TWI715740B - 光源裝置及其光濾波組件 - Google Patents
光源裝置及其光濾波組件 Download PDFInfo
- Publication number
- TWI715740B TWI715740B TW106107793A TW106107793A TWI715740B TW I715740 B TWI715740 B TW I715740B TW 106107793 A TW106107793 A TW 106107793A TW 106107793 A TW106107793 A TW 106107793A TW I715740 B TWI715740 B TW I715740B
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- interference
- film layer
- light beam
- thickness
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 150
- 238000001914 filtration Methods 0.000 title abstract description 14
- 239000000758 substrate Substances 0.000 claims description 81
- 230000000694 effects Effects 0.000 claims description 35
- 230000005540 biological transmission Effects 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 14
- 238000011065 in-situ storage Methods 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 3
- 239000010408 film Substances 0.000 description 429
- 239000000463 material Substances 0.000 description 27
- 238000001228 spectrum Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 230000001066 destructive effect Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 239000012788 optical film Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/26—Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Filters (AREA)
Abstract
一種光濾波組件包括第一干涉膜與第二干涉膜。第一干涉膜包括多層第一膜層與多層第二膜層。這些第一膜層與這些第二膜層彼此交替堆疊。第二干涉膜包括多層第三膜層與多層第四膜層。這些第三膜層與這些第四膜層彼此交替堆疊。第一膜層的光學常數與第三膜層的光學常數相同,第二膜層的光學常數與第四膜層的光學常數相同,而第一干涉膜所產生的光程差不同於第二干涉膜所產生的光程差。
Description
本發明是有關於一種光源裝置及其光濾波組件,且特別是有關於一種利用干涉(interference)來濾光的光濾波組件以及使用此光濾波組件的光源裝置。
現在的光學技術已發展出一種干涉濾波片(interference filter)。一般而言,干涉濾波片具有多層膜(multilayer),其是由兩種不同光學常數(optical constant)的膜層(film)彼此交替堆疊而成,而這兩種膜層都是透明(transparent)。依據這兩種膜層的厚度分佈以及光學常數,光線能在多層膜中進行建設性干涉(constructive interference)與破壞性干涉(destructive interference),使得干涉濾波片能讓波長在特定範圍內的光線通過,並且濾除波長在特定範圍外的光線。然而,上述多層膜中的設計極限及膜層厚度製造誤差(tolerance)而影響到干涉濾波片的濾光效果,以至於當干涉濾波片應用於例如光譜儀(spectrometer)、單光儀(monochromator)或干涉儀(interferometer)等光學量測儀器時,有可能會影響到精密度(precision)與準確度(accuracy)。
本發明提供一種光濾波組件,其利用兩干涉膜所產生的不同光程差(Optical Path Difference,OPD)來改善濾光效果。
本發明另提供一種光源裝置,其包括上述光濾波組件。
本發明所提供的光濾波組件包括一第一干涉膜與一第二干涉膜。第一干涉膜包括多層第一膜層與多層第二膜層,其中這些第一膜層與這些第二膜層彼此交替堆疊。第二干涉膜包括多層第三膜層與多層第四膜層,其中這些第三膜層與這些第四膜層彼此交替堆疊。第一膜層的光學常數相同於第三膜層的光學常數,而第二膜層的光學常數相同於第四膜層的光學常數。第一干涉膜與第二干涉膜皆位於一光束的傳遞路徑上,而第一干涉膜所產生的光程差不同於第二干涉膜所產生的光程差。
本發明所提供的光源裝置包括上述光濾波組件以及一光源,其中光源配置於光濾波組件旁,並用於朝向光濾波組件發出光束。
基於上述,本發明的光濾波組件利用厚度比例為常數的多層干涉膜來產生的不同光程差與干涉,進而改善濾光效果,從而幫助提升精密度與準確度。
為讓本發明之特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。
圖1A是本發明一實施例的光源裝置的剖面示意圖。請參閱圖1A,光源裝置10a包括光濾波組件100以及光源10。光源10配置於光濾波組件100旁,並用於朝向光濾波組件100發出光束(light beam)L1,其含有多條光線(ray),其中光源10例如是發光二極體或鹵素燈。光濾波組件100配置於光束L1的傳遞路徑上,並包括兩層干涉膜。這兩層干涉膜可採用現有的光學薄膜設計來製造,而現有一些文獻已有揭露前述光學薄膜設計,例如李正中先生所著作的書籍:「薄膜光學與鍍膜技術」(ISBN:9789863940142)。
在圖1A所示的實施例中,光濾波組件100包括第一干涉膜110與第二干涉膜120,而兩者皆為多層膜。以圖1A為例,第一干涉膜110包括多層第一膜層111與多層第二膜層112,其中第一膜層111具有厚度T1,而第二膜層112具有厚度T2。第二干涉膜120包括多層第三膜層123與多層第四膜層124,其中第三膜層123具有厚度T3,而第四膜層124具有厚度T4。這些第一膜層111與這些第二膜層112彼此交替堆疊,而這些第三膜層123與這些第四膜層124彼此交替堆疊。
第一膜層111與第三膜層123可由高折射率材料所製成,例如五氧化二鉭或二氧化鈦(titanium dioxide)。第二膜層112與第四膜層124可由低折射率材料所製成,例如二氧化矽(silicon dioxide)。所以,第一干涉膜110與第二干涉膜120皆為由至少兩種光學常數不同的膜層交替堆疊而成,其中此光學常數例如是折射率。此外,第一膜層111與第三膜層123可由同一種材料所製成,而第二膜層112與第四膜層124可由其他同一種材料所製成,但是構成第一膜層111與第三膜層123的材料不同於構成第二膜層112與第四膜層124的材料。所以,第一膜層111的光學常數相同於第三膜層123的光學常數,第二膜層112的光學常數相同於第四膜層124的光學常數,但第一膜層111與第三膜層123的光學常數不同於第二膜層112與第四膜層124的光學常數。
第一干涉膜110與第二干涉膜120皆位於光束L1的傳遞路徑上,並且被光束L1穿透,其中圖1A所示的光束L1會先穿透第二干涉膜120,之後再穿透第一干涉膜110。當光束L1進入第一干涉膜110與第二干涉膜120時,光束L1會在第一干涉膜110中各膜層(即第一膜層111與第二膜層112)之間的交界處(bondary)以及在第二干涉膜120中各膜層(即第三膜層123與第四膜層124之間的交界處反射及折射,以產生干涉。如此,在光束L1中,一部分具特定波長的光線會因為建設性干涉而增強,另一部分不具特定波長的光線則因為破壞性干涉而消除,進而達到濾光的功能。
須說明的是,雖然以上實施例的描述是以第一膜層111與第三膜層123為高折射率層,第二膜層112與第四膜層124為低折射率層為例,但在其他實施例中,第一膜層111與第三膜層123可改為低折射率層,第二膜層112與第四膜層124可改為高折射率層。所以,這裡不限定第一膜層111與第三膜層123一定要是高折射率層,也不限定第二膜層112與第四膜層124一定要是低折射率層。
在圖1A所示的實施例中,光束L1是依序穿透第二干涉膜120、第一透明基板101以及第一干涉膜110,但在其他實施例中,光束L1也可依序穿透第一干涉膜110、第一透明基板101以及第二干涉膜120,其中光束L1在第一干涉膜110中是依序穿透第一膜層111、第二膜層112、第一膜層111、第二膜層112…,或是依序穿透第二膜層112、第一膜層111、第二膜層112、第一膜層111…,而光束L1在第二干涉膜120中是依序穿透第三膜層123、第四膜層124、第三膜層123、第四膜層124…,或是依序穿透第四膜層124、第三膜層123、四膜層124、第三膜層123…。因此,光束L1穿透第一膜層111至第四膜層124的順序不限定如圖1A所示。
另外,在圖2A所示的實施例中,第二干涉膜120位於第一透明基板101與第二透明基板102之間,而第一透明基板101位於第一干涉膜110與第二干涉膜120之間。然而,在其他實施例中,例如在圖2B所示的光源裝置20b的光濾波組件200b中(請參閱圖2B ),第一干涉膜110與第二干涉膜120皆位於第一透明基板101與第二透明基板102之間,因此光束L1會從第二透明基板102進入第二干涉膜120,接著從第一干涉膜110進入第一透明基板101,之後從第一透明基板101離開光濾波組件200b,如圖2B所示。
在本實施例中,其中一層第一膜層111與其相鄰的第二膜層112的兩者厚度比例可以相同於其中一層第三膜層123與其相鄰的第四膜層124的兩者厚度的比例。舉例來說,第一干涉膜110中依序堆疊的各第一膜層111厚度T1與各第二膜層112厚度T2的比例(ratio)可以相同第二干涉膜120中依序堆疊的各第三膜層123厚度T3與各第四膜層124厚度T4的比例。又例如,在第一干涉膜110的其中相鄰四層膜層中,第一膜層111:第二膜層112:第一膜層111:第二膜層112的厚度比為1:2:3:6,而在第二干涉膜120的其中相鄰四層膜層中,第三膜層123:第四膜層124:第三膜層123:第四膜層124的厚度比也為1:2:3:6。此外,第一干涉膜110的厚度110t可不等於第二干涉膜120的厚度120t,其中厚度T1可不等於厚度T3,而厚度T2可不等於厚度T4。
由此可知,第一干涉膜110與第二干涉膜120兩者具有相同膜層分佈,而光束L1在第一干涉膜110的光程(Optical Path Length,OPL)會不同於光束L1在第二干涉膜120的光程(OPL),即光束L1在第一干涉膜110所產生的光程差(OPD)會不同於光束L1在第二干涉膜120所產生的光程差(OPD)。因此,第一干涉膜110與第二干涉膜120皆會改變光束L1中部分光線的相位(phase),而且第一干涉膜110對光束L1所造成的相位差(phase shift)不同於第二干涉膜120對光束L1所造成的相位差,即光束L1在第一干涉膜110與第二干涉膜120中的干涉(包括建設性干涉與破壞性干涉)並不相同。
一般來說,現有的干涉濾波片通常會產生漣波(ripple),其不僅會影響濾光效果,而且也會降低光學量測儀器的精密度及準確度。詳細而言,當現有的干涉濾波片對光束進行濾光時,濾光後的光束,其光譜會出現波浪狀曲線,如圖1B所示,而這種波浪狀曲線就是所謂的漣波。
請參閱圖1B,其為光束L1個別通過第一干涉膜110與第二干涉膜120之後的光譜示意圖。以實線表示的曲線C1代表光束L1僅通過第一干涉膜110濾光之後的光譜,其含有第一干涉膜110對光束L1產生第一漣波效果。以虛線表示的曲線C2代表光束L1僅通過第二干涉膜120濾光之後的光譜,其含有第二干涉膜120對光束L1產生第二漣波效果。
第一干涉膜110與第二干涉膜120兩者具有類似的膜層結構,因此第一干涉膜110與第二干涉膜120兩者對光束L1所產生的光譜(即圖1B中的曲線C1與C2)彼此相似。例如,曲線C1與C2中的漣波大致上都具有相同或相近數量的波峰與波谷,但兩者波峰跟波谷的所在位置(whereabouts)與半高寬(Full Width at Half Maximum,FWHM)卻明顯不同。
在本實施例中,厚度T1大於厚度T3,厚度T2大於厚度T4,即第一干涉膜110的厚度110t大於第二干涉膜120的厚度120t。因此,第一干涉膜110所產生的漣波(曲線C1)具有較寬半高寬的波峰跟波谷,而第二干涉膜120所產生的漣波(曲線C2)具有較窄半高寬的波峰跟波谷,所以曲線C1看起來像是沿水平方向延展的曲線C2,而曲線C2看起來像是沿水平方向壓縮的曲線C1。此外,在一定的波長範圍內,例如圖1B中的200奈米至350奈米的波長範圍內,曲線C1的波峰對應(aligning to)曲線C2的波谷,而曲線C1的波谷對應曲線C2的波峰,以產生破壞性干涉,即第一漣波效果與第二漣波效果能彼此相抵,如圖1C所示。
請參閱圖1B與圖1C,其中圖1C所示的曲線C3代表光束L1依序通過第二干涉膜120與第一干涉膜110之後的光譜。由於在200奈米至350奈米波長範圍內的曲線C1與曲線C2之間會產生破壞性干涉,造成第一漣波效果與第二漣波效果彼此相抵,因而降低漣波的影響,從而產生較為平滑分布的曲線C3,而曲線C3在200奈米至350奈米波長範圍內的部分,其形狀會近似於平滑的水平線。由此可知,經過光濾波組件100濾光後的光束L1的光譜在一定波長範圍內(例如200奈米至350奈米)會呈現較為平滑的分布。相較於現有的干涉濾波片,光濾波組件100具有較佳的濾光效果,幫助提升光學量測儀器的精密度與準確度。
請參閱圖1A,在圖1A所示的實施例中,第一干涉膜110與第二干涉膜120都是形成在同一塊基板上。具體而言,光濾波組件100還包括第一透明基板101,而第一透明基板101可以是玻璃板或藍寶石基板(sapphire substrate)。第一干涉膜110與第二干涉膜120都形成於第一透明基板101上,其中第一透明基板101位在第一干涉膜110與第二干涉膜120之間,而且也位在光束L1的傳遞路徑上。也就是說,第一干涉膜110與第二干涉膜120分別形成在第一透明基板101的相對兩側(side),而第一干涉膜110與第二干涉膜120更可接觸第一透明基板101。
第一干涉膜110與第二干涉膜120兩者可用沉積(deposition)來形成。例如,第一膜層111至第四膜層124都可以用化學氣相沉積(Chemical Vapor Deposition,CVD)來形成,而且第一干涉膜110與第二干涉膜120可以是原地形成(fromed in situ)。也就是說,第一干涉膜110與第二干涉膜120都是在同一個腔體(chamber)的真空環境下而形成,即第一膜層111、第二膜層112、第三膜層123以及第四膜層124都是原地形成。
圖2A是本發明另一實施例的光源裝置的剖面示意圖。請參閱圖2A,在本實施例的光源裝置20a中,光濾波組件200a與前述實施例的光濾波組件100相似。例如,光濾波組件200a包括第一干涉膜110、第二干涉膜120與第一透明基板101。不過,有別於光濾波組件100,光濾波組件200a還包括第二透明基板102,且第二干涉膜120形成於第二透明基板102上,並接觸第二透明基板102,但不形成於第一透明基板101上。
具體而言,第一干涉膜110仍形成於第一透明基板101上,以形成第一干涉濾波片201,但第二干涉膜120卻形成於第二透明基板102上,以形成第二干涉濾波片202。所以,第一干涉膜110與第二干涉膜120分別形成在兩個不同的透明基板上,也就是第一透明基板101與第二透明基板102上,而光濾波組件200a包括至少兩個干涉濾波片:第一干涉濾波片201與第二干涉濾波片202。此外,第二透明基板102與第一透明基板101兩者構成材料可以相同。
第一干涉膜110、第二干涉膜120、第一透明基板101以及第二透明基板102都位於光束L1的傳遞路徑上,即光束L1會依序穿透第二干涉濾波片202與第一干涉濾波片201。第二干涉膜120位於第一透明基板101與第二透明基板102之間,而第一透明基板101位於第一干涉膜110與第二干涉膜120之間,因此光束L1可從第二透明基板102進入第二干涉膜120,接著從第一透明基板101進入第一干涉膜110。之後,光束L1從第一干涉膜110離開光濾波組件200a。此外,第一干涉濾波片201可與第二干涉濾波片202平行,所以光束L1可沿著第一干涉濾波片201與第二干涉濾波片202兩者光軸(optical axis)來傳遞。
必須說明的是,本申請[發明說明書]與[申請專利範圍]所述的「平行」包括「實質上平行」。詳細而言,當兩塊基板(例如第一干涉濾波片201與第二干涉濾波片202)經由一般人以肉眼直接觀測,且不使用例如尺或量角器等測量工具的條件下,被大部分一般人認定是平行時,這種平行屬於上述「實質上平行」。所以,一般人用肉眼直接觀測第一干涉濾波片201與第二干涉濾波片202時,會普遍認為第一干涉濾波片201與第二干涉濾波片202平行。
另外,在圖2A所示的實施例中,第二干涉膜120位於第一透明基板101與第二透明基板102之間,而第一透明基板101位於第一干涉膜110與第二干涉膜120之間。然而,在其他實施例中,例如在圖2B所示的光源裝置20b的光濾波組件200b中(請參閱圖2B),第一干涉膜110與第二干涉膜120皆位於第一透明基板101與第二透明基板102之間,因此光束L1會從第二透明基板102進入第二干涉膜120,接著從第一干涉膜110進入第一透明基板101,之後從第一透明基板101離開光濾波組件200b,如圖2B所示。
在圖2A與圖2B的實施例中,第一膜層111各層的厚度T1彼此相同,第二膜層112各層的厚度T2彼此相同,第三膜層123各層的厚度T3彼此相同,第四膜層124各層的厚度T4可彼此相同,但其僅是一種選擇實施例,本發明並不以此為限。在其他實施例中,干涉膜的各層厚度也可以是不相同或部分相同。本領域技術者可依其需求選用不同的膜層設計方式,膜層設計也可參考前述書籍「薄膜光學與鍍膜技術」中的第三章,「光學薄膜設計之圖示法」,在此則不再贅述膜層設計。
請再參閱圖2C至圖2F,其繪示本發明另一種實施例可採用的第一與第二干涉膜的光學薄膜設計之示意圖。圖2C繪示了第一干涉膜的奇數各層厚度,圖2E繪示了第一干涉膜的偶數各層厚度。圖2D繪示了第二干涉膜的奇數各層厚度,圖2F繪示了第二干涉膜的偶數各層厚度。在圖2C至圖2F中,橫軸是膜層編號,而縱軸是膜層厚度。以圖2C與圖2E來看,膜層編號1、3、5…分別與膜層編號2、4、6…交替堆疊,在本實施例中膜層編號愈大,離透明基板愈遠。反之,膜層編號愈小,愈靠近透明基板。在本實施例中,第一干涉膜總層數為100層,奇數層採用相同的第一材料,偶數層採用相同的第二材料,第一材料與第二材料不同。第二干涉膜總層數為100層,奇數層採用相同的第一材料,偶數層採用相同的第二材料,第一材料與第二材料不同。
第一干涉膜包括第一連續膜層堆疊,而第二干涉膜包括第二連續膜層堆疊。在本實施例中,第一連續膜層堆疊以圖2C與圖2E中編號1到39的膜層為例進行說明,而第二連續膜層堆疊以圖2D與圖2F中編號1到39的膜層為例進行說明。需一提的是,第二膜層堆疊(膜層編號1到39)的厚度分別是第一膜層堆疊(膜層編號1到39)的厚度的0.6倍。但在本實施例中,第一干涉膜中膜層編號40到100與第二干涉膜中層編號40到100則沒有相同的厚度比例關係。也就是說,第一連續膜層堆疊佔第一干涉膜中總層數的39%,而第二連續膜層堆疊佔第二干涉膜中總層數的39%。與前述實施例相似,本實施例占干涉膜39%的連續膜層堆疊(例如第一連續膜層堆疊)也能改善漣波的問題。本實施例的39%僅是一種選擇實施例,在其他實施例中也可以用其他比率,例如30%以上。
另外,第一干涉膜也可以包含第一連續膜層堆疊與第三連續膜層堆疊,第二干涉膜包含第二連續膜層堆疊與第四連續膜層堆疊。第一連續膜層堆疊的各層膜層厚度(第一厚度分布)依序與該第二連續膜層堆疊的各層膜層厚度(第二厚度分布)存在一第一比例。第三連續膜層堆疊的各層膜層厚度(第三厚度分布)依序與該第四連續膜層堆疊的各層膜層厚度(第四厚度分布)存在一第二比例,第一比例與第二比例不相同,如此也可達成改善漣波的問題。
圖2G至圖2I是本發明其他多種實施例的光濾波組件的光譜示意圖,其中對應圖2G至圖2I的光濾波組件分別如以下表格所示。 表一:第一與第二干涉膜各層比例為0.98(對應圖2G)
表二:除第15層厚度相同,其他各層比例為0.98(對應圖2H)
表三:第37-39層厚度相同,其他各層比例為0.98(對應圖2I)
請參閱圖2G至圖2I。圖2G與圖2I是根據以上表格所列的參數,模擬繪製的光譜圖,其中曲線C21代表第一干涉膜,曲線C22代表第二干涉膜,而曲線C23代表曲線C21與C22彼此干涉之後的光譜,也等於曲線C21與C22疊加之後的結果。從圖2G至圖2I來看,表一至表三所述的光濾波組件在波長580奈米之後會呈現較為平滑分布的光譜(曲線C23),即第一與第二干涉膜所分別造成的第一與第二漣波效果會彼此相抵,因而降低漣波的影響,從而產生如圖2I所示的較為平滑分布的曲線C23。如此,前述表格所揭露的光濾波組件亦具有較佳的濾光效果,因而能提升光學量測儀器的精密度與準確度。
圖3是本發明另一實施例的光源裝置的剖面示意圖。請參閱圖3,本實施例的光源裝置30與圖2A實施例的光源裝置20a相似。例如,光濾波組件300包括第一干涉濾波片201與第二干涉濾波片202。不過,有別於圖2A中的光濾波組件200a,光濾波組件300還包括第三干涉濾波片203。也就是說,光濾波組件300包括至少三片干涉濾波片,例如第一干涉濾波片201、第二干涉濾波片202以及第三干涉濾波片203,其中這三片干涉濾波片都在光束L1的傳遞路徑上,並且彼此平行,如圖3所示。
具體而言,光濾波組件300包括第三透明基板103與第三干涉膜130,其中第三干涉膜130形成於第三透明基板103上,以形成第三干涉濾波片203。也就是說,第三干涉濾波片203包括第三干涉膜130與第三透明基板103。第三干涉膜130也是多層膜,並且包括多層第五膜層135與多層第六膜層136,其中這些第五膜層135與這些第六膜層136彼此交替堆疊。此外,而光束L1在第三干涉膜130所產生的光程差不同於光束L1在第一干涉膜110或第二干涉膜120所產生的光程差。
第五膜層135可由高折射率材料所製成,而第六膜層136可由低折射率材料所製成,其中第五膜層135的構成材料可相同於第一膜層111的構成材料,而第六膜層136的構成材料可相同於第二膜層112的構成材料。因此,第五膜層135的光學常數相同於第一膜層111的光學常數,而第六膜層136的光學常數相同於第二膜層112的光學常數。此外,第五膜層135與第六膜層136也可以用沉積來形成,例如化學氣相沉積(CVD)。因此,第三干涉膜130也是由至少兩種光學常數不同的膜層交替堆疊而成。此外,在本實施例中,第五膜層135由高折射率材料所製成,而第六膜層136由低折射率材料所製成,但在其他實施例中,第五膜層135可由低折射率材料所製成,而第六膜層136可由高折射率材料所製成。
在本實施例中,各第五膜層135具有厚度T5,而各第六膜層136具有厚度T6,其中第三干涉膜130中依序堆疊的各第五膜層135厚度T5與各第六膜層136厚度T6的比例可以相同第一干涉膜110與第二干涉膜120中各膜層厚度依序堆疊的比例。例如,在第一干涉膜110的其中相鄰四層膜層中,第一膜層111:第二膜層112:第一膜層111:第二膜層112的厚度比為1:2:3:6,而在第三干涉膜130的其中相鄰四層膜層中,第五膜層135:第六膜層136:第五膜層135:第六膜層136的厚度比也為1:2:3:6。此外,第三干涉膜130的厚度130t可不等於厚度110t與120t其中至少一者,其中厚度T1與T3至少一者可不等於厚度T5,而厚度T2與T4至少一者可不等於厚度T6。
圖4A是本發明另一實施例的光源裝置的剖面示意圖。請參閱圖4A,本實施例的光源裝置40a與圖2A實施例的光源裝置20a相似。例如,光濾波組件400a也包括第一干涉濾波片201與第二干涉濾波片202。光濾波組件400a與光濾波組件200a兩者差異在於:第一干涉濾波片201與第二干涉濾波片202既不平行也不垂直,其中本申請[發明說明書]與[申請專利範圍 ]所述的「不平行」以及「不垂直」是指一般人經由肉眼直接觀測,不需要使用例如尺或量角器等測量工具,就可以明顯發現兩塊基板(例如第一干涉濾波片201與第二干涉濾波片202)不平行,也不垂直。
雖然在圖2A與圖4A中,光束L1都會穿透第一干涉濾波片201,但是由於第一干涉濾波片201與第二干涉濾波片202不平行也不垂直,所以光束L1不會沿著第一干涉濾波片201的法線201a而入射於第一干涉濾波片201。因此,光束L1在圖2A中的第一干涉濾波片201的光程會不同於在圖4A中的第一干涉濾波片201的光程,以至於圖2A的第一干涉濾波片201所產生的光程差不同於圖4A的第一干涉濾波片201所產生的光程差。所以,對於同一道光束L1而言,圖4A的光濾波組件400a與圖2A的光濾波組件200a兩者濾光效果是彼此不相同。
第一干涉濾波片201的法線201a與光束L1的傳遞路徑之間的夾角A1以30度為例進行說明。在其他實施例中,本領域技術者可依照想要改善的漣波範圍調整夾角A1。從圖4A來看,顯然光束L1在第一干涉濾波片201的光程與夾角A1有關,因此夾角A1的大小能決定第一干涉濾波片201的光程差,進而控制光濾波組件400a對光束L1的濾光。此外,在本實施例中,第一干涉濾波片201可以相對於第二干涉濾波片202而轉動。如此,利用第一干涉濾波片201的轉動,可以調整光濾波組件400a的濾光。
圖4B是本發明另一實施例的光源裝置的剖面示意圖。請參閱圖4B,圖4B實施例中的光源裝置40b與圖4A實施例中的光源裝置40a相似。詳細而言,光濾波組件400b與400a都包括相同的元件,例如第一干涉濾波片201,而兩者的差異在於:光濾波組件400b包括兩片相同的干涉濾波片。
光濾波組件400b包括第一干涉濾波片201與第二干涉濾波片402,其中第二干涉濾波片402包括第二透明基板102與第二干涉膜420,而第二干涉膜420形成於第二透明基板102上。第二干涉膜420與第一干涉膜110相同,即第二干涉膜420也是多層膜,並包括多層第一膜層111與多層第二膜層112(圖4B未繪示)。此外,第二干涉膜420的厚度420t相等於第一干涉膜110的厚度110t。由此可知,第二干涉濾波片402其實是第一干涉濾波片201。也就是說,光濾波組件400b實質上包括兩個相同的干涉濾波片(即第一干涉濾波片201),其中第二干涉膜420與第一干涉膜110原地形成。換言之,在本實施例中,光濾波組件400b可利用同一批製程所產生的兩片干涉濾波片,並藉由兩片干涉濾波片的配置方式(兩片干涉濾波片之間產生一夾角)來改善濾波片原有的漣波問題。
雖然在光濾波組件400b中,第二干涉濾波片402與第一干涉濾波片201相同,但由於第二干涉濾波片402與第一干涉濾波片201不平行也不垂直,所以第一干涉膜110所產生的光程差不同於第二干涉膜420所產生的光程差,其中第一干涉濾波片201的法線201a與光束L1傳遞路徑之間的夾角A1可以大於等於0度且小於90度。須一提的是,夾角提高會降低光穿透濾波片的比例並提升光從濾波片反射出去的比例。在另一實施例中可以大於等於0度且小於等於70度。此外,與光濾波組件400a相同的是,第一干涉濾波片201也可以相對於第二干涉濾波片402而轉動,以控制光濾波組件400a的濾光,以濾除不要的光線。
此外,由於第二干涉濾波片402與第一干涉濾波片201相同,且第二干涉膜420與第一干涉膜110原地形成,因此當光束L1沿著第二干涉濾波片402與第一干涉濾波片201兩者的法線入射時,第二干涉濾波片402與第一干涉濾波片201兩者所產生的漣波效果大致相同。不過,由於第二干涉濾波片402與第一干涉濾波片201不平行也不垂直,以至第一干涉膜110所產生的光程差不同於第二干涉膜420所產生的光程差,因此可透過調整夾角A1來使第二干涉濾波片402與第一干涉濾波片201兩者產生不同且又彼此相抵的漣波效果,從而降低漣波的影響。
值得一提的是,在圖4A與圖4B所示的實施例中,光濾波組件400a與400b皆各自包括兩片干涉濾波片,但是在其他實施例中,也可以在光濾波組件400a或400b中額外增加一片干涉濾波片,例如圖4C實施例所示的光濾波組件400c。請參閱圖4C,光源裝置40c的光濾波組件400c包括至少三片干涉濾波片:第一干涉濾波片201、第二干涉濾波片202與第三干涉濾波片203,其中第三干涉濾波片203平行於第一干涉濾波片201或第二干涉濾波片202。以圖4C為例,第三干涉濾波片203平行於第二干涉濾波片202,但卻與第一干涉濾波片201不平行也不垂直。
在圖4C所示的實施例中,光濾波組件400c所包括的第一干涉濾波片201、第二干涉濾波片202以及第三干涉濾波片203都是不同的干涉濾波片,且根據前面實施例的描述,這三片干涉濾波片的干涉膜的厚度都不相等。然而,在其他實施例中,光濾波組件400c可包括至少兩片相同的干涉濾波片。因此,圖4C所示的第一干涉濾波片201、第二干涉濾波片202以及第三干涉濾波片203其中至少一者可更換,以使光濾波組件400c包括至少兩片相同的干涉濾波片。
舉例來說,圖4C中的第二干涉濾波片202可以更換成圖4B的第二干涉濾波片402,以使光濾波組件400c包括兩片相同的干涉濾波片。或者,圖4C中的第二干涉濾波片202與第三干涉濾波片203皆可更換成第一干涉濾波片201,以使光濾波組件400c包括三片相同的干涉濾波片(即第一干涉濾波片201)。
在圖4C所示的實施例中,第一干涉濾波片201位於第二干涉濾波片202與第三干涉濾波片203之間,且不平行也不垂直於第二干涉濾波片202與第三干涉濾波片203,但在其他實施例中,第一干涉濾波片201、第二干涉濾波片202與第三干涉濾波片203的配置(arrangement)可變動。例如,第二干涉濾波片202位於第一干涉濾波片201與第三干涉濾波片203之間,且不平行也不垂直於第一干涉濾波片201與第三干涉濾波片203。或者,第三干涉濾波片203位於第一干涉濾波片201與第二干涉濾波片202之間,而第二干涉濾波片202不平行也不垂直於第一干涉濾波片201及第三干涉濾波片203。所以,圖4C僅供舉例說明,並不限定第一干涉濾波片201、第二干涉濾波片202與第三干涉濾波片203的配置。
特別一提的是,在以上實施例中,光濾波組件100至400c所包括的干涉膜的厚度(例如第一干涉膜110的厚度110t)都是均勻,以及這些膜層(例如第一至第四膜層111、112、123與124)的厚度比例可以相同都是指「實質上均勻」與「實質上相同」。詳細而言,在製作干涉膜的過程中,難免受到製造設備的限制而造成干涉膜中的膜層(例如第一膜層111)厚度出現誤差(tolerance),以至於在微觀下所觀測到的干涉膜具有不均勻厚度,以及這些膜層的厚度比例不相同的情形(例如第一膜層111與其相鄰的第二膜層112的兩者厚度比例不相同於第三膜層123與其相鄰的第四膜層124的兩者厚度),但這種非刻意產生的不均勻厚度與不相同厚度比例基本上不會影響光濾波組件100至400c的濾光效果,而前述「厚度實質上均勻」涵蓋這種不均勻厚度,「厚度比例實質上相同」涵蓋這種不相同的厚度比例。不過,在其他實施例的光濾波組件中,干涉膜也可以具有被刻意製作出來的不均勻厚度,如圖5A所示。
圖5A是本發明另一實施例的光源裝置的剖面示意圖。請參閱圖5A,在光源裝置50中,光濾波組件500包括第一干涉膜510、第一透明基板101以及第二干涉膜520,其中第二干涉膜520可以是前述實施例的干涉膜,例如第一干涉膜110、第二干涉膜120或第三干涉膜130,而第一透明基板101位於第一干涉膜510與第二干涉膜520之間。不同於前述實施例,第一干涉膜510的厚度是不均勻,如圖5A所示。
第一干涉膜510也是多層膜,並且包括多層第一膜層511與多層第二膜層512,其中這些第一膜層511與這些第二膜層512彼此交替堆疊,而第一膜層511與第二膜層512兩者的構成材料可相同於第一膜層111與第二膜層112兩者的構成材料。第一干涉膜510具有第一側S1以及一相對第一側S1的第二側S2,而第一干涉膜510的厚度是從第一側S1朝向第二側S2遞減,以使第一干涉膜510的頂面會形成一面斜面(inclined surface),如圖5A所示。此外,第一干涉膜510的形成方法可包括沉積,例如物理氣相沉積。在進行化學氣相沉積的過程中,可將第一透明基板101傾斜,或是利用檔板(shelter)遮擋鍍源,以形成厚度不均勻的第一干涉膜510。
當光束L1進入第一干涉膜510內時,光束L1中的至少兩光線在第一干涉膜510內的光程會不相同。以圖5A為例,在光束L1中,靠近第二側S2的光程會小於靠近第一側S1的光程。因此,第一干涉膜510對光束L1所產生的光程不會一致的,以使第一干涉膜510不僅能干涉光束L1而對光束L1進行濾光,而且還可以補償剛穿透第二干涉膜520的光束L1,以降低漣波的影響。
請參閱圖5A、圖5B與圖5C,由於第一干涉膜510的厚度是從第一側S1朝向第二側S2遞減,因此在光束L1通過第一干涉膜510之後,光束L1中的多條光線在第一干涉膜510的多個不同部位(section)中會產生多個彼此不同的光譜,如圖5B所示的多條彼此不同的曲線C5,其中這些曲線C5分別帶有第一干涉膜510對光束L1所產生的多種不同漣波效果。如同前面圖1B與圖1C實施例所述,圖5B中的這些不同曲線C5會彼此疊加,進而產生干涉,以形成較為平滑分布的光譜,如圖5C所示的曲線C6。具體而言,在圖5C中,在300奈米至500奈米波長範圍內的這些曲線C5會產生破壞性干涉,以至於這些曲線C5的漣波效果彼此相抵,進而降低漣波的影響,從而產生曲線C6,其形狀在300奈米至500奈米波長範圍內是呈現近似平滑的水平線。
請參閱圖6,其繪示本發明一實施例的光源裝置60,其包括光濾波組件600,其中光濾波組件600的功效與前述實施例相似。光濾波組件600包括第一干涉濾波片以及第二干涉濾波片。以圖6為例,第一干涉濾波片為干涉濾波片610,而第二干涉濾波片為干涉濾波片206,其中干涉濾波片206包括透明基板602以及形成於透明基板602上的干涉膜620。干涉膜620為前述實施例中的第一干涉膜110、第二干涉膜120以及第三干涉膜130其中一者,而透明基板602也為前述實施例中的第一透明基板101、第二透明基板102以及第三透明基板103其中一者。因此,干涉濾波片206可為前述實施例中的第一干涉濾波片201、第二干涉濾波片202或第三干涉濾波片203。
由此可知,干涉濾波片610可應用於前述實施例的光濾波組件200a、200b、300、400a、400b或400c。詳細而言,在圖2A至圖4C所示的實施例中,第一干涉濾波片201、第二干涉濾波片202、402以及第三干涉濾波片203其中一者可以替換成干涉濾波片610。此外,圖1A中的光濾波組件100與圖5A中的光濾波組件500兩者也可以還包括第一干涉濾波片201、第二干涉濾波片202、402、第三干涉濾波片203以及干涉濾波片610其中至少一者,所以圖1A中的光濾波組件100與圖5A中的光濾波組件500各自可包括三層以上的干涉膜。
綜上所述,本發明一實施例的光濾波組件所包括的至少兩層干涉膜具有類似的膜層結構,並能產生不同的光程差與干涉,改善濾光效果。例如,當光濾波組件對光束進行濾光時,光濾波組件能使經濾光後的光束具有強度較為平滑分布的光譜,以降低漣波的影響,從而幫助提升精密度與準確度。產生光程差的方式例如可透過兩干涉膜的鍍膜厚度不同及/或漸變厚度及/或兩干涉片之間存在夾角等達成光程差。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
10‧‧‧光源10a、20a、20b、30、40a、40b、40c、50、60‧‧‧光源裝置100、200a、200b、300、400a、400b、400c、500、600‧‧‧光濾波組件101‧‧‧第一透明基板102‧‧‧第二透明基板103‧‧‧第三透明基板110、510‧‧‧第一干涉膜110t、120t、130t、420t、T1、T2、T3、T4、T5、T6‧‧‧厚度111、511‧‧‧第一膜層112、512‧‧‧第二膜層120、420、520‧‧‧第二干涉膜123‧‧‧第三膜層124‧‧‧第四膜層135‧‧‧第五膜層136‧‧‧第六膜層130‧‧‧第三干涉膜201‧‧‧第一干涉濾波片201a‧‧‧法線202、402‧‧‧第二干涉濾波片203‧‧‧第三干涉濾波片206、610‧‧‧干涉濾波片600‧‧‧光濾波組件602‧‧‧透明基板620‧‧‧干涉膜A1‧‧‧夾角L1‧‧‧光束S1‧‧‧第一側S2‧‧‧第二側
圖1A是本發明一實施例的光源裝置的剖面示意圖。 圖1B是圖1A中的光束個別通過第一與第二干涉膜之後的光譜(spectrum)示意圖。 圖1C是圖1A中的光束通過光濾波組件之後的光譜示意圖。 圖2A是本發明另一實施例的光源裝置的剖面示意圖。 圖2B是本發明另一實施例的光源裝置的剖面示意圖。 圖2C至圖2I是本發明另一實施例中的干涉膜的光學薄膜設計之示意圖。 圖3是本發明另一實施例的光源裝置的剖面示意圖。 圖4A是本發明另一實施例的光源裝置的剖面示意圖。 圖4B是本發明另一實施例的光源裝置的剖面示意圖。 圖4C是本發明另一實施例的光源裝置的剖面示意圖。 圖5A是本發明另一實施例的光源裝置的剖面示意圖。 圖5B與圖5C是圖5A中的光束通過第一干涉膜與第二干涉膜之後的光譜示意圖。 圖6是本發明一實施例的光源裝置的剖面示意圖。
10‧‧‧光源
10a‧‧‧光源裝置
100‧‧‧光濾波組件
101‧‧‧第一透明基板
110‧‧‧第一干涉膜
110t、120t、T1、T2、T3、T4‧‧‧厚度
111‧‧‧第一膜層
112‧‧‧第二膜層
120‧‧‧第二干涉膜
123‧‧‧第三膜層
124‧‧‧第四膜層
L1‧‧‧光束
Claims (21)
- 一種光濾波組件,包括:一第一干涉膜,包括多層第一膜層與多層第二膜層,其中該些第一膜層與該些第二膜層彼此交替堆疊;一第二干涉膜,包括多層第三膜層與多層第四膜層,其中該些第三膜層與該些第四膜層彼此交替堆疊,該第一膜層的光學常數相同於該第三膜層的光學常數,該第二膜層的光學常數相同於該第四膜層的光學常數,該第一干涉膜與該第二干涉膜皆位於一光束的傳遞路徑上,而該光束在該第一干涉膜所產生的光程差不同於該光束在該第二干涉膜所產生的光程差;一第一透明基板,位於該光束的傳遞路徑上,其中該第一干涉膜形成於該第一透明基板上,以形成一第一干涉濾波片;以及一第二透明基板,位於該光束的傳遞路徑上,其中該第二干涉膜形成於該第二透明基板上,以形成一第二干涉濾波片,其中該第一干涉濾波片與該第二干涉濾波片不平行也不垂直,其中該第一干涉膜對該光束產生一第一漣波效果,該第二干涉膜對該光束產生一第二漣波效果,該第一漣波效果與該第二漣波效果彼此相抵。
- 如請求項第1項所述的光濾波組件,其中該第一干涉膜包括一第一連續膜層堆疊,而該第二干涉膜包括一第二連續膜層堆疊,該第一連續膜層堆疊佔該第一干涉膜中的該些第一膜層與該些第二膜層兩者總層數的30%以上,而該第二連續膜層堆疊佔該第二干涉膜中的該些第三膜層與該些第四膜層兩者總層數的30%以上,其中該第一連續膜層堆疊中的依序堆疊的各 第一膜層厚度與各第二膜層厚度的比例相同該第二連續膜層堆疊中的依序堆疊的各第三膜層厚度與各第四膜層厚度的比例。
- 如請求項第1項所述的光濾波組件,其中該第一干涉膜中依序堆疊的各第一膜層厚度與各第二膜層厚度的比例相同於該第二干涉膜中依序堆疊的各第三膜層厚度與各第四膜層厚度的比例。
- 如請求項第1項所述的光濾波組件,其中該第一干涉濾波片與該第二干涉濾波片相同。
- 如請求項第1項所述的光濾波組件,其中該第一干涉濾波片可以相對於該第二干涉濾波片而轉動。
- 如請求項第1項所述的光濾波組件,其中該第一干涉膜的厚度相等於該第二干涉膜的厚度。
- 如請求項第1項所述的光濾波組件,還包括:一第三干涉濾波片,位於該光束的傳遞路徑上,並包括:一第三透明基板;以及一第三干涉膜,形成於該第三透明基板上,並包括多層第五膜層與多層第六膜層,其中該些第五膜層與該些第六膜層彼此交替堆疊,該第五膜層的光學常數相同於該第一膜層的光學常數,而該第六膜層的光學常數相同於該第二膜層的光學常數,該第三干涉膜位於該光束的傳遞路徑上,而該光束在該第三干涉膜所產生的光程差不同於該光束在該第一干涉膜或該第二干涉膜所產生的光程差。
- 如請求項第1項所述的光濾波組件,其中該第一干涉膜具有一第一側與一相對該第一側的第二側,而該第一干涉膜的厚度從該第一側 朝向該第二側遞減。
- 如請求項第1項所述的光濾波組件,其中該些第一膜層與該些第二膜層是原地形成,而該些第三膜層與該些第四膜層是原地形成。
- 如請求項第1項所述的光濾波組件,其中該第一干涉膜與該第二干涉膜是原地形成。
- 如請求項第1項所述的光濾波組件,其中該第一漣波效果與該第二漣波效果在一預定波段內彼此相抵。
- 一種光源裝置,包括:一光源,發出一光束;以及一如請求項第1項所述之光濾波組件,配置於該光束的傳遞路徑上。
- 如請求項第12項所述的光源裝置,其中該第一干涉膜包括一第一連續膜層堆疊,而該第二干涉膜包括一第二連續膜層堆疊,該第一連續膜層堆疊佔該第一干涉膜中的該些第一膜層與該些第二膜層兩者總層數的30%以上,而該第二連續膜層堆疊佔該第二干涉膜中的該些第三膜層與該些第四膜層兩者總層數的30%以上,其中該第一連續膜層堆疊中的依序堆疊的各第一膜層厚度與各第二膜層厚度的比例相同該第二連續膜層堆疊中的依序堆疊的各第三膜層厚度與各第四膜層厚度的比例。
- 如請求項第12項所述的光源裝置,其中該第一干涉濾波片與該第二干涉濾波片相同。
- 如請求項第12項所述的光源裝置,其中該第一干涉濾波片可以相對於該第二干涉濾波片而轉動。
- 如請求項第12項所述的光源裝置,其中該第一干涉膜對該 光束產生一第一漣波效果,該第二干涉膜對該光束產生一第二漣波效果,該第一漣波效果與該第二漣波效果彼此相抵。
- 一種光濾波組件,包括:一第一干涉膜,包括呈現一第一厚度分佈的多層膜層;一第二干涉膜,包括呈現一第二厚度分佈的多層膜層,其中該第一厚度分佈的各層膜層依序與該第二厚度分佈的各層膜層存在一厚度比例,該厚度比例為一常數,該第一干涉膜與該第二干涉膜皆位於一光束的傳遞路徑上,而該光束在該第一干涉膜所產生的光程差不同於該光束在該第二干涉膜所產生的光程差;一第一透明基板,位於該光束的傳遞路徑上,其中該第一干涉膜形成於該第一透明基板上,以形成一第一干涉濾波片;以及一第二透明基板,位於該光束的傳遞路徑上,其中該第二干涉膜形成於該第二透明基板上,以形成一第二干涉濾波片,該第一干涉濾波片與該第二干涉濾波片不平行也不垂直,其中該第一干涉膜對該光束產生一第一漣波效果,該第二干涉膜對該光束產生一第二漣波效果,該第一漣波效果與該第二漣波效果彼此相抵。
- 如請求項第17項所述的光濾波組件,其中該常數為1。
- 如請求項第17項所述的光濾波組件,其中該常數不等於1。
- 如請求項第17項所述的光濾波組件,其中該第一干涉濾波片與該第二干涉濾波片相同。
- 如請求項第17項所述的光濾波組件,其中該第一干涉濾波片可以相對於該第二干涉濾波片而轉動。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106107793A TWI715740B (zh) | 2017-03-09 | 2017-03-09 | 光源裝置及其光濾波組件 |
US15/871,959 US20180259697A1 (en) | 2017-03-09 | 2018-01-15 | Light source device and optical filtering assembly thereof |
US17/202,297 US12019255B2 (en) | 2017-03-09 | 2021-03-15 | Angled interference filters generating offset ripple effects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106107793A TWI715740B (zh) | 2017-03-09 | 2017-03-09 | 光源裝置及其光濾波組件 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201833596A TW201833596A (zh) | 2018-09-16 |
TWI715740B true TWI715740B (zh) | 2021-01-11 |
Family
ID=63446460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106107793A TWI715740B (zh) | 2017-03-09 | 2017-03-09 | 光源裝置及其光濾波組件 |
Country Status (2)
Country | Link |
---|---|
US (2) | US20180259697A1 (zh) |
TW (1) | TWI715740B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113866851A (zh) * | 2020-06-30 | 2021-12-31 | 宸美(厦门)光电有限公司 | 膜层结构与透光基板 |
TWI780829B (zh) * | 2021-07-22 | 2022-10-11 | 澤米科技股份有限公司 | 光學膜結構 |
CN115900949A (zh) * | 2021-09-23 | 2023-04-04 | 光宝科技新加坡私人有限公司 | 具有膜层结构的梳状滤光片以及微型光谱测量装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005062291A (ja) * | 2003-08-08 | 2005-03-10 | Hitachi Maxell Ltd | 光学バンドパスフィルタ |
US20090002830A1 (en) * | 2006-02-27 | 2009-01-01 | Nikon Corporation | Dichroic Filter |
WO2016013425A1 (ja) * | 2014-07-23 | 2016-01-28 | 浜松ホトニクス株式会社 | 光学素子 |
TW201621354A (zh) * | 2014-10-14 | 2016-06-16 | 岩崎電氣股份有限公司 | 波長選擇濾光片及光照射裝置 |
US20160370520A1 (en) * | 2015-06-18 | 2016-12-22 | Canon Kabushiki Kaisha | Optical element, optical system and optical apparatus using multi-layer film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4502762A (en) * | 1982-11-12 | 1985-03-05 | Northern Telecom Limited | Dual wavelength optical system |
JP2002072010A (ja) * | 2000-09-05 | 2002-03-12 | Nippon Sheet Glass Co Ltd | 波長選択性を有する光学素子 |
US20100046076A1 (en) * | 2008-08-22 | 2010-02-25 | Gilbert Feke | Tunable spectral filtration device |
DE102013104968B4 (de) * | 2013-05-14 | 2020-12-31 | ams Sensors Germany GmbH | Sensoranordnung mit einem siliziumbasierten optischen Sensor und einem Substrat für funktionelle Schichtsysteme |
-
2017
- 2017-03-09 TW TW106107793A patent/TWI715740B/zh active
-
2018
- 2018-01-15 US US15/871,959 patent/US20180259697A1/en not_active Abandoned
-
2021
- 2021-03-15 US US17/202,297 patent/US12019255B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005062291A (ja) * | 2003-08-08 | 2005-03-10 | Hitachi Maxell Ltd | 光学バンドパスフィルタ |
US20090002830A1 (en) * | 2006-02-27 | 2009-01-01 | Nikon Corporation | Dichroic Filter |
WO2016013425A1 (ja) * | 2014-07-23 | 2016-01-28 | 浜松ホトニクス株式会社 | 光学素子 |
TW201621354A (zh) * | 2014-10-14 | 2016-06-16 | 岩崎電氣股份有限公司 | 波長選擇濾光片及光照射裝置 |
US20160370520A1 (en) * | 2015-06-18 | 2016-12-22 | Canon Kabushiki Kaisha | Optical element, optical system and optical apparatus using multi-layer film |
Also Published As
Publication number | Publication date |
---|---|
US12019255B2 (en) | 2024-06-25 |
TW201833596A (zh) | 2018-09-16 |
US20180259697A1 (en) | 2018-09-13 |
US20210199867A1 (en) | 2021-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12019255B2 (en) | Angled interference filters generating offset ripple effects | |
CN110109210B (zh) | 滤光片 | |
US20190101373A1 (en) | Apparatus for measuring thickness and surface profile of multilayered film structure using imaging spectral optical system and measuring method | |
KR102187048B1 (ko) | 적외선 대역 통과 필터 | |
US20110279901A1 (en) | Multilayer filter and fluorescent microscope using the same | |
US20030002157A1 (en) | Optical filter for reflecting light in a predetermined band | |
EP0967496A2 (en) | Optical multilayered-film filter | |
US5410431A (en) | Multi-line narrowband-pass filters | |
WO2012093119A1 (fr) | Filtre optique a reseaux resonnants insensible a la polarisation accordable en fonction de l'angle d'incidence | |
JP2019523444A (ja) | 光学積層体 | |
JP6760304B2 (ja) | 金色調多層コートおよびこれを備える反射体 | |
US9304237B1 (en) | Tunable band-pass filter | |
CN104216034A (zh) | 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜 | |
JPWO2019167123A1 (ja) | 誘電体多層膜ミラー | |
CN108572408B (zh) | 光源装置及其光滤波组件 | |
KR100687562B1 (ko) | 편광 필터 및 이 필터를 이용한 편광광 조사장치 | |
JP2009031406A (ja) | 非偏光ビームスプリッター及びそれを利用した光学計測機器 | |
US7738750B2 (en) | Compact, low-loss optical wavelength multiplexer/demultiplexer | |
JP2017009704A (ja) | 多層膜を用いた光学素子、光学系および光学機器 | |
CN1226639C (zh) | 滤光片式分光元件 | |
US20120105965A1 (en) | Multilayer filter | |
JP6743398B2 (ja) | 観察光学機器及びプリズム | |
JPS62226047A (ja) | 多層膜反射鏡 | |
US20100208348A1 (en) | Tunable spectral filtration device | |
TW201438289A (zh) | 半導體發光元件及其封裝結構 |