芯的最大径向尺寸为d,其中,D和d满足:0.4≤d/D≤0.55。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18908959.2A EP3730014B1 (en) | 2018-03-07 | 2018-08-07 | Food processing machine |
JP2020540490A JP7073505B2 (ja) | 2018-03-07 | 2018-08-07 | 食品調理機及びその回転速度増大制御方法、装置 |
US16/966,901 US20210050807A1 (en) | 2018-03-07 | 2018-08-07 | Food processor and rotational speed increase control method and apparatus therefor |
KR1020207021068A KR102319867B1 (ko) | 2018-03-07 | 2018-08-07 | 식품 가공기 및 식품 가공기의 회전 속도를 증가하기 위한 제어 방법, 장치 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810186164.6 | 2018-03-07 | ||
CN201810186155.7 | 2018-03-07 | ||
CN201810186163.1 | 2018-03-07 | ||
CN201810186164.6A CN110236420B (zh) | 2018-03-07 | 2018-03-07 | 食品料理机及其转速增大控制方法、装置 |
CN201810187835.0A CN110247613B (zh) | 2018-03-07 | 2018-03-07 | 食品料理机及其防电机堵转控制方法、装置 |
CN201810187835.0 | 2018-03-07 | ||
CN201820316116.XU CN208435384U (zh) | 2018-03-07 | 2018-03-07 | 食品料理机及其控制系统 |
CN201810186155.7A CN110236418A (zh) | 2018-03-07 | 2018-03-07 | 食品料理机及其恒功率控制方法和控制装置 |
CN201810186163.1A CN110236419B (zh) | 2018-03-07 | 2018-03-07 | 食品料理机及其控制系统和掉电显示控制方法 |
CN201820316116.X | 2018-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019169831A1 true WO2019169831A1 (zh) | 2019-09-12 |
Family
ID=67845456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/099233 WO2019169831A1 (zh) | 2018-03-07 | 2018-08-07 | 食品料理机及其转速增大控制方法、装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210050807A1 (zh) |
EP (1) | EP3730014B1 (zh) |
JP (1) | JP7073505B2 (zh) |
KR (1) | KR102319867B1 (zh) |
WO (1) | WO2019169831A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112821847A (zh) * | 2020-12-31 | 2021-05-18 | 广东欧瑞电器有限公司 | 一种垃圾处理器电机控制方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240275317A1 (en) * | 2023-02-09 | 2024-08-15 | Haier Us Appliance Solutions, Inc. | Field weakening for bldc stand mixer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080230638A1 (en) * | 2007-03-22 | 2008-09-25 | Tsann Kuen Enterprise Co., Ltd. | Food processor |
CN102345621A (zh) * | 2011-08-08 | 2012-02-08 | 青岛海信日立空调系统有限公司 | 一种永磁同步风机超前角控制方法 |
CN105515456A (zh) * | 2015-12-09 | 2016-04-20 | 江苏上骐集团有限公司 | 一种直流无刷电机根据负载自动调整效率的方法及控制系统 |
CN205231983U (zh) * | 2015-12-09 | 2016-05-11 | 江苏上骐集团有限公司 | 一种能根据负载自动调整效率的直流无刷电机 |
CN107370435A (zh) * | 2017-08-30 | 2017-11-21 | 深圳市天祜智能有限公司 | 料理机恒转矩电流控制方法 |
CN107395079A (zh) * | 2017-08-30 | 2017-11-24 | 深圳市天祜智能有限公司 | 提高料理机瞬时功率的控制方法 |
CN107495866A (zh) * | 2017-05-26 | 2017-12-22 | 浙江绍兴苏泊尔生活电器有限公司 | 食物料理机及控制方法 |
CN107565869A (zh) * | 2017-08-30 | 2018-01-09 | 深圳市天祜智能有限公司 | 基于永磁无刷直流电机的家用料理机控制方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4260937A (en) * | 1977-05-16 | 1981-04-07 | Outboard Marine Corporation | Speed sensitive field weakening control for traction motors |
US5045742A (en) * | 1990-02-23 | 1991-09-03 | General Electric Company | Electric motor with optimum core dimensions |
JP2599061B2 (ja) * | 1991-12-13 | 1997-04-09 | オリエンタルモーター株式会社 | ステッピングモータ |
US6116230A (en) * | 1992-03-23 | 2000-09-12 | Convenience Technologies, Inc. | Microprocessor-controlled gas appliance utilizing a single electrode spark ignition system and a pulse width modulated proportional valve |
US6054831A (en) * | 1998-03-24 | 2000-04-25 | Zebco Corporation | Radio frequency remote control for trolling motors |
JP3781653B2 (ja) * | 2001-03-12 | 2006-05-31 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
TWI594828B (zh) * | 2009-05-28 | 2017-08-11 | 伊雷克托科學工業股份有限公司 | 應用於雷射處理工件中的特徵的聲光偏轉器及相關雷射處理方法 |
US8342480B2 (en) * | 2009-12-21 | 2013-01-01 | Whirlpool Corporation | Substance communicating device with mechanically energized connector |
US20120230149A1 (en) * | 2010-02-15 | 2012-09-13 | Peter Martin | Methods, systems and apparatus for promoting the pourability of semi-frozen and semi-fluidic beverages from beverage containers |
JP2011194914A (ja) * | 2010-03-17 | 2011-10-06 | Honda Motor Co Ltd | 電動パワーステアリング装置およびこれに用いられる電動機駆動制御装置 |
CN102377257B (zh) * | 2010-08-10 | 2016-03-30 | 德昌电机(深圳)有限公司 | 无刷电机 |
EP3048720B1 (en) * | 2010-11-02 | 2021-11-24 | Whirlpool Corporation | Mixer with direct drive dc motor |
JP5977933B2 (ja) * | 2011-09-15 | 2016-08-24 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | Pwm信号出力回路 |
DE102012213874A1 (de) * | 2012-03-07 | 2013-09-12 | Continental Teves Ag & Co. Ohg | Verfahren und Schaltungsanordnung zur Begrenzung von Spitzenströmen sowie Steigung der Stromflanken |
JP6100759B2 (ja) * | 2012-04-16 | 2017-03-22 | 株式会社ミツバ | ワイパ装置 |
JP6302638B2 (ja) * | 2013-02-26 | 2018-03-28 | 株式会社ミツバ | ワイパ装置 |
US9448462B2 (en) * | 2013-06-11 | 2016-09-20 | Raytheon Company | Pulse width modulation control of solenoid motor |
CN106488729B (zh) * | 2014-06-27 | 2019-12-13 | 皇家飞利浦有限公司 | 具有功率控制的家用器具 |
US20160262422A1 (en) * | 2015-03-13 | 2016-09-15 | Steak 'n Shake Enterprises, Inc. | Product-characterization-based food product mixing |
KR101686352B1 (ko) * | 2015-11-13 | 2016-12-13 | 서강대학교산학협력단 | 진상각 제어기 설계방법 |
US20170252995A1 (en) * | 2016-03-03 | 2017-09-07 | Juicero, Inc. | Juicer cartridge with outlet separator |
WO2018020631A1 (ja) * | 2016-07-28 | 2018-02-01 | 三菱電機株式会社 | 電動機、送風機、及び空気調和機 |
JP6695247B2 (ja) * | 2016-09-23 | 2020-05-20 | 株式会社ミツバ | モータ制御装置及びモータ制御装置の制御方法 |
CN108011565B (zh) * | 2016-11-02 | 2022-02-01 | 德昌电机(深圳)有限公司 | 电机应用设备及其控制方法 |
TWI673477B (zh) * | 2018-06-26 | 2019-10-01 | 晶翔機電股份有限公司 | 表面斜度鑑別裝置及其鑑別方法 |
-
2018
- 2018-08-07 EP EP18908959.2A patent/EP3730014B1/en active Active
- 2018-08-07 WO PCT/CN2018/099233 patent/WO2019169831A1/zh unknown
- 2018-08-07 KR KR1020207021068A patent/KR102319867B1/ko active IP Right Grant
- 2018-08-07 US US16/966,901 patent/US20210050807A1/en not_active Abandoned
- 2018-08-07 JP JP2020540490A patent/JP7073505B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080230638A1 (en) * | 2007-03-22 | 2008-09-25 | Tsann Kuen Enterprise Co., Ltd. | Food processor |
CN102345621A (zh) * | 2011-08-08 | 2012-02-08 | 青岛海信日立空调系统有限公司 | 一种永磁同步风机超前角控制方法 |
CN105515456A (zh) * | 2015-12-09 | 2016-04-20 | 江苏上骐集团有限公司 | 一种直流无刷电机根据负载自动调整效率的方法及控制系统 |
CN205231983U (zh) * | 2015-12-09 | 2016-05-11 | 江苏上骐集团有限公司 | 一种能根据负载自动调整效率的直流无刷电机 |
CN107495866A (zh) * | 2017-05-26 | 2017-12-22 | 浙江绍兴苏泊尔生活电器有限公司 | 食物料理机及控制方法 |
CN107370435A (zh) * | 2017-08-30 | 2017-11-21 | 深圳市天祜智能有限公司 | 料理机恒转矩电流控制方法 |
CN107395079A (zh) * | 2017-08-30 | 2017-11-24 | 深圳市天祜智能有限公司 | 提高料理机瞬时功率的控制方法 |
CN107565869A (zh) * | 2017-08-30 | 2018-01-09 | 深圳市天祜智能有限公司 | 基于永磁无刷直流电机的家用料理机控制方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3730014A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112821847A (zh) * | 2020-12-31 | 2021-05-18 | 广东欧瑞电器有限公司 | 一种垃圾处理器电机控制方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021510596A (ja) | 2021-04-30 |
KR20200110747A (ko) | 2020-09-25 |
JP7073505B2 (ja) | 2022-05-23 |
KR102319867B1 (ko) | 2021-10-29 |
EP3730014A1 (en) | 2020-10-28 |
EP3730014B1 (en) | 2024-05-01 |
US20210050807A1 (en) | 2021-02-18 |
EP3730014A4 (en) | 2021-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019169828A1 (zh) | 食品料理机和用于食品料理机的电机 | |
KR101101033B1 (ko) | 4 폴/36 슬롯 모터를 가진 수평축 세탁기 | |
CN110247484A (zh) | 食品料理机和用于食品料理机的定子铁芯、电机 | |
WO2019169831A1 (zh) | 食品料理机及其转速增大控制方法、装置 | |
CN110247613A (zh) | 食品料理机及其防电机堵转控制方法、装置 | |
CN110247370B (zh) | 食品料理机及其功率器件的过热保护控制方法和装置 | |
CN207939278U (zh) | 食品料理机和用于食品料理机的电机 | |
CN110618727B (zh) | 食品料理机及其控制方法和控制装置 | |
CN220359004U (zh) | 超薄无刷电机 | |
CN110236418A (zh) | 食品料理机及其恒功率控制方法和控制装置 | |
CN207939273U (zh) | 食品料理机和用于食品料理机的定子铁芯、电机 | |
JP2010130832A (ja) | 整流子電動機及び送風機及び電気掃除機 | |
CN208573514U (zh) | 食品料理机和用于食品料理机的电机转子、电机 | |
CN110236420B (zh) | 食品料理机及其转速增大控制方法、装置 | |
CN210608756U (zh) | 一种永磁同步电机 | |
CN110247531A (zh) | 食品料理机和用于食品料理机的电机 | |
CN110247587B (zh) | 食品料理机及其转速控制方法、装置 | |
CN207939431U (zh) | 食物料理机及其带电提示电路 | |
CN207939420U (zh) | 食物料理机及其供电电路 | |
CN208573517U (zh) | 食物料理机及其供电电路 | |
CN110236419B (zh) | 食品料理机及其控制系统和掉电显示控制方法 | |
CN208435384U (zh) | 食品料理机及其控制系统 | |
CN208445479U (zh) | 食物料理机及其供电电路 | |
CN207939400U (zh) | 食物料理机及其供电电路 | |
CN207939399U (zh) | 食物料理机及其供电电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18908959 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020540490 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018908959 Country of ref document: EP Effective date: 20200721 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |