WO2019159608A1 - チタニア多孔体及びその製法 - Google Patents

チタニア多孔体及びその製法 Download PDF

Info

Publication number
WO2019159608A1
WO2019159608A1 PCT/JP2019/001680 JP2019001680W WO2019159608A1 WO 2019159608 A1 WO2019159608 A1 WO 2019159608A1 JP 2019001680 W JP2019001680 W JP 2019001680W WO 2019159608 A1 WO2019159608 A1 WO 2019159608A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
titania
titania porous
particles
chelating agent
Prior art date
Application number
PCT/JP2019/001680
Other languages
English (en)
French (fr)
Inventor
和成 山田
清水 秀樹
紀生 石塚
俊和 小田
京子 小西
Original Assignee
日本碍子株式会社
株式会社エマオス京都
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社, 株式会社エマオス京都 filed Critical 日本碍子株式会社
Priority to JP2020500346A priority Critical patent/JP7032744B2/ja
Priority to CN201980012711.1A priority patent/CN111699165A/zh
Priority to EP19754624.5A priority patent/EP3753913A4/en
Publication of WO2019159608A1 publication Critical patent/WO2019159608A1/ja
Priority to US16/942,016 priority patent/US11772983B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • C04B2111/00827Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide

Definitions

  • the present invention relates to a titania porous body and a method for producing the same.
  • the titania (TiO 2 ) porous material can be used in fields such as photocatalysis and chromatography.
  • a titania porous body what was manufactured by the sol-gel method with phase separation using titanium alkoxide, polyethylene oxide (PEO), an inorganic salt, and a chelating agent is reported (nonpatent literature 1, 2).
  • Such macropores (pores having a narrow distribution in the micrometer region) of the titania porous body can be obtained by freezing a co-continuous structure, which is a transient structure of spinodal decomposition, by a sol-gel transition.
  • the pore size of the macropores increases as the amount of PEO increases.
  • Non-Patent Document 2 shows an example in which a petal-like structure is introduced on the surface of a titania porous body.
  • the petal-like structure is a plate-like crystal of lithium titanate, the whole is composed of titania. It is not a titania porous body.
  • the present invention has been made to solve the above-described problems, and has as its main object to provide a titania porous body having a novel structure.
  • the titania porous body of the present invention is It is a titania porous body composed entirely of titania, A titania skeleton forming a three-dimensional network structure; Primary pores that are mesh portions of the three-dimensional structure; Secondary pores provided on the surface of the titania skeleton; It is equipped with.
  • This titania porous body has primary pores that are the network portion of the titania skeleton forming a three-dimensional network structure, and secondary pores provided on the surface of the titania skeleton.
  • a structure having secondary pores on the surface of the titania skeleton in addition to the primary pores of the mesh portion has not been known so far. Therefore, this titania porous body is expected to be used in new fields such as photocatalysis and chromatography, for example, separation and purification of medical proteins produced by culture techniques.
  • the secondary pores provided on the surface of the titania skeleton may be surface depressions or may extend from the surface to the inside.
  • Such a titania porous body may have tertiary pores.
  • the tertiary pores are pores provided on the surface of the titania skeleton and having a pore diameter smaller than that of the secondary pores.
  • the tertiary pores are present from the surface of the titania skeleton to the inside, and are highly likely to be through-holes.
  • the production method of the titania porous body of the present invention (A1) A step of gelling a dispersion in which the soluble particles are dispersed, including soluble particles dissolved in a predetermined liquid, titanium (IV) alkoxide, a chelating agent, a porogen, and an inorganic salt.
  • A2 removing the chelating agent from the obtained gel;
  • A3 The gel after removing the chelating agent is immersed in the predetermined liquid, the soluble particles are dissolved in the predetermined liquid, and then fired at a predetermined firing temperature, whereby the above-mentioned titania porous body is obtained.
  • the obtained titania porous body is obtained by immersing the gel after removing the chelating agent at a predetermined baking temperature and then immersing the gel in the predetermined liquid to dissolve the soluble particles in the predetermined liquid.
  • Obtaining Contains or (B1) The dispersion containing the combustible particles burnt down at a predetermined temperature, the titanium (IV) alkoxide, the chelating agent, the porogen, and the inorganic salt, in which the combustible particles are dispersed, is gelled in a stationary state. And a process of (B2) removing the chelating agent from the resulting gel; (B3) obtaining the titania porous body described above by firing the gel after removing the chelating agent at a predetermined firing temperature; Is included.
  • primary pores are formed by phase-separated spinodal decomposition in the sol-gel method, and secondary pores are formed by a template (soluble particles or combustible particles).
  • the pore diameter of the secondary pores can be controlled independently. Therefore, each pore diameter of the primary and secondary pores of the titania porous body can be easily brought close to the design value.
  • 3 is a graph showing the pore size distribution of primary pores in Example 1.
  • 2 is a graph showing the pore size distribution of secondary pores and tertiary pores of Example 1.
  • FIG. 1 is an SEM photograph of the titania porous body 10 of the present embodiment.
  • a lower photograph is an enlarged photograph of a portion surrounded by a white square frame in the upper photograph.
  • the titania porous body 10 is entirely composed of titania, and as shown in FIG. 1, a titania skeleton 12 forming a three-dimensional network structure, primary pores 14 that are a three-dimensional network structure, and a titania skeleton. 12 and secondary pores 16 provided on the surface.
  • the titania may be a rutile type, but is preferably an anatase type.
  • a part of a template (described later) for forming the secondary pores 16 or a part of a material for dissolving and removing the template may remain in a small amount.
  • a titania porous body having a titania skeleton and primary pores is also referred to as a titania monolith.
  • the pore diameter of the primary pores 14 is preferably larger than 0.05 ⁇ m, more preferably 0.05 to 50 ⁇ m, still more preferably 1 to 5 ⁇ m.
  • the pore diameter of the secondary pores 16 is preferably 20 to 200 nm, more preferably 50 to 150 nm, and even more preferably 75 to 130 nm.
  • the pore diameter of the secondary pores 16 is preferably smaller than the pore diameter of the primary pores 14.
  • the pore diameter of the primary pore is measured by a mercury intrusion method. Measurement of the pore size of the secondary pores is performed by the BET method (nitrogen adsorption method).
  • fine gaps or pores having a pore diameter of about several nanometers may be formed.
  • the titania porous body 10 may have tertiary pores.
  • the tertiary pores are present from the surface to the inside of the titania porous body 10 and are highly likely to be through holes. It is considered that some of the tertiary pores exist from the surface to the inside of the secondary pores 16.
  • the tertiary pores cannot be confirmed by an electron micrograph, but their presence can be confirmed by the BET method (nitrogen adsorption method) and the pore diameter can be measured.
  • the tertiary pores are considered to be gaps between titania crystal particles.
  • the pore diameter of the tertiary pore is smaller than the pore diameter of the secondary pore 16.
  • the pore diameter of the secondary pores 16 is preferably 35 to 200 nm, more preferably 70 to 200 nm, and the pore diameter of the tertiary pores is preferably 3 to 100 nm. Preferably, it is 5 to 70 nm.
  • titania porous body 10 is manufactured by, for example, any one of the following manufacturing examples 1 and 2. However, the titania porous body 10 may be manufactured by a method other than the manufacturing examples 1 and 2.
  • Production Example 1 includes (a1) a soluble particle that dissolves in a predetermined liquid, a titanium (IV) alkoxide, a chelating agent, a porogen, and an inorganic salt. A step of gelling; (a2) a step of removing the chelating agent from the obtained gel; and (a3) immersing the gel after removing the chelating agent in a predetermined liquid to dissolve soluble particles in the predetermined liquid. Thereafter, the titania porous body 10 is obtained by firing at a predetermined firing temperature, or the gel from which the chelating agent has been removed is fired at a predetermined firing temperature and then immersed in a predetermined liquid so that the soluble particles are predetermined. A step of obtaining the titania porous body 10 by dissolving in the liquid.
  • Step a1 Gelation step
  • soluble particles particles that dissolve in a predetermined liquid are used.
  • the predetermined liquid include an alkaline solution.
  • particles soluble in an alkaline solution are used as the soluble particles.
  • examples of such particles include silica particles and silicate particles (silicate glass particles and the like).
  • Silica particles are used to form secondary pores, and the particle size is preferably 7 to 500 nm, more preferably 20 to 300 nm, and even more preferably 30 to 200 nm.
  • Silica particles include hydrophilic and hydrophobic particles, either of which may be adopted.
  • silica particles examples include Sea Hoster (registered trademark) KE-S10 and KE-P10 manufactured by Nippon Shokubai, and trade name NAX-50 manufactured by Nippon Aerosil.
  • the amount of the soluble particles used is preferably 2 to 50%, more preferably 5 to 30% by weight with respect to the titanium (IV) alkoxide.
  • titanium (IV) alkoxide examples include titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) n-propoxide, titanium (IV) isopropoxide, titanium (IV) n-butoxide, and titanium (IV).
  • examples include isobutoxide, titanium (IV) sec-butoxide, titanium (IV) tert-butoxide, and the like. Of these, titanium (IV) n-propoxide and titanium (IV) isopropoxide are preferred.
  • the chelating agent is preferably one that can be coordinated to titanium ions and decarboxylates after hydrolysis, and includes, for example, ⁇ -ketoester.
  • ⁇ -ketoesters include alkyl acetoacetates such as ethyl acetoacetate.
  • the chelating agent is preferably used in a molar ratio of 0.1 to 2.0, more preferably 0.5 to 1.5, based on the titanium (IV) alkoxide.
  • Porogen is an additive substance for forming primary pores and is also called a phase separation agent because it induces phase separation in a sol-gel reaction.
  • porogens that generally cause spinodal decomposition include cellosolves such as methyl cellosolve and ethyl cellosolve, esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate, polyethylene glycol, polypropylene glycol, triethylene glycol, and diethylene glycol. And the like.
  • polyalkylene glycols such as polyethylene glycol and polypropylene glycol are preferred, and the molecular weight is preferably from 2,000 to 500,000, more preferably from 6,000 to 100,000.
  • Polyalkylene glycol is sometimes referred to as polyalkylene oxide depending on the molecular weight, but in the present specification, these are collectively referred to as polyalkylene glycol.
  • a porogen may use not only one type but two or more types together.
  • the amount of the porogen used is preferably 1% or more and 20% or less, more preferably 3% or more and less than 10% by weight with respect to the titanium (IV) alkoxide.
  • a salt containing a conjugate base of a strong acid is preferable.
  • strong acid conjugate bases include nitrate ions and halogen ions.
  • examples of such inorganic salts include ammonium nitrate, ammonium chloride, ammonium bromide, and ammonium iodide.
  • the conjugate base of a strong acid functions as a blocking agent that prevents the titanium atom from being exposed to a nucleophilic reaction.
  • the amount of the inorganic salt used is preferably 0.005 to 0.5, more preferably 0.01 to 0.3, in molar ratio with respect to the titanium (IV) alkoxide.
  • an aqueous solution of an inorganic salt is dropped and mixed in a dispersion in which soluble particles are dispersed in a mixed solution in which a chelating agent, a porogen, and titanium (IV) alkoxide are dissolved in a solvent, and then allowed to stand still.
  • a solvent For example, alcohol solvent, ester solvent, glycol solvent etc. are mentioned.
  • the temperature of the dispersion when dripping and the temperature of the titania sol when the titania sol is allowed to stand may be appropriately set.
  • the temperature may be room temperature or may be heated to 30 to 80 ° C. The higher the temperature, the smaller the pore size of the primary pores.
  • phase separation occurs and the solid-liquid is separated into a titania skeleton (solid phase) and a network portion (liquid phase) forming a three-dimensional network structure. At this time, soluble particles are attached to the surface of the titania skeleton (see FIG. 2).
  • the titania sol does not contain porogen, when the titania sol is gelled, the whole is uniformly gelled, or the gelled portion and the solvent portion are simply separated.
  • Chelating agent removal process A chelating agent is removed from the obtained gel.
  • the chelating agent is removed using an alcohol-water mixture.
  • This step is performed step by step using alcohol-water mixtures having different alcohol concentrations. That is, the gel is first immersed in a mixed solution having a high alcohol concentration, and the alcohol concentration of the mixed solution in which the gel is immersed is gradually decreased after the next step. In this step, gas is generated because decarboxylation occurs after the ⁇ -ketoester is hydrolyzed. Therefore, this step is preferably performed in a state where the container is opened without being sealed.
  • the titania of the obtained gel is considered to change from amorphous to crystalline (for example, anatase type crystal).
  • Step a3 Soluble particle removal and firing step
  • the gel after the removal of the chelating agent is immersed in a predetermined liquid, the soluble particles are dissolved in the predetermined liquid and removed from the gel, and then fired at a predetermined firing temperature.
  • pre-firing etching method Such a method of etching soluble particles before firing is hereinafter referred to as “pre-firing etching method”.
  • pre-firing etching method By removing the soluble particles, the soluble particles adhering to the surface of the titania skeleton are dissolved and pits are formed on the surface of the titania skeleton.
  • a schematic diagram at this time is shown in FIG. This pit finally becomes the secondary pore 16 of the titania porous body 10.
  • the pore diameter of the secondary pores 16 can be controlled by adjusting the particle diameter of the soluble particles. Further, the total volume of the secondary pores 16 can be controlled by adjusting the amount of soluble particles added.
  • the firing temperature is preferably set in the range of 400 to 1200 ° C. (preferably 400 to 1100 ° C., more preferably 400 to 1000 ° C.). If it is this range, the organic compound (for example, chelating agent) which remained in the gel will almost burn out.
  • An anatase type is formed when the baking temperature is 400 to 600 ° C., and a rutile type increases when the temperature is higher than 600 ° C.
  • the pore diameter of the primary pores 14 can be controlled by adjusting the porogen molecular weight, addition amount, and gelation temperature.
  • the above-described titania porous body 10 may be obtained by baking the gel after removing the chelating agent at a predetermined baking temperature and then immersing the gel in a predetermined liquid to dissolve the soluble particles in the predetermined liquid.
  • a method of etching the soluble particles after firing is hereinafter referred to as “post-baking etching method”.
  • the firing temperature is preferably set in the range of 400 to 1200 ° C. (preferably 400 to 1100 ° C., more preferably 400 to 1000 ° C.). If it is this range, the organic compound (for example, chelating agent) which remained in the gel will almost burn out.
  • An anatase type is formed when the baking temperature is 400 to 600 ° C.
  • a rutile type increases when the temperature is higher than 600 ° C.
  • the pore diameter of the primary pores 14 can be controlled by adjusting the porogen molecular weight, addition amount, and gelation temperature.
  • the soluble particles adhering to the surface of the titania skeleton are dissolved and pits are formed on the surface of the titania skeleton. This pit finally becomes the secondary pore 16 of the titania porous body 10. Therefore, the pore diameter of the secondary pores 16 can be controlled by adjusting the particle diameter of the soluble particles. Further, the total volume of the secondary pores 16 can be controlled by adjusting the amount of soluble particles added.
  • Tertiary pores with smaller pore diameters than secondary pores will decrease with higher firing temperature in the pre-firing etching method, but a considerable portion will remain even if the firing temperature is increased in the post-firing etching method, and the firing temperature will remain.
  • the pore diameter of the tertiary pores tends to increase. This tendency is observed in the post-baking etching method because the soluble particles are present on the surface of the gel at the time of baking, and the deformation due to titania crystallization is suppressed by the soluble particles, leaving the tertiary pores. I guess that.
  • the pore diameter of the tertiary pore is 10 nm or less by the BET method, the pore diameter is too small for protein adsorption or the like and is not very effective, but when it exceeds 10 nm, it can be effectively used for protein adsorption or the like.
  • the firing temperature is set to 900 to 1200 (preferably 900 to 1100 ° C.) by the post-firing etching method, a rutile type titania porous body having primary pores, secondary pores and tertiary pores can be obtained. If the firing temperature is set within this range, a rutile type is sufficiently obtained when the temperature is 900 ° C. or higher, and primary pores and secondary pores are sufficiently generated when the temperature is 1200 ° C. or lower.
  • Rutile-type titania has little or no photocatalytic function and therefore has little effect on the living body.
  • Production Example 2 gels a dispersion in which soluble particles are dispersed, including (b1) flammable particles burnt down at a predetermined temperature, titanium (IV) alkoxide, a chelating agent, a porogen, and an inorganic salt. A step, (b2) a step of removing the chelating agent from the obtained gel, and (b3) a step of obtaining the titania porous body 10 by firing the gel after removing the chelating agent at a predetermined firing temperature, including.
  • Step b1 Gelling step
  • the flammable particles particles that burn out at a predetermined temperature are used.
  • An example of the predetermined temperature is the firing temperature in step b3.
  • examples of such combustible particles include organic particles such as acrylic particles, melamine particles, polyester particles, polystyrene particles, and nylon particles. Of these, acrylic particles are preferred because they can be easily burned off.
  • the amount of the combustible particles used is preferably 1 to 50%, more preferably 3 to 25% by weight with respect to the titanium (IV) alkoxide. Since titanium (IV) alkoxide, chelating agent, porogen and inorganic salt have already been described in step a1, description thereof will be omitted here.
  • Gelation is performed, for example, by dropping an aqueous solution of an inorganic salt into a dispersion in which flammable particles are dispersed in a mixed solution in which a chelating agent, a porogen, and titanium (IV) alkoxide are dissolved in a solvent, and then allowing to stand. Since this gelation is the same as the gelation in step a1 except that combustible particles are used instead of soluble particles, the description thereof is omitted here.
  • the titania porous body 10 is obtained by baking the gel after removing a chelating agent at a predetermined baking temperature. At the time of firing, combustible particles adhering to the surface of the titania skeleton are burned off, and pits are formed on the surface of the titania skeleton.
  • the firing temperature is preferably set in the range of 400 to 1200 ° C. (preferably 400 to 1100 ° C., more preferably 400 to 1000 ° C.). If it is this range, the organic compound (for example, chelating agent) which remained in the gel will almost burn out.
  • An anatase type is formed when the baking temperature is 400 to 600 ° C., and a rutile type increases when the temperature is higher than 600 ° C.
  • the pore diameter of the primary pores 14 can be controlled by adjusting the porogen molecular weight, addition amount, and gelation temperature.
  • the pore diameter of the secondary pores 16 of the titania porous body 10 finally obtained can be controlled by adjusting the particle diameter of the combustible particles. Further, the total volume of the secondary pores 16 can be controlled by adjusting the amount of flammable particles added.
  • the titania porous body 10 can be used in fields such as photocatalysis and chromatography.
  • titania is a surface modifier that has both a functional group that reacts with both the —OH group on the surface of the titania porous body 10 and the functional group on the surface of the biological material A (for example, —NH 2 group and —COOH group).
  • the titania porous body 10 and the biological material A are bonded.
  • protein A can be fixed by modifying amino acid triethoxysilane on the —OH group of the titania porous body 10 and used as a chromatographic support for antibody separation and purification. By doing so, it is expected to be used in the purification step in the biopharmaceutical process.
  • a protein (medicine) is produced by putting animal cells, virus, water, and nutrients in a culture vessel and culturing the virus.
  • the cells are removed from the culture solution using centrifugation or MF membrane separation (MF is an abbreviation for Microfiltration), and the impurities are removed by passing the removed culture solution through a column using the titania porous body 10 as a carrier.
  • MF is an abbreviation for Microfiltration
  • the target protein is taken out by removing the virus. In this way, the biopharmaceutical can be obtained with high purity.
  • photocatalytic devices dye-sensitized solar cells, fuel cell materials, lithium ion battery materials, heat-shielding pigments, white pigments, UV-cut pigments, ethanol-modified catalyst carriers, sound absorbing materials, hydrogen It can also be used in applications such as carrier storage materials, porous electrochromic electrodes, flexible organic EL lighting light scatterers, titanium oxide-coated medical devices, culture carriers, antibacterial masks, and water and air purification filters.
  • the titania porous body 10 described above is composed entirely of titania, and in addition to the primary pores 14 of the mesh portion of the titania skeleton 12 forming a three-dimensional network structure, secondary pores are formed on the surface of the titania skeleton 12. 16 has a novel structure. Therefore, the titania porous body 10 is expected to be used in new fields such as photocatalysis and chromatography, for example, separation and purification of medical proteins produced by culture techniques. Moreover, when the titania porous body 10 has tertiary pores having a pore diameter smaller than that of the secondary pores 16, utilization of the tertiary pores for protein adsorption and the like is also expected.
  • the primary pores 14 are formed by phase separation spinodal decomposition by the sol-gel method, and the secondary pores 16 are formed by the template (soluble particles or combustible particles).
  • the hole diameter of the primary pore 14 and the hole diameter of the secondary pore 16 can be controlled independently. Therefore, it is possible to easily manufacture the titania porous body 10 in which the pore diameters of the primary and secondary pores 14 and 16 are close to the design values.
  • the pore diameter of the primary pores 14 can be controlled by the amount of porogen added, the firing temperature, and the like, and the pore diameter of the secondary pores 16 is controlled by the particle diameter of the template (soluble particles or combustible particles). be able to.
  • the pore diameter of the tertiary pores can be controlled by the firing temperature in the post-baking etching method.
  • Example 1 Gelation step After weighing 5.04 g of titanium (IV) propoxide (manufactured by Aldrich), 2.58 g of ethyl acetoacetate (manufactured by Tokyo Chemical Industry) and 2.01 g of 1-propanol (manufactured by Tokyo Chemical Industry) into a sample tube No. 7. The mixture was stirred to obtain a uniform mixed solution. To the mixed solution, 0.756 g (15 wt% / titanium (IV) propoxide) of hydrophilic silica particles (manufactured by Nippon Shokubai Co., Ltd., Seahoster (registered trademark) KE-S 10, particle size: about 100 nm) was added as a stirrer. Until uniform.
  • Chelating agent removal step First to fourth solutions having different concentrations of ethyl alcohol (manufactured by Wako Pure Chemical Industries) were prepared. Ethyl alcohol: water (mass ratio) was 9: 1 for the first solution, 6: 4 for the second solution, 3: 7 for the third solution, and 0:10 for the fourth solution. First, the first solution was filled in a container that had been gelled, and the solution was discarded after standing at room temperature for 1 day. Subsequently, the second solution is filled in a container, and the operation of discarding the solution after leaving at room temperature for one day is repeated for the third solution and the fourth solution in order, and the chelating agent is removed step by step. It was. In this process, ethyl acetoacetate as a chelating agent was hydrolyzed to acetoacetic acid, and the acetoacetic acid was quickly decarboxylated to produce acetone and carbon dioxide.
  • a titania porous body was obtained by an etching method before firing.
  • the obtained porous titania had a primary pore diameter of 4.3 ⁇ m, a secondary pore diameter of 90 nm, and a tertiary pore diameter of 6.2 nm.
  • the pore diameter was determined as follows. That is, the pore diameter of the primary pores was measured in the range of 0.2 ⁇ m to 200 ⁇ m by mercury porosimetry (see FIG. 4), and the pore diameters of the secondary pores and tertiary pores were 2.5 nm to 200 nm by BET specific surface area measurement. The range of (0.2 ⁇ m) was measured (see FIG. 5).
  • This porosity is the porosity in the skeleton of the titanium dioxide monolith calculated by measuring the total pore volume (cm 3 / g) from 2.5 nm to 200 nm by the specific gravity of titanium dioxide by BET method specific surface area measurement ( Does not include voids in primary pores).
  • Example 2 and 3 In Examples 2 and 3, Example 1 was used except that trade name NAX-50 (particle size: about 40 nm) manufactured by Nippon Aerosil Co., Ltd. was used as the hydrophobic silica particles, and the addition amounts thereof were 0.454 g and 0.353 g, respectively.
  • a titania porous body was produced.
  • the obtained titania porous body had a primary pore of 3.8 ⁇ m and a secondary pore of 87 nm in Example 2, a primary pore of 3.9 ⁇ m and a secondary pore of 76 nm in Example 3.
  • the hole diameter was measured in the same manner as in Example 1.
  • Example 3 when the specific surface area of the titania porous body was measured by the BET method, it was 78 m 2 / g in Example 2 and 34.3 m 2 / g in Example 3. Furthermore, when the porosity of the titania porous body was measured, it was 42% in Example 2 and 36% in Example 3.
  • Example 4 a titania porous body was produced in the same manner as in Example 1 except that the following steps different from Example 1 were adopted as the silica particle removal and firing steps.
  • the silica particle removal and firing step first, the gel from which the chelating agent was removed was heated to 600 ° C. at a heating rate of 1 ° C. per minute, and then held at that temperature for 2 hours for baking. Thereafter, the fired body was placed in a 1M aqueous sodium hydroxide solution and allowed to stand at room temperature for 1 day, whereby silica particles were dissolved and removed from the fired body, washed several times with ion-exchanged water, and air dried.
  • a titania porous body was obtained by an etching method after firing.
  • the obtained titania porous body had a primary pore of 3.2 ⁇ m and a secondary pore of 79 nm.
  • the hole diameter was measured in the same manner as in Example 1. Moreover, it was 101 m ⁇ 2 > / g when the specific surface area of the titania porous body was measured by BET method. Furthermore, when the porosity of the titania porous body was measured, it was 46%.
  • Example 5 Gelling process: No. 5 screw tube bottle made of glass with 5.04 g of titanium (IV) propoxide (Aldrich), 2.58 g of ethyl acetoacetate (Tokyo Kasei), 1-propanol (manufactured by Tokyo Kasei) 01 g was weighed and stirred to obtain a uniform mixed solution. To the mixed solution, 0.504 g (10 wt% / titanium (IV) propoxide) of acrylic particles (MP-1451, manufactured by Soken Chemical Co., Ltd., as an inflammable particle) was added and stirred with a stirrer until uniform. .
  • the gel after natural drying was baked by hold
  • the acrylic particles were burned off and the titania gel was baked to obtain a titania porous body.
  • the obtained titania porous body had a primary pore of 4.3 ⁇ m and a secondary pore of 95 nm.
  • the hole diameter was measured in the same manner as in Example 1. Moreover, it was 143 m ⁇ 2 > / g when the specific surface area of the titania porous body was measured by BET method. Furthermore, when the porosity of the titania porous body was measured, it was 55%.
  • Example 6 a titania porous body was produced in the same manner as in Example 4 except that the gel from which the chelating agent was removed was heated to 800 ° C. at a rate of 1 ° C. per minute.
  • the properties of the obtained titania porous body are shown in Table 1.
  • the rutile type was 2.5% and the rest was the anatase type.
  • Example 7 a titania porous material was produced in the same manner as in Example 6 except that trade name OX-50 (particle size: about 40 nm) manufactured by Nippon Aerosil was used as the hydrophilic silica particles.
  • trade name OX-50 particle size: about 40 nm
  • the properties of the obtained titania porous body are shown in Table 1.
  • Example 8 a titania porous body was produced in the same manner as in Example 4, except that the gel from which the chelating agent was removed was heated to 1000 ° C. at a rate of 1 ° C. per minute.
  • the properties of the obtained titania porous body are shown in Table 1.
  • the rutile type was 100%.
  • Example 9 a titania porous body was produced in the same manner as in Example 4 except that the gel from which the chelating agent was removed was heated to 1200 ° C. at a rate of 1 ° C. per minute.
  • the properties of the obtained titania porous body are shown in Table 1. Note that the titania porous body of Example 9 has a long retention time after the temperature increase to the rutileization, so that the reorganization of the structure in the rutile phase has sufficiently progressed, and the peak is not clear. The pore diameter of the pores could not be determined.
  • Example 1 In the gelation step of Example 1, a gelation reaction is performed without adding silica particles and polyethylene glycol, and in the silica particle removal and firing step, the silica particles are removed (the silica particles are dissolved in an aqueous sodium hydroxide solution).
  • a titania fired body was obtained in the same manner as in Example 1 except that the treatment was not performed. The obtained titania fired body was a titania lump having neither primary pores nor secondary pores.
  • Example 2 In the gelation step of Example 1, a gelation reaction is performed without adding silica particles, and in the silica particle removal and firing step, the silica particles are removed (treatment for dissolving the silica particles in an aqueous sodium hydroxide solution).
  • a titania fired body was obtained in the same manner as in Example 1 except that it was not performed.
  • the obtained titania fired body had primary pores (pore diameter 2.5 ⁇ m) but no secondary pores.
  • the hole diameter was measured in the same manner as in Example 1.
  • the present invention is not particularly limited, for example, in the fields of photocatalyst and chromatography, photocatalyst devices, dye-sensitized solar cells, fuel cell materials, lithium ion battery materials, heat shielding pigments, white pigments , UV-cut pigment, ethanol reforming catalyst carrier, sound absorbing material, hydrogen carrier storage material, porous electrochromic electrode, light scattering material for flexible organic EL lighting, titanium oxide-coated medical device, culture carrier, antibacterial mask, water and air It can be used as a purification filter.
  • titania porous body 10 titania porous body, 12 titania skeleton, 14 primary pores, 16 secondary pores.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

チタニア多孔体10は、全体がチタニアで構成されており、三次元網目構造を形成するチタニア骨格12と、三次元構造の網目部分である一次細孔14と、チタニア骨格12の表面に設けられた二次細孔16とを備えている。このようなチタニア多孔体10は、チタニアモノリスとも称される。

Description

チタニア多孔体及びその製法
 本発明は、チタニア多孔体及びその製法に関する。
 チタニア(TiO2)多孔体は、光触媒やクロマトグラフィなどの分野に利用可能である。チタニア多孔体としては、チタンアルコキシドとポリエチレンオキシド(PEO)と無機塩とキレート剤とを用いて相分離を伴うゾル-ゲル法によって製造されたものが報告されている(非特許文献1,2)。こうしたチタニア多孔体のマクロ孔(マイクロメートル領域に狭い分布を持つ孔)は、スピノーダル分解の過渡的構造である共連続構造を、ゾル-ゲル転移により凍結させることで得られる。マクロ孔の孔径は、PEOの量が増加するにつれて大きくなる。
J. Am. Ceram. Soc., 93[10], 3110-3115(2010) セラミックス第52巻(2017)No.7,488-489頁
 しかしながら、全体がチタニアで構成されたチタニア多孔体の骨格表面に孔を形成する技術については、これまで知られていない。ちなみに、非特許文献2には、チタニア多孔体表面に花弁状構造を導入した例が示されているが、この花弁状構造はチタン酸リチウムの板状結晶であるため、全体がチタニアで構成されたチタニア多孔体ではない。
 本発明は、上述した課題を解決するためになされたものであり、新規な構造のチタニア多孔体を提供することを主目的とする。
 本発明のチタニア多孔体は、
 全体がチタニアで構成されたチタニア多孔体であって、
 三次元網目構造を形成するチタニア骨格と、
 前記三次元構造の網目部分である一次細孔と、
 前記チタニア骨格の表面に設けられた二次細孔と、
 を備えたものである。
 このチタニア多孔体は、三次元網目構造を形成するチタニア骨格の網目部分である一次細孔と、チタニア骨格の表面に設けられた二次細孔とを備えている。このように全体がチタニアで構成されたチタニア多孔体において、網目部分の一次細孔に加えて、チタニア骨格の表面に二次細孔を備えた構造は、これまでに知られていない。そのため、このチタニア多孔体は、光触媒やクロマトグラフィなどの新たな分野、例えば培養技術により生成した医療用タンパク質の分離精製などの分野への利用が期待される。なお、チタニア骨格の表面に設けられた二次細孔は、表面の凹みであってもよいし、表面から内部に延びていてもよい。
 こうしたチタニア多孔体は、三次細孔を備えていてもよい。三次細孔は、チタニア骨格の表面に設けられ、二次細孔よりも孔径が小さい孔である。三次細孔は、チタニア骨格の表面から内部にかけて存在しており、貫通孔である可能性が高い。
 本発明のチタニア多孔体の製法は、
(a1)所定の液体に溶解する可溶性粒子と、チタン(IV)アルコキシドと、キレート剤と、ポロゲンと、無機塩とを含み、前記可溶性粒子が分散した分散液を静置状態でゲル化する工程と、
(a2)得られたゲルから前記キレート剤を除去する工程と、
(a3)前記キレート剤を除去した後のゲルを前記所定の液体に浸漬し、前記可溶性粒子を前記所定の液体に溶解させたあと所定の焼成温度で焼成することにより、上述したチタニア多孔体を得るか、又は、前記キレート剤を除去した後のゲルを所定の焼成温度で焼成したあと前記所定の液体に浸漬し、前記可溶性粒子を前記所定の液体に溶解させることにより、上述したチタニア多孔体を得る工程と、
 を含むか、
(b1)所定の温度で焼失する可燃性粒子と、チタン(IV)アルコキシドと、キレート剤と、ポロゲンと、無機塩とを含み、前記可燃性粒子が分散した分散液を静置状態でゲル化する工程と、
(b2)得られたゲルから前記キレート剤を除去する工程と、
(b3)前記キレート剤を除去した後のゲルを所定の焼成温度で焼成することにより、上述したチタニア多孔体を得る工程と、
 を含むものである。
 この製法によれば、ゾル-ゲル法での相分離型スピノーダル分解によって一次細孔を形成し、テンプレート(可溶性粒子又は可燃性粒子)によって二次細孔を形成するため、一次細孔の孔径と二次細孔の孔径とを独立して制御することができる。したがって、チタニア多孔体の一次及び二次細孔の各孔径を設計値に容易に近づけることができる。
チタニア多孔体10のSEM写真(拡大写真付き)。 チタニア骨格の表面に可溶性粒子が付着した様子を示す模式図。 チタニア骨格の表面にピットが形成された様子を示す模式図。 実施例1の一次細孔の孔径分布を示すグラフ。 実施例1の二次細孔及び三次細孔の孔径分布を示すグラフ。
 本発明の好適な実施形態を以下に説明する。図1は本実施形態のチタニア多孔体10のSEM写真である。図1において、下部写真は上部写真の白い四角枠で囲まれた部分を拡大した写真である。
 チタニア多孔体10は、全体がチタニアで構成されており、図1に示すように、三次元網目構造を形成するチタニア骨格12と、三次元構造の網目部分である一次細孔14と、チタニア骨格12の表面に設けられた二次細孔16とを備えている。チタニアは、ルチル型であってもよいが、アナターゼ型であることが好ましい。チタニア多孔体10は、二次細孔16を形成するためのテンプレート(後述)の一部やテンプレートを溶解除去するための材料の一部が少量残留していても構わない。なお、チタニア骨格と一次細孔とを備えたチタニア多孔体はチタニアモノリスとも称される。
 一次細孔14の孔径は、0.05μmより大きいことが好ましく、0.05~50μmであることがより好ましく、1~5μmであることが更に好ましい。二次細孔16の孔径は、20~200nmであることが好ましく、50~150nmであることがより好ましく、75~130nmであることが更に好ましい。二次細孔16の孔径は、一次細孔14の孔径よりも小さいことが好ましい。一次細孔の孔径の測定は、水銀圧入法により行う。二次細孔の孔径の測定は、BET法(窒素吸着方式)により行う。なお、チタニア骨格12を構成するチタニア微結晶間には、孔径が数nm程度の微細な隙間や孔が形成されていてもよい。
 チタニア多孔体10は、三次細孔を備えていてもよい。三次細孔は、チタニア多孔体10の表面から内部にかけて存在しており、貫通孔である可能性が高い。三次細孔は、二次細孔16の表面から内部にかけて存在しているものもあると考えられる。三次細孔は、電子顕微鏡写真で確認することはできないが、BET法(窒素吸着方式)によりその存在を確認し、孔径を測定することができる。三次細孔は、チタニア結晶粒子同士の間の隙間だと考えられる。三次細孔の孔径は、二次細孔16の孔径よりも小さい。チタニア多孔体10が三次細孔を備えている場合、二次細孔16の孔径は好ましくは35~200nm、より好ましくは70~200nmであり、三次細孔の孔径は好ましくは3~100nm、より好ましくは5~70nmである。
 こうしたチタニア多孔体10は、例えば以下の製造例1,2のいずれかによって製造される。但し、チタニア多孔体10は、製造例1,2以外の方法で製造しても構わない。
[製造例1]
 製造例1は、(a1)所定の液体に溶解する可溶性粒子と、チタン(IV)アルコキシドと、キレート剤と、ポロゲンと、無機塩とを含み、可溶性粒子が分散した分散液を静置状態でゲル化する工程と、(a2)得られたゲルからキレート剤を除去する工程と、(a3)キレート剤を除去した後のゲルを所定の液体に浸漬し、可溶性粒子を所定の液体に溶解させたあと所定の焼成温度で焼成することにより、チタニア多孔体10を得るか、又は、キレート剤を除去した後のゲルを所定の焼成温度で焼成したあと所定の液体に浸漬し、可溶性粒子を所定の液体に溶解させることにより、チタニア多孔体10を得る工程と、を含む。
・工程a1:ゲル化工程
 可溶性粒子としては、所定の液体に溶解する粒子を用いる。所定の液体としては、例えばアルカリ溶液などが挙げられる。その場合、可溶性粒子としては、アルカリ溶液に溶解する粒子を用いる。そのような粒子としては、例えばシリカ粒子やケイ酸塩粒子(ケイ酸ガラス粒子等)などが挙げられる。シリカ粒子は、二次細孔を形成するために用いられるものであり、粒径としては、7~500nmが好ましく、20~300nmがより好ましく、30~200nmが更に好ましい。シリカ粒子には親水性のものと疎水性のものとがあるが、どちらを採用してもよい。シリカ粒子としては、例えば日本触媒製のシーホスター(登録商標)KE-S10、KE-P10、日本アエロジル製の商品名NAX-50などが挙げられる。可溶性粒子の使用量は、チタン(IV)アルコキシドに対して重量比で2~50%であることが好ましく、5~30%であることがより好ましい。
 チタン(IV)アルコキシドとしては、例えばチタン(IV)メトキシド、チタン(IV)エトキシド、チタン(IV)n-プロポキシド、チタン(IV)イソプロポキシド、チタン(IV)n-ブトキシド、チタン(IV)イソブトキシド、チタン(IV)sec-ブトキシド、チタン(IV)tert-ブトキシドなどが挙げられる。このうち、チタン(IV)n-プロポキシド、チタン(IV)イソプロポキシドが好ましい。
 キレート剤としては、チタンイオンに配位可能で且つ加水分解したあと脱炭酸するものが好ましく、例えばβ-ケトエステルなどが挙げられる。β-ケトエステルとしては、例えばアセト酢酸エチルなどのアセト酢酸アルキルなどが挙げられる。キレート剤の使用量は、チタン(IV)アルコキシドに対してモル比で0.1~2.0であることが好ましく、0.5~1.5であることがより好ましい。
 ポロゲンとは、一次細孔を形成するための添加物質であり、ゾル-ゲル反応における相分離を誘起させることから相分離剤とも呼ばれる。一般的にスピノーダル分解を生じさせるポロゲンとしては、例えば、メチルセロソルブ、エチルセロソルブなどのセロソルブ類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどエステル類、ポリエチレングリコール、ポリプロピレングリコール、トリエチレングリコール、ジエチレングリコールなどのグリコール類などを挙げることができる。本実施形態のチタニア多孔体の形成に対しては、ポリエチレングリコールやポリプロピレングリコールなどのポリアルキレングルコールが好まし、分子量としては2000以上500000以下が好ましく、6000以上100000以下がより好ましい。ポリアルキレングルコールは分子量の多寡によってポリアルキレンオキシドと称されることもあるが、本明細書ではこれらを総称としてポリアルキレングリコールと呼ぶこととする。ポロゲンの分子量と添加量を調整することにより、最終的に得られるチタニア多孔体10の一次細孔14の孔径を制御することができる。ポロゲンは一種類だけでなく複数種類を併用してもよい。ポロゲンの使用量は、チタン(IV)アルコキシドに対して重量比で1%以上20%以下であることが好ましく、3%以上10%未満であることがより好ましい。
 無機塩としては、強酸の共役塩基を含む塩が好ましい。強酸の共役塩基としては、例えば硝酸イオン、ハロゲンイオンなどが挙げられる。こうした無機塩としては、例えば硝酸アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウムなどが挙げられる。なお、強酸の共役塩基は、チタン原子が求核反応に曝されるのを防止するブロック剤として機能する。無機塩の使用量は、チタン(IV)アルコキシドに対してモル比で0.005~0.5であることが好ましく0.01~0.3であることがより好ましい。
 ゲル化は、例えばキレート剤とポロゲンとチタン(IV)アルコキシドとを溶媒に溶解した混合溶液に可溶性粒子を分散させた分散液に、無機塩の水溶液を滴下混合し、その後静置状態で放置することにより行う。溶媒としては、特に限定するものではないが、例えばアルコール系溶媒、エステル系溶媒、グリコール系溶媒などが挙げられる。可溶性粒子を分散させた分散液に無機塩の水溶液を滴下すると、可溶性粒子が分散したチタニアゾルが得られる。滴下するときの分散液の温度やチタニアゾルを静置状態で放置するときのチタニアゾルの温度は、適宜設定すればよく、例えば室温でもよいし、30~80℃に加温してもよい。このときの温度が高い方が一次細孔の孔径が小さくなる。静置状態でチタニアゾルがゲル化すると、相分離が生じて固液が分離して三次元網目構造を形成するチタニア骨格(固相)と網目部分(液相)になる。このとき、チタニア骨格の表面には、可溶性粒子が付着した状態になっている(図2参照)。すなわち、1つの可溶性粒子をみたとき、一部がチタニア骨格の表面に埋まり、残りがチタニア骨格の表面に露出した状態になっている。可溶性粒子に使用するシリカなどは微細なため凝集しやすいので、単一粒子ではなく凝集体の一部がチタニア骨格の表面に埋まった状態になることがある。なお、チタニアゾルにポロゲンが含まれていない場合、チタニアゾルがゲル化すると全体が均一にゲル化するか、あるいはゲル化部分と溶媒部分とが単純に分離する。
・工程a2:キレート剤除去工程
 得られたゲルからキレート剤を除去する。キレート剤としてβ-ケトエステルを用いた場合には、アルコール-水混合液を用いてキレート剤を除去する。この工程はアルコール濃度の異なるアルコール-水混合液を用いて段階的に行う。すなわち、最初はアルコール濃度の濃い混合液にゲルを浸漬し、次の段階以降は、ゲルを浸漬する混合液のアルコール濃度を徐々に薄くなるようにする。この工程では、β-ケトエステルが加水分解したあと脱炭酸が起こるためガスが発生する。そのため、この工程は、容器を密閉せず開放した状態で行うことが好ましい。なお、得られたゲルを直ちに水に浸漬すると、キレート剤の分解による炭酸ガスが急激に発生してクラックが生じるため好ましくない。キレート剤を除去することにより、得られたゲルのチタニアはアモルファスから結晶(例えばアナターゼ型結晶)に変化すると考えられる。
・工程a3:可溶性粒子除去及び焼成工程
 キレート剤を除去した後のゲルを所定の液体に浸漬し、可溶性粒子を所定の液体に溶解させてゲルから除去したあと、所定の焼成温度で焼成することにより、上述したチタニア多孔体10を得る。このように焼成前に可溶性粒子をエッチングする方式を、以下「焼成前エッチング方式」と称する。可溶性粒子の除去により、チタニア骨格の表面に付着していた可溶性粒子が溶解してチタニア骨格の表面にピットが形成される。このときの模式図を図3に示す。このピットが最終的にチタニア多孔体10の二次細孔16になる。そのため、可溶性粒子の粒径を調整することにより二次細孔16の孔径を制御することができる。また、可溶性粒子の添加量を調整することにより二次細孔16のトータルの体積を制御することができる。一方、焼成温度は400~1200℃(好ましくは400~1100℃、より好ましくは400~1000℃)の範囲に設定することが好ましい。この範囲であれば、ゲル内に残存していた有機化合物(例えばキレート剤)はほとんど焼失する。焼成温度が400~600℃ではアナターゼ型を形成し、600℃より高くなるとルチル型が増えてくる。一次細孔14の孔径は、ポロゲンの分子量や添加量やゲル化温度を調整することにより制御することができる。
 あるいは、キレート剤を除去した後のゲルを所定の焼成温度で焼成したあと所定の液体に浸漬し、可溶性粒子を所定の液体に溶解させることにより、上述したチタニア多孔体10を得てもよい。このように焼成後に可溶性粒子をエッチングする方式を、以下「焼成後エッチング方式」と称する。焼成温度は400~1200℃(好ましくは400~1100℃、より好ましくは400~1000℃)の範囲に設定することが好ましい。この範囲であれば、ゲル内に残存していた有機化合物(例えばキレート剤)はほとんど焼失する。焼成温度が400~600℃ではアナターゼ型を形成し、600℃より高くなるとルチル型が増えてくる。一次細孔14の孔径は、ポロゲンの分子量や添加量やゲル化温度を調整することにより制御することができる。一方、可溶性粒子を所定の液体に溶解させて除去することにより、チタニア骨格の表面に付着していた可溶性粒子が溶解してチタニア骨格の表面にピットが形成される。このピットが最終的にチタニア多孔体10の二次細孔16になる。そのため、可溶性粒子の粒径を調整することにより二次細孔16の孔径を制御することができる。また、可溶性粒子の添加量を調整することにより二次細孔16のトータルの体積を制御することができる。
 二次細孔よりも孔径の小さい三次細孔は、焼成前エッチング方式では、焼成温度が高いほど少なくなるが、焼成後エッチング方式では焼成温度を上げたとしてもかなりの部分が残り、しかも焼成温度が高いほど三次細孔の孔径が大きくなる傾向が見られる。焼成後エッチング方式でこうした傾向が見られるのは、焼成時に可溶性粒子がゲルの表面に存在しているためチタニアの結晶化による変形が可溶性粒子によって抑制されることで三次細孔が残るからではないかと推測される。三次細孔の孔径がBET法で10nm以下の場合、蛋白吸着などには孔径が小さすぎてあまり有効性がないが、10nmを超えると、蛋白吸着などに有効に利用することができる。焼成後エッチング方式で焼成温度を900~1200(好ましくは900~1100℃)にすると、一次細孔、二次細孔及び三次細孔を備えたルチル型のチタニア多孔体が得られる。焼成温度をこの範囲に設定したのは、900℃以上であればルチル型が十分得られるし、1200℃以下であれば一次細孔及び二次細孔が十分生成するし、1100℃以下であれば更に三次細孔まで十分生成するからである。ルチル型のチタニアは、光触媒機能がないかほとんどないため、生体への影響が少ない。また、本発明者の知る限り、ルチル型のチタニア多孔体は報告例がない。
[製造例2]
 製造例2は、(b1)所定の温度で焼失する可燃性粒子と、チタン(IV)アルコキシドと、キレート剤と、ポロゲンと、無機塩とを含み、可溶性粒子が分散した分散液をゲル化する工程と、(b2)得られたゲルからキレート剤を除去する工程と、(b3)キレート剤を除去した後のゲルを所定の焼成温度で焼成することにより、チタニア多孔体10を得る工程と、を含む。
・工程b1:ゲル化工程
 可燃性粒子としては、所定の温度で焼失する粒子を用いる。所定の温度としては、例えば工程b3での焼成温度が挙げられる。こうした可燃性粒子としては、例えばアクリル系粒子、メラミン系粒子、ポリエステル系粒子、ポリスチレン系粒子、ナイロン系粒子等の有機粒子などが挙げられる。このうち、アクリル系粒子が容易に焼失させることができるため好ましい。可燃性粒子の使用量は、チタン(IV)アルコキシドに対して重量比で1~50%であることが好ましく、3~25%であることがより好ましい。チタン(IV)アルコキシド、キレート剤、ポロゲン及び無機塩については、既に工程a1において説明したため、ここではその説明を省略する。
 ゲル化は、例えばキレート剤とポロゲンとチタン(IV)アルコキシドとを溶媒に溶解した混合溶液に可燃性粒子が分散した分散液に、無機塩の水溶液を滴下し、その後放置することにより行う。このゲル化は、工程a1のゲル化と比べて、可溶性粒子の代わりに可燃性粒子を用いる点が異なる以外は同じであるため、ここではその説明を省略する。
・工程b2:キレート剤除去工程
 この工程は、工程a2と同じであるため、ここではその説明を省略する。
・工程b3:可燃性粒子除去及び焼成工程
 キレート剤を除去した後のゲルを所定の焼成温度で焼成することにより、チタニア多孔体10を得る。焼成時、チタニア骨格の表面に付着していた可燃性粒子が焼失してチタニア骨格の表面にピットが形成される。焼成温度は400~1200℃(好ましくは400~1100℃、より好ましくは400~1000℃)の範囲に設定することが好ましい。この範囲であれば、ゲル内に残存していた有機化合物(例えばキレート剤)はほとんど焼失する。焼成温度が400~600℃ではアナターゼ型を形成し、600℃より高くなるとルチル型が増えてくる。一次細孔14の孔径は、ポロゲンの分子量や添加量やゲル化温度を調整することにより制御することができる。一方、可燃性粒子の粒径を調整することにより最終的に得られるチタニア多孔体10の二次細孔16の孔径を制御することができる。また、可燃性粒子の添加量を調整することにより二次細孔16のトータルの体積を制御することができる。
 チタニア多孔体10は、光触媒やクロマトグラフィなどの分野に利用可能である。具体的には、チタニア多孔体10の表面の-OH基と生体物質Aの表面の官能基(例えば-NH2基や-COOH基)の両方に反応する官能基を併せ持つ表面改質剤でチタニア多孔体10を処理することにより、チタニア多孔体10と生体物質Aとを結合させる。例としては、チタニア多孔体10の-OH基にアミノプロピルトリエトキシシランを修飾することでProtein Aを固定して抗体分離精製用クロマトグラフィ担体として利用できる。こうすることで、バイオ医薬品プロセスにおける精製工程で利用することが期待される。例えば、まず、動物細胞とウイルスと水と栄養分とを培養容器に入れてウイルスを培養することによりタンパク質(医薬)を生成させる。次に、遠心分離やMF膜分離(MFはMicrofiltrationの略)を用いて培養液から細胞を除去し、細胞除去後の培養液をチタニア多孔体10を担体とするカラムに通して不純物を除去する。その後、ウイルスを除去することにより目的とするタンパク質を取り出す。こうすれば、バイオ医薬品を高純度で得ることができる。他の分野としても、光触媒デバイス、色素増感型太陽電池、燃料電池用材料、リチウムイオン電池用材料、遮熱用顔料、白色顔料、UVカット顔料、エタノール改質触媒用担体、吸音材、水素キャリア吸蔵材料、多孔質エレクトロクロミック電極、フレキシブル有機EL照明用光散乱体、酸化チタン被覆医療機器、培養担体、抗菌マスク、水や空気の浄化フィルター等の用途でも使用することができる。
 以上説明したチタニア多孔体10は、全体がチタニアで構成されており、三次元網目構造を形成するチタニア骨格12の網目部分の一次細孔14に加えて、チタニア骨格12の表面に二次細孔16を備えた新規な構造となっている。そのため、このチタニア多孔体10は、光触媒やクロマトグラフィなどの新たな分野、例えば培養技術により生成した医療用タンパク質の分離精製などの分野への利用が期待される。また、チタニア多孔体10が二次細孔16よりも孔径の小さな三次細孔を備えている場合には、その三次細孔の蛋白吸着などへの利用も期待される。
 また、上述したチタニア多孔体10の製法によれば、ゾル-ゲル法での相分離型スピノーダル分解によって一次細孔14を形成し、テンプレート(可溶性粒子又は可燃性粒子)によって二次細孔16を形成するため、一次細孔14の孔径と二次細孔16の孔径とを独立して制御することができる。したがって、一次及び二次細孔14,16の各孔径が設計値に近いチタニア多孔体10を容易に製造することができる。例えば、一次細孔14の孔径は、ポロゲンの添加量や焼成温度などによって制御することができ、二次細孔16の孔径は、テンプレート(可溶性粒子又は可燃性粒子)の粒径などによって制御することができる。チタニア多孔体10に三次細孔を形成する場合には、焼成後エッチング方式の焼成温度によって三次細孔の孔径を制御することができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
[実施例1]
・ゲル化工程
 7号サンプル管にチタン(IV)プロポキシド(アルドリッチ製)5.04g、アセト酢酸エチル(東京化成製)2.58g、1-プロパノール(東京化成製)2.01gを秤量後、撹拌して均一な混合溶液とした。その混合溶液に可溶性粒子として親水性シリカ粒子(日本触媒製、シーホスター(登録商標)KE-S 10、粒径約100nm)を0.756g(15wt%/チタン(IV)プロポキシド)を加えてスターラーで均一になるまで撹拌した。次に、その混合溶液に分子量1万のポリエチレングリコール(アルドリッチ製)0.40gを入れて60℃下で溶解させた後、液温を40℃まで下げた。次に、スターラーで十分に撹拌しながら1Mの硝酸アンモニウム水溶液1mLを少しずつ3分間かけて滴下し、透明で黄色の重合液を得た。重合液の入ったスクリュー管瓶からスターラーの撹拌子を取り出した後、ふたをして40℃の恒温槽中に静置して24時間、ゲル化反応を行った。
・キレート剤除去工程
 エチルアルコール(和光純薬製)の濃度の異なる第1~第4溶液を調製した。エチルアルコール:水(質量比)は、第1溶液では9:1、第2溶液では6:4、第3溶液では3:7、第4溶液では0:10とした。まず、ゲル化を終了した容器に、第1溶液を容器一杯に入れ、常温で1日静置後にその溶液を廃棄した。続いて、第2溶液を容器一杯に入れ、常温で1日静置後にその溶液を廃棄する、という操作を第3溶液、第4溶液についても順次繰り返し行い、段階的にキレート剤の除去を行った。この工程では、キレート剤であるアセト酢酸エチルが加水分解されてアセト酢酸になり、そのアセト酢酸が速やかに脱炭酸してアセトンと炭酸ガスが生成した。
・シリカ粒子除去及び焼成工程
 キレート剤を除去したゲルを入れた容器に、1Mの水酸化ナトリウム水溶液を43mL入れ、室温で2日静置後に水溶液を廃棄し、その後イオン交換水で数回洗浄し、得られたゲルを自然乾燥した。これにより、チタニア骨格の表面に付着していたシリカ粒子が水酸化ナトリウム水溶液に溶解してチタニア骨格の表面にピットが形成された。続いて、自然乾燥した後の乾燥したゲルを、毎分1℃の昇温速度で600℃まで昇温した後、その温度で2時間保持して焼成した。このようにして焼成前エッチング方式により、チタニア多孔体を得た。得られたチタニア多孔体は、一次細孔の孔径が4.3μm、二次細孔の孔径が90nm、三次細孔の孔径が6.2nmであった。孔径は、以下のようにして求めた。すなわち、一次細孔の孔径は水銀圧入法により0.2μm~200μmの範囲を測定し(図4参照)、二次細孔及び三次細孔の孔径はBET法比表面積測定により2.5nm~200nm(0.2μm)の範囲を測定した(図5参照)。また、チタニア多孔体の比表面積をBET法で測定したところ、104m2/gであった。更に、チタニア多孔体の空隙率を測定したところ、47%であった。この空隙率は、BET法比表面積測定により2.5nmから200nmまでの全細孔容積(cm3/g)を二酸化チタンの比重を4として計算した二酸化チタンモノリスの骨格内の空隙率である(一次細孔の空隙分は含まない)。
[実施例2,3]
 実施例2,3では、疎水性シリカ粒子として日本アエロジル製の商品名NAX-50(粒径約40nm)を用い、その添加量をそれぞれ0.454g、0.353gとした以外は、実施例1と同様にしてチタニア多孔体を製造した。得られたチタニア多孔体は、実施例2では一次細孔が3.8μm、二次細孔が87nm、実施例3では一次細孔が3.9μm、二次細孔が76nmであった。なお、孔径は実施例1と同じように測定した。また、チタニア多孔体の比表面積をBET法で測定したところ、実施例2では78m2/g、実施例3では34.3m2/gであった。更に、チタニア多孔体の空隙率を測定したところ、実施例2では42%、実施例3では36%であった。
[実施例4]
 実施例4では、シリカ粒子除去及び焼成工程として実施例1とは異なる以下の工程を採用した以外は、実施例1と同様にしてチタニア多孔体を製造した。実施例4では、シリカ粒子除去及び焼成工程において、まず、キレート剤を除去したゲルを毎分1℃の昇温速度で600℃まで昇温した後、その温度で2時間保持して焼成した。その後、焼成体を1Mの水酸化ナトリウム水溶液に入れて室温で1日静置することにより、焼成体からシリカ粒子を溶解除去し、イオン交換水で数回洗浄し、自然乾燥した。このようにして焼成後エッチング方式により、チタニア多孔体を得た。得られたチタニア多孔体は、一次細孔が3.2μm、二次細孔が79nmであった。なお、孔径は実施例1と同じように測定した。また、チタニア多孔体の比表面積をBET法で測定したところ、101m2/gであった。更に、チタニア多孔体の空隙率を測定したところ、46%であった。
[実施例5]
・ゲル化工程
 ガラス製の5号のスクリュー管瓶にチタン(IV)プロポキシド(アルドリッチ製)5.04g、アセト酢酸エチル(東京化成製)2.58g、1-プロパノール(東京化成製)2.01gを秤量後、撹拌して均一な混合溶液とした。その混合溶液に可燃性粒子としてアクリル粒子(綜研化学製、MP-1451、平均粒径150nm)を0.504g(10wt%/チタン(IV)プロポキシド)を加えてスターラーで均一になるまで撹拌した。次に、その混合溶液に分子量1万のポリエチレングリコール(アルドリッチ製)0.40gを入れて60℃下で溶解させた後、液温を40℃まで下げた。次に、スターラーで十分に撹拌しながら1Mの硝酸アンモニウム水溶液1mLを少しずつ3分間かけて滴下し、透明で黄色の重合液を得た。重合液の入ったスクリュー管瓶からスターラーの撹拌子を取り出した後、ふたをして40℃の恒温槽中に静置して24時間、ゲル化反応を行った。
・キレート剤除去工程
 実施例1のキレート剤除去工程と同様にしてキレート剤の除去を行い、その後、イオン交換水で洗浄した後、自然乾燥を行った。
・アクリル粒子除去及び焼成工程
 自然乾燥後のゲルを、毎分1℃の昇温で600℃にした後2時間保持して焼成した。これにより、アクリル粒子が焼失されると共にチタニアゲルが焼成されてチタニア多孔体を得た。得られたチタニア多孔体は、一次細孔が4.3μm、二次細孔が95nmであった。なお、孔径は実施例1と同じように測定した。また、チタニア多孔体の比表面積をBET法で測定したところ、143m2/gであった。更に、チタニア多孔体の空隙率を測定したところ、55%であった。
[実施例6]
 実施例6では、キレート剤を除去したゲルを毎分1℃の昇温速度で800℃まで昇温したこと以外は、実施例4と同様にしてチタニア多孔体を製造した。得られたチタニア多孔体の特性を表1に示す。このチタニア多孔体のXRDチャートを用いてRIR法で定量分析を行ったところ、ルチル型が2.5%、残りがアナターゼ型であった。
[実施例7]
 実施例7では、親水性シリカ粒子として日本アエロジル製の商品名OX-50(粒径約40nm)を用いた以外は、実施例6と同様にしてチタニア多孔体を製造した。得られたチタニア多孔体の特性を表1に示す。
[実施例8]
 実施例8では、キレート剤を除去したゲルを毎分1℃の昇温速度で1000℃まで昇温したこと以外は、実施例4と同様にしてチタニア多孔体を製造した。得られたチタニア多孔体の特性を表1に示す。このチタニア多孔体のXRDチャートを用いてRIR法で定量分析を行ったところ、ルチル型が100%であった。
[実施例9]
 実施例9では、キレート剤を除去したゲルを毎分1℃の昇温速度で1200℃まで昇温したこと以外は、実施例4と同様にしてチタニア多孔体を製造した。得られたチタニア多孔体の特性を表1に示す。なお、実施例9のチタニア多孔体は、ルチル化への昇温後の保持時間が長くなっていることでルチル相内の構造の再編が十分に進み、ピークが明確でなくなったことから、三次細孔の孔径を確定することはできなかった。
[比較例1]
 実施例1のゲル化工程において、シリカ粒子とポリエチレングリコールを添加せずにゲル化反応を行い、シリカ粒子除去及び焼成工程において、シリカ粒子を除去する処理(水酸化ナトリウム水溶液にシリカ粒子を溶解する処理)を行わなかった以外は、実施例1と同様にしてチタニア焼成体を得た。得られたチタニア焼成体は、一次細孔も二次細孔もないチタニアの塊であった。
[比較例2]
 実施例1のゲル化工程において、シリカ粒子を添加せずにゲル化反応を行い、シリカ粒子除去及び焼成工程において、シリカ粒子を除去する処理(水酸化ナトリウム水溶液にシリカ粒子を溶解する処理)を行わなかった以外は、実施例1と同様にしてチタニア焼成体を得た。得られたチタニア焼成体は、一次細孔(孔径2.5μm)を有するが、二次細孔のないものであった。なお、孔径は実施例1と同じように測定した。
 各実施例、各比較例の結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 なお、上述した実施例は本発明を何ら限定するものでないことは言うまでもない。
 本発明は、特に限定するものではないが、例えば光触媒やクロマトグラフィなどの分野のほか、光触媒デバイス、色素増感型太陽電池、燃料電池用材料、リチウムイオン電池用材料、遮熱用顔料、白色顔料、UVカット顔料、エタノール改質触媒用担体、吸音材、水素キャリア吸蔵材料、多孔質エレクトロクロミック電極、フレキシブル有機EL照明用光散乱体、酸化チタン被覆医療機器、培養担体、抗菌マスク、水や空気の浄化フィルター等に利用可能である。
10 チタニア多孔体、12 チタニア骨格、14 一次細孔、16 二次細孔。

Claims (11)

  1.  全体がチタニアで構成されたチタニア多孔体であって、
     三次元網目構造を形成するチタニア骨格と、
     前記三次元構造の網目部分である一次細孔と、
     前記チタニア骨格の表面に設けられた二次細孔と、
     を備えたチタニア多孔体。
  2.  前記一次細孔の孔径は、0.05~50μmであり、
     前記二次細孔の孔径は、20~200nmである、
     請求項1に記載のチタニア多孔体。
  3.  請求項1又は2に記載のチタニア多孔体であって、
     前記チタニア骨格の表面に設けられ、前記二次細孔よりも孔径が小さい三次細孔
     を備えたチタニア多孔体。
  4.  前記三次細孔の孔径は、10~100nmである、
     請求項3に記載のチタニア多孔体。
  5.  ルチル型である、
     請求項3又は4に記載のチタニア多孔体。
  6. (a1)所定の液体に溶解する可溶性粒子と、チタン(IV)アルコキシドと、キレート剤と、ポロゲンと、無機塩とを含み、前記可溶性粒子が分散した分散液を静置状態でゲル化する工程と、
    (a2)得られたゲルから前記キレート剤を除去する工程と、
    (a3)前記キレート剤を除去した後のゲルを前記所定の液体に浸漬し、前記可溶性粒子を前記所定の液体に溶解させたあと所定の焼成温度で焼成することにより、請求項1~3のいずれか1項に記載のチタニア多孔体を得るか、又は、前記キレート剤を除去した後のゲルを所定の焼成温度で焼成したあと前記所定の液体に浸漬し、前記可溶性粒子を前記所定の液体に溶解させることにより、請求項1~5のいずれか1項に記載のチタニア多孔体を得る工程と、
     を含むチタニア多孔体の製法。
  7.  前記所定の液体は、アルカリ溶液であり、
     前記可溶性粒子は、シリカ粒子又はケイ酸塩粒子である、
     請求項6に記載のチタニア多孔体の製法。
  8. (b1)所定の温度で焼失する可燃性粒子と、チタン(IV)アルコキシドと、キレート剤と、ポロゲンと、無機塩とを含み、前記可燃性粒子が分散した分散液を静置状態でゲル化する工程と、
    (b2)得られたゲルから前記キレート剤を除去する工程と、
    (b3)前記キレート剤を除去した後のゲルを所定の焼成温度で焼成することにより、請求項1~5のいずれか1項に記載のチタニア多孔体を得る工程と、
     を含むチタニア多孔体の製法。
  9.  前記所定の温度は、前記所定の焼成温度であり、
     前記可燃性粒子は、有機粒子である、
     請求項8に記載のチタニア多孔体の製法。
  10.  前記所定の焼成温度は、400~1200℃である、
     請求項6~9のいずれか1項に記載のチタニア多孔体の製法。
  11.  前記工程(a3)では、前記キレート剤を除去した後のゲルを900~1200℃の焼成温度で焼成したあと前記所定の液体に浸漬し、前記可溶性粒子を前記所定の液体に溶解させることにより、請求項5に記載のチタニア多孔体を得る、
     請求項6又は7に記載のチタニア多孔体の製法。
PCT/JP2019/001680 2018-02-14 2019-01-21 チタニア多孔体及びその製法 WO2019159608A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020500346A JP7032744B2 (ja) 2018-02-14 2019-01-21 チタニア多孔体及びその製法
CN201980012711.1A CN111699165A (zh) 2018-02-14 2019-01-21 二氧化钛多孔体及其制法
EP19754624.5A EP3753913A4 (en) 2018-02-14 2019-01-21 TITANIUM DIOXIDE POROUS BODY AND ITS PRODUCTION PROCESS
US16/942,016 US11772983B2 (en) 2018-02-14 2020-07-29 Titania porous body and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/004975 2018-02-14
JP2018004975 2018-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/942,016 Continuation US11772983B2 (en) 2018-02-14 2020-07-29 Titania porous body and method for producing same

Publications (1)

Publication Number Publication Date
WO2019159608A1 true WO2019159608A1 (ja) 2019-08-22

Family

ID=67620164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001680 WO2019159608A1 (ja) 2018-02-14 2019-01-21 チタニア多孔体及びその製法

Country Status (5)

Country Link
US (1) US11772983B2 (ja)
EP (1) EP3753913A4 (ja)
JP (1) JP7032744B2 (ja)
CN (1) CN111699165A (ja)
WO (1) WO2019159608A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192240A1 (ja) * 2020-03-27 2021-09-30 日本碍子株式会社 多孔質ルチル型チタニア粒子及びその製法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021037A1 (ja) * 2005-08-19 2007-02-22 Kyoto University 無機系多孔質体及びその製造方法
JP2008532898A (ja) * 2005-03-09 2008-08-21 デグサ ノヴァラ テクノロジー ソチエタ ペル アツィオーニ ゾルゲル法によるモノリスの製造方法
JP2012111655A (ja) * 2010-11-24 2012-06-14 Rei Medical Co Ltd モノリス多孔体の製造方法
WO2013121801A1 (ja) * 2012-02-17 2013-08-22 独立行政法人科学技術振興機構 マクロ多孔性チタン化合物モノリスとその製造方法
WO2016136799A1 (ja) * 2015-02-26 2016-09-01 株式会社エスエヌジー チタニアからなるモノリス多孔体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449165B2 (en) * 2004-02-03 2008-11-11 Ut-Battelle, Llc Robust carbon monolith having hierarchical porosity
KR20090032050A (ko) * 2006-05-31 2009-03-31 메르크 파텐트 게엠베하 다공성 탄소 주조물의 제조 방법
KR100950853B1 (ko) * 2006-09-01 2010-03-31 주식회사 엘지화학 이산화티탄-유기 착화합물 졸, 그의 제조방법 및 그를포함하는 중굴절, 고굴절 및 초고굴절 코팅막 형성용조성물
CN101397137A (zh) * 2007-09-27 2009-04-01 刘文红 一类球形无机氧化物材料及其合成方法,改性方法和用途
CN101391811B (zh) * 2008-11-05 2011-07-20 北京科技大学 一种高比表面积二氧化钛的制备方法
CN101503212B (zh) * 2009-03-06 2010-09-29 华东理工大学 一种制备介孔二氧化钛的方法
CN104773756B (zh) * 2015-03-30 2016-04-13 华东理工大学 一种具有多级孔结构的二氧化钛微球及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532898A (ja) * 2005-03-09 2008-08-21 デグサ ノヴァラ テクノロジー ソチエタ ペル アツィオーニ ゾルゲル法によるモノリスの製造方法
WO2007021037A1 (ja) * 2005-08-19 2007-02-22 Kyoto University 無機系多孔質体及びその製造方法
JP2012111655A (ja) * 2010-11-24 2012-06-14 Rei Medical Co Ltd モノリス多孔体の製造方法
WO2013121801A1 (ja) * 2012-02-17 2013-08-22 独立行政法人科学技術振興機構 マクロ多孔性チタン化合物モノリスとその製造方法
WO2016136799A1 (ja) * 2015-02-26 2016-09-01 株式会社エスエヌジー チタニアからなるモノリス多孔体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CERAMICS JAPAN, vol. 52, no. 7, 2017, pages 488 - 489
J. AM. CERAM. SOC., vol. 93, no. 10, 2010, pages 3110 - 3115

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192240A1 (ja) * 2020-03-27 2021-09-30 日本碍子株式会社 多孔質ルチル型チタニア粒子及びその製法
JPWO2021192240A1 (ja) * 2020-03-27 2021-09-30
JP7254319B2 (ja) 2020-03-27 2023-04-10 日本碍子株式会社 多孔質ルチル型チタニア粒子の製法

Also Published As

Publication number Publication date
US20200354228A1 (en) 2020-11-12
EP3753913A4 (en) 2021-11-10
JP7032744B2 (ja) 2022-03-09
CN111699165A (zh) 2020-09-22
US11772983B2 (en) 2023-10-03
EP3753913A1 (en) 2020-12-23
JPWO2019159608A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP4686536B2 (ja) 光触媒、その製造方法、光触媒を含有する分散液および光触媒塗料組成物
Pan et al. Porous photocatalysts for advanced water purifications
CN108579721B (zh) 一种用于空气voc处理的光催化剂的制备方法
CN103769070B (zh) 一种有序大孔硅铝复合氧化物及其制备方法
CN104548749B (zh) 具有自我再生能力的壳聚糖基的高性能滤器
WO2019159608A1 (ja) チタニア多孔体及びその製法
CN107418288A (zh) 一种可净化空气的涂料添加剂及其制备方法及应用
JP5605560B2 (ja) 光触媒担持多孔質粘土材料
JPH03193679A (ja) 小さい細孔の大きさを有する金属酸化物多孔質セラミック膜
JPWO2007039985A1 (ja) 酸化珪素膜で被覆された光触媒を含有する無機焼結体
WO2015143861A1 (zh) 一种介孔三元复合材料及其制备方法
JP7295510B2 (ja) 多孔質チタニア粒子の製法
CN104386742A (zh) 一种高结晶度、大比表面积的介孔二氧化钛及其制备方法
JP2739128B2 (ja) チタンセラミック膜による有機化学薬品の分解方法
CN105688874A (zh) 一种具有分级孔状结构的TiO2纳米粉体及其制备方法
JP2011195394A (ja) 大孔径ナノ空間を有する遷移金属酸化物の透明薄膜、その製造方法及び色素増感型デバイス電極
CN111774056B (zh) 一种银修饰的二氧化钛-钛酸钙晶体薄膜材料的制备方法
KR20190087174A (ko) 동공형실리카구 제조방법 및 그 방법으로 제조된 동공형 실리카구
Fan et al. Polymer gel templating of free-standing inorganic monoliths for photocatalysis
CN113893841A (zh) 用于压电催化降解水中微量有机污染物的钛酸钡纳米材料及其制备和应用
RU2326818C1 (ru) Способ получения мезопористых наноструктурированных пленок диоксида титана и способ иммобилизации на них ферментов
WO2021192240A1 (ja) 多孔質ルチル型チタニア粒子及びその製法
JP2008043833A (ja) 酸化珪素膜で被覆された光触媒による水浄化方法
RU2790032C1 (ru) Способ получения сорбента на основе наноразмерного диоксида титана
CN108452791A (zh) 一种3DOM TiO2-CaO材料、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754624

Country of ref document: EP

Effective date: 20200914