WO2019168043A1 - ドローン、操作機、ドローンの制御方法、操作機の制御方法、および、ドローン制御プログラム - Google Patents

ドローン、操作機、ドローンの制御方法、操作機の制御方法、および、ドローン制御プログラム Download PDF

Info

Publication number
WO2019168043A1
WO2019168043A1 PCT/JP2019/007618 JP2019007618W WO2019168043A1 WO 2019168043 A1 WO2019168043 A1 WO 2019168043A1 JP 2019007618 W JP2019007618 W JP 2019007618W WO 2019168043 A1 WO2019168043 A1 WO 2019168043A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
emergency
command
operating device
emergency operation
Prior art date
Application number
PCT/JP2019/007618
Other languages
English (en)
French (fr)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to CN201980007148.9A priority Critical patent/CN111566006B/zh
Priority to JP2020503578A priority patent/JP6757026B2/ja
Publication of WO2019168043A1 publication Critical patent/WO2019168043A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/22Initiating means actuated automatically, e.g. responsive to gust detectors readily revertible to personal control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present invention relates to a flying object (drone), in particular, a drone with improved safety, a control method and control program therefor, an operating device used with the drone, and a control method for the operating device.
  • a flying object drone
  • a control method and control program therefor
  • an operating device used with the drone and a control method for the operating device.
  • the drone can know the absolute position of its own aircraft in centimeters while flying. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
  • An agricultural drone (unmanned aerial vehicle) that can maintain high safety even during autonomous flight.
  • a drone includes a receiving unit capable of receiving an emergency operation command, a flight operation based on the emergency operation command transmitted from the controller and received by the receiving unit.
  • a drone including a flight control unit that controls the emergency operation command, the emergency stop command to drop the drone, the emergency landing command to land the drone, and the emergency aerial stop command to hover the drone And an emergency return command for returning the drone to a predetermined point, and one or more commands.
  • the emergency stop command may be executed when the emergency operation command is input a predetermined number of times within a predetermined time.
  • the emergency stop command may be executed when the emergency operation command is continuously input for a predetermined time or more.
  • the medicine control unit may further control whether or not the medicine is discharged from the drone to the outside, and the medicine control unit may stop the medicine discharge based on the emergency operation command received by the receiving unit. .
  • the operating device has a mounting detection unit that determines whether or not the operating device is mounted on a user, and the flight control unit is mounted on the user by the mounting detection unit. If this is not detected, the drone may not be allowed to fly.
  • the operating device has a mounting detection unit that determines whether or not the user is mounted on the user, and when the operating device is not determined to be mounted on the user by the mounting detection unit during the flight of the drone
  • the flight control unit may cause the drone to take a retreat action.
  • the controller further includes an operating device abnormality detection unit that detects that the emergency operation command cannot be transmitted, and the operating device abnormality detection unit is in a state where the operating device cannot transmit the emergency operation command.
  • the flight control unit may not fly the drone.
  • the controller further includes a controller abnormality detector that detects that the controller cannot transmit the emergency operation command, and the controller transmits the emergency operation command by the controller abnormality detector during the flight of the drone.
  • the flight control unit may cause the drone to take a retreat action.
  • an operating device includes a transmission unit that transmits an emergency operation command to the drone, and the emergency operation command includes an emergency stop command for dropping the drone, and landing the drone.
  • the emergency operation command includes an emergency stop command for dropping the drone, and landing the drone.
  • an emergency landing command, an emergency aerial stop command for hovering the drone, and an emergency return command for returning the drone to a predetermined point are included.
  • the continuous hit detection unit further measures a time interval at which the emergency operation command is input, and resets the count of the number of times the emergency operation command is input when there is no second time input shorter than the first time. It is good also as what to do.
  • an emergency stop command may be transmitted to the receiving unit.
  • It may have a plurality of input means for transmitting different emergency operation commands.
  • the second emergency operation command may be transmitted after the first emergency operation command is transmitted.
  • the first emergency operation command is an emergency aerial stop command
  • the second emergency operation command includes any one of a plurality of types of emergency operation commands, and after transmitting the first emergency operation command, the plurality of types
  • the emergency operation command may be selectively transmitted.
  • the operating device may be a wearable terminal that a user wears on the body.
  • the apparatus further includes an attachment detection unit that determines whether or not the user is attached to the flight control unit, and the flight control unit flies the drone when the attachment detection unit does not determine that the operating device is attached to the user. It is good not to let it.
  • a wearing detection unit for determining whether the user is worn or not is further provided, and when the operation device is not determined to be worn by the user during the flight of the drone, it is retracted to the drone. It may be something that takes action.
  • the controller further includes an operating device abnormality detection unit that detects that the emergency operation command cannot be transmitted, and the operating device abnormality detection unit is in a state where the operating device cannot transmit the emergency operation command. If detected, the drone may not be allowed to fly.
  • the controller further includes a controller abnormality detector that detects that the controller cannot transmit the emergency operation command, and the controller transmits the emergency operation command by the controller abnormality detector during the flight of the drone.
  • the drone may be allowed to take a retreat action.
  • a drone control method includes a receiving unit capable of receiving an emergency operation command and a flight operation based on the emergency operation command transmitted from the operating device and received by the receiving unit.
  • a drone control method wherein the emergency operation command includes an emergency stop command to drop the drone, an emergency landing command to land the drone, and an emergency aerial stop to hover the drone
  • the receiver unit receives an emergency operation command, including at least one of the command and an emergency return command for returning the drone to a predetermined point.
  • a step of dropping the drone based on an emergency stop command received by the receiver, and an emergency landing finger received by the receiver Landing the drone on the basis of an emergency aerial stop command received by the receiving unit, hovering the drone based on an emergency aerial stop command received by the receiving unit, and a predetermined point on the drone based on the emergency return command received by the receiving unit
  • a step of executing the emergency stop command may be further provided when the emergency operation command is input a predetermined number of times or more within a predetermined time.
  • a step of executing an emergency stop command when the emergency operation command is continuously input for a predetermined time or more may be further provided.
  • a drone control method further comprising a drug control unit that controls whether or not a drug is discharged from the drone to the outside, the step of stopping the discharge of the drug based on the emergency operation command received by the receiving unit. Further, it may be provided.
  • An operating device control method is a control method for an operating device used with a drone, and includes a step of transmitting an emergency operation command to the drone, wherein the emergency operation command includes: One of an emergency stop command for dropping the drone, an emergency landing command for landing the drone, an emergency aerial stop command for hovering the drone, and an emergency return command for returning the drone to a predetermined point
  • the emergency operation command includes: One of an emergency stop command for dropping the drone, an emergency landing command for landing the drone, an emergency aerial stop command for hovering the drone, and an emergency return command for returning the drone to a predetermined point
  • a step of transmitting an emergency stop command may be further included.
  • a drone control program includes a reception command for receiving an emergency operation command, a flight control command for controlling a flight operation based on the emergency operation command transmitted by an operating device, A drone control program for causing a computer to execute the emergency operation command, the emergency stop command to drop the drone, the emergency landing command to land the drone, the emergency aerial stop command to hover the drone, and the It includes any one or more of an emergency return command for returning the drone to a predetermined point.
  • the computer may execute a command for executing the emergency stop command.
  • the computer may execute a command for executing the emergency operation command.
  • the computer may execute a command for prohibiting the drone from flying.
  • the computer executes a mounting detection command for determining whether or not the operating device used with the drone is mounted on the user, and the operating device is transmitted to the user by the mounting detection command during the flight of the drone. If it is not determined that the device is attached, the computer may be caused to execute an instruction that causes the drone to take a retreat action.
  • An operating device abnormality detection command for detecting that the operating device used together with the drone cannot transmit the emergency operation command is executed by a computer, and the operating device outputs the emergency operation command according to the operating device abnormality detection command.
  • the computer may execute a command for prohibiting the drone from flying.
  • An operating device abnormality detection command for detecting that an operating device used together with the drone is in a state where the emergency operation command cannot be transmitted is executed by a computer, and the operating device is detected by the operating device abnormality detecting step during the flight of the drone.
  • the computer may execute a command for causing the drone to take an evacuation action.
  • the computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
  • An agricultural drone (unmanned aerial vehicle) that can maintain high safety even during autonomous flight.
  • Example of the drone It is a top view of the Example of the drone concerning this invention. It is a front view of the Example of the drone concerning this invention. It is a right view of the Example of the drone which concerns on this invention. It is an example of the whole conceptual diagram of the medicine distribution system using the example of the drone concerning the present invention. It is the schematic diagram showing the control function of the Example of the drone which concerns on this invention. It is a functional block diagram regarding emergency operation of the operating device which the above-mentioned drone and the above-mentioned drone have. It is a schematic diagram which shows the command input part which the said operating device has. It is a flowchart in which the continuous hit detection part which the said drone has determines whether the said operation machine was continuously hit.
  • FIG. 1 is a plan view of an embodiment of the drone 100 according to the present invention
  • FIG. 2 is a front view thereof (viewed from the traveling direction side)
  • FIG. 3 is a right side view thereof.
  • drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type).
  • power means electric power, prime mover, etc.
  • control method whether wireless or wired, autonomous flight type or manual control type.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are means for flying the drone 100 Considering the balance between flight stability, airframe size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b
  • Rotating means typically an electric motor, but it may be a motor
  • the upper and lower rotors in one set for example, 101-1a and 101-1b, and their corresponding motors (for example, 102-1a and 102-1b) are pivoted for drone flight stability etc.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object It is desirable to have a loose structure, in order to prevent the member from buckling to the outside of the rotor blade at the time of collision and to prevent interference with the rotor.
  • medical agent generally refers to the liquid or powder disperse
  • the medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention.
  • the controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program.
  • the drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (emergency operation device 10 shown in FIG. 6) having an emergency stop function may be used (the emergency operation device has a large size so that a quick response can be taken in an emergency).
  • Dedicated equipment with emergency stop button etc. is desirable). It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100.
  • the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different.
  • the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
  • the base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi
  • the communication master unit and the RTK-GPS base station may be independent devices).
  • the farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographic information and the like of the stored farm 403.
  • the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
  • the flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below.
  • 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100.
  • the actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable.
  • the battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device.
  • the base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration), and is preferably a 6-axis sensor.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves.
  • sensors may be selected according to drone cost targets and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind force, and the like may be added. In addition, these sensors are preferably duplexed or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor. Alternatively, a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
  • the flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less.
  • the multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open.
  • the medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal.
  • the Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective.
  • the warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state).
  • the user 402 may supervise the operation of the drone.
  • the user 402 confirms that an abnormality has occurred in the drone by visual observation or monitoring, it is desirable to send an emergency operation command by an arbitrary operation by the user 402 to safely evacuate the drone.
  • the drone 100 includes a receiving unit 22 that can receive an emergency operation command, and a flight control unit 23 that controls the flight of the drone 100 based on the emergency operation command received by the receiving unit 22. And a medicine control unit 30 that controls the amount of medicine to be discharged from the drone 100.
  • the flight control unit 23 and the medicine control unit 30 are realized by the flight controller 501 in FIG.
  • the drone 100 is connected to the emergency controller 10 by wire or wirelessly, and can be arbitrarily operated by the user 402 while the drone 100 is flying autonomously.
  • the emergency operating device 10 transmits an emergency operation command to the drone 100.
  • the emergency controller 10 may be configured to have only a function of transmitting an emergency stop command. Moreover, you may have the function to transmit all the instructions of the drone 100 which flies for monitoring and dispersion
  • a display unit that receives information from the drone 100 and displays the information to the user 402 may be provided.
  • the emergency operating machine 10 includes a command input unit 11, a transmission unit 12, and an emergency operation detection unit 13.
  • the command input unit 11 is configured to allow the user 402 to input an emergency operation command, and is, for example, a soft switch displayed on a screen of the emergency operating device 10.
  • the command input unit 11 may be a mechanical switch such as a push button.
  • the command input unit 11 can input a plurality of types of emergency operation commands.
  • the emergency operation command includes one or more commands among an emergency stop command, an emergency landing command, an emergency feedback command, an emergency aerial stop command, and a normal feedback command.
  • the command input unit 11 can input all the five types of emergency operation commands described above.
  • the command input unit 11 is a plurality of switches 111 to 115 corresponding to the number of types of emergency operation commands.
  • the emergency operation command input to the plurality of switches 111 to 115 is transmitted by the transmission unit 12 to the reception unit 22. Transmission / reception is performed in an arbitrary format such as Bluetooth (registered trademark), infrared communication, or Wi-Fi. *
  • Switch 111 is a switch that transmits an emergency stop command.
  • the flight control unit 23 sends the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104- Perform an “emergency stop” that stops all operations of b. Then, the drone 100 freely falls downward due to gravity.
  • the switch 112 is a switch that transmits an emergency landing command.
  • the flight control unit 23 executes “normal landing” at the point where the emergency landing command is received.
  • the switch 113 is a switch that transmits an emergency feedback command.
  • the flight control unit 23 performs "emergency return" in which the flight control unit 23 immediately moves to a predetermined return point through the shortest route.
  • the predetermined return point is a point that is previously stored in the flight control unit 23, for example, a landing point 406 that has taken off.
  • the predetermined return point is, for example, a land point other than the field 403 where the user 402 can approach the drone 100.
  • the user 402 can check the drone 100 that has reached the return point, or manually Or carry it to the place.
  • the switch 114 is a switch that transmits an emergency aerial stop command.
  • the flight control unit 23 performs “hovering” at the point where the emergency aerial stop command is received.
  • the switch 115 is a switch that transmits a normal feedback command.
  • the drone 100 moves to a predetermined return point on the optimized route.
  • the optimized route is, for example, a route that is calculated with reference to a route in which medicine is dispersed before receiving a normal feedback command.
  • the flight control unit 23 moves to a predetermined return point while spraying the drug via a route where the drug is not yet sprayed.
  • the emergency action of drone 100 may be multiple actions such as landing and hovering, but which action is appropriate depends on the abnormal situation. Therefore, according to the emergency operating device 10 that can transmit different emergency operation commands from the plurality of switches 111 to 115, the user 402 can selectively transmit a plurality of types of emergency operation commands.
  • the command input unit 11 can recognize and recognize operations performed on the screen such as tap, swipe, flick, continuous hit, and long press, and each operation may be associated with the switches 111 to 115. At least repeated hits and long presses among the actions are determined by the emergency operation detection unit 13 included in the emergency controller 10.
  • the emergency operation detection unit 13 is a functional unit that detects that a specific operation different from the normal input operation has been performed on the emergency operating device 10.
  • the emergency operation detection unit 13 includes a continuous hit detection unit 131 and a long press detection unit 132.
  • the continuous hit detection unit 131 is a functional unit that detects whether or not the switches 111 to 115 are operated by the user 402 a plurality of times within a predetermined time, that is, whether or not the hits are repeated.
  • the continuous hit detection unit 131 appropriately includes a timer and a counting unit for counting the number of times of operation within a predetermined first time.
  • the continuous hit detection unit 131 converts a plurality of input inputs into a single emergency stop command when detecting a continuous hit. That is, the flight control unit 23 stops all the operations of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b, and the drone 100 Free fall. According to this configuration, the drone 100 can be safely evacuated even when the user 402 operates the emergency controller 10 in an emergency.
  • the continuous hit detection unit 131 may further measure the time interval at which the switches 111 to 115 are pressed, and may reset the count if there is no press for a predetermined second time shorter than the first time.
  • the continuous hit detection unit 131 detects that the switches 111 to 115 are pressed once and an emergency command is input (step S31).
  • the continuous hit detection unit 131 records the number of inputs from “0” to “1” (step S32), and starts timers for measuring the first time and the second time (steps S33 to S34).
  • the continuous hit detection unit 131 determines whether or not the first time has elapsed (step S35). When the first time has passed without the next emergency command being input, the timer for measuring the first time and the second time is reset, and the process proceeds to step S4 in FIG. 9 to be described later, corresponding to the pressed switch. An emergency command is sent. Further, it is determined whether or not the second time has elapsed (step S36), and it is determined whether or not the next input is performed before the second time has elapsed (step S37). Even when the second time has elapsed without the next emergency command being input, the timer for measuring the first time and the second time is reset and the process proceeds to step S4 in FIG. 9 to be described later, and a normal emergency command is transmitted. Is done. For example, when an input less than a predetermined number of times detected as consecutive hits is continuously performed, an emergency command corresponding to the last pressed switch 111 to 115 may be transmitted.
  • the continuous hit detection unit 131 continues the measurement of the timer for the first time and adds 1 to the number of inputs (step S38). Further, the continuous hit detection unit 131 determines whether or not the number of inputs has reached a predetermined number (step S39). When the number of inputs reaches the predetermined number, the continuous hit detection unit 131 determines that the continuous hit has been performed, and proceeds to step S3 in FIG. If the number of times of input has not reached the predetermined number, the timer for the second time is reset, the process returns to step S34, and a timer for the second time is newly started.
  • the continuous hit detection unit 131 can more accurately detect the user 402's sudden operation.
  • the long press detection unit 132 is a functional unit that detects whether or not the switches 111 to 115 are continuously pressed for a predetermined time or longer, that is, whether or not the switches 111 to 115 are pressed for a long time.
  • the long press detection unit 132 detects that the switches 111 to 115 have been pressed for a predetermined time or longer, the long press detection unit 132 converts the input into one emergency stop command. According to this configuration, the drone 100 can be safely evacuated even when the user 402 rushes and presses the emergency controller 10 in an emergency.
  • the drug control unit 30 is a control unit that controls the amount or timing of spraying the drug solution from the drug tank 104.
  • an opening / closing means for opening and closing the drug solution path is provided somewhere in the path from the drug tank 104 to each drug nozzle 103-1, 103-2, 103-3, 103-4.
  • Various emergency operations may be executed after the release of the chemical solution is blocked by the opening / closing means.
  • the medicine control unit 30 may stop the pump 106 before executing the emergency operation.
  • step S1 When the user 402 operates any one of the switches 111 to 115 of the command input unit 11, the command input unit 11 of the emergency controller 10 acquires an emergency operation command (step S1).
  • the long press detection unit 132 determines whether or not the switches 111 to 115 have been pressed for a predetermined time or longer (step S21).
  • the transmission unit 12 transmits one emergency stop command to the reception unit 22 (step S3).
  • the continuous hit detection unit 131 determines whether or not the switches 111 to 115 have been pressed continuously for a predetermined number of times within a predetermined time (step S22). When it is determined that the switches 111 to 115 have been continuously pressed for a predetermined number of times within a predetermined time, the transmission unit 12 transmits one emergency stop command to the reception unit 22 (step S3).
  • the receiving unit 22 receives an emergency stop command from the transmitting unit 12 (step S5).
  • the medicine control unit 30 closes the opening / closing means appropriately provided in the medicine discharge path, stops the pump 106, and stops the medicine discharge (step S7).
  • the flight control unit 23 performs an emergency stop operation. That is, the flight control unit 23 stops all the operations of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b, and the drone 100 Is freely dropped (step S81).
  • the transmission unit 12 transmits one emergency operation command corresponding to the pressed switches 111 to 115 to the reception unit 22 ( Step S4).
  • the receiving unit 22 receives an emergency operation command from the transmitting unit 12 (step S5).
  • the flight control unit 23 performs an emergency operation according to the type of the emergency operation command (step S6).
  • the medicine control unit 30 closes the opening / closing means provided in the medicine discharge path as appropriate, stops the pump 106, and stops the medicine discharge (step S7). ).
  • the medicine control unit 30 moves to a predetermined return point while spraying a predetermined medicine according to the route through which it passes (step S85).
  • the flight control unit 23 causes the drone 100 to perform an emergency operation based on the emergency operation command received by the reception unit 22 (steps S81 to S84). That is, when an emergency stop command is received, an “emergency stop” is performed (step S81), and when an emergency landing command is received, a “landing” operation is performed (step S82). When an emergency return command is received, “emergency return” is performed (step S83), and when an emergency aerial stop command is received, “hovering” is performed (step S84).
  • the drone 100 may include a continuous reception detection unit that detects whether the reception unit 22 has received an emergency operation command more than a predetermined number of times. .
  • the continuous reception detecting unit converts the emergency operation commands into a single emergency stop command and transmits it to the flight control unit 23. To do.
  • the drone 100 may be configured not to fly.
  • the drone 100 When the drone 100 is landing, the drone 100 is not allowed to take off.
  • the drone 100 When the drone 100 is in flight, the drone 100 may be evacuated.
  • the evacuation action may be any action such as normal landing, hovering, normal return, and emergency return, or a combination of these actions.
  • the user 402 may be notified of this by appropriate display means provided in the controller 401 or the drone 100 itself.
  • the failure of the emergency operating machine 10 or the detection of battery exhaustion may be detected by having an operating machine abnormality detection unit in the emergency operating machine 10.
  • the farming cloud 405 may be notified of this.
  • the farming cloud 405 side may have a function of detecting a failure of the emergency operating device 10 or a battery exhaustion.
  • an operating device abnormality detection unit that detects a failure of the emergency operating device 10 or a battery exhaustion may be mounted on the drone 100.
  • FIG. 10 shows an example of a main screen 800 displayed by the emergency controller 10.
  • the emergency operating device 10 has a function of displaying the operation status of the drone 100 and instructing the operation of the drone 100 in addition to transmitting an emergency operation command.
  • peripheral device status display area 801 On the main screen 800, there are a peripheral device status display area 801, a flight status display area 802, an aircraft status display area 803, an altitude adjustment input means 804, a map display area 805, a route information display area 806, and an emergency operation area 807. Is provided.
  • the peripheral device status display area 801 displays the battery remaining amount, pump status, drug remaining amount, communication status, GPS reception status, etc. of the drone 100. It is preferable to simplify the information as much as possible, and to ensure that the operator is informed of a highly important situation by changing the color when there is an error.
  • Flight status display area 802 displays the flight time, GPS coordinates, flight speed, altitude, etc. of drone 100.
  • the aircraft status display area 803 displays the current status of the drone 100, for example, during flight preparation, during drug replenishment, during takeoff, during flight, during emergency evacuation, and the like.
  • the altitude adjustment input means 804 is a user interface input means such as a button for increasing or decreasing the current altitude of the drone 100.
  • the drone 100 according to the present invention flies autonomously in principle, and the altitude is automatically adjusted by a computer program. For example, when the operator wants to finely adjust the altitude according to the height of the crop, etc. Can occur.
  • the map display area 805 is a map including a field to be sprayed with medicines, and may be an aerial photograph, a topographic map, or a superimposed display thereof. It is desirable that the scale and position can be adjusted by gesture operation or the like. In the map display area 805, the current position of the drone 100 is displayed in real time.
  • the route information display area 806 is a route that the drone should fly autonomously calculated in advance by the drone 100 or the farming cloud 405 in the pilot.
  • the route can be displayed by switching between a photography-only plan and a pesticide application plan.
  • a route that prioritizes required time it is possible to select and display a route that prioritizes required time, a route that prioritizes battery consumption, and a route that prioritizes minimizing drug spraying omission.
  • the medicine sprayed area may be displayed with a different color. Information on obstacles (electric wires, buildings, trees, etc.) in the field is also displayed along with the route.
  • the emergency operation area 807 is an area where an emergency operation command can be input, and is an example of a command input unit.
  • the emergency operation area 807 may occupy a large part on the main screen 800 (typically one third or more of the entire screen space) so that the user 402 can easily operate in an emergency.
  • the outer edge of the emergency operation area may be defined sufficiently inside the outer peripheral end of the emergency operation machine 10. According to this configuration, the emergency operation area 807 is not accidentally touched when the user 402 is holding the emergency operating device 10.
  • the emergency operation area 807 has a plurality of input means for transmitting different emergency operation commands.
  • the emergency operation area 807 can distinguish and recognize at least two of the actions performed on the screen, such as tap, swipe, flick, continuous hit, and long press, and can recognize them separately.
  • Different emergency operation commands are associated with the operations.
  • the emergency operation area 807 may be subdivided into a plurality of areas, and different emergency operation commands may be associated depending on the position where the operation is performed. In an input operation having a direction such as swipe or flick, another command may be associated with each input direction.
  • the user 402 can selectively transmit a plurality of types of emergency operation commands.
  • the swipe transmits an emergency aerial stop command for temporarily stopping, i.e., hovering.
  • the emergency operating device 10 transmits a first emergency operation command, and further transmits a second emergency operation command. Good.
  • the emergency operation area 807 may transition to a mode in which another input is received in the area after detecting a predetermined action. For example, when the emergency operation area 807 on the main screen 800 detects a swipe operation, the emergency operation area 807 transmits an emergency aerial stop command as the first emergency operation command and causes the drone 100 to hover. As shown in FIG. 11, the emergency operation area 807 is changed to a display for selecting the type of emergency operation after the drone 100 is hovered.
  • the user 402 By making a selection on the emergency operation area 807, the user 402 transmits an emergency stop command, an emergency landing command, an emergency aerial stop command, or an emergency feedback command as the second emergency operation command. It is difficult for the user 402 to instantly determine the appropriate emergency action type when an unexpected situation occurs in the drone 100. Therefore, according to this configuration, the user 402 can hover the drone 100 in an unforeseen situation, and can determine the type of emergency operation after considering calmly.
  • the emergency operating device of the third embodiment is different from the first embodiment in that it is an eyewear type wearable terminal or an earphone type wearable terminal.
  • the emergency operation device may be configured by combining one or a plurality of button-type, eyewear-type wearable terminals, and earphone-type wearable terminals.
  • symbol was attached
  • the emergency operating device 20 is an eyewear-type wearable terminal 4011 or an earphone-type wearable terminal 4012.
  • the eyewear-type wearable terminal 4011 is an eyewear, that is, a spectacle-like device, and can be worn by putting the vine on the ear of the user 402.
  • the earphone-type wearable terminal 4012 can be inserted by inserting the earphone part into the ear of the user 402, both of which are less burdensome at the time of wearing and can acquire information from the device in hands-free, so during farm work Suitable for use in.
  • the emergency controller 20 includes a command input unit 11, a transmission unit 12, and a mounting detection unit 14.
  • the command input unit 11 is a configuration for the user 402 to input an emergency operation command, and corresponds to the command input unit 11 of the first embodiment.
  • the command input unit 11 is, for example, a vibration sensor, and the vibration sensor hits an arbitrary part of each terminal device in any case of the eyewear type wearable terminal 4011 and the earphone type wearable terminal. Can detect vibrations generated in
  • the command input unit 11 is a contact detection sensor configured by a pressure detection element such as a micro switch or a piezo element, for example, and an operation in which the user 402 strikes the emergency operating device 20 is input.
  • the command input unit 11 is disposed at, for example, a vine or a joint portion with a lens disposed in front of the eye in a wearing state.
  • the command input unit 11 may be disposed on the belt.
  • the command input unit 11 is disposed on the back side of the earpiece, for example.
  • the earphone-type wearable terminal 4012 may have a microphone function, and a command may be input by voice input to the microphone.
  • the wearing detection unit 14 is a functional unit that detects whether the emergency operating machine 20 is worn by the user 402 or not.
  • the attachment detection unit 14 includes a contact detection unit 141 and a determination unit 142.
  • the contact detection unit 141 is configured by a pressure detection element such as a microswitch or a piezoelectric element, for example.
  • the contact detection unit 141 may be a capacitance sensor that can detect touching a human body.
  • the contact detection unit 141 is disposed on, for example, a curved surface at the bottom of the vine and contacts the ear of the user 402 when worn.
  • the contact detection unit 141 is disposed on the outer periphery of the earpiece and contacts the ear of the user 402 when worn.
  • the determination unit 142 determines whether or not the emergency controller 20 is attached to the user 402 based on the signal from the contact detection unit 141. For example, the determination unit may determine that the emergency operating device 20 is worn by the user 402 only when contact can be detected continuously for a predetermined time or more. When the mounting detection unit 14 does not detect the mounting of the emergency operating device 20, it may be configured to prohibit the flight of the drone 1. In addition, the attachment detection unit 14 is configured to permit the flight of the drone 1 only when it is determined that the emergency operating device 20 is attached to the user 402 and input to the command input unit 11 is possible. May be.
  • the wearing detection unit 14 may detect whether the emergency operating device 20 is worn by the user 402 even during the flight of the drone 100 continuously or at predetermined time intervals.
  • the flight control unit 23 may cause the drone 100 to take a retreat action.
  • the retreating action here is, for example, landing. Further, before landing as a retreating action, an operation combining any one or more of hovering and returning to a predetermined return point may be performed.
  • the user 402 may be notified by an appropriate method that the mounting of the emergency controller 20 cannot be detected through the display means of the controller 401 or the drone 100 itself. Even after the drone 100 starts flying, if the user 402 removes the emergency operating device 20, a dangerous situation occurs in which an emergency stop operation cannot be performed. According to this configuration, such a situation can be detected and the drone 100 can be prevented from continuing flying in a dangerous situation.
  • the controller 401 may be configured by combining one or a plurality of button-type, eyewear-type wearable terminals 4011, and earphone-type wearable terminals 4012. A part or all of the controllers 401 may be configured. These devices may be shared with the emergency controller 20. In this case, only in the case where the wearing detector 14 included in the eyewear-type wearable terminal 4011 and the earphone-type wearable terminal 4012 determines that the pilot 401 is attached to the user 402, the pilot 401 It may be configured so that the operation of the drone connected to can be started.
  • the drone operation mainly refers to take-off by the flight control unit 23 and spraying of the drug by the drug control unit 30.
  • the drone operation may be stopped. Specifically, the spraying of the medicine may be stopped and the drone may land. Further, a warning that the controller 401 is not attached to the user 402 may be issued by an image display or sound to notify the user 402.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Automation & Control Theory (AREA)
  • Zoology (AREA)
  • Combustion & Propulsion (AREA)
  • Wood Science & Technology (AREA)
  • Business, Economics & Management (AREA)
  • Environmental Sciences (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】安全性が高いドローンを提供する。 【解決策】 緊急動作指令を受信可能な受信部22と、操作機10が送信し、受信部が受信する緊急動作指令に基づいて飛行動作を制御する飛行制御部23と、を備えるドローン100であって、緊急動作指令は、ドローンを落下させる緊急停止指令と、ドローンを着陸させる緊急着陸指令と、ドローンをホバリングさせる緊急空中停止指令と、ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む。

Description

ドローン、操作機、ドローンの制御方法、操作機の制御方法、および、ドローン制御プログラム
本願発明は、飛行体(ドローン)、特に、安全性を高めたドローン、並びに、その制御方法および制御プログラム、ドローンと共に使用される操作機、および操作機の制御方法に関する。
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
特許公開公報 特開2001-120151 特許公開公報 特開2017-163265
自律飛行時であっても、高い安全性を維持できる農業用ドローン(無人飛行体)を提供する。
 上記目的を達成するため、本発明の一の観点に係るドローンは、緊急動作指令を受信可能な受信部と、操作機が送信し、前記受信部が受信する前記緊急動作指令に基づいて飛行動作を制御する飛行制御部と、を備えるドローンであって、前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む。
また、前記緊急動作指令が所定時間以内に所定の回数以上入力されたとき、前記緊急停止指令を実行するものとしてもよい。
また、前記緊急動作指令が所定時間以上連続して入力されたとき、前記緊急停止指令を実行するものとしてもよい。
前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は前記受信部が受信する前記緊急動作指令に基づいて薬剤の吐出を停止するものとしてもよい。
前記操作機は、前記操作機が使用者に装着されているか否かを判定する装着検知部を有し、前記飛行制御部は、前記装着検知部により前記操作機が使用者に装着されていることが検知されない場合、前記ドローンを飛行させないものとしてもよい。
前記操作機は、使用者に装着されているか否かを判定する装着検知部を有し、前記ドローンの飛行中において前記装着検知部により前記操作機が使用者に装着されていると判定されない場合、前記飛行制御部は、前記ドローンに退避行動を取らせるものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記飛行制御部は、前記ドローンを飛行させないものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記ドローンの飛行中において前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記飛行制御部は、前記ドローンに退避行動を取らせるものとしてもよい。
また、本発明の別の観点に係る操作機は、前記ドローンに緊急動作指令を送信する送信部を有し、前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む。
前記緊急動作指令が所定の第1時間以内に入力された回数を計数する連打検知部をさらに備え、前記連打検知部は、前記緊急動作指令が前記第1時間以内に所定回数以上入力されたことを検知して、前記受信部に緊急停止指令を送信するものとしてもよい。
前記連打検知部は、前記緊急動作指令が入力される時間間隔をさらに計測し、前記第1時間より短い所定の第2時間入力がなかった場合は、前記緊急動作指令の入力回数の計数をリセットするものとしてもよい。
前記緊急動作指令が所定時間連続して入力されたとき、前記受信部に緊急停止指令を送信するものとしてもよい。
前記緊急動作指令を前記受信部に送信する機能のみを有するものとしてもよい。
互いに異なる緊急動作指令を送信する複数の入力手段を有するものとしてもよい。
第1の前記緊急動作指令を送信した上で、第2の前記緊急動作指令を送信可能であるものとしてもよい。
前記第1の緊急動作指令は緊急空中停止指令であり、前記第2の緊急動作指令は複数種類の緊急動作指令のうちいずれかを含み、前記第1の緊急動作指令を送信後、前記複数種類の緊急動作指令を選択的に送信可能であるものとしてもよい。
前記操作機は、使用者が身体に装着して使用するウェアラブル端末であるものとしてもよい。
使用者に装着されているか否かを判定する装着検知部をさらに備え、前記飛行制御部は、前記装着検知部により前記操作機が使用者に装着されていると判定されない場合、前記ドローンを飛行させないものとしてもよい。
使用者に装着されているか否かを判定する装着検知部をさらに備え、前記ドローンの飛行中において前記装着検知部により前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせるものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンを飛行させないものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記ドローンの飛行中において前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせるものとしてもよい。
また、本発明の別の観点に係るドローンの制御方法は、緊急動作指令を受信可能な受信部と、操作機が送信し、前記受信部が受信する前記緊急動作指令に基づいて飛行動作を制御する飛行制御部と、を備えるドローンの制御方法であって、前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含み、前記操作機に緊急動作指令が入力されるステップ、および前記受信部が緊急動作指令を受信するステップを備え、かつ前記受信部が受信する緊急停止指令に基づいて前記ドローンを落下させるステップと、前記受信部が受信する緊急着陸指令に基づいて前記ドローンを着陸させるステップと、前記受信部が受信する緊急空中停止指令に基づいて前記ドローンをホバリングさせるステップと、前記受信部が受信する緊急帰還指令に基づいて前記ドローンを所定の地点へ帰還させるステップと、のいずれか1つ以上のステップを含む。
前記緊急動作指令が所定時間以内に所定の回数以上入力されたとき、前記緊急停止指令を実行するステップをさらに備えるものとしてもよい。
前記緊急動作指令が所定時間以上連続して入力されたとき、緊急停止指令を実行するステップをさらに備えるものとしてもよい。
前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備えるドローンの制御方法であって、前記受信部が受信する前記緊急動作指令に基づいて薬剤の吐出を停止するステップをさらに備えるものとしてもよい。
前記操作機が使用者に装着されているか否かを判定する装着検知ステップと、前記装着検知部により前記操作機が使用者に装着されているとことが検知されない場合、前記ドローンの飛行を禁止するステップと、をさらに含むものとしてもよい。
使用者に装着されているか否かを判定する装着検知ステップをさらに含み、前記ドローンの飛行中において前記装着検知ステップにより前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせるものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンの飛行を禁止するステップと、をさらに含むものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記ドローンの飛行中において前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせるものとしてもよい。
また、本発明の別の観点に係る操作機の制御方法は、ドローンと共に使用される操作機の制御方法であって、ドローンに緊急動作指令を送信するステップを含み、前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上のステップを含む。
前記緊急動作指令が所定の第1時間以内に入力された回数を計数する連打検知部をさらに備え、前記緊急動作指令が前記第1時間以内に所定回数以上入力されたことを検知して、前記緊急停止指令を送信するステップをさらに含むものとしてもよい。
前記緊急動作指令が入力される時間間隔を計測するステップと、前記第1時間より短い所定の第2時間入力がなかった場合は、前記緊急動作指令の入力回数の計数をリセットするステップと、をさらに含むものとしてもよい。
前記操作機が使用者に装着されているか否かを判定するステップと、前記操作機が使用者に装着されていると判定されない場合、前記ドローンの飛行を禁止するステップと、とさらに含むものとしてもよい。
使用者に装着されているか否かを判定する装着検知ステップをさらに含み、前記ドローンの飛行中において前記装着検知ステップにより前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせるものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンの飛行を禁止するステップと、をさらに含むものとしてもよい。
前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記ドローンの飛行中において前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせるものとしてもよい。
また、本発明の別の観点に係るドローン制御プログラムは、緊急動作指令を受信する受信命令と、操作機が送信する前記緊急動作指令に基づいて飛行動作を制御する飛行制御命令と、
をコンピューターに実行させるドローン制御プログラムであって、前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む。
さらに、前記緊急動作指令が所定時間以内に所定の回数以上入力されたとき、緊急停止指令を実行する命令をコンピューターに実行させるものとしてもよい。
さらに、前記緊急動作指令が所定時間以上連続して入力されたとき、緊急動作指令を実行する命令をコンピューターに実行させるものとしてもよい。
さらに、前記緊急動作指令に基づいて薬剤の吐出を停止する命令をコンピューターに実行させるものとしてもよい。
さらに、前記ドローンと共に使用される前記操作機が使用者に装着されているか否かを判定する装着検知命令と、前記装着検知命令により前記操作機が使用者に装着されていると判定されない場合、前記ドローンの飛行を禁止する命令と、をコンピューターに実行させるものとしてもよい。
さらに、前記ドローンと共に使用される操作機が使用者に装着されているか否かを判定する装着検知命令をコンピューターに実行させ、前記ドローンの飛行中において前記装着検知命令により前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせる命令をコンピューターに実行させるものとしてもよい。
前記ドローンと共に使用される操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知命令をコンピューターに実行させ、前記操作機異常検知命令により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンの飛行を禁止する命令をコンピューターに実行させるものとしてもよい。
前記ドローンと共に使用される操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知命令をコンピューターに実行させ、前記ドローンの飛行中において前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせる命令をコンピューターに実行させるものとしてもよい。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
自律飛行時であっても、高い安全性を維持できる農業用ドローン(無人飛行体)を提供する。
本願発明に係るドローンの実施例の平面図である。 本願発明に係るドローンの実施例の正面図である。 本願発明に係るドローンの実施例の右側面図である。 本願発明に係るドローンの実施例を使用した薬剤散布システムの全体概念図の例である。 本願発明に係るドローンの実施例の制御機能を表した模式図である。 上記ドローンおよび上記ドローンが有する操作機の、緊急動作に関する機能ブロック図である。 上記操作機が有する指令入力部を示す模式図である。 上記ドローンが有する連打検知部が、上記操作機に連打がなされたか否かを判定するフローチャートである。 上記ドローンが有する受信部に、上記操作機から緊急指令が送信された場合のフローチャートである。 本発明に係る操作機の第2実施形態を示す模式図である。 上記操作機の緊急操作領域に別の表示がされている様子を示す模式図である。 本発明に係る操作機の第3実施形態を示す概略斜視図である。 上記操作機の緊急動作に関する機能ブロック図である。
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。
図1に本願発明に係るドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼または飛行手段を有する飛行体全般を指すこととする。
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられていることが望ましい。
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられていることが望ましい。1セット内の上下の回転翼(たとえば、101-1aと101-1b、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転することが望ましい。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら上の構造であることが望ましい。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられていることが望ましい。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられていることが望ましい。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
図4に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されることが望ましいが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図6に示す緊急操作機10)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であることが望ましい)。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
図5に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっていることが望ましい。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されていることが望ましい。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できることが望ましい。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくことが望ましい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。
6軸ジャイロセンサー505はドローン機体の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)であり、6軸センサーであることが望ましい。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられていることが望ましい。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっていることが望ましい。
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
 自律飛行を行うドローン100においては、使用者402がドローンの動作を監督することがある。使用者402がドローンに異常が発生したことを、目視又はモニタによって確認した場合には、使用者402による任意の操作によって緊急動作指令を送信し、ドローンを安全に退避させることが望ましい。
(第1実施形態)
 図6に示すように、本願発明に係るドローン100は、緊急動作指令を受信可能な受信部22と、受信部22が受信する緊急動作指令に基づいてドローン100の飛行を制御する飛行制御部23と、ドローン100から吐出する薬剤の量を制御する薬剤制御部30と、を備える。飛行制御部23および薬剤制御部30は、図5におけるフライトコントローラ501により実現される。ドローン100は、緊急操作機10と有線又は無線で接続され、ドローン100が自律飛行している間に使用者402が任意に操作可能である。緊急操作機10は、ドローン100に対して緊急動作指令を送信する。
 緊急操作機10は、緊急停止指令を送信する機能のみを有する構成であってもよい。また、緊急停止指令以外の、監視や散布の為に飛行するドローン100の全ての指示を送信する機能を有していてもよい。また、ドローン100からの情報を受信して使用者402へ表示する表示部を備えていてもよい。
 図6に示すように、緊急操作機10は、指令入力部11、送信部12、および緊急操作検知部13を有する。指令入力部11は、使用者402が緊急動作指令を入力するための構成で、例えば緊急操作機10が有する画面上に表示されるソフトスイッチである。また、指令入力部11は、押しボタンなどの機構的なスイッチであってもよい。
 図7に示すように、指令入力部11は、複数種類の緊急動作指令を入力可能である。緊急動作指令は、緊急停止指令、緊急着陸指令、緊急帰還指令、緊急空中停止指令、通常帰還指令のうちいずれか1つ以上の指令を含む。本実施の形態においては、指令入力部11は、上述の5種類の緊急動作指令すべてが入力可能である。指令入力部11は、緊急動作指令の種類数に対応する複数のスイッチ111乃至115である。複数のスイッチ111乃至115に入力される緊急動作指令は、送信部12によって受信部22に送信される。送受信は、Bluetooth(登録商標)や赤外線通信、Wi-Fiを用いて行うものなど、任意の形式で行われる。 
 スイッチ111は緊急停止指令を送信するスイッチである。受信部22により緊急停止指令が受信されると、飛行制御部23は、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bのすべての動作を停止させる「緊急停止」を行う。すると、ドローン100は重力により下方へ自由落下する。
 スイッチ112は、緊急着陸指令を送信するスイッチである。受信部22により緊急着陸指令が受信されると、飛行制御部23は、緊急着陸指令を受信した地点において「通常の着陸」を実行する。
 スイッチ113は、緊急帰還指令を送信するスイッチである。受信部22により緊急帰還指令が受信されると、飛行制御部23は最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を行う。所定の帰還地点とは、あらかじめ飛行制御部23に記憶させた地点であり、例えば離陸した発着地点406である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な圃場403以外の陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。
 スイッチ114は、緊急空中停止指令を送信するスイッチである。受信部22により緊急空中停止指令が受信されると、飛行制御部23は緊急空中停止指令を受信した地点において「ホバリング」を行う。
 スイッチ115は、通常帰還指令を送信するスイッチである。受信部22により通常帰還指令が受信されると、ドローン100は、最適化されたルートで所定の帰還地点まで移動する。最適化されたルートとは、例えば、通常帰還指令を受信する前に薬剤散布したルートを参照して算出されるルートである。例えば、飛行制御部23は、まだ薬剤を散布していないルートを経由して、薬剤を散布しながら所定の帰還地点まで移動する。
 ドローン100の緊急動作は、着陸やホバリングなど複数の動作が考えられるが、いずれの動作が適切かは異常の状況に応じて異なる。そこで、複数のスイッチ111乃至115から異なる緊急動作指令を送信可能である緊急操作機10によれば、使用者402が複数種類の緊急動作指令を選択的に送信可能である。
 指令入力部11は、タップ、スワイプ、フリック、連打、長押し等、画面に対して行われる動作を区別して認識可能であって、各動作がスイッチ111乃至115に対応付けられていてもよい。各動作のうち少なくとも連打および長押しは、緊急操作機10が有する緊急操作検知部13により判別される。
 緊急操作検知部13は、緊急操作機10に通常の入力操作とは異なる特定の操作がなされたことを検知する機能部である。緊急操作検知部13は、連打検知部131および長押し検知部132を有する。
 連打検知部131は、スイッチ111乃至115が使用者402により所定時間内に複数回操作、すなわち連打されたか否かを検知する機能部である。連打検知部131は、所定の第1時間内において操作される回数を計数するための、タイマーおよび計数部を適宜有する。
 連打検知部131は、連打を検知すると、入力された複数回の入力を1回の緊急停止指令に変換する。すなわち、飛行制御部23は、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bのすべての動作を停止させ、ドローン100を自由落下させる。この構成によれば、使用者402が緊急時に慌てて緊急操作機10を操作した場合においても、ドローン100を安全に退避させることができる。
 緊急時に慌てて行われる操作は、ある程度規則的な入力が行われることが想定される。すなわち、例えば、連打検知の閾値に満たない回数押下された後、時間をおいてさらに押下されるような場合は、想定される操作とは異なる。そこで、連打検知部131は、スイッチ111乃至115が押下される時間間隔をさらに計測し、第1時間より短い所定の第2時間押下がなかった場合は、計数をリセットしてもよい。
 図8に示すように、まず、連打検知部131は、スイッチ111乃至115が1回押下され、緊急指令が入力されたことを検知する(ステップS31)。連打検知部131は、入力回数を「0」から「1」に記録し(ステップS32)、第1時間および第2時間を計測するタイマーをそれぞれ始動させる(ステップS33乃至S34)。
 連打検知部131は、第1時間が経過したかどうかを判断する(ステップS35)。次の緊急指令が入力されることなく第1時間が経過した場合は、第1時間および第2時間を計測するタイマーをリセットし、後述する図9のステップS4に進み、押下されたスイッチに対応する緊急指令が送信される。また、第2時間が経過したかどうかを判断し(ステップS36)、第2時間が経過する前に次の入力が行われるか否かを判定する(ステップS37)。次の緊急指令が入力されることなく第2時間が経過した場合も、第1時間および第2時間を計測するタイマーをリセットして後述する図9のステップS4に進み、通常の緊急指令が送信される。例えば、連打と検知される所定回数未満の入力が連続して行われた場合は、最後に押下されたスイッチ111乃至115に対応する緊急指令を送信するように構成されていてもよい。
 第2時間の経過前に次の入力があった場合、連打検知部131は、第1時間のタイマーの計測は継続し、入力回数に1を足す(ステップS38)。また、連打検知部131は、入力回数が所定回数に達したか否かを判定する(ステップS39)。入力回数が所定回数に達した場合、連打検知部131は連打が行われたと判定し、図9のステップS3に進む。入力回数が所定回数に達していない場合、第2時間のタイマーをリセットし、ステップS34に戻り、新たに第2時間のタイマーを開始する。
 この構成によれば、連打検知部131は、使用者402の慌てた操作をより的確に検知することができる。
 長押し検知部132は、スイッチ111乃至115が所定時間以上連続して押下、すなわち長押しされたか否かを検知する機能部である。長押し検知部132は、スイッチ111乃至115が所定時間以上長押しされたことを検知すると、入力を1回の緊急停止指令に変換する。この構成によれば、使用者402が緊急時に慌てて緊急操作機10を長押しした場合においても、ドローン100を安全に退避させることができる。
 薬剤制御部30は、薬剤タンク104から薬液を散布する量又はタイミングを制御する制御部である。例えば、薬剤タンク104から各薬剤ノズル103-1、103-2、103-3、103-4までの経路のどこかに、薬液経路を開閉する開閉手段が設けられていて、薬剤制御部30は、開閉手段により薬液の放出を遮断した後に各種の緊急動作を実行してもよい。また、薬剤制御部30は、緊急動作を実行する前にポンプ106を停止していてもよい。
 図9のフローチャートを用いて、ドローン100が緊急動作を行うフローを説明する。同図に示すように、まず、使用者402が、指令入力部11が有するスイッチ111乃至115のいずれかを操作すると、緊急操作機10の指令入力部11は、緊急動作指令を取得する(ステップS1)。
 長押し検知部132は、スイッチ111乃至115が所定時間以上長押しされたかどうかを判断する(ステップS21)。
 指令入力部11が所定時間以上長押しされたと判断されるとき、送信部12は1回の緊急停止指令を受信部22に送信する(ステップS3)。
 長押し検知部132が長押しを検知しない場合、連打検知部131は、所定時間内に所定回数以上連続してスイッチ111乃至115が押下されたかどうかを判断する(ステップS22)。スイッチ111乃至115が所定時間内に所定回数以上連続して押下されたと判断されたとき、送信部12は1回の緊急停止指令を受信部22に送信する(ステップS3)。
 ステップS3に次いで、受信部22は、送信部12からの緊急停止指令を受信する(ステップS5)。薬剤制御部30は、薬液の放出経路に適宜設けられた開閉手段を閉じて、ポンプ106を停止し、薬剤の吐出を停止する(ステップS7)。次いで、飛行制御部23は、緊急停止動作を行う。すなわち、飛行制御部23は、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bのすべての動作を停止させ、ドローン100を自由落下させる(ステップS81)。
 連打検知部131が所定時間内に所定回数以上の緊急動作指令を検知しないとき、送信部12は、押下されたスイッチ111乃至115に応じた1回の緊急動作指令を受信部22に送信する(ステップS4)。
 受信部22は送信部12から緊急動作指令を受信する(ステップS5)。飛行制御部23は、緊急動作指令の種類に応じて緊急動作を行う(ステップS6)。薬剤制御部30は、受信した緊急動作指令が通常帰還指令以外の場合は、薬液の放出経路に適宜設けられた開閉手段を閉じて、ポンプ106を停止し、薬剤の吐出を停止する(ステップS7)。薬剤制御部30は、通常帰還指令を受信した場合は、経由するルートに応じて所定の薬剤を散布しながら所定の帰還地点へ移動する(ステップS85)。
 飛行制御部23は、受信部22が受信した緊急動作指令に基づいて、ドローン100を緊急動作させる(ステップS81乃至S84)。すなわち、緊急停止指令を受信したときは「緊急停止」を行い(ステップS81)、緊急着陸指令を受信したときは「着陸」動作を行う(ステップS82)。緊急帰還指令を受信したときは「緊急帰還」を行い(ステップS83)、緊急空中停止指令を受信したときは「ホバリング」を行う(ステップS84)。
 なお、緊急操作機10が有する連打検知部131に代えて、ドローン100に、受信部22が所定回数以上の緊急動作指令を受信したか否かを検知する連続受信検知部を備える構成としてもよい。連続受信検知部は、受信部22が所定回数以上の緊急動作指令を受信したことを検知したとき、当該複数の緊急動作指令を、1回の緊急停止指令に変換して飛行制御部23に伝達する。
 また、緊急操作機10の故障又は電池切れ等により、緊急操作機10が緊急動作指令を送信できない状態になった場合、ドローン100に飛行を行わせないように構成するとよい。ドローン100が着陸している状態においては、ドローン100に離陸を行わせない。ドローン100が飛行中の場合は、ドローン100に退避行動を取らせるとよい。退避行動は、通常着陸、ホバリング、通常帰還、緊急帰還など、いずれの行動であってもよく、これらを組み合わせてもよい。また、操縦器401やドローン100自体が有する適宜の表示手段により、その旨を使用者402に通知してもよい。
 緊急操作機10の故障又は電池切れの検知は、緊急操作機10内に操作機異常検知部を有することで検知してもよい。操作機異常検知部が故障や電池切れを検知した場合は、営農クラウド405にその旨を通知してもよい。また、営農クラウド405側に緊急操作機10の故障や電池切れを検知する機能があってもよい。緊急操作機10および営農クラウド405等の間で、緊急操作指令以外の通信確認指令を定期的に送受信することにより、緊急操作機10が緊急動作指令を送信できる状態であるかどうかを定期的に確認するようにし、緊急動作指令を送信できる状態であることが確認できない場合には、ドローン100に退避行動を取らせるように構成してもよい。さらに、緊急操作機10の故障や電池切れを検知する操作機異常検知部は、ドローン100に搭載されていてもよい。
(第2実施形態)
 図10を用いて、緊急操作機10が緊急動作指令を送信する別の実施形態について説明する。同図は、緊急操作機10によって表示されるメイン画面800の例である。本実施形態においては、緊急操作機10は、緊急動作指令を送信する以外に、ドローン100の作業の様子を表示したり、ドローン100の動作を指示する機能を有している。
 メイン画面800上には、周辺機器状態表示領域801、飛行状況表示領域802、機体状況表示領域803、高度調整入力手段804、地図表示領域805、経路情報表示領域806、および、緊急操作領域807が設けられている。
 周辺機器状態表示領域801は、ドローン100のバッテリー残量、ポンプ状況、薬剤残量、通信状況、GPS受信状況等を表示する。可能な限り情報を簡略化し、エラーがあった場合に色を変える等により重要性が高い状況を操作者に確実に伝えられるようにすることが好ましい。
 飛行状況表示領域802は、ドローン100の飛行時間、GPS座標、飛行速度、高度等を表示する。
 機体状況表示領域803は、ドローン100の現在のステータス、たとえば、飛行準備中、薬剤補充中、離陸中、飛行中、緊急退避中等を表示する。
 高度調整入力手段804は、ドローン100の現在の高度を増減するためのボタン等のユーザー・インターフェース入力手段である。本願発明に係るドローン100は原則自律的に飛行し、高度もコンピューター・プログラムにより自動的に調整されるが、たとえば、作物の高さの高低等に応じて、操作者が高度を微調整したい場合が生じ得る。
 地図表示領域805は、薬剤散布の対象となる圃場を含む地図であり、航空写真であっても地形図であっても、または、それらの重ね合わせ表示であってよい。縮尺、および、位置はジェスチャー操作等で調整可能になっていることが望ましい。地図表示領域805には、ドローン100の現在の位置がリアルタイムで表示される。
 経路情報表示領域806は、操縦機内、ドローン100、または、営農クラウド405によって事前に計算された、ドローンが自律的に飛行すべき経路である。経路は、撮影のみのプラン、農薬散布プランを切り替えて表示できる。また、農薬散布プランでは、所要時間を優先した経路、バッテリー消費量を優先した経路、薬剤散布漏れを最小化することを優先した経路を選択して表示できる。薬剤散布済領域は色を変えて表示してもよい。圃場内の障害物(電線、建築物、樹木等)の情報も経路と合わせて表示する。
 緊急操作領域807は、緊急動作指令を入力可能な領域であり、指令入力部の例である。緊急操作領域807は、緊急時に使用者402が容易に操作できるように、メイン画面800上の大きな部分(典型的には画面全体のスペースの3分の1以上)を占めていてもよい。使用者402が緊急操作機10の側面側から把持する場合、手指、特に親指が画面の一部に接触する可能性がある。そこで、緊急操作領域の外縁は、緊急操作機10の外周端部より十分内側に規定されていてもよい。この構成によれば、使用者402が緊急操作機10を把持しているときに誤って緊急操作領域807に触れてしまうことがない。
 緊急操作領域807は、互いに異なる緊急動作指令を送信する複数の入力手段を有する。例えば、緊急操作領域807は、タップ、スワイプ、フリック、連打、長押し等、画面に対して行われる動作のうち、少なくとも2個の動作を区別して認識可能であって、当該区別して認識可能な動作に、互いに異なる緊急動作指令が対応付けられている。緊急操作領域807を複数の領域に細分化して認識し、操作が行われた位置によって異なる緊急動作指令が対応付けられていてもよい。スワイプやフリックなど、方向を有する入力動作においては、入力の向きごとに別の指令が対応付けられていてもよい。この構成によれば、使用者402は複数種類の緊急動作指令を選択的に送信可能である。図中に示すように、本実施形態においては、スワイプは一時停止、すなわちホバリングを行わせる緊急空中停止指令を送信する。また、4回連続してタップする動作は、緊急停止指令を送信する。
 緊急操作機10は、緊急操作領域807がメイン画面800上において所定の動作を検知すると、第1の緊急動作指令を送信した上で、さらに第2の緊急動作指令を送信可能になっていてもよい。緊急操作領域807は、所定の動作の検知後に、当該領域に別の入力を受け付ける態様に遷移してもよい。例えば、メイン画面800上の緊急操作領域807が、スワイプの動作を検知すると、緊急操作領域807は、第1の緊急動作指令として緊急空中停止指令を送信し、ドローン100をホバリングさせる。図11に示すように、緊急操作領域807は、ドローン100のホバリング後における緊急動作の種類を選択する表示に変更される。使用者402は、緊急操作領域807上で選択することにより、第2の緊急動作指令として、緊急停止指令、緊急着陸指令、緊急空中停止指令又は緊急帰還指令を送信する。使用者402は、ドローン100に不測の事態が生じた際に、瞬時に適切な緊急動作の種類を判断するのは困難である。そこで、この構成によれば、使用者402は、不測の事態においてまずはドローン100をホバリングさせ、冷静に検討した上で緊急動作の種類を判断することができる。
(第3実施形態)
 本発明に係るドローンおよび緊急操作機の第3実施形態について、先に説明した第1実施形態と異なる部分を中心に説明する。第3実施形態の緊急操作機は、アイウェア型ウェアラブル端末機又はイヤーフォン型ウェアラブル端末機である点において、第1実施形態と異なる。また、緊急操作機は、ボタン型、アイウェア型ウェアラブル端末機、およびイヤーフォン型ウェアラブル端末機のうち1つもしくは複数個を組み合わせて構成されていてもよい。なお、第1実施形態と同様の構成については、同じ符号を付した。
 図11に示すように、緊急操作機20は、アイウェア型ウェアラブル端末機4011又はイヤーフォン型ウェアラブル端末機4012である。アイウェア型ウェアラブル端末機4011は、外観がアイウェアすなわち眼鏡状の装置であり、つるを使用者402の耳にかけて装着することができる。イヤーフォン型ウェアラブル端末機4012は、使用者402の耳にイヤーフォン部分を挿入することで挿入可能であり、いずれも装着時の負担が少なく、かつハンズフリーで装置からの情報を取得できるため、農作業中に使用するのに適している。
 図12に示すように、緊急操作機20は、指令入力部11と、送信部12と、装着検知部14と、を備える。
 指令入力部11は、使用者402が緊急動作指令を入力するための構成で、第1実施形態の指令入力部11に対応している。指令入力部11は、例えば振動センサであり、振動センサは、アイウェア型ウェアラブル端末機4011およびイヤーフォン型ウェアラブル端末機のいずれの場合においても、使用者402が各端末機の任意の箇所を叩くことで生じる振動を感知することができる。
 また、指令入力部11は、例えばマイクロスイッチ、または、ピエゾ素子などの圧力検知素子により構成される接触検知センサであり、使用者402が緊急操作機20を叩く動作が入力される。アイウェア型ウェアラブル端末機4011の場合、指令入力部11は、例えばつるや、装着状態において眼前に配置されるレンズとつるとの接合部分などに配置される。また、左右のつるが装着時において後頭部に接するベルトで連結される構成の場合、指令入力部11はベルトに配置されていてもよい。イヤーフォン型ウェアラブル端末機の場合、指令入力部11は、例えばイヤーピースの背面側に配置される。また、イヤーフォン型ウェアラブル端末機4012はマイク機能を有していてもよく、マイクへの音声入力により指令が入力されてもよい。
 装着検知部14は、緊急操作機20が使用者402に装着されているかどうかを検知する機能部である。装着検知部14は、接触検知部141および判定部142を有する。接触検知部141は、例えばマイクロスイッチ、または、ピエゾ素子などの圧力検知素子により構成される。接触検知部141は、人体に触れていることを検知可能な静電容量センサであってもよい。アイウェア型ウェアラブル端末機4011の場合、接触検知部141は、例えばつるの下部にある曲面に配置され、装着時に使用者402の耳に接触する。イヤーフォン型ウェアラブル端末機4012の場合、接触検知部141は、イヤーピースの外周に配置され、装着時に使用者402の耳に接触する。
 判定部142は、接触検知部141からの信号に基づいて緊急操作機20が使用者402に装着されているかどうかを判定する。判定部は、例えば所定時間以上連続して接触が検知できる場合のみ、緊急操作機20が使用者402に装着されていると判定してもよい。装着検知部14が緊急操作機20の装着を検知しない場合、ドローン1の飛行を禁止するように構成されているとよい。また、装着検知部14は、緊急操作機20が使用者402に装着されていると判定される場合にのみドローン1の飛行を許可し、指令入力部11への入力が可能になるように構成されていてもよい。
 また、装着検知部14は、ドローン100の飛行中においても、緊急操作機20が使用者402に装着されているかどうかを連続的又は所定の時間間隔で検知してもよい。飛行中において、装着検知部14による装着が検知できない場合、飛行制御部23は、ドローン100に退避行動をとらせてもよい。ここでの退避行動は、例えば着陸である。また、退避行動として着陸する前に、ホバリング、および所定の帰還地点に帰還のいずれかもしくは複数を組み合わせた動作を行ってもよい。緊急操作機20の装着が検知できない旨を、操縦器401やドローン100自体が有する表示手段などを通じて、適宜の方法により使用者402に通知してもよい。ドローン100が飛行を開始した後においても、使用者402が緊急操作機20を外してしまった場合には、緊急停止動作ができないという危険な状況になる。この構成によれば、このような状況を検知して、ドローン100が危険な状況で飛行を継続することを防ぐことができる。
 さらに、操縦器401をボタン型、アイウェア型ウェアラブル端末機4011、およびイヤーフォン型ウェアラブル端末機4012のうち1つもしくは複数個を組み合わせて構成してもよく、操縦器401を構成する一部又は全ての装置が緊急操作機20と共用されていてもよい。この場合、アイウェア型ウェアラブル端末機4011、およびイヤーフォン型ウェアラブル端末機4012が有する装着検知部14により、操縦器401が使用者402に装着されていると判定される場合にのみ、当該操縦器401と接続されているドローンの運用を開始できるように構成されてもよい。ドローンの運用とは、主に飛行制御部23による離陸および薬剤制御部30による薬剤の散布を指す。また、運用中において操縦器401が使用者402から外された場合、ドローンの運用を中止するように構成されてもよい。具体的には、薬剤の散布を停止し、ドローンが着陸するように構成されてもよい。さらに、操縦器401が使用者402に装着されていない旨の警告を、像による表示又は音により発報し、使用者402に知らせてもよい。
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、ドローン全般に適用可能である。
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンにおいては、自律飛行時であっても、高い安全性を維持できるドローン(飛行体)を提供することができる。

 

Claims (44)

  1. 緊急動作指令を受信可能な受信部と、
    操作機が送信し、前記受信部が受信する前記緊急動作指令に基づいて飛行動作を制御する飛行制御部と、
    を備えるドローンであって、
    前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む、ドローン。
     
  2. 前記緊急動作指令が所定時間以内に所定の回数以上入力されたとき、前記緊急停止指令を実行する、請求項1に記載のドローン。
     
  3. 前記緊急動作指令が所定時間以上連続して入力されたとき、前記緊急停止指令を実行する、請求項1又は2記載のドローン。
     
  4. 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は前記受信部が受信する前記緊急動作指令に基づいて薬剤の吐出を停止する、請求項1乃至3のいずれかに記載のドローン。
     
  5. 前記操作機は、前記操作機が使用者に装着されているか否かを判定する装着検知部を有し、前記装着検知部により前記操作機が使用者に装着されていることが検知されない場合、前記飛行制御部は、前記ドローンを飛行させない、請求項1乃至4のいずれかに記載のドローン。
     
  6. 前記操作機は、使用者に装着されているか否かを判定する装着検知部を有し、前記ドローンの飛行中において前記装着検知部により前記操作機が使用者に装着されていると判定されない場合、前記飛行制御部は、前記ドローンに退避行動を取らせる、請求項1乃至5のいずれかに記載のドローン。
     
  7. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記飛行制御部は、前記ドローンを飛行させない、請求項1乃至6のいずれかに記載のドローン。
     
  8. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記ドローンの飛行中において前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記飛行制御部は、前記ドローンに退避行動を取らせる、請求項1乃至7のいずれかに記載のドローン。
     
  9. ドローンに緊急動作指令を送信する送信部を有し、
    前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む、請求項1乃至8のいずれかに記載のドローンと共に使用される操作機。
     
  10. 前記緊急動作指令が所定の第1時間以内に入力された回数を計数する連打検知部をさらに備え、
    前記連打検知部は、前記緊急動作指令が前記第1時間以内に所定回数以上入力されたことを検知して、前記受信部に緊急停止指令を送信する、請求項9記載の操作機。
     
  11. 前記連打検知部は、前記緊急動作指令が入力される時間間隔をさらに計測し、前記第1時間より短い所定の第2時間入力がなかった場合は、前記緊急動作指令の入力回数の計数をリセットする、請求項10記載の操作機。
     
  12. 前記緊急動作指令が所定時間連続して入力されたとき、前記受信部に前記緊急停止指令を送信する、請求項9乃至11のいずれかに記載の操作機。
     
  13. 前記緊急動作指令を前記受信部に送信する機能のみを有する、請求項9乃至12のいずれかに記載の操作機。
     
  14. 互いに異なる緊急動作指令を送信する複数の入力手段を有する、請求項9乃至13のいずれかに記載の操作機。
     
  15. 第1の前記緊急動作指令を送信した上で、第2の前記緊急動作指令を送信可能である、請求項9乃至14のいずれかに記載の操作機。
     
  16. 前記第1の緊急動作指令は緊急空中停止指令であり、前記第2の緊急動作指令は複数種類の緊急動作指令のうちいずれかを含み、前記第1の緊急動作指令を送信後、前記複数種類の緊急動作指令を選択的に送信可能である、請求項15記載の操作機。
     
  17. 前記操作機は、使用者が身体に装着して使用するウェアラブル端末である、
    請求項9乃至16のいずれかに記載の操作機。
     
  18. 使用者に装着されているか否かを判定する装着検知部をさらに備え、前記飛行制御部は、前記装着検知部により前記操作機が使用者に装着されていると判定されない場合、前記ドローンを飛行させない、請求項17記載の操作機。
     
  19. 使用者に装着されているか否かを判定する装着検知部をさらに備え、前記ドローンの飛行中において前記装着検知部により前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせる、請求項17又は18記載の操作機。
     
     
  20. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンを飛行させない、請求項9乃至19のいずれかに記載の操作機。
     
  21. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知部をさらに備え、前記ドローンの飛行中において前記操作機異常検知部により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせる、請求項9乃至20のいずれかに記載の操作機。
     
  22. 緊急動作指令を受信可能な受信部と、
    操作機が送信し、前記受信部が受信する前記緊急動作指令に基づいて飛行動作を制御する飛行制御部と、
    を備えるドローンの制御方法であって、
    前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含み、
    前記操作機に緊急動作指令が入力されるステップ、および
    前記受信部が緊急動作指令を受信するステップを備え、かつ
    前記受信部が受信する緊急停止指令に基づいて前記ドローンを落下させるステップと、前記受信部が受信する緊急着陸指令に基づいて前記ドローンを着陸させるステップと、前記受信部が受信する緊急空中停止指令に基づいて前記ドローンをホバリングさせるステップと、前記受信部が受信する緊急帰還指令に基づいて前記ドローンを所定の地点へ帰還させるステップと、のいずれか1つ以上のステップを含む、
    ドローンの制御方法。
     
  23. 前記緊急動作指令が所定時間以内に所定の回数以上入力されたとき、緊急停止指令を実行するステップをさらに備える、請求項22記載のドローンの制御方法。
     
  24. 前記緊急動作指令が所定時間以上連続して入力されたとき、緊急停止指令を実行するステップをさらに備える、請求項22又は23記載のドローンの制御方法。
     
  25. 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備えるドローンの制御方法であって、前記受信部が受信する前記緊急動作指令に基づいて薬剤の吐出を停止するステップをさらに備える、請求項22乃至24のいずれかに記載のドローンの制御方法。
     
  26. 前記操作機が使用者に装着されているか否かを判定する装着検知ステップと、前記装着検知ステップにより前記操作機が使用者に装着されているとことが検知されない場合、前記ドローンの飛行を禁止するステップと、をさらに含む、請求項22乃至25のいずれかに記載のドローンの制御方法。
     
  27. 使用者に装着されているか否かを判定する装着検知ステップをさらに含み、前記ドローンの飛行中において前記装着検知ステップにより前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせる、請求項22乃至26のいずれかに記載のドローンの制御方法。
     
  28. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンの飛行を禁止するステップと、をさらに含む、請求項22乃至27のいずれかに記載のドローンの制御方法。
     
  29. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記ドローンの飛行中において前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせる、請求項22乃至28のいずれかに記載のドローンの制御方法。
     
  30. ドローンと共に使用される操作機の制御方法であって、
    ドローンに緊急動作指令を送信するステップを含み、
    前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む、操作機の制御方法。
     
  31. 前記緊急動作指令が所定の第1時間以内に入力された回数を計数する連打検知部をさらに備え、
    前記緊急動作指令が前記第1時間以内に所定回数以上入力されたことを検知して、前記緊急停止指令を送信するステップをさらに含む、請求項30記載の操作機の制御方法。
     
  32. 前記緊急動作指令が入力される時間間隔を計測するステップと、前記第1時間より短い所定の第2時間入力がなかった場合は、前記緊急動作指令の入力回数の計数をリセットするステップと、をさらに含む、請求項31記載の操作機の制御方法。
     
  33. 前記操作機が使用者に装着されているか否かを判定するステップと、前記操作機が使用者に装着されていると判定されない場合、前記ドローンの飛行を禁止するステップと、とさらに含む、請求項30乃至32のいずれかに記載の操作機の制御方法。
     
  34. 使用者に装着されているか否かを判定する装着検知ステップをさらに含み、前記ドローンの飛行中において前記装着検知ステップにより前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせる、請求項30乃至33のいずれかに記載の操作機の制御方法。
     
  35. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンの飛行を禁止するステップと、をさらに含む、請求項30乃至34のいずれかに記載の操作機の制御方法。
     
  36. 前記操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知ステップと、前記ドローンの飛行中において前記操作機異常検知ステップにより前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせる、請求項30乃至35のいずれかに記載の操作機の制御方法。
     
  37. 緊急動作指令を受信する受信命令と、
    操作機が送信する前記緊急動作指令に基づいて飛行動作を制御する飛行制御命令と、
    をコンピューターに実行させるドローン制御プログラムであって、
    前記緊急動作指令は、前記ドローンを落下させる緊急停止指令と、前記ドローンを着陸させる緊急着陸指令と、前記ドローンをホバリングさせる緊急空中停止指令と、前記ドローンを所定の地点へ帰還させる緊急帰還指令と、のうちいずれか1つ以上の指令を含む、ドローン制御プログラム。
     
  38. さらに、前記緊急動作指令が所定時間以内に所定の回数以上入力されたとき、緊急停止指令を実行する命令をコンピューターに実行させる、請求項37記載のドローン制御プログラム。
  39. さらに、前記緊急動作指令が所定時間以上連続して入力されたとき、緊急動作指令を実行する命令をコンピューターに実行させる、請求項37又は38記載のドローン制御プログラム。
     
  40. さらに、前記緊急動作指令に基づいて薬剤の吐出を停止する命令をコンピューターに実行させる、請求項37乃至39のいずれかに記載のドローン制御プログラム。
     
  41. さらに、前記ドローンと共に使用される操作機が使用者に装着されているか否かを判定する装着検知命令と、前記装着検知命令により前記操作機が使用者に装着されていると判定されない場合、前記ドローンの飛行を禁止する命令と、をコンピューターに実行させる、請求項37乃至40いずれかに記載のドローン制御プログラム。
     
  42. さらに、前記ドローンと共に使用される操作機が使用者に装着されているか否かを判定する装着検知命令をコンピューターに実行させ、前記ドローンの飛行中において前記装着検知命令により前記操作機が使用者に装着されていると判定されない場合、前記ドローンに退避行動を取らせる命令をコンピューターに実行させる、請求項37乃至41のいずれかに記載のドローンの制御プログラム。
     
  43. 前記ドローンと共に使用される操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知命令をコンピューターに実行させ、前記操作機異常検知命令により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンの飛行を禁止する命令をコンピューターに実行させる、請求項37乃至42のいずれかに記載のドローンの制御プログラム。
     
  44. 前記ドローンと共に使用される操作機が前記緊急動作指令を送信できない状態にあることを検知する操作機異常検知命令をコンピューターに実行させ、前記ドローンの飛行中において前記操作機異常検知命令により前記操作機が前記緊急動作指令を送信できない状態にあることが検知される場合、前記ドローンに退避行動を取らせる命令をコンピューターに実行させる、請求項37乃至43のいずれかに記載のドローンの制御プログラム。
     

     
PCT/JP2019/007618 2018-02-28 2019-02-27 ドローン、操作機、ドローンの制御方法、操作機の制御方法、および、ドローン制御プログラム WO2019168043A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980007148.9A CN111566006B (zh) 2018-02-28 2019-02-27 无人机和操作器及其控制方法、计算机可读取记录介质
JP2020503578A JP6757026B2 (ja) 2018-02-28 2019-02-27 ドローン、操作機、ドローンの制御方法、操作機の制御方法、および、ドローン制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035038 2018-02-28
JP2018035038 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168043A1 true WO2019168043A1 (ja) 2019-09-06

Family

ID=67805400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007618 WO2019168043A1 (ja) 2018-02-28 2019-02-27 ドローン、操作機、ドローンの制御方法、操作機の制御方法、および、ドローン制御プログラム

Country Status (3)

Country Link
JP (2) JP6757026B2 (ja)
CN (1) CN111566006B (ja)
WO (1) WO2019168043A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144989A1 (ja) * 2020-01-17 2021-07-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
JPWO2021144988A1 (ja) * 2020-01-17 2021-07-22
WO2021144987A1 (ja) * 2020-01-17 2021-07-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
WO2021166101A1 (ja) * 2020-02-19 2021-08-26 株式会社ナイルワークス 操作器、および、ドローンの操作用プログラム
CN113923984A (zh) * 2019-09-13 2022-01-11 株式会社久保田 农业作业支持系统
US11279481B2 (en) 2017-05-12 2022-03-22 Phirst Technologies, Llc Systems and methods for tracking, evaluating and determining a response to emergency situations using unmanned airborne vehicles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112173093A (zh) * 2020-09-09 2021-01-05 昆明理工大学 一种快速通信的四旋翼无人机系统
CN113212780B (zh) * 2021-06-18 2024-02-20 广州极飞科技股份有限公司 一种无人机应急停靠方法、装置、系统及存储介质
WO2023228387A1 (ja) * 2022-05-26 2023-11-30 日本電気株式会社 移動体、暗号鍵配送システム、暗号鍵配送方法およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178558A (ja) * 2003-12-19 2005-07-07 Yanmar Co Ltd 遠隔操作ヘリコプタ
JP2006082774A (ja) * 2004-09-17 2006-03-30 Hiroboo Kk 無人飛行体及び無人飛行体制御方法
WO2016167946A1 (en) * 2015-04-14 2016-10-20 Northrop Grumman Systems Corporation Multi-sensor control system and method for remote signaling control of unmanned vehicles
JP2017037369A (ja) * 2015-08-06 2017-02-16 Simplex Quantum株式会社 小型飛行システム
CN107438804A (zh) * 2016-10-19 2017-12-05 深圳市大疆创新科技有限公司 一种用于控制无人机的穿戴式设备及无人机系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7657849B2 (en) * 2005-12-23 2010-02-02 Apple Inc. Unlocking a device by performing gestures on an unlock image
US9841761B2 (en) * 2012-05-04 2017-12-12 Aeryon Labs Inc. System and method for controlling unmanned aerial vehicles
CN112947510A (zh) * 2014-09-30 2021-06-11 深圳市大疆创新科技有限公司 用于飞行模拟的系统和方法
WO2016076586A1 (en) * 2014-11-14 2016-05-19 Lg Electronics Inc. Mobile terminal and controlling method thereof
US10586464B2 (en) * 2015-07-29 2020-03-10 Warren F. LeBlanc Unmanned aerial vehicles
WO2017022179A1 (ja) * 2015-08-06 2017-02-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 無人飛行体、飛行制御方法、飛行制御プログラム及び操縦器
US10061328B2 (en) * 2015-08-12 2018-08-28 Qualcomm Incorporated Autonomous landing and control
CN106512434A (zh) * 2015-09-09 2017-03-22 王军 一种飞行器控制器及其控制方法
CN105549604B (zh) * 2015-12-10 2018-01-23 腾讯科技(深圳)有限公司 飞行器操控方法和装置
CN105302154B (zh) * 2015-11-08 2018-09-18 杨珊珊 用于监控运送物品的无人飞行器及其监控方法
CN105677930B (zh) * 2016-04-01 2018-07-03 腾讯科技(深圳)有限公司 飞行标签的获取方法和终端及服务器
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置
JP2017208678A (ja) * 2016-05-18 2017-11-24 本郷飛行機株式会社 小型無人飛行機の通信及び制御装置並びにこれらの方法
CN105867423A (zh) * 2016-06-08 2016-08-17 杨珊珊 无人飞行器返航方法、返航系统及其无人飞行器
CN106325297B (zh) * 2016-09-09 2018-09-07 腾讯科技(深圳)有限公司 一种飞行器的控制方法及控制终端
CN106406331A (zh) * 2016-11-25 2017-02-15 广州亿航智能技术有限公司 一种飞行器的飞行控制方法、装置和系统
JP2018002132A (ja) * 2017-03-17 2018-01-11 京商株式会社 マルチコプターの制御方法
KR101818232B1 (ko) * 2017-05-26 2018-01-12 이윤성 비상 제어 장치, 이를 구비한 드론 및 이를 구비한 드론의 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178558A (ja) * 2003-12-19 2005-07-07 Yanmar Co Ltd 遠隔操作ヘリコプタ
JP2006082774A (ja) * 2004-09-17 2006-03-30 Hiroboo Kk 無人飛行体及び無人飛行体制御方法
WO2016167946A1 (en) * 2015-04-14 2016-10-20 Northrop Grumman Systems Corporation Multi-sensor control system and method for remote signaling control of unmanned vehicles
JP2017037369A (ja) * 2015-08-06 2017-02-16 Simplex Quantum株式会社 小型飛行システム
CN107438804A (zh) * 2016-10-19 2017-12-05 深圳市大疆创新科技有限公司 一种用于控制无人机的穿戴式设备及无人机系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279481B2 (en) 2017-05-12 2022-03-22 Phirst Technologies, Llc Systems and methods for tracking, evaluating and determining a response to emergency situations using unmanned airborne vehicles
CN113923984A (zh) * 2019-09-13 2022-01-11 株式会社久保田 农业作业支持系统
CN113923984B (zh) * 2019-09-13 2023-09-12 株式会社久保田 农业作业支持系统
JP7227658B2 (ja) 2020-01-17 2023-02-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
WO2021144987A1 (ja) * 2020-01-17 2021-07-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
JPWO2021144987A1 (ja) * 2020-01-17 2021-07-22
WO2021144988A1 (ja) * 2020-01-17 2021-07-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
JPWO2021144988A1 (ja) * 2020-01-17 2021-07-22
WO2021144989A1 (ja) * 2020-01-17 2021-07-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
JPWO2021144989A1 (ja) * 2020-01-17 2021-07-22
JP7440937B2 (ja) 2020-01-17 2024-02-29 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
WO2021166101A1 (ja) * 2020-02-19 2021-08-26 株式会社ナイルワークス 操作器、および、ドローンの操作用プログラム
JP7457409B2 (ja) 2020-02-19 2024-03-28 株式会社ナイルワークス 操作器、および、ドローンの操作用プログラム

Also Published As

Publication number Publication date
CN111566006A (zh) 2020-08-21
JP2020117221A (ja) 2020-08-06
JP6757026B2 (ja) 2020-09-16
CN111566006B (zh) 2024-03-12
JP6729962B1 (ja) 2020-07-29
JPWO2019168043A1 (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6729962B1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6752481B2 (ja) ドローン、その制御方法、および、プログラム
JP6727525B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6889502B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2019168079A1 (ja) 安全性を向上した農業用ドローン
WO2019168080A1 (ja) フールプルーフ性を向上した農業用ドローン
WO2019168045A1 (ja) ドローン、その制御方法、および、制御プログラム
JP6733949B2 (ja) 薬剤散布用無人マルチコプター、ならびにその制御方法および制御プログラム
JPWO2019208606A1 (ja) 薬剤の吐出制御システム、方法、及びコンピュータプログラム
JP7008999B2 (ja) 運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
JP6913979B2 (ja) ドローン
WO2019168052A1 (ja) ドローン、その制御方法、および、プログラム
JP7075695B2 (ja) ドローン操縦機、および、操縦用プログラム
WO2019189077A1 (ja) ドローン、その制御方法、および、プログラム
JP2021037816A (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
JP6996792B2 (ja) 薬剤の吐出制御システム、その制御方法、および、制御プログラム
WO2021166101A1 (ja) 操作器、および、ドローンの操作用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761300

Country of ref document: EP

Kind code of ref document: A1