WO2019167557A1 - 電動車両の制御装置 - Google Patents

電動車両の制御装置 Download PDF

Info

Publication number
WO2019167557A1
WO2019167557A1 PCT/JP2019/003819 JP2019003819W WO2019167557A1 WO 2019167557 A1 WO2019167557 A1 WO 2019167557A1 JP 2019003819 W JP2019003819 W JP 2019003819W WO 2019167557 A1 WO2019167557 A1 WO 2019167557A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
motor
electric vehicle
liquid level
pump
Prior art date
Application number
PCT/JP2019/003819
Other languages
English (en)
French (fr)
Inventor
忠一 植竹
春樹 石田
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2019167557A1 publication Critical patent/WO2019167557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for an electric vehicle equipped with a motor that generates a driving force on a driving wheel of the vehicle.
  • the battery recharge control SOC
  • the regenerative braking force by the motor regenerative control may not be used.
  • forcible discharge by the electric auxiliary machine is performed, and the regenerative control of the motor can be performed by reducing the charge amount of the battery. Is considered.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a control device for an electric vehicle that can suppress battery deterioration and power consumption deterioration.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following aspects.
  • the control device for an electric vehicle includes a motor that generates a driving force on a driving wheel of the vehicle, and a refrigerant circulation circuit that circulates a refrigerant that cools the motor when introduced into the motor.
  • a refrigerant liquid level adjusting unit that adjusts the liquid level of the refrigerant in the motor, and a control unit that controls the braking force applied to the driving wheel by controlling the refrigerant liquid level adjusting unit.
  • the control unit controls the refrigerant liquid level adjusting unit to set the liquid level to a predetermined liquid level or higher.
  • the control device for an electric vehicle according to this aspect can apply a braking force to the drive wheels of the vehicle without performing regenerative control of the motor. Therefore, the control device for the electric vehicle according to this aspect can suppress the deterioration of the battery and the deterioration of the power consumption.
  • the refrigerant liquid level adjustment unit includes an introduction pump that introduces the refrigerant into the motor, and a discharge pump that discharges the refrigerant from the motor.
  • the unit controls the discharge pump to stop the operation of the discharge pump.
  • the control device for an electric vehicle according to the present aspect applies braking force to the drive wheels of the vehicle by using the existing equipment that has been used to introduce the refrigerant into the motor or discharge the refrigerant from the motor. Can be granted.
  • the control apparatus of the electric vehicle which concerns on this aspect can be implement
  • control device for an electric vehicle can quickly reduce the liquid level in the motor by the discharge pump.
  • control apparatus of the electric vehicle which concerns on this aspect can improve the responsiveness which returns to the state of a motor from the time of provision of braking force to the time of normal operation.
  • the refrigerant liquid level adjustment unit further includes a valve that blocks the refrigerant circulation circuit, and the control unit applies the braking force to the drive wheel, The valve is closed by controlling the valve.
  • the control device for the electric vehicle according to this aspect can quickly shut off the refrigerant circulation circuit. Thereby, the liquid level of the refrigerant
  • the valve is a reversely supported valve.
  • the control device for an electric vehicle according to this aspect can flow a certain amount when the fluid pressure suddenly increases, and can reduce the fluid pressure to a certain numerical value. .
  • the control device for the electric vehicle according to this aspect can prevent the refrigerant circulation circuit from being damaged.
  • the control device for an electric vehicle according to this aspect can prevent refrigerant leakage due to the damage.
  • control device for an electric vehicle when the control unit applies a braking force to the drive wheel, the control unit controls the introduction pump, thereby discharging the refrigerant discharged from the introduction pump. Increase. Thereby, the liquid level of the refrigerant
  • the refrigerant liquid level adjustment unit includes an introduction pump that introduces the refrigerant into the motor, and a valve that blocks the refrigerant circulation circuit, and the control unit includes: When a braking force is applied to the drive wheel, the valve is closed by controlling the valve.
  • the control device for the electric vehicle according to this aspect can quickly shut off the refrigerant circulation circuit. Thereby, the liquid level of the refrigerant
  • the refrigerant liquid level adjustment unit includes an introduction pump that introduces the refrigerant into the motor, and the control unit supplies the refrigerant from the introduction pump to the motor.
  • the introduction pump is controlled so that the introduction amount of the refrigerant becomes larger than the amount of refrigerant extracted from the motor.
  • the electric vehicle control device further includes a gradient information acquisition unit that detects the gradient of the vehicle or acquires the gradient from an external device, and the control unit is acquired by the gradient information acquisition unit. It may be determined whether or not the vehicle travels on a continuous downhill road from information on the slope of the vehicle, and the refrigerant liquid level adjusting unit may be controlled when the vehicle travels on a downhill road.
  • FIG. 1 is a schematic diagram showing a control apparatus 1 for an electric vehicle according to the first embodiment.
  • a control device 1 for an electric vehicle shown in FIG. 1 controls driving of a motor 2 that generates driving force on driving wheels of a vehicle such as an electric vehicle.
  • the control device 1 for an electric vehicle according to the first embodiment includes a refrigerant circulation circuit 3, a tank 4, a heat exchanger 15, an introduction pump 51, a discharge pump 52, a gradient information acquisition unit 6, and a control unit 7.
  • the refrigerant circulation circuit 3 includes a first pipe 3a, a second pipe 3b, a third pipe 3c, and a fourth pipe 3d.
  • the refrigerant circulating in the refrigerant circuit 3 is, for example, an oily working medium.
  • the refrigerant circulation circuit 3 in the first embodiment directly cools the heat generating portion of the motor 2 by introducing a working medium into the motor 2.
  • the working medium that has absorbed heat from the motor 2 is cooled by a heat exchanger 15 including a heat exchanger such as a radiator and a chiller.
  • the heat-emitting part in 1st Embodiment is a coil, a core, and a magnet, for example.
  • the tank 4 stores a refrigerant that cools the motor 2.
  • the refrigerant stored in the tank 4 is introduced into the motor 2 via the introduction pump 51, the heat exchanger 15, and the refrigerant circulation circuit 3. Further, the refrigerant derived from the motor 2 is stored again in the tank 4 via the discharge pump 52 and the refrigerant circulation circuit 3.
  • the introduction pump 51 introduces a refrigerant into the motor 2.
  • the inlet port P1 of the introduction pump 51 is connected to the outlet port P2 of the tank 4 via the first pipe 3a of the refrigerant circulation circuit 3.
  • the discharge port P3 of the introduction pump 51 is connected to the introduction port P4 of the motor 2 via the second pipe 3b of the refrigerant circulation circuit 3.
  • the introduction pump 51 sucks the refrigerant stored in the tank 4 from the suction port P1 through the first pipe 3a.
  • the introduction pump 51 discharges the refrigerant sucked from the suction port P1 from the discharge port P3.
  • the refrigerant discharged from the discharge port P3 of the introduction pump 51 is cooled by the heat exchanger 15.
  • the refrigerant cooled by the heat exchanger 15 flows to the inlet P4 of the motor 2 through the second pipe 3b.
  • the introduction pump 51 introduces the refrigerant into the motor 2.
  • the discharge pump 52 discharges the refrigerant from the motor 2.
  • the suction port P5 of the discharge pump 52 is connected to the outlet port P6 of the motor 2 through the third pipe 3c of the refrigerant circulation circuit 3.
  • the discharge port P7 of the discharge pump 52 is connected to the introduction port P8 of the tank 4 via the fourth pipe 3d of the refrigerant circulation circuit 3.
  • the discharge pump 52 sucks the refrigerant in the motor 2 from the suction port P5 through the third pipe 3c.
  • the discharge pump 52 discharges the sucked refrigerant from the discharge port P7.
  • the refrigerant discharged from the discharge port P7 flows to the introduction port P8 of the tank 4 through the fourth pipe 3d. Thereby, the discharge pump 52 discharges the refrigerant from the motor 2.
  • the introduction pump 51 and the discharge pump 52 function as a refrigerant level adjustment unit that adjusts the refrigerant level in the motor 2.
  • the gradient information acquisition unit 6 is mounted on the vehicle and detects the gradient of the vehicle. Note that acquiring the vehicle gradient from an external device (not shown) connected to the gradient information acquisition unit 6 is also included as a function of the gradient information acquisition unit 6 in the first embodiment.
  • the control unit 7 includes a CPU (Central Processing Unit) and M as hardware resources. A predetermined processor of a PU (Micro Processing Unit) is included.
  • the control unit 7 can communicate with a VCU (Vehicle Control Unit) that is a control unit for the entire vehicle and an inverter that controls the motor.
  • VCU Vehicle Control Unit
  • the control unit 7 in the first embodiment controls the braking force applied to the drive wheels of the vehicle by controlling the operation of each of the introduction pump 51 and the discharge pump 52. For example, the control unit 7 determines whether or not the vehicle travels on a continuous downhill road from information (gradient information) related to the vehicle gradient acquired by the gradient information acquiring unit 6. When the vehicle travels on the downhill road, the control unit 7 controls the operation of each of the introduction pump 51 and the discharge pump 52 to set the liquid level in the motor 2 to a predetermined liquid level or higher.
  • control unit 7 stops the operation of the discharge pump 52 when a braking force is further applied to the drive wheels of the vehicle. Since the operation of the discharge pump 52 is stopped, the refrigerant is not led out from the motor 2 and the refrigerant stays in the motor 2. On the other hand, the introduction pump 51 continues to operate normally under the control of the control unit 7. For this reason, the liquid level of the refrigerant in the motor 2 rises.
  • FIG. 2 is a diagram showing the liquid level of the refrigerant in the motor 2 before and after controlling the operation of each of the introduction pump 51 and the discharge pump 52 in the control unit 7 according to the first embodiment.
  • the liquid level of the refrigerant in the motor 2 substantially matches the height of the outlet P6 of the motor 2. .
  • the liquid level of the refrigerant in the motor 2 substantially coincides with the height of the introduction port P4 of the motor 2. ing. That is, it is understood that the liquid level of the refrigerant in the motor 2 is increased by controlling the operations of the introduction pump 51 and the discharge pump 52.
  • control device 1 for an electric vehicle can further apply a braking force to the drive wheels of the vehicle.
  • the control device 1 for an electric vehicle includes the refrigerant circulation circuit 3, the introduction pump 51, the discharge pump 52, and the control unit 7.
  • the refrigerant circulation circuit 3 the refrigerant for cooling the motor 2 is circulated by being introduced into the motor 2.
  • the introduction pump 51 introduces a refrigerant into the motor 2.
  • the discharge pump 52 discharges the refrigerant from the motor 2.
  • the controller 7 controls the braking force applied to the drive wheels of the vehicle by controlling the operation of each of the introduction pump 51 and the discharge pump 52.
  • the control unit 7 stops the operation of the discharge pump 52. Since the operation of the discharge pump 52 is stopped, the refrigerant is not led out from the motor 2 and the refrigerant stays in the motor 2. On the other hand, the introduction pump 51 continues to operate normally under the control of the control unit 7. For this reason, the liquid level of the refrigerant in the motor 2 rises. As the liquid level of the refrigerant in the motor 2 increases, fluid friction due to the refrigerant increases. Thereby, generation
  • the control device 1 for the electric vehicle according to the first embodiment can suppress the deterioration of the battery and the deterioration of the electric power consumption.
  • the control apparatus 1 of the electric vehicle which concerns on 1st Embodiment uses the existing apparatus used in order to introduce
  • the control apparatus 1 for the electric vehicle according to the first embodiment can be realized without introducing a new device, and the cost for introducing the new device can be suppressed.
  • the control device 1 for an electric vehicle according to the first embodiment can quickly reduce the liquid level in the motor 2 by the discharge pump 52. For this reason, the control apparatus 1 of the electric vehicle which concerns on 1st Embodiment can improve the responsiveness which returns the state of the motor 2 from the time of provision of braking force to the time of normal operation.
  • the control unit 7 in the first embodiment stops the operation of the discharge pump 52 and operates the introduction pump 51 normally when further applying a braking force to the drive wheels of the vehicle.
  • the control unit 7 in the first embodiment increases the discharge amount of the refrigerant discharged from the introduction pump 51 more than the discharge amount of the refrigerant discharged from the discharge pump 52 when the braking force is applied to the driving wheels of the vehicle.
  • each of the introduction pump 51 and the discharge pump 52 may be controlled.
  • the control unit 7 increases the discharge amount of the refrigerant discharged from the introduction pump 51 and operates the discharge pump 52 normally.
  • control unit 7 increases the discharge amount of the refrigerant discharged from the introduction pump 51 and decreases the discharge amount of the refrigerant discharged from the discharge pump 52.
  • control unit 7 operates the introduction pump 51 normally to reduce the discharge amount of the refrigerant discharged from the discharge pump 52.
  • the control apparatus 1 of the electric vehicle which concerns on 1st Embodiment can provide a braking force to the driving wheel of a vehicle, maintaining the cooling performance of the motor 2 by a refrigerant
  • the control unit 7 in the first embodiment not only stops the operation of the discharge pump 52 but also increases the discharge amount of the refrigerant discharged from the introduction pump 51 when applying braking force to the drive wheels of the vehicle. May be. Thereby, the liquid level of the refrigerant
  • FIG. 3 is a schematic diagram showing a control device 8 for an electric vehicle according to the second embodiment.
  • the electric vehicle control device 8 shown in FIG. 3 is obtained by replacing the discharge pump 52 included in the electric vehicle control device 1 according to the first embodiment with a valve 9 that shuts off the refrigerant circulation circuit 3.
  • the second embodiment descriptions overlapping with those in the first embodiment are omitted, and portions different from the first embodiment will be mainly described.
  • valve 3 is a two-way electromagnetic valve that opens and closes under the control of the control unit 10, for example.
  • the inlet P9 of the valve 9 is connected to the outlet P6 of the motor 2 via the third pipe 3c.
  • the outlet P10 of the valve 9 is connected to the inlet P8 of the tank 4 via the fourth pipe 3d.
  • the introduction pump 51 and the valve 9 function as a refrigerant liquid level adjusting unit that adjusts the liquid level of the refrigerant in the motor 2.
  • the control unit 10 includes a CPU and a predetermined processor of MPU as hardware resources.
  • the control unit 10 controls the braking force applied to the drive wheels of the vehicle by controlling the operations of the introduction pump 51 and the valve 9. For example, the control unit 10 determines whether or not the vehicle travels on a continuous downhill road from the gradient information acquired by the gradient information acquisition unit 6. When the vehicle travels on a downhill road, the control unit 10 controls the operation of the introduction pump 51 and the valve 9 to set the liquid level in the motor 2 to a predetermined liquid level or higher.
  • control unit 10 closes the valve 9 when applying a braking force to the drive wheels of the vehicle. Since the valve 9 is closed, the refrigerant is not led out from the motor 2 and the refrigerant stays in the motor 2. On the other hand, the introduction pump 51 continues to operate normally under the control of the control unit 10. For this reason, the liquid level of the refrigerant in the motor 2 rises.
  • control device 8 for an electric vehicle can apply a braking force to the drive wheels of the vehicle.
  • the control device 8 for an electric vehicle includes the refrigerant circulation circuit 3, the introduction pump 51, the valve 9, and the control unit 10.
  • the refrigerant circulation circuit 3 the refrigerant for cooling the motor 2 is circulated by being introduced into the motor 2.
  • the introduction pump 51 introduces a refrigerant into the motor 2.
  • the valve 9 blocks the refrigerant circulation circuit 3.
  • the control unit 10 controls the braking force applied to the drive wheels of the vehicle by controlling the operations of the introduction pump 51 and the valve 9.
  • the control unit 10 closes the valve 9. Since the valve 9 is closed, the refrigerant is not led out from the motor 2 and the refrigerant stays in the motor 2. On the other hand, the introduction pump 51 continues to operate normally under the control of the control unit 10. For this reason, the liquid level of the refrigerant in the motor 2 rises. As the liquid level of the refrigerant in the motor 2 increases, fluid friction due to the refrigerant increases. Thereby, generation
  • control device 8 for the electric vehicle according to the second embodiment can suppress the deterioration of the battery and the deterioration of the power consumption.
  • control device 8 for an electric vehicle according to the second embodiment can quickly shut off the refrigerant circulation circuit 3 as compared with the discharge pump 52 by using the valve 9 instead of the discharge pump 52.
  • coolant in the motor 2 can be raised rapidly. That is, the control device 8 for an electric vehicle according to the second embodiment can quickly apply a braking force to the drive wheels of the vehicle.
  • FIG. 4 is a schematic diagram showing a control device 11 for an electric vehicle according to the third embodiment.
  • the electric vehicle control device 11 shown in FIG. 4 is a device in which a valve 9 that shuts off the refrigerant circulation circuit 3 is further installed in the electric vehicle control device 1 according to the first embodiment.
  • the description overlapping with the first embodiment and the second embodiment is omitted, and portions different from the first embodiment and the second embodiment will be mainly described.
  • first pipe 3a includes a first pipe 3a, a second pipe 3b, a third pipe 3c, a fourth pipe 3d, and a fifth pipe 3e.
  • the 4 is a two-way electromagnetic valve that opens and closes under the control of the control unit 12, for example.
  • the inlet P9 of the valve 9 is connected to the outlet P6 of the motor 2 via the fifth pipe 3e.
  • the outlet P10 of the valve 9 is connected to the inlet P5 of the discharge pump 52 via the third pipe 3c.
  • the discharge port P7 of the discharge pump 52 is connected to the introduction port P8 of the tank 4 via the fourth pipe 3d.
  • you may replace the installation location of the discharge pump 52 and the valve 9.
  • the introduction pump 51, the discharge pump 52, and the valve 9 function as a refrigerant liquid level adjusting unit that adjusts the liquid level of the refrigerant in the motor 2.
  • the control unit 12 includes a CPU and a predetermined processor of MPU as hardware resources.
  • the control unit 12 controls the braking force applied to the drive wheels of the vehicle by controlling the operations of the introduction pump 51, the discharge pump 52, and the valve 9. For example, the control unit 12 determines whether or not the vehicle travels on a continuous downhill road from the gradient information acquired by the gradient information acquisition unit 6. When the vehicle travels on a downhill road, the control unit 12 controls the operation of each of the introduction pump 51, the discharge pump 52, and the valve 9 to set the liquid level in the motor 2 to a predetermined liquid level or higher.
  • control unit 12 stops the operation of the discharge pump 52 when further applying a braking force to the drive wheels of the vehicle. Further, the control unit 12 closes the valve 9. Since the valve 9 is closed, the refrigerant is not led out from the motor 2 and the refrigerant stays in the motor 2. On the other hand, the introduction pump 51 continues to operate normally under the control of the control unit 12. For this reason, the liquid level of the refrigerant in the motor 2 rises.
  • the control device 11 for an electric vehicle can apply a braking force to the drive wheels of the vehicle.
  • the control device 11 for an electric vehicle includes the refrigerant circulation circuit 3, the introduction pump 51, the discharge pump 52, the valve 9, and the control unit 12.
  • the refrigerant circulation circuit 3 the refrigerant for cooling the motor 2 is circulated by being introduced into the motor 2.
  • the introduction pump 51 introduces a refrigerant into the motor 2.
  • the discharge pump 52 discharges the refrigerant from the motor 2.
  • the valve 9 blocks the refrigerant circulation circuit 3.
  • the control unit 12 controls the braking force applied to the driving wheels of the vehicle by controlling the operations of the introduction pump 51, the discharge pump 52, and the valve 9.
  • the control unit 12 stops the operation of the discharge pump 52. Further, the control unit 12 closes the valve 9. Since the valve 9 is closed, the refrigerant is not led out from the motor 2 and the refrigerant stays in the motor 2. On the other hand, the introduction pump 51 continues to operate normally under the control of the control unit 12. For this reason, the liquid level of the refrigerant in the motor 2 rises. As the liquid level of the refrigerant in the motor 2 increases, fluid friction due to the refrigerant increases. Thereby, generation
  • the control device 11 of the electric vehicle according to the third embodiment can suppress the deterioration of the battery and the deterioration of the power consumption. Moreover, the control apparatus 11 of the electric vehicle which concerns on 3rd Embodiment can reduce the liquid level in the motor 2 rapidly with the discharge pump 52. FIG. For this reason, the control apparatus 11 of the electric vehicle which concerns on 3rd Embodiment can improve the responsiveness which returns the state of the motor 2 from the time of provision of braking force to the time of normal operation. Moreover, the control apparatus 11 of the electric vehicle which concerns on 3rd Embodiment can interrupt
  • the control unit 12 in the third embodiment when applying a braking force to the driving wheels of the vehicle, not only stops the operation of the discharge pump 52 and closes the valve 9 but also discharges from the introduction pump 51.
  • the discharge amount of the refrigerant may be increased.
  • coolant in the motor 2 can be raised rapidly. That is, the control device 11 for an electric vehicle according to the third embodiment can quickly apply a braking force to the drive wheels of the vehicle.
  • a check valve may be used as the valve 9.
  • the check valve is for preventing the refrigerant flowing through the refrigerant circulation circuit 3 from flowing backward.
  • the check valve is opened when the difference between the hydraulic pressures before and after the check valve exceeds a predetermined threshold.
  • the control device 11 of the electric vehicle according to the third embodiment uses a check valve as the valve 9 so that a certain amount can flow when the fluid pressure suddenly increases, and the fluid pressure is reduced to a certain value. Can be made. For this reason, the control device 11 for the electric vehicle according to the third embodiment can prevent the refrigerant circulation circuit 3 from being damaged.
  • the control apparatus 11 of the electric vehicle which concerns on 3rd Embodiment can prevent the refrigerant
  • FIG. 5 is a schematic diagram showing the control device 13 for an electric vehicle according to the fourth embodiment.
  • the control device 13 for the electric vehicle shown in FIG. 5 is realized only by the introduction pump 51, unlike the above embodiment.
  • the third embodiment descriptions overlapping with the first to third embodiments are omitted, and different parts from the first to third embodiments are mainly described.
  • the outlet P6 of the motor 2 is connected to the inlet P8 of the tank 4 via the fifth pipe 3e.
  • the introduction pump 51 functions as a refrigerant liquid level adjusting unit that adjusts the liquid level of the refrigerant in the motor 2.
  • the control unit 14 includes a CPU and a predetermined processor of MPU as hardware resources.
  • the control unit 14 controls the braking force applied to the drive wheels of the vehicle by controlling the operation of the introduction pump 51. For example, the control unit 14 determines whether or not the vehicle travels on a continuous downhill road from the gradient information acquired by the gradient information acquisition unit 6. When the vehicle travels on a downhill road, the control unit 14 controls the operation of the introduction pump 51 to set the liquid level in the motor 2 to a predetermined liquid level or higher.
  • the control unit 14 further applies a braking force to the drive wheels of the vehicle, the amount of refrigerant introduced from the introduction pump 51 to the motor 2 is larger than the amount of refrigerant drawn from the motor 2. Thus, the discharge amount of the refrigerant from the introduction pump 51 is controlled. For this reason, the liquid level of the refrigerant in the motor 2 rises.
  • control device 13 for an electric vehicle can further apply a braking force to the drive wheels of the vehicle.
  • the control device 13 for the electric vehicle includes the refrigerant circulation circuit 3, the introduction pump 51, and the control unit 14.
  • the refrigerant circulation circuit 3 the refrigerant for cooling the motor 2 is circulated by being introduced into the motor 2.
  • the introduction pump 51 introduces a refrigerant into the motor 2.
  • the control unit 14 controls the braking force applied to the drive wheels of the vehicle by controlling the operation of the introduction pump 51.
  • the control unit 14 controls the amount of refrigerant discharged from the introduction pump 51 so that the amount of refrigerant introduced from the introduction pump 51 to the motor 2 is greater than the amount of refrigerant derived from the motor 2. For this reason, the liquid level of the refrigerant in the motor 2 rises. As the liquid level of the refrigerant in the motor 2 increases, fluid friction due to the refrigerant increases. Thereby, generation
  • control device 13 for the electric vehicle according to the fourth embodiment can suppress the deterioration of the battery and the deterioration of the power consumption. Moreover, since the control apparatus 13 of the electric vehicle which concerns on 4th Embodiment can be implement
  • each component (each processing unit) of the present embodiment is not limited to a single processor, and may be realized by a plurality of processors. Furthermore, a plurality of components (a plurality of processing units) may be realized by a single processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】バッテリの劣化および電費悪化を抑制することができる電動車両の制御装置を提供する。 【解決手段】車両の駆動輪に駆動力を発生させるモータを搭載する電動車両の制御装置において、モータ内に導入されることによりモータを冷却する冷媒が循環する冷媒循環回路と、モータ内における冷媒の液位を調整する冷媒液位調整部と、冷媒液位調整部を制御することにより、駆動輪にかかる制動力を制御する制御部と、を含む。

Description

電動車両の制御装置
 本発明は、車両の駆動輪に駆動力を発生させるモータを搭載する電動車両の制御装置に関する。
 例えば、電気自動車が連続降坂路を走行する場合、モータの回生制御によりバッテリ充電量(SOC)が満充電となり、モータの回生制御による回生制動力を利用できなくなる虞がある。このような状況を回避するため、下記特許文献1に開示されるように、電動補機による強制放電を実施し、バッテリの充電量を低下させることでモータの回生制御を実施できるようにすることが検討される。
特開2012-111270号公報
 しかしながら、連続降坂路をこのような制御を実施しながら走行した場合、電動補機による強制放電と回生充電を頻繁に繰り返すこととなり、バッテリ劣化や不用な強制放電に起因する電費悪化につながる虞がある。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、バッテリの劣化および電費悪化を抑制することができる電動車両の制御装置を提供することにある。
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様として実現することができる。
 本態様に係る電動車両の制御装置は、車両の駆動輪に駆動力を発生させるモータを搭載するものにおいて、前記モータ内に導入されることにより前記モータを冷却する冷媒が循環する冷媒循環回路と、前記モータ内における前記冷媒の液位を調整する冷媒液位調整部と、前記冷媒液位調整部を制御することにより、前記駆動輪にかかる制動力を制御する制御部と、を含む。
 本態様に係る電動車両の制御装置によれば、制御部は、冷媒液位調整部を制御することにより、液位を所定の液位以上とする。モータ内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータによる駆動力の発生が制限される。すなわち、本態様に係る電動車両の制御装置は、モータの回生制御を実行しなくても、上記車両の駆動輪に制動力を付与することができる。したがって、本態様に係る電動車両の制御装置は、バッテリの劣化および電費悪化を抑制することができる。
 また、本態様に係る電動車両の制御装置において、前記冷媒液位調整部は、前記モータ内に前記冷媒を導入する導入ポンプ、及び前記モータ内から前記冷媒を排出する排出ポンプを含み、前記制御部は、前記駆動輪に制動力を付与する場合、前記排出ポンプを制御することで、前記排出ポンプの動作を停止する。これにより、本態様に係る電動車両の制御装置は、冷媒をモータ内に導入、又はモータ内から排出するために用いられていた既存の設備を利用することで上記車両の駆動輪に制動力を付与することができる。このため、新たな設備を導入することなく、本態様に係る電動車両の制御装置を実現でき、かつ新たな設備を導入するためのコストを抑制することができる。また、本態様に係る電動車両の制御装置は、排出ポンプにより早急にモータ内の液位を低下させることができる。このため、本態様に係る電動車両の制御装置は、制動力の付与時から通常動作時へモータの状態に戻す応答性を向上することができる。
 また、本態様に係る電動車両の制御装置において、前記冷媒液位調整部は、前記冷媒循環回路を遮断するバルブをさらに含み、前記制御部は、前記駆動輪に制動力を付与する場合、前記バルブを制御することで、前記バルブを閉鎖する。本態様に係る電動車両の制御装置は、冷媒循環回路を早急に遮断することができる。これにより、モータ内の冷媒の液位を早急に上昇することができる。すなわち、本態様に係る電動車両の制御装置は、車両の駆動輪に早急に制動力を付与することができる。
 また、本態様に係る電動車両の制御装置において、前記バルブは、逆支弁である。本態様に係る電動車両の制御装置は、前記バルブとして逆止弁を用いることで、液圧が急激に上昇した場合に一定量流すことができ、液圧を一定の数値まで低下させることができる。このため、本態様に係る電動車両の制御装置は、冷媒循環回路の破損を防止することができる。また、本態様に係る電動車両の制御装置は、上記破損による冷媒漏れを防止することができる。
 また、本態様に係る電動車両の制御装置において、前記制御部は、前記駆動輪に制動力を付与する場合、前記導入ポンプを制御することで、前記導入ポンプから吐出される前記冷媒の吐出量を増加させる。これにより、モータ内の冷媒の液位を早急に上昇することができる。すなわち、本態様に係る電動車両の制御装置は、車両の駆動輪に早急に制動力を付与することができる。
 また、本態様に係る電動車両の制御装置において、前記冷媒液位調整部は、前記モータ内に前記冷媒を導入する導入ポンプ、及び前記冷媒循環回路を遮断するバルブを含み、前記制御部は、前記駆動輪に制動力を付与する場合、前記バルブを制御することで、前記バルブを閉鎖する。本態様に係る電動車両の制御装置は、冷媒循環回路を早急に遮断することができる。これにより、モータ内の冷媒の液位を早急に上昇することができる。すなわち、本態様に係る電動車両の制御装置は、車両の駆動輪に早急に制動力を付与することができる。
 また、本態様に係る電動車両の制御装置において、前記冷媒液位調整部は、前記モータ内に前記冷媒を導入する導入ポンプを含み、前記制御部は、前記導入ポンプから前記モータへの前記冷媒の導入量が前記モータからの前記冷媒の導出量より多くなるように前記導入ポンプを制御する。これにより、本態様に係る電動車両の制御装置は、最小限の構成で実現することができるため、設置のための導入コストを抑制することができる。
 また、本態様に係る電動車両の制御装置において、前記車両の勾配を検出、又は外部装置から取得する勾配情報取得部をさらに含み、前記制御部は、前記勾配情報取得部により取得された前記車両の勾配に関する情報から前記車両が連続的な降坂路を走行するか否かを判断し、前記車両が降坂路を走行する場合に前記冷媒液位調整部を制御してもよい。
第1実施形態に係る電動車両の制御装置を示す模式図である。 導入ポンプ及び排出ポンプ各々の動作を制御する前後でのモータ内の冷媒の液位を示す図である。 第2実施形態に係る電動車両の制御装置を示す模式図である。 第3実施形態に係る電動車両の制御装置を示す模式図である。 第4実施形態に係る電動車両の制御装置を示す模式図である。
 以下、本発明の一実施形態に係る電動車両の制御装置について、図面を参照して説明する。なお、本実施形態は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
(第1実施形態)
 図1は、第1実施形態に係る電動車両の制御装置1を示す模式図である。図1に示す電動車両の制御装置1は、電気自動車等の車両の駆動輪に駆動力を発生させるモータ2の駆動を制御する。例えば、第1実施形態に係る電動車両の制御装置1は、冷媒循環回路3、タンク4、熱交換器15、導入ポンプ51、排出ポンプ52、勾配情報取得部6、及び制御部7を含む。
 冷媒循環回路3は、第1配管3a、第2配管3b、第3配管3c、及び第4配管3dにより構成される。冷媒循環回路3内では、上記モータ2内に導入されることによりモータ2を冷却する冷媒が循環する。冷媒循環回路3を循環する冷媒は、例えば、油性の作動媒体である。第1実施形態における冷媒循環回路3は、モータ2内に作動媒体を導入することで、モータ2の発熱部位を直接冷却する。モータ2から熱を吸収した作動媒体は、ラジエータ、及びチラー等の熱交換手段からなる熱交換器15により冷却される。なお、第1実施形態における発熱部位は、例えば、コイル、コア、及び磁石である。
 タンク4は、モータ2を冷却する冷媒を貯蔵する。タンク4に貯蔵された冷媒は、導入ポンプ51、熱交換器15及び冷媒循環回路3を経由して、モータ2に導入される。また、モータ2から導出された冷媒は、排出ポンプ52及び冷媒循環回路3を経由して、再びタンク4で貯蔵される。
 導入ポンプ51は、モータ2内に冷媒を導入する。導入ポンプ51の吸入口P1は、冷媒循環回路3の第1配管3aを介して、タンク4の導出口P2に接続される。また、導入ポンプ51の吐出口P3は、冷媒循環回路3の第2配管3bを介して、モータ2の導入口P4に接続される。導入ポンプ51は、第1配管3aを介して、タンク4に貯蔵された冷媒を吸入口P1から吸入する。導入ポンプ51は、吸入口P1から吸入した冷媒を吐出口P3から吐出する。このとき、導入ポンプ51の吐出口P3から吐出した冷媒は、熱交換器15により冷却される。さらに、熱交換器15により冷却された冷媒は、第2配管3bを介して、モータ2の導入口P4へ流れる。これにより、導入ポンプ51は、モータ2内に冷媒を導入する。
 排出ポンプ52は、モータ2内から冷媒を排出する。排出ポンプ52の吸入口P5は、冷媒循環回路3の第3配管3cを介して、モータ2の導出口P6に接続される。排出ポンプ52の吐出口P7は、冷媒循環回路3の第4配管3dを介して、タンク4の導入口P8に接続される。排出ポンプ52は、第3配管3cを介して、モータ2内の冷媒を吸入口P5から吸入する。排出ポンプ52は、吸入した冷媒を吐出口P7から吐出する。吐出口P7から吐出した冷媒は、第4配管3dを介して、タンク4の導入口P8へ流れる。これにより、排出ポンプ52は、モータ2内から冷媒を排出する。
 ここで、第1実施形態に係る電動車両の制御装置1では、上記導入ポンプ51及び排出ポンプ52が、モータ2内における冷媒の液位を調整する冷媒液位調整部として機能する。
 勾配情報取得部6は、車両に搭載され、車両の勾配を検出する。なお、勾配情報取得部6と接続される図示しない外部装置から車両の勾配を取得することも第1実施形態における勾配情報取得部6の機能として含まれる。
 制御部7は、ハードウェア資源として、CPU(Central Processing Unit)、及びM
PU(Micro Processing Unit)の所定のプロセッサを含む。また、制御部7は、車両全
体の制御部であるVCU(Vehicle Control Unit)や、モータを制御するインバータと通信することができる。
 第1実施形態における制御部7は、上記導入ポンプ51及び排出ポンプ52各々の動作を制御することにより、上記車両の駆動輪にかかる制動力を制御する。例えば、制御部7は、勾配情報取得部6により取得された車両の勾配に関する情報(勾配情報)から車両が連続的な降坂路を走行するか否かを判断する。制御部7は、車両が降坂路を走行する場合に、上記導入ポンプ51及び排出ポンプ52各々の動作を制御することにより、モータ2内の液位を所定液位以上とする。
 具体的には、制御部7は、上記車両の駆動輪に対して制動力をさらに付与する場合、排出ポンプ52の動作を停止する。排出ポンプ52の動作を停止するため、モータ2内から冷媒が導出されず、モータ2内で冷媒が滞留する。一方、導入ポンプ51は、制御部7による制御により、通常動作し続ける。このため、モータ2内の冷媒の液位が上昇する。
 図2は、第1実施形態における制御部7において、上記導入ポンプ51及び排出ポンプ52各々の動作を制御する前後でのモータ2内の冷媒の液位を示す図である。図2(a)に示すように、上記導入ポンプ51及び排出ポンプ52各々の動作を制御する前において、モータ2内の冷媒の液位がモータ2の導出口P6の高さと略一致している。一方、図2(b)に示すように、上記導入ポンプ51及び排出ポンプ52各々の動作を制御した後において、モータ2内の冷媒の液位がモータ2の導入口P4の高さと略一致している。すなわち、上記導入ポンプ51及び排出ポンプ52各々の動作を制御することで、モータ2内の冷媒の液位が上昇していることがわかる。
 モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第1実施形態に係る電動車両の制御装置1は、上記車両の駆動輪に制動力をさらに付与することができる。
 上述の通り、第1実施形態に係る電動車両の制御装置1は、冷媒循環回路3、導入ポンプ51、排出ポンプ52、及び制御部7を含む。冷媒循環回路3では、モータ2内に導入されることによりモータ2を冷却する冷媒が循環する。導入ポンプ51は、モータ2内に冷媒を導入する。排出ポンプ52は、モータ2内から冷媒を排出する。制御部7は、上記導入ポンプ51及び排出ポンプ52各々の動作を制御することにより、上記車両の駆動輪にかかる制動力を制御する。
 例えば、制御部7は、排出ポンプ52の動作を停止する。排出ポンプ52の動作を停止するため、モータ2内から冷媒が導出されず、モータ2内で冷媒が滞留する。一方、導入ポンプ51は、制御部7による制御により、通常動作し続ける。このため、モータ2内の冷媒の液位が上昇する。モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第1実施形態に係る電動車両の制御装置1は、上記車両の駆動輪に制動力をさらに付与することができる。したがって、第1実施形態に係る電動車両の制御装置1は、モータの回生制御を実行しなくても、上記車両の駆動輪に制動力をさらに付与することができる。
 これにより、第1実施形態に係る電動車両の制御装置1は、バッテリの劣化および電費悪化を抑制することができる。また、第1実施形態に係る電動車両の制御装置1は、冷媒をモータ2内に導入、又はモータ2内から排出するために用いられていた既存の装置を利用することで上記車両の駆動輪に制動力を付与することができる。このため、新たな装置を導入することなく、第1実施形態に係る電動車両の制御装置1を実現でき、かつ新たな装置を導入するためのコストを抑制することができる。また、第1実施形態に係る電動車両の制御装置1は、排出ポンプ52により早急にモータ2内の液位を低下させることができる。このため、第1実施形態に係る電動車両の制御装置1は、制動力の付与時から通常動作時へモータ2の状態に戻す応答性を向上することができる。
 ここで、第1実施形態における制御部7は、車両の駆動輪に制動力をさらに付与する場合、排出ポンプ52の動作を停止させ、導入ポンプ51を通常動作させている。例えば、第1実施形態における制御部7は、車両の駆動輪に制動力を付与する場合、導入ポンプ51から吐出される冷媒の吐出量を排出ポンプ52から吐出される冷媒の吐出量より増加させるように、上記導入ポンプ51及び排出ポンプ52各々を制御してもよい。例えば、制御部7は、導入ポンプ51から吐出される冷媒の吐出量を増加させ、排出ポンプ52を通常動作させる。また、制御部7は、導入ポンプ51から吐出される冷媒の吐出量を増加させ、排出ポンプ52から吐出される冷媒の吐出量を減少させる。また、制御部7は、導入ポンプ51を通常動作させ、排出ポンプ52から吐出される冷媒の吐出量を減少させる。
 一般に、モータ2内で冷媒が滞留する場合、モータ2内の冷媒の温度が徐々に上昇する。これにより、発熱部位の冷却不足に伴うモータ2内の部品故障等、予見しない事態が生じることが考えられる。このため、排出ポンプ52により一定量の冷媒をモータ2内から排出しつつ、モータ2内の冷媒の液位を上昇させる。これにより、第1実施形態に係る電動車両の制御装置1は、冷媒によるモータ2の冷却性能を保ちつつ、車両の駆動輪に制動力を付与することができる。
 また、第1実施形態における制御部7は、車両の駆動輪に制動力を付与する場合、排出ポンプ52の動作を停止するだけでなく、導入ポンプ51から吐出される冷媒の吐出量を増加させてもよい。これにより、モータ2内の冷媒の液位を早急に上昇することができる。すなわち、第1実施形態に係る電動車両の制御装置1は、車両の駆動輪に早急に制動力を付与することができる。
(第2実施形態)
 図3は、第2実施形態に係る電動車両の制御装置8を示す模式図である。図3に示す電動車両の制御装置8は、上記第1実施形態に係る電動車両の制御装置1に含まれる排出ポンプ52を、冷媒循環回路3を遮断するバルブ9に置き換えたものである。なお、第2実施形態では、上記第1実施形態と重複する記載を省略し、第1実施形態と異なる部分を主として説明することとする。
 図3に示すバルブ9は、例えば、制御部10による制御により開閉する二方向電磁弁である。バルブ9の導入口P9は、第3配管3cを介して、モータ2の導出口P6に接続される。バルブ9の導出口P10は、第4配管3dを介して、タンク4の導入口P8に接続される。
 ここで、第2実施形態に係る電動車両の制御装置8では、上記導入ポンプ51及びバルブ9が、モータ2内における冷媒の液位を調整する冷媒液位調整部として機能する。
 制御部10は、ハードウェア資源として、CPU、及びMPUの所定のプロセッサを含む。制御部10は、上記導入ポンプ51及びバルブ9各々の動作を制御することにより、上記車両の駆動輪にかかる制動力を制御する。例えば、制御部10は、勾配情報取得部6により取得された勾配情報から車両が連続的な降坂路を走行するか否かを判断する。制御部10は、車両が降坂路を走行する場合に、上記導入ポンプ51及びバルブ9各々の動作を制御することにより、モータ2内の液位を所定液位以上とする。
 具体的には、制御部10は、上記車両の駆動輪に制動力を付与する場合、バルブ9を閉鎖する。バルブ9を閉鎖するため、モータ2内から冷媒が導出されず、モータ2内で冷媒が滞留する。一方、導入ポンプ51は、制御部10による制御により、通常動作し続ける。このため、モータ2内の冷媒の液位が上昇する。
 モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第2実施形態に係る電動車両の制御装置8は、上記車両の駆動輪に制動力を付与することができる。
 上述の通り、第2実施形態に係る電動車両の制御装置8は、冷媒循環回路3、導入ポンプ51、バルブ9、及び制御部10を含む。冷媒循環回路3では、モータ2内に導入されることによりモータ2を冷却する冷媒が循環する。導入ポンプ51は、モータ2内に冷媒を導入する。バルブ9は、冷媒循環回路3を遮断する。制御部10は、上記導入ポンプ51及びバルブ9各々の動作を制御することにより、上記車両の駆動輪にかかる制動力を制御する。
 例えば、制御部10は、バルブ9を閉鎖する。バルブ9を閉鎖するため、モータ2内から冷媒が導出されず、モータ2内で冷媒が滞留する。一方、導入ポンプ51は、制御部10による制御により、通常動作し続ける。このため、モータ2内の冷媒の液位が上昇する。モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第2実施形態に係る電動車両の制御装置8は、上記車両の駆動輪に制動力を付与することができる。したがって、第2実施形態に係る電動車両の制御装置8は、モータの回生制御を実行しなくても、上記車両の駆動輪に制動力をさらに付与することができる。
 これにより、第2実施形態に係る電動車両の制御装置8は、バッテリの劣化および電費悪化を抑制することができる。また、第2実施形態に係る電動車両の制御装置8は、排出ポンプ52の代わりにバルブ9を用いることで、排出ポンプ52と比較して、冷媒循環回路3を早急に遮断することができる。これにより、モータ2内の冷媒の液位を早急に上昇することができる。すなわち、第2実施形態に係る電動車両の制御装置8は、車両の駆動輪に早急に制動力を付与することができる。
(第3実施形態)
 図4は、第3実施形態に係る電動車両の制御装置11を示す模式図である。図4に示す電動車両の制御装置11は、上記第1実施形態に係る電動車両の制御装置1に、冷媒循環回路3を遮断するバルブ9をさらに設置したものである。なお、第3実施形態では、上記第1実施形態及び第2実施形態と重複する記載を省略し、第1実施形態及び第2実施形態と異なる部分を主として説明することとする。
 図4に示す冷媒循環回路3は、第1配管3a、第2配管3b、第3配管3c、第4配管3d、及び第5配管3eにより構成される。
 図4に示すバルブ9は、例えば、制御部12による制御により開閉する二方向電磁弁である。バルブ9の導入口P9は、第5配管3eを介して、モータ2の導出口P6に接続される。バルブ9の導出口P10は、第3配管3cを介して、排出ポンプ52の吸入口P5に接続される。排出ポンプ52の吐出口P7は、第4配管3dを介して、タンク4の導入口P8に接続される。なお、第3実施形態に係る電動車両の制御装置11において、排出ポンプ52及びバルブ9の設置箇所を入れ替えてもよい。
 ここで、第3実施形態に係る電動車両の制御装置11では、上記導入ポンプ51、排出ポンプ52及びバルブ9が、モータ2内における冷媒の液位を調整する冷媒液位調整部として機能する。
 制御部12は、ハードウェア資源として、CPU、及びMPUの所定のプロセッサを含む。制御部12は、上記導入ポンプ51、排出ポンプ52及びバルブ9各々の動作を制御することで、上記車両の駆動輪にかかる制動力を制御する。例えば、制御部12は、勾配情報取得部6により取得された勾配情報から車両が連続的な降坂路を走行するか否かを判断する。制御部12は、車両が降坂路を走行する場合に、上記導入ポンプ51、排出ポンプ52及びバルブ9各々の動作を制御することにより、モータ2内の液位を所定液位以上とする。
 具体的には、制御部12は、上記車両の駆動輪に対して制動力をさらに付与する場合、排出ポンプ52の動作を停止する。また、制御部12は、バルブ9を閉鎖する。バルブ9を閉鎖するため、モータ2内から冷媒が導出されず、モータ2内で冷媒が滞留する。一方、導入ポンプ51は、制御部12による制御により、通常動作し続ける。このため、モータ2内の冷媒の液位が上昇する。
 モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第3実施形態に係る電動車両の制御装置11は、上記車両の駆動輪に制動力を付与することができる。
 上述の通り、第3実施形態に係る電動車両の制御装置11は、冷媒循環回路3、導入ポンプ51、排出ポンプ52、バルブ9、及び制御部12を含む。冷媒循環回路3では、モータ2内に導入されることによりモータ2を冷却する冷媒が循環する。導入ポンプ51は、モータ2内に冷媒を導入する。排出ポンプ52は、モータ2内から冷媒を排出する。バルブ9は、冷媒循環回路3を遮断する。制御部12は、上記導入ポンプ51、排出ポンプ52及びバルブ9各々の動作を制御することにより、上記車両の駆動輪にかかる制動力を制御する。
 例えば、制御部12は、排出ポンプ52の動作を停止する。また、制御部12は、バルブ9を閉鎖する。バルブ9を閉鎖するため、モータ2内から冷媒が導出されず、モータ2内で冷媒が滞留する。一方、導入ポンプ51は、制御部12による制御により、通常動作し続ける。このため、モータ2内の冷媒の液位が上昇する。モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第3実施形態に係る電動車両の制御装置11は、上記車両の駆動輪に制動力を付与することができる。したがって、第3実施形態に係る電動車両の制御装置11は、モータの回生制御を実行しなくても、上記車両の駆動輪に制動力をさらに付与することができる。
 これにより、第3実施形態に係る電動車両の制御装置11は、バッテリの劣化および電費悪化を抑制することができる。また、第3実施形態に係る電動車両の制御装置11は、排出ポンプ52により早急にモータ2内の液位を低下させることができる。このため、第3実施形態に係る電動車両の制御装置11は、制動力の付与時から通常動作時へモータ2の状態に戻す応答性を向上することができる。また、第3実施形態に係る電動車両の制御装置11は、バルブ9を用いることで、冷媒循環回路3を早急に遮断することができる。これにより、モータ2内の冷媒の液位を早急に上昇することができる。すなわち、第3実施形態に係る電動車両の制御装置11は、車両の駆動輪に早急に制動力を付与することができる。
 ここで、第3実施形態における制御部12は、車両の駆動輪に制動力を付与する場合、排出ポンプ52の動作を停止し、バルブ9を閉鎖するだけでなく、導入ポンプ51から吐出される冷媒の吐出量を増加させてもよい。これにより、モータ2内の冷媒の液位を早急に上昇することができる。すなわち、第3実施形態に係る電動車両の制御装置11は、車両の駆動輪に早急に制動力を付与することができる。
 また、第3実施形態に係る電動車両の制御装置11において、上記バルブ9として、逆止弁を用いてもよい。逆止弁は、冷媒循環回路3を流れる冷媒が逆流することを防ぐためのものである。上記逆止弁は、逆止弁の前後の液圧の差が所定の閾値以上となった場合に、開放するようになっている。第3実施形態に係る電動車両の制御装置11は、上記バルブ9として逆止弁を用いることで、液圧が急激に上昇した場合に一定量流すことができ、液圧を一定の数値まで低下させることができる。このため、第3実施形態に係る電動車両の制御装置11は、冷媒循環回路3の破損を防止することができる。また、第3実施形態に係る電動車両の制御装置11は、上記破損による冷媒漏れを防止することができる。
(第4実施形態)
 図5は、第4実施形態に係る電動車両の制御装置13を示す模式図である。図5に示す電動車両の制御装置13は、上記実施形態と異なり、導入ポンプ51のみで実現したものである。なお、第3実施形態では、上記第1実施形態乃至第3実施形態と重複する記載を省略し、第1実施形態乃至第3実施形態と異なる部分を主として説明することとする。
 ここで、モータ2の導出口P6は、第5配管3eを介して、タンク4の導入口P8に接続される。第4実施形態に係る電動車両の制御装置13では、上記導入ポンプ51が、モータ2内における冷媒の液位を調整する冷媒液位調整部として機能する。
 制御部14は、ハードウェア資源として、CPU、及びMPUの所定のプロセッサを含む。制御部14は、上記導入ポンプ51の動作を制御することにより、上記車両の駆動輪にかかる制動力を制御する。例えば、制御部14は、勾配情報取得部6により取得された勾配情報から車両が連続的な降坂路を走行するか否かを判断する。制御部14は、車両が降坂路を走行する場合に、上記導入ポンプ51の動作を制御することにより、モータ2内の液位を所定液位以上とする。
 具体的には、制御部14は、上記車両の駆動輪に対して制動力をさらに付与する場合、導入ポンプ51からモータ2への冷媒の導入量がモータ2からの冷媒の導出量より多くなるように導入ポンプ51からの冷媒の吐出量を制御する。このため、モータ2内の冷媒の液位が上昇する。
 モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第4実施形態に係る電動車両の制御装置13は、上記車両の駆動輪に制動力をさらに付与することができる。
 上述の通り、第4実施形態に係る電動車両の制御装置13は、冷媒循環回路3、導入ポンプ51、及び制御部14を含む。冷媒循環回路3では、モータ2内に導入されることによりモータ2を冷却する冷媒が循環する。導入ポンプ51は、モータ2内に冷媒を導入する。制御部14は、上記導入ポンプ51の動作を制御することにより、上記車両の駆動輪にかかる制動力を制御する。
 例えば、制御部14は、導入ポンプ51からモータ2への冷媒の導入量がモータ2からの冷媒の導出量より多くなるように導入ポンプ51からの冷媒の吐出量を制御する。このため、モータ2内の冷媒の液位が上昇する。モータ2内の冷媒の液位の上昇に伴い、冷媒による流体摩擦が上昇する。これにより、モータ2による駆動力の発生が制限される。すなわち、第4実施形態に係る電動車両の制御装置13は、上記車両の駆動輪に制動力をさらに付与することができる。したがって、第4実施形態に係る電動車両の制御装置13は、モータの回生制御を実行しなくても、上記車両の駆動輪に制動力をさらに付与することができる。
 これにより、第4実施形態に係る電動車両の制御装置13は、バッテリの劣化および電費悪化を抑制することができる。また、第4実施形態に係る電動車両の制御装置13は、最小限の構成で実現することができるため、設置のための導入コストを抑制することができる。
 ここで、上記説明において用いた「所定のプロセッサ」という文言は、例えば、専用又は汎用のプロセッサ、を意味する。また、本実施形態の各構成要素(各処理部)は、単一のプロセッサに限らず、複数のプロセッサによって実現するようにしてもよい。さらに、複数の構成要素(複数の処理部)を、単一のプロセッサによって実現するようにしてもよい。
  1、8、11、13 電動車両の制御装置
  2 モータ
  3 冷媒循環回路
  3a 第1配管
  3b 第2配管
  3c 第3配管
  3d 第4配管
  3e 第5配管
  4 タンク
  6 勾配情報取得部
  7、10、12、14 制御部
  15 熱交換器
  9 バルブ
  51 導入ポンプ
  52 排出ポンプ

Claims (8)

  1.  車両の駆動輪に駆動力を発生させるモータを搭載する電動車両の制御装置であって、
     前記モータ内に導入されることにより前記モータを冷却する冷媒が循環する冷媒循環回路と、
     前記モータ内における前記冷媒の液位を調整する冷媒液位調整部と、
     前記冷媒液位調整部を制御することにより、前記駆動輪にかかる制動力を制御する制御部と、を含む、電動車両の制御装置。
  2.  前記冷媒液位調整部は、前記モータ内に前記冷媒を導入する導入ポンプ、及び前記モータ内から前記冷媒を排出する排出ポンプを含み、
     前記制御部は、前記駆動輪に制動力を付与する場合、前記排出ポンプを制御することで、前記排出ポンプの動作を停止する、請求項1に記載の電動車両の制御装置。
  3.  前記冷媒液位調整部は、前記冷媒循環回路を遮断するバルブをさらに含み、
     前記制御部は、前記駆動輪に制動力を付与する場合、前記バルブを制御することで、前記バルブを閉鎖する、請求項2に記載の電動車両の制御装置。
  4.  前記バルブは、逆支弁である、請求項3に記載の電動車両の制御装置。
  5.  前記制御部は、前記駆動輪に制動力を付与する場合、前記導入ポンプを制御することで、前記導入ポンプから吐出される前記冷媒の吐出量を増加させる、請求項2から請求項4のいずれか一項に記載の電動車両の制御装置。
  6.  前記冷媒液位調整部は、前記モータ内に前記冷媒を導入する導入ポンプ、及び前記冷媒循環回路を遮断するバルブを含み、
     前記制御部は、前記駆動輪に制動力を付与する場合、前記バルブを制御することで、前記バルブを閉鎖する、請求項1に記載の電動車両の制御装置。
  7.  前記冷媒液位調整部は、前記モータ内に前記冷媒を導入する導入ポンプを含み、
     前記制御部は、前記導入ポンプから前記モータへの前記冷媒の導入量が前記モータからの前記冷媒の導出量より多くなるように、前記導入ポンプからの前記冷媒の吐出量を制御する、請求項1に記載の電動車両の制御装置。
  8.  前記車両の勾配を検出、又は外部装置から取得する勾配情報取得部をさらに含み、
     前記制御部は、前記勾配情報取得部により取得された前記車両の勾配に関する情報から前記車両が連続的な降坂路を走行するか否かを判断し、前記車両が降坂路を走行する場合に前記冷媒液位調整部を制御する、請求項1から請求項7のいずれか一項に記載の電動車両の制御装置。
PCT/JP2019/003819 2018-02-27 2019-02-04 電動車両の制御装置 WO2019167557A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-033744 2018-02-27
JP2018033744A JP2019149890A (ja) 2018-02-27 2018-02-27 電動車両の制御装置

Publications (1)

Publication Number Publication Date
WO2019167557A1 true WO2019167557A1 (ja) 2019-09-06

Family

ID=67805283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003819 WO2019167557A1 (ja) 2018-02-27 2019-02-04 電動車両の制御装置

Country Status (2)

Country Link
JP (1) JP2019149890A (ja)
WO (1) WO2019167557A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024052954A1 (ja) * 2022-09-05 2024-03-14 日産自動車株式会社 回転電機冷却システム、及び、回転電機冷却方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130189A (ja) * 2001-10-23 2003-05-08 Toyota Motor Corp 潤滑装置
JP2007057093A (ja) * 2005-07-28 2007-03-08 Toyota Motor Corp 駆動装置およびこれを搭載する自動車
JP2007321927A (ja) * 2006-06-02 2007-12-13 Toyota Motor Corp 車両用駆動装置の潤滑装置
JP2017074802A (ja) * 2015-10-13 2017-04-20 三菱自動車工業株式会社 冷却機構
JP2018152946A (ja) * 2017-03-10 2018-09-27 三菱自動車工業株式会社 車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130189A (ja) * 2001-10-23 2003-05-08 Toyota Motor Corp 潤滑装置
JP2007057093A (ja) * 2005-07-28 2007-03-08 Toyota Motor Corp 駆動装置およびこれを搭載する自動車
JP2007321927A (ja) * 2006-06-02 2007-12-13 Toyota Motor Corp 車両用駆動装置の潤滑装置
JP2017074802A (ja) * 2015-10-13 2017-04-20 三菱自動車工業株式会社 冷却機構
JP2018152946A (ja) * 2017-03-10 2018-09-27 三菱自動車工業株式会社 車両の制御装置

Also Published As

Publication number Publication date
JP2019149890A (ja) 2019-09-05

Similar Documents

Publication Publication Date Title
US10960752B2 (en) Electric vehicle
JP5197713B2 (ja) 冷却システム
JP5510424B2 (ja) 電気自動車
CN111207164B (zh) 一种磁流变液缓速器及其控制方法
JP6183133B2 (ja) 電池暖機システム
WO2019167557A1 (ja) 電動車両の制御装置
JP2012211432A (ja) 作業機械
US20230296038A1 (en) Powertrain, vehicle, and motor cooling method
JP6458869B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
KR102645049B1 (ko) 차량용 유압 시스템
JP2010173445A (ja) ハイブリッド車両の冷却システム
JP5446781B2 (ja) 左右独立駆動車両の駆動ユニット冷却装置
KR20170105217A (ko) 차량의 제동 제어 방법 및 시스템
JP7443718B2 (ja) 車載冷却システムの制御装置、車載冷却システム及びプログラム
JP2016097923A (ja) 冷却システム
JP2014196078A (ja) 電動車両の冷却システム
KR20160022028A (ko) 연료전지 차량의 오토크루즈 모드시 제어 방법
EP2703242A1 (en) Hybrid industrial vehicle
CN105142940A (zh) 液压悬挂系统
JP2020054165A (ja) 電動車両の制御装置
JP2015105088A (ja) 車両用制御装置の冷却装置
US20230087455A1 (en) Electric vehicle and control method thereof
WO2020111004A1 (ja) 車載冷却システムの制御装置、及び車載冷却システム
CN112693300A (zh) 混合动力汽车制动电阻和发动机共用冷却系统及冷却方法
JP6711290B2 (ja) ハイブリッド車両用冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761492

Country of ref document: EP

Kind code of ref document: A1