WO2019167123A1 - 誘電体多層膜ミラー - Google Patents

誘電体多層膜ミラー Download PDF

Info

Publication number
WO2019167123A1
WO2019167123A1 PCT/JP2018/007252 JP2018007252W WO2019167123A1 WO 2019167123 A1 WO2019167123 A1 WO 2019167123A1 JP 2018007252 W JP2018007252 W JP 2018007252W WO 2019167123 A1 WO2019167123 A1 WO 2019167123A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index material
dielectric multilayer
layers
low
Prior art date
Application number
PCT/JP2018/007252
Other languages
English (en)
French (fr)
Inventor
琢也 木本
泰之 古川
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2018/007252 priority Critical patent/WO2019167123A1/ja
Priority to CN201880073727.9A priority patent/CN111344609A/zh
Priority to US16/976,074 priority patent/US20210041608A1/en
Priority to JP2020503128A priority patent/JPWO2019167123A1/ja
Publication of WO2019167123A1 publication Critical patent/WO2019167123A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0833Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/283Interference filters designed for the ultraviolet

Definitions

  • the present invention relates to a dielectric multilayer mirror used for reflecting ultraviolet light.
  • Ultraviolet light is used in a wide range of fields, such as semiconductor manufacturing processes that require fine measurement and high-precision processing. Increasing the intensity of ultraviolet light is effective in improving the accuracy and efficiency of measuring and processing devices.
  • a dielectric multilayer mirror is used in order to use ultraviolet light emitted from a light source without loss.
  • FIG. 1 shows an example of a dielectric multilayer mirror conventionally used.
  • the dielectric multilayer mirror 100 is formed by alternately laminating layers (a low refractive index material layer 122 and a high refractive index material layer 121) made of two kinds of materials having different refractive indexes on a substrate 110.
  • a low refractive index material layer 122 for example, silicon oxide SiO 2 having a refractive index of 1.49 (value at a wavelength of 250 nm, hereinafter referred to as “@ 250 nm”) is used.
  • As the high refractive index material layer 121 for example, hafnium oxide HfO 2 having a refractive index of 2.18 (@ 250 nm) is used.
  • silicon oxide SiO 2 having excellent environmental resistance is used, and the film thickness (typically the optical film thickness) that provides the best reflection efficiency. Is formed at 1/2 of the target wavelength. In laser applications, it also has the effect of protecting high refractive index materials from laser air breakdown.
  • the number of interfaces between the low-refractive index material layer 122 and the high-refractive index material layer 121 increases as the number of stacked dielectric layers increases, and the number of opportunities for reflecting ultraviolet light increases by the number of interfaces. .
  • the light reflected at the interface near (deep) near the substrate 110 passes through many dielectric layers before reaching the mirror surface, a part of the reflected light is absorbed by these dielectric layers. End up.
  • FIG. 2 shows the dielectric multilayer mirror made by alternately laminating silicon oxide SiO 2 and hafnium oxide HfO 2 in the number of layers: 10 layers (5 pairs), 20 layers (10 pairs), 30 layers (15 pairs) And the reflectance characteristics when 40 layers (20 pairs) are used.
  • FIG. 2 (b) is a partially enlarged view of FIG. 2 (a).
  • the reflectance increases to 99.67% as the number of layers increases up to about 30 layers (15 pairs), Even if the number of layers is increased further, the reflectance cannot be increased.
  • the problem to be solved by the present invention is to provide a dielectric multilayer mirror capable of obtaining a higher reflectance in the ultraviolet region than before.
  • the present inventor cannot increase the reflectance beyond the upper limit (99.67%) even if the number of layers is increased in a dielectric multilayer mirror in which silicon oxide SiO 2 and hafnium oxide HfO 2 are alternately stacked. Therefore, we thought that it was necessary to develop a dielectric multilayer mirror with a new structure in order to obtain a higher reflectivity, and examined various materials and configurations. As a result, the high refractive index material layer placed near the surface with a large amount of incident light is replaced with aluminum oxide Al 2 O 3, which has a smaller extinction coefficient than the conventionally used hafnium oxide HfO 2. It was thought that the light absorption in can be reduced, and the present invention was conceived.
  • a dielectric multilayer mirror made of a combination of hafnium oxide HfO 2 and silicon oxide SiO 2 has been described as an example of the prior art.
  • a combination of other high refractive index materials and low refractive index materials is used. There is a problem similar to the above, and the same technical idea as described above can be applied.
  • the dielectric multilayer mirror according to the present invention which has been made to solve the above problems, a) the substrate; b) a first low refractive index material which is formed on the substrate and has the same refractive index as that of the second low refractive index material described later or a lower refractive index than the second low refractive index material; A first multilayer structure in which first high-refractive-index materials having a refractive index larger than that of a second high-refractive-index material described later are alternately stacked; c) a second low-refractive index material formed on the first multilayer structure, and a higher refractive index than the second low-refractive index material, and an extinction coefficient greater than that of the first high-refractive index material. And a second multilayer film structure formed by alternately laminating small second high refractive index materials.
  • the first low refractive index material and the second low refractive index material may be different or the same.
  • silicon oxide can be suitably used for the first low refractive index material and the second low refractive index material.
  • hafnium oxide and aluminum oxide can be suitably used as the first high refractive index material and the second high refractive index material.
  • the dielectric multilayer mirror includes a second high refractive index material (for example, aluminum oxide Al 2 O 3 ) having a smaller extinction coefficient than the first high refractive index material and a second low refractive index material (near the surface).
  • a second high refractive index material for example, aluminum oxide Al 2 O 3
  • a second low refractive index material near the surface.
  • the light that has passed through the second multilayer structure has a first high refractive index material (for example, hafnium oxide HfO 2 ) that has a higher refractive index than the second high refractive index material (for example, aluminum oxide Al 2 O 3 ).
  • the first low refractive index material for example, silicon oxide SiO 2
  • the loss of light amount due to light absorption near the surface can be suppressed as compared with the conventional dielectric multilayer mirror, so that a higher reflectance than the conventional one can be obtained.
  • details such as the number of stacked layers will be described later, when a dielectric multilayer mirror manufactured by the present inventor is used, it is possible to reflect 99.82% of ultraviolet light of 250 nm.
  • the light reflectance in the ultraviolet region can be made higher than before.
  • the present inventor makes the reflectance higher than the upper limit (99.67%) even if the number of layers is increased in the dielectric multilayer mirror in which silicon oxide SiO 2 and hafnium oxide HfO 2 are alternately stacked.
  • the dielectric multilayer mirror in which silicon oxide SiO 2 and hafnium oxide HfO 2 are alternately stacked.
  • the present inventor uses aluminum oxide Al 2 O 3 which is a material having a smaller extinction coefficient than hafnium oxide HfO 2 as a high refractive index material in order to obtain a higher reflectance than a conventional dielectric multilayer mirror.
  • Al 2 O 3 which is a material having a smaller extinction coefficient than hafnium oxide HfO 2 as a high refractive index material.
  • FIG. 3 (a) shows the result.
  • FIG. 3B shows a partially enlarged view of the vicinity of the center wavelength (250 nm) of the ultraviolet light to be reflected by the dielectric multilayer mirror.
  • the reflectance increases as the number of layers increases, as in the case of using hafnium oxide HfO 2 .
  • the reflectance reached the upper limit (99.67%) when the number of laminated layers increased to 30 layers (15 pairs), but aluminum oxide Al 2 O 3 In the dielectric multilayer film using, the reflectance increased to 70 layers (35 pairs), and the reflectance reached the upper limit (99.80%) with this number of layers.
  • the reflectivity reaches a larger number of stacked as compared with the case of using the hafnium oxide HfO 2 continues to rise.
  • the refractive index of aluminum oxide Al 2 O 3 is as small as 1.68 (@ 250 nm) compared to the refractive index of hafnium oxide HfO 2 of 2.18 (@ 250 nm), and therefore a dielectric using hafnium oxide HfO 2 as a high refractive index material.
  • the difference in refractive index from silicon oxide SiO 2 is small.
  • the present inventor has arranged aluminum oxide Al 2 O 3 having a small extinction coefficient of 250 nm in a region having a large amount of incident light (that is, using it as the second high-refractive index material). A loss of light amount due to absorption is suppressed, and hafnium oxide HfO 2 having a high refractive index is disposed in a region where the incident light amount is relatively small (that is, used as the first high refractive index material), and silicon oxide SiO 2
  • the idea was to increase the reflection efficiency at the interface.
  • the dielectric multilayer mirror in which aluminum oxide Al 2 O 3 and silicon oxide SiO 2 are alternately laminated is positioned at the outermost surface.
  • 14% of incident light in 2 layers (1 pair) 13% of incident light in 4 layers (2 pairs) (ie 9% of incident light by adding 3rd layer and 4th layer), 6 layers ( 3 pairs) reflects 32% of the incident light (ie, 9% of the incident light due to the addition of the fifth and sixth layers). That is, most of the incident light is reflected by the few layers located on the outermost surface, so that the light reaches the layers located deeper than that and the amount of light absorbed by these layers is not so much.
  • a multilayer film structure in which aluminum oxide Al 2 O 3 and silicon oxide SiO 2 are alternately laminated is arranged on the side close to the surface, and hafnium oxide HfO 2 and silicon oxide SiO are arranged on the side close to the substrate (deep layer side). It was concluded that by adopting a structure in which a multilayer film structure in which two layers are alternately stacked is arranged, a dielectric multilayer film mirror with improved reflectance and reduced cost can be produced.
  • FIG. 5 shows the configuration of an embodiment of the dielectric multilayer mirror according to the present invention.
  • the dielectric multilayer mirror according to the present embodiment is roughly divided into a substrate 10, a first multilayer structure 20 formed on the substrate 10, and a second multilayer formed on the first multilayer structure 20.
  • the multilayer structure 30 is configured.
  • the first multilayer structure 20 is a structure in which the first low refractive index material layers 22 and the first high refractive index material layers 21 are alternately stacked
  • the second multilayer structure 30 is the second low refractive index material layer. 32 and a second high refractive index material layer 31 are alternately stacked.
  • the second high refractive index material layer 31 has a smaller extinction coefficient than the hafnium oxide HfO 2 based on the above concept.
  • Aluminum oxide Al 2 O 3 was used.
  • the second low refractive index material layer 32 is silicon oxide SiO 2 as in the conventional case. As a result, most of the amount of incident light is reflected while suppressing the amount of light absorption.
  • the outermost layer of the second multilayer structure 30 also serves as a protective layer 33 for preventing the mirror surface from being damaged. In this embodiment, the same silicon oxide SiO 2 as the second low refractive index material layer 32 is formed.
  • the first low-refractive-index material layer 22 and the second low-refractive-index material layer 32 (silicon oxide) in the first multilayer film structure 20 and the second multilayer film structure 30 are formed to be twice as thick.
  • the second high refractive index material 31 (aluminum oxide Al 2 O 3 ) used in the adjacent second multilayer structure 30 may be used. Silicon oxide SiO 2 with excellent environmental properties was used.
  • the thickness of the protective layer 33 is twice that of the other layers (that is, the optical film thickness ⁇ / 2).
  • the optical film thickness of the protective layer 33 may be an integer multiple of ⁇ / 2, and is not necessarily limited to ⁇ / 2.
  • the refractive index of the first high refractive index material layer 21 is higher than that of aluminum oxide Al 2 O 3 based on the above-described concept. Large hafnium oxide HfO 2 was used.
  • the first low refractive index material layer 22 is silicon oxide SiO 2 as is the second low refractive index material layer 32 used in the second multilayer structure 30.
  • the first multilayer film structure 20 has a higher refractive index difference between the high refractive index material and the low refractive index material than the second multilayer film structure 30, and thus the light that has passed through the second multilayer film structure 30. To reflect efficiently.
  • the first low refractive index material layer 22 and the second low refractive index material layer 32 are both made of silicon oxide SiO 2 , but a material having a lower refractive index than the second low refractive index material layer 32 is used as the first low refractive index material layer 32. By using it for the low refractive index material layer 22, the refractive index difference can be further increased.
  • FIG. 5 In the configuration shown in FIG. 5, when the number of stacked first multilayer structures 20 is 30 (15 pairs) and the number of stacked second multilayer structures 30 is 10 (5 pairs), FIG. As shown, a high reflectance of 99.82% was obtained for 250 nm ultraviolet light. This reflectivity is the highest reflectivity (99.67%) of a dielectric multilayer mirror with 40 layers (20 pairs) of hafnium oxide HfO 2 and silicon oxide SiO 2 , and aluminum oxide Al 2 O 3 and silicon oxide SiO 2 . It is higher than any of the highest reflectivity (99.80%) of dielectric multilayer mirrors with 70 layers (35 pairs). The material and physical film thickness of each layer constituting the dielectric multilayer film reflecting mirror of this example are shown in the table below.
  • the physical film thickness of each layer of the first multilayer film structure 20 and the second multilayer film structure 30 is such that the product of the physical film thickness and the refractive index is 1/4 of the target wavelength (250 nm in this embodiment). It is set to be. That is, the physical thickness of the first low refractive index material layer 22 (silicon oxide) in the first multilayer film structure 20 is 41.99 nm, and the physical thickness of the first high refractive index material layer 21 (hafnium oxide) is 28.64. nm, the physical thickness of the second low refractive index material layer 32 (silicon oxide) in the second multilayer structure 30 is 41.99 nm, and the physical thickness of the second high refractive index material layer 31 (aluminum oxide). Is 37.11 nm. However, the physical film thickness of the protective layer 33 located on the outermost surface is 83.98 nm.
  • the upper limit of the reflectance of the multilayer reflection mirror formed by alternately laminating hafnium oxide HfO 2 and silicon oxide SiO 2 that is conventionally used 99.67%), and higher reflectivity (99.82%) than the upper limit of reflectivity (99.80%) of multilayer mirrors made by alternately laminating aluminum oxide Al 2 O 3 and silicon oxide SiO 2 It was.
  • 70 layers (35 pairs) must be stacked in order to obtain the upper limit of reflectance.
  • the total number of layers of the first multilayer film structure 20 and the second multilayer film structure 30 can be suppressed to 40 layers (20 pairs). There is also a cost.
  • the reflectivity obtained when aluminum oxide Al 2 O 3 and silicon oxide SiO 2 are laminated in the same number of layers as in this embodiment, that is, a total of 40 layers (20 pairs) is 98.17%. In the multilayer mirror, a sufficiently higher reflectance is obtained.
  • the above-described embodiment is an example, and can be appropriately changed along the gist of the present invention.
  • the number of laminated layers of the first multilayer structure 20 is 30 (15 pairs), and the number of laminated layers of the second multilayer structure 30 is 10 (5 pairs). It can be appropriately changed in consideration of the balance between the high reflectance and the cost.
  • the number of stacked first multilayer film structures 20 is 18 layers (9 pairs), and the second multilayered film structure 30
  • the number of stacked layers should be 8 (4 pairs) (reflectance: 99.68%), and the same as the conventional dielectric multilayer mirror made by alternately stacking aluminum oxide Al 2 O 3 and silicon oxide SiO 2
  • the number of layers of the first multilayer structure 20 is 22 (11 pairs), and the number of layers of the second multilayer structure 30 is 48 (24 pairs).
  • a high reflectance of 99.84% can be obtained.
  • silicon oxide is used for the first low refractive index material and the second low refractive index material
  • hafnium oxide is used as the first high refractive index material
  • aluminum oxide is used as the second high refractive index material. It is not limited only to these combinations.
  • the first low refractive index material has an appropriate material having a refractive index equal to or lower than the second low refractive index material
  • the first high refractive index material has a higher refractive index than the first low refractive index material.
  • An appropriate material can be used as the second high refractive index material, and any appropriate material having a refractive index larger than that of silicon oxide and a smaller extinction coefficient than that of the first material can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

基板10と、基板10の上に形成された、第2低屈折率材料32と同じ又は該第2低屈折率材料32よりも屈折率が小さい第1低屈折率材料22と、第2高屈折率材料31よりも屈折率が大きい第1高屈折率材料21を交互に積層してなる第1多層膜構造体20と、第1多層膜構造体20の上に形成された、第2低屈折率材料32と、該第2低屈折率材料32よりも屈折率が大きく第1高屈折率材料21よりも消衰係数が小さい第2高屈折率材料31を交互に積層してなる第2多層膜構造体30とを備える誘電体多層膜ミラー。

Description

誘電体多層膜ミラー
 本発明は、紫外光を反射するために用いられる誘電体多層膜ミラーに関する。
 微細な計測や高精度の加工が要求される半導体製造プロセス等、幅広い分野で紫外光が用いられている。計測装置や加工装置においてその精度や効率を向上するには紫外光の強度を高くすることが効果的である。紫外光を用いる計測装置や加工装置では、光源から発せられた紫外光をロスなく用いるために、誘電体多層膜ミラーが用いられている。
 図1に、従来用いられている誘電体多層膜ミラーの例を示す。
 この誘電体多層膜ミラー100は、基板110上に、屈折率が異なる2種類の材料からなる層(低屈折率材料層122、高屈折率材料層121)を交互に積層したものである。低屈折率材料層122としては、例えば屈折率が1.49(波長250nmにおける値。以下、これを「@250nm」と表記する。)である酸化シリコンSiO2が用いられる。また、高屈折率材料層121としては、例えば屈折率が2.18(@250nm)である酸化ハフニウムHfO2が用いられる。誘電体多層膜ミラー100では、低屈折率材料層122と高屈折率材料層121の屈折率の差が大きいほど、それらの界面における反射率を高くすることができる。最も表面側に位置する層(図1では低屈折率材料層123)には、耐環境性に優れる酸化シリコンSiO2が用いられ、最も反射効率が良くなる膜厚(典型的には光学膜厚が目的波長の1/2)で形成されている。レーザー用途においては、レーザーのエアーブレイクダウンから高屈折率材料を保護する効果もある。
特開2007-133325号公報
 誘電体多層膜ミラー100では、誘電体の積層数を増やすほど低屈折率材料層122と高屈折率材料層121の界面の数が増加し、界面の数だけ紫外光が反射される機会が増える。しかし、基板110に近い(深い)位置の界面で反射された光はミラー表面に到達するまでの間に多数の誘電体層を通過するため、それら誘電体層で反射光の一部が吸収されてしまう。
 図2に、酸化シリコンSiO2と酸化ハフニウムHfO2を交互に積層してなる誘電体多層膜ミラーについて、積層数を10層(5ペア)、20層(10ペア)、30層(15ペア)、及び40層(20ペア)としたときの反射率特性を示す。図2(b)は図2(a)の部分拡大図である。酸化シリコンSiO2と酸化ハフニウムHfO2を交互に積層してなる誘電体多層膜ミラーの場合、30層(15ペア)程度までは積層数の増加に伴って反射率が99.67%まで高くなるが、それ以上積層数を増やしても反射率を高くすることができない。
 本発明が解決しようとする課題は、紫外領域において従来よりも高い反射率が得られる誘電体多層膜ミラーを提供することである。
 本発明者は、酸化シリコンSiO2と酸化ハフニウムHfO2を交互に積層してなる誘電体多層膜ミラーにおいて積層数を増やしても反射率をその上限(99.67%)よりも高くすることができないことから、これ以上の反射率を得るには新たな構造の誘電体多層膜ミラーを開発する必要があると考え、種々の材料や構成を検討した。その結果、入射光量が多い表面近くに配置する高屈折率材料を、従来用いられている酸化ハフニウムHfO2よりも消衰係数が小さい酸化アルミニウムAl2O3に置き換えることにより、高屈折率材料層における光吸収を低減することができると考え、本発明に想到した。ここでは、従来技術として酸化ハフニウムHfO2と酸化シリコンSiO2を組み合わせてなる誘電体多層膜ミラーを例に挙げて説明したが、他の高屈折率材料と低屈折率材料の組み合わせを用いる場合にも上記同様の課題があり上記同様の技術的思想を適用することができる。
 即ち、上記課題を解決するために成された本発明に係る誘電体多層膜ミラーは、
 a) 基板と、
 b) 前記基板の上に形成された、後記第2低屈折率材料と同じ又は該第2低屈折率材料よりも屈折率が小さい第1低屈折率材料と、前記第1低屈折率材料及び後記第2高屈折率材料よりも屈折率が大きい第1高屈折率材料を交互に積層してなる第1多層膜構造体と、
 c) 前記第1多層膜構造体の上に形成された、第2低屈折率材料と、該第2低屈折率材料よりも屈折率が大きく前記第1高屈折率材料よりも消衰係数が小さい第2高屈折率材料を交互に積層してなる第2多層膜構造体と
 を備えることを特徴とする。
 前記第1低屈折率材料と前記第2低屈折率材料は、異なるものであってもよく、同じものであってもよい。前記第1低屈折率材料と前記第2低屈折率材料には、例えば酸化シリコンを好適に用いることができる。
 前記第1高屈折率材料及び前記第2高屈折率材料としては、例えば酸化ハフニウムと酸化アルミニウムを好適に用いることができる。
 誘電体多層膜ミラーでは、その表面に近いほど多くの光量の光が反射される。本発明に係る誘電体多層膜ミラーは、表面近くに第1高屈折率材料よりも消衰係数の小さい第2高屈折率材料(例えば酸化アルミニウムAl2O3)と第2低屈折率材料(例えば酸化シリコンSiO2)を交互に積層してなる第2多層膜構造体を配置しているため、表面近傍での光吸収による光量の損失が従来よりも少なくなる。第2多層膜構造体を通過した光は、第2高屈折率材料(例えば酸化アルミニウムAl2O3)よりも屈折率が大きい材料である第1高屈折率材料(例えば酸化ハフニウムHfO2)と第1低屈折率材料(例えば酸化シリコンSiO2)を交互に積層してなる第1多層膜構造体の内部の界面において高効率で反射される。このように、本発明に係る誘電体多層膜ミラーでは、従来の誘電体多層膜ミラーに比べて表面近傍での光吸収による光量の損失が抑えられるため、従来よりも高い反射率が得られる。積層数等の詳細は後述するが、本発明者が作製した誘電体多層膜ミラーを用いると、250nmの紫外光を99.82%反射することができる。
 本発明に係る誘電体多層膜ミラーを用いることにより、紫外領域における光反射率を従来よりも高くすることができる。
従来の誘電体多層膜ミラーの構成。 酸化シリコンと酸化ハフニウムを交互に積層してなる従来の誘電体多層膜ミラーにおける積層数と反射率の関係を示すグラフ。 酸化シリコンと酸化アルミニウムを交互に積層してなる従来の誘電体多層膜ミラーにおける積層数と反射率の関係を示すグラフ。 酸化シリコンと酸化アルミニウムを交互に積層してなる誘電体多層膜ミラーの表面近傍における反射率を説明する図。 本発明に係る誘電体多層膜ミラーの一実施例の構造を示す図。 本実施例の誘電体多層膜ミラーの反射率特性を示すグラフ。
 上述の通り、本発明者は、酸化シリコンSiO2と酸化ハフニウムHfO2を交互に積層してなる誘電体多層膜ミラーにおいて積層数を増やしても反射率をその上限(99.67%)よりも高くすることができないことから、これ以上の反射率を得るには新たな構造の誘電体多層膜ミラーを開発する必要があると考え、種々の材料や構成を検討した。本発明に係る誘電体多層膜ミラーの具体的な実施例を説明する前にそれら検討の内容を説明する。
 本発明者は、従来の誘電体多層膜ミラーよりも高い反射率を得るために、酸化ハフニウムHfO2よりも消衰係数の小さい材料である酸化アルミニウムAl2O3を高屈折率材料として用いることを考えた。そして、酸化アルミニウムAl2O3と酸化シリコンSiO2を交互に配置してなる誘電体多層膜ミラーについて、その積層数と反射率の関係を調べた。図3(a)にその結果を示す。また、図3(b)に本誘電体多層膜ミラーによる反射対象である紫外光の中心波長(250nm)近傍の部分拡大図を示す。
 酸化アルミニウムAl2O3を高屈折率材料として用いた場合も、酸化ハフニウムHfO2を用いた場合と同様に、積層数が多くなるにつれて反射率が高くなる。図2に示すように酸化ハフニウムHfO2を用いた誘電体多層膜では30層(15ペア)まで積層数が増えたところで反射率が上限(99.67%)に達したが、酸化アルミニウムAl2O3を用いた誘電体多層膜では70層(35ペア)まで反射率が高くなり、この層数で反射率が上限(99.80%)に達した。
 酸化ハフニウムHfO2に比べ、酸化アルミニウムAl2O3は250nmの消衰係数が小さいため、酸化ハフニウムHfO2を用いる場合よりも多くの積層数に達するまで反射率が上昇し続ける。しかし、酸化ハフニウムHfO2の屈折率2.18(@250nm)に比べて酸化アルミニウムAl2O3の屈折率は1.68(@250nm)と小さく、従って、高屈折率材料として酸化ハフニウムHfO2を用いる誘電体多層膜ミラーに比べると酸化シリコンSiO2との屈折率差が小さくなる。そのため、酸化アルミニウムAl2O3を用いる誘電体多層膜ミラーでは、その反射率を上限まで高めるには、70層(35ペア)もの積層数が必要となる。この最高反射率は酸化ハフニウムHfO2を用いた誘電体多層膜の最高反射率(99.67%)よりも高いが、積層数が多くなるため作製に時間がかかり、またコストも高くなる。
 上記の検討を経て、本発明者は、250nmの消衰係数が小さい酸化アルミニウムAl2O3を、入射光量が多い領域に配置して(即ち前記第2高屈折率材料として使用して)光吸収による光量の損失を抑え、また入射光量が比較的少ない領域には屈折率が高い酸化ハフニウムHfO2を配置して(即ち前記第1高屈折率材料として使用して)、酸化シリコンSiO2との界面における反射効率を高めることに想到した。
 図4に示すように、本発明者が行ったシミュレーション(波長250nm)によれば、酸化アルミニウムAl2O3と酸化シリコンSiO2を交互に積層した誘電体多層膜ミラーでは、最表に位置する2層(1ペア)で入射光の14%が、4層(2ペア)で入射光の23%(即ち、第3層と第4層の追加により入射光の9%)が、6層(3ペア)で入射光の32%(即ち、第5層と第6層の追加により入射光の9%)が反射される。つまり、最表に位置する少数の層で入射光の大半が反射されるため、それよりも深層に位置する層に達し、それらの層で吸収される光量はそれほど多くない。そこで、表面に近い側に酸化アルミニウムAl2O3と酸化シリコンSiO2を交互に積層してなる多層膜構造体を配し、基板に近い側(深層側)に酸化ハフニウムHfO2と酸化シリコンSiO2を交互に積層してなる多層膜構造体を配する構成を採ることにより、反射率を高め、かつコストを抑えた誘電体多層膜ミラーを作製できるという結論に達した。
 本発明に係る誘電体多層膜ミラーの一実施例の構成を図5に示す。本実施例の誘電体多層膜ミラーは、大別して、基板10と、該基板10上に形成された第1多層膜構造体20と、該第1多層膜構造体20上に形成された第2多層膜構造体30とで構成されている。第1多層膜構造体20は第1低屈折率材料層22と第1高屈折率材料層21を交互に積層した構造体であり、第2多層膜構造体30は第2低屈折率材料層32と第2高屈折率材料層31を交互に積層した構造体である。
 第2多層膜構造体30は、入射光量が多いミラーの表面側に位置することから、上記の考え方に基づき、第2高屈折率材料層31に、酸化ハフニウムHfO2よりも消衰係数の小さい酸化アルミニウムAl2O3を使用した。第2低屈折率材料層32は従来同様に酸化シリコンSiO2である。これにより、光吸収量を抑えつつ入射光量の大半を反射する。なお、第2多層膜構造体30の最表層は、ミラー表面の破損を防止するための保護層33を兼ねており、本実施例では第2低屈折率材料層32と同じ酸化シリコンSiO2が、第1多層膜構造体20及び第2多層膜構造体30内の第1低屈折率材料層22及び第2低屈折率材料層32(酸化シリコン)の2倍の厚さで形成されている。保護層33には、隣接して位置する第2多層膜構造体30で使用する第2高屈折率材料31(酸化アルミニウムAl2O3)を用いても良いが、本実施例では、より耐環境性に優れる酸化シリコンSiO2を用いた。また、本実施例では保護層33の厚さを他の層の2倍(即ち光学膜厚λ/2)とした。なお、保護層33の光学膜厚はλ/2の整数倍であればよく、必ずしもλ/2のみに限定されない。
 一方、第1多層膜構造体20は、入射光量の少ない深層部に位置することから、上記の考え方に基づき、第1高屈折率材料層21として、酸化アルミニウムAl2O3よりも屈折率が大きい酸化ハフニウムHfO2を使用した。第1低屈折率材料層22は、第2多層膜構造体30で使用した第2低屈折率材料層32と同じく酸化シリコンSiO2である。これにより、第1多層膜構造体20では第2多層膜構造体30に比べて高屈折率材料と低屈折率材料の屈折率差が大きくなるため、第2多層膜構造体30を通過した光を効率よく反射する。本実施例では第1低屈折率材料層22と第2低屈折率材料層32をいずれも酸化シリコンSiO2としているが、第2低屈折率材料層32よりも屈折率が低い材料を第1低屈折率材料層22に用いることにより、さらに屈折率差を大きくすることもできる。
 図5に示す構成において、第1多層膜構造体20の積層数を30層(15ペア)とし、第2多層膜構造体30の積層数を10層(5ペア)にしたところ、図6に示すように、250nmの紫外光について99.82%という高い反射率を得ることができた。この反射率は、酸化ハフニウムHfO2と酸化シリコンSiO2を40層(20ペア)積層した誘電体多層膜ミラーの最高反射率(99.67%)、及び酸化アルミニウムAl2O3と酸化シリコンSiO2を70層(35ペア)積層した誘電体多層膜ミラーの最高反射率(99.80%)のいずれよりも高い。本実施例の誘電体多層膜反射ミラーを構成する各層の材料及び物理的膜厚を下表に示す。
Figure JPOXMLDOC01-appb-T000001
 第1多層膜構造体20及び第2多層膜構造体30の各層の物理的膜厚は、該物理的膜厚と屈折率の積が、目的波長(本実施例では250nm)の1/4となるように設定されている。即ち、第1多層膜構造体20における第1低屈折率材料層22(酸化シリコン)の物理的膜厚は41.99nm、第1高屈折率材料層21(酸化ハフニウム)の物理的膜厚は28.64nmであり、第2多層膜構造体30における第2低屈折率材料層32(酸化シリコン)の物理的膜厚は41.99nm、第2高屈折率材料層31(酸化アルミニウム)の物理的膜厚は37.11nmである。ただし、最表に位置する保護層33の物理的膜厚は83.98nmである。
 入射光の波長λの4分の1(λ/4)の光学膜厚で積層された層の各境界で反射した光には、2分の1波長(λ/4+λ/4)の光路差が生じる。また、低屈折率層から入射して高屈折率層との境界で反射した光の位相は反射時に反転する(λ/2の光路差の発生と同じ効果が生じる)。一方、高屈折率層から入射して低屈折率層との境界で反射する光の位相は反転しない。それらの結果、高屈折率層/低屈折率層の各境界で反射した光の位相が揃う(光路差λ/2+位相反転効果による効果λ/2=λ)。
 以上、説明したように、本実施例の誘電体多層膜ミラーでは、従来用いられている、酸化ハフニウムHfO2と酸化シリコンSiO2を交互に積層してなる多層膜反射ミラーの反射率の上限(99.67%)、及び酸化アルミニウムAl2O3と酸化シリコンSiO2を交互に積層してなる多層膜反射ミラーの反射率の上限(99.80%)のいずれよりも高い反射率(99.82%)が得られた。また、酸化アルミニウムAl2O3と酸化シリコンSiO2を交互に積層してなる誘電体多層膜反射ミラーでは、反射率の上限値を得るために70層(35ペア)積層しなければならないのに対し、本実施例の誘電体多層膜反射ミラーでは、第1多層膜構造体20と第2多層膜構造体30の層数の合計が40層(20ペア)に抑えられるため、作製が容易でありコストも抑えることができる。なお、酸化アルミニウムAl2O3と酸化シリコンSiO2を本実施例と同じ層数、即ち合計40層(20ペア)積層した場合に得られる反射率は98.17%であり、本実施例の誘電体多層膜ミラーではこれよりも十分に高い反射率が得られている。
 上記実施例は一例であって、本発明の主旨に沿って適宜に変更することができる。上記実施例では第1多層膜構造体20の積層数を30層(15ペア)、第2多層膜構造体30の積層数を10層(5ペア)としたが、これらの積層数は求められる反射率の高さとコストのバランスを考慮して適宜に変更することができる。例えば、従来と同程度の反射率でコストを抑える(即ち積層数を抑える)場合には、第1多層膜構造体20の積層数を18層(9ペア)、第2多層膜構造体30の積層数を8層(4ペア)とすればよく(反射率:99.68%)、また、酸化アルミニウムAl2O3と酸化シリコンSiO2を交互に積層してなる従来の誘電体多層膜ミラーと同程度の積層数(70層)が許容される場合には、第1多層膜構造体20の積層数を22層(11ペア)、第2多層膜構造体30の積層数を48層(24ペア)とすることにより99.84%という高い反射率が得られる。
 また、上記実施例では第1低屈折率材料及び第2低屈折率材料に酸化シリコンを用い、第1高屈折率材料として酸化ハフニウム、第2高屈折率材料として酸化アルミニウムを用いたが、必ずしもこれらの組合せのみに限定されない。上述の通り、第1低屈折率材料には、第2低屈折率材料以下の屈折率を有する適宜の材料を、第1高屈折率材料には第1低屈折率材料よりも屈折率が大きい適宜の材料を、第2高屈折率材料には酸化シリコンよりも屈折率が大きく前記第1材料よりも消衰係数が小さい適宜の材料を、それぞれ用いることができる。
10…基板
20…第1多層膜構造体
 21…第1高屈折率材料層
 22…第1低屈折率材料層
30…第2多層膜構造体
 31…第2高屈折率材料層
 32…第2低屈折率材料層
33…保護層

Claims (8)

  1.  a) 基板と、
     b) 前記基板の上に形成された、後記第2低屈折率材料と同じ又は該第2低屈折率材料よりも屈折率が小さい第1低屈折率材料と、前記第1低屈折率材料及び後記第2高屈折率材料よりも屈折率が大きい第1高屈折率材料を交互に積層してなる第1多層膜構造体と、
     c) 前記第1多層膜構造体の上に形成された、第2低屈折率材料と、該第2低屈折率材料よりも屈折率が大きく前記第1高屈折率材料よりも消衰係数が小さい第2高屈折率材料を交互に積層してなる第2多層膜構造体と
     を備えることを特徴とする誘電体多層膜ミラー。
  2.  前記第1低屈折率材料及び前記第2低屈折率材料が酸化シリコンであることを特徴とする請求項1に記載の誘電体多層膜ミラー。
  3.  前記第1高屈折率材料が酸化ハフニウムであることを特徴とする請求項1に記載の誘電体多層膜ミラー。
  4.  前記第2項屈折率材料が酸化アルミニウムであることを特徴とする請求項1に記載の誘電体多層膜ミラー。
  5.  さらに、
     d) 前記第2多層膜構造体の上に形成された、前記第2低屈折率材料と前記第2高屈折率材料のうち、該第2多層膜構造体の最表面に配された物質と異なる物質からなる保護層
     を備えることを特徴とする請求項1に記載の誘電体多層膜ミラー。
  6.  前記保護層の光学膜厚が、目的波長λに関してλ/2の整数倍である
     ことを特徴とする請求項5に記載の誘電体多層膜ミラー。
  7.  前記第2多層膜構造体における積層数が8層以上48層以下である
     ことを特徴とする請求項1に記載の誘電体多層膜ミラー。
  8.  前記第2多層膜構造体における積層数と前記第1多層膜構造体における積層数の合計が26層以上70層以下である
     ことを特徴とする請求項1に記載の誘電体多層膜ミラー。
PCT/JP2018/007252 2018-02-27 2018-02-27 誘電体多層膜ミラー WO2019167123A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/007252 WO2019167123A1 (ja) 2018-02-27 2018-02-27 誘電体多層膜ミラー
CN201880073727.9A CN111344609A (zh) 2018-02-27 2018-02-27 介电体多层膜镜
US16/976,074 US20210041608A1 (en) 2018-02-27 2018-02-27 Dielectric multilayer film mirror
JP2020503128A JPWO2019167123A1 (ja) 2018-02-27 2018-02-27 誘電体多層膜ミラー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007252 WO2019167123A1 (ja) 2018-02-27 2018-02-27 誘電体多層膜ミラー

Publications (1)

Publication Number Publication Date
WO2019167123A1 true WO2019167123A1 (ja) 2019-09-06

Family

ID=67806070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007252 WO2019167123A1 (ja) 2018-02-27 2018-02-27 誘電体多層膜ミラー

Country Status (4)

Country Link
US (1) US20210041608A1 (ja)
JP (1) JPWO2019167123A1 (ja)
CN (1) CN111344609A (ja)
WO (1) WO2019167123A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135592A1 (ja) * 2022-12-23 2024-06-27 日本電気硝子株式会社 光学フィルタ、殺菌装置、及び紫外線検出装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230138005A1 (en) * 2021-11-04 2023-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetoresistive Random-Access Memory (MRAM) Structure For Improving Process Control And Method Of Fabricating Thereof
CN114839708B (zh) * 2022-03-24 2024-09-13 中国计量大学 一种抗激光损伤的蓝光反射镜及设计方法
CN114774881A (zh) * 2022-04-22 2022-07-22 兰州大学 一种HfO2/Al2O3多层膜反射镜及其制备方法
CN117512527A (zh) * 2023-11-10 2024-02-06 星际光(上海)实业有限公司 一种介质膜反射镜及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204702A (ja) * 1989-02-02 1990-08-14 Sumitomo Metal Mining Co Ltd レーザ高反射鏡
JPH0312605A (ja) * 1989-06-09 1991-01-21 Topcon Corp 紫外・可視二波長反射多層膜ミラー
JPH04145677A (ja) * 1990-10-08 1992-05-19 Sumitomo Metal Mining Co Ltd 可視レーザ用高反射鏡
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same
JP2007133325A (ja) * 2005-11-14 2007-05-31 Fujinon Sano Kk 反射ミラー及び光ピックアップ
JP2008257777A (ja) * 2007-04-03 2008-10-23 Topcon Corp 光学部品
JP2017083789A (ja) * 2015-10-30 2017-05-18 キヤノン株式会社 反射光学素子及び露光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204702A (ja) * 1989-02-02 1990-08-14 Sumitomo Metal Mining Co Ltd レーザ高反射鏡
JPH0312605A (ja) * 1989-06-09 1991-01-21 Topcon Corp 紫外・可視二波長反射多層膜ミラー
JPH04145677A (ja) * 1990-10-08 1992-05-19 Sumitomo Metal Mining Co Ltd 可視レーザ用高反射鏡
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same
JP2007133325A (ja) * 2005-11-14 2007-05-31 Fujinon Sano Kk 反射ミラー及び光ピックアップ
JP2008257777A (ja) * 2007-04-03 2008-10-23 Topcon Corp 光学部品
JP2017083789A (ja) * 2015-10-30 2017-05-18 キヤノン株式会社 反射光学素子及び露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135592A1 (ja) * 2022-12-23 2024-06-27 日本電気硝子株式会社 光学フィルタ、殺菌装置、及び紫外線検出装置

Also Published As

Publication number Publication date
CN111344609A (zh) 2020-06-26
US20210041608A1 (en) 2021-02-11
JPWO2019167123A1 (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2019167123A1 (ja) 誘電体多層膜ミラー
WO2013105210A1 (ja) 光学多層膜
JP7187745B2 (ja) 両側において高い反射率を有するワイヤグリッド偏光子
CN100476457C (zh) 防反射膜
JP6202785B2 (ja) 反射防止膜、光学系、光学機器、及び反射防止膜の成膜方法
JP6760304B2 (ja) 金色調多層コートおよびこれを備える反射体
WO2009153876A1 (ja) 反射型光変調装置
JP5888124B2 (ja) 多層膜フィルタ、及び多層膜フィルタの製造方法
CN112764135B (zh) 一种极低残余反射的窄带减反射膜
TWI715740B (zh) 光源裝置及其光濾波組件
JP2008250220A (ja) 反射型光変調装置
JP2013529318A (ja) 誘電体コーティングされたミラー
US8934172B2 (en) Mirror
JP2009031406A (ja) 非偏光ビームスプリッター及びそれを利用した光学計測機器
JP2024529478A (ja) レーザ用ミラー、レーザ及びレーザコンポーネント
JP3402907B2 (ja) レーザ用反射鏡
JP5541813B2 (ja) 反射型光変調装置
JP2015084024A (ja) 反射防止膜、光学素子および光学機器
JP6108871B2 (ja) 反射防止膜、光学系、及び光学機器
JP2015079132A (ja) 多層膜ミラー
JP2017009703A (ja) 多層膜を用いた光学素子および光学機器
JP3741692B2 (ja) 反射防止膜
JP2005221867A (ja) 反射型光学素子
JP4136744B2 (ja) 反射膜
JP2019139016A (ja) 光学製品並びにミラー及びフィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908185

Country of ref document: EP

Kind code of ref document: A1