WO2023228387A1 - 移動体、暗号鍵配送システム、暗号鍵配送方法およびプログラム - Google Patents
移動体、暗号鍵配送システム、暗号鍵配送方法およびプログラム Download PDFInfo
- Publication number
- WO2023228387A1 WO2023228387A1 PCT/JP2022/021649 JP2022021649W WO2023228387A1 WO 2023228387 A1 WO2023228387 A1 WO 2023228387A1 JP 2022021649 W JP2022021649 W JP 2022021649W WO 2023228387 A1 WO2023228387 A1 WO 2023228387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- encryption key
- receiving device
- receiving
- flying object
- unit
- Prior art date
Links
- 238000012384 transportation and delivery Methods 0.000 title description 27
- 238000002716 delivery method Methods 0.000 title 1
- 230000005856 abnormality Effects 0.000 claims abstract description 100
- 230000005540 biological transmission Effects 0.000 claims abstract description 49
- 230000033001 locomotion Effects 0.000 claims abstract description 35
- 238000004891 communication Methods 0.000 claims description 86
- 238000001514 detection method Methods 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 45
- 238000012545 processing Methods 0.000 claims description 29
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 26
- 238000012806 monitoring device Methods 0.000 description 20
- 238000012986 modification Methods 0.000 description 19
- 230000004048 modification Effects 0.000 description 19
- 238000012795 verification Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 10
- 230000015654 memory Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000012850 discrimination method Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/10—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols with particular housing, physical features or manual controls
Definitions
- the present invention relates to encryption key distribution technology by a mobile object.
- encryption techniques that conceal transmitted data.
- Many encryption techniques include a method in which data is encrypted using a key called an encryption key and then sent, and then decrypted on the receiving side using the same encryption key.
- decryption key corresponding to an encryption key held in advance on the receiving side.
- keys used for encrypting and/or decoding data including decryption keys, will be collectively referred to as encryption keys.
- Such encryption keys need to be shared between the sender and receiver before data transmission.
- an encryption key is generated by one party and distributed to the other party. Therefore, it is important to improve the security during the delivery of encryption keys.
- Quantum cryptographic key distribution is a mechanism for safely distributing cryptographic keys by using quantum communication.
- transmission paths transmission media
- transmission media are limited to optical fibers and laser beams, and there are also distance limitations.
- Patent Document 2 There is a technology that uses a flying object for delivery to deliver encryption keys without restrictions on distance or transmission path (for example, see Patent Document 2).
- a flying object temporarily stores only a part of the information necessary to generate an encryption key.
- the encryption key is shared among multiple base stations without having the flying object simultaneously have all the information necessary for encryption key generation.
- JP2017-055335A Japanese Patent Application Publication No. 2022-002379
- Cited Document 2 sequentially transmits not the encryption key itself but a plurality of pieces of key information necessary to generate the encryption key from a flying object to a plurality of base stations (transmission side and reception side). Since the encryption key itself is not transmitted from the flying object, security at the time of transmission and safety on the flying object are not taken into consideration.
- the invention described in this cited document is based on the premise that there is a transmission path using an optical fiber or the like between the transmitting side and the receiving side. Using the transmission path, key information is transmitted from either the sending side or the receiving side to the other, and the receiving side performs key distillation processing.
- the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a technology for safely delivering an encryption key without requiring a transmission path between a sending side and a receiving side, and without restrictions on distance or transmission path. With the goal.
- an input/output unit receives an encryption key from a transmitting device and transmits the encryption key to a receiving device; a storage control unit that controls storage of the encryption key in the storage unit; a movement control unit that moves the own device to the receiving device after receiving the encryption key from the transmitting device, A mobile body is provided, wherein the storage control unit stores the encryption key in the storage unit upon receiving the encryption key from the transmitting device, and erases the encryption key stored in the storage unit when an abnormality is detected.
- the mobile body; the transmitting device; The receiving device, The transmitting device includes a transmitting device communication unit that transmits the encryption key to the mobile object
- An encryption key distribution system is provided in which the reception device includes a reception device communication unit that receives the encryption key from the mobile object.
- a receiving step of receiving an encryption key from a transmitting device a storage step of storing the received encryption key in a storage unit; a moving step of moving the device toward the receiving device after storing the encryption key; an erasing step of erasing the encryption key stored in the storage unit if an abnormality in the own device is detected during movement;
- An encryption key distribution method comprising the step of transmitting the encryption key stored in the storage unit to the receiving device upon arrival at the destination area.
- a computer mounted on a mobile object, a receiving step of receiving an encryption key from a transmitting device; a storage step of storing the received encryption key in a storage unit; a moving step of moving the device toward the receiving device after storing the encryption key; an erasing step of erasing the encryption key stored in the storage unit if an abnormality in the own device is detected during movement; Upon arrival at the destination area, a program is provided for executing a transmitting step of transmitting the encryption key stored in the storage unit to the receiving device.
- the storage medium can be non-transient, such as a semiconductor memory, a hard disk, a magnetic recording medium, an optical recording medium, or the like.
- the invention can also be implemented as a computer program product.
- (a) is a schematic diagram showing an example of an encryption key distribution system according to an embodiment of the present invention
- (b) is a functional block diagram of the flying object.
- (a) and (b) are a functional block diagram and a hardware configuration diagram, respectively, of an example of a transmitting device according to a first embodiment.
- (a) and (b) are a functional block diagram and a hardware configuration diagram, respectively, of an example of a receiving device according to a first embodiment.
- (a) and (b) are a functional block diagram and a hardware configuration diagram, respectively, of an example of a flying object according to the first embodiment.
- It is a flowchart of an example of encryption key distribution processing in the encryption key distribution system of the first embodiment.
- FIG. 2 is a schematic diagram showing an example of the configuration of an encryption key distribution system according to a second embodiment.
- (a) and (b) are a functional block diagram and a hardware configuration diagram, respectively, of an example of a monitoring device according to a second embodiment.
- (a) is a functional block diagram of an example of a flying object of the third embodiment, and (b) is an explanatory diagram for explaining an example of log information of the third embodiment.
- It is a schematic diagram showing an example of composition of an encryption key distribution system of a fourth embodiment.
- connection lines between blocks in the drawings and the like referred to in the following description include both bidirectional and unidirectional connections.
- the unidirectional arrows schematically indicate the main signal (data) flow, and do not exclude bidirectionality.
- the program is executed via a computer device, and the computer device includes, for example, a processor, a storage device, an input device, a communication interface, and a display device if necessary. Further, this computer device is configured to be able to communicate with equipment (including a computer) inside or outside the device via a communication interface, regardless of whether it is wired or wireless. Further, although there are ports or interfaces at the input/output connection points of each block in the figure, illustration thereof is omitted. Furthermore, in the following description, "A and/or B" is used to mean A or B, or A and B.
- an encryption key distribution system is realized using a flying object that is difficult to eavesdrop on as a moving object.
- an encryption key is mounted on a flying object and transmitted from a device that is a source (transmission side) of an encryption key to a device that is a destination (reception side) of the encryption key.
- safety is ensured using sensor signals from various sensors inside and outside the flying object.
- the device on the sending side of the encryption key will be called the sending device, and the device on the receiving side of the encryption key will be called the receiving device.
- FIG. 1(a) shows an example of an encryption key distribution system 910 according to an embodiment of the present invention.
- the encryption key distribution system 910 includes a transmitting device 100, a receiving device 200, and a flying object 300.
- the transmitting device 100 is provided at a base on land (ground). Further, the receiving device 200 is installed on the sea, for example, on a ship.
- the flying object 300 for example, a drone, which is an example of an unmanned aerial vehicle (UAV) capable of autonomous navigation, is used. Note that the locations where transmitting device 100 and receiving device 200 are arranged are not limited to this.
- the encryption key 500 is sent from the transmitting device 100 to the flying object 300, the flying object 300 flies to the receiving device 200, and the receiving device 200 receives the encryption key 500 from the flying object 300.
- the flying object 300 detects an abnormality, it erases the encryption key 500 it holds.
- the flying object 300 determines that an abnormality has occurred and erases the encryption key 500.
- the flying object 300 includes, for example, an input/output unit 311 that receives the encryption key 500 from the transmitting device 100 and transmits the encryption key 500 to the receiving device, as shown in FIG. 1(b).
- a storage control unit 312 stores the encryption key 500 in the encryption key storage unit 321 upon receiving the encryption key 500 from the transmission device 100, and a movement control unit 315 moves the flying object 300 from the transmission device 100 to the reception device 200. Then, if an abnormality is detected during movement, the storage control unit 312 erases the encryption key 500 stored in the encryption key storage unit.
- the flying object 300 has a file (information itself) that is actually desired to be transmitted and received. This is because, considering the flight speed of the flying object 300, real-time communication cannot be achieved. Note that since the encryption key 500 only needs to be shared before communication, real-time delivery of the encryption key 500 is not required compared to general communication.
- the flying object 300 is equipped with an abnormality detection means to detect an abnormality that occurs during movement. The details of each device will be explained below.
- FIG. 2A is a functional block diagram of a configuration of the transmitting device 100 related to this embodiment.
- the transmitting device 100 includes a communication section 111, a control section 112, an authentication section 113, an encryption key storage section 121, and an authentication information storage section 122.
- the encryption key storage unit 121 stores the encryption key 500.
- the encryption key 500 is generated within the transmitting device 100 or received from an external device.
- the authentication information storage unit 122 stores authentication information.
- the authentication information is information for proving that the flying object 300 is authorized to deliver the encryption key 500.
- the authentication information is set in advance for each flying object 300, and the transmitting device 100, receiving device 200, and flying object 300 have the same information. Note that the authentication information is stored in advance.
- the communication unit 111 sends and receives data to and from an external device.
- the encryption key 500 and authentication information are transmitted and received to and from the flying object 300.
- laser light is used to transmit the encryption key 500 from the transmitting device 100 to the flying object 300.
- Communication using laser light can have quantum characteristics.
- the communication unit 111 transmits the encryption key 500 to the flying object 300 by, for example, quantum communication or quantum cryptographic communication.
- the communication unit 111 may transmit and receive the authentication information using a laser beam, similarly to the encryption key 500. Further, the authentication information may be transmitted and received using short-range wireless communication such as Bluetooth (registered trademark) or Wi-Fi (registered trademark).
- short-range wireless communication such as Bluetooth (registered trademark) or Wi-Fi (registered trademark).
- the authentication unit 113 authenticates the flying object 300. Upon receiving the authentication information via the communication unit 111 , the authentication unit 113 compares the received authentication information with the authentication information stored in the authentication information storage unit 122 according to instructions from the control unit 112 . After the verification, the authentication unit 113 notifies the control unit 112 of the verification result. When the received authentication information and the stored authentication information match, the authentication unit 113 determines that the verification result is an authentication success, and when they do not match, the authentication section 113 determines that the verification result is an authentication failure.
- the control unit 112 controls the overall operation of the transmitting device 100 and also controls the transmission and reception of the encryption key 500 via the communication unit 111. Specifically, upon receiving notification of successful authentication from the authentication unit 113 , the control unit 112 reads the encryption key 500 from the encryption key storage unit 121 and transmits it to the flying object 300 via the communication unit 111 .
- FIG. 2(b) is a hardware configuration diagram of a configuration of the transmitting device 100 related to this embodiment.
- the transmitting device 100 includes a CPU 131, a storage device 132, and a communication device 133.
- the CPU 131 loads a program stored in the nonvolatile area of the storage device 132 into the work area and executes it, thereby realizing each of the above functions and controlling the entire transmitting device 100 in an integrated manner.
- processors such as an MPU (Micro Processing Unit) may be used instead of the CPU 131.
- the storage device 132 is composed of memories such as ROM (Read Only Memory) and RAM (Random Access Memory).
- the storage device 132 stores information such as programs for executing each function and communication parameters for communication. Further, in this embodiment, each of the above storage units is constructed in the storage device 132.
- the storage device 132 includes, for example, SSD (Solid State Drive), flexible disk, hard disk, optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, DVD, etc. It may also include a storage medium. Furthermore, the storage device 132 may include a plurality of memories and the like.
- SSD Solid State Drive
- flexible disk hard disk, optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, DVD, etc. It may also include a storage medium.
- the storage device 132 may include a plurality of memories and the like.
- the communication device 133 realizes data transmission and reception.
- the communication device 133 includes, for example, an optical wireless communication device having a laser output device (light source) that outputs laser light, a laser light receiving device, and the like.
- the light source may be an LD (Laser Diode), an LED (Light Emitting Diode), or the like that outputs visible laser light.
- data transmission and reception may be realized using not only visible light but also infrared light, radio waves, sound waves, etc.
- a transmitter/receiver of a communication method compliant with other wireless communication methods such as Bluetooth, Wi-Fi, and NFC (Near Field Communication) may be provided.
- FIG. 3A is a functional block diagram of a configuration of the receiving device 200 related to this embodiment.
- the receiving device 200 includes a communication section 211, a control section 212, an authentication section 213, an encryption key storage section 221, and an authentication information storage section 222.
- the control unit 212 controls the overall operation of the receiving device 200 and also controls the transmission and reception of the encryption key 500 via the communication unit 211. Specifically, upon receiving the notification of successful authentication from the authentication unit 213, the control unit 212 generates an encryption key transmission request and transmits it to the flying object 300 via the communication unit 111. Further, when the encryption key 500 is received in response to the encryption key transmission request, it is stored in the encryption key storage section 221. At this time, a signal indicating completion of storage may be transmitted to the flying object 300.
- the other functions of the receiving device 200 are basically the same as the functions of the same name in the transmitting device 100, so the description thereof will be omitted here. Note that if it is necessary to distinguish between the functions of the transmitting device 100 and the receiving device 200, the transmitting device communication section 111, the receiving device communication section 211, the transmitting device control section 112, the receiving device control section 212, and the transmitting device They are called an authentication section 113 and a receiving device authentication section 213.
- FIG. 3(b) is a hardware configuration diagram of a configuration of the receiving device 200 related to this embodiment.
- the receiving device 200 includes a CPU 231, a storage device 232, and a communication device 233.
- Each configuration is basically the same as the configuration with the same name of the transmitting device 100, so a description thereof will be omitted.
- the flying object 300 that delivers the encryption key 500 from the transmitting device 100 to the receiving device 200 will be described.
- a case where a drone is used as the flying object 300 will be described as an example.
- FIG. 4(a) is a functional block diagram of the configuration of the flying object 300 related to this embodiment.
- the flying object 300 of this embodiment includes an input/output unit 311, a storage control unit 312, a movement control unit 315, and an encryption key storage unit 321 shown in FIG. 1(a), as well as an abnormality detection unit 313. It includes an authentication request section 314 and an authentication information storage section 322.
- the encryption key storage unit 321 stores the encryption key 500.
- the encryption key 500 is received from the transmitting device 100.
- the authentication information storage unit 322 stores authentication information of the flying object 300.
- the input/output unit 311 inputs and outputs data to and from external devices.
- the data to be input/output is the encryption key 500, authentication information, etc.
- the input/output unit 311 receives the encryption key 500 from the transmitting device 100 by wireless communication, and transmits the encryption key 500 to the receiving device 200 by wireless communication. Additionally, authentication information is transmitted to the transmitting device 100 and the receiving device 200.
- the input/output unit 311 may have a function that allows data to be transmitted and received only under predetermined conditions such as time and position.
- the transmission and reception of the encryption key 500 between the flying object 300 and the transmitting device 100 or the receiving device 200 may be performed, for example, by quantum communication using laser light or quantum cryptographic communication.
- the authentication information may be transmitted and received using laser light. Further, the authentication information may be transmitted and received using short-range wireless communication such as Bluetooth or Wi-Fi.
- the authentication request unit 314 requests authentication to an external device.
- the transmitting device 100 and the receiving device 200 are requested to perform authentication.
- the authentication request unit 314 transmits the authentication information stored in the authentication information storage unit 322 and requests authentication. Further, the authentication requesting unit 314 receives information from the movement control unit 315 (described later) when the own device (flying object 300) enters a communicable area (hereinafter referred to as a communicable area) with the external device to which the authentication is requested. When the notification is received, an authentication request is made.
- the abnormality detection unit 313 monitors the state of the flying object 300 and transmits an abnormality detection signal to the storage control unit 312 when an abnormality is detected.
- the abnormality detection unit 313 collects sensor detection values transmitted from a sensor 334, which will be described later, for example. Then, if there is an abnormality in the collected sensor detection value (abnormal value), an abnormality detection signal is output. Whether or not the value is an abnormal value is determined based on whether or not it exceeds an allowable range predetermined for each sensor. The permissible range is predetermined by, for example, a threshold value.
- the abnormality detection unit 313 may analyze the collected sensor detection values and determine whether there is an abnormality. For example, it may be possible to detect that the flying object 300 is unable to fly, makes an emergency landing or crashes, runs out of battery, or has trouble with a program.
- the storage control unit 312 controls the storage of the encryption key 500 in the encryption key storage unit 321.
- the encryption key 500 is acquired via the input/output unit 311, it is stored in the encryption key storage unit 321.
- it reads the encryption key 500 from the encryption key storage section 321 and transmits the encryption key 500 to the requester via the input/output section 311. Further, upon receiving an abnormality detection signal from the abnormality detection section 313, the encryption key 500 stored in the encryption key storage section 321 is deleted.
- the movement control unit 315 causes the flying object 300 to navigate to the destination.
- the movement control unit 315 causes the flying object 300 to navigate from the transmitting device 100 to the receiving device 200.
- the navigation device upon receiving the encryption key 500 from the transmitting device 100, the navigation device (described later) of the flying object 300 is controlled to move the flying object 300 to the receiving device 200.
- FIG. 4(b) is a hardware configuration diagram of a flying object related to this embodiment.
- the flying object 300 includes a CPU (Central Processing Unit) 331, a storage device 332, a communication device 333, a sensor 334, and a navigation device 335.
- CPU Central Processing Unit
- the CPU 331 realizes each of the above functions and centrally controls the entire flying object 300 by loading a program stored in the non-volatile area of the storage device 332 into the work area and executing it.
- processors such as an MPU (Micro Processing Unit) may be used instead of the CPU 331.
- the storage device 332 is composed of memories such as ROM (Read Only Memory) and RAM (Random Access Memory).
- the storage device 332 stores information such as programs for executing each function and communication parameters for communication. Further, in this embodiment, each of the above storage units is constructed in the storage device 332.
- the storage device 332 includes, for example, SSD (Solid State Drive), flexible disk, hard disk, optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, DVD, etc. It may also include a storage medium. Furthermore, the storage device 332 may include a plurality of memories and the like.
- SSD Solid State Drive
- flexible disk hard disk, optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, DVD, etc. It may also include a storage medium.
- the storage device 332 may include a plurality of memories and the like.
- the communication device 333 communicates with external devices.
- wireless communication is performed with the transmitting device 100 and the receiving device 200.
- the encryption key 500 is transmitted and received using laser light. Therefore, the communication device 333 includes a laser input device and a laser light receiving device. Further, a short-range communication device for transmitting and receiving authentication information may be provided.
- the sensor 334 is provided in each part of the flying object 300 and detects its state.
- the sensor 334 detects flying objects such as vibration, contact, temperature change, voltage, position (latitude, longitude, and height), movement speed (flight speed), movement time, contact with other devices (other objects), interference, etc. It is set and arranged to be able to detect (observe) all events that affect 300 flights. Furthermore, it may be possible to detect whether or not data is being transmitted/received to/from other devices.
- the senor 334 includes, for example, a gyro sensor, an acceleration sensor, a barometric pressure sensor, an ultrasonic sensor, a geomagnetic sensor (electronic compass), a camera, a GPS device, a battery remaining amount detection sensor, and the like.
- These detected values are output to the abnormality detection unit 313 and the movement control unit 315, and are used for abnormality detection and navigation control using the navigation device 335.
- the navigation device 335 navigates the flying object 300 under the control of the movement control unit 315.
- This embodiment includes, for example, a propeller and a motor that rotates the propeller.
- the movement control unit 315 controls these navigation devices 335 and causes the flying object 300 to navigate according to a navigation program stored in advance in the storage device 332 and the output from the sensor 334.
- the movement control unit 315 adjusts the output of the motor and controls the number of rotations of the propeller, for example, based on information obtained from the sensor 334.
- FIG. 5 is a flow diagram showing an example of encryption key distribution processing by the encryption key distribution system 910 of this embodiment.
- the flying object 300 When the flying object 300 reaches the communicable area of the transmitting device 100, it transmits authentication information to the transmitting device 100 (step S1301) and requests authentication.
- the transmitting device 100 When the transmitting device 100 receives authentication information as an authentication request from the flying object 300, it performs authentication (step S1101).
- the authentication unit 113 compares the received authentication information with the authentication information stored in the authentication information storage unit 122. If the two match, the authentication unit 113 notifies the control unit 112 of successful authentication.
- control unit 112 Upon receiving the notification of successful authentication, the control unit 112 reads the encryption key 500 from the encryption key storage unit 121 and transmits it to the flying object 300 that requested the authentication via the communication unit 111 (step S1102).
- the transmitting device 100 does not transmit the encryption key 500 to the flying object 300 that requested the authentication. At this time, a message or the like indicating that the authentication has failed may be sent to the flying object 300 that is the source of the authentication request.
- the flying object 300 Upon receiving the encryption key 500, the flying object 300 stores it (step S1302) and starts moving (step S1303).
- the flying object 300 When the flying object 300 reaches the communicable area of the receiving device 200 without detecting any abnormality (step S1304; No), the flying object 300 ends its movement (step S1305). The flying object 300 then transmits the authentication information to the receiving device 200 (step S1306) and requests authentication.
- the receiving device 200 Upon receiving authentication information as an authentication request from the flying object 300, the receiving device 200 performs authentication (step S1201).
- the authentication section 213 compares the received authentication information with the authentication information stored in the authentication information storage section 222. If the two match, the authentication unit 213 notifies the control unit 212 of successful authentication.
- control unit 212 Upon receiving the notification of successful authentication, the control unit 212 generates an encryption key transmission request and transmits it to the flying object 300 that has issued the authentication request via the communication unit 111 (step S1202).
- the receiving device 200 does not transmit the encryption key transmission request to the flying object 300 that is the source of the authentication request. At this time, a message or the like indicating that the authentication has failed may be sent to the flying object 300 that is the source of the authentication request.
- the flying object 300 Upon receiving the encryption key transmission request from the receiving device 200, the flying object 300 transmits the stored encryption key 500 to the requesting receiving device 200 (step S1307). Thereafter, the stored encryption key 500 is deleted (step S1308).
- step S1304 if an abnormality is detected during movement (step S1304; Yes), the flying object 300 erases the stored encryption key 500 (step S1308) and ends the process.
- the receiving device 200 communicates with the transmitting device 100 using radio waves or the like to indicate that it has received the encryption key 500, and starts using the encryption key 500.
- the encryption algorithm after receiving the encryption key 500 is not limited. Further, the encryption key 500 to be transmitted and received may not be used as is for encryption and decryption, but may be converted and used by the transmitting device 100 and the receiving device 200 using an algorithm stored in advance.
- FIG. 6 is a flowchart of the encryption key distribution process of the flying object 300 of this embodiment.
- the movement control unit 315 determines whether it has arrived within the communicable area of the transmitting device 100 (step S1401).
- Various existing discrimination methods can be used regardless of the discrimination method. For example, when a laser beam for distance measurement is transmitted to the communication unit 111 and the obtained distance value is less than or equal to a predetermined value, it is determined that the distance has been reached.
- the discrimination may be made using a photographed image obtained by a camera.
- the location may be determined using, for example, a GPS function.
- the authentication requesting unit 314 When reaching the communicable area, the authentication requesting unit 314 requests authentication. Here, as described above, the authentication requesting unit 314 transmits the authentication information stored in the authentication information storage unit 322 to the transmitting device 100 (step S1402).
- the storage control unit 312 Upon receiving the encryption key 500 from the transmitting device 100 within a predetermined period in response to the authentication request (step S1403), the storage control unit 312 stores the encryption key 500 in the encryption key storage unit 321 (step S1404).
- the flying object 300 ends the process.
- the movement control unit 315 starts movement (step S1405).
- the movement control unit 315 controls the navigation device 335 to move the flying object 300 to the communicable area of the receiving device 200 (step S1407).
- the abnormality detection unit 313 detects an abnormality (step S1406), it outputs an abnormality detection signal to the storage control unit 312.
- the storage control unit 312 erases the encryption key 500 stored in the encryption key storage unit 321 (step S1412), and ends the process.
- step S1407 when the flying object 300 reaches the communicable area without detecting any abnormality (step S1407), the movement control unit 315 ends the movement of the flying object 300 (step S1408). Note that the method for determining whether or not the communication area of the receiving device 200 has been reached is the same as that for the transmitting device 100.
- the authentication requesting unit 314 requests the receiving device 200 for authentication.
- the authentication requesting unit 314 transmits the authentication information stored in the authentication information storage unit 322 to the receiving device 200 (step S1409).
- the storage control unit 312 Upon receiving an encryption key transmission request from the receiving device 200 within a predetermined period in response to the authentication request (step S1410), the storage control unit 312 reads out the encryption key 500 from the encryption key storage unit 321 and sends it via the input/output unit 311. The information is transmitted to the receiving device 200 (step S1411). Thereafter, the storage control unit 312 deletes the encryption key 500 from the encryption key storage unit 321 (step S1412), and ends the process.
- step S1412 if the encryption key transmission request is not received within the predetermined period, for example, if a message indicating authentication failure is received, or if no reply is received, the process moves to step S1412.
- the flying object 300 is used to distribute the encryption key 500 between the transmitting device 100 and the receiving device 200.
- the flying object 300 has an abnormality detection function, and when an abnormality is detected in the flying object 300, the encryption key 500 to be delivered is erased.
- the flying object 300 an unmanned and autonomously navigable object such as a drone is used. As long as the flying object 300 is flying at a sufficient altitude, it is unlikely to be subjected to physical contact. In this way, the cryptographic key distribution system 910 of this embodiment uses the flying object 300 to distribute the cryptographic key 500, so that the cryptographic key 500 can be distributed between two points without distance or transmission route constraints, for example. Even if there is, highly secure key distribution with less risk of eavesdropping can be achieved.
- the transmitting device 100 is installed at a base on land and the receiving device 200 is installed on a ship sailing on the sea, the ships move, so they are connected by a physical cable. Difficult to connect with.
- the encryption key distribution system 910 of this embodiment is particularly useful in situations where such a transmission path cannot be secured.
- the encryption key distribution system 910 of the present embodiment uses wireless communication to transmit and receive the encryption key 500 between the transmitter 100 and the receiver 200 and the flying object 300. That is, since the encryption key 500 can be transmitted and received without connecting a connector, there is no need to add new hardware to the flying object 300, and costs can be reduced.
- the encryption key distribution system 910 of this embodiment uses laser light for this wireless communication.
- Laser light has low diffusion, and when transmitting and receiving encryption key 500 between transmitting device 100 and receiving device 200 and flying object 300, it is focused on an extremely small area and transmitted.
- the transmitting and receiving interface areas of the flying object 300, the transmitting device 100, and the receiving device 200 can be made smaller. Therefore, in the encryption key distribution system 910 of this embodiment, attacks on the transmission/reception interface are extremely difficult, and even more secure encryption key distribution can be realized.
- the abnormality detection unit 313 detects changes in vibration, radio waves, temperature, etc. and outputs an abnormality detection signal. . Then, the storage control unit 312 immediately erases the encryption key 500 stored in the encryption key storage unit 321. Therefore, according to the encryption key distribution system 910 of this embodiment, even if an attacker captures the flying object 300, the encryption key 500 inside the flying object 300 has been erased, so that the attacker cannot acquire the encryption key 500. I can't.
- the encryption key distribution system 910 of this embodiment can realize highly secure encryption key distribution from this point of view as well.
- the transmission path can be visually confirmed even though it is wireless communication, and the area range can be easily set and the position at the time of transmission and reception can be set with high accuracy. Therefore, it is possible to realize cryptographic key distribution that is difficult to intercept or eavesdrop and has a high probability of success.
- quantum cryptography can be used for transmitting and receiving the encryption key 500 between the transmitter 100 and the receiver 200 and the flying object 300. Thereby, it is possible to realize encryption key distribution having the same level of security as when the encryption key 500 is directly distributed between the transmitting device 100 and the receiving device 200 using quantum cryptography.
- a laser beam may be output from the transmitting device 100 and/or the receiving device 200, or the flying object 300 may output laser light to these devices.
- Different transmission and reception mechanisms may be used for the transmitting device 100 and the flying object 300, and for the receiving device 200 and the flying object 300, respectively.
- the flying object 300 side determines whether or not it has entered the communicable area. However, this may be performed by the transmitting device 100 and the receiving device 200.
- the transmitting device 100 and the receiving device 200 are equipped with sensors and the like that detect the flying object 300, and use these to detect that the flying object 300 has entered the communicable area. Then, the transmitting device 100 or the receiving device 200 transmits an authentication information transmission request to the flying object 300.
- the flying object 300 immediately erases the encryption key 500 it holds after transmitting the encryption key 500 to the receiving device 200, but the invention is not limited to this.
- it may be configured to delete the information after confirming that the receiving device 200 has received it.
- the receiving device 200 upon receiving the encryption key 500, transmits a receipt notification to the flying object 300.
- the flying object 300 waits for receiving the receipt notice and then erases the encryption key 500.
- the flying object 300 may be configured to transmit the encryption key 500 to the receiving device 200 multiple times until receiving the receipt notification.
- the flying object 300 may notify the transmitting device 100 and/or the receiving device 200 to that effect. Furthermore, even if the authentication is unsuccessful in step S1201 above, a message indicating that the authentication has failed may also be transmitted in plain text from the receiving device 200 to the transmitting device 100.
- the encryption key distribution system 910 of the first embodiment uses a sensor 334 mounted on the flying object 300 to detect an abnormality during delivery.
- the flying object 300 is further monitored by an external device to detect an abnormality in the flying object 300.
- FIG. 7 shows an example of the encryption key distribution system 920 of this embodiment.
- the encryption key distribution system 920 of this embodiment basically has the same configuration as the first embodiment. That is, it includes a transmitting device 100, a receiving device 200, and a flying object 300.
- the encryption key distribution system 920 of this embodiment further includes a monitoring device 400. The present embodiment will be described below, focusing on the monitoring device 400, which has a different configuration from the first embodiment.
- the monitoring device 400 monitors the flying object 300 and its surroundings from the outside.
- the monitoring device 400 includes, for example, a camera and/or a radio wave receiving/transmitting device.
- the monitoring device 400 is installed so that the flying object 300 is within its imaging field of view. Further, in the case of a radio wave receiving and transmitting device, it is installed so that the flying object 300 enters in the direction of transmitting radio waves.
- FIG. 8(a) shows the functional blocks of the monitoring device 400
- FIG. 8(b) shows the hardware configuration of the monitoring device 400.
- the monitoring device 400 includes a communication section 411, an information acquisition section 412, and an abnormality detection section 413.
- the monitoring device 400 also includes a CPU 431, a storage device 432, a communication device 433, and an information gathering device 434.
- the information collecting device 434 collects information about the flying object 300 and its vicinity.
- the information collecting device 434 is an imaging section in the case of a camera, and a radio wave receiving and transmitting section in the case of a radio wave transmitting/receiving device.
- the information acquisition unit 412 controls the operation of the information collection device 434 and passes the information collected by these devices to the abnormality detection unit 413 at predetermined time intervals. In this embodiment, image or reflected wave information is collected.
- the abnormality detection unit 413 analyzes the image or reflected wave acquired by the information acquisition unit 412 and determines whether there is an abnormality in the flying object 300. When it is determined that there is an abnormality, that is, when an abnormality is detected, an abnormality detection signal is transmitted to the flying object 300 via the communication unit 411.
- the communication unit 411, the CPU 431, the storage device 432, and the communication device 433 are the same as the configurations with the same names in, for example, the transmitting device 100 in the first embodiment, so their descriptions will be omitted.
- step S1406 the storage control unit 312 receives the cipher stored in the encryption key storage unit 321 not only through the abnormality detection unit 313 but also when receiving the abnormality detection signal through the input/output unit 311. Delete the key 500.
- the monitoring device 400 may be installed on the ground or may be a floating object such as a satellite. For example, it may be a flying object that flies alongside the flying object 300.
- the transmitting device 100 or the receiving device 200 may include it.
- the encryption key distribution system 920 of this embodiment includes a monitoring device 400 that monitors the state of the flying object 300 and its surroundings from the outside. Also, when the monitoring device 400 determines that there is an abnormality in the flying object 300, the flying object 300 erases the encryption key 500 that is being delivered. Therefore, an abnormality in the flying object 300 can be detected with higher accuracy, and the encryption key 500 can be delivered with higher security.
- the flying object 300 does not need to include the abnormality detection section 313.
- the monitoring device 400 when the monitoring device 400 detects an abnormality, it directly transmits an abnormality detection signal to the flying object 300.
- the information may be configured to be transmitted to the transmitting device 100 and/or the receiving device 200. In this case, abnormality detection signals are transmitted from these devices to the flying object 300.
- the flying object 300 is monitored in real time while moving, and abnormalities in the flying object 300 are detected.
- sensor detection values during movement are accumulated as log information. Then, for example, after reaching the vicinity of the receiving device 200, this log information is further analyzed to detect the presence or absence of an abnormality.
- the configuration of the encryption key distribution system of this embodiment the configuration of the transmitting device 100, the configuration of the receiving device 200, and the hardware configuration of the flying object 300 are basically the same as those of the first embodiment, so the explanation will be omitted here. Omitted.
- FIG. 9(a) An example of the functional blocks of the flying object 300 of this embodiment is shown in FIG. 9(a).
- the flying object 300 of this embodiment includes a log information storage section 323 in addition to the configuration of the flying object 300 of the first embodiment. Note that the log information storage unit 323 is constructed in the storage device 332.
- the abnormality detection unit 313 collects and stores not only the sensor detection value of the sensor 334 that detects the state of the flying object 300 but also the access history to the storage device 332 as log information.
- the abnormality detection unit 313 of this embodiment performs log information verification processing after reaching the communicable area of the receiving device 200 and before requesting authentication.
- the log information verification process is a process of analyzing log information and verifying whether there are any abnormalities. If an invalid log is detected in the log information verification process, the abnormality detection unit 313 determines that there is an abnormality and outputs an abnormality detection signal. Similar to the first embodiment, upon receiving the abnormality detection signal, the storage control unit 312 erases the encryption key 500 from the encryption key storage unit 321.
- the abnormality detection unit 313 determines that there is an abnormality and outputs an abnormality detection signal. .
- the flying object 300 When the flying object 300 receives the encryption key 500 from the transmitting device 100, it should not be accessed until it is stored (in) in the encryption key storage unit 321 and handed over to the receiving device 200. However, in the log information 600, reading (out) is recorded twice. Therefore, the abnormality detection unit 313 determines that there is an unauthorized access, that is, there is an abnormality.
- FIG. 10 shows an example of a process during encryption key distribution by the flying object 300 of this embodiment.
- the process until reaching the receiving device 200 (step S1408) is the same as in the first embodiment.
- the anomaly detection unit 313 then performs log information verification processing (step S3101).
- the abnormality detection unit 313 if it is determined that there is an abnormality (step S3102; Yes), the abnormality detection unit 313 outputs an abnormality detection signal.
- the storage control unit 312 erases the encryption key 500 from the encryption key storage unit 321 (step S1412).
- step S3102 if no abnormality is found in the log information verification process (step S3102; No), the process moves to step S1409 and continues the same process as in the first embodiment.
- the log information verification process may be executed at any timing as long as it is between the end of movement and the transmission of the encryption key.
- the present embodiment has the same configuration as the first embodiment and achieves the same effects as the first embodiment. Furthermore, in this embodiment, the presence or absence of an abnormality is also verified using the accumulated information. Therefore, delivery of the encryption key 500 with higher security can be realized.
- the transmission and reception log of the encryption key 500 can be checked. By doing this, you can confirm eavesdropping.
- the flying object 300 accumulates log information and performs log information verification processing, but the present invention is not limited to this. While the flying object 300 is moving, the log information of the flying object 300 may be transmitted to the transmitting device 100 or the receiving device 200, the log information may be accumulated by these devices, and the log information verification process may be performed. In this case, when an abnormality is detected, an abnormality detection signal is transmitted from these devices to the flying object 300.
- a monitoring device 400 may be provided.
- the monitoring device 400 may also accumulate the collected information as log information and perform log information verification processing.
- the configuration may be such that the log information accumulated by the monitoring device 400 is transmitted to the transmitting device 100 or the receiving device 200, and the log information verification process is performed by these devices.
- an abnormality detection signal is transmitted from these devices to the flying object 300.
- the monitoring results from the monitoring device 400 and log information may be combined to determine the presence or absence of an abnormality in more detail.
- a tracking survey is performed using a satellite camera, radio waves, etc. until the flying object 300 passes data to the receiving device 200.
- the receiving device 200 is notified.
- the receiving device 200 may determine that the flying object 300 is being used illegally if an abnormality is confirmed after comparing the log information (flight log or contact log) of the flying object 300. Further, if an unexpected object comes into contact with the flying object 300, it may be assumed that the flying object 300 has been eavesdropped, and an abnormality detection signal may be transmitted to the flying object 300 to erase the encryption key 500 in the flying object 300.
- the receiving device 200 determines whether an unexpected situation has occurred by inquiring the transmitting device 100 and/or the monitoring device 400 about the flight log of the flying object 300, the log of sensor detection values, the transmission/reception log, etc. Good too. If an unexpected situation occurs, the encryption key 500 in the flying object 300 may be erased because there is a risk of eavesdropping.
- the receiving device 200 may determine whether the flight time is appropriate. In this case, if the flying object 300 does not arrive within a predetermined time, the receiving device 200 may erase the encryption key 500 in the flying object 300.
- the sending device 100 when sending the encryption key 500 to the flying object 300, the sending device 100 simultaneously sends a message to the receiving device 200 indicating that the encryption key 500 has been sent. Then, if the flying object 300 does not arrive within a predetermined time after receiving the message, the receiving device 200 generates an abnormality detection signal. At this time, the flying object 300 may be searched for and the abnormality detection signal may be transmitted at the timing when the abnormality detection signal is generated. Further, when authentication information is transmitted from the flying object 300, an abnormality detection signal may be returned without performing authentication.
- the storage control unit 312 of the flying object 300 that has received the abnormality detection signal deletes the encryption key 500 without transmitting it to the receiving device 200.
- the flying object 300 may determine whether the flight time is appropriate. That is, when a predetermined time has elapsed since receiving the encryption key 500, the storage control unit 312 deletes the encryption key 500 from the encryption key storage unit 321.
- the period until deletion can be specified at the time of individual delivery. For example, at the same time as the encryption key 500 is received, a designation of the period until deletion may be received from the transmitting device 100.
- the storage control unit 312 erases the encryption key 500 after this period has elapsed.
- one flying object 300 is made to travel from the transmitting device 100 to the receiving device 200.
- a plurality of flying objects 300 are made to fly from the transmitting device 100 to the receiving device 200, and a plurality of encryption keys 500 are delivered to the receiving device 200.
- FIG. 11 An example of the encryption key distribution system 940 of this embodiment is shown in FIG. 11. As shown in this figure, the encryption key distribution system 940 includes a transmitting device 100 and a receiving device 200, as in the first embodiment. Furthermore, in this embodiment, a plurality of flying objects 300 are provided.
- the configurations of the transmitting device 100, receiving device 200, and flying object 300 are basically the same as those in the first embodiment.
- the present embodiment will be described below, focusing on the configuration different from the first embodiment.
- Each flying object 300 is provided with unique authentication information.
- the transmitting device 100 of this embodiment stores the encryption key 500 associated with the authentication information in the encryption key storage unit 121 as the encryption key table 140.
- the authentication information storage unit 122 may not be provided.
- the encryption keys 500 to be delivered are registered in association with the authentication information of each flying object 300.
- An example of the encryption key table 140 of this embodiment is shown in FIG.
- each record of the encryption key table 140 includes an authentication information storage section 141 and an encryption key storage section 142.
- the authentication information storage unit 141 stores authentication information for each flying object 300 that is permitted to deliver the encryption key 500.
- the encryption key storage unit 142 stores the encryption key 500 to be delivered by the flying object 300 specified by the corresponding authentication information.
- the receiving device 200 may also include an encryption key table consisting of records having the same items.
- the authentication information of all the flying objects 300 that are permitted to deliver the encryption key 500 is stored in advance in the authentication information storage unit.
- the authentication unit 113 checks all the authentication information stored in the authentication information storage unit 141, and if there is matching authentication information, it is registered in association with that authentication information.
- the encryption key 500 is transmitted to the flying object 300.
- the authentication unit 113 determines that the authentication has failed.
- the receiving device 200 compares all the authentication information stored in the authentication information storage unit. If there is matching authentication information among them, an encryption key transmission request is sent to the flying object 300. Then, the encryption key 500 transmitted from the flying object 300 is stored in the encryption key storage unit associated with the matching authentication information.
- the amount of encryption keys 500 supplied within the same time period can be increased.
- the same encryption key 500 may be loaded onto a plurality of flying objects 300 and delivered. In this case, the delivery accuracy of the encryption key 500 increases.
- a dummy may be included in the encryption key 500 to be transmitted.
- a part of the encryption key 500 to be transmitted may be a dummy, or the entire encryption key 500 delivered by a specific flying object 300 may be a dummy.
- the dummy key (bit) is not used as an encryption key.
- the encryption key 500 to be transmitted and received may be converted and used by the transmitting device 100 and the receiving device 200 using an algorithm stored in advance.
- the determination as to whether or not it is a dummy may be performed using an algorithm stored in advance in the transmitting device 100 and the receiving device 200.
- the flying object 300 lands near the transmitting device 100 or the receiving device 200 when transmitting and receiving the encryption key 500. Then, as shown in the figure, the two are connected by a physical cable and the encryption key 500 is sent and received.
- the communication device 133 of the transmitting device 100, the communication device 233 of the receiving device 200, and the communication device 333 of the flying object 300 are equipped with connectors for wired communication. Furthermore, instead of the communication devices 133, 233, and 333, each device may be provided with an interface for inputting and outputting data via a medium, and the encryption key 500 may be transmitted and received via the medium.
- the transmitting device 100, the receiving device 200, and the flying object 300 are equipped with a plurality of data communication and input/output interfaces, the transmission and reception of the encryption key 500 between the transmitting device 100 and the flying object 300, and the communication between the receiving device 200 and the flying object
- the encryption key 500 may be exchanged with the device 300 using different communication methods.
- the transmission and reception of information regarding authentication between the flying object 300 and the transmitting device 100 and receiving device 200 may also be performed using a wired cable.
- a wired cable may be used only for transmitting and receiving information regarding authentication.
- the movement control unit 315 of the flying object 300 flies toward each receiving device 200 in a predetermined order.
- the flight route may be pre-programmed.
- the storage control unit 312 when receiving the encryption key 500, the storage control unit 312 receives the number of destination receiving devices 200 from the transmitting device 100.
- the flow of processing when the flying object 300 delivers the encryption key in this case is shown in FIG. 14(b). Note that here, the number of receiving devices 200 to be delivered is N (N is an integer of 2 or more). Further, n is a counter.
- the flying object 300 sets an initial value of 1 to a counter n (step S4501). Then, the process from step S1401 to step S1411 in FIG. 6 is executed, and the process of delivering the encryption key 500 to the receiving device 200 to which the nth delivery is scheduled is performed (step S4502).
- step S4503 it is determined whether the encryption key 500 has been erased. For example, if an abnormality is detected during the delivery process in step S4502, the encryption key 500 has already been erased. In this case, since subsequent delivery is not possible, the process is immediately terminated.
- the delivery process is repeated while incrementing the counter by 1 up to the last (Nth) receiving device 200 (steps S4504, S4505).
- the storage control unit 312 erases the encryption key 500 stored in the encryption key storage unit 321 (step S4506), and ends the process.
- the flying object 300 visits a plurality of transmitting devices 100 in a predetermined order and receives a different encryption key 500 from each transmitting device 100. Then, those encryption keys are delivered to one receiving device 200.
- a plurality of transmitting devices 100 and a plurality of receiving devices 200 there may be a plurality of transmitting devices 100 and a plurality of receiving devices 200. Then, a plurality of encryption keys 500 may be received from one transmitting device 100, or a plurality of encryption keys 500 may be transmitted to one receiving device 200.
- the flying object 300 receives the encryption key 500 and, for example, information (receiving device ID) that identifies the receiving device 200 to which the encryption key 500 is transmitted. Then, it is stored in the encryption key storage unit 321 as the second encryption key table 150. The receiving device ID is also held in advance in the receiving device 200.
- the second encryption key table 150 includes an encryption key storage section 151 and a receiving device ID storage section 152.
- the encryption key 500 is stored in the encryption key storage unit 151.
- the receiving device ID storage section 152 stores the receiving device ID. Note that when delivering one encryption key 500 to multiple receiving devices 200, records of the number of delivery destinations having the same encryption key 500 are registered.
- the flying object 300 Each time the flying object 300 arrives at the receiving device 200, upon authentication, the flying object 300 receives a receiving device ID from the receiving device 200 along with an encryption key transmission request, and sends all the encryption keys 500 stored in association with the received receiving device ID. , and transmits it to the receiving device 200. Then, the delivered record of the second encryption key table 150 is deleted.
- the flying object 300 when the flying object 300 arrives at the receiving device 200 whose receiving device ID is RCV001, it transmits the encryption key AAA and the encryption key BBB to the receiving device 200. Then delete these records. Furthermore, when it arrives at the receiving device 200 with RCV002, it transmits the encryption key AAA and CCC and erases these records. Furthermore, when the receiving device 200 of RCV003 is reached, the encryption key CCC is transmitted and the record is deleted. When the received device 200 of RCV0004 is reached, the encryption key AAA is transmitted and this record is deleted.
- the flying object 300 is an example of a flying object such as a drone that navigates according to a pre-stored program, but the flying object 300 is not limited to this. It is only necessary to be able to move between two points (from the transmitting device 100 to the receiving device 200) unmanned.
- it may be a flying object that can be remotely controlled.
- it may be possible to control the arrival position of a bullet or a cannonball, which does not move by itself and moves only by the initial propulsion force.
- it may be a manned and flightable device such as an airplane, a helicopter, or a glider. In this case, it is desirable that the storage unit storing the encryption key 500 is configured to be inaccessible to the operator.
- the device that delivers the encryption key 500 from the transmitting device 100 to the receiving device 200 is not limited to a flying object. It only needs to be able to move between the two devices for which a transmission path cannot be secured, and which is difficult for other objects to access.
- it may be a vehicle that runs on the ground such as an autonomous vehicle, or a mobile object such as a ship. good.
- the encryption key distribution system 970 has the configuration of each embodiment described above, and further includes a billing processing device 700. Note that here, a case is illustrated in which the billing processing device 700 is added to the configuration of the first embodiment.
- the base cryptographic key distribution system may be a cryptographic key distribution system of other embodiments or modifications.
- the billing processing device 700 acquires predetermined billing parameters such as the number of routes, delivery distance, number of deliveries, data amount, non-delivery information, etc. every time encryption key distribution processing by the flying object 300 occurs.
- the number of routes is the number of combinations of the transmitting device 100 and the receiving device 200.
- the number of routes may be received from any of the transmitting device 100, the receiving device 200, and the flying object 300.
- the delivery distance is the distance between the transmitting device 100 and the receiving device 200 for each delivery.
- the distance may be calculated from GPS data between the two, or the flight distance obtained from the flight log of the flying object 300 may be used.
- the distance may be the distance at the time of departure or the distance at the time of arrival.
- the number of deliveries is the number of delivered encryption keys 500.
- the billing processing device 700 collects, for example, the number of cryptographic keys 500 transmitted by the transmitting device 100, the number of cryptographic keys 500 received by the receiving device 200, and the like.
- the amount of data is the amount of data of the encryption key 500 to be delivered.
- the billing processing device 700 collects, for example, the amount of data transmitted by the transmitting device 100, the amount of data received by the receiving device 200, and the like.
- Non-delivery information is information that means non-delivery. For example, when the flying object 300 erases the encryption key 500 before delivering it to the receiving device 200, the information is also transmitted to the billing processing device 700. Alternatively, this information may be transmitted via the transmitting device 100 or the receiving device 200.
- the billing processing device 700 collects these billing parameters, totals them for each predetermined period, calculates the amount according to predetermined calculation conditions, and charges the predetermined billing destination.
- the calculation condition may be, for example, a calculation method such as multiplying the delivery distance, data amount, and predetermined coefficient for successful deliveries over a predetermined period of time. Also, for example, even if the calculation method is to multiply the delivery distance and data amount by a predetermined coefficient for deliveries that occur regardless of success or failure within a predetermined period, and then subtract a penalty for the number of non-deliveries from there. good.
- the calculation conditions are not limited to these, and can be arbitrarily determined.
- billing processing device 700 is implemented as a general-purpose information processing device that includes a CPU, memory, and communication interface.
- the mobile object further includes an abnormality detection section that detects the abnormality and notifies the storage control section.
- the input/output unit receives from an external device that the abnormality has been detected, and notifies the storage control unit.
- the transmitting device and the receiving device further include an authentication requesting unit that requests authentication of the mobile body prior to transmitting and receiving the encryption key.
- the input/output unit communicates the encryption key with the transmitting device and the receiving device using laser light.
- the input/output unit communicates the encryption key with the transmitting device and the receiving device using quantum cryptographic communication.
- the abnormality includes an abnormal value of at least one of vibration, temperature, voltage, position, moving speed, and moving time of the moving body, interference of another object with the moving body, and It is preferable that the information includes at least one of the following: transmission and reception of data between the mobile body and other devices; and an abnormality obtained as a result of analyzing log information of the mobile body.
- the mobile body is a flying body.
- the transmitting device further includes a transmitting device authentication unit that authenticates the mobile object
- the receiving device further includes a receiving device authentication unit that authenticates the mobile object
- the transmitting device communication unit transmits the encryption key to the mobile object when the transmitting device authentication unit succeeds in authentication, It is preferable that the receiving device communication unit receives the encryption key from the mobile object when the receiving device authentication unit succeeds in authentication.
- the cryptographic key distribution system further includes the mobile body as a second mobile body, Preferably, the second mobile body receives from the transmitting device the same encryption key as the encryption key delivered by the mobile body.
- the cryptographic key distribution system further includes the mobile body as a second mobile body, Preferably, the second mobile body receives from the transmitting device an encryption key that is different from the encryption key delivered by the mobile body.
- the cryptographic key distribution system further includes a billing processing device that collects parameters related to billing generated in the cryptographic key distribution system and performs billing.
- [Fourteenth form] See the encryption key distribution method from the third perspective above
- [15th form] See the program from the fourth perspective above
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
送信装置から暗号鍵を受信するとともに、受信装置に前記暗号鍵を送信する入出力部と、前記暗号鍵の記憶部への記憶を制御する記憶制御部と、前記送信装置から前記暗号鍵を受信後、自装置を、前記受信装置へ移動させる移動制御部と、を備え、前記記憶制御部は、前記送信装置から前記暗号鍵を受信すると前記記憶部へ記憶し、異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する、移動体。
Description
本発明は、移動体による暗号鍵配送技術に関する。
インターネット等では、送信側の装置から受信側の装置へ情報(データ)を伝送する途中でデータが盗聴される危険がある。これを防ぐため、伝送するデータを秘匿する各種の暗号化技術がある。多くの暗号化技術では、暗号鍵と呼ばれる鍵を用いてデータを暗号化して送信し、受信側で同じ暗号鍵を用いて復号する方法がある。また、受信側で予め保有する暗号鍵に対応した復号鍵を用いてデータを復号する方法がある。以下では、復号鍵も含めてデータの暗号化および/または復号に用いる鍵を暗号鍵と総称する。このような暗号鍵は、データ伝送の前に、送信側と受信側とで共有する必要がある。
一般に、暗号鍵は、どちらか一方で生成され、他方に配送される。したがって、暗号鍵の配送時の安全性を向上させることは重要である。
暗号鍵の配送には、様々な手法がある。例えば、量子力学を使った量子暗号(量子暗号鍵配送方式)等の手法がある(例えば、特許文献1参照)。
量子暗号鍵配送は、量子を使った通信を行う事で暗号鍵を安全に配送する仕組みである。しかし、伝送路(伝送媒体)は、光ファイバやレーザ光に制限され、また、距離制限もある。
距離や伝送路の制約なく暗号鍵の配送を行うものとして、配送に飛翔体を介する技術がある(例えば、特許文献2参照)。特許文献2に開示の技術では、暗号鍵を生成するために必要な一部の情報のみを一時的に飛翔体に持たせる。すなわち、暗号鍵生成に必要な全ての情報を同時に飛翔体に持たせることなく、複数の基地局で暗号鍵を共有する。
以下の分析は、本発明によって与えられたものである。
引用文献2に記載の発明は、暗号鍵そのものではなく、暗号鍵を生成するために必要な複数の鍵情報を、順次、飛翔体から複数の基地局(送信側および受信側)に送信する。暗号鍵そのものを飛翔体から送信しないため、送信時の安全性や、飛翔体上での安全性は考慮されていない。なお、この引用文献に記載の発明は、送信側と受信側との間に光ファイバ等を用いた伝送路がある事を前提にした発明である。その伝送路を用いて送信側および受信側のいずれか一方から他方に鍵情報を送信し、受け取った側で鍵蒸留処理を行う。
本発明は、上記事情に鑑みてなされたもので、送信側と受信側との間に伝送路が不要で、距離や伝送路の制約なしに、安全に暗号鍵を配送する技術を提供することを目的とする。
本発明の第一の視点によれば、送信装置から暗号鍵を受信するとともに、受信装置に前記暗号鍵を送信する入出力部と、
前記暗号鍵の記憶部への記憶を制御する記憶制御部と、
前記送信装置から前記暗号鍵を受信後、自装置を、前記受信装置へ移動させる移動制御部と、を備え、
前記記憶制御部は、前記送信装置から前記暗号鍵を受信すると前記記憶部へ記憶し、異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する、移動体が提供される。
前記暗号鍵の記憶部への記憶を制御する記憶制御部と、
前記送信装置から前記暗号鍵を受信後、自装置を、前記受信装置へ移動させる移動制御部と、を備え、
前記記憶制御部は、前記送信装置から前記暗号鍵を受信すると前記記憶部へ記憶し、異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する、移動体が提供される。
本発明の第二の視点によれば、前記移動体と、
前記送信装置と、
前記受信装置と、を備え、
前記送信装置は、前記移動体に前記暗号鍵を送信する送信装置通信部を備え、
前記受信装置は、前記移動体から前記暗号鍵を受信する受信装置通信部を備える、暗号鍵配送システムが提供される。
前記送信装置と、
前記受信装置と、を備え、
前記送信装置は、前記移動体に前記暗号鍵を送信する送信装置通信部を備え、
前記受信装置は、前記移動体から前記暗号鍵を受信する受信装置通信部を備える、暗号鍵配送システムが提供される。
本発明の第三の視点によれば、送信装置から暗号鍵を受信する受信ステップと、
受信した前記暗号鍵を記憶部に記憶する記憶ステップと、
前記暗号鍵を記憶した後、受信装置に向けて自装置を移動させる移動ステップと、
移動中に当該自装置の異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する消去ステップと、
目的領域に到着すると、前記記憶部に記憶した前記暗号鍵を前記受信装置に送信する送信ステップと、を備える、暗号鍵配送方法が提供される。
受信した前記暗号鍵を記憶部に記憶する記憶ステップと、
前記暗号鍵を記憶した後、受信装置に向けて自装置を移動させる移動ステップと、
移動中に当該自装置の異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する消去ステップと、
目的領域に到着すると、前記記憶部に記憶した前記暗号鍵を前記受信装置に送信する送信ステップと、を備える、暗号鍵配送方法が提供される。
本発明の第四の視点によれば、移動体に搭載されたコンピュータに、
送信装置から暗号鍵を受信する受信ステップ、
受信した前記暗号鍵を記憶部に記憶する記憶ステップ、
前記暗号鍵を記憶した後、受信装置に向けて自装置を移動させる移動ステップ、
移動中に当該自装置の異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する、消去ステップ、
目的領域に到着すると、前記記憶部に記憶した前記暗号鍵を前記受信装置に送信する送信ステップ、を実行させるためのプログラムが提供される。
送信装置から暗号鍵を受信する受信ステップ、
受信した前記暗号鍵を記憶部に記憶する記憶ステップ、
前記暗号鍵を記憶した後、受信装置に向けて自装置を移動させる移動ステップ、
移動中に当該自装置の異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する、消去ステップ、
目的領域に到着すると、前記記憶部に記憶した前記暗号鍵を前記受信装置に送信する送信ステップ、を実行させるためのプログラムが提供される。
なお、これらのプログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。本発明は、コンピュータプログラム製品として具現することも可能である。
送信側と受信側との間に伝送路が不要で、距離や伝送媒体の制約なしに、安全に暗号鍵を配送できる。
以下、本発明の実施形態の例を、図面を参照して説明する。なお、付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。また、以降の説明で参照する図面等のブロック間の接続線は、双方向および単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。
プログラムはコンピュータ装置を介して実行され、コンピュータ装置は、例えば、プロセッサ、記憶装置、入力装置、通信インタフェース、および必要に応じ表示装置を備える。また、このコンピュータ装置は、通信インタフェースを介して装置内または外部の機器(コンピュータを含む)と、有線、無線を問わず、通信可能に構成される。また、図中の各ブロックの入出力の接続点には、ポート乃至インタフェースがあるが図示を省略する。また、以下の説明において、「Aおよび/またはB」は、AまたはB、もしくは、AおよびBという意味で用いる。
本発明の実施形態の一例である第一実施形態を説明する。本実施形態では、盗聴が困難な飛翔体を移動体として使った暗号鍵配送システムを実現する。本実施形態では、暗号鍵の送信元(送信側)の装置から、暗号鍵の送信先(受信側)の装置へ、飛翔体に暗号鍵を搭載して送信する。このとき、飛翔体の内外にある様々なセンサからのセンサ信号を用いて安全性を担保する。以下、本実施形態では、暗号鍵の送信側の装置を送信装置、暗号鍵の受信側の装置を受信装置と呼ぶ。
図1(a)に、本発明の一実施形態の暗号鍵配送システム910の一例を示す。本図に示すように、暗号鍵配送システム910は、送信装置100と受信装置200と飛翔体300と、を備える。
本図の例では、送信装置100は、陸上(地上)の拠点に設けられる。また、受信装置200は、海上の、例えば、船舶に搭載される。飛翔体300には、例えば、自律航行可能な無人航空機(Unmanned Aerial Vehicle:UAV)の一例であるドローンを用いる。なお、送信装置100および受信装置200の配置箇所は、これに限定されない。
本実施形態の暗号鍵配送システム910では、送信装置100から飛翔体300に暗号鍵500を送り、飛翔体300が受信装置200まで飛行し、受信装置200が飛翔体300から暗号鍵500を受け取る。このとき、飛翔体300は、異常を検知すると、保持する暗号鍵500を消去する。機器の異常のみならず、他の飛翔体との接触あるいは飛翔体300自体の故障など、予期せぬ事態により暗号鍵500が盗聴されたり、暗号鍵500に不達の恐れが発生したりした場合も、飛翔体300は、異常が発生したと判別し、暗号鍵500を消去する。
これを実現するため、飛翔体300は、例えば、図1(b)に示すように、送信装置100から暗号鍵500を受信するとともに、受信装置に暗号鍵500を送信する入出力部311と、送信装置100から暗号鍵500を受信すると、暗号鍵記憶部321へ記憶する記憶制御部312と、飛翔体300を送信装置100から受信装置200まで移動させる移動制御部315と、を備える。そして、記憶制御部312は、移動中、異常が検知された場合、暗号鍵記憶部に記憶された暗号鍵500を消去する。
なお、本実施形態では、飛翔体300に、実際に送受信したいファイル(情報そのもの)を持たせることは想定していない。飛翔体300の飛行速度を考えると、リアルタイム通信にならないからである。なお、暗号鍵500は通信以前に共有できればよいため、暗号鍵500の配送は、一般的な通信に比べてリアルタイム性を問われない。
<<第一実施形態>>
以下、本発明の第一実施形態を説明する。第一実施形態では、暗号鍵配送システム910において、飛翔体300が異常検知手段を備え、移動中に発生する異常を検知する。以下、各装置の詳細について説明する。
以下、本発明の第一実施形態を説明する。第一実施形態では、暗号鍵配送システム910において、飛翔体300が異常検知手段を備え、移動中に発生する異常を検知する。以下、各装置の詳細について説明する。
[送信装置]
図2(a)は、送信装置100の、本実施形態に関連する構成の機能ブロック図である。本図に示すように、送信装置100は、通信部111と、制御部112と、認証部113と、暗号鍵記憶部121と、認証情報記憶部122と、を備える。
図2(a)は、送信装置100の、本実施形態に関連する構成の機能ブロック図である。本図に示すように、送信装置100は、通信部111と、制御部112と、認証部113と、暗号鍵記憶部121と、認証情報記憶部122と、を備える。
暗号鍵記憶部121は、暗号鍵500を記憶する。暗号鍵500は、送信装置100内で生成されるか、あるいは、外部装置から受信する。
認証情報記憶部122は、認証情報を記憶する。認証情報は、暗号鍵500を配送することを許可された飛翔体300であることを証明するための情報である。認証情報は、予め飛翔体300毎に設定され、送信装置100、受信装置200および飛翔体300が同じ情報を保有する。なお、認証情報は、予め記憶しておく。
通信部111は、外部装置とデータの送受信を行う。本実施形態では、飛翔体300との間で暗号鍵500および認証情報の送受信を行う。
上述のように、送信装置100から飛翔体300への暗号鍵500の送信には、例えば、レーザ光を用いる。レーザ光を用いた通信では、量子性を持たせることができる。このため、通信部111は、例えば、量子通信または量子暗号通信で、暗号鍵500を飛翔体300へ送信する。
なお、通信部111は、認証情報を、暗号鍵500と同様にレーザ光で送受信してもよい。また、認証情報は、Bluetooth(登録商標)またはWi-Fi(登録商標)等の近距離無線通信で送受信してもよい。
認証部113は、飛翔体300の認証を行う。認証部113は、通信部111を介して認証情報を受信すると、制御部112の指示に従って、受信した認証情報と、認証情報記憶部122に記憶された認証情報とを照合する。認証部113は、照合後、照合結果を制御部112に通知する。認証部113は、受信した認証情報と記憶された認証情報とが一致した場合、照合結果を認証成功、不一致の場合は、認証失敗とする。
制御部112は、送信装置100全体の動作の制御を行うとともに、通信部111を介して暗号鍵500の送受信の制御を行う。具体的には、制御部112は、認証部113から認証成功の通知を受け取ると、暗号鍵記憶部121から暗号鍵500を読み出し、通信部111を介して飛翔体300に送信する。
図2(b)は、送信装置100の、本実施形態に関連する構成のハードウェア構成図である。本図に示すように、送信装置100は、CPU131と、記憶装置132と、通信装置133と、を備える。
CPU131は、記憶装置132の不揮発領域に記憶されたプログラムをワーク領域にロードして実行することにより、上記各機能を実現するとともに送信装置100全体を統括的に制御する。なお、CPU131の代わりにMPU(Micro Processing Unit)等の1以上のプロセッサを用いてもよい。
記憶装置132は、ROM(Read Only Memory)やRAM(RandomAccess Memory)等のメモリにより構成される。記憶装置132は、各機能を実行するためのプログラムや、通信のための通信パラメータ等の情報を記憶する。また、本実施形態では、上記各記憶部は、記憶装置132に構築される。
なお、記憶装置132は、ROMやRAM等のメモリの他、例えば、SSD(Solid State Drive)、フレキシブルディスク、ハードディスク、光ディスク、CD-ROM、CD-R、磁気テープ、不揮発性メモリカード、DVD等の記憶媒体を備えてもよい。また、記憶装置132は、複数のメモリ等を備えてよい。
通信装置133は、データの送受信を実現する。本実施形態では、通信装置133は、例えば、レーザ光を出力するレーザ出力装置(光源)とレーザ受光装置等を有する光無線通信装置を備える。なお、光源には、可視のレーザ光を出力するLD(Laser Diode)、LED(Light Emitting Diode)等を用いてもよい。
その他、可視光に限らず赤外光、また、電波、音波等を用いてデータの送受信を実現してもよい。具体的には、例えば、Bluetooth、Wi-Fi、NFC(Near Field Communication)等の他の無線通信方式に準拠した通信方式の送受信器を備えてもよい。
[受信装置]
図3(a)は、受信装置200の、本実施形態に関連する構成の機能ブロック図である。本図に示すように、受信装置200は、通信部211と、制御部212と、認証部213と、暗号鍵記憶部221と、認証情報記憶部222と、を備える。
図3(a)は、受信装置200の、本実施形態に関連する構成の機能ブロック図である。本図に示すように、受信装置200は、通信部211と、制御部212と、認証部213と、暗号鍵記憶部221と、認証情報記憶部222と、を備える。
制御部212は、受信装置200全体の動作の制御を行うとともに、通信部211を介して暗号鍵500の送受信の制御を行う。具体的には、制御部212は、認証部213から認証成功の通知を受け付けると、暗号鍵送信依頼を生成し、通信部111を介して飛翔体300に送信する。また、暗号鍵送信依頼に応じて暗号鍵500を受信すると、暗号鍵記憶部221に記憶する。このとき、記憶完了を意味する信号を飛翔体300に送信してもよい。
受信装置200のその他の各機能は、送信装置100の同名の機能と基本的に同様であるため、ここでは、説明を省略する。なお、送信装置100と受信装置200との各機能を区別する必要がある場合は、それぞれ、送信装置通信部111,受信装置通信部211、送信装置制御部112,受信装置制御部212、送信装置認証部113,受信装置認証部213、と呼ぶ。
図3(b)は、受信装置200の、本実施形態に関連する構成のハードウェア構成図である。本図に示すように、受信装置200は、CPU231と、記憶装置232と、通信装置233と、を備える。各構成は、基本的に、送信装置100の同名の構成と同様であるため、説明は省略する。
[飛翔体]
次に、暗号鍵500を、送信装置100から受信装置200に配送する飛翔体300について説明する。本実施形態では、前述のように、飛翔体300として、ドローンを用いる場合を例にあげて説明する。
次に、暗号鍵500を、送信装置100から受信装置200に配送する飛翔体300について説明する。本実施形態では、前述のように、飛翔体300として、ドローンを用いる場合を例にあげて説明する。
図4(a)は、飛翔体300の、本実施形態に関連する構成の機能ブロック図である。本実施形態の飛翔体300は、図1(a)に示す入出力部311と、記憶制御部312と、移動制御部315と、暗号鍵記憶部321と、に加え、異常検知部313と、認証依頼部314と、認証情報記憶部322と、を備える。
暗号鍵記憶部321は、暗号鍵500を記憶する。暗号鍵500は、送信装置100から受信する。
認証情報記憶部322は、飛翔体300の認証情報を記憶する。
入出力部311は、外部装置とデータの入出力を行う。入出力を行うデータは、暗号鍵500、認証情報等である。
入出力部311は、上述のように、送信装置100から暗号鍵500を無線通信で受信し、受信装置200に暗号鍵500を無線で送信する。また、送信装置100および受信装置200に認証情報を送信する。入出力部311は、時間や位置など予め決められた条件の時にだけデータの送受信を可能とする機能を備えてもよい。
上述のように、飛翔体300と、送信装置100または受信装置200との間の暗号鍵500の送受信は、例えば、レーザ光を用いた量子通信、または、量子暗号通信としてもよい。
認証情報は、暗号鍵500と同様にレーザ光で送受信してもよい。また、認証情報は、BluetoothまたはWi-Fi等の近距離無線通信で送受信してもよい。
認証依頼部314は、外部装置に認証を依頼する。本実施形態では、送信装置100および受信装置200に認証を依頼する。認証依頼部314は、認証情報記憶部322に記憶された認証情報を送信し、認証を依頼する。また、認証依頼部314は、後述する移動制御部315から、自装置(飛翔体300)が、認証依頼対象の外部装置と通信可能な領域(以下、通信可能領域と呼ぶ。)内に入ったとの通知を受けると、認証依頼を行う。
異常検知部313は、飛翔体300の状態を監視し、異常が検知された場合、異常検知信号を記憶制御部312に送信する。
異常検知部313は、例えば、後述するセンサ334から送信されるセンサ検出値を収集する。そして、収集したセンサ検出値に異常がある場合(異常値である場合)、異常検知信号を出力する。異常値であるか否かは、センサ毎に予め定めた許容範囲を越えたか否かで判別する。許容範囲は、例えば、閾値等で予め定められる。
また、異常検知部313は、収集したセンサ検出値を解析し、異常の有無を判別してもよい。例えば、飛翔体300が飛行不可能となり、不時着あるいは墜落したこと、バッテリ切れやプログラムのトラブル等を検出してもよい。
記憶制御部312は、上述のように、暗号鍵500の暗号鍵記憶部321への記憶を制御する。本実施形態では、例えば、入出力部311を介して暗号鍵500を取得すると、暗号鍵記憶部321に記憶する。また、暗号鍵送信依頼を受信すると、暗号鍵記憶部321から暗号鍵500を読み出し、入出力部311を介して依頼元に暗号鍵500を送信する。さらに、異常検知部313から異常検知信号を受信すると、暗号鍵記憶部321に記憶されている暗号鍵500を消去する。
移動制御部315は、上述のように、飛翔体300を目的地まで航行させる。本実施形態では、移動制御部315は、飛翔体300を、送信装置100から受信装置200まで航行させる。本実施形態では、送信装置100から暗号鍵500を受信すると、飛翔体300の航行装置(後述)を制御し、飛翔体300を受信装置200まで移動させる。
飛翔体300のハードウェア構成について説明する。図4(b)は、飛翔体の、本実施形態に関連する構成のハードウェア構成図である。本図に示すように、飛翔体300は、CPU(Central Processing Unit)331と、記憶装置332と、通信装置333と、センサ334と、航行装置335と、を備える。
CPU331は、記憶装置332の不揮発領域に記憶されたプログラムをワーク領域にロードして実行することにより、上記各機能を実現するとともに飛翔体300全体を統括的に制御する。なお、CPU331の代わりにMPU(Micro Processing Unit)等の1以上のプロセッサを用いてもよい。
記憶装置332は、ROM(Read Only Memory)やRAM(RandomAccess Memory)等のメモリにより構成される。記憶装置332は、各機能を実行するためのプログラムや、通信のための通信パラメータ等の情報を記憶する。また、本実施形態では、上記各記憶部は、記憶装置332に構築される。
なお、記憶装置332は、ROMやRAM等のメモリの他、例えば、SSD(Solid State Drive)、フレキシブルディスク、ハードディスク、光ディスク、CD-ROM、CD-R、磁気テープ、不揮発性メモリカード、DVD等の記憶媒体を備えてもよい。また、記憶装置332は、複数のメモリ等を備えてよい。
通信装置333は、外部装置との通信を行う。本実施形態では、例えば、送信装置100および受信装置200と、無線通信を行う。上述のように、暗号鍵500は、レーザ光で送受信される。したがって、通信装置333は、レーザ入力装置およびレーザ受光装置を備える。また、認証情報を送受信する近距離通信機器を備えてもよい。
センサ334は、飛翔体300の各部に備えられ、その状態を検出する。センサ334は、振動、接触、温度変化、電圧、位置(緯度、経度、および、高さ)、移動速度(飛行速度)、移動時間、他装置(他物体)との接触、干渉など、飛翔体300の飛行に影響がある事象全てを検出(観測)可能に設定配置される。また、他装置とのデータの送受信の有無等を検出可能としてもよい。本実施形態では、センサ334として、例えば、ジャイロセンサ、加速度センサ、気圧センサ、超音波センサ、地磁気センサ(電子コンパス)、カメラ、GPS装置、バッテリ残量検出センサ等を備える。
これらの検出値は、異常検知部313および移動制御部315に出力され、異常の検知および航行装置335を用いた航行の制御に用いられる。
航行装置335は、移動制御部315の制御に従って、飛翔体300を航行させる。本実施形態では、例えば、プロペラ、プロペラを回転させるモータを備える。移動制御部315は、予め記憶装置332に記憶された航行プログラムと、センサ334からの出力とに従って、これらの航行装置335を制御し、飛翔体300を航行させる。移動制御部315は、例えば、センサ334から得られる情報に基づいて、モータの出力を調整し、プロペラの回転数を制御する。
[暗号鍵配送方法]
以上の構成を備える暗号鍵配送システム910による、暗号鍵配送処理の一例の流れを説明する。図5は、本実施形態の暗号鍵配送システム910による暗号鍵配送処理の一例を示すフロー図である。
以上の構成を備える暗号鍵配送システム910による、暗号鍵配送処理の一例の流れを説明する。図5は、本実施形態の暗号鍵配送システム910による暗号鍵配送処理の一例を示すフロー図である。
飛翔体300は、送信装置100の通信可能領域に到達すると、送信装置100へ認証情報を送信し(ステップS1301)、認証を依頼する。
送信装置100は、飛翔体300から認証依頼として認証情報を受信すると、認証を行う(ステップS1101)。ここでは、認証部113は、受信した認証情報を認証情報記憶部122に記憶される認証情報と照合する。両者が合致した場合、認証部113は、認証成功を制御部112に通知する。
認証成功の通知を受け、制御部112は、暗号鍵記憶部121から暗号鍵500を読み出し、それを、通信部111を介して認証依頼元の飛翔体300に送信する(ステップS1102)。
なお、認証において、認証が不成功である場合は、送信装置100は、認証依頼元の飛翔体300に暗号鍵500を送信しない。このとき、認証依頼元の飛翔体300に、認証失敗を意味するメッセージ等を送信してもよい。
飛翔体300は、暗号鍵500を受信すると、それを記憶し(ステップS1302)、移動を開始する(ステップS1303)。
異常が検知されることなく(ステップS1304;No)受信装置200の通信可能領域に到達すると、飛翔体300は移動を終了する(ステップS1305)。そして、飛翔体300は、受信装置200へ認証情報を送信し(ステップS1306)、認証を依頼する。
受信装置200は、飛翔体300から認証依頼として認証情報を受信すると、認証を行う(ステップS1201)。ここでは、認証部213は、受信した認証情報を認証情報記憶部222に記憶される認証情報と照合する。両者が合致した場合、認証部213は、認証成功を制御部212に通知する。
認証成功の通知を受け、制御部212は、暗号鍵送信依頼を生成し、通信部111を介して認証依頼元の飛翔体300に送信する(ステップS1202)。
なお、認証において、認証が不成功である場合は、受信装置200は、認証依頼元の飛翔体300に暗号鍵送信依頼を送信しない。このとき、認証依頼元の飛翔体300に、認証失敗を意味するメッセージ等を送信してもよい。
受信装置200から暗号鍵送信依頼を受け取ると、飛翔体300は、記憶している暗号鍵500を依頼元の受信装置200に送信する(ステップS1307)。その後、記憶している暗号鍵500を消去する(ステップS1308)。
一方、移動中に、異常が検知された場合(ステップS1304;Yes)、飛翔体300は、記憶している暗号鍵500を消去し(ステップS1308)、処理を終了する。
なお、受信装置200は、ステップS1307で暗号鍵500を受信後、送信装置100に対して、電波などを使って暗号鍵500を受け取った旨の通信を行い、暗号鍵500の利用を始める。暗号鍵500を受けとった後の暗号アルゴリズムは限定されない。また、送受信する暗号鍵500は、そのまま暗号化、復号に用いるのではなく、送信装置100および受信装置200が、予め記憶しているアルゴリズムを用いて変換して用いるものであってもよい。
次に、暗号鍵配送時の、飛翔体300内での処理の一例を説明する。図6は、本実施形態の飛翔体300の、暗号鍵配送処理のフローチャートである。
移動制御部315は、送信装置100の通信可能領域内に到達したかを判別する(ステップS1401)。判別手法は、問わず、既存の各種の判別手法を用いることができる。例えば、通信部111に測距用のレーザ光を送信し、得られた距離値が所定値以下となった場合、到達したと判別する。カメラで取得した撮影画像を用いて判別してもよい。また、送信装置100の位置が既知である場合、例えば、GPS機能を用いて判別してもよい。
通信可能領域に到達した場合、認証依頼部314は、認証依頼を行う。ここでは、上述のように、認証依頼部314は、認証情報記憶部322に記憶される認証情報を送信装置100に送信する(ステップS1402)。
認証依頼に応じて、送信装置100から所定期間内に暗号鍵500を受け取ると(ステップS1403)、記憶制御部312は、暗号鍵500を、暗号鍵記憶部321に記憶する(ステップS1404)。
なお、所定期間内に暗号鍵500を受け取らなかった場合、例えば、認証失敗のメッセージを受け取った場合、または、何も返信を受け取らなかった場合、飛翔体300は、処理を終了する。
次に、暗号鍵500の記憶を終えると、移動制御部315は、移動を開始する(ステップS1405)。ここでは、移動制御部315は、飛翔体300を、受信装置200の通信可能領域まで移動させるよう航行装置335を制御する(ステップS1407)。
移動中、異常検知部313は異常を検知すると(ステップS1406)、記憶制御部312に異常検知信号を出力する。記憶制御部312は、異常検知信号を受信すると、暗号鍵記憶部321に記憶した暗号鍵500を消去し(ステップS1412)、処理を終了する。
一方、異常を検知することなく、通信可能領域に到達すると(ステップS1407)、移動制御部315は、飛翔体300の移動を終了する(ステップS1408)。なお、受信装置200の通信可能領域に到達したか否かの判別手法は、送信装置100の場合の判別手法と同じである。
そして、認証依頼部314は、受信装置200に認証依頼を行う。ここでは、認証依頼部314は、認証情報記憶部322に記憶される認証情報を受信装置200に送信する(ステップS1409)。
認証依頼に応じて、受信装置200から所定期間内に暗号鍵送信依頼を受け取ると(ステップS1410)、記憶制御部312は、暗号鍵記憶部321から暗号鍵500読み出し、入出力部311を介して受信装置200に送信する(ステップS1411)。その後、記憶制御部312は、暗号鍵記憶部321の暗号鍵500を消去し(ステップS1412)、処理を終了する。
なお、所定期間内に暗号鍵送信依頼を受け取らなかった場合、例えば、認証失敗のメッセージを受け取った場合、または、何も返信を受け取らなかった場合、ステップS1412へ移行する。
以上説明したように、本実施形態の暗号鍵配送システム910では、送信装置100と受信装置200との間の暗号鍵500の配送に、飛翔体300を用いる。そして、この飛翔体300は、異常検知機能を有し、飛翔体300に異常が検知された場合、配送する暗号鍵500を消去する。
飛翔体300には、無人で自律航行可能な、例えば、ドローン等を用いる。飛翔体300は、十分な高度で飛んでいる限り、物理的な接触を受けにくい。このように、本実施形態の暗号鍵配送システム910は、暗号鍵500の配送に飛翔体300を用いることにより、距離や伝送路の制約なく、例えば、伝送路が引かれていない2地点間であっても、盗聴のリスクの少ない、安全性の高い鍵配送を実現できる。
例えば、図1(a)に示すように、送信装置100が陸上の拠点に、受信装置200が海上を航行する船舶上に、それぞれ設けられている場合、船舶は移動するため、両者を物理ケーブルで接続することは難しい。このような伝送路が確保できない状況において、本実施形態の暗号鍵配送システム910は、特に有用である。
また、本実施形態の暗号鍵配送システム910は、送信装置100および受信装置200と飛翔体300との間の暗号鍵500の送受信には、無線通信を用いる。すなわち、コネクタの接続無しに暗号鍵500を送受信できるため、飛翔体300に新たなハードウェアを追加する必要がなく、コストを抑えられる。
また、本実施形態の暗号鍵配送システム910は、この無線通信に、レーザ光を用いる。レーザ光は拡散が小さく、送信装置100および受信装置200と飛翔体300との間の暗号鍵500の送受信時に、極めて小さな領域に焦点を当てて送信する。その分、飛翔体300,送信装置100および受信装置200それぞれの送受信インタフェース領域を小さくすることができる。このため、本実施形態の暗号鍵配送システム910では、送受信のインタフェースに対する攻撃は非常に困難となり、さらに安全性の高い暗号鍵配送を実現できる。
例えば、飛翔体300が途中で盗聴されるケースを考える。航行中の飛翔体300の小さなレーザ光のインタフェースにアクセスして情報を取得する事は非常に難しい。したがって、暗号鍵500を取得するために攻撃者は飛翔体300を捕獲する事が考えられる。
しかしながら、本実施形態の暗号鍵配送システム910は、飛翔体300が航行中に障害物に接触した場合、異常検知部313が振動や電波、温度などの変化を検出して異常検知信号を出力する。そして、記憶制御部312が、暗号鍵記憶部321に記憶される暗号鍵500を即座に消去する。したがって、本実施形態の暗号鍵配送システム910によれば、攻撃者が飛翔体300を捕獲したとしても、飛翔体300内の暗号鍵500は、消去されているため、暗号鍵500を取得することはできない。本実施形態の暗号鍵配送システム910は、この観点からも安全性の高い暗号鍵配送を実現できる。
また、レーザ光を用いることにより、無線通信であるにも関わらず、その伝送路が目で確認でき、エリア範囲の設定が容易で精度よく送受信時の位置設定を行うことができる。したがって、傍受、盗聴がしにくく、成功確率の高い暗号鍵配送を実現できる。さらに、レーザ光を用いることにより、送信装置100および受信装置200と飛翔体300との間の暗号鍵500の送受信に、量子暗号を用いることができる。これにより、送信装置100と受信装置200との間で直接、量子暗号で暗号鍵500を配送する場合と同等の安全性を有する暗号鍵配送を実現できる。
なお、本実施形態では、飛翔体300と、送信装置100および/または受信装置200との間の通信では、送信装置100および/または受信装置200からレーザ光を出力してもよいし、飛翔体300からこれらの装置にレーザ光を出力してもよい。送信装置100と飛翔体300、および、受信装置200と飛翔体300、それぞれにおいて、異なる送受信の仕組みを用いてもよい。
また、本実施形態では、通信可能領域内に入ったか否かを、飛翔体300側で判別している。しかしながら、これを送信装置100および受信装置200で行ってもよい。
この場合、送信装置100および受信装置200は、飛翔体300を検出するセンサ等を備え、これらで飛翔体300が通信可能領域内に入ったことを検出する。そして、送信装置100または受信装置200から、飛翔体300に向けて認証情報送信依頼を送信する。
また、本実施形態では、飛翔体300は、受信装置200に暗号鍵500を送信すると、即座に保持する暗号鍵500を消去しているが、これに限定されない。例えば、受信装置200が受け取ったことを確認してから消去するよう構成してもよい。
この場合、受信装置200は、暗号鍵500を受け取ると、受取通知を飛翔体300に送信する。飛翔体300では、受取通知の受信を待って、暗号鍵500を消去する。なお、飛翔体300は、受取通知を受け取るまで、複数回、受信装置200に暗号鍵500を送信するよう構成してもよい。
なお、飛翔体300において、暗号鍵500を消去した際は、飛翔体300から送信装置100および/または受信装置200にその旨通知してもよい。また、上記ステップS1201において認証が不成功である場合も、認証失敗を意味するメッセージを、受信装置200から送信装置100にも平文で送信してもよい。
<<第二実施形態>>
次に、本発明の第二実施形態を説明する。第一実施形態の暗号鍵配送システム910は、飛翔体300に搭載されたセンサ334で、配送中の異常を検出する。本実施形態では、さらに外部装置により飛翔体300を監視し、飛翔体300の異常を検出する。
次に、本発明の第二実施形態を説明する。第一実施形態の暗号鍵配送システム910は、飛翔体300に搭載されたセンサ334で、配送中の異常を検出する。本実施形態では、さらに外部装置により飛翔体300を監視し、飛翔体300の異常を検出する。
図7に本実施形態の暗号鍵配送システム920の一例を示す。本図に示すように、本実施形態の暗号鍵配送システム920は、基本的に第一実施形態と同様の構成を備える。すなわち、送信装置100と、受信装置200と、飛翔体300と、を備える。そして、本実施形態の暗号鍵配送システム920は、さらに、監視装置400を備える。以下、本実施形態について、第一実施形態と異なる構成である監視装置400に主眼をおいて説明する。
監視装置400は、外部から飛翔体300およびその周辺を監視する。監視装置400は、例えば、カメラおよび/または電波受発信装置等で構成される。
監視装置400は、例えば、カメラの場合、その撮像視野に飛翔体300が入るよう設置される。また、電波受発信装置の場合、電波発信方向に飛翔体300が入るよう設置される。
図8(a)に監視装置400の機能ブロックを、図8(b)に監視装置400のハードウェア構成を、それぞれ示す。
これらの図に示すように、監視装置400は、通信部411と、情報取得部412、異常検出部413と、を備える。また、監視装置400は、CPU431と、記憶装置432と、通信装置433と、情報収集装置434と、を備える。
情報収集装置434は、飛翔体300およびその近傍の情報を収集する。情報収集装置434は、カメラの場合、撮像部であり、電波受発信装置の場合、電波受発信部である。
情報取得部412は、情報収集装置434の動作を制御し、所定の時間間隔でこれらが収集した情報を異常検出部413に受け渡す。本実施形態では、画像または反射波情報を収集する。
異常検出部413は、情報取得部412が取得した画像または反射波を解析し、飛翔体300の異常の有無を判別する。異常有りと判別した場合、すなわち、異常を検出した場合、通信部411を介して、異常検知信号を飛翔体300に送信する。
通信部411と,CPU431と、記憶装置432と、通信装置433と、は、第一実施形態の、例えば、送信装置100の同名の構成と同様であるため、説明を省略する。
また、本実施形態の暗号鍵配送処理の流れも、基本的に第一実施形態と同様である。ただし、本実施形態では、ステップS1406において、記憶制御部312は、異常検知部313だけでなく、入出力部311を介して異常検知信号を受信した場合も、暗号鍵記憶部321に記憶した暗号鍵500を消去する。
なお、監視装置400は、地上に設置されていてもよいし、衛星等の浮遊物であってもよい。例えば、飛翔体300と並んで飛行する飛翔体であってもよい。また、送信装置100または受信装置200が備えていてもよい。
以上説明したように、本実施形態によれば、第一実施形態と同様の構成を備えるため、第一実施形態と同様の効果を奏する。さらに、本実施形態の暗号鍵配送システム920は、飛翔体300およびその周辺の状態を外部から監視する監視装置400を備える。そして、監視装置400が飛翔体300に異常有りと判別した場合も、飛翔体300は、配送中の暗号鍵500を消去する。このため、飛翔体300の異常を、より高い確度で発見することができ、さらに安全性の高い暗号鍵500の配送を実現できる。
なお、本実施形態では、飛翔体300は、異常検知部313を備えなくてもよい。
また、本実施形態では、監視装置400は、異常を検出した場合、異常検知信号を、直接、飛翔体300に送信している。しかし、これに限定されない。例えば、送信装置100および/または受信装置200に送信するよう構成してもよい。この場合、これらの装置から飛翔体300に異常検知信号を送信する。
<<第三実施形態>>
次に、本実施形態の第三実施形態を説明する。上記各実施形態では、移動中、リアルタイムで飛翔体300を監視し、飛翔体300の異常を検出している。本実施形態では、移動中のセンサ検出値をログ情報として蓄積する。そして、例えば、受信装置200の近傍に到達した後、さらに、このログ情報を解析し、異常の有無を検出する。
次に、本実施形態の第三実施形態を説明する。上記各実施形態では、移動中、リアルタイムで飛翔体300を監視し、飛翔体300の異常を検出している。本実施形態では、移動中のセンサ検出値をログ情報として蓄積する。そして、例えば、受信装置200の近傍に到達した後、さらに、このログ情報を解析し、異常の有無を検出する。
本実施形態の暗号鍵配送システムの構成、送信装置100、受信装置200の構成、および、飛翔体300のハードウェア構成は、基本的に第一実施形態と同様であるため、ここでは、説明を省略する。
本実施形態の飛翔体300の機能ブロックの一例を、図9(a)に示す。本図に示すように、本実施形態の飛翔体300は、第一実施形態の飛翔体300の構成に加え、ログ情報記憶部323を備える。なお、ログ情報記憶部323は、記憶装置332に構築される。
本実施形態の異常検知部313は、第一実施形態の処理に加え、収集したセンサ検出値を、検出時刻(または収集時刻)に対応づけて、ログ情報としてログ情報記憶部323に記憶する。
また、異常検知部313は、飛翔体300の状態を検出するセンサ334のセンサ検出値だけでなく、記憶装置332へのアクセス履歴もログ情報として収集し、記憶する。
また、本実施形態の異常検知部313は、受信装置200の通信可能領域到達後、認証依頼の前に、ログ情報検証処理を行う。ログ情報検証処理は、ログ情報を解析し、異常がないかを検証する処理である。ログ情報検証処理において不正なログが検出された場合、異常検知部313は、異常有りと判別し、異常検知信号を出力する。第一実施形態同様、記憶制御部312は、異常検知信号を受信すると、暗号鍵記憶部321の暗号鍵500を消去する。
例えば、暗号鍵記憶部321へのアクセスログとして、図9(b)に示すようなログ情報600が記録されている場合、異常検知部313は、異常有りと判別し、異常検知信号を出力する。
飛翔体300は、送信装置100から暗号鍵500を受信した際、暗号鍵記憶部321に記憶(in)後、受信装置200に受け渡すまで、アクセスはないはずである。しかしながら、ログ情報600では、2回、読み出し(out)が記録されている。したがって、異常検知部313は、不正なアクセスあり、すなわち、異常有りと判別する。
ここで、本実施形態の飛翔体300による暗号鍵配送時の処理の一例を、図10に示す。受信装置200に到達する(ステップS1408)までは、第一実施形態と同様である。
本実施形態では、その後、異常検知部313は、ログ情報検証処理を行う(ステップS3101)。ログ情報検証処理において、異常有りと判別した場合(ステップS3102;Yes)、異常検知部313は、異常検知信号を出力する。そして、それを受け、記憶制御部312は、暗号鍵記憶部321の暗号鍵500を消去する(ステップS1412)。
一方、ログ情報検証処理において、異常が発見されなかった場合(ステップS3102;No)は、ステップS1409へ移行し、第一実施形態と同様の処理を継続する。なお、ログ情報検証処理は、移動終了から暗号鍵送信までの間であれば、その実行タイミングは問わない。
このように、本実施形態によれば、第一実施形態と同様の構成を備え、第一実施形態と同様の効果を奏する。さらに、本実施形態では、蓄積した情報を用いた異常の有無の検証も行う。このため、より安全性の高い暗号鍵500の配送を実現できる。
例えば、飛翔体300の機体に接触せずにレーザ光のインタフェースにアクセスするなど、攻撃者が異常検知機能を無効化する方法で盗聴を試みようとした場合でも、暗号鍵500の送受信ログを確認することで、盗聴を確認することができる。
本実施形態では、飛翔体300でログ情報を蓄積し、ログ情報検証処理を行っているが、これに限定されない。飛翔体300の移動中、飛翔体300のログ情報を、送信装置100または受信装置200に送信し、これらの装置でログ情報を蓄積し、ログ情報検証処理を行うよう構成してもよい。この場合、異常を検出した場合、これらの装置から飛翔体300へ異常検知信号を送信する。
さらに、本実施形態では、第二実施形態同様、監視装置400を備えてもよい。この場合、監視装置400でも、収集した情報をログ情報として蓄積し、ログ情報検証処理を行ってもよい。また、監視装置400で蓄積したログ情報を、送信装置100または受信装置200に送信し、これらの装置でログ情報検証処理を行うよう構成してもよい。この場合も同様に、異常を検出した場合、これらの装置から飛翔体300へ異常検知信号を送信する。
また、受信装置200において、監視装置400での監視結果と、ログ情報とを組み合わせて、異常の有無の判断をより詳細に行ってもよい。例えば、飛翔体300が受信装置200にデータを渡すまで、衛星カメラや電波などを使って追跡調査を行う。この時の異常検知の方法として、予定外のものが飛翔体300に接近し、接触した場合、受信装置200に知らせる。受信装置200では、飛翔体300のログ情報(飛行ログや接触ログ)と照らし合わせた上で異常が確認された場合、飛翔体300が不正利用されていると判断してもよい。また、予定外のものが飛翔体300に接触した場合、盗聴されたとみなして、異常検出信号を飛翔体300に送信し、飛翔体300内の暗号鍵500を消去させても良い。
さらに、受信装置200は、飛翔体300の飛行ログやセンサ検出値のログ、送受信ログなどを送信装置100および/または監視装置400に問い合わせることで、予定外の事態の発生の有無を判別してもよい。そして、予定外の事態が発生している場合、盗聴の恐れがあるとして飛翔体300内の暗号鍵500を消去させてもよい。
さらに、受信装置200において、飛行時間の適否の判別を行ってもよい。この場合、受信装置200は、予め定めた時間内に飛翔体300が到着しなかった場合、飛翔体300内の暗号鍵500を消去させてもよい。
この場合、例えば、送信装置100は、暗号鍵500を飛翔体300に送信した際、同時に、暗号鍵500を送信したことを意味するメッセージを受信装置200に送信する。そして、受信装置200は、メッセージの受信から、所定時間内に飛翔体300が到着しない場合は、異常検知信号を生成する。このとき、異常検知信号を生成したタイミングで、飛翔体300を探索し、異常検知信号を送信してもよい。また、飛翔体300から認証情報が送信された際、認証を行うことなく、異常検知信号を返信してもよい。
なお、異常検知信号を受信した飛翔体300の記憶制御部312は、暗号鍵500を受信装置200に送信せずに消去する。
また、飛翔体300で飛行時間の適否の判断を行ってもよい。すなわち、暗号鍵500を受け取ってから予め定めた時間が経過した場合、記憶制御部312は、暗号鍵記憶部321の暗号鍵500を消去する。
消去までの期間は、個々の配送時に指定可能とする。例えば、暗号鍵500の受信と同時に、送信装置100から消去までの期間の指定も受信するよう構成してもよい。記憶制御部312は、この期間が経過したら、暗号鍵500を消去する。
<<第四実施形態>>
次に、本発明の第四実施形態を説明する。上記各実施形態では、1機の飛翔体300を送信装置100から受信装置200に航行させる。一方、本実施形態では、送信装置100から受信装置200に、複数の飛翔体300を航行させ、複数の暗号鍵500を配送する。
次に、本発明の第四実施形態を説明する。上記各実施形態では、1機の飛翔体300を送信装置100から受信装置200に航行させる。一方、本実施形態では、送信装置100から受信装置200に、複数の飛翔体300を航行させ、複数の暗号鍵500を配送する。
本実施形態の暗号鍵配送システム940の一例を、図11に示す。本図に示すように、暗号鍵配送システム940は、第一実施形態同様、送信装置100および受信装置200を備える。さらに、本実施形態では、複数の飛翔体300を備える。
送信装置100、受信装置200および飛翔体300それぞれの構成は、基本的に第一実施形態と同様である。以下、本実施形態について、第一実施形態と異なる構成に主眼をおいて説明する。
各飛翔体300は、それぞれ、固有の認証情報を備える。本実施形態の送信装置100は、暗号鍵記憶部121に、認証情報に対応付けた暗号鍵500を、暗号鍵テーブル140として記憶する。本実施形態では、認証情報記憶部122は、備えなくてもよい。
暗号鍵テーブル140では、各飛翔体300の認証情報に対応づけて、配送する暗号鍵500が登録される。本実施形態の暗号鍵テーブル140の一例を、図12に示す。
本図に示すように、暗号鍵テーブル140の各レコードは、認証情報格納部141と、暗号鍵格納部142と、を備える。認証情報格納部141には、暗号鍵500の配送を許可された各飛翔体300の認証情報が格納される。暗号鍵格納部142は、対応する認証情報で特定される飛翔体300で配送する暗号鍵500が格納される。
また、受信装置200も同様に、同じ項目を有するレコードからなる暗号鍵テーブルを備えてもよい。予め認証情報格納部に、暗号鍵500の配送を許可された飛翔体300全ての認証情報が、それぞれ格納される。
図5のステップS1101の認証処理において、認証部113は、認証情報格納部141に格納された全ての認証情報と照合し、一致した認証情報があれば、その認証情報に対応づけて登録される暗号鍵500を飛翔体300に送信する。
なお、認証部113は、認証情報格納部141に格納された認証情報に、合致するものがない場合、認証失敗とする。
また、受信装置200では、図5のステップS1201の認証処理において、認証情報格納部に格納される全ての認証情報と照合する。そして、その中に合致する認証情報がある場合、飛翔体300に暗号鍵送信依頼を送信する。そして、折り返し、飛翔体300から送信された暗号鍵500を、合致した認証情報に対応付けられた暗号鍵格納部に記憶する。
これにより、本実施形態によれば、同時間内での暗号鍵500の供給量を増やすことができる。
また、複数の飛翔体300に、同じ暗号鍵500を搭載し、配送してもよい。この場合、暗号鍵500の配送確度が高まる。
さらに、本実施形態では、送信する暗号鍵500にダミーを含めてもよい。送信する暗号鍵500の一部をダミーとしてもよいし、特定の飛翔体300が配送する暗号鍵500全体がダミーでもよい。ダミーの鍵(bit)は、暗号鍵として使用しない。この場合も、送受信する暗号鍵500は、送信装置100および受信装置200が、予め記憶しているアルゴリズムを用いて変換して用いるものであってもよい。さらに、ダミーであるか否かの判定を、予め送信装置100および受信装置200が記憶するアルゴリズムを用いて行うようにしてもよい。これらの手法により、盗聴や捕獲等のリスクを低減できる。
なお、本実施形態では、第二実施形態と組み合わせてもよい。
<変形例1>
上記各実施形態および変形例では、送信装置100および受信装置200と飛翔体300との暗号鍵500の送受信時、飛翔体300は滑空した状態であり、無線通信で暗号鍵500を送受信しているが、これに限定されない。例えば、この間の通信は、図13に示すように、有線通信であってもよい。図13では、第一実施形態と同様の暗号鍵配送システム910を例示する。
上記各実施形態および変形例では、送信装置100および受信装置200と飛翔体300との暗号鍵500の送受信時、飛翔体300は滑空した状態であり、無線通信で暗号鍵500を送受信しているが、これに限定されない。例えば、この間の通信は、図13に示すように、有線通信であってもよい。図13では、第一実施形態と同様の暗号鍵配送システム910を例示する。
この場合、飛翔体300は、暗号鍵500の送受信時、送信装置100または受信装置200の近傍に着地する。そして、本図に示すように、両者を物理ケーブルで接続し、暗号鍵500の送受信を行う。
この場合、送信装置100の通信装置133、受信装置200の通信装置233および飛翔体300の通信装置333は、有線通信のコネクタを備える。さらに、各装置が通信装置133,233,333の代わりに、媒体を介してデータを入出力するインタフェースを備え、媒体経由で暗号鍵500を送受信してもよい。
上述したように、送信装置100,受信装置200および飛翔体300が複数のデータの通信、入出力インタフェースを備える場合、送信装置100と飛翔体300との暗号鍵500の授受、受信装置200と飛翔体300との間の暗号鍵500の授受は、それぞれ、異なる通信方式であってもよい。
この場合、飛翔体300と、送信装置100および受信装置200との間の認証に関する情報の送受信も、有線ケーブルであってもよい。なお、各実施形態および各変形例において、認証に関する情報の送受信のみ、有線ケーブルを用いてもよい。
<変形例2>
なお、上記各実施形態および各変形例では、1つの送信装置100から1つの受信装置200に暗号鍵500を配送する場合を例にあげて説明した。しかし、これに限定されない。例えば、図14(a)に示すように、複数の受信装置200に順に同じ飛翔体300で同じ暗号鍵500を配送してもよい。
なお、上記各実施形態および各変形例では、1つの送信装置100から1つの受信装置200に暗号鍵500を配送する場合を例にあげて説明した。しかし、これに限定されない。例えば、図14(a)に示すように、複数の受信装置200に順に同じ飛翔体300で同じ暗号鍵500を配送してもよい。
本変形例の場合、飛翔体300の移動制御部315は、予め定めた順に各受信装置200に向けて飛行する。飛行ルートは、予めプログラムされていてもよい。
また、本変形例の場合、記憶制御部312は、暗号鍵500を受信する際、送信装置100から、配送先の受信装置200の数を受信する。
この場合の飛翔体300による暗号鍵配送時の処理の流れを、図14(b)に示す。なお、ここでは、配送先の受信装置200の数はN(Nは2以上の整数。)とする。また、nはカウンタである。
飛翔体300は、カウンタnに初期値1を設定する(ステップS4501)。そして、図6のステップS1401からステップS1411の処理を実行し、n番目に配送予定の受信装置200に対し、暗号鍵500の配送処理を実行する(ステップS4502)。
その後、暗号鍵500が消去されているか否かを判別する(ステップS4503)。例えば、ステップS4502の配送処理時に、異常が検知された場合は、暗号鍵500はすでに消去されている。この場合は、その後の配送は不可能であるため、そのまま、処理を終了する。
一方、暗号鍵500が消去されていなければ、最後(N番目)の受信装置200まで、カウンタを1ずつインクリメントしながら、配送処理を繰り返す(ステップS4504,S4505)。
そして、最後の受信装置200まで配送処理が完了したら、記憶制御部312は、暗号鍵記憶部321に記憶される暗号鍵500を消去し(ステップS4506)、処理を終了する。
また、送信装置100側が複数であってもよい。この場合、飛翔体300は、予め定めた順に複数の送信装置100を回り、各送信装置100から、それぞれ異なる暗号鍵500を受け取る。そして、1の受信装置200にそれらの暗号鍵を配送する。
さらに、送信装置100および受信装置200それぞれが複数であってもよい。そして、1の送信装置100から複数の暗号鍵500を受信してもよいし、1の受信装置200に複数の暗号鍵500を送信してもよい。
この場合、飛翔体300は、暗号鍵500とともに、例えば、当該暗号鍵500の送信先の受信装置200を特定する情報(受信装置ID)を受信する。そして、暗号鍵記憶部321に第二暗号鍵テーブル150として記憶する。受信装置IDは、受信装置200も予め保持しておく。
第二暗号鍵テーブル150の一例を図15に示す。第二暗号鍵テーブル150は、暗号鍵格納部151と、受信装置ID格納部152と、を備える。暗号鍵格納部151には、暗号鍵500が格納される。受信装置ID格納部152には、受信装置IDが格納される。なお、一つの暗号鍵500を複数の受信装置200に配送する場合、同じ暗号鍵500を有する、配送先数のレコードが登録される。
飛翔体300は、受信装置200に到着する毎に、認証時、受信装置200から暗号鍵送信依頼とともに受信装置IDを受け取り、受け取った受信装置IDに対応づけて格納される全ての暗号鍵500を、その受信装置200に送信する。そして、第二暗号鍵テーブル150の配送済レコードを消去する。
例えば、図15の例では、飛翔体300は、受信装置IDがRCV001である受信装置200に到着した場合、暗号鍵AAAと暗号鍵BBBとを当該受信装置200に送信する。そして、これらのレコードを消去する。また、同RCV002である受信装置200に到着した場合、暗号鍵AAAとCCCとを送信し、これらのレコードを消去する。また、同RCV003の受信装置200に到着した場合、暗号鍵CCCを送信し、当該レコードを消去する。そして、同RCV0004の受信装置200に到着した場合、暗号鍵AAAを送信し、このレコードを消去する。
<変形例3>
上記各実施形態では、飛翔体300として、ドローンなど、予め記憶されたプログラムに従って、航行する飛翔体を例にあげて説明したが、飛翔体300は、これに限定されない。無人で2地点間(送信装置100から受信装置200)を移動できればよい。例えば、遠隔操作可能な飛翔体であってもよい。また、弾丸や砲弾のように、自走せず、初期の推進力だけで移動しつつも、到着位置の制御が可能なものであってもよい。さらには、飛行機、ヘリコプター、グライダ等有人で飛行可能な装置であってもよい。この場合は、操縦者が暗号鍵500を記憶する記憶部にアクセス不能に構成されていることが望ましい。
上記各実施形態では、飛翔体300として、ドローンなど、予め記憶されたプログラムに従って、航行する飛翔体を例にあげて説明したが、飛翔体300は、これに限定されない。無人で2地点間(送信装置100から受信装置200)を移動できればよい。例えば、遠隔操作可能な飛翔体であってもよい。また、弾丸や砲弾のように、自走せず、初期の推進力だけで移動しつつも、到着位置の制御が可能なものであってもよい。さらには、飛行機、ヘリコプター、グライダ等有人で飛行可能な装置であってもよい。この場合は、操縦者が暗号鍵500を記憶する記憶部にアクセス不能に構成されていることが望ましい。
また、送信装置100から受信装置200まで暗号鍵500を配送する装置は、飛翔体に限定されない。伝送路を確保できない両装置間を移動可能であり、他の物体のアクセスが困難なものであればよく、例えば、自動運転車等の地上を走行する車両、船舶等の移動体であってもよい。
<変形例4>
また、上記各実施形態および各変形例の暗号鍵配送システムを用いて収益を得るよう構成してもよい。
また、上記各実施形態および各変形例の暗号鍵配送システムを用いて収益を得るよう構成してもよい。
この場合、図16に示すように、暗号鍵配送システム970は、上記各実施形態の構成に、さらに、課金処理装置700を備える。なお、ここでは、第一実施形態の構成に課金処理装置700を加えた場合を例示する。ベースとする暗号鍵配送システムは、その他の実施形態または変形例の暗号鍵配送システムであってもよい。
課金処理装置700は、飛翔体300による暗号鍵配送処理が発生する毎に、航路数、配送距離、配送数、データ量、不達情報等の、予め定めた課金パラメータを取得する。
航路数は、送信装置100と受信装置200とのコンビネーション数である。航路数は、送信装置100、受信装置200および飛翔体300のいずれから受信してもよい。
配送距離は、各配送の、送信装置100と受信装置200との間の距離である。距離は、例えば、両者間のGPSデータから算出してもよいし、飛翔体300の飛行ログから得られる飛行距離を用いてもよい。例えば、送信装置100および/または受信装置200が移動する場合、出発時点での距離であってもよいし、到着時点での距離であってもよい。
配送数は、配送した暗号鍵500の数である。課金処理装置700は、例えば、送信装置100が送信した暗号鍵500の数、受信装置200が受信した暗号鍵500の数等を収集する。
データ量は、配送する暗号鍵500のデータ量である。課金処理装置700は、例えば、送信装置100が送信したデータ量、受信装置200が受信したデータ量等を収集する。
不達情報は、不達になったことを意味する情報である。例えば、飛翔体300が、受信装置200に配送前に暗号鍵500を消去した場合、課金処理装置700にもその情報を送信する。あるいは、送信装置100または受信装置200を介してこの情報を送信してもよい。
課金処理装置700は、これらの課金パラメータを収集し、所定期間ごとに集計し、予め定めた算出条件に従って金額を算出し、予め定めた課金先に課金する。算出条件は、例えば、所定期間の、成功した配送の、配送距離とデータ量と予め定めた係数とを乗算する、といった算出法であってもよい。また、例えば、所定期間の成否にかかわらず発生した配送の、配送距離とデータ量と予め定めた係数とを乗算し、そこから、不達回数分ペナルティ減算をする、といった算出法であってもよい。算出条件は、これらに限定されず、任意に定めることができる。
なお、課金処理装置700は、CPUとメモリと通信インタフェースとを備える汎用の情報処理装置で実現される。
以上、本発明の各実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、各図面に示したネットワーク構成、各要素の構成は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。
最後に、本発明の好ましい形態を要約する。なお、上記の各実施形態および各変形例の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。
[第一の形態]
(上記第一の視点による移動体を参照)
[第二の形態]
上記移動体において、前記異常を検知し、前記記憶制御部に通知する異常検知部をさらに備えることが好ましい。
[第三の形態]
上記移動体において、前記入出力部は、前記異常が検知されたことを外部装置から受信し、前記記憶制御部に通知する、ことが好ましい。
[第四の形態]
上記移動体において、前記送信装置および前記受信装置に、前記暗号鍵の送受信に先立ち、当該移動体の認証を依頼する認証依頼部をさらに備える、ことが好ましい。
[第五の形態]
上記移動体において、前記入出力部は、前記送信装置および前記受信装置と、レーザ光にて前記暗号鍵の通信を行う、ことが好ましい。
[第六の形態]
上記移動体において、前記入出力部は、前記送信装置および前記受信装置と、量子暗号通信にて前記暗号鍵の通信を行う、ことが好ましい。
[第七の形態]
上記移動体において、前記異常は、当該移動体の、振動、温度、電圧、位置、移動速度、および移動時間の少なくとも1つの異常値と、当該移動体への他物体の干渉と、当該移動体と他装置との間のデータの送受信と、当該移動体のログ情報を解析した結果得られる異常と、の少なくとも1つを含む、ことが好ましい。
[第八の形態]
上記移動体において、当該移動体は、飛翔体であることが好ましい。
[第九の形態]
(上記第二の視点による暗号鍵配送システムを参照)
[第一〇の形態]
上記暗号鍵配送システムにおいて、前記送信装置は、前記移動体を認証する送信装置認証部をさらに備え、
前記受信装置は、前記移動体を認証する受信装置認証部をさらに備え、
前記送信装置通信部は、前記送信装置認証部が認証に成功した場合、前記移動体に前記暗号鍵を送信し、
前記受信装置通信部は、前記受信装置認証部が認証に成功した場合、前記移動体から前記暗号鍵を受信する、ことが好ましい。
[第一一の形態]
上記暗号鍵配送システムにおいて、上記移動体を第二移動体としてさらに備え、
前記第二移動体は、前記移動体が配送する前記暗号鍵と同じ暗号鍵を前記送信装置から受信する、ことが好ましい。
[第一二の形態]
上記暗号鍵配送システムにおいて、上記移動体を第二移動体としてさらに備え、
前記第二移動体は、前記移動体が配送する前記暗号鍵と異なる暗号鍵を前記送信装置から受信する、ことが好ましい。
[第一三の形態]
上記暗号鍵配送システムにおいて、当該暗号鍵配送システムで発生する課金に関連するパラメータを収集し、課金を行う課金処理装置をさらに備える、ことが好ましい。
[第一四の形態]
(上記第三の視点による暗号鍵配送方法を参照)
[第一五の形態]
(上記第四の視点によるプログラムを参照)
なお、上記第一四および第一五の形態は、第一の形態と同様に、第二から第八の形態に展開することが可能である。
[第一の形態]
(上記第一の視点による移動体を参照)
[第二の形態]
上記移動体において、前記異常を検知し、前記記憶制御部に通知する異常検知部をさらに備えることが好ましい。
[第三の形態]
上記移動体において、前記入出力部は、前記異常が検知されたことを外部装置から受信し、前記記憶制御部に通知する、ことが好ましい。
[第四の形態]
上記移動体において、前記送信装置および前記受信装置に、前記暗号鍵の送受信に先立ち、当該移動体の認証を依頼する認証依頼部をさらに備える、ことが好ましい。
[第五の形態]
上記移動体において、前記入出力部は、前記送信装置および前記受信装置と、レーザ光にて前記暗号鍵の通信を行う、ことが好ましい。
[第六の形態]
上記移動体において、前記入出力部は、前記送信装置および前記受信装置と、量子暗号通信にて前記暗号鍵の通信を行う、ことが好ましい。
[第七の形態]
上記移動体において、前記異常は、当該移動体の、振動、温度、電圧、位置、移動速度、および移動時間の少なくとも1つの異常値と、当該移動体への他物体の干渉と、当該移動体と他装置との間のデータの送受信と、当該移動体のログ情報を解析した結果得られる異常と、の少なくとも1つを含む、ことが好ましい。
[第八の形態]
上記移動体において、当該移動体は、飛翔体であることが好ましい。
[第九の形態]
(上記第二の視点による暗号鍵配送システムを参照)
[第一〇の形態]
上記暗号鍵配送システムにおいて、前記送信装置は、前記移動体を認証する送信装置認証部をさらに備え、
前記受信装置は、前記移動体を認証する受信装置認証部をさらに備え、
前記送信装置通信部は、前記送信装置認証部が認証に成功した場合、前記移動体に前記暗号鍵を送信し、
前記受信装置通信部は、前記受信装置認証部が認証に成功した場合、前記移動体から前記暗号鍵を受信する、ことが好ましい。
[第一一の形態]
上記暗号鍵配送システムにおいて、上記移動体を第二移動体としてさらに備え、
前記第二移動体は、前記移動体が配送する前記暗号鍵と同じ暗号鍵を前記送信装置から受信する、ことが好ましい。
[第一二の形態]
上記暗号鍵配送システムにおいて、上記移動体を第二移動体としてさらに備え、
前記第二移動体は、前記移動体が配送する前記暗号鍵と異なる暗号鍵を前記送信装置から受信する、ことが好ましい。
[第一三の形態]
上記暗号鍵配送システムにおいて、当該暗号鍵配送システムで発生する課金に関連するパラメータを収集し、課金を行う課金処理装置をさらに備える、ことが好ましい。
[第一四の形態]
(上記第三の視点による暗号鍵配送方法を参照)
[第一五の形態]
(上記第四の視点によるプログラムを参照)
なお、上記第一四および第一五の形態は、第一の形態と同様に、第二から第八の形態に展開することが可能である。
なお、上記の特許文献等の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
100:送信装置、111:(送信装置)通信部、112:(送信装置)制御部、113:(送信装置)認証部、121:暗号鍵記憶部、122:認証情報記憶部、131:CPU、132:記憶装置、133:通信装置、140:暗号鍵テーブル、141:認証情報格納部、142:暗号鍵格納部、150:第二暗号鍵テーブル、151:暗号鍵格納部、152:受信装置ID格納部、
200:受信装置、211:(受信装置)通信部、212:(受信装置)制御部、213:(受信装置)認証部、221:暗号鍵記憶部、222:認証情報記憶部、231:CPU、232:記憶装置、233:通信装置、
300:飛翔体、311:入出力部、312:記憶制御部、313:異常検知部、314:認証依頼部、315:移動制御部、321:暗号鍵記憶部、322:認証情報記憶部、323:ログ情報記憶部、331:CPU、332:記憶装置、333:通信装置、334:センサ、335:航行装置、
400:監視装置、411:通信部、412:情報取得部、413:異常検出部、431:CPU、432:記憶装置、433:通信装置、434:情報収集装置、
500:暗号鍵、
600:ログ情報、
700:課金処理装置
910:暗号鍵配送システム、920:暗号鍵配送システム、940:暗号鍵配送システム、960:暗号鍵配送システム、970:暗号鍵配送システム
200:受信装置、211:(受信装置)通信部、212:(受信装置)制御部、213:(受信装置)認証部、221:暗号鍵記憶部、222:認証情報記憶部、231:CPU、232:記憶装置、233:通信装置、
300:飛翔体、311:入出力部、312:記憶制御部、313:異常検知部、314:認証依頼部、315:移動制御部、321:暗号鍵記憶部、322:認証情報記憶部、323:ログ情報記憶部、331:CPU、332:記憶装置、333:通信装置、334:センサ、335:航行装置、
400:監視装置、411:通信部、412:情報取得部、413:異常検出部、431:CPU、432:記憶装置、433:通信装置、434:情報収集装置、
500:暗号鍵、
600:ログ情報、
700:課金処理装置
910:暗号鍵配送システム、920:暗号鍵配送システム、940:暗号鍵配送システム、960:暗号鍵配送システム、970:暗号鍵配送システム
Claims (15)
- 送信装置から暗号鍵を受信するとともに、受信装置に前記暗号鍵を送信する入出力部と、
前記暗号鍵の記憶部への記憶を制御する記憶制御部と、
前記送信装置から前記暗号鍵を受信後、自装置を、前記受信装置へ移動させる移動制御部と、を備え、
前記記憶制御部は、前記送信装置から前記暗号鍵を受信すると前記記憶部へ記憶し、異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する、移動体。 - 請求項1記載の移動体であって、
前記異常を検知し、前記記憶制御部に通知する異常検知部をさらに備える、移動体。 - 請求項1または2記載の移動体であって、
前記入出力部は、前記異常が検知されたことを外部装置から受信し、前記記憶制御部に通知する、移動体。 - 請求項1から3いずれか1項記載の移動体であって、
前記送信装置および前記受信装置に、前記暗号鍵の送受信に先立ち、当該移動体の認証を依頼する認証依頼部をさらに備える、移動体。 - 請求項1から4いずれか1項記載の移動体であって、
前記入出力部は、前記送信装置および前記受信装置と、レーザ光にて前記暗号鍵の通信を行う、移動体。 - 請求項1から5いずれか1項記載の移動体であって、
前記入出力部は、前記送信装置および前記受信装置と、量子暗号通信にて前記暗号鍵の通信を行う、移動体。 - 請求項1から6いずれか1項記載の移動体であって、
前記異常は、当該移動体の、振動、温度、電圧、位置、移動速度、および移動時間の少なくとも1つの異常値と、当該移動体への他物体の干渉と、当該移動体と他装置との間のデータの送受信と、当該移動体のログ情報を解析した結果得られる異常と、の少なくとも1つを含む、移動体。 - 請求項1から7いずれか1項記載の移動体であって、
当該移動体は、飛翔体である、移動体。 - 請求項1から8いずれか1項記載の移動体と、
前記送信装置と、
前記受信装置と、を備え、
前記送信装置は、前記移動体に前記暗号鍵を送信する送信装置通信部を備え、
前記受信装置は、前記移動体から前記暗号鍵を受信する受信装置通信部を備える、暗号鍵配送システム。 - 請求項9記載の暗号鍵配送システムであって、
前記送信装置は、前記移動体を認証する送信装置認証部をさらに備え、
前記受信装置は、前記移動体を認証する受信装置認証部をさらに備え、
前記送信装置通信部は、前記送信装置認証部が認証に成功した場合、前記移動体に前記暗号鍵を送信し、
前記受信装置通信部は、前記受信装置認証部が認証に成功した場合、前記移動体から前記暗号鍵を受信する、暗号鍵配送システム。 - 請求項9または10記載の暗号鍵配送システムであって、
請求項1から8いずれか1項記載の移動体を第二移動体としてさらに備え、
前記第二移動体は、前記移動体が配送する前記暗号鍵と同じ暗号鍵を前記送信装置から受信する、暗号鍵配送システム。 - 請求項9または10記載の暗号鍵配送システムであって、
請求項1から8いずれか1項記載の移動体を第二移動体としてさらに備え、
前記第二移動体は、前記移動体が配送する前記暗号鍵と異なる暗号鍵を前記送信装置から受信する、暗号鍵配送システム。 - 請求項9から12いずれか1項記載の暗号鍵配送システムであって、
当該暗号鍵配送システムで発生する課金に関連するパラメータを収集し、課金を行う課金処理装置をさらに備える、暗号鍵配送システム。 - 送信装置から暗号鍵を受信する受信ステップと、
受信した前記暗号鍵を記憶部に記憶する記憶ステップと、
前記暗号鍵を記憶した後、受信装置に向けて自装置を移動させる移動ステップと、
移動中に当該自装置の異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する消去ステップと、
目的領域に到着すると、前記記憶部に記憶した前記暗号鍵を前記受信装置に送信する送信ステップと、を備える、暗号鍵配送方法。 - 移動体に搭載されたコンピュータに、
送信装置から暗号鍵を受信する受信ステップ、
受信した前記暗号鍵を記憶部に記憶する記憶ステップ、
前記暗号鍵を記憶した後、受信装置に向けて自装置を移動させる移動ステップ、
移動中に当該自装置の異常が検知された場合、前記記憶部に記憶された前記暗号鍵を消去する、消去ステップ、
目的領域に到着すると、前記記憶部に記憶した前記暗号鍵を前記受信装置に送信する送信ステップ、を実行させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/021649 WO2023228387A1 (ja) | 2022-05-26 | 2022-05-26 | 移動体、暗号鍵配送システム、暗号鍵配送方法およびプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/021649 WO2023228387A1 (ja) | 2022-05-26 | 2022-05-26 | 移動体、暗号鍵配送システム、暗号鍵配送方法およびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023228387A1 true WO2023228387A1 (ja) | 2023-11-30 |
Family
ID=88918791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021649 WO2023228387A1 (ja) | 2022-05-26 | 2022-05-26 | 移動体、暗号鍵配送システム、暗号鍵配送方法およびプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023228387A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020022155A (ja) * | 2018-07-18 | 2020-02-06 | 株式会社東芝 | 情報処理装置、通信システム、情報処理方法およびプログラム |
JP2020117221A (ja) * | 2018-02-28 | 2020-08-06 | 株式会社ナイルワークス | ドローン、ドローンの制御方法、および、ドローン制御プログラム |
JP2022038641A (ja) * | 2020-08-27 | 2022-03-10 | 国立研究開発法人情報通信研究機構 | 情報伝送システム |
-
2022
- 2022-05-26 WO PCT/JP2022/021649 patent/WO2023228387A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020117221A (ja) * | 2018-02-28 | 2020-08-06 | 株式会社ナイルワークス | ドローン、ドローンの制御方法、および、ドローン制御プログラム |
JP2020022155A (ja) * | 2018-07-18 | 2020-02-06 | 株式会社東芝 | 情報処理装置、通信システム、情報処理方法およびプログラム |
JP2022038641A (ja) * | 2020-08-27 | 2022-03-10 | 国立研究開発法人情報通信研究機構 | 情報伝送システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10607026B2 (en) | System and method for data backup using unmanned aerial vehicle (UAV) | |
US20240051680A1 (en) | Systems and methods for detecting and managing the unauthorized use of an unmanned aircraft | |
US10696398B2 (en) | Multi-modal UAV certification | |
EP3164773B1 (en) | System and method for recording operation data | |
US10178535B2 (en) | Secure system for emergency-mode operation, system monitoring and trusted access vehicle location and recovery | |
US10249199B2 (en) | System and method for aerial system discrimination and action | |
US20210092604A1 (en) | Integrated secure device manager systems and methods for cyber-physical vehicles | |
US7646298B1 (en) | Method for detecting changes in measurable conditions | |
CN112330984B (zh) | 用于管制无人飞行器操作的系统和方法 | |
CN107533331B (zh) | 具有动态特性的地理围栏设备 | |
US9056669B2 (en) | Hardware-based weight and range limitation system, apparatus and method | |
KR102299375B1 (ko) | 블록체인 기술을 이용한 무인 항공기 비행 자료 기록 방법 및 이를 위한 장치 | |
US20190235489A1 (en) | System and method for autonomous remote drone control | |
US20190108762A1 (en) | Low altitude aircraft identification system | |
KR102208254B1 (ko) | 무인 항공기 블랙박스시스템 | |
CN110249604A (zh) | 监控方法和系统 | |
RU2701421C1 (ru) | Система и способ предотвращения нарушений правил полетов беспилотными летательными аппаратами | |
CN108513696B (zh) | 无人机控制方法及控制设备、无人机监管方法及监管设备 | |
JP2007515847A (ja) | ビデオオンデマンド方法及び装置 | |
US20140353429A1 (en) | Systems and methods for wireless data transfer during in-flight refueling of an aircraft | |
US10631169B2 (en) | Unmanned retail delivery vehicle protection systems and methods of protection | |
US12081536B2 (en) | Unmanned vehicle management systems and methods | |
CN110100272A (zh) | 空中交通通信 | |
US20210343165A1 (en) | Systems, methods, apparatuses, and devices for identifying, tracking, and deterring unmanned aerial vehicles via ads-b signals | |
CN108701419A (zh) | 无人机控制方法及控制设备、无人机监管方法及监管设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22943787 Country of ref document: EP Kind code of ref document: A1 |