WO2019168045A1 - ドローン、その制御方法、および、制御プログラム - Google Patents

ドローン、その制御方法、および、制御プログラム Download PDF

Info

Publication number
WO2019168045A1
WO2019168045A1 PCT/JP2019/007625 JP2019007625W WO2019168045A1 WO 2019168045 A1 WO2019168045 A1 WO 2019168045A1 JP 2019007625 W JP2019007625 W JP 2019007625W WO 2019168045 A1 WO2019168045 A1 WO 2019168045A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
wind
strong wind
speed
unit
Prior art date
Application number
PCT/JP2019/007625
Other languages
English (en)
French (fr)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020503580A priority Critical patent/JP6733948B2/ja
Publication of WO2019168045A1 publication Critical patent/WO2019168045A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting

Definitions

  • the present invention relates to an aircraft (drone), in particular, a drone with improved safety, a control method thereof, and a control program.
  • the drone can know the absolute position of its own aircraft in centimeters while flying. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
  • a drone generates a strong wind signal by detecting a flying means, a flight control unit that operates the flying means, and a strong wind blowing,
  • the flight control unit may perform emergency return or landing operation of the drone based on the strong wind signal.
  • the strong wind detection unit may detect that the drone is blowing a strong wind while hovering and moving.
  • the strong wind detection unit includes a wind power measurement unit that generates wind power information of wind blowing on the drone, and a determination unit that determines whether strong wind is blowing based on the wind power information,
  • the measurement unit may generate the wind power information by measuring at least one of wind speed, acceleration of the drone, thrust of the drone, moving speed of the drone, and deviation of the position of the drone.
  • the wind force measurement unit includes a ground speed calculation unit that calculates a ground speed of the drone, an attitude angle of the drone, a weight of the drone, and at least one of thrust exerted by the propulsion device operated by the flight control unit, An air speed calculation unit that calculates an air speed of the drone based on the air speed, and a wind speed measurement unit that calculates a wind speed and a wind direction in the traveling direction based on the ground speed and the air speed It is good.
  • the flight control unit may evacuate the drone based on the strong wind signal received by the other aircraft information receiving unit. Good.
  • the flight control unit may not take off the drone when the other aircraft information receiving unit receives the strong wind signal while the drone is landing.
  • the apparatus may further include a body information transmission unit that transmits a strong wind signal generated by the strong wind detection unit to the outside of the drone.
  • a wind speed receiving unit that receives the wind speed measured by the wind speed measuring device may be further provided, and the strong wind detecting unit may detect that strong wind is blowing based on the wind speed received by the wind speed receiving unit.
  • the flight controller may not take off the drone.
  • a drone control method includes a flying means, a flight control unit for operating the flying means, and a strong wind signal detected by detecting that strong wind is blowing.
  • a strong wind detection unit that generates and transmits the strong wind signal to the flight control unit, and a strong wind detection step of detecting that a strong wind is blowing and generating a strong wind signal; Transmitting the strong wind signal to the flight control unit; and retracting the drone based on the strong wind signal.
  • the step of evacuating may perform emergency return or landing operation of the drone based on the strong wind signal.
  • the strong wind detecting step may detect that the drone is blowing a strong wind while hovering and moving.
  • the wind power information may be generated by measuring at least one of the drone acceleration, the drone thrust, the drone moving speed, and the drone position deviation.
  • the wind force measuring step includes a ground speed calculating step for calculating a ground speed of the drone, an attitude angle of the drone, a weight of the drone, and at least one of thrust exerted by the propulsion unit operated by the flight control unit, An air speed calculating step for calculating the air speed of the drone based on the air speed, and a wind speed measuring step for calculating a wind speed and a wind direction in the traveling direction based on the ground speed and the air speed. It is good.
  • It may further include an other device information receiving step for receiving a strong wind signal transmitted from another drone, and further including a step of retracting the drone based on the strong wind signal received by the other device information receiving step.
  • the flight control step may not take off the drone.
  • the airframe information transmission step of transmitting the strong wind signal generated by the strong wind detection step to the outside of the drone may be further included.
  • a wind speed receiving step for receiving the wind speed measured by the wind speed measuring device may be further included, and the strong wind detecting step may detect that a strong wind is blowing based on the wind speed received in the wind speed receiving step.
  • the flight control step may not take off the drone.
  • a drone control program detects a strong wind signal by detecting a flying means, a flight control unit that operates the flying means, and a strong wind blowing.
  • a strong wind detection unit that generates and transmits the strong wind signal to the flight control unit, and a strong wind detection command that detects that the strong wind is blowing and generates a strong wind signal;
  • a computer is caused to execute a command for transmitting the strong wind signal to the flight control unit and a command for retracting the drone based on the strong wind signal.
  • the instruction to evacuate may cause the drone to perform either an emergency return or a landing operation based on the strong wind signal.
  • the strong wind detection command may detect that a strong wind is blowing while the drone is hovering or moving.
  • a wind power measurement command for generating wind power information of wind blowing on the drone and a determination command for determining whether strong wind is blowing based on the wind power information are further executed by the computer, and the wind power measurement command
  • the wind power information may be generated by measuring at least one of wind speed, acceleration of the drone, thrust of the drone, moving speed of the drone, and deviation of the position of the drone.
  • the wind force measurement command includes a ground speed calculation command for calculating a ground speed of the drone, an attitude angle of the drone, a weight of the drone, and at least one of thrust exerted by the propulsion device operated by the flight control unit, An air speed calculation command for calculating the air speed of the drone based on the air speed, and a wind speed measurement command for calculating a wind speed and a wind direction in the traveling direction based on the ground speed and the air speed, It is good also as what makes it.
  • It further includes an other device information reception command for receiving a strong wind signal transmitted from another drone, and further causes the computer to execute a command for retracting the drone based on the strong wind signal received by the other device information reception command. Also good.
  • the drone may not take off when the strong wind signal is received in the other aircraft information reception command while the drone is landing.
  • the aircraft information transmission command for transmitting the strong wind signal generated by the strong wind detection command to the outside of the drone may be further included.
  • a wind speed reception command for receiving the wind speed measured by the wind speed measuring device may be further included, and the strong wind detection command may detect that strong wind is blowing based on the wind speed received in the wind speed reception command.
  • the drone When the strong wind is detected based on the wind speed received in the wind speed reception command while the drone is landing, the drone may not be taken off.
  • the computer further executes a medicine control command for controlling whether or not the medicine is discharged from the drone, and the medicine control instruction stops the discharge of the medicine based on the fact that the strong wind detection command detects strong wind. It is good also as what to do.
  • the computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
  • the drone is a flowchart in which a strong wind is detected by a strong wind detection unit included in the drone. It is a flowchart in case the said drone receives a strong wind signal by the other apparatus information receiving part which the said drone has. It is a flowchart in case the said drone receives a wind speed by the wind speed receiving part which the said drone has.
  • FIG. 1 is a plan view of an embodiment of a drug spraying drone 100 according to the present invention
  • FIG. 2 is a front view thereof (viewed from the advancing direction side)
  • FIG. 3 is a right side view thereof.
  • drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type).
  • power means electric power, prime mover, etc.
  • control method whether wireless or wired, autonomous flight type or manual control type.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are means for flying the drone 100 Considering the balance between flight stability, airframe size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b
  • Rotating means typically an electric motor, but it may be a motor
  • the upper and lower rotors for example, 101-1a and 101-1b
  • their corresponding motors for example, 102-1a and 102-1b
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling to the outside of the rotor blade and to interfere with the rotor at the time of collision.
  • medical agent generally refers to the liquid or powder disperse
  • the medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention.
  • the controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program.
  • the drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency operating device (not shown) that has a dedicated emergency stop function may be used (the emergency operating device has a large emergency stop button etc. so that it can respond quickly in an emergency) It is desirable to be a dedicated device with It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100.
  • the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different.
  • the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
  • the base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi
  • the communication master unit and the RTK-GPS base station may be independent devices).
  • the farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographic information and the like of the stored farm 403.
  • the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
  • the flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below.
  • 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100.
  • the actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable.
  • the battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device.
  • the base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration), and is preferably a 6-axis sensor.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves.
  • sensors may be selected according to drone cost targets and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind force, and the like may be added. In addition, these sensors are preferably duplexed or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor. Alternatively, a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
  • the flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less.
  • the multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open.
  • the medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal.
  • the Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective.
  • the warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state).
  • the aircraft may be lifted by strong winds, and the drone may not be able to fly on the intended route. Therefore, when a strong wind having a wind speed higher than a predetermined level is generated in the space in which the drone flies, it is desirable to have a function of detecting the strong wind and retracting the drone.
  • the drone 100 includes rotating blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101- 4b, motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b, flight control unit 23, strong wind detection unit 24, and others It is desirable to include a machine information receiving unit 25, a machine body information transmitting unit 26, a wind speed receiving unit 27, and a drug control unit 30 that controls the amount of drug discharged from the drone 100.
  • another drone 100b having the same function as the drone 100 includes the rotary blades 101-1ab, 101-1bb, 101-2ab, 101-2bb, 101-3ab, 101-3bb, 101-4ab, 101-4bb Drug control that controls the amount of drug discharged from the drone 100b, motor, flight control unit 23b, strong wind detection unit 24b, other aircraft information reception unit 25b, airframe information transmission unit 26b, wind speed reception unit 27b Part 30b.
  • the drone 100 and the drone 100b can communicate with each other by an appropriate method. This configuration will be described later.
  • the flight control unit 23 controls the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b to control the rotors 101-1a, 101 -1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b, controlling the rotation speed and direction of rotation and flying the drone 100 in the compartment intended by the user 402 It is a functional part to make it. Further, the flight control unit 23 controls take-off and landing of the drone 100. Specifically, the flight control unit 23 is a CPU implemented by a microcomputer or the like, and is a flight controller.
  • the flight control unit 23 may operate to control the flight of the drone 100 in the normal operation of the drone 100, or may be configured separately from the flight control means in the normal operation. In the latter case, the flight control unit 23 operates only when taking a retreat action when a strong wind is detected.
  • the evacuation action refers to “emergency return” that moves immediately to a predetermined return point on the shortest route, or normal landing action.
  • the predetermined return point is a point that is previously stored in the flight control unit 23, for example, a landing point 406 that has taken off.
  • the predetermined return point is a land point where the user 402 can approach the drone 100, for example, and the user 402 can check the drone 100 that has reached the return point or manually carry it to another location. can do.
  • the evacuation action may be an “emergency stop” in which all the rotating blades stop rotating and fall on the spot.
  • the flight control unit 23 may be configured to perform different retreat behaviors depending on the degree of strong wind detected by the strong wind detection unit 24. For example, if it is difficult to return urgently due to the generation of a very strong wind, a normal landing operation is performed on the spot. Furthermore, when it is determined that the rotor blades are windy and it is difficult to perform a normal landing operation, it is preferable to select “emergency stop”.
  • the drug control unit 30 is a control unit that controls the amount or timing of spraying the drug solution from the drug tank 104.
  • an opening / closing means for opening and closing the drug solution path is provided somewhere in the path from the drug tank 104 to each drug nozzle 103-1, 103-2, 103-3, 103-4.
  • Various emergency operations may be executed after the release of the chemical solution is blocked by the opening / closing means.
  • the medicine control unit 30 may stop the pump 106 before executing the retreat action. This is because spraying the medicine on a flight route different from the normal time causes an adverse effect such as an excessive spraying amount or spraying the medicine on a place where the medicine should not be sprayed.
  • the strong wind detection unit 24 is a functional unit that detects that strong wind is blowing on the drone 100 in flight, generates a strong wind signal, and transmits the strong wind signal to the flight control unit 23.
  • the strong wind detection unit 24 includes a wind force measurement unit 240 and a determination unit 241.
  • the wind force measuring unit 240 is a functional unit that measures the wind blowing on the drone 100 and generates “wind information” for determining whether or not the determining unit 241 is a strong wind.
  • the wind force measuring unit 240 includes one or more of a wind speed measuring unit 242, an acceleration measuring unit 243, a thrust measuring unit 244, a moving speed measuring unit 245, and a position deviation measuring unit 246.
  • the wind force measurement unit 240 may include a plurality of measurement units of the same type.
  • the wind measurement unit 240 measures wind force information by measuring at least one of wind speed, drone acceleration, drone thrust, drone movement speed, and drone position deviation while the hover or movement of the drone 100 is in progress. Generate.
  • the wind force measurement unit 240 transmits the generated wind force information to the determination unit 241.
  • the wind speed measuring unit 242 is a measuring unit that calculates the wind speed by measuring the stress generated by the wind using, for example, a contact detector. Further, the wind speed measuring unit 242 may have an anemometer such as a cup type or a windmill type. The wind speed measuring unit 242 may have a separate sensor that directly detects the wind speed. The wind speed measuring unit 242 may calculate the wind speed based on the difference between the current posture angle and the posture angle in the no-wind state.
  • the wind speed measuring unit 242 is configured to be able to measure the wind speed of the wind from all directions blowing on the drone 100. Further, the wind speed measuring unit 242 may be particularly configured to be able to measure the wind speed in the front-rear direction and the left-right direction in the normal flight state of the drone 100.
  • the wind speed measuring unit 242 may obtain the wind speed in the traveling direction sprayed on the drone 100 by subtracting the ground speed from the air speed.
  • the ground speed is the speed of the drone 100 that is actually realized with respect to the ground.
  • the airspeed is a speed when the driving force exerted by taking into consideration the influence of wind is converted to a speed in a windless state in order for the propulsion device of the drone 100 to achieve a predetermined ground speed. Since the airspeed in the direction orthogonal to the traveling direction of the drone 100 is 0, the wind speed perpendicular to the traveling direction can be determined by determining the ground speed.
  • the wind speed measuring unit 242 can calculate the direction of the wind blowing on the drone 100 by calculating the ground speed and the air speed as a vector in consideration of the direction.
  • the wind speed measurement unit 242 includes a weight estimation unit 242-1, a ground speed calculation unit 242-2 that calculates the ground speed, and an air speed calculation unit 242-3 that calculates the air speed.
  • the weight estimation unit 242-1 is a functional unit that estimates the total weight m of the drone 100.
  • the weight estimation unit 242-1 may estimate the total weight m of the drone 100 including the load weight of the load, or after estimating the load weight of the load that can be changed, the weight does not change, for example,
  • the total weight m of the drone 100 including the load may be estimated by adding the weights of the flight controller 501, the rotary blade 101, the motor 102, and other auxiliary machines of the drone 100.
  • the load whose weight can be changed is a drug in the present embodiment.
  • the weight estimation unit 242-1 estimates the total weight m of the drone 100 including the load weight of the load based on the thrust T in the height direction that the propulsion device exerts when the altitude of the drone 100 does not change. Good. This is because the thrust T in the height direction exerted by the propulsion device of the drone 100 is balanced with the gravitational acceleration g received by the drone 100 in a state where the altitude of the drone 100 does not change.
  • the weight estimation unit 242-1 obtains a medicine discharge amount by integrating the discharge flow rate from the medicine tank 104 measured by the flow sensor 510, and subtracts the medicine discharge amount from the initially loaded medicine amount, whereby the medicine tank The weight of 104 may be estimated. According to this configuration, the weight of the drug tank 104 can be estimated regardless of the flight state of the drone 100. Further, the weight estimation unit 242-1 may have a function of estimating the liquid level in the medicine tank 104, for example. The weight estimation unit 242-1 may estimate the weight using a liquid level meter or a water pressure sensor disposed in the medicine tank 104.
  • the ground speed calculation unit 242-2 can calculate the ground speed by obtaining the absolute speed of the space from the GPS module 504.
  • the ground speed measurement unit 242-1 can be obtained by the GPS module RTK504-1, 504-2 of the drone 100.
  • the ground speed measurement unit 242-2 can also obtain the acceleration by integrating the acceleration of the drone 100 acquired by the 6-axis gyro sensor 505. That is, according to this configuration, it is possible to obtain the wind speed of the wind blown on the drone 100 with a simple configuration without mounting a separate wind speed measuring unit on the drone 100.
  • the air speed calculation unit 242-3 can obtain the air speed based on the attitude angle ⁇ and the weight of the drone 100.
  • m is the weight of the drone 100. While the drone 100 is moving at a constant speed or hovering, the air speed v a can be obtained by solving the equations (1) and (2) according to the following equation.
  • (4) g is a gravitational acceleration. Thus, based on the attitude angle ⁇ and the weight m of the drone 100, it is possible to obtain the airspeed v a drone 100.
  • the acceleration measuring unit 243 is a functional unit that measures the acceleration of the position change of the drone 100.
  • the acceleration measuring unit 243 is realized by, for example, a 6-axis gyro sensor 505 shown in FIG.
  • the thrust measuring unit 244 is a functional unit that measures the thrust that causes the drone 100 in flight to fly.
  • the thrust is obtained by the rotor blades in the present embodiment.
  • the thrust measurement unit 244 indicates a rotation measurement function that is disposed, for example, inside the motor itself that controls the rotation of the rotor blades. That is, the thrust measuring unit 244 acquires the rotation speed of the rotor blade controlled by the motor by measuring the rotation speed of the motor.
  • the thrust measuring unit 244 may measure the rotational speed of the rotor blade itself.
  • the thrust measuring unit 244 may be a non-contact tachometer.
  • the thrust measurement unit 244 counts the number of rotations of the rotating blades by irradiating at least one portion of the rotating blades with laser and measuring the reflected light from the rotating blades of the laser.
  • the laser is, for example, an infrared laser.
  • the thrust measuring unit 244 may measure the current supplied to the motor.
  • the thrust measuring unit 244 may be a functional unit that measures the operating state of the propulsion device when the thrust of the drone is realized by a configuration other than the rotor blades.
  • the thrust measurement unit 244 may be a functional unit that measures the pressure of jet injection.
  • the moving speed measuring unit 245 is a measuring unit that measures the moving speed when the drone 100 moves due to a strong wind.
  • the movement speed measurement unit 245 may measure the body speed using a plurality of different types of sensors. Specifically, the moving speed can be estimated by integrating the measured value of the acceleration sensor.
  • the GPS Doppler can measure the moving speed of the drone 100 by processing the phase difference of radio waves from a plurality of GPS base stations with software.
  • the position deviation measuring unit 246 is a measuring unit that measures the amount of movement when the drone 100 moves due to strong winds.
  • the position deviation measurement unit 246 acquires absolute position information of the drone 100 using, for example, a quasi-zenith satellite system or RTK-GPS, and acquires the absolute position deviation.
  • the position deviation measuring unit 246 is configured by, for example, an RTK antenna and a GPS module RTK.
  • the determination unit 241 is a functional unit that determines whether or not strong wind is blowing on the drone 100 based on the wind power information measured by the wind force measurement unit 240. Specifically, when the wind speed measured by the wind speed measuring unit 242 is equal to or higher than a predetermined value, the determination unit 241 generates a signal indicating that strong wind is blowing on the drone 100 (hereinafter also referred to as “strong wind signal”). It is generated and transmitted to the flight control unit 23.
  • the determination unit 241 transmits a strong wind signal to the flight control unit 23 when the acceleration measured by the acceleration measurement unit 243 is equal to or greater than a predetermined value. Further, the determination unit 241 assumes the acceleration of the drone 100 assumed to be exerted from the thrust value measured by the thrust measurement unit 244, and compares the assumed acceleration with the actual acceleration measured by the acceleration measurement unit 243. . When the difference between the assumed acceleration and the measured value of acceleration is equal to or greater than a predetermined value, the determination unit 241 determines that a strong wind is blowing on the drone 100. This is because it is assumed that the intended flight is not possible due to wind resistance.
  • the determination unit 241 may transmit a strong wind signal to the flight control unit 23 when the moving speed measured by the moving speed measuring unit 245 is equal to or higher than a predetermined value. In this case, the determination unit 241 further assumes the moving speed of the drone 100 assumed to be exerted from the thrust value measured by the thrust measuring unit 244, and compares the estimated moving speed with the actually measured value of the moving speed. May be. When the difference between the assumed moving speed and the measured value of the moving speed is greater than or equal to a predetermined value, the determination unit 241 determines that a strong wind is blowing on the drone 100. This is because it is assumed that the intended flight is not possible due to wind resistance.
  • the determination unit 241 compares the absolute position information of the drone 100 acquired by the position deviation measurement unit 246 with the information on the planned flight path.
  • the signal may be transmitted to the flight control unit 23.
  • the determination unit 241 may determine which evacuation action the flight control unit 23 performs based on the wind power information, and may transmit the determined type of evacuation action to the flight control unit 23.
  • the determination unit 241 transmits a strong wind signal to the drug control unit 30 when determining that strong wind is blowing on the drone 100 based on the wind power information measured by the wind force measurement unit 240.
  • the medicine control unit 30 stops the medicine spraying.
  • the threshold value of the wind power information that the determination unit 241 determines that a strong wind is blowing on the drone 100 may be a fixed threshold value that is stored in advance in the drone 100, and is changed according to the situation. It may be a varying threshold. In the case of a drone that holds a drug tank and flies while spraying the drug, the aircraft weight decreases as the amount of drug held decreases, so the risk to strong winds also fluctuates. In the case of the fluctuating threshold value, it may be automatically changed by an appropriate configuration connected to the drone 100 wirelessly or by wire, or may be manually changed by the user 402.
  • the threshold value of the wind power information that the determination unit 241 determines that a strong wind is blowing on the drone 100 may be an independent value for each of the wind speed, acceleration, and thrust, or may be a comprehensive function that is linked to each other. Then, the determination may be made.
  • the determination unit 241 may determine whether or not the wind is strong based on wind power information at a certain time point measured, or may determine whether or not the wind is strong based on a plurality of past measurement results. In this case, for example, the latest measurement results may be averaged and used for determination.
  • the threshold value for transmitting the strong wind signal to the flight control unit 23 by the determination unit 241 and the threshold value for transmitting the strong wind signal to the drug control unit 30 may be the same or different from each other.
  • the threshold value at which the medicine control unit 30 stops the medicine spraying may be set lower than the threshold value at which the flight control unit 23 starts the retreat action.
  • the strong wind detection unit 24 displays on the controller 401 monitored by the user 402 that the strong wind has been detected by an appropriate communication means included in the drone 100. Further, the strong wind detection unit 24 may be configured to display that the drone 100 has detected a strong wind by using a display unit included in the drone 100, for example, an LED. Also, an appropriate sound may be emitted from the speaker of the drone 100.
  • the user 402 acquires the information of the drone 100 with the eyewear-type wearable terminal, it may be displayed or projected on the eyewear screen. Further, when the user 402 acquires the information on the drone 100 with the earphone-type wearable terminal, notification may be made by sound.
  • the other device information receiving unit 25 is a functional unit that receives information transmitted by another drone 100b existing in the vicinity.
  • Airframe information transmission unit 26 is a functional unit that transmits information to outside of drone 100.
  • Another drone 100b is a drone that flies in the space near the drone 100.
  • Another drone 100b may be a drone managed by the same user 402 or a drone managed by another user 402.
  • another drone 100b assumes a drug spraying drone having the same configuration as the drone according to the present invention, but may be a drone that flies around for another purpose, For example, it may be a monitoring drone that does not have a medicine tank.
  • the aircraft information transmission unit 26 transmits the strong wind signal generated by the determination unit 241 to the outside of the drone 100.
  • the other aircraft information receiving unit 25 receives a strong wind signal from the aircraft information transmitting unit 26b of another drone 100b and transmits it to the flight control unit 23 and the drug control unit 30.
  • the flight control unit 23 starts the evacuation action based on the strong wind signal received by the other aircraft information receiving unit 25.
  • the medicine control unit 30 stops spraying the medicine based on the strong wind signal transmitted to the machine body information transmission unit 26b and received by the other machine information reception unit 25.
  • the airframe information transmitting unit 26 may transmit the wind power information measured by the own aircraft to the other aircraft information receiving unit (25b) instead of the strong wind signal.
  • the other device information receiving unit 25 transmits the wind power information from another drone 100b to the determination unit 241.
  • the determination unit 241 determines whether a strong wind is blowing on the drone 100 based on the wind power information from another drone 100b.
  • the drone 100 having the other device information receiving unit 25 and the aircraft information transmitting unit 26 it is possible to exchange information between the drones existing in the vicinity.
  • the other machine information receiving unit 25 and the machine information transmitting unit 26 may transmit / receive wind power information via a base station or cloud by using, for example, Wi-fi, or the other machine information receiving unit 25 and the machine information
  • the transmitter 26 may communicate directly.
  • various configurations such as Bluetooth (registered trademark) and Zigbee (registered trademark) can be applied.
  • the other aircraft information receiving unit 25 can receive a strong wind signal or wind information measured by another aircraft when the drone 100 is landing during normal flight and hovering. That is, when a strong wind is detected while the drone 100 is landing, the flight control unit 23 can prevent the drone 100 from taking off. Further, a part of the function of the controller 401 may be restricted so that a takeoff command cannot be transmitted. According to the configuration of the other-device information receiving unit 25, it is possible to determine whether or not the drone 100 can be taken off in advance even when the drone 100 is landing.
  • the wind speed receiver 27 is a receiver that can receive the wind speed measured by the fixed wind speed measuring device 40.
  • the wind speed measuring device 40 is disposed in the vicinity of the flight space of the drone 100.
  • the wind speed measuring device 40 is installed in, for example, a Wi-fi base station or an RTK-GPS base station.
  • the wind speed measuring device 40 transmits the wind speed to the wind speed receiving unit 27.
  • the wind speed receiving unit 27 transmits the received wind speed to the determination unit 241.
  • the wind speed measuring device 40 may have a determination unit that determines whether strong wind is blowing based on the wind speed to be measured. When the wind speed measuring device 40 determines that a strong wind is blowing, the wind speed measuring device 40 transmits a strong wind signal to the wind speed receiving unit 27 of the drone 100. The wind speed receiving unit 27 receives the strong wind signal transmitted from the wind speed measuring device 40 and transmits it to the flight control unit 23 and the drug control unit 30.
  • the wind speed receiving unit 27 can receive the strong wind signal or the wind speed measured by the wind speed measuring device 40 when the drone 100 is landing during normal flight and hovering. When a strong wind is detected while the drone 100 is landing, the flight control unit 23 does not take off the drone 100. According to the configuration of the wind speed receiving unit 27, it is possible to determine whether or not the drone 100 can be taken off in advance even when the drone 100 is landing.
  • the drone 100 starts normal flight or hovering as planned (step S1).
  • the wind speed measuring unit 242 of the drone 100 measures the wind speed (step S2).
  • the acceleration measurement unit 243 measures acceleration (step S3).
  • the thrust measuring unit 244 measures the thrust (step S4).
  • the moving speed measuring unit 245 measures the moving speed of the drone 100 (step S5).
  • the position deviation measuring unit 246 measures the position deviation of the drone 100 within a predetermined time (step S6). Steps S2 to S6 are in no particular order. Steps S2 to S6 may be performed simultaneously. In the present embodiment, it has been described that all of steps S2 to S6 are performed. However, in the drone 100 according to the present invention, it is sufficient to perform at least one of steps S2 to S6.
  • step S7 Based on the wind power information measured by one or more of the wind speed measuring unit 242, the acceleration measuring unit 243, the thrust measuring unit 244, the moving speed measuring unit 245, and the position deviation measuring unit 246, the determination unit 241 Whether or not is sprayed is determined (step S7).
  • step S8 the drug control unit 30 stops spraying the drug when spraying the drug.
  • steps S1 to S5 may be executed when no medicine is sprayed, for example, during hovering immediately after the start of flight. If the medicine is not sprayed, step S6 is omitted. Further, the flight control unit 23 starts a retreat action (step S9). Furthermore, the body information transmission unit 26 transmits a strong wind signal to another drone 100b (step S10).
  • the other machine information receiving unit 25 of the drone 100 receives a strong wind signal from another drone (step S11).
  • the other aircraft information receiving unit 25 may receive the strong wind signal in any of the normal flight, which is a planned flight, during hovering, or in a landing state. It is determined whether the drone 100 is flying or landing (step S12).
  • the drug control unit 30 stops the drug spraying when the drug spraying is being performed (step S13). Further, the flight control unit 23 starts a retreat action (step S14).
  • the flight control unit prohibits the drone 100 from taking off and does not take off (step S15).
  • a message indicating that drone 100 cannot take off due to the strong wind is displayed on pilot 401. Further, a part of the operation of the controller 401 may be restricted so that a command accompanying takeoff cannot be input.
  • the wind speed receiver 27 of the drone 100 receives the wind speed measured by the wind speed measuring device 40 (step S21).
  • the other aircraft information receiving unit 25 may receive the strong wind signal in any of the normal flight, which is a planned flight, during hovering, or in a landing state.
  • the determining unit 241 determines whether the wind is strong based on the wind speed received by the wind speed receiving unit 27 (step S22). If the determining unit 241 does not determine the strong wind, the process returns to the operation of step S21.
  • step S23 it is determined whether the drone 100 is in flight or landing.
  • the medicine control unit 30 stops the medicine spraying when the medicine is sprayed (step S23). Further, the flight control unit 23 starts a retreat action (step S24).
  • the flight control unit 23 prohibits the drone 100 from taking off and prevents the drone 100 from flying (step S26). Further, it may be displayed on the controller 401 that the drone 100 cannot take off due to strong wind. Furthermore, a part of the operation of the pilot 401 may be restricted so that a command accompanying takeoff cannot be input.
  • the agricultural chemical spraying drone has been described as an example, but the technical idea of the present invention is not limited to this and can be applied to all drones. This is particularly useful for drones that perform autonomous flight.
  • the drone according to the present invention can provide a drone that can maintain high safety even during autonomous flight.

Abstract

【課題】安全性が高いドローンを提供する。 【解決策】 飛行手段101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bと、前記飛行手段を稼働させる飛行制御部23と、強風が吹きつけていることを検知して強風信号を生成し、前記強風信号を前記飛行制御部に伝達する強風検知部24と、を備えるドローン100であって、前記飛行制御部は、前記強風信号に基づいて前記ドローンを退避させる、ドローン。

Description

ドローン、その制御方法、および、制御プログラム
本願発明は、飛行体(ドローン)、特に、安全性を高めたドローン、その制御方法、および、制御プログラムに関する。
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
特許公開公報 特開2001-120151 特許公開公報 特開2017-163265
自律飛行時であっても、高い安全性を維持できるドローン(飛行体)を提供する。
 上記目的を達成するため、本発明の一の観点に係るドローンは、飛行手段と、前記飛行手段を稼働させる飛行制御部と、強風が吹きつけていることを検知して強風信号を生成し、前記強風信号を前記飛行制御部に伝達する強風検知部と、を備えるドローンであって、前記飛行制御部は、前記強風信号に基づいて前記ドローンを退避させる。
 前記飛行制御部は、前記強風信号に基づいて、前記ドローンの緊急帰還および着陸動作のいずれかを行うものとしてもよい。
 前記強風検知部は、前記ドローンがホバリング中および移動中に強風が吹きつけていることを検知するものとしてもよい。
 前記強風検知部は、前記ドローンに吹き付けている風の風力情報を生成する風力測定部と、前記風力情報に基づいて強風が吹きつけているか否かを判定する判定部と、を備え、前記風力測定部は、風速、前記ドローンの加速度、前記ドローンの推力、前記ドローンの移動速度、および前記ドローンの位置の偏差のいずれか1つ以上を測定して前記風力情報を生成するものとしてもよい。
 前記風力測定部は、前記ドローンの対地速度を算出する対地速度算出部と、前記ドローンの姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出部と、前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速測定部と、をさらに備えるものとしてもよい。
 別のドローンから送信される強風信号を受信する他機情報受信部をさらに備え、前記飛行制御部は、前記他機情報受信部が受信する前記強風信号に基づいて前記ドローンを退避させるものとしてもよい。
 前記ドローンが着陸している状態で、前記他機情報受信部が前記強風信号を受信するとき、前記飛行制御部は前記ドローンの離陸を行わないものとしてもよい。
 前記強風検知部が生成する強風信号を、前記ドローンの外部に送信する機体情報送信部をさらに備えるものとしてもよい。
 風速測定機が測定する風速を受信する風速受信部をさらに備え、前記強風検知部は前記風速受信部が受信する風速に基づいて、強風が吹きつけていることを検知するものとしてもよい。
 前記ドローンが着陸している状態で、前記風速受信部が受信する風速に基づいて強風を検知するとき、前記飛行制御部は前記ドローンの離陸を行わないものとしてもよい。
前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は、前記強風検知部が強風を検知したことに基づいて前記薬剤の吐出を停止するものとしてもよい。
 上記目的を達成するため、本発明の別の観点に係るドローンの制御方法は、飛行手段と、前記飛行手段を稼働させる飛行制御部と、強風が吹きつけていることを検知して強風信号を生成し、前記強風信号を前記飛行制御部に伝達する強風検知部と、を備えるドローンの制御方法であって、強風が吹きつけていることを検知して強風信号を生成する強風検知ステップと、前記強風信号を前記飛行制御部に伝達するステップと、前記強風信号に基づいて前記ドローンを退避させるステップと、を含む。
 前記退避させるステップは、前記強風信号に基づいて、前記ドローンの緊急帰還および着陸動作のいずれかを行うものとしてもよい。
 前記強風検知ステップは、前記ドローンがホバリング中および移動中に強風が吹きつけていることを検知するものとしてもよい。
 前記ドローンに吹き付けている風の風力情報を生成する風力測定ステップと、前記風力情報に基づいて強風が吹きつけているか否かを判定する判定ステップと、をさらに含み、前記風力測定ステップは、風速、前記ドローンの加速度、前記ドローンの推力、前記ドローンの移動速度、および前記ドローンの位置の偏差のいずれか1つ以上を測定して前記風力情報を生成するものとしてもよい。
 前記風力測定ステップは、前記ドローンの対地速度を算出する対地速度算出ステップと、前記ドローンの姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出ステップと、前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速測定ステップと、をさらに含むものとしてもよい。
 別のドローンから送信される強風信号を受信する他機情報受信ステップをさらに含み、前記他機情報受信ステップが受信する前記強風信号に基づいて前記ドローンを退避させるステップをさらに含むものとしてもよい。
 前記ドローンが着陸している状態で、前記他機情報受信ステップにおいて前記強風信号を受信するとき、前記飛行制御ステップは前記ドローンの離陸を行わないものとしてもよい。
 前記強風検知ステップが生成する強風信号を、前記ドローンの外部に送信する機体情報送信ステップをさらに含むものとしてもよい。
 風速測定機が測定する風速を受信する風速受信ステップをさらに含み、前記強風検知ステップは前記風速受信ステップにおいて受信される風速に基づいて、強風が吹きつけていることを検知するものとしてもよい。
 前記ドローンが着陸している状態で、前記風速受信ステップにおいて受信される風速に基づいて強風を検知するとき、前記飛行制御ステップは前記ドローンの離陸を行わないものとしてもよい。
前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御ステップをさらに含み、前記薬剤制御ステップは、前記強風検知ステップが強風を検知したことに基づいて前記薬剤の吐出を停止するものとしてもよい。
 上記目的を達成するため、本発明の別の観点に係るドローンの制御プログラムは、飛行手段と、前記飛行手段を稼働させる飛行制御部と、強風が吹きつけていることを検知して強風信号を生成し、前記強風信号を前記飛行制御部に伝達する強風検知部と、を備えるドローンの制御プログラムであって、強風が吹きつけていることを検知して強風信号を生成する強風検知命令と、前記強風信号を前記飛行制御部に伝達する命令と、前記強風信号に基づいて前記ドローンを退避させる命令と、をコンピューターに実行させる。
 前記退避させる命令は、前記強風信号に基づいて、前記ドローンに緊急帰還および着陸動作のいずれかを行わせるものとしてもよい。
 前記強風検知命令は、前記ドローンがホバリング中および移動中に強風が吹きつけていることを検知するものとしてもよい。
 前記ドローンに吹き付けている風の風力情報を生成する風力測定命令と、前記風力情報に基づいて強風が吹きつけているか否かを判定する判定命令と、をさらにコンピューターに実行させ、前記風力測定命令は、風速、前記ドローンの加速度、前記ドローンの推力、前記ドローンの移動速度、および前記ドローンの位置の偏差のいずれか1つ以上を測定して前記風力情報を生成するものとしてもよい。
 前記風力測定命令は、前記ドローンの対地速度を算出する対地速度算出命令と、前記ドローンの姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出命令と、前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速測定命令と、をコンピューターに実行させるものとしてもよい。
 別のドローンから送信される強風信号を受信する他機情報受信命令をさらに含み、前記他機情報受信命令が受信する前記強風信号に基づいて前記ドローンを退避させる命令をさらにコンピューターに実行させるものとしてもよい。
 前記ドローンが着陸している状態で、前記他機情報受信命令において前記強風信号を受信するとき、前記ドローンの離陸を行わないものとしてもよい。
 前記強風検知命令が生成する強風信号を、前記ドローンの外部に送信する機体情報送信命令をさらに含むものとしてもよい。
 風速測定機が測定する風速を受信する風速受信命令をさらに含み、前記強風検知命令は前記風速受信命令において受信される風速に基づいて、強風が吹きつけていることを検知するものとしてもよい。
 前記ドローンが着陸している状態で、前記風速受信命令において受信される風速に基づいて強風を検知するとき、前記ドローンの離陸を行わないものとしてもよい。
前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御命令をさらにコンピューターに実行させ、前記薬剤制御命令は、前記強風検知命令が強風を検知したことに基づいて前記薬剤の吐出を停止するものとしてもよい。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
自律飛行時であっても、高い安全性を維持できるドローンを提供する。
本願発明に係るドローンの実施例の平面図である。 本願発明に係るドローンの実施例の正面図である。 本願発明に係るドローンの実施例の右側面図である。 本願発明に係るドローンの実施例を使用した薬剤散布システムの全体概念図の例である。 本願発明に係るドローンの実施例の制御機能を表した模式図である。 上記ドローンおよび周辺に配置された風速測定機が有する、強風を検知する構成に関する機能ブロック図である。また、同様の機能を有する別のドローンの機能ブロック図を併記した。 上記ドローンが、上記ドローンが有する強風検知部により強風を検知するフローチャートである。 上記ドローンが、上記ドローンが有する他機情報受信部により強風信号を受信した場合のフローチャートである。 上記ドローンが、上記ドローンが有する風速受信部により風速を受信した場合のフローチャートである。
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。
図1に本願発明に係る薬剤散布用ドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられていることが望ましい。
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられていることが望ましい。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転することが望ましい。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら上の構造であることが望ましい。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられていることが望ましい。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられていることが望ましい。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
図4に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されることが望ましいが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であることが望ましい)。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
図5に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっていることが望ましい。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されていることが望ましい。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できることが望ましい。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくことが望ましい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。
6軸ジャイロセンサー505はドローン機体の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)であり、6軸センサーであることが望ましい。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられていることが望ましい。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっていることが望ましい。
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
上空を飛行するドローンにおいては、強風により機体があおられ、ドローンを意図する経路で飛行させることができない場合がある。そこで、ドローンを飛行させる空間に所定以上の風速の強風が発生している場合には、強風を検知してドローンを退避させる機能を有することが望ましい。
 そのために、図6に示すように、本願発明に係るドローン100は、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bと、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bと、飛行制御部23と、強風検知部24と、他機情報受信部25と、機体情報送信部26と、風速受信部27と、ドローン100から吐出する薬剤の量を制御する薬剤制御部30と、を備えることが望ましい。
 また、ドローン100と同様の機能を有する別のドローン100bは、回転翼101-1ab、101-1bb、101-2ab、101-2bb、101-3ab、101-3bb、101-4ab、101-4bbと、モーターと、飛行制御部23bと、強風検知部24bと、他機情報受信部25bと、機体情報送信部26bと、風速受信部27bと、ドローン100bから吐出する薬剤の量を制御する薬剤制御部30bと、を備える。ドローン100およびドローン100bは適宜の手法により通信することができる。この構成については後述する。
 飛行制御部23は、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bを制御することで回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bの回転数および回転方向を制御して、ドローン100を使用者402が意図する区画内で飛行させる機能部である。また、飛行制御部23は、ドローン100の離陸および着陸の制御を行う。具体的には、飛行制御部23はマイコン等で実装されるCPUであり、フライトコントローラーである。
 なお、飛行制御部23は、ドローン100の正常動作においてドローン100の飛行を制御するために動作してもよいし、正常動作における飛行制御手段とは別に構成されていてもよい。後者の場合、飛行制御部23は、強風検知時に退避行動を取る場合にのみ動作する。
 なお、退避行動とは、最短のルートで直ちに所定の帰還地点まで移動する「緊急帰還」、又は通常の着陸動作を示す。所定の帰還地点とは、あらかじめ飛行制御部23に記憶させた地点であり、例えば離陸した発着地点406である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。
 また、退避行動は、全ての回転翼の回転を停止させてその場に落下する「緊急停止」であってもよい。
 飛行制御部23は、強風検知部24が検知する強風の程度に応じて異なる退避行動を行うように構成されていてもよい。例えば、非常に強い風の発生により緊急帰還すら困難な状況の場合は、その場で通常の着陸動作を行う。さらに、回転翼が強風にあおられ、通常の着陸動作を行うことも困難であると判断された場合は、「緊急停止」を選択することが好ましい。
 薬剤制御部30は、薬剤タンク104から薬液を散布する量又はタイミングを制御する制御部である。例えば、薬剤タンク104から各薬剤ノズル103-1、103-2、103-3、103-4までの経路のどこかに、薬液経路を開閉する開閉手段が設けられていて、薬剤制御部30は、開閉手段により薬液の放出を遮断した後に各種の緊急動作を実行してもよい。また、薬剤制御部30は、退避行動を実行する前にポンプ106を停止していてもよい。通常時とは異なる飛行経路で薬剤を散布すると散布量が過大になる、あるいは、散布すべきでない場所に薬剤を散布するなどの弊害が生じるからである。
 強風検知部24は、飛行中のドローン100に強風が吹きつけていることを検知して強風信号を生成し、強風信号を飛行制御部23に伝達する機能部である。強風検知部24は、風力測定部240および判定部241を有する。
 風力測定部240は、ドローン100に吹きつけている風を測定して、判定部241が強風か否かを判定するための「風力情報」を生成する機能部である。風力測定部240は、風速測定部242、加速度測定部243、推力測定部244、移動速度測定部245および位置偏差測定部246のいずれか1つ以上を有する。風力測定部240は、同種の測定部を複数有していてもよい。風力測定部240は、ドローン100のホバリング中又は移動中に、風速、ドローンの加速度、ドローンの推力、ドローンの移動速度、およびドローンの位置の偏差のいずれか1つ以上を測定して風力情報を生成する。風力測定部240は、生成される風力情報を判定部241に伝達する。
 風速測定部242は、例えば接触検知機により風によって発生する応力を測定することで風速を算出する測定部である。また、風速測定部242は、風杯型、風車型などの風速計を有していてもよい。風速測定部242は、風速を直接検知する別途のセンサを有していてもよい。風速測定部242は、現在の姿勢角と無風状態の姿勢角との差に基づいて風速を算出してもよい。
 風速測定部242は、ドローン100に吹きつける全方向からの風の風速を測定可能に構成されている。また、風速測定部242は、特に、ドローン100の通常飛行状態における前後方向および左右方向の風速を測定可能に構成されていてもよい。
 風速測定部242は、対気速度から対地速度を差し引くことにより、ドローン100に吹き付ける進行方向の風速を求めてもよい。対地速度は、地面に対して実際に実現されるドローン100の速度である。対気速度は、ドローン100の推進器が所定の対地速度を実現するために、風の影響を加味して発揮する稼働力を、無風状態における速度に変換したときの速度である。ドローン100の進行方向に直交する方向の対気速度は0であるから、対地速度を求めることで進行方向に直交する風の風速を求めることができる。風速測定部242は、対地速度および対気速度を、方向を加味してベクトルとして計算することにより、ドローン100に吹き付ける風の方向を求めることができる。
 風速測定部242は、重量推定部242-1と、対地速度を算出する対地速度算出部242-2と、対気速度を算出する対気速度算出部242-3と、を備える。
 重量推定部242-1は、ドローン100の総重量mを推定する機能部である。重量推定部242-1は、積載物の積載重量を含むドローン100の総重量mを推定してもよいし、変化し得る積載物の積載重量を推定した上で、重量が変化しない構成、例えばドローン100のフライトコントローラー501、回転翼101、モーター102その他補機の重量を加算することにより、積載物を含むドローン100の総重量mを推定してもよい。重量が変化し得る積載物は、本実施形態においては薬剤である。
 重量推定部242-1は、ドローン100の高度が変化しない状態において推進器が発揮する高さ方向の推力Tに基づいて、積載物の積載重量を含むドローン100の総重量mを推定してもよい。ドローン100の推進器が発揮する高さ方向の推力Tは、ドローン100の高度が変化しない状態において、ドローン100が受ける重力加速度gと釣り合っているためである。
 重量推定部242-1は、流量センサー510によって測定される薬剤タンク104からの吐出流量を積算して薬剤吐出量を求め、当初積載された薬剤量から薬剤吐出量を減算することにより、薬剤タンク104の重量を推定してもよい。本構成によれば、ドローン100の飛行状態に関わらず薬剤タンク104の重量を推定することができる。また、重量推定部242-1は、例えば薬剤タンク104内の液面高さを推定する機能を有していてもよい。重量推定部242-1は、薬剤タンク104内に配置される液面計又は水圧センサー等を用いて重量を推定してもよい。
 対地速度算出部242-2は、GPSモジュール504から空間の絶対速度を求めることで対地速度を算出できる。また、対地速度測定部242-1は、ドローン100が有するGPSモジュールRTK504-1,504-2により求めることができる。さらに、対地速度測定部242-2は、6軸ジャイロセンサー505により取得されるドローン100の加速度を積分することによっても求めることが可能である。すなわち、本構成によれば、ドローン100に別途の風速測定手段を搭載することなく、簡易な構成で、ドローン100に吹き付ける風の風速を求めることができる。
 対気速度算出部242-3は、ドローン100の姿勢角θおよび重量に基づいて対気速度を求めることができる。ドローン100が地面からの高度L、姿勢角0度で飛行しているときの薬剤投下点と、姿勢角θで飛行しているときの薬剤投下点との変位量Dは、以下の式の通り求められる。
D=L×tanθ          (1)
ドローン100が等速移動中又はホバリング中において、空気抵抗による抗力Fdと、対気速度vaとは、以下の式が成り立つ。
Fd=(1/2) × ρva 2 S×Cd           (2)
 なお、空気密度ρ、空気抵抗係数Cdである。前方投影面積等の代表面積Sは、ドローン100の大きさおよび形状に基づいてあらかじめ求められる値である。
 また、姿勢角θは、抗力Fdとの間に、以下の式が成り立つ。
Fd=mg tanθ                   (3)
 なお、mはドローン100の重量である。ドローン100が等速移動中又はホバリング中において、対気速度vaは、式(1)および(2)を解くことで、以下の式により求めることができる。
Figure JPOXMLDOC01-appb-I000001
               (4)
 gは、重力加速度である。このように、ドローン100の姿勢角θおよび重量mに基づいて、ドローン100の対気速度vaを求めることができる。
 加速度測定部243は、ドローン100の位置変化の加速度を測定する機能部である。加速度測定部243は、例えば図5に示す6軸ジャイロセンサー505により実現される。
 推力測定部244は、飛行中のドローン100を飛行させる推力を測定する機能部である。推力は、本実施の形態においては回転翼により得られる。推力測定部244は、例えば回転翼の回転を制御するモーター自身の内部に配置されている回転測定機能を指す。すなわち、推力測定部244は、モーターの回転数を測定することにより、モーターに制御される回転翼の回転数を取得する。
 また、推力測定部244は、回転翼自身の回転数を測定してもよい。例えば、推力測定部244は、非接触式の回転計であってもよい。この場合、推力測定部244は、回転翼の少なくとも1か所にレーザーを照射し、レーザーの回転翼からの反射光を計測することで回転翼の回転数を計数する。レーザーは、例えば赤外線レーザーである。
 さらに、推力測定部244は、モーターに供給される電流を測定してもよい。
 なお、推力測定部244は、ドローンの推力が回転翼以外の構成により実現される場合は、その推進器の稼働状態を測定する機能部であってもよい。例えば、ドローンがジェット噴射により推進される場合、推力測定部244は、ジェット噴射の圧力を測定する機能部であってもよい。
 移動速度測定部245は、強風によりドローン100が移動する場合における移動速度を測定する測定部である。移動速度測定部245は、異なる種類の複数のセンサーを使用して機体速度を測定してもよい。具体的には移動速度は、加速度センサーの測定値を積分することで推定可能である。また、GPSドップラーは複数のGPS基地局からの電波の位相差をソフトウェアで処理することでドローン100の移動速度を測定可能である。
 位置偏差測定部246は、強風によりドローン100が移動する場合における移動量を測定する測定部である。位置偏差測定部246は、例えば準天頂衛星システムやRTK-GPS等により、ドローン100の絶対位置情報を取得し、絶対位置の偏差を取得する。位置偏差測定部246は、例えばRTKアンテナおよびGPSモジュールRTKにより構成されている。
 判定部241は、風力測定部240が測定する風力情報に基づいて、ドローン100に強風が吹きつけているか否かを判定する機能部である。具体的には、判定部241は、風速測定部242が測定する風速が所定以上の場合には、ドローン100に強風が吹きつけている旨の信号(以下、「強風信号」ともいう。)を生成し、飛行制御部23に伝達する。
 また、判定部241は、加速度測定部243が測定する加速度が所定以上の場合には、強風信号を飛行制御部23に伝達する。また、判定部241は、推力測定部244が測定する推力の値から、発揮が想定されるドローン100の加速度を想定し、想定される加速度と加速度測定部243による加速度の実測値とを比較する。想定される加速度および加速度の実測値の差が所定以上の場合、判定部241は、ドローン100に強風が吹きつけていると判定する。風の抵抗により意図した飛行ができていない状態が想定されるためである。
 また、判定部241は、移動速度測定部245が測定する移動速度が所定以上の場合には、強風信号を飛行制御部23に伝達してもよい。この場合、さらに、判定部241は、推力測定部244が測定する推力の値から、発揮が想定されるドローン100の移動速度を想定し、想定される移動速度と移動速度の実測値とを比較してもよい。想定される移動速度および移動速度の実測値の差が所定以上の場合、判定部241は、ドローン100に強風が吹きつけていると判定する。風の抵抗により意図した飛行ができていない状態が想定されるためである。
 さらにまた、判定部241は、位置偏差測定部246が取得するドローン100の絶対位置情報と、予定される飛行経路の情報と、を比較して、所定の距離以上の乖離がある場合に、強風信号を飛行制御部23に伝達してもよい。
 判定部241は、風力情報に基づいて、飛行制御部23がいずれの退避行動を行うかを決定し、決定した退避行動の種類を飛行制御部23に伝達してもよい。
 また、判定部241は、風力測定部240が測定する風力情報に基づいて、ドローン100に強風が吹きつけていると判定する場合、薬剤制御部30に強風信号を伝達する。薬剤制御部30は、強風信号が伝達されると、薬剤の散布を停止する。
 判定部241が、ドローン100に強風が吹きつけていることを判定する風力情報の閾値は、予めドローン100に記憶されている固定された閾値であってもよいし、状況に応じて変更される変動する閾値であってもよい。薬剤タンクを保持して薬剤を散布しながら飛行するドローンの場合、保持する薬剤量が少なくなるほど機体重量が軽くなるため、強風へのリスクも変動する。変動する閾値の場合は、ドローン100に無線又は有線接続される適宜の構成により自動で変動されてもよいし、使用者402により手動で変更可能であってもよい。
 判定部241が、ドローン100に強風が吹きつけていることを判定する風力情報の閾値は、風速、加速度および推力のそれぞれについて各々独立した値であってもよいし、相互に連動する関数により総合して判定を行ってもよい。
 判定部241は、計測されるある時点での風力情報に基づいて強風か否かを判定してもよいし、過去複数回の計測結果に基づいて強風か否かを判定してもよい。この場合、例えば直近の計測結果を平均して判定に使用してもよい。
 また、判定部241が飛行制御部23に強風信号を伝達する閾値と、薬剤制御部30に強風信号を伝達する閾値とは、同一であっても互いに異なっていてもよい。薬剤制御部30が薬剤散布を停止する閾値は、飛行制御部23が退避行動を開始する閾値よりも低く設定されていてもよい。
 強風検知部24は、ドローン100が有する適宜の通信手段により、使用者402が監視する操縦器401に、強風を検知した旨を表示することが好ましい。また、強風検知部24は、ドローン100が有する表示手段、例えばLEDにより、ドローン100が強風を検知した旨が表示されるように構成してもよい。また、ドローン100のスピーカから適宜の音を出してもよい。
 また、使用者402がドローン100の情報をアイウェア型ウェアラブル端末機により取得する場合には、アイウェアの画面上に表示または投影してもよい。また、使用者402がドローン100の情報をイヤホン型ウェアラブル端末機により取得する場合に、音により通知してもよい。
 他機情報受信部25は、周辺に存在する別のドローン100bが送信する情報を受信する機能部である。機体情報送信部26は、ドローン100の外部に情報を送信する機能部である。別のドローン100bとは、ドローン100の近傍の空間を飛行するドローンである。別のドローン100bは、同一使用者402により管理されるドローンであってもよいし、別の使用者402により管理されるドローンであってもよい。また、本実施の形態においては、別のドローン100bは本発明に係るドローンと同様の構成の薬剤散布用ドローンを想定しているが、別の目的で周辺を飛行するドローンであってもよく、例えば薬剤タンクを有しない監視用ドローンであってもよい。
 機体情報送信部26は、判定部241により生成される強風信号をドローン100の外部に送信する。他機情報受信部25は、別のドローン100bが有する機体情報送信部26bからの強風信号を受信し、飛行制御部23および薬剤制御部30に伝達する。飛行制御部23は、他機情報受信部25が受信する強風信号に基づいて、退避行動を開始する。ドローン100が着陸している状態の場合は、飛行制御部23はドローン100の離陸を禁止する。さらに、薬剤制御部30は、機体情報送信部26bに送信され、他機情報受信部25が受信する強風信号に基づいて薬剤の散布を停止する。
 なお、機体情報送信部26は、強風信号に代えて、自機が測定する風力情報を他機情報受信部(25b)に送信してもよい。この場合、他機情報受信部25は、別のドローン100bからの風力情報を判定部241に送信する。判定部241は、別のドローン100bからの風力情報に基づいて、ドローン100に強風が吹きつけているか否かを判定する。
 他機情報受信部25および機体情報送信部26を有するドローン100によれば、周辺に存在するドローン同士で互いに情報の授受が可能である。他機情報受信部25および機体情報送信部26は、例えばWi-fiを利用することにより、基地局やクラウドを介して風力情報を送受信してもよいし、他機情報受信部25および機体情報送信部26が直接通信してもよい。直接通信する方式としては、Bluetooth(登録商標)やZigbee(登録商標)など種々の構成が適用可能である。
 他機情報受信部25は、ドローン100が通常飛行中、ホバリング中に加えて、着陸している際にも強風信号又は他機に測定される風力情報を受信することができる。すなわち、ドローン100が着陸している状態で、強風が検知される場合、飛行制御部23はドローン100を離陸させないようにすることができる。また、操縦器401の機能の一部を制限し、離陸の指令を送信できないようにしてもよい。他機情報受信部25の構成によれば、ドローン100が着陸している状態においても未然にドローン100を離陸させてよいか否かを判定することができる。
 風速受信部27は、固定された風速測定機40により測定される風速を受信可能な受信部である。風速測定機40は、ドローン100の飛行空間近傍に配置されている。風速測定機40は、例えばWi-fiの基地局やRTK-GPSの基地局に設置されている。風速測定機40は、風速受信部27に風速を送信する。風速受信部27は、受信される風速を判定部241に伝達する。
 なお、風速測定機40は、測定する風速に基づいて強風が吹いているかどうかを判定する判定部を有していてもよい。風速測定機40は、強風が吹いていると判定した場合、強風信号をドローン100の風速受信部27に送信する。風速受信部27は、風速測定機40から送信される強風信号を受信し、飛行制御部23および薬剤制御部30に伝達する。
 風速受信部27は、ドローン100が通常飛行中、ホバリング中に加えて、着陸している際にも強風信号又は風速測定機40に測定される風速を受信することができる。ドローン100が着陸している状態で、強風が検知される場合、飛行制御部23はドローン100を離陸させない。風速受信部27の構成によれば、ドローン100が着陸している状態においても未然にドローン100を離陸させてよいか否かを判定することができる。
 図7に示すように、まず、ドローン100は計画通りの飛行である通常飛行又はホバリングを開始する(ステップS1)。ドローン100の風速測定部242が風速を測定する(ステップS2)。また、加速度測定部243が加速度を測定する(ステップS3)。さらに、推力測定部244が推力を測定する(ステップS4)。さらにまた、移動速度測定部245がドローン100の移動速度を測定する(ステップS5)。さらにまた、位置偏差測定部246が所定時間内におけるドローン100の位置の偏差を測定する(ステップS6)。ステップS2乃至S6は順不同である。また、ステップS2乃至S6は、同時に実行されてもよい。なお、本実施の形態においては、ステップS2乃至S6のすべてを行うように説明したが、本発明にかかるドローン100においては、ステップS2乃至S6のうち少なくとも1個のステップを行えば足りる。
 判定部241は、風速測定部242、加速度測定部243、推力測定部244、移動速度測定部245および位置偏差測定部246のいずれか1つ以上が測定する風力情報に基づいて、ドローン100に強風が吹きつけているか否かを判定する(ステップS7)。
 判定部241が「強風が吹きつけている」と判定しない場合、ステップS1の動作に戻る。判定部241が「強風が吹きつけている」と判定する場合、薬剤制御部30は、薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS8)。なお、ステップS1乃至S5の工程は、例えば飛行開始直後のホバリング中など薬剤の散布が行われていないときに実行される場合もあり得る。薬剤の散布を行っていない場合は、ステップS6は省略される。また、飛行制御部23は、退避行動を開始する(ステップS9)。さらに、機体情報送信部26は、強風信号を別のドローン100bに送信する(ステップS10)。
 本構成によれば、強風によりドローン100を正常飛行させることができない環境を検知して、ドローン100を安全に退避させることができる。
 図8に示すように、まず、ドローン100の他機情報受信部25が別のドローンからの強風信号を受信する(ステップS11)。なお、他機情報受信部25が強風信号を受信するのは、計画通りの飛行である通常飛行、ホバリング中、および着陸している状態のいずれであってもよい。ドローン100が飛行中か着陸している状態かを判断する(ステップS12)。ドローン100が飛行中の場合、薬剤制御部30は薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS13)。また、飛行制御部23は退避行動を開始する(ステップS14)。
 ドローン100が着陸している状態の場合は、飛行制御部はドローン100の離陸を禁止し、離陸を行わないようにする(ステップS15)。強風によりドローン100が離陸できない旨を操縦器401に表示する。また、操縦器401の操作の一部を制限し、離陸を伴う命令を入力し得ないようにしてもよい。
 図9に示すように、まず、ドローン100の風速受信部27は、風速測定機40が測定した風速を受信する(ステップS21)。なお、他機情報受信部25が強風信号を受信するのは、計画通りの飛行である通常飛行、ホバリング中、および着陸している状態のいずれであってもよい。判定部241は、風速受信部27が受信する風速に基づいて強風であるか否かを判定し(ステップS22)、判定部241が強風を判定しない場合、ステップS21の動作に戻る。
 判定部241が「強風である」と判定した場合、ドローン100が飛行中か着陸している状態かを判断する(ステップS23)。ドローン100が飛行中の場合、薬剤制御部30は、薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS23)。また、飛行制御部23は、退避行動を開始する(ステップS24)。
 ドローン100が着陸している状態の場合、飛行制御部23はドローン100の離陸を禁止し、ドローン100の飛行は行わないようにする(ステップS26)。また、強風によりドローン100が離陸できない旨を操縦器401に表示してもよい。さらに、操縦器401の操作の一部を制限し、離陸を伴う命令を入力し得ないようにしてもよい。
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、ドローン全般に適用可能である。特に、自律飛行を行うドローンに有用である。
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンにおいては、自律飛行時であっても、高い安全性を維持できるドローンを提供することができる。

 

Claims (33)

  1.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     強風が吹きつけていることを検知して強風信号を生成し、前記強風信号を前記飛行制御部に伝達する強風検知部と、
    を備えるドローンであって、
     前記飛行制御部は、前記強風信号に基づいて前記ドローンを退避させる、ドローン。
     
  2.  前記飛行制御部は、前記強風信号に基づいて、前記ドローンの緊急帰還および着陸動作のいずれかを行う、
    請求項1記載のドローン。
     
  3.  前記強風検知部は、前記ドローンがホバリング中および移動中に強風が吹きつけていることを検知する、請求項1又は2記載のドローン。
     
  4.  前記強風検知部は、前記ドローンに吹き付けている風の風力情報を生成する風力測定部と、前記風力情報に基づいて強風が吹きつけているか否かを判定する判定部と、を備え、前記風力測定部は、風速、前記ドローンの加速度、前記ドローンの推力、前記ドローンの移動速度、および前記ドローンの位置の偏差のいずれか1つ以上を測定して前記風力情報を生成する、請求項1乃至3のいずれかに記載のドローン。
     
  5.  前記風力測定部は、
      前記ドローンの対地速度を算出する対地速度算出部と、
      前記ドローンの姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出部と、
     前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速測定部と、
    をさらに備える、
    請求項4記載のドローン。
     
  6.  別のドローンから送信される強風信号を受信する他機情報受信部をさらに備え、前記飛行制御部は、前記他機情報受信部が受信する前記強風信号に基づいて前記ドローンを退避させる、請求項1乃至5のいずれかに記載のドローン。
     
  7.  前記ドローンが着陸している状態で、前記他機情報受信部が前記強風信号を受信するとき、前記飛行制御部は前記ドローンの離陸を行わない、請求項6記載のドローン。
     
  8.  前記強風検知部が生成する強風信号を、前記ドローンの外部に送信する機体情報送信部をさらに備える、請求項6又は7記載のドローン。
     
  9.  風速測定機が測定する風速を受信する風速受信部をさらに備え、前記強風検知部は前記風速受信部が受信する風速に基づいて、強風が吹きつけていることを検知する、請求項1乃至8のいずれかに記載のドローン。
     
  10.  前記ドローンが着陸している状態で、前記風速受信部が受信する風速に基づいて強風を検知するとき、前記飛行制御部は前記ドローンの離陸を行わない、請求項9記載のドローン。
     
  11. 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は、前記強風検知部が強風を検知したことに基づいて前記薬剤の吐出を停止する、請求項1乃至10のいずれかに記載のドローン。
     
  12.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     強風が吹きつけていることを検知して強風信号を生成し、前記強風信号を前記飛行制御部に伝達する強風検知部と、
    を備えるドローンの制御方法であって、
     強風が吹きつけていることを検知して強風信号を生成する強風検知ステップと、
     前記強風信号を前記飛行制御部に伝達するステップと、
     前記強風信号に基づいて前記ドローンを退避させるステップと、
    を含む、ドローンの制御方法。
     
  13.  前記退避させるステップは、前記強風信号に基づいて、前記ドローンの緊急帰還および着陸動作のいずれかを行う、
    請求項12記載のドローンの制御方法。
     
  14.  前記強風検知ステップは、前記ドローンがホバリング中および移動中に強風が吹きつけていることを検知する、請求項12又は13記載のドローンの制御方法。
     
  15.  前記ドローンに吹き付けている風の風力情報を生成する風力測定ステップと、前記風力情報に基づいて強風が吹きつけているか否かを判定する判定ステップと、をさらに含み、前記風力測定ステップは、風速、前記ドローンの加速度、前記ドローンの推力、前記ドローンの移動速度、および前記ドローンの位置の偏差のいずれか1つ以上を測定して前記風力情報を生成する、請求項12乃至14のいずれかに記載のドローンの制御方法。
     
  16.  前記風力測定ステップは、
      前記ドローンの対地速度を算出する対地速度算出ステップと、
      前記ドローンの姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出ステップと、
     前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速測定ステップと、
    をさらに含む、
    請求項15記載のドローンの制御方法。
     
  17.  別のドローンから送信される強風信号を受信する他機情報受信ステップをさらに含み、前記他機情報受信ステップが受信する前記強風信号に基づいて前記ドローンを退避させるステップをさらに含む、請求項12乃至16のいずれかに記載のドローンの制御方法。
     
  18.  前記ドローンが着陸している状態で、前記他機情報受信ステップにおいて前記強風信号を受信するとき、前記ドローンの離陸を行わせない、請求項17記載のドローンの制御方法。
     
  19.  前記強風検知ステップが生成する強風信号を、前記ドローンの外部に送信する機体情報送信ステップをさらに含む、請求項12乃至16のいずれかに記載のドローンの制御方法。
     
  20.  風速測定機が測定する風速を受信する風速受信ステップをさらに含み、前記強風検知ステップは前記風速受信ステップにおいて受信される風速に基づいて、強風が吹きつけていることを検知する、請求項12乃至17のいずれかに記載のドローンの制御方法。
     
  21.  前記ドローンが着陸している状態で、前記風速受信ステップにおいて受信される風速に基づいて強風を検知するとき、前記ドローンの離陸を行わせない、請求項20記載のドローンの制御方法。
     
  22. 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御ステップをさらに含み、前記薬剤制御ステップは、前記強風検知ステップが強風を検知したことに基づいて前記薬剤の吐出を停止する、請求項12乃至21のいずれかに記載のドローンの制御方法。
     
  23.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     強風が吹きつけていることを検知して強風信号を生成し、前記強風信号を前記飛行制御部に伝達する強風検知部と、
    を備えるドローンの制御プログラムであって、
     強風が吹きつけていることを検知して強風信号を生成する強風検知命令と、
     前記強風信号を前記飛行制御部に伝達する命令と、
     前記強風信号に基づいて前記ドローンを退避させる命令と、
    をコンピューターに実行させる、ドローン制御プログラム。
     
  24.  前記退避させる命令は、前記強風信号に基づいて、前記ドローンに緊急帰還および着陸動作のいずれかを行わせる、
    請求項23記載のドローンの制御方法。
     
  25.  前記強風検知命令は、前記ドローンがホバリング中および移動中に強風が吹きつけていることを検知する、請求項23又は24記載のドローン制御プログラム。
     
  26.  前記ドローンに吹き付けている風の風力情報を生成する風力測定命令と、前記風力情報に基づいて強風が吹きつけているか否かを判定する判定命令と、をさらにコンピューターに実行させ、前記風力測定命令は、風速、前記ドローンの加速度、前記ドローンの推力、前記ドローンの移動速度、および前記ドローンの位置の偏差のいずれか1つ以上を測定して前記風力情報を生成する、請求項23乃至25のいずれかに記載のドローン制御プログラム。
     
  27.  前記風力測定命令は、
      前記ドローンの対地速度を算出する対地速度算出命令と、
      前記ドローンの姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出命令と、
     前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速測定命令と、
    をコンピューターに実行させる、
    請求項26記載のドローン制御プログラム。
     
  28.  別のドローンから送信される強風信号を受信する他機情報受信命令をさらに含み、前記他機情報受信命令が受信する前記強風信号に基づいて前記ドローンを退避させる命令をさらにコンピューターに実行させる、請求項23乃至27のいずれかに記載のドローン制御プログラム。
     
  29.  前記ドローンが着陸している状態で、前記他機情報受信命令において前記強風信号を受信するとき、前記ドローンの離陸を行わない、請求項28記載のドローン制御プログラム。
     
  30.  前記強風検知命令が生成する強風信号を、前記ドローンの外部に送信する機体情報送信命令をさらにコンピューターに実行させる、請求項23乃至29のいずれかに記載のドローン制御プログラム。
     
  31.  風速測定機が測定する風速を受信する風速受信命令をさらに含み、前記強風検知命令は前記風速受信命令において受信される風速に基づいて、強風が吹きつけていることを検知する、請求項23乃至30のいずれかに記載のドローン制御プログラム。
     
  32.  前記ドローンが着陸している状態で、前記風速受信命令において受信される風速に基づいて強風を検知するとき、前記ドローンの離陸を行わない、請求項31記載のドローン制御プログラム。
     
  33. 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御命令をさらにコンピューターに実行させ、前記薬剤制御命令は、前記強風検知命令が強風を検知したことに基づいて前記薬剤の吐出を停止する、請求項23乃至32のいずれかに記載のドローン制御プログラム。
     

     
PCT/JP2019/007625 2018-02-28 2019-02-27 ドローン、その制御方法、および、制御プログラム WO2019168045A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503580A JP6733948B2 (ja) 2018-02-28 2019-02-27 ドローン、その制御方法、および、制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035040 2018-02-28
JP2018035040 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168045A1 true WO2019168045A1 (ja) 2019-09-06

Family

ID=67806284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007625 WO2019168045A1 (ja) 2018-02-28 2019-02-27 ドローン、その制御方法、および、制御プログラム

Country Status (2)

Country Link
JP (1) JP6733948B2 (ja)
WO (1) WO2019168045A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618691A (zh) * 2019-09-16 2019-12-27 南京信息工程大学 基于机器视觉的无人机同心圆靶精准降落方法
JPWO2019168045A1 (ja) * 2018-02-28 2020-08-06 株式会社ナイルワークス ドローン、その制御方法、および、制御プログラム
KR102231574B1 (ko) * 2019-10-23 2021-03-24 금오공과대학교 산학협력단 이동하는 랜딩패드에 안전하게 착륙 가능한 무인 항공기 착륙방법 및 이를 이용한 무인 항공기 착륙시스템
CN114248933A (zh) * 2020-09-23 2022-03-29 沃科波特有限公司 用于运行飞行器的方法、调节架构和飞行器
KR20220070722A (ko) * 2020-11-23 2022-05-31 주식회사 에어센스 외부환경에 적응적으로 대응하여 항공영상을 촬영하는 항공촬영 드론 장치
KR20220081089A (ko) * 2020-12-08 2022-06-15 현대오토에버 주식회사 비행체의 충돌 방지 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921898A (ja) * 1972-06-23 1974-02-26
JPH04262997A (ja) * 1991-02-18 1992-09-18 Mitsubishi Heavy Ind Ltd 簡易対気速度検出装置
JP2000159192A (ja) * 1998-11-24 2000-06-13 Fuji Heavy Ind Ltd パラフォイルを備えた飛行体の自動誘導システム及びその航法誘導装置
JP2007290647A (ja) * 2006-04-27 2007-11-08 Yamaha Motor Co Ltd 無人ヘリコプタおよび外部環境推定装置
WO2016109646A2 (en) * 2014-12-31 2016-07-07 AirMap, Inc. System and method for controlling autonomous flying vehicle flight paths
JP2016220137A (ja) * 2015-05-25 2016-12-22 みこらった株式会社 移動型プロジェクションシステム及び移動型プロジェクション方法
JP2017033232A (ja) * 2015-07-31 2017-02-09 セコム株式会社 自律飛行ロボット
JP2017206066A (ja) * 2016-05-16 2017-11-24 株式会社プロドローン 薬液散布用無人航空機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11132005B2 (en) * 2015-12-29 2021-09-28 Rakuten Group, Inc. Unmanned aerial vehicle escape system, unmanned aerial vehicle escape method, and program
JP6733948B2 (ja) * 2018-02-28 2020-08-05 株式会社ナイルワークス ドローン、その制御方法、および、制御プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921898A (ja) * 1972-06-23 1974-02-26
JPH04262997A (ja) * 1991-02-18 1992-09-18 Mitsubishi Heavy Ind Ltd 簡易対気速度検出装置
JP2000159192A (ja) * 1998-11-24 2000-06-13 Fuji Heavy Ind Ltd パラフォイルを備えた飛行体の自動誘導システム及びその航法誘導装置
JP2007290647A (ja) * 2006-04-27 2007-11-08 Yamaha Motor Co Ltd 無人ヘリコプタおよび外部環境推定装置
WO2016109646A2 (en) * 2014-12-31 2016-07-07 AirMap, Inc. System and method for controlling autonomous flying vehicle flight paths
JP2016220137A (ja) * 2015-05-25 2016-12-22 みこらった株式会社 移動型プロジェクションシステム及び移動型プロジェクション方法
JP2017033232A (ja) * 2015-07-31 2017-02-09 セコム株式会社 自律飛行ロボット
JP2017206066A (ja) * 2016-05-16 2017-11-24 株式会社プロドローン 薬液散布用無人航空機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019168045A1 (ja) * 2018-02-28 2020-08-06 株式会社ナイルワークス ドローン、その制御方法、および、制御プログラム
CN110618691A (zh) * 2019-09-16 2019-12-27 南京信息工程大学 基于机器视觉的无人机同心圆靶精准降落方法
KR102231574B1 (ko) * 2019-10-23 2021-03-24 금오공과대학교 산학협력단 이동하는 랜딩패드에 안전하게 착륙 가능한 무인 항공기 착륙방법 및 이를 이용한 무인 항공기 착륙시스템
CN114248933A (zh) * 2020-09-23 2022-03-29 沃科波特有限公司 用于运行飞行器的方法、调节架构和飞行器
CN114248933B (zh) * 2020-09-23 2024-01-05 沃科波特有限公司 用于运行飞行器的方法、调节架构和飞行器
KR20220070722A (ko) * 2020-11-23 2022-05-31 주식회사 에어센스 외부환경에 적응적으로 대응하여 항공영상을 촬영하는 항공촬영 드론 장치
KR102418793B1 (ko) * 2020-11-23 2022-07-08 주식회사 에어센스 외부환경에 적응적으로 대응하여 항공영상을 촬영하는 항공촬영 드론 장치
KR20220081089A (ko) * 2020-12-08 2022-06-15 현대오토에버 주식회사 비행체의 충돌 방지 방법
KR102568956B1 (ko) * 2020-12-08 2023-08-18 현대오토에버 주식회사 비행체의 충돌 방지 방법

Also Published As

Publication number Publication date
JP6733948B2 (ja) 2020-08-05
JPWO2019168045A1 (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2019168045A1 (ja) ドローン、その制御方法、および、制御プログラム
CN111556986B (zh) 无人机及其控制方法以及计算机可读取记录介质
JP6777355B2 (ja) ドローンシステム、ドローンシステムの制御方法、およびドローンシステムの制御プログラム
JP6727525B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6727498B2 (ja) フールプルーフ性を向上した農業用ドローン
WO2020137554A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6889502B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2019168079A1 (ja) 安全性を向上した農業用ドローン
JP6913979B2 (ja) ドローン
JP6733949B2 (ja) 薬剤散布用無人マルチコプター、ならびにその制御方法および制御プログラム
CN112912693B (zh) 行驶路径生成系统、行驶路径生成方法和计算机可读取记录介质以及无人机
WO2019168052A1 (ja) ドローン、その制御方法、および、プログラム
JP6806403B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
CN111670418B (zh) 无人机及其控制方法以及计算机可读取记录介质
JP7333947B2 (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
WO2020090671A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2020116494A1 (ja) ドローンシステム
JP7359489B2 (ja) 測位システム、移動体、速度推定システム、測位方法、および速度推定方法
JP6996792B2 (ja) 薬剤の吐出制御システム、その制御方法、および、制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761615

Country of ref document: EP

Kind code of ref document: A1