CN104216034A - 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜 - Google Patents
一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜 Download PDFInfo
- Publication number
- CN104216034A CN104216034A CN201410442919.6A CN201410442919A CN104216034A CN 104216034 A CN104216034 A CN 104216034A CN 201410442919 A CN201410442919 A CN 201410442919A CN 104216034 A CN104216034 A CN 104216034A
- Authority
- CN
- China
- Prior art keywords
- film layer
- film
- refractive index
- lens
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000576 coating method Methods 0.000 title abstract description 10
- 239000011248 coating agent Substances 0.000 title abstract description 9
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000011521 glass Substances 0.000 claims abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- 229910052681 coesite Inorganic materials 0.000 claims description 14
- 229910052906 cristobalite Inorganic materials 0.000 claims description 14
- 229910052682 stishovite Inorganic materials 0.000 claims description 14
- 229910052905 tridymite Inorganic materials 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 3
- 238000002310 reflectometry Methods 0.000 abstract description 76
- 239000000463 material Substances 0.000 abstract description 8
- 230000003287 optical effect Effects 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 153
- 238000012360 testing method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Surface Treatment Of Optical Elements (AREA)
Abstract
本发明提出用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜,包括透明基片和减反射膜系,减反射膜系由高折射率介质膜层和低折射率膜层交替叠加的12个膜层构成,适用于曲率半径与口径之比不小于1的大曲率透镜表面,且具有较高的玻璃基底适应性,对由于不同镀膜机参数不同而引起的高折射率镀膜材料折射率n有较大的容限,稳定性高。即基底折射率适用于1.46~1.60、高折射率材料Ta2O5折射率n=1.946~2.126,均满足大曲率光学零件表面各点的光学性能在0.532μm与1.064μm波长处剩余反射率优于0.4%的良好效果。
Description
技术领域
本发明属于光学薄膜技术领域,主要涉及一种沉积于大曲率透镜表面的倍频减反射膜,尤其涉及一种用于大曲率透镜表面的带有0.532微米与1.064微米倍频减反射膜系的减反射膜。
背景技术
0.532μm与1.064μm倍频减反射膜在激光压制观瞄系统中应用广泛,该倍频减反射膜性能的好坏决定了激光压制观瞄系统对敌方观瞄系统进行压制、干扰和损伤的作战效果。倍频减反射膜的性能一般包括三个方面:光学性能、理化性能和抗激光损伤能力,其中光学性能和抗激光损伤能力均与膜层厚度在零件表面的均匀性息息相关。目前,在膜层沉积过程中提高膜厚均匀性的措施一般有修正档板、行星夹具、散射淀积和多元蒸发等几种方法,这些方法可以有效地改善膜层在工件盘上的厚度均匀性,但对透镜表面的膜厚分布不均匀无能为力。这是由于沉积角度的不同使得同一透镜表面各点的膜厚分布还会存在一定的差异,这种差异在透镜曲率较小时影响不太明显,而在透镜曲率较大时,将会引起薄膜透射带向短波方向发生较大的偏移,进而降低透镜的整体透过率。这种偏移对于激光压制光瞄系统是非常致命的,并将最终影响到整机的使用性能,甚至带来破坏性的后果。
对0.532μm与1.064μm倍频减反射膜的膜系结构,许多文献作了报道。据查新,王明利、范正修等在1992年第3期《激光技术》杂志167~172页发表了题为“倍频双波段增透膜的研制”的论文,该论文公开了作者利用三层膜制备了双波长增透膜,膜系的基本结构为G/ZrO2/Al2O3/SiO2/Air,其光谱性能达到1.06μm剩余反射率小于2%,0.532μm,剩余反射率为1.5%。
另外,房淑芬、付新华等曾在2007年第4期《长春理工大学学报》杂志44~45页发表了题为“晶体表面增透膜设计与工艺研究”的论文,该论文公开了作者利用三层膜制备了双波长增透膜,膜系的基本结构为G/MgF2/LaF3/Gd2O3/Air,其光谱性能达到1.06μm剩余反射率小于0.1%,0.532μm,剩余反射率为0.2%。
这些基于平面上镀制双波长减反射膜的方法在大曲率透镜上有着难以克服的缺点。以房淑芬论文中双波长减反射膜为例(图1所示),当此膜系镀制在透镜曲率半径与口径之比等于1的大曲率透镜上时,1.064μm时透镜中心位置剩余反射率小于0.1%,透镜边缘位置剩余反射率增至3.3%;0.532μm时透镜中心位置剩余反射率小于0.2%,透镜边缘位置剩余反射率增至2.4%。这种高的剩余反射不仅增加了系统噪声,甚至带来破坏性的严重后果。
发明内容
本发明目的是得到一种可满足大曲率透镜各点均具有较低剩余反射率的膜系结构。本减反射膜适用于曲率半径与口径之比不小于1的大曲率透镜表面,且具有较高的玻璃基底适应性,对由于不同镀膜机参数不同而引起的高折射率镀膜材料折射率n有较大的容限(低折射率镀膜材料SiO2折射率相对稳定,微小变化几乎不影响剩余反射率),稳定性高。即基底折射率适用于1.46~1.60、高折射率材料Ta2O5折射率n=1.946~2.126,均满足大曲率光学零件表面各点的光学性能在0.532μm与1.064μm波长处剩余反射率优于0.4%的良好效果。
本发明的技术方案为:
所述一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜,包括透明基片和减反射膜系,其特征在于:所述减反射膜系由高折射率介质膜层和低折射率膜层交替叠加的12个膜层构成,其中,第一膜层为Ta2O5膜,膜层厚度11.8nm,第一膜层镀制在所述透明基片的表面上;第二膜层为SiO2膜,膜层厚度34.5nm,并镀制在所述第一膜层上;第三膜层为Ta2O5膜,膜层厚度128.5nm,并镀制在所述第二膜层上;第四膜层为SiO2膜,膜层厚度15.2nm,并镀制在所述第三膜层上;第五膜层为Ta2O5膜,膜层厚度48.3nm,并镀制在所述第四膜层上;第六膜层为SiO2膜,膜层厚度30.8nm,并镀制在所述第五膜层上;第七膜层为Ta2O5膜,膜层厚度65.1nm,并镀制在所述第六膜层上;第八膜层为SiO2膜,膜层厚度189.9nm,并镀制在所述第七膜层上;第九膜层为Ta2O5膜,膜层厚度131nm,并镀制在所述第八膜层上;第十膜层为SiO2膜,膜层厚度47.9nm,并镀制在所述第九膜层上;第十一膜层为Ta2O5膜,膜层厚度39.8nm,并镀制在所述第十膜层上;第十二膜层为SiO2膜,膜层厚度130.2nm,并镀制在所述第十一膜层上。
进一步的优选方案,所述一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜,其特征在于:所述透明基片为折射率为1.46~1.60的玻璃片,Ta2O5折射率n=1.946~2.126范围内。
有益效果
本发明发明人针对膜层沉积过程中,由于沉积角度的不同引起的大曲率透镜表面各点膜厚分布不均匀的现象,通过建立数学模型分析、计算大曲率透镜表面的膜层厚度差异,得到大曲率透镜表面由于淀积角度造成的透镜中心与边缘的偏移量,进而采取展宽透射区域的措施得到了透镜表面各点在工作波段均具有良好光学性能的倍频减反射膜的膜系结构。并且该结构具有宽的基底折射率适应性,高的镀膜材料折射率适应性。该倍频减反射膜可适用于曲率半径与口径之比不小于1的大曲率透镜表面、基底折射率适用于n=1.46~1.60范围内、薄膜材料Ta2O5折射率n=1.946~2.126范围内,均满足光学零件表面各点的光学性能在0.532μm与1.064μm波长处剩余反射率优于0.4%的良好效果。本发明的突出优点是膜层透射带宽、透射特性好,适用范围广,可适用于曲率半径与口径之比不小于1的所有透镜甚至平面,具有良好的基底材料与镀膜工艺适应性,且其表面各点的光学性能在0.532μm与1.064μm波长处剩余反射率均优于0.4%。
附图说明
图1举例在透镜中心点与边缘位置0.532μm与1.064μm剩余反射率曲线。
图2是本发明0.532μm与1.064μm倍频减反射膜的结构示意图。
图3是本发明第一优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图4是本发明第二优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图5是本发明第三优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图6是本发明第四优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图7是本发明第五优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图8是本发明第六优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图9是本发明第七优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图10是本发明第八优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图11是本发明第九优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图12是本发明第十优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图13是本发明第十一优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图14是本发明第十二优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图15是本发明第十三优选实施例在0.532μm与1.064μm的剩余反射率曲线。
图16是本发明第十四优选实施例在0.532μm与1.064μm的剩余反射率曲线。
具体实施方式
下面结合附图及优选实施例对本发明作进一步的详述。
根据图2所示,本发明提供的0.532μm与1.064μm倍频减反射膜包括透明基片和减反射膜系结构。透明基片G选用折射率为1.46~1.60的透明玻璃。减反射膜系结构为高折射率介质膜和低折射率介质膜交替叠加12层后构成的组合膜系,高折射率介质膜层材料为五氧化二钽(Ta2O5),低折射率介质膜层材料为二氧化硅(SiO2)。其中,第一膜层为11.8nm厚的Ta2O5高折射率介质膜1,第二膜层为34.5nm厚的SiO2低折射率介质膜2,第三膜层为128.5nm厚的Ta2O5高折射率介质膜3,第四膜层为15.2nm厚的SiO2低折射率介质膜4,第五膜层为48.3nm厚的Ta2O5高折射率介质膜5,第六膜层为30.8nm厚的SiO2低折射率介质膜6,第七膜层为65.1nm厚的Ta2O5高折射率介质膜7,第八膜层为189.9nm厚的SiO2低折射率介质膜8,第九膜层为131nm厚的Ta2O5高折射率介质膜9,第十膜层为47.9nm厚的SiO2低折射率介质膜10,第十一膜层为39.8nm厚的Ta2O5高折射率介质膜11,第十二膜层为130.2厚的SiO2低折射率介质膜12。
下面结合几个具体优选实施例说明本发明的实际效果。
实施例1,选用K9玻璃基片,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,透镜曲率半径与口径之比等于1,此时透镜为大曲率透镜,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试分别获得该透镜边缘位置和透镜中心点位置在0.532μm与1.064μm波长的剩余反射率曲线(参见图3),透镜边缘位置在0.532μm波长处的剩余反射率=0.137%,在1.064μm波长处的剩余反射率=0.085%;透镜中心位置在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%;
实施例2,选用K9玻璃基片,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,透镜曲率半径与口径之比等于1.5,此时透镜为大曲率透镜,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试分别获得该透镜边缘位置和透镜中心点位置在0.532μm与1.064μm波长的剩余反射率曲线(参见图4),透镜边缘位置在0.532μm波长处的剩余反射率=0.073%,在1.064μm波长处的剩余反射率=0.146%;透镜中心位置在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%;
实施例3,选用K9玻璃基片,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,透镜曲率半径与口径之比等于2,此时透镜为大曲率透镜,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试分别获得该透镜边缘位置和透镜中心点位置在0.532μm与1.064μm波长的剩余反射率曲线(参见图5),透镜边缘位置在0.532μm波长处的剩余反射率=0.184%,在1.064μm波长处的剩余反射率=0.097%;透镜中心位置在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%;
实施例4,选用K9玻璃基片,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,透镜曲率半径与口径之比等于∞,此时透镜为一平面,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试分别获得该透镜边缘位置和透镜中心点位置在0.532μm与1.064μm波长的剩余反射率曲线(参见图6),透镜边缘位置在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%;透镜中心位置在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例5,选用石英玻璃平面基片,n=1.46,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试获得该平面镜在0.532μm与1.064μm波长的剩余反射率曲线(参见图7),在0.532μm波长处的剩余反射率=0.084%,在1.064μm波长处的剩余反射率=0.015%;基底为K9玻璃时在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例6,选用K9玻璃平面基片,n=1.52,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试获得该平面镜在0.532μm与1.064μm波长的剩余反射率曲线(参见图8),在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例7,选用ZK4玻璃平面基片,n=1.60,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试获得该平面镜在0.532μm与1.064μm波长的剩余反射率曲线(参见图9),在0.532μm波长处的剩余反射率=0.189%,在1.064μm波长处的剩余反射率=0.146%;基底为K9玻璃时在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例8,选用K9玻璃平面基片,Ta2O5折射率为1.946时,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试获得该平面镜在0.532μm与1.064μm波长的剩余反射率曲线(参见图10),在0.532μm波长处的剩余反射率=0.171%,在1.064μm波长处的剩余反射率=0.07%;基底为K9玻璃时,标准Ta2O5折射率在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例9,选用K9玻璃平面基片,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试获得该平面镜在0.532μm与1.064μm波长的剩余反射率曲线(参见图11),在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例10,选用K9玻璃平面基片,Ta2O5折射率为2.096时,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试获得该平面镜在0.532μm与1.064μm波长的剩余反射率曲线(参见图12),在0.532μm波长处的剩余反射率=0.058%,在1.064μm波长处的剩余反射率=0.112%;基底为K9玻璃时,标准Ta2O5折射率在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例11,选用K9玻璃平面基片,Ta2O5折射率为2.126时,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试获得该平面镜在0.532μm与1.064μm波长的剩余反射率曲线(参见图13),在0.532μm波长处的剩余反射率=0.075%,在1.064μm波长处的剩余反射率=0.191%;基底为K9玻璃时,标准Ta2O5折射率在0.532μm波长处的剩余反射率=0.093%,在1.064μm波长处的剩余反射率=0.028%。
实施例12,选用ZK4玻璃基片,Ta2O5折射率为1.996时,即为标准Ta2O5折射率,透镜曲率半径与口径之比等于1,此时透镜为大曲率透镜,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试分别获得该透镜边缘位置和透镜中心点位置在0.532μm与1.064μm波长的剩余反射率曲线(参见图14),透镜边缘位置在0.532μm波长处的剩余反射率=0.221%,在1.064μm波长处的剩余反射率=0.382%;透镜中心位置在0.532μm波长处的剩余反射率=0.189%,在1.064μm波长处的剩余反射率=0.146%;
实施例13,选用K9玻璃基片,Ta2O5折射率为2.126时,透镜曲率半径与口径之比等于1,此时透镜为大曲率透镜,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试分别获得该透镜边缘位置和透镜中心点位置在0.532μm与1.064μm波长的剩余反射率曲线(参见图15),透镜边缘位置在0.532μm波长处的剩余反射率=0.037%,在1.064μm波长处的剩余反射率=0.231%;透镜中心位置在0.532μm波长处的剩余反射率=0.075%,在1.064μm波长处的剩余反射率=0.191%。
实施例14,选用ZK4玻璃基片,Ta2O5折射率为2.126时,透镜曲率半径与口径之比等于1,此时透镜为大曲率透镜,依次镀制第一至第十二膜层1~12,第一至第十二膜层的厚度分别为11.8nm、34.5nm、128.5nm、15.2nm、48.3nm、30.8nm、65.1nm、189.9nm、131nm、47.9nm、39.8nm、130.2nm。经测试分别获得该透镜边缘位置和透镜中心点位置在0.532μm与1.064μm波长的剩余反射率曲线(参见图16),透镜边缘位置在0.532μm波长处的剩余反射率=0.088%,在1.064μm波长处的剩余反射率=0.302%;透镜中心位置在0.532μm波长处的剩余反射率=0.225%,在1.064μm波长处的剩余反射率=0.200%。
Claims (2)
1.一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜,包括透明基片和减反射膜系,其特征在于:所述减反射膜系由高折射率介质膜层和低折射率膜层交替叠加的12个膜层构成,其中,第一膜层为Ta2O5膜,膜层厚度11.8nm,第一膜层镀制在所述透明基片的表面上;第二膜层为SiO2膜,膜层厚度34.5nm,并镀制在所述第一膜层上;第三膜层为Ta2O5膜,膜层厚度128.5nm,并镀制在所述第二膜层上;第四膜层为SiO2膜,膜层厚度15.2nm,并镀制在所述第三膜层上;第五膜层为Ta2O5膜,膜层厚度48.3nm,并镀制在所述第四膜层上;第六膜层为SiO2膜,膜层厚度30.8nm,并镀制在所述第五膜层上;第七膜层为Ta2O5膜,膜层厚度65.1nm,并镀制在所述第六膜层上;第八膜层为SiO2膜,膜层厚度189.9nm,并镀制在所述第七膜层上;第九膜层为Ta2O5膜,膜层厚度131nm,并镀制在所述第八膜层上;第十膜层为SiO2膜,膜层厚度47.9nm,并镀制在所述第九膜层上;第十一膜层为Ta2O5膜,膜层厚度39.8nm,并镀制在所述第十膜层上;第十二膜层为SiO2膜,膜层厚度130.2nm,并镀制在所述第十一膜层上。
2.根据权利要求1所述一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜,其特征在于:所述透明基片为折射率为1.46~1.60的玻璃片,Ta2O5折射率n=1.946~2.126范围内。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410442919.6A CN104216034B (zh) | 2014-09-02 | 2014-09-02 | 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410442919.6A CN104216034B (zh) | 2014-09-02 | 2014-09-02 | 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104216034A true CN104216034A (zh) | 2014-12-17 |
CN104216034B CN104216034B (zh) | 2016-04-06 |
Family
ID=52097727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410442919.6A Active CN104216034B (zh) | 2014-09-02 | 2014-09-02 | 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104216034B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105842768A (zh) * | 2016-04-28 | 2016-08-10 | 西安应用光学研究所 | 反0.532μm及1.064μm、透0.6μm-0.9μm光谱分光膜的膜系结构 |
CN106997064A (zh) * | 2016-01-25 | 2017-08-01 | 佳能株式会社 | 光学元件及其制作方法 |
CN107479163A (zh) * | 2017-09-15 | 2017-12-15 | 宁波永新光学股份有限公司 | 一种光学胶合透镜组 |
CN109001849A (zh) * | 2018-08-22 | 2018-12-14 | 杭州科汀光学技术有限公司 | 一种宽波长域的高效减反射膜及光学系统 |
CN110431122A (zh) * | 2017-03-14 | 2019-11-08 | 肖特股份有限公司 | 抗反射涂层 |
CN111596394A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种抑制蓝紫边胶合防红曝滤光膜、制备方法及滤光片 |
CN111596393A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种防偏色瞄准镜滤光膜、制备方法及滤光片 |
CN111596391A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种枪瞄红膜滤光片及其制备方法 |
CN111596392A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种枪瞄窄带负滤光膜、制备方法及滤光片 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030193719A1 (en) * | 2000-08-29 | 2003-10-16 | Hoya Corporation | Optical element having antireflection film |
CN1463367A (zh) * | 2001-04-17 | 2003-12-24 | 索尼公司 | 防反射薄膜以及带防反射层塑料基片 |
CN101587197A (zh) * | 2008-05-22 | 2009-11-25 | 富士能株式会社 | 减反射膜、光学构件、光学系统 |
WO2013179914A1 (ja) * | 2012-05-30 | 2013-12-05 | オリンパス株式会社 | 反射防止膜、光学系、光学機器、及び反射防止膜の成膜方法 |
-
2014
- 2014-09-02 CN CN201410442919.6A patent/CN104216034B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030193719A1 (en) * | 2000-08-29 | 2003-10-16 | Hoya Corporation | Optical element having antireflection film |
CN1463367A (zh) * | 2001-04-17 | 2003-12-24 | 索尼公司 | 防反射薄膜以及带防反射层塑料基片 |
CN101587197A (zh) * | 2008-05-22 | 2009-11-25 | 富士能株式会社 | 减反射膜、光学构件、光学系统 |
WO2013179914A1 (ja) * | 2012-05-30 | 2013-12-05 | オリンパス株式会社 | 反射防止膜、光学系、光学機器、及び反射防止膜の成膜方法 |
Non-Patent Citations (2)
Title |
---|
刘永强,杨益民,杨崇民,张万虎,张建付,王颖辉: "透0.45微米-1.6微米反8微米-12微米宽光谱分色滤光片的制备", 《应用光学》, vol. 30, no. 4, 31 July 2009 (2009-07-31), pages 666 - 687 * |
刘青龙,杨崇民,张建付,米高园,韩俊,金柯: "大曲率球面零件光学膜厚分布数值计算", 《应用光学》, vol. 33, no. 6, 30 November 2012 (2012-11-30), pages 1128 - 1132 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106997064A (zh) * | 2016-01-25 | 2017-08-01 | 佳能株式会社 | 光学元件及其制作方法 |
US10353117B2 (en) | 2016-01-25 | 2019-07-16 | Canon Kabushiki Kaisha | Optical element and method for producing the same |
CN106997064B (zh) * | 2016-01-25 | 2020-04-28 | 佳能株式会社 | 光学元件及其制作方法 |
CN105842768B (zh) * | 2016-04-28 | 2018-08-28 | 西安应用光学研究所 | 反0.532μm及1.064μm、透0.6μm-0.9μm光谱分光膜的膜系结构 |
CN105842768A (zh) * | 2016-04-28 | 2016-08-10 | 西安应用光学研究所 | 反0.532μm及1.064μm、透0.6μm-0.9μm光谱分光膜的膜系结构 |
CN110431122B (zh) * | 2017-03-14 | 2022-03-18 | 肖特股份有限公司 | 抗反射涂层 |
CN110431122A (zh) * | 2017-03-14 | 2019-11-08 | 肖特股份有限公司 | 抗反射涂层 |
CN107479163A (zh) * | 2017-09-15 | 2017-12-15 | 宁波永新光学股份有限公司 | 一种光学胶合透镜组 |
CN109001849A (zh) * | 2018-08-22 | 2018-12-14 | 杭州科汀光学技术有限公司 | 一种宽波长域的高效减反射膜及光学系统 |
CN109001849B (zh) * | 2018-08-22 | 2024-04-19 | 杭州科汀光学技术有限公司 | 一种宽波长域的高效减反射膜及光学系统 |
CN111596393A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种防偏色瞄准镜滤光膜、制备方法及滤光片 |
CN111596391A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种枪瞄红膜滤光片及其制备方法 |
CN111596392A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种枪瞄窄带负滤光膜、制备方法及滤光片 |
CN111596394A (zh) * | 2020-06-19 | 2020-08-28 | 三明福特科光电有限公司 | 一种抑制蓝紫边胶合防红曝滤光膜、制备方法及滤光片 |
CN111596393B (zh) * | 2020-06-19 | 2023-07-11 | 三明福特科光电有限公司 | 一种防偏色瞄准镜滤光膜、制备方法及滤光片 |
CN111596391B (zh) * | 2020-06-19 | 2023-07-11 | 三明福特科光电有限公司 | 一种枪瞄红膜滤光片及其制备方法 |
CN111596392B (zh) * | 2020-06-19 | 2023-07-14 | 三明福特科光电有限公司 | 一种枪瞄窄带负滤光膜、制备方法及滤光片 |
CN111596394B (zh) * | 2020-06-19 | 2023-07-14 | 三明福特科光电有限公司 | 一种抑制蓝紫边胶合防红曝滤光膜、制备方法及滤光片 |
Also Published As
Publication number | Publication date |
---|---|
CN104216034B (zh) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104216034B (zh) | 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜 | |
CN110687681B (zh) | 一种光学膜系优化设计方法及产品 | |
CN103217730A (zh) | 一种渐变光学厚度窄带负滤光片膜系 | |
US20210231851A1 (en) | Optical system | |
JP2019219696A (ja) | 高クロマ全方向構造色多層構造 | |
CN109856707A (zh) | 一种宽波段超低反射率的增透膜 | |
CN102320164B (zh) | 一种用于激光变角度入射的多层介质高反射膜 | |
CN114488361B (zh) | 一种超低应力的8-12μm红外宽带增透薄膜及其制备方法 | |
CN106019456B (zh) | 一种金属介质膜光栅的消色差相位延迟器 | |
Tolmachev et al. | Influence of fluctuations of the geometrical parameters on the photonic band gaps in one-dimensional photonic crystals | |
Janicki et al. | Hybrid optical coating design for omnidirectional antireflection purposes | |
CN217820940U (zh) | 一种新型高稳定性的蓝玻璃增透膜 | |
CN110737099B (zh) | 偏振无关的分束器 | |
CN207281318U (zh) | 基于离子束溅射沉积薄膜的面形可控保偏分色片 | |
CN211263841U (zh) | 一种可见光变角度带通滤光膜 | |
CN205679790U (zh) | 反射滤光片及车载平视显示系统 | |
CN107561614B (zh) | 一种大口径均匀性滤光片及其制备方法 | |
CN210573034U (zh) | 一种消偏振分光装置 | |
Michel et al. | Realization of low-loss mirrors with sub-nanometer flatness for future gravitational wave detectors | |
CN115079313B (zh) | 一种高稳定性的蓝玻璃增透膜 | |
CN205899065U (zh) | 一种用于相差显微镜的相位板 | |
CN220829605U (zh) | 一种具有镜像层的镀膜镜片结构 | |
Ma et al. | Non-polarizing broadband dichroic mirror | |
CN111552019B (zh) | 一种具有高质量面形偏差的窄带滤波片 | |
JP7402669B2 (ja) | 反射防止膜付光学素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |