WO2019160010A1 - 車両の制御方法、車両システム及び車両の制御装置 - Google Patents

車両の制御方法、車両システム及び車両の制御装置 Download PDF

Info

Publication number
WO2019160010A1
WO2019160010A1 PCT/JP2019/005270 JP2019005270W WO2019160010A1 WO 2019160010 A1 WO2019160010 A1 WO 2019160010A1 JP 2019005270 W JP2019005270 W JP 2019005270W WO 2019160010 A1 WO2019160010 A1 WO 2019160010A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
deceleration
control
value
steering
Prior art date
Application number
PCT/JP2019/005270
Other languages
English (en)
French (fr)
Inventor
大輔 梅津
修 砂原
大策 小川
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to EP19754876.1A priority Critical patent/EP3738816B1/en
Priority to US16/969,182 priority patent/US20200369261A1/en
Publication of WO2019160010A1 publication Critical patent/WO2019160010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/205Steering speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • B60W2540/165Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control method, a vehicle system, and a vehicle control device that control a vehicle attitude.
  • a technique for example, a skid prevention device for controlling the behavior of a vehicle in a safe direction when the behavior of the vehicle becomes unstable due to slip or the like is known. Specifically, it is known to detect that understeer or oversteer behavior has occurred in the vehicle during cornering of the vehicle, and to impart appropriate deceleration to the wheels to suppress them. ing.
  • a vehicle attitude in which the front part of the vehicle in the vehicle roof (above the suspension) is depressed is formed by adding deceleration to the vehicle in response to the steering turning operation.
  • the vehicle turning performance is improved.
  • the vehicle turning performance by the vehicle attitude control may not be improved when the vehicle is decelerating. The reason is as follows.
  • the vehicle front part in the vehicle roof is submerged (the state in which the subsidence amount on the front side of the vehicle with respect to the rear side of the vehicle is larger) than when traveling at a constant speed or acceleration.
  • the rigidity of the suspension on the vehicle front side that is, the rigidity of expansion and contraction of the spring of the suspension is increased. Therefore, since the suspension spring on the vehicle front side is already compressed when the vehicle decelerates, if the vehicle attitude control is performed in this state, the vehicle front side sinks when deceleration is added by this control. In some cases, the vehicle turning performance cannot be sufficiently improved.
  • the present invention has been made to solve the above-described problems of the prior art, and a vehicle control method and a vehicle system for performing vehicle attitude control for adding deceleration to a vehicle when a steering device is turned. And in a vehicle control apparatus, it aims at ensuring the improvement effect of the vehicle turning performance by the said control appropriately at the time of vehicle deceleration.
  • the present invention provides a wheel, a generator driven by the wheel for regenerative power generation, a suspension including an elastic member, a steering angle sensor for detecting a steering angle of a steering device, And a step of determining whether or not the steering device has been turned on the basis of the steering angle detected by the steering angle sensor, and when it is determined that the steering device has been turned.
  • the deceleration generated in the vehicle (represented by an absolute value, the same shall apply hereinafter) is the first value
  • the deceleration generated in the vehicle is greater than the first value.
  • the deceleration applied to the vehicle in the vehicle attitude control is made larger than when the second value is smaller. Accordingly, it is possible to eliminate the insufficient subsidence on the front side of the vehicle when the deceleration is added by the vehicle attitude control at the time of vehicle deceleration, and to quickly generate the yaw rate at the start of the steering device turning operation. Therefore, according to the present invention, it is possible to appropriately ensure the effect of improving the vehicle turning performance by the vehicle attitude control during vehicle deceleration.
  • the present invention provides a wheel, a braking device that applies a braking force to the wheel, a suspension that includes an elastic member, and a steering that detects a steering angle of the steering device. And a step of determining whether or not the steering device has been turned on the basis of the steering angle detected by the steering angle sensor, and determining that the steering device has been turned.
  • the braking force is applied by the braking device so as to control the vehicle attitude and the vehicle is decelerated, and when the deceleration generated in the vehicle is the first value
  • a step of increasing the deceleration applied to the vehicle in order to control the vehicle posture, compared to when the deceleration to be performed is a second value smaller than the first value.
  • the vehicle turning performance by the vehicle attitude control can be appropriately ensured when the vehicle is decelerated.
  • the vehicle posture is controlled more than when the depression amount of the brake pedal is a second value smaller than the first value.
  • the method further includes the step of increasing the deceleration applied to the vehicle.
  • the amount of depression of the brake pedal and the deceleration generated in the vehicle. Specifically, the greater the amount of depression of the brake pedal, the greater the deceleration generated in the vehicle. Therefore, according to the present invention described above, the deceleration to be added in the vehicle attitude control can be appropriately set according to the deceleration corresponding to the depression amount of the brake pedal.
  • the vehicle further includes a step of increasing the deceleration applied to the vehicle in order to control the vehicle posture when the amount of depression of the accelerator pedal of the vehicle is substantially zero than when it is not.
  • the deceleration to be added in the vehicle attitude control can be appropriately set according to the deceleration generated when the amount of depression of the accelerator pedal is substantially zero.
  • the vehicle further includes a step of increasing the deceleration applied to the vehicle in order to control the vehicle posture, when shifting to the deceleration side of the transmission of the vehicle than when not shifting.
  • the deceleration to be added in the vehicle attitude control can be appropriately set according to the deceleration generated when the transmission is shifted to the deceleration side.
  • the present invention detects a steering angle of a wheel, a generator driven by the wheel to generate regenerative power, a suspension including an elastic member, and a steering device.
  • a vehicle system having a steering angle sensor and a processor, wherein the processor determines whether or not the steering device has been turned based on the steering angle detected by the steering angle sensor, and the steering device is turned.
  • the generator is caused to generate regenerative power so as to control the vehicle posture, and the vehicle is decelerated.
  • the deceleration generated in the vehicle is the first value
  • the vehicle is generated. It is configured to increase the deceleration applied to the vehicle in order to control the vehicle posture than when the deceleration to be performed is a second value smaller than the first value. That.
  • the present invention provides a wheel, a braking device that applies a braking force to the wheel, a suspension that includes an elastic member, and a steering that detects a steering angle of the steering device.
  • a vehicle system having an angle sensor and a processor, wherein the processor determines whether or not the steering device has been turned based on a steering angle detected by the steering angle sensor, and the steering device has been turned.
  • a braking force is applied from the braking device so as to control the vehicle attitude
  • a deceleration is added to the vehicle, and the vehicle is generated when the deceleration generated in the vehicle is the first value. It is configured to increase the deceleration applied to the vehicle in order to control the vehicle posture, compared to when the deceleration to be performed is a second value smaller than the first value.
  • the present invention provides a control device for a vehicle having a suspension provided with an elastic member, and adds deceleration to the vehicle when the steering device is turned.
  • Vehicle attitude control means for controlling the vehicle attitude by controlling the vehicle attitude control means so that when the deceleration generated in the vehicle is the first value, the deceleration generated in the vehicle is less than the first value. It is characterized in that the deceleration applied to the vehicle is increased in order to control the vehicle posture, compared to when the second value is small.
  • the vehicle turning performance by the vehicle attitude control can be appropriately ensured when the vehicle is decelerated.
  • a vehicle control method in a vehicle control method, a vehicle system, and a vehicle control device for performing vehicle attitude control for adding deceleration to a vehicle when a steering device is turned, the vehicle turns by the control during vehicle deceleration A performance improvement effect can be appropriately secured.
  • FIG. 1 is a block diagram showing an overall configuration of a vehicle equipped with a vehicle control device according to a first embodiment of the present invention.
  • 1 is a block diagram showing an electrical configuration of a vehicle control device according to a first embodiment of the present invention.
  • FIG. It is a flowchart of the vehicle attitude
  • FIG. 1 is a block diagram showing the overall configuration of a vehicle equipped with a vehicle control apparatus according to a first embodiment of the present invention.
  • reference numeral 1 denotes a vehicle equipped with a vehicle control device according to the present embodiment.
  • the vehicle 1 is equipped with a motor generator 4 having a function of driving the front wheels 2 (that is, a function as an electric motor) and a function of being driven by the front wheels 2 and performing regenerative power generation (that is, a function as a generator).
  • the motor generator 4 receives power from the front wheels 2 via a reduction gear 5 (corresponding to a transmission), and is controlled by a controller 14 via an inverter 3. Further, the motor generator 4 is connected to the battery 25, and when the driving force is generated, the electric power is supplied from the battery 25. When the motor generator 4 is regenerated, the electric power is supplied to the battery 25 to charge the battery 25.
  • the vehicle 1 is a steering angle for detecting a rotation angle of a steering device (steering wheel 6 or the like) for steering the vehicle 1 and a steering column (not shown) connected to the steering wheel 6 in the steering device.
  • a sensor 8 an accelerator opening sensor 10 for detecting an accelerator pedal depression amount corresponding to an accelerator pedal opening, a brake depression amount sensor 11 for detecting a brake pedal depression amount, a vehicle speed sensor 12 for detecting a vehicle speed, And an acceleration sensor 13 that detects acceleration (including deceleration) generated in the vehicle 1.
  • Each of these sensors outputs a detected value to the controller 14.
  • the controller 14 includes, for example, a PCM (Power-train Control Module).
  • each wheel of the vehicle 1 is suspended from the vehicle body via a suspension 30 including an elastic member (typically a spring) and a suspension arm.
  • the vehicle 1 includes a brake control system 18 that supplies brake fluid pressure to a brake caliper of a brake device (braking device) 16 provided on each wheel.
  • the brake control system 18 includes a hydraulic pump 20 that generates a brake hydraulic pressure necessary to generate a braking force in the brake device 16 provided on each wheel, and a hydraulic pressure supply line to the brake device 16 of each wheel.
  • a provided valve unit 22 (specifically a solenoid valve) for controlling the hydraulic pressure supplied from the hydraulic pump 20 to the brake device 16 of each wheel, and the brake device 16 of each wheel from the hydraulic pump 20.
  • a hydraulic pressure sensor 24 for detecting the hydraulic pressure supplied to.
  • the hydraulic pressure sensor 24 is disposed, for example, at a connection portion between each valve unit 22 and the hydraulic pressure supply line on the downstream side thereof, detects the hydraulic pressure on the downstream side of each valve unit 22, and outputs the detected value to the controller 14. .
  • FIG. 2 is a block diagram showing an electrical configuration of the vehicle control apparatus according to the first embodiment of the present invention.
  • the controller 14 (vehicle control device) according to the present embodiment is based on detection signals output from various sensors that detect the driving state of the vehicle 1, in addition to the detection signals of the sensors 8, 10, 11, 12, and 13 described above.
  • the motor generator 4 and the brake control system 18 are controlled. Specifically, when driving the vehicle 1, the controller 14 obtains a target torque (drive torque) to be applied to the vehicle 1 and controls the inverter 3 to generate the target torque from the motor generator 4. Output a signal. On the other hand, when braking the vehicle 1, the controller 14 obtains a target regenerative torque to be applied to the vehicle 1 and outputs a control signal to the inverter 3 so that the target regenerative torque is generated from the motor generator 4. .
  • the controller 14 uses the regenerative torque instead of or uses the regenerative torque and obtains the target braking force to be applied to the vehicle 1 to realize the target braking force.
  • a control signal may be output to the brake control system 18.
  • the controller 14 controls the hydraulic pump 20 and the valve unit 22 of the brake control system 18 so that a desired braking force is generated by the brake device 16.
  • the controller 14 (same as the brake control system 18) includes one or more processors, and various programs that are interpreted and executed on the processors (basic control programs such as an OS and application programs that are activated on the OS and realize specific functions And a computer having an internal memory such as a ROM or RAM for storing programs and various data.
  • the controller 14 corresponds to a vehicle control device in the present invention.
  • the controller 14 functions as a vehicle attitude control means in the present invention.
  • the system including at least the controller 14, the wheels (front wheels 2 and rear wheels), the motor generator 4, the steering angle sensor 8, and the suspension 30 corresponds to the vehicle system in the present invention.
  • FIG. 1 shows an example in which the rotation angle of the steering column coupled to the steering wheel 6 (the angle detected by the steering angle sensor 8) is used as the steering angle, but instead of the rotation angle of the steering column or the steering
  • various state quantities in the steering system may be used as the steering angle.
  • FIG. 3 is a flowchart of the vehicle attitude control process according to the first embodiment of the present invention.
  • This vehicle attitude control process is executed while the vehicle 1 is not driven, that is, during braking of the vehicle 1.
  • the controller 14 acquires various sensor information related to the driving state of the vehicle 1 in step S1. Specifically, the controller 14 detects the steering angle detected by the steering angle sensor 8, the accelerator pedal depression amount (accelerator pedal opening) detected by the accelerator opening sensor 10, and the brake pedal depression amount detected by the brake depression amount sensor 11. The detection signals output by the various sensors described above, including the vehicle speed detected by the vehicle speed sensor 12, are acquired as information relating to the driving state.
  • step S2 the controller 14 sets a target deceleration to be added to the vehicle 1 based on the driving state of the vehicle 1 acquired in step S1.
  • the controller 14 sets a target deceleration based on the brake pedal depression amount.
  • FIG. 4 is a map showing the relationship between the brake pedal depression amount (horizontal axis) and the target deceleration (vertical axis). This map is defined such that the target deceleration (absolute value) increases as the brake pedal depression amount increases.
  • the controller 14 determines a target acceleration or a target deceleration according to the brake pedal depression amount using a map as shown in FIG.
  • the target deceleration may be set in consideration of the vehicle speed, the brake pedal depression speed, the stepping-back speed, and the like.
  • step S3 the controller 14 sets a basic target regenerative torque of the motor generator 4 for realizing the target deceleration set in step S2.
  • step S4 the controller 14 executes additional deceleration setting processing, and generates vehicle deceleration by generating deceleration on the basis of the steering speed of the steering device. The amount of torque reduction necessary for control is determined. Details of this additional deceleration setting process will be described later.
  • step S5 the controller 14 determines the final target regenerative torque based on the basic target regenerative torque determined in step S3 and the torque reduction amount determined in step S4. Specifically, the controller 14 sets the value obtained by adding the torque reduction amount to the basic target regenerative torque as the final target regenerative torque (in principle, the basic target regenerative torque and the torque reduction amount are expressed as positive values). That is, the controller 14 increases the regenerative torque (braking torque) applied to the vehicle 1.
  • the torque reduction amount is not determined in step S4 (that is, when the torque reduction amount is 0)
  • the controller 14 applies the basic target regeneration torque as it is as the final target regeneration torque.
  • step S6 the controller 14 sets a command value (inverter command value) of the inverter 3 for realizing the final target regenerative torque determined in step S5. That is, the controller 14 sets an inverter command value (control signal) for generating the final target regenerative torque from the motor generator 4.
  • step S7 the controller 14 outputs the inverter command value set in step S6 to the inverter 3. After step S7, the controller 14 ends the vehicle attitude control process.
  • FIG. 5 is a flowchart of additional deceleration setting processing according to the first embodiment of the present invention.
  • FIG. 6 is a map showing the relationship between the additional deceleration and the steering speed according to the first embodiment of the present invention.
  • FIG. 7 is a map defining a gain (additional deceleration gain) for correcting the additional deceleration obtained from the map of FIG. 6 according to the deceleration generated in the vehicle 1 in the first embodiment of the present invention. is there.
  • step S21 the controller 14 determines whether or not the steering wheel 6 is being turned (that is, the steering angle (absolute value) is increasing). As a result, when the cutting operation is being performed (step S21: Yes), the process proceeds to step S22, and the controller 14 determines the steering speed based on the steering angle acquired from the steering angle sensor 8 in step S1 of the vehicle attitude control process of FIG. calculate.
  • step S23 the controller 14, the steering speed is determined whether a predetermined threshold S 1 or more.
  • the process proceeds to step S24, and the controller 14 sets an additional deceleration based on the steering speed.
  • This additional deceleration is a deceleration to be applied to the vehicle 1 in accordance with the steering operation in order to control the vehicle posture in accordance with the driver's intention.
  • the controller 14 sets an additional deceleration corresponding to the steering speed calculated in step S22 based on the relationship between the additional deceleration and the steering speed shown in the map of FIG.
  • the horizontal axis in FIG. 6 indicates the steering speed
  • the vertical axis indicates the additional deceleration.
  • the controller 14 when the steering speed is less than the threshold value S 1, the additional deceleration corresponding zero. That is, when the steering speed is less than the threshold value S 1, the controller 14 does not perform the control for adding the deceleration of the vehicle 1 based on the steering operation.
  • step S25 the controller 14 corrects the additional deceleration set in step S24 with an additional deceleration gain corresponding to the deceleration (vehicle deceleration) generated in the vehicle 1. Specifically, the controller 14 determines an additional deceleration gain corresponding to the current vehicle deceleration based on the map shown in FIG. 7, and corrects the additional deceleration with this additional deceleration gain.
  • the horizontal axis indicates vehicle deceleration (absolute value), and the vertical axis indicates additional deceleration gain.
  • the map shown in FIG. 7 is defined such that the additional deceleration gain increases as the vehicle deceleration (absolute value) increases.
  • the correction is performed so that the additional deceleration (absolute value) increases as the vehicle deceleration (absolute value) increases.
  • step S25 the controller 14 determines an additional deceleration gain corresponding to the current vehicle deceleration with reference to FIG. For example, the controller 14 applies the target deceleration determined in step S2 of FIG. 3 or the deceleration detected by the acceleration sensor 13 as the vehicle deceleration used in determining the additional deceleration gain. Then, the controller 14 corrects the additional deceleration with the additional deceleration gain determined in this way. For example, the controller 14 corrects the additional deceleration by multiplying the additional deceleration by a value corresponding to the additional deceleration gain.
  • step S26 the controller 14 determines a torque reduction amount based on the additional deceleration corrected in step S25. Specifically, the controller 14 determines the amount of torque necessary to realize the additional deceleration by increasing the regenerative torque from the motor generator 4. After step S26, the controller 14 ends the additional deceleration setting process and returns to the main routine.
  • step S21 if not in turning operation of the steering wheel 6 (step S21: No), or, in step S23, if the steering speed is less than the threshold S 1 (step S23: No), the controller 14, The additional deceleration setting process is terminated without setting the additional deceleration, and the process returns to the main routine. In this case, the torque reduction amount is zero.
  • step S25 described above the additional deceleration set based on the steering speed is corrected by the additional deceleration gain corresponding to the vehicle deceleration.
  • correction using the additional deceleration gain is performed.
  • the additional deceleration may be set based on the steering speed and the vehicle deceleration without performing the above. For example, a map in which an additional deceleration to be set with respect to the steering speed and the vehicle deceleration is prepared, and using such a map, an additional deceleration corresponding to the current steering speed and the vehicle deceleration is prepared. Should be set.
  • FIG. 8 is a time chart showing temporal changes of various parameters related to vehicle attitude control when the vehicle 1 equipped with the vehicle control apparatus according to the first embodiment of the present invention is turned.
  • chart (a) shows the brake pedal depression amount
  • chart (b) shows the vehicle deceleration (absolute value)
  • chart (c) shows the steering angle
  • chart (d) shows the steering speed.
  • Chart (e) shows the additional deceleration
  • chart (f) shows the final target regenerative torque
  • chart (g) shows the actual yaw rate.
  • FIGS. 8 (a), (b), (e), (f), and (g) the solid line indicates the change in the parameter according to the first example
  • the broken line indicates the parameter according to the second example. It shows a change.
  • FIG. 8A in both the first example and the second example, the brake pedal is depressed by the driver, and in the first example, the brake pedal depression amount is larger than that in the second example.
  • FIG. 8B the vehicle 1 is decelerated in both the first example and the second example, and in the first example, the deceleration (absolute value) is lower than that in the second example. It is getting bigger.
  • the final target regenerative torque is applied to cause the motor generator 4 to perform regenerative power generation so as to decelerate the vehicle 1.
  • the steering wheel 6 is turned in from time t11.
  • the steering speed as shown in FIG. 8 (d) is the threshold S 1 or more
  • acceleration with on the basis of the steering speed is set as shown in FIG. 8 (e)
  • the steering speed is the same in the first example and the second example, but the additional deceleration (absolute value) is larger in the first example than in the second example. This is because in the first example, the vehicle deceleration is larger than that in the second example (see FIG. 8B), and therefore, an additional deceleration gain having a relatively large value is set (see FIG. 7).
  • the final target regenerative torque is set for each of the first example and the second example, as shown in FIG. Specifically, the final target regenerative torque is larger in the first example than in the second example. Then, by controlling the motor generator 4 so as to generate such a final target regenerative torque, an actual yaw rate as shown in FIG. Specifically, substantially the same actual yaw rate is generated in the vehicle 1 in the first example and the second example.
  • the controller 14 increases the additional deceleration (absolute value) when the vehicle is decelerated.
  • the controller 14 performs correction using the additional deceleration gain so that the additional deceleration (absolute value) increases as the vehicle deceleration increases (see FIG. 7).
  • the additional deceleration (absolute value) increases as the speed increases.
  • the lack of subsidence on the front side of the vehicle when the deceleration is added by the vehicle attitude control at the time of deceleration of the vehicle is resolved, and the steering wheel 6 is quickly turned on when the turning operation is started.
  • a yaw rate can be generated in the vehicle 1. Therefore, it is possible to appropriately ensure the effect of improving the vehicle turning performance by the vehicle attitude control during vehicle deceleration.
  • the additional deceleration gain is increased as the vehicle deceleration increases in the entire region of the vehicle deceleration (see FIG. 7), but is limited to defining the additional deceleration gain in this way. Not done.
  • the additional deceleration gain is increased as the vehicle deceleration increases, while the vehicle deceleration is greater than or equal to the predetermined value.
  • the additional deceleration gain may be a constant value (a value greater than or equal to the additional deceleration gain when the vehicle deceleration is less than the predetermined value) regardless of the deceleration.
  • the additional deceleration gain is set to a constant value regardless of the vehicle deceleration both when the vehicle deceleration is less than the predetermined value and when the vehicle deceleration is greater than or equal to the predetermined value.
  • the additional deceleration gain may be made larger than when the value is less than the predetermined value. That is, when the vehicle deceleration is less than the predetermined value, the additional deceleration gain is set to the first predetermined value, and when the vehicle deceleration is greater than or equal to the predetermined value, the additional deceleration gain is less than the first predetermined value.
  • a large second predetermined value may be set.
  • the additional deceleration used in the vehicle attitude control is set based on the vehicle deceleration (the target deceleration determined in step S2 in FIG. 3 or the deceleration detected by the acceleration sensor 13). It was. Specifically, the additional deceleration (absolute value) is increased as the vehicle deceleration (absolute value) is increased. In another example, instead of using such vehicle deceleration, or using vehicle deceleration, the additional deceleration may be set based on the brake pedal depression amount detected by the brake depression amount sensor 11. In this example, the additional deceleration (absolute value) may be increased as the brake pedal depression amount increases.
  • the additional deceleration is calculated based on the accelerator pedal depression amount (accelerator pedal opening) detected by the accelerator opening sensor 10. It may be set. In this example, when the accelerator pedal depression amount is substantially 0, the additional deceleration (absolute value) may be made larger than when the accelerator pedal depression amount is 0 or more. Further, when the vehicle 1 as the EV vehicle is configured to perform regeneration by the motor generator 4 when the accelerator pedal depression amount is substantially 0, and the regeneration amount at this time can be changed, according to the regeneration amount. Additional deceleration may be set. For example, when the vehicle 1 is configured to be able to select one of a plurality of regeneration modes (such as a strong regeneration mode and a weak regeneration mode), an additional deceleration is set according to the selected regeneration mode. May be.
  • a plurality of regeneration modes such as a strong regeneration mode and a weak regeneration mode
  • the present invention is applied to the vehicle 1 (EV vehicle) driven by the motor generator 4 .
  • the present invention is applied to a general vehicle driven by an engine.
  • the invention is applied.
  • the motor generator 4 is caused to perform regenerative power generation so that an additional deceleration is generated in the vehicle 1 in the vehicle attitude control (see FIG. 3).
  • the vehicle attitude control is performed. Then, an additional deceleration is applied to the vehicle by applying a braking force from the brake device 16.
  • FIG. 9 is a block diagram showing the overall configuration of a vehicle equipped with a vehicle control device according to the second embodiment of the present invention.
  • the vehicle 1 a according to the second embodiment has the same configuration as the vehicle 1 according to the first embodiment in that it includes an engine 32 and a transmission 33 instead of the motor generator 4 and the speed reducer 5.
  • the engine 4 is an internal combustion engine such as a gasoline engine or a diesel engine.
  • the transmission 33 is typically an automatic transmission, and is configured to be able to change the rotational speed of the engine 4.
  • FIG. 10 is a flowchart of the vehicle attitude control process according to the second embodiment of the present invention.
  • steps S31, S32, and S34 in FIG. 10 are the same as steps S1, S2, and S4 in FIG. 3, respectively, so only steps S33, S35 to S37 will be described below.
  • step S33 the controller 14 sets a basic target braking force by the brake device 16 for realizing the target deceleration set in step S32.
  • step S34 the controller 14 executes an additional deceleration setting process (see FIG. 5), and causes the vehicle 1a to generate a deceleration based on the steering speed of the steering device. To determine the amount of torque reduction required to control the vehicle attitude. Since this additional deceleration setting process is the same as in the first embodiment, the description thereof is omitted here.
  • step S35 the controller 14 determines the final target braking force based on the basic target braking force determined in step S33 and the torque reduction amount determined in step S34. Specifically, the controller 14 sets the value obtained by subtracting the torque reduction amount (positive value) from the basic target braking force (negative value) as the final target braking force (negative value). That is, the controller 14 increases the braking force applied to the vehicle 1a.
  • the controller 14 applies the basic target braking force as the final target braking force as it is.
  • step S36 the controller 14 sets command values for the hydraulic pump 20 and the valve unit 22 of the brake control system 18 in order to realize the final target braking force determined in step S35. That is, the controller 14 sets command values (control signals) for the hydraulic pump 20 and the valve unit 22 for generating the final target braking force from the brake device 16.
  • step S37 the controller 14 outputs the command value set in step S36 to the hydraulic pump 20 and the valve unit 22. After step S37, the controller 14 ends the vehicle attitude control process.
  • FIG. 11 is a time chart showing temporal changes of various parameters related to vehicle attitude control when the vehicle 1a equipped with the vehicle control apparatus according to the second embodiment of the present invention is turned.
  • chart (a) shows the brake pedal depression amount
  • chart (b) shows the vehicle deceleration (absolute value)
  • chart (c) shows the steering angle
  • chart (d) shows the steering speed
  • Chart (e) shows the additional deceleration
  • chart (f) shows the final target braking force
  • chart (g) shows the actual yaw rate. Comparing FIG. 11 with FIG. 8 according to the first embodiment, the charts (a) to (e) and (g) are the same in both, and only the chart (f) is different.
  • the chart (f) in FIG. 11 shows the final target braking force set according to the additional deceleration in the chart (e) in FIG.
  • the final target regenerative torque is a positive value
  • the final target braking force is a negative value.
  • the chart (f) in FIG. 11 corresponds to an inverted version of the chart (f) in FIG.
  • the vehicle turning performance improvement effect by the vehicle attitude control can be appropriately ensured during vehicle deceleration.
  • the additional deceleration applied in the vehicle attitude control may be set according to the shift in the transmission 33. Good. Specifically, the additional deceleration (absolute value) applied in the vehicle attitude control is increased when the transmission 33 is shifted to the deceleration side (which may be detected by a range sensor or the like), that is, when the transmission 33 is shifted down. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

車両の制御方法は、操舵角センサ8により検出された操舵角に基づき、ステアリングホイール6などを含む操舵装置が切り込み操作されたか否かを判定する工程と、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、モータジェネレータ4に回生発電を行わせて、車両1に減速度を付加する工程と、車両1に発生する減速度が第1値であるときに、車両1に発生する減速度が第1値よりも小さい第2値であるときよりも、車両姿勢を制御するために車両1に付加する減速度を大きくする工程と、を有する。

Description

車両の制御方法、車両システム及び車両の制御装置
 本発明は、車両姿勢を制御する車両の制御方法、車両システム及び車両の制御装置に関する。
 従来、スリップ等により車両の挙動が不安定になった場合に、車両の挙動を安全方向に制御する技術(例えば横滑り防止装置)が知られている。具体的には、車両のコーナリング時等に、車両にアンダーステアやオーバーステアの挙動が生じたことを検出し、それらを抑制するように車輪に適切な減速度を付与するようにしたものが知られている。
 一方、上述したような車両の挙動が不安定になるような走行状態における安全性向上のための制御とは異なり、通常の走行状態にある車両のコーナリング時におけるドライバによる一連の操作(ブレーキング、ステアリングの切り込み、加速、及び、ステアリングの戻し等)が自然で安定したものとなるように、コーナリング時に減速度を調整するようにした車両運動制御装置が知られている。
 更に、ドライバのステアリング操作に対応するヨーレート関連量(例えばヨー加速度)に応じて、エンジンやモータの生成トルクを低減させることにより、ドライバがステアリング操作を開始したときに減速度を迅速に車両に生じさせるようにした車両用挙動制御装置が提案されている(例えば特許文献1)。この装置によれば、カーブ進入初期における車両の回頭性が向上し、ステアリングの切り込み操作に対する応答性(つまり操安性)が向上する。これにより、ドライバの意図に沿った車両姿勢の制御を実現することができる。なお、以下では、このような制御を適宜「車両姿勢制御」と呼ぶ。
特許第6112304号公報
 上記したような車両姿勢制御においては、ステアリングの切り込み操作に応答して車両に減速度を付加することにより、車両上屋(サスペンションより上部)における車両前部を沈み込ませた車両姿勢を形成させることで、車両旋回性能を向上させるようにしている。しかしながら、従来の車両姿勢制御では、車両が減速しているときに車両姿勢制御による車両旋回性能を向上させることができない場合があった。この理由は以下の通りである。
 車両の減速時には、定速走行時や加速時よりも、車両上屋における車両前部が沈み込んだ状態(車両後方側に対する車両前方側の沈み込み量が大きい状態)となっている。この状態においては、車両前方側のサスペンションの剛性、つまりサスペンションのスプリングの伸縮の剛性が高まっている。したがって、車両減速時には、車両前方側のサスペンションのスプリングが既に圧縮された状態であるため、この状態において車両姿勢制御を行うと、当該制御により減速度を付加したときの車両前方側の沈み込みが不足して、車両旋回性能を十分に向上させることができない場合があった。
 本発明は、上述した従来技術の問題点を解決するためになされたものであり、操舵装置が切り込み操作されたときに車両に減速度を付加する車両姿勢制御を行う車両の制御方法、車両システム及び車両の制御装置において、車両減速時において当該制御による車両旋回性能の改善効果を適切に確保することを目的とする。
 上記の目的を達成するために、本発明は、車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、を有する車両の制御方法であって、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定する工程と、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、ジェネレータに回生発電を行わせて、車両に減速度を付加する工程と、車両に発生する減速度が第1値であるときに、車両に発生する減速度が第1値よりも小さい第2値であるときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする工程と、を有する、ことを特徴とする。
 このように構成された本発明では、操舵装置が切り込み操作されたときに、車両姿勢を制御するように車両に減速度が付加される、つまり車両姿勢制御が行われる。そして、本願発明では、車両に発生する減速度(絶対値で表されるものとする。以下同様とする。)が第1値であるときに、車両に発生する減速度が当該第1値よりも小さい第2値であるときよりも、車両姿勢制御において車両に付加する減速度を大きくする。これにより、車両減速時において車両姿勢制御により減速度を付加したときの車両前方側の沈み込み不足を解消して、操舵装置の切り込み操作開始時に、ヨーレートを速やかに車両に発生させることができる。したがって、本発明によれば、車両減速時において、車両姿勢制御による車両旋回性能の改善効果を適切に確保することができる。
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、を有する車両の制御方法であって、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定する工程と、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、制動装置より制動力を付加させて、車両に減速度を付加する工程と、車両に発生する減速度が第1値であるときに、車両に発生する減速度が第1値よりも小さい第2値であるときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする工程と、を有する、ことを特徴とする。
 このように構成された本発明によっても、車両減速時において、車両姿勢制御による車両旋回性能を適切に確保することができる。
 本発明において、好ましくは、車両のブレーキペダルの踏込量が第1値であるときには、ブレーキペダルの踏込量が第1値よりも小さい第2値であるときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする工程を更に備える。
 ブレーキペダルの踏込量と車両に発生する減速度との間には相関がある。具体的には、ブレーキペダルの踏込量が大きいほど、車両に発生する減速度が大きくなる。よって、上記の本発明によれば、ブレーキペダルの踏込量に対応する減速度に応じて、車両姿勢制御で付加する減速度を適切に設定することができる。
 本発明において、好ましくは、車両のアクセルペダルの踏込量がほぼ0であるときには、そうでないときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする工程を更に備える。
 アクセルペダルの踏込量がほぼ0であるときには車両に減速度が発生する。よって、上記の本発明によれば、アクセルペダルの踏込量がほぼ0であるときに発生する減速度に応じて、車両姿勢制御で付加する減速度を適切に設定することができる。
 本発明において、好ましくは、車両の変速機の減速側への変速時には、そうでないときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする工程を更に備える。
 変速機の減速側への変速時(つまりダウンシフト時)には車両に減速度が発生する。よって、上記の本発明によれば、変速機の減速側への変速時に発生する減速度に応じて、車両姿勢制御で付加する減速度を適切に設定することができる。
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、プロセッサと、を有する車両システムであって、プロセッサは、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定し、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、ジェネレータに回生発電を行わせて、車両に減速度を付加し、車両に発生する減速度が第1値であるときに、車両に発生する減速度が第1値よりも小さい第2値であるときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする、ように構成されている、ことを特徴とする。
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、プロセッサと、を有する車両システムであって、プロセッサは、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定し、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、制動装置より制動力を付加させて、車両に減速度を付加し、車両に発生する減速度が第1値であるときに、車両に発生する減速度が第1値よりも小さい第2値であるときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする、ように構成されている、ことを特徴とする。
 他の観点では、上記の目的を達成するために、本発明は、弾性部材を備えたサスペンションを有する車両の制御装置であって、操舵装置が切り込み操作されたときに、車両に減速度を付加することにより車両姿勢を制御する車両姿勢制御手段を有し、この車両姿勢制御手段は、車両に発生する減速度が第1値であるときに、車両に発生する減速度が第1値よりも小さい第2値であるときよりも、車両姿勢を制御するために車両に付加する減速度を大きくする、ことを特徴とする。
 このように構成された本発明による車両システム及び車両の制御装置によっても、車両減速時において、車両姿勢制御による車両旋回性能を適切に確保することができる。
 本発明によれば、操舵装置が切り込み操作されたときに車両に減速度を付加する車両姿勢制御を行う車両の制御方法、車両システム及び車両の制御装置において、車両減速時において当該制御による車両旋回性能の改善効果を適切に確保することができる。
本発明の第1実施形態による車両の制御装置を搭載した車両の全体構成を示すブロック図である。 本発明の第1実施形態による車両の制御装置の電気的構成を示すブロック図である。 本発明の第1実施形態による車両姿勢制御処理のフローチャートである。 本発明の第1実施形態による目標減速度の設定方法の一例についての説明図である。 本発明の第1実施形態による付加減速度設定処理のフローチャートである。 本発明の第1実施形態による付加減速度と操舵速度との関係を示したマップである。 本発明の第1実施形態による付加減速度を補正するためのゲイン(付加減速度ゲイン)を規定したマップである。 本発明の第1実施形態による車両の制御装置を搭載した車両が旋回を行う場合の、車両姿勢制御に関するパラメータの時間変化を示したタイムチャートである。 本発明の第2実施形態による車両の制御装置を搭載した車両の全体構成を示すブロック図である。 本発明の第2実施形態による車両姿勢制御処理のフローチャートである。 本発明の第2実施形態による車両の制御装置を搭載した車両が旋回を行う場合の、車両姿勢制御に関するパラメータの時間変化を示したタイムチャートである。
 以下、添付図面を参照して、本発明の実施形態による車両の制御装置を説明する。
<第1実施形態>
 最初に、本発明の第1実施形態について説明する。まず、図1により、本発明の第1実施形態による車両の制御装置を搭載した車両のシステム構成を説明する。図1は、本発明の第1実施形態による車両の制御装置を搭載した車両の全体構成を示すブロック図である。
 図1において、符号1は、本実施形態による車両の制御装置を搭載した車両を示す。車両1には、前輪2を駆動する機能(つまり電動機としての機能)と、前輪2により駆動されて回生発電を行う機能(つまり発電機としての機能)と、を有するモータジェネレータ4が搭載されている。モータジェネレータ4は、減速機5(変速機に相当)を介して前輪2との間で力が伝達され、また、インバータ3を介してコントローラ14により制御される。更に、モータジェネレータ4は、バッテリ25に接続されており、駆動力を発生するときにはバッテリ25から電力が供給され、回生したときにはバッテリ25に電力を供給してバッテリ25を充電する。
 また、車両1は、当該車両1を操舵するための操舵装置(ステアリングホイール6など)と、この操舵装置においてステアリングホイール6に連結されたステアリングコラム(図示せず)の回転角度を検出する操舵角センサ8と、アクセルペダルの開度に相当するアクセルペダル踏込量を検出するアクセル開度センサ10と、ブレーキペダルの踏込量を検出するブレーキ踏込量センサ11と、車速を検出する車速センサ12と、車両1に発生する加速度(減速度も含む)を検出する加速度センサ13と、を有する。これらの各センサは、それぞれの検出値をコントローラ14に出力する。このコントローラ14は、例えばPCM(Power-train Control Module)などを含んで構成される。更に、車両1の各車輪は、弾性部材(典型的にはスプリング)やサスペンションアームなどを含むサスペンション30を介して、車体に懸架されている。
 また、車両1は、各車輪に設けられたブレーキ装置(制動装置)16のブレーキキャリパにブレーキ液圧を供給するブレーキ制御システム18を備えている。ブレーキ制御システム18は、各車輪に設けられたブレーキ装置16において制動力を発生させるために必要なブレーキ液圧を生成する液圧ポンプ20と、各車輪のブレーキ装置16への液圧供給ラインに設けられた、液圧ポンプ20から各車輪のブレーキ装置16へ供給される液圧を制御するためのバルブユニット22(具体的にはソレノイド弁)と、液圧ポンプ20から各車輪のブレーキ装置16へ供給される液圧を検出する液圧センサ24と、を備えている。液圧センサ24は、例えば各バルブユニット22とその下流側の液圧供給ラインとの接続部に配置され、各バルブユニット22の下流側の液圧を検出し、検出値をコントローラ14に出力する。
 次に、図2により、本発明の第1実施形態による車両の制御装置の電気的構成を説明する。図2は、本発明の第1実施形態による車両の制御装置の電気的構成を示すブロック図である。
 本実施形態によるコントローラ14(車両の制御装置)は、上述したセンサ8、10、11、12、13の検出信号の他、車両1の運転状態を検出する各種センサが出力した検出信号に基づいて、モータジェネレータ4及びブレーキ制御システム18に対する制御を行う。具体的には、コントローラ14は、車両1を駆動するときには、車両1に付与すべき目標トルク(駆動トルク)を求めて、この目標トルクをモータジェネレータ4から発生させるようにインバータ3に対して制御信号を出力する。他方で、コントローラ14は、車両1を制動させるときには、車両1に付与すべき目標回生トルクを求めて、この目標回生トルクをモータジェネレータ4から発生させるようにインバータ3に対して制御信号を出力する。また、コントローラ14は、車両1を制動させるときに、このような回生トルクを用いる代わりに又は回生トルクを用いると共に、車両1に付与すべき目標制動力を求めて、この目標制動力を実現するようにブレーキ制御システム18に対して制御信号を出力してもよい。この場合、コントローラ14は、ブレーキ制御システム18の液圧ポンプ20及びバルブユニット22を制御することで、ブレーキ装置16により所望の制動力を発生させるようにする。
 コントローラ14(ブレーキ制御システム18も同様)は、1つ以上のプロセッサ、当該プロセッサ上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリを備えるコンピュータにより構成される。
 詳細は後述するが、コントローラ14は、本発明における車両の制御装置に相当する。また、コントローラ14は、本発明における車両姿勢制御手段として機能する。更に、コントローラ14、車輪(前輪2及び後輪)、モータジェネレータ4、操舵角センサ8、及びサスペンション30を少なくとも含むシステムは、本発明における車両システムに相当する。
 なお、図1では、ステアリングホイール6に連結されたステアリングコラムの回転角度(操舵角センサ8により検出される角度)を操舵角として用いる例を示したが、ステアリングコラムの回転角度の代わりに又はステアリングコラムの回転角度と共に、操舵系における各種状態量(アシストトルクを付与するモータの回転角や、ラックアンドピニオンにおけるラックの変位等)を操舵角として用いてもよい。
 次に、本発明の第1実施形態による車両姿勢制御について説明する。まず、図3により、本発明の第1実施形態において車両の制御装置が行う車両姿勢制御処理の全体的な流れを説明する。図3は、本発明の第1実施形態による車両姿勢制御処理のフローチャートである。
 図3の車両姿勢制御処理は、車両1のイグニッションがオンにされ、車両の制御装置に電源が投入された場合に起動され、所定周期(例えば50ms)で繰り返し実行される。なお、この車両姿勢制御処理は、車両1の非駆動中、すなわち車両1の制動中に実行されるものとする。
 車両姿勢制御処理が開始されると、ステップS1において、コントローラ14は車両1の運転状態に関する各種センサ情報を取得する。具体的には、コントローラ14は、操舵角センサ8が検出した操舵角、アクセル開度センサ10が検出したアクセルペダル踏込量(アクセルペダル開度)、ブレーキ踏込量センサ11が検出したブレーキペダル踏込量、車速センサ12が検出した車速等を含む、上述した各種センサが出力した検出信号を運転状態に関する情報として取得する。
 次に、ステップS2において、コントローラ14は、ステップS1において取得された車両1の運転状態に基づき、車両1に付加すべき目標減速度を設定する。典型的には、コントローラ14は、ブレーキペダル踏込量に基づき目標減速度を設定する。ここで、図4を参照して、本発明の実施形態における目標減速度の設定方法の一例について説明する。
 図4は、ブレーキペダル踏込量(横軸)と目標減速度(縦軸)との関係を示したマップである。このマップは、ブレーキペダル踏込量が大きくなるほど目標減速度(絶対値)が大きくなるように規定されている。コントローラ14は、ステップS2において、図4に示すようなマップを用いて、ブレーキペダル踏込量に応じて目標加速度又は目標減速度を決定する。このようなブレーキペダル踏込量以外にも、車速やブレーキペダルの踏込速度や踏戻速度なども考慮に入れて、目標減速度を設定してもよい。
 次いで、ステップS3において、コントローラ14は、ステップS2で設定した目標減速度を実現するためのモータジェネレータ4の基本目標回生トルクを設定する。
 また、ステップS2及びS3の処理と並行して、ステップS4において、コントローラ14は付加減速度設定処理を実行し、操舵装置の操舵速度に基づき、車両1に減速度を発生させることで車両姿勢を制御するために必要なトルク低減量を決定する。この付加減速度設定処理の詳細は後述する。
 次いで、ステップS5において、コントローラ14は、ステップS3において決定した基本目標回生トルクと、ステップS4において決定したトルク低減量とに基づき、最終目標回生トルクを決定する。具体的には、コントローラ14は、基本目標回生トルクにトルク低減量を加算した値を最終目標回生トルクとする(原則、基本目標回生トルク及びトルク低減量は正値で表される)。つまり、コントローラ14は、車両1に付与する回生トルク(制動トルク)を増加させるようにする。なお、ステップS4においてトルク低減量が決定されなかった場合には(つまりトルク低減量が0である場合)、コントローラ14は、基本目標回生トルクをそのまま最終目標回生トルクとして適用する。
 次いで、ステップS6において、コントローラ14は、ステップS5において決定した最終目標回生トルクを実現するためのインバータ3の指令値(インバータ指令値)を設定する。つまり、コントローラ14は、最終目標回生トルクをモータジェネレータ4から発生させるためのインバータ指令値(制御信号)を設定する。そして、ステップS7において、コントローラ14は、ステップS6において設定したインバータ指令値をインバータ3に出力する。このステップS7の後、コントローラ14は、車両姿勢制御処理を終了する。
 次に、図5乃至図7を参照して、本発明の第1実施形態における付加減速度設定処理について説明する。
 図5は、本発明の第1実施形態による付加減速度設定処理のフローチャートである。図6は、本発明の第1実施形態による付加減速度と操舵速度との関係を示したマップである。図7は、本発明の第1実施形態において、図6のマップより得られる付加減速度を車両1に発生する減速度に応じて補正するためのゲイン(付加減速度ゲイン)を規定したマップである。
 図5の付加減速度設定処理が開始されると、ステップS21において、コントローラ14は、ステアリングホイール6の切り込み操作中(即ち操舵角(絶対値)が増大中)か否かを判定する。
 その結果、切り込み操作中である場合(ステップS21:Yes)、ステップS22に進み、コントローラ14は、図3の車両姿勢制御処理のステップS1において操舵角センサ8から取得した操舵角に基づき操舵速度を算出する。
 次に、ステップS23において、コントローラ14は、操舵速度が所定の閾値S1以上であるか否かを判定する。その結果、操舵速度が閾値S1以上である場合(ステップS23:Yes)、ステップS24に進み、コントローラ14は、操舵速度に基づき付加減速度を設定する。この付加減速度は、ドライバの意図に沿って車両姿勢を制御するために、ステアリング操作に応じて車両1に付加すべき減速度である。
 具体的には、コントローラ14は、図6のマップに示す付加減速度と操舵速度との関係に基づき、ステップS22において算出した操舵速度に対応する付加減速度を設定する。図6における横軸は操舵速度を示し、縦軸は付加減速度を示す。図6に示すように、操舵速度が閾値S1未満である場合、対応する付加減速度は0である。即ち、操舵速度が閾値S1未満である場合、コントローラ14は、ステアリング操作に基づき車両1に減速度を付加するための制御を行わない。
 一方、操舵速度が閾値S1以上である場合には、操舵速度が増大するに従って、この操舵速度に対応する付加減速度は、所定の上限値Dmaxに漸近する。即ち、操舵速度が増大するほど付加減速度は増大し、且つ、その増大量の増加割合は小さくなる。この上限値Dmaxは、ステアリング操作に応じて車両1に減速度を付加しても、制御介入があったとドライバが感じない程度の減速度に設定される(例えば0.5m/s2≒0.05G)。さらに、操舵速度が閾値S1よりも大きい閾値S2以上の場合には、付加減速度は上限値Dmaxに維持される。
 次に、ステップS25において、コントローラ14は、ステップS24で設定した付加減速度を、車両1に発生する減速度(車両減速度)に応じた付加減速度ゲインにより補正する。具体的には、コントローラ14は、図7に示すマップに基づき、現在の車両減速度に対応する付加減速度ゲインを決定して、この付加減速度ゲインによって付加減速度を補正する。
 図7において、横軸は車両減速度(絶対値)を示しており、縦軸は付加減速度ゲインを示している。図7に示すマップは、車両減速度(絶対値)が大きくなるほど、付加減速度ゲインが大きくなるように規定されている。これにより、車両減速度(絶対値)が大きくなるほど、付加減速度(絶対値)が大きくなるように補正が行われることとなる。
 コントローラ14は、ステップS25において、図7を参照して、現在の車両減速度に対応する付加減速度ゲインを決定する。例えば、コントローラ14は、付加減速度ゲインを決定に当たって用いる車両減速度として、図3のステップS2で決定された目標減速度、又は加速度センサ13によって検出された減速度を適用する。そして、コントローラ14は、こうして決定した付加減速度ゲインによって付加減速度を補正する。例えば、コントローラ14は、付加減速度ゲインに応じた値を付加減速度に乗算することで、当該付加減速度を補正する。
 次に、ステップS26において、コントローラ14は、ステップS25で補正された付加減速度に基づき、トルク低減量を決定する。具体的には、コントローラ14は、モータジェネレータ4からの回生トルクの増加により付加減速度を実現するために必要となるトルク量を決定する。ステップS26の後、コントローラ14は付加減速度設定処理を終了し、メインルーチンに戻る。
 また、ステップS21において、ステアリングホイール6の切り込み操作中ではない場合(ステップS21:No)、又は、ステップS23において、操舵速度が閾値S1未満である場合(ステップS23:No)、コントローラ14は、付加減速度の設定を行うことなく付加減速度設定処理を終了し、メインルーチンに戻る。この場合、トルク低減量は0となる。
 なお、上記したステップS25では、操舵速度に基づき設定された付加減速度を、車両減速度に応じた付加減速度ゲインにより補正していたが、他の例では、付加減速度ゲインを用いた補正を行わずに、操舵速度及び車両減速度に基づき付加減速度を設定してもよい。例えば、操舵速度及び車両減速度に対して設定すべき付加減速度が規定されたマップを用意しておき、そのようなマップを用いて、現在の操舵速度及び車両減速度に対応する付加減速度を設定すればよい。
 次に、図8を参照して、本発明の第1実施形態による車両の制御装置の作用効果について説明する。図8は、本発明の第1実施形態による車両の制御装置を搭載した車両1に旋回走行させたときの、車両姿勢制御に関わる各種パラメータの時間変化を示すタイムチャートである。
 図8において、チャート(a)はブレーキペダル踏込量を示し、チャート(b)は車両減速度(絶対値)を示し、チャート(c)は操舵角を示し、チャート(d)は操舵速度を示し、チャート(e)は付加減速度を示し、チャート(f)は最終目標回生トルクを示し、チャート(g)は実ヨーレートを示している。
 ここでは、第1の例及び第2の例の2つの例を挙げて、車両姿勢制御に関わる各種パラメータの変化について説明する。具体的には、図8(a)、(b)、(e)、(f)、(g)において、実線は第1の例によるパラメータの変化を示し、破線は第2の例によるパラメータの変化を示している。図8(a)に示すように、第1の例及び第2の例の両方ともドライバによりブレーキペダルが踏み込まれており、第1の例では第2の例よりもブレーキペダル踏込量が大きいものとする。そのため、図8(b)に示すように、第1の例及び第2の例の両方とも車両1が減速しており、第1の例では第2の例よりも減速度(絶対値)が大きくなっている。加えて、図8(f)に示すように、車両1を減速させるようにモータジェネレータ4に回生発電を行わせるべく、最終目標回生トルクが適用されている。
 上記のような状況において、図8(c)に示すように、時刻t11から、ステアリングホイール6の切り込み操作が行われる。この場合、時刻t11から時刻t12までの間、図8(d)に示すように操舵速度が閾値S1以上となり、図8(e)に示すようにこの操舵速度に基づき付加減速度が設定される。具体的には、第1の例と第2の例とで操舵速度が同じであるが、第1の例のほうが第2の例よりも付加減速度(絶対値)が大きくなっている。これは、第1の例では、第2の例よりも車両減速度が大きいので(図8(b)参照)、比較的大きな値を有する付加減速度ゲインが設定されて(図7参照)、この付加減速度ゲインによって付加減速度(絶対値)が大きくなるよう補正されたからである。このような付加減速度に応じて、図8(f)に示すように、第1の例及び第2の例のそれぞれについて最終目標回生トルクが設定される。具体的には、第1の例のほうが第2の例よりも最終目標回生トルクが大きくなっている。そして、このような最終目標回生トルクを発生させるようモータジェネレータ4を制御することで、図8(g)に示すような実ヨーレートが車両1に発生する。具体的には、第1の例と第2の例とでほぼ同じ実ヨーレートが車両1に発生する。
 「発明が解決しようとする課題」のセクションにおいて説明したように、車両減速時には、定速走行時や加速時よりも、車両上屋における車両前部が沈み込んだ状態(車両後方側に対する車両前方側の沈み込み量が大きい状態)となっている。この状態においては、車両前方側のサスペンション30の剛性、つまりサスペンション30のスプリングの伸縮の剛性が高まっている。したがって、車両減速時には、車両前方側のサスペンション30のスプリングが既に圧縮された状態であるため、この状態において車両姿勢制御を行うと、当該制御により減速度を付加したときの車両前方側の沈み込みが不足する傾向にある。すなわち、車両減速時には、車両前方側のサスペンション30のスプリングが圧縮されている状態であるため、スプリングが圧縮されていない状態(定速走行時や車両加速時)よりも、スプリングを圧縮するのに大きな力を要するので、車両姿勢制御における付加減速度を大きくする望ましいのである。
 したがって、本実施形態では、コントローラ14は、車両減速時に付加減速度(絶対値)を大きくするようにする。特に、本実施形態では、コントローラ14は、車両減速度が大きいほど、付加減速度(絶対値)が大きくなるように付加減速度ゲインを用いた補正を行うことで(図7参照)、車両減速度が大きいほど付加減速度(絶対値)が大きくなるようにしている。これにより、本実施形態によれば、車両減速時において車両姿勢制御により減速度を付加したときの車両前方側の沈み込み不足を解消して、車両姿勢制御による車両旋回性能を適切に確保することができる。具体的には、図8(g)に示す第1の例及び第2の例のように、車両減速度によらずに、車両姿勢制御により適切な実ヨーレートを車両1に発生させて、車両旋回性能を確保することができる。
 以上述べたように、第1実施形態によれば、車両減速時において車両姿勢制御により減速度を付加したときの車両前方側の沈み込み不足を解消して、ステアリングホイール6の切り込み操作開始時に速やかにヨーレートを車両1に発生させることができる。よって、車両減速時において、車両姿勢制御による車両旋回性能の改善効果を適切に確保することができる。
 以下では、上記した第1実施形態の変形例について説明する。
 上記した実施形態では、車両減速度の全領域において、車両減速度が大きくなるにつれて付加減速度ゲインを大きくしていたが(図7参照)、このように付加減速度ゲインを規定することに限定はされない。他の例では、車両減速度が所定値未満である場合には、車両減速度が大きくなるにつれて付加減速度ゲインを大きくする一方で、車両減速度が当該所定値以上である場合には、車両減速度によらずに付加減速度ゲインを一定値(車両減速度が当該所定値未満であるときの付加減速度ゲイン以上の値)にしてもよい。更に他の例では、車両減速度が所定値未満である場合と所定値以上である場合の両方とも、付加減速度ゲインを車両減速度によらずに一定値にするが、車両減速度が所定値以上である場合には所定値未満である場合よりも付加減速度ゲインを大きくしてもよい。つまり、車両減速度が所定値未満である場合には付加減速度ゲインを第1所定値に設定し、車両減速度が所定値以上である場合には付加減速度ゲインを第1所定値よりも大きい第2所定値に設定してもよい。
 また、上述した実施形態では、車両減速度(図3のステップS2で決定された目標減速度、又は加速度センサ13によって検出された減速度)に基づき、車両姿勢制御で用いる付加減速度を設定していた。具体的には、車両減速度(絶対値)が大きいほど、付加減速度(絶対値)を大きくしていた。他の例では、このような車両減速度を用いる代わりに又は車両減速度を用いると共に、ブレーキ踏込量センサ11により検出されたブレーキペダル踏込量に基づき付加減速度を設定してもよい。この例では、ブレーキペダル踏込量が大きいほど、付加減速度(絶対値)を大きくすればよい。
 更に他の例では、上記のような車両減速度を用いる代わりに又は車両減速度を用いると共に、アクセル開度センサ10により検出されたアクセルペダル踏込量(アクセルペダル開度)に基づき付加減速度を設定してもよい。この例では、アクセルペダル踏込量がほぼ0であるときに、アクセルペダル踏込量が0以上であるときよりも、付加減速度(絶対値)を大きくすればよい。また、EV車両としての車両1が、アクセルペダル踏込量がほぼ0であるときにモータジェネレータ4により回生を行い、このときの回生量を変更可能に構成されている場合、この回生量に応じて付加減速度を設定してもよい。例えば、車両1が、複数の回生モード(強回生モードと弱回生モードなど)のうちの一つのモードを選択可能に構成されている場合、選択された回生モードに応じて付加減速度を設定してもよい。
<第2実施形態>
 次に、本発明の第2実施形態について説明する。上記した第1実施形態では、本発明をモータジェネレータ4により駆動される車両1(EV車両)に適用した例を示したが、第2実施形態では、エンジンにより駆動される一般的な車両に本発明を適用するものである。そして、第1実施形態では、車両姿勢制御において車両1に付加減速度が発生するようにモータジェネレータ4に回生発電を行わせていたが(図3参照)、第2実施形態では、車両姿勢制御においてブレーキ装置16から制動力を付加させることで付加減速度を車両に発生させるようにする。
 なお、以下では、第1実施形態と同様の構成(制御及び処理も含む)については、その説明を適宜省略する。つまり、ここで特に説明しない構成は、第1実施形態と同様であるものとする。
 図9は、本発明の第2実施形態による車両の制御装置を搭載した車両の全体構成を示すブロック図である。図9に示すように、第2実施形態による車両1aは、モータジェネレータ4及び減速機5のそれぞれの代わりに、エンジン32及び変速機33を有する点で、第1実施形態による車両1と構成が異なる。エンジン4は、ガソリンエンジンやディーゼルエンジンなどの内燃エンジンである。変速機33は、典型的には自動変速機であり、エンジン4の回転数を変速可能に構成されている。
 次に、図10は、本発明の第2実施形態による車両姿勢制御処理のフローチャートである。以下では、図3の車両姿勢制御処理と同一の処理については、その説明を省略する。具体的には、図10のステップS31、S32、S34は、それぞれ、図3のステップS1、S2、S4と同一であるため、以下ではステップS33、S35~S37のみを説明する。
 ステップS33において、コントローラ14は、ステップS32で設定した目標減速度を実現するためのブレーキ装置16による基本目標制動力を設定する。
 ステップS32及びS33の処理と並行して、ステップS34において、コントローラ14は、付加減速度設定処理を実行し(図5参照)、操舵装置の操舵速度に基づき、車両1aに減速度を発生させることで車両姿勢を制御するために必要なトルク低減量を決定する。この付加減速度設定処理は、第1実施形態と同様であるため、ここではその説明を省略する。
 次いで、ステップS35において、コントローラ14は、ステップS33において決定した基本目標制動力と、ステップS34において決定したトルク低減量とに基づき、最終目標制動力を決定する。具体的には、コントローラ14は、基本目標制動力(負値)からトルク低減量(正値)を減算した値を最終目標制動力(負値)とする。つまり、コントローラ14は、車両1aに付与する制動力を増加させるようにする。なお、ステップS34においてトルク低減量が決定されなかった場合には(つまりトルク低減量が0である場合)、コントローラ14は、基本目標制動力をそのまま最終目標制動力として適用する。
 次いで、ステップS36において、コントローラ14は、ステップS35において決定した最終目標制動力を実現すべく、ブレーキ制御システム18の液圧ポンプ20及びバルブユニット22の指令値を設定する。つまり、コントローラ14は、最終目標制動力をブレーキ装置16から発生させるための液圧ポンプ20及びバルブユニット22の指令値(制御信号)を設定する。そして、ステップS37において、コントローラ14は、ステップS36において設定した指令値を液圧ポンプ20及びバルブユニット22に出力する。このステップS37の後、コントローラ14は、車両姿勢制御処理を終了する。
 次に、図11を参照して、本発明の第2実施形態による車両の制御装置の作用効果について説明する。図11は、本発明の第2実施形態による車両の制御装置を搭載した車両1aに旋回走行させたときの、車両姿勢制御に関わる各種パラメータの時間変化を示すタイムチャートである。
 図11において、チャート(a)はブレーキペダル踏込量を示し、チャート(b)は車両減速度(絶対値)を示し、チャート(c)は操舵角を示し、チャート(d)は操舵速度を示し、チャート(e)は付加減速度を示し、チャート(f)は最終目標制動力を示し、チャート(g)は実ヨーレートを示している。図11と第1実施形態による図8とを比較すると、チャート(a)~(e)、(g)は両者で同一であり、チャート(f)のみが異なる。具体的には、図11のチャート(f)は、図11のチャート(e)の付加減速度に応じて設定される最終目標制動力を示している。図8のチャート(f)では、最終目標回生トルクが正値であったが、図11のチャート(f)では、最終目標制動力が負値である。図11のチャート(f)は、図8のチャート(f)を反転したものに相当する。
 図11から明らかなように、第2実施形態によっても、車両減速時において、車両姿勢制御による車両旋回性能の改善効果を適切に確保することができる。
 なお、第2実施形態のように車両1aが変速機(自動変速機)33を具備する場合には、変速機33における変速に応じて、車両姿勢制御において適用する付加減速度を設定してもよい。具体的には、変速機33の減速側への変速時に(レンジセンサなどにより検出すればよい)、つまり変速機33のシフトダウン時に、車両姿勢制御で適用する付加減速度(絶対値)を大きくするとよい。
 1、1a 車両
 2 前輪
 3 インバータ
 4 モータジェネレータ
 6 ステアリングホイール
 8 操舵角センサ
 10 アクセル開度センサ
 11 ブレーキ踏込量センサ
 12 車速センサ
 14 コントローラ
 16 ブレーキ装置
 18 ブレーキ制御システム
 25 バッテリ
 30 サスペンション
 32 エンジン
 33 変速機

Claims (8)

  1.  車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、を有する車両の制御方法であって、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定する工程と、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記ジェネレータに回生発電を行わせて、前記車両に減速度を付加する工程と、
     車両に発生する減速度が第1値であるときに、前記車両に発生する減速度が前記第1値よりも小さい第2値であるときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする工程と、
     を有する、ことを特徴とする車両の制御方法。
  2.  車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、を有する車両の制御方法であって、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定する工程と、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記制動装置より制動力を付加させて、前記車両に減速度を付加する工程と、
     車両に発生する減速度が第1値であるときに、前記車両に発生する減速度が前記第1値よりも小さい第2値であるときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする工程と、
     を有する、ことを特徴とする車両の制御方法。
  3.  前記車両のブレーキペダルの踏込量が第1値であるときには、前記ブレーキペダルの踏込量が前記第1値よりも小さい第2値であるときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする工程を更に備える、請求項1又は2に記載の車両の制御方法。
  4.  前記車両のアクセルペダルの踏込量がほぼ0であるときには、そうでないときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする工程を更に備える、請求項1乃至3のいずれか一項に記載の車両の制御方法。
  5.  前記車両の変速機の減速側への変速時には、そうでないときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする工程を更に備える、請求項1乃至4のいずれか一項に記載の車両の制御方法。
  6.  車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、プロセッサと、を有する車両システムであって、
     前記プロセッサは、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定し、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記ジェネレータに回生発電を行わせて、前記車両に減速度を付加し、
     車両に発生する減速度が第1値であるときに、前記車両に発生する減速度が前記第1値よりも小さい第2値であるときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする、
     ように構成されている、ことを特徴とする車両システム。
  7.  車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、プロセッサと、を有する車両システムであって、
     前記プロセッサは、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定し、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記制動装置より制動力を付加させて、前記車両に減速度を付加し、
     車両に発生する減速度が第1値であるときに、前記車両に発生する減速度が前記第1値よりも小さい第2値であるときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする、
     ように構成されている、ことを特徴とする車両システム。
  8.  弾性部材を備えたサスペンションを有する車両の制御装置であって、
     操舵装置が切り込み操作されたときに、前記車両に減速度を付加することにより車両姿勢を制御する車両姿勢制御手段を有し、
     この車両姿勢制御手段は、車両に発生する減速度が第1値であるときに、前記車両に発生する減速度が前記第1値よりも小さい第2値であるときよりも、前記車両姿勢を制御するために前記車両に付加する減速度を大きくする、ことを特徴とする車両の制御装置。
PCT/JP2019/005270 2018-02-16 2019-02-14 車両の制御方法、車両システム及び車両の制御装置 WO2019160010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754876.1A EP3738816B1 (en) 2018-02-16 2019-02-14 Vehicle control method, and control device for vehicle system and vehicle
US16/969,182 US20200369261A1 (en) 2018-02-16 2019-02-14 Control method for vehicle, vehicle system, and vehicle controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018025657A JP7205794B2 (ja) 2018-02-16 2018-02-16 車両の制御方法、車両システム及び車両の制御装置
JP2018-025657 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019160010A1 true WO2019160010A1 (ja) 2019-08-22

Family

ID=67619379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005270 WO2019160010A1 (ja) 2018-02-16 2019-02-14 車両の制御方法、車両システム及び車両の制御装置

Country Status (5)

Country Link
US (1) US20200369261A1 (ja)
EP (1) EP3738816B1 (ja)
JP (1) JP7205794B2 (ja)
CN (1) CN110154779B (ja)
WO (1) WO2019160010A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138175A (ja) * 2020-03-02 2021-09-16 マツダ株式会社 車両の制御システム
CN111572358B (zh) * 2020-04-10 2022-11-15 吉利汽车研究院(宁波)有限公司 一种基于油门踏板开度的制动方法及系统
JP7145993B2 (ja) * 2021-01-20 2022-10-03 本田技研工業株式会社 車両制御装置
JP2022125557A (ja) * 2021-02-17 2022-08-29 マツダ株式会社 車両の制御システム
JP2022147785A (ja) * 2021-03-23 2022-10-06 本田技研工業株式会社 車両制御装置
CN116394768B (zh) * 2023-05-26 2024-02-20 广东金霸智能科技股份有限公司 电动汽车的制动扭矩分配方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112304B2 (ja) 1983-02-07 1986-04-07 Adobantesuto Kk
JP2008001304A (ja) * 2006-06-26 2008-01-10 Toyota Motor Corp 車両の減速制御装置
JP2014166014A (ja) * 2013-02-25 2014-09-08 Mazda Motor Corp 車両用挙動制御装置
JP2017087890A (ja) * 2015-11-06 2017-05-25 マツダ株式会社 車両用挙動制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139297B2 (ja) * 1994-08-09 2001-02-26 三菱自動車工業株式会社 左右制動力制御装置
JP3675383B2 (ja) * 1995-09-20 2005-07-27 三菱自動車工業株式会社 電気式車両の回生制動制御装置
JP3956693B2 (ja) * 2001-12-27 2007-08-08 トヨタ自動車株式会社 統合型車両運動制御装置
JP3852344B2 (ja) * 2002-02-01 2006-11-29 トヨタ自動車株式会社 車両の減速度制御装置
JP3896943B2 (ja) * 2002-10-16 2007-03-22 株式会社豊田自動織機 電気式産業車両の走行制御装置
JP4352864B2 (ja) * 2003-11-12 2009-10-28 日産自動車株式会社 車両用旋回走行制御装置
JP3915774B2 (ja) * 2003-12-05 2007-05-16 トヨタ自動車株式会社 車両の減速制御装置
JP5929173B2 (ja) * 2011-12-26 2016-06-01 株式会社アドヴィックス ハイブリッド車両用運動制御装置
JP6213020B2 (ja) * 2013-07-31 2017-10-18 株式会社アドヴィックス 車両制御装置
JP6204865B2 (ja) * 2014-03-31 2017-09-27 日立オートモティブシステムズ株式会社 車両の運動制御システム、車両、および、プログラム
JP6222472B2 (ja) * 2014-08-11 2017-11-01 マツダ株式会社 車両用挙動制御装置
JP6241616B2 (ja) * 2014-12-04 2017-12-06 トヨタ自動車株式会社 車両用制動力制御装置
JP6109894B2 (ja) * 2015-08-27 2017-04-05 富士重工業株式会社 車両制御装置および車両制御方法
JP6168479B2 (ja) * 2015-09-30 2017-07-26 マツダ株式会社 エンジンの制御装置
JP6194940B2 (ja) * 2015-11-06 2017-09-13 マツダ株式会社 車両用挙動制御装置
JP6222621B2 (ja) * 2015-11-06 2017-11-01 マツダ株式会社 車両用挙動制御装置
EP3415388B1 (en) * 2016-07-13 2022-04-20 Mazda Motor Corporation Vehicle control device
JP6253000B1 (ja) * 2016-09-14 2017-12-27 マツダ株式会社 車両の制御装置
JP7144723B2 (ja) * 2018-06-22 2022-09-30 マツダ株式会社 車両の制御方法及び車両システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112304B2 (ja) 1983-02-07 1986-04-07 Adobantesuto Kk
JP2008001304A (ja) * 2006-06-26 2008-01-10 Toyota Motor Corp 車両の減速制御装置
JP2014166014A (ja) * 2013-02-25 2014-09-08 Mazda Motor Corp 車両用挙動制御装置
JP2017087890A (ja) * 2015-11-06 2017-05-25 マツダ株式会社 車両用挙動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3738816A4

Also Published As

Publication number Publication date
EP3738816B1 (en) 2022-12-07
EP3738816A1 (en) 2020-11-18
EP3738816A4 (en) 2021-03-10
JP2019146292A (ja) 2019-08-29
CN110154779A (zh) 2019-08-23
US20200369261A1 (en) 2020-11-26
JP7205794B2 (ja) 2023-01-17
CN110154779B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2019160010A1 (ja) 車両の制御方法、車両システム及び車両の制御装置
WO2019151207A1 (ja) 車両の制御方法、車両システム及び車両の制御装置
JP6985645B2 (ja) 車両の制御方法、車両システム及び車両の制御装置
CN110626345B (zh) 车辆控制系统及方法
JP7038971B2 (ja) 車両の制御方法、車両システム及び車両の制御装置
WO2019160009A1 (ja) 車両の制御方法、車両システム及び車両の制御装置
US11752999B2 (en) Vehicle control apparatus
JP7008944B2 (ja) 車両システム
EP3932729A1 (en) Vehicle driving system,vehicle and method with attitude and torque control
JP7034438B2 (ja) 車両の制御方法及び車両システム
JP7038972B2 (ja) 車両の制御方法、車両システム及び車両の制御装置
US11827211B2 (en) Vehicle control system
JP7008945B2 (ja) 車両の制御方法及び車両システム
JP7034437B2 (ja) 車両の制御方法及び車両システム
JP2020040480A (ja) 車両の制御方法、車両システム及び車両の制御装置
JP2020040481A (ja) 車両の制御方法、車両システム及び車両の制御装置
JP6988557B2 (ja) 車両の制御方法、車両システム及び車両の制御装置
JP2021138196A (ja) 車両の制御システム
JP2019188904A (ja) 車両の制御装置
JP2021102384A (ja) 車両の制御システム
JP2019116144A (ja) 車両の挙動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754876

Country of ref document: EP

Effective date: 20200813