WO2019158669A1 - Hartstoffschicht auf metallsubstrat - Google Patents

Hartstoffschicht auf metallsubstrat Download PDF

Info

Publication number
WO2019158669A1
WO2019158669A1 PCT/EP2019/053748 EP2019053748W WO2019158669A1 WO 2019158669 A1 WO2019158669 A1 WO 2019158669A1 EP 2019053748 W EP2019053748 W EP 2019053748W WO 2019158669 A1 WO2019158669 A1 WO 2019158669A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
hard material
mass concentration
chain
transmitting
Prior art date
Application number
PCT/EP2019/053748
Other languages
English (en)
French (fr)
Inventor
Bernd Watzinger
Matija Burger
Original Assignee
Iwis Motorsysteme Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65516524&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019158669(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Iwis Motorsysteme Gmbh & Co. Kg filed Critical Iwis Motorsysteme Gmbh & Co. Kg
Priority to US16/970,153 priority Critical patent/US11434976B2/en
Priority to CN201980019734.5A priority patent/CN112218976A/zh
Priority to EP19706474.4A priority patent/EP3752656A1/de
Priority to JP2020543929A priority patent/JP7303207B2/ja
Publication of WO2019158669A1 publication Critical patent/WO2019158669A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • F16G13/02Driving-chains
    • F16G13/06Driving-chains with links connected by parallel driving-pins with or without rollers so called open links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16SCONSTRUCTIONAL ELEMENTS IN GENERAL; STRUCTURES BUILT-UP FROM SUCH ELEMENTS, IN GENERAL
    • F16S5/00Other constructional members not restricted to an application fully provided for in a single class

Definitions

  • the invention relates to a method for producing a hard material coated metal component comprising the steps of preparing a release agent, adding the processed release agent to a powder mixture, providing the powder mixture, providing the substrate of metal, heating the powder and the substrate in a heater a layer on the substrate, wherein the layer has a higher hardness than the substrate, and cooling the substrate, and a metal component having a hard material layer.
  • Link chains each with a chain link interconnected chain links are in various forms in use.
  • the area of the chain links is stressed so much that there is a need for a wear-resistant bearing surface.
  • it is useful, in particular with regard to high volumes, to replace expensive solutions with cost-effective coating methods and processes.
  • DE 10 2005 047 449 A1 presents a wear-improved link chain whose chain pins or chain sleeves are provided with hard material coatings. These coatings are applied by PVD (PVD: Physical Vapor Deposition).
  • the hard material layer has a thickness of 1 to 10 ⁇ m and may further be coated with a sliding layer, e.g. PTFE, be surrounded.
  • the document DE 10 2006 052 869 A1 describes a link chain whose joint surface of the bolt and the sleeve is provided with a PVD hard material layer.
  • bolt and sleeve made of a high-carbon steel with a carbon content between 0.4 wt .-% and 1, 2 wt .-%.
  • DE 10 2011 006 294 A1 presents a method for producing a hardened coated metal component.
  • the metal component is heat treated to enrich carbon and / or nitrogen in the surface layer and then quenched to a temperature below that of martensite formation. Then, the metal component is tempered to a higher temperature than the temperature at which the subsequent coating process takes place.
  • the coating itself is carried out by CVD or PVD (CVD: Chemical Vapor Deposition).
  • DE 10 2016 215 709 A1 shows chain components such as sleeves, lugs, bolts and rollers made of steel, which are provided with a wear-reducing CrN layer.
  • the CrN layer is produced by a CVD method.
  • the nitrogen is obtained from the optionally nitrided steel before the treatment.
  • a joint for a roller or sleeve chain is presented in WO 2014019699 A1.
  • a nitridic or carbide hard coating is applied to the joint by PVD or CVD techniques.
  • PVD processes require a working pressure of 10-4 to 10 Pa and are operated at operating temperatures of several hundred ° C, depending on the type of coating. PVD processes thus place high demands on the coating chamber. In addition, they are not suitable for bulk goods.
  • Substrate and material to be deposited (target) are spatially separated in the coating chamber. PVD processes are so-called visual line processes, ie only the surfaces visible from the target are coated. Internal surfaces or holes are thinner coated. In the case of the powder processes, on the other hand, there is the problem that the diffusion of carbon into the hard material layer leads to the formation of carbides.
  • nitrides and in particular chromium nitride, promises significantly better service lives of the component in terms of wear, it is necessary to improve the formation of nitrides, especially in the near-surface regions. This achieves the solutions presented in the prior art in any way.
  • the object of the invention is achieved by a device according to claim 1.
  • the chain component according to the invention of a chain for transmitting a force is coated with a hard material layer.
  • the chain component comprises a steel-based substrate and a hard material layer on an outside of the substrate.
  • the hard material layer is formed to have metal nitrides.
  • the mass concentration of carbon (C) in the hard material layer decreases toward the outside of the hard material layer.
  • CVD Chemical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • the hard material layer also increases the Corrosion resistance.
  • carbon-containing steels may be suitable as a substrate, since these steels have sufficient strength and tempering resistance.
  • the hard material layer can consist of both metallic and non-metallic hard materials. Suitable metallic hard materials are all carbides, nitrides, carbonitrides, borides and silicides of the transition metals, for example chromium, tungsten, zirconium, titanium.
  • Diamond and DLC Diamond Like Carbon
  • boron carbide cubic boron nitride, silicon carbide or aluminum nitride are suitable as non-metallic hard materials.
  • metallic nitride formers in particular chromium nitride (CrN)
  • CrN chromium nitride
  • Chromium nitride has several advantages over other metallic and non-metallic hard materials.
  • chromium nitride can be deposited by means of CVD and, with good adhesion to the substrate, a thin layer of hard material with a layer thickness of at least 1 to 5 ⁇ m produces high wear resistance.
  • the CVD method offers advantages over the PVD method known from the prior art for producing a hard material layer.
  • the CVD process is bulk material-compatible with respect to the PVD process and offers economic advantages in terms of plant technology, operation and process technology:
  • the substrate to be coated is mixed, for example in a rotary drum with nitrogen-containing powder.
  • the coating process takes several hours at a certain process temperature and pressure. All accessible surfaces of the substrate are evenly coated, even tight holes.
  • the coated substrate is cooled.
  • the coating is carried out by evaporation of the material to be deposited at working pressures of 10 4 to 10 Pa.
  • the hard material layer is designed so that it consists essentially of CrN. It has on the surface of the component an outer side (outer side) and an inner side in contact with the substrate. Due to the use of carbon-containing steels as a substrate, the carbon diffuses out of the steel into the hard material layer at the high process temperatures and forms there CrNC and / or CrC.
  • the hard material layer is formed such that the C mass concentration on the outside of the hard material layer is lower than on the inside. As a result, the wear resistance and thus the life of the chain component according to the invention is significantly increased. Furthermore, the hard material layer has on its outer side a significantly higher metal nitride content, which leads to an improvement in the wear resistance compared to a hard material layer of metal carbides.
  • the mass concentration of the nitrogen on the outer surface of the hard material layer is greater than the mass concentration of the carbon.
  • the ratio of the mass concentrations of nitrogen to carbon is greater than 3: 1, more preferably greater than 5: 1.
  • the C mass concentration in a region close to the substrate in the direction of the outside of the hard material layer increases in the hard material layer, the C mass concentration in a region close to the substrate in the direction of the outside of the hard material layer.
  • the C mass concentration has a maximum in the hard material layer.
  • the distance of the maximum of the C mass concentration in the hard material layer to the outside of the hard material layer is smaller than the distance of the maximum of the C mass concentration in the hard material layer to the boundary between the hard material layer and the substrate.
  • the amount of slope of the C mass concentration in the hard material layer in a region close to the substrate is higher than the amount of the slope in a region of decreasing C mass concentration.
  • the C mass concentration steeply increases in a region near the substrate. As a result, a large part of the carbon available in the hard material layer is bound in a large depth of the hard material layer.
  • the mass concentration of nitrogen (N) in the hard material layer increases in the direction of the outside of the hard material layer.
  • the outside of the hard material layer therefore has a higher proportion of CrN than deeper regions.
  • the slope of the N mass concentration in the hard material layer in a region close to the substrate is higher than the slope in a region near the outside of the hard material layer.
  • the N mass concentration of the hard material layer therefore has a maximum value near the surface of the substrate.
  • the mean N mass concentration in the hard material layer is greater than the average C mass concentration in the hard material layer.
  • the N mass concentration can advantageously be increased by suitable process parameters, for example by nitriding the substrate or / and by using a nitrogen-containing powder.
  • the average N mass concentration in the hard material layer is greater than the mean C mass concentration in the hard material layer by a factor of 2, preferably by a factor of 3 and more preferably by a factor of 4. This design ensures that the hard material layer is built up to a large extent from CrN.
  • the average N mass concentration in the near-surface region of the hard material layer at each depth is greater than the average C mass concentration in the hard material layer.
  • carbon of the carbonaceous steel substrate accumulates. This carbon enrichment leads to the formation of carbides, mainly iron and chromium carbides.
  • the near-surface region comprises a depth of up to 50% of the layer thickness, preferably 65% of the layer thickness and particularly preferably up to 80% of the layer thickness.
  • the average mass concentration of chromium (Cr) in the hard material layer is greater than the average mass concentration of iron (Fe) in the hard material layer.
  • Cr is predominantly incorporated into the hard material layer by the coating process, e.g. by a Cr, Fe-containing powder during the CVD process.
  • the Fe contained in the hard material layer improves the adhesive properties of the hard material layer on the substrate and prevents flaking.
  • the average Cr mass concentration in the hard material layer is greater than the mean Fe mass concentration in the hard material layer by a factor of 2, preferably by a factor of 4 and more preferably by a factor of 6. To the adhesive properties of the hard material layer on the substrate too improve, suffice small amounts of Fe in the hard material layer or the diffusion layer.
  • the average Cr mass concentration in the near-surface region of the hard material layer at each depth is greater than the mean Fe mass concentration in the hard material layer.
  • the near-surface region comprises a depth of up to 50% of the layer thickness, preferably 65% of the layer thickness and particularly preferably up to 80% of the layer thickness.
  • Fig. 2 depth profile analysis of the sample 1 for the elements Fe, Cr, N and C.
  • Fig. 3 depth profile analysis of the sample 2 for the elements Fe, Cr, N and C.
  • Fig. 1 shows two links of a chain 10, e.g. can be used in chain drives.
  • the chain 10 is designed as a sleeve chain, each connected via a chain link inner chain links and outer chain links.
  • the inner chain link in this case consists of two parallel inner plates 13 and two inner plates 13 interconnecting sleeves 12, wherein the sleeves 12 are perpendicular to the inner plates 13.
  • the outer chain links 14 consist of two parallel outer plates 14, which are connected to each other with two bolts 11, wherein the bolts 11 rotatably in the Sleeves 12 of the inner chain links 13 are mounted.
  • the outer chain link 14 is rotatably attached to an adjacent inner chain link 13 by the bolt 11 and connects the inner link 13 to a second inner link 13 through the outer links 14, the outer links 14 being parallel to the inner links 13.
  • the bolts 1 1 of the outer chain link 14 are rotatably mounted in the sleeves 12 of the inner chain link 13, whereby the connection in each case form a chain link of the chain 10.
  • the bolts 1 1 of the chain 10 are made entirely of a carbon-containing steel, wherein the joint surface of the bolt 1 1 is provided with a deposited in a CVD process CrN hard material layer.
  • the sleeve 12 may be made of a carbonaceous material and be provided on its articular surface or the bearing surface with a CVD hard material layer.
  • the concentration profiles of two different chain components according to the invention are presented, which were each coated with a hard material layer by CVD method.
  • the samples are bolts 1 1 made of a nitrided steel 40CrMoV13-9.
  • the layers consist of chromium nitrides and carbides, the layer thicknesses are around 10 pm.
  • the concentration profiles of the two samples were determined by the Glow Discharge Optical Emission Spectroscopy (GD-OES) method.
  • the metallic samples are used as a cathode in a DC plasma. Starting from the surface, the sample is gradually removed by sputtering with argon ions, the sample layer by layer. The ablated atoms pass through diffusion into the plasma. Excited by collision processes, these photons emit characteristic wavelengths, which are recorded by means of a downstream spectrometer and then quantified.
  • FIG. 2 shows the concentration profile of sample 1.
  • the mixture was first heated from 0 to 960 ° C. for about 1 h.
  • the hold time was 6 hours and then it was cooled slowly (about 10 hours) to 200 ° C.
  • the reactor was purged with nitrogen.
  • the horizontal axis indicates the depth, to better view in logarithmic scaling.
  • the vertical axis also shows the mass concentration for relative clarity in terms of clarity. 100% on the vertical axis corresponds to a mass concentration of the elements Fe and Cr of 100%, of N 20% and of C 5%.
  • the Fe mass concentration is in the range of 0 to 7.5 pm constant near 0%. From 8 pm the Fe mass concentration increases to 5%. In the low 10 pm range, the Fe mass concentration increases strongly to 90% to 27 pm. From a depth greater than 27 pm, the Fe mass concentration increases constantly with a slight slope to 92% at 50 pm.
  • the Cr mass concentration increases constantly in the range from 0 to 7.5 pm from 86% at 0 pm to 88% at 7.5 pm. From a depth of 7.5 pm, the Cr mass concentration drops sharply to a value of 10% up to 25 pm. From a depth of 25 pm, the Cr mass concentration drops to a value of 5% at a depth of 50 pm.
  • the N mass concentration has a value of 10.8% at 0 pm and drops to a value of 6% at 7.5 pm.
  • the decrease of the mass concentration is not constant, at a depth of 2.5 pm an increase of the N mass concentration to 9.4% can be seen. From a depth of 7.5 pm, the N mass concentration increases sharply to a maximum of 15.6% at 10 pm. At a depth of 13 pm, the N mass concentration drops sharply to a value of 2% at 25 pm.
  • the thickness of the layer is therefore about 13 pm.
  • the C mass concentration at 0 pm has a value of 0.75% and increases to a value of 1.25% at 2.5 pm. From a depth of 2.5 pm, the C mass concentration increases sharply to a maximum of 2.75% at 8 pm. From a depth of 8 pm, the C mass concentration drops sharply to a value of 0.5% at 25 pm.
  • FIG. 3 shows the concentration profile of the sample 2 in which an intermediate layer consisting essentially of CrC has been incorporated into the hard material layer.
  • the mixture was heated from 0 to 950 ° C for approx. 45 min.
  • the holding time was 7 h and then was cooled slowly (about 10 h) to 200 ° C.
  • the reactor was purged with nitrogen.
  • the horizontal axis indicates the depth, also in logarithmic scale.
  • the vertical axis shows the mass concentration in relative scale. 100% on the vertical axis corresponds to a mass concentration of the elements Fe and Cr of 100%, of N 20% and of C 5%.
  • the Fe mass concentration is in the range of 0 to 3 pm constant near 0%. From 3 pm the Fe mass concentration increases to 5%. In the range below 8 pm the Fe
  • Mass concentration strong at 88% to 27 pm. From a depth greater than 27 pm, the Fe mass concentration increases constantly with a slight slope to 90% at 50 pm.
  • the Cr mass concentration is at a depth of 0 pm at 81% to drop to a value of 78% at a depth of 2 pm. From a depth of 2 pm, the Cr
  • Mass concentration decreases from a depth of 3 pm to a value of 75% at a depth of 9 pm. From a depth of 9 pm, the Cr mass concentration drops sharply to a value of 5% up to 25 pm.
  • the N mass concentration has a value of 9.8% at 0 pm and drops to a value of 6% at 7.5 pm.
  • the decrease of the mass concentration is not constant, at a depth of 2.5 pm an increase of the N mass concentration to 9.4% can be seen. From a depth of 7.5 pm, the N mass concentration increases sharply to a maximum of 15.6% at 10 pm.
  • the N- Mass concentration strongly to a value of 2% at 25 mh ⁇ . The thickness of the layer is therefore about 12 mh ⁇ .
  • the C mass concentration has a value of 2.5% at 0 mhh depth and rises to a value of 2.6% at 2 mh ⁇ . From a depth of 2 mhh, the C mass concentration rises sharply to a maximum value of 3.75% at 4 mh ⁇ . From a depth of 4 mhh, the C mass concentration drops sharply to a value of 0.35% at 15 mhh depth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Die Erfindung betrifft eine Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht, die ein Substrat auf Stahlbasis und eine Hartstoffschicht an einer Außenseite des Substrates auf Stahlbasis umfasst, wobei die Hartstoffschicht Metallnitride enthält, und die C-Massekonzentration in der Hartstoffschicht in Richtung zur Außenseite der Hartstoffschicht abnimmt.

Description

H A RT S T O F F S C H I C H T A U F M E T A L L S U B S T R AT
Die Erfindung betrifft ein Verfahren zur Herstellung eines mit einer Hartstoffschicht beschichteten Metallbauteils, das die Verfahrensschritte Aufbereiten eines Trennmittels, Zufügen des aufbereiteten Trennmittels zu einer Pulvermischung, Bereitstellen der Pulvermischung, Bereitstellen des Substrats aus Metall, Heizen des Pulvers und des Substrats in einer Heizvorrichtung, Abscheiden einer Schicht auf dem Substrat, wobei die Schicht eine höhere Härte aufweist als das Substrat, und Abkühlen des Substrats, sowie ein Metallbauteil mit einer Hartstoffschicht.
Stand der Technik
Gelenkketten mit jeweils über ein Kettengelenk miteinander verbundenen Kettengliedern sind in vielfältiger Form im Einsatz. Im Betrieb als Antriebs- oder Förderketten wird insbesondere der Bereich der Kettengelenke so stark beansprucht, dass ein Bedarf an einer verschleißbeständigen Lagerfläche besteht. Auch ist es insbesondere im Hinblick auf hohe Stückzahlen sinnvoll, aufwändige Lösungen durch kostengünstige Beschichtungsverfahren und -prozesse zu ersetzen.
DE 10 2005 047 449 A1 stellt eine verschleissverbesserte Gliederkette vor, deren Kettenbolzen bzw. Kettenhülsen mit Hartstoffbeschichtungen versehen sind. Diese Beschichtungen sind mittels PVD-Verfahren (PVD: Physical Vapour Deposition) aufgebracht. Die Hartstoffschicht weist eine Dicke von 1 bis 10 pm auf und kann weiterhin mit einer Gleitstoffschicht, z.B. PTFE, umgeben sein.
In der Schrift DE 10 2006 052 869 A1 wird eine Gliederkette beschrieben, deren Gelenkfläche des Bolzens und der Hülse mit einer PVD-Hartstoffschicht versehen ist. Dabei bestehen Bolzen und Hülse aus einem hochkohlenstoffhaltigen Stahl mit einem Kohlenstoffanteil zwischen 0,4 Gew.-% und 1 ,2 Gew.-%.
DE 10 2011 006 294 A1 stellt ein Verfahren zur Herstellung eines gehärteten beschichteten Metallbauteils vor. Das Metallbauteil wird zur Anreicherung von Kohlenstoff und/oder Stickstoff in der Randschicht wärmebehandelt und danach auf eine Temperatur unterhalb der Martensitbildung abgeschreckt. Dann wird das Metallbauteil auf eine höhere Temperatur angelassen als die Temperatur, bei der der nachfolgende Beschichtungsprozess stattfindet. Die Beschichtung selbst erfolgt durch CVD- oder PVD- Verfahren (CVD: Chemical Vapour Deposition).
In DE 10 2013 222 244 A1 wird eine Kettenlasche für eine Kette beschrieben, die mit einer reibungsmindernden tribologischen Beschichtung versehen ist. Die Beschichtung wird durch PVD- oder PACVD-Verfahren aufgetragen.
DE 10 2016 215 709 A1 zeigt Kettenkomponenten wie Hülsen, Laschen, Bolzen und Rollen aus Stahl, die mit einer verschleissmindernden CrN-Schicht versehen sind. Die CrN-Schicht wird durch ein CVD-Verfahren hergestellt. Der Stickstoff wird dabei aus dem ggf. vor der Behandlung nitrierten Stahl bezogen.
Ein Gelenk für eine Rollen- oder Hülsenkette wird in WO 2014019699 A1 vorgestellt. Eine nitridische oder karbidische Hartstoffschicht wird mittels PVD- oder CVD-Verfahren auf das Gelenk aufgetragen.
Die genannten Lösungen zur Herstellung eines gehärteten beschichteten Metallbauteils weisen Nachteile auf. PVD-Verfahren benötigen einen Arbeitsdruck von 10-4 bis 10 Pa und werden bei Arbeitstemperaturen von abhängig von der Art der Beschichtung bei mehreren hundert °C betrieben. PVD-Verfahren stellen also hohe Anforderungen an die Beschichtungskammer. Außerdem sind sie nicht schüttgut-tauglich. Substrat und abzuscheidendes Material (Target) sind räumlich in der Beschichtungskammer getrennt. PVD-Verfahren sind sog. Sichtlinienprozesse, d.h. nur die vom Target aus sichtbaren Flächen werden beschichtet. Innen liegende Flächen oder Bohrungen werden dünner beschichtet. Bei den Pulverfahren besteht demgegenüber das Problem, dass die Diffusion von Kohlenstoff in die Hartstoffschicht zur Bildung von Karbiden führt. Da aber Nitride und hier insbesondere Chromnitrid im Hinblick auf den Verschleiß deutlich bessere Lebensdauern des Bauteils im Betrieb verspricht, gilt es, die Bildung von Nitriden insbesondere in den oberflächennahen Bereichen zu verbessern. Dies gelingt den im Stand der Technik vorgestellten Lösungen in keiner Weise.
Es ist daher Aufgabe der vorliegenden Erfindung, ein gehärtetes nitrid-beschichtetes Metallbauteil bereitzustellen, das eine hohe Qualität und Lebensdauer in der Hartstoffschicht aufweist und einfach und kostengünstig in einem Massenproduktionsproduktionsprozess herzustellen ist, die Beschichtung von hohen Stückzahlen pro Zeiteinheit ermöglicht und kostengünstig zu betreiben ist.
Die erfindungsgemäße Aufgabe wird durch eine Vorrichtung gemäß Anspruch 1 gelöst.
Die erfindungsgemäße Kettenkomponente einer Kette zur Übertragung einer Kraft ist mit einer Hartstoffschicht beschichtet. Die Kettenkomponente weist ein Substrat auf Stahlbasis sowie eine Hartstoffschicht an einer Außenseite des Substrates auf. Die Hartstoffschicht ist so ausgebildet, dass sie Metallnitride aufweist. Insbesondere nimmt erfindungsgemäß die Massekonzentration von Kohlenstoff (C) in der Hartstoffschicht in Richtung zur Außenseite der Hartstoffschicht ab.
Durch CVD-Beschichtung (Chemical Vapour Deposition) wird eine harte Schicht auf dem Substrat aus kohlenstoffhaltigem Stahl abgeschieden, die eine große Abrieb- und Verschleißfestigkeit, eine große Härte und Temperaturbeständigkeit, eine geringe Reibung sowie gute chemische Eigenschaften und eine geringe Haftneigung aufweist. Neben der Verbesserung der Verschleißbeständigkeit erhöht die Hartstoffschicht auch die Korrosionsbeständigkeit. Dabei können kohlenstoffhaltige Stähle als Substrat geeignet sein, da diese Stähle eine ausreichende Festigkeit und Anlassbeständigkeit aufweisen. Die Hartstoffschicht kann sowohl aus metallischen als auch aus nichtmetallischen Hartstoffen bestehen. Als metallische Hartstoffe kommen alle Karbide, Nitride, Karbonitride, Boride und Silzide der Übergangsmetalle, z.B. Chrom, Wolfram, Zirkonium, Titan in Frage. Als nichtmetallische Hartstoffe sind z.B. Diamant und DLC (Diamond Like Carbon) sowie Korund, Borkabid, kubisches Bornitrid, Siliziumcarbid oder Aluminiumnitrid geeignet. Für die direkte Beschichtung der Oberflächen von Substraten aus hochkohlenstoffhaltigem Stahl haben sich im Besonderen metallische Nitridbildner, insbesondere Chromnitrid (CrN), als geeignet herausgestellt. Im Vergleich zu anderen metallischen und nichtmetallischen Hartstoffen weist Chromnitrid einige Vorteile auf. Außerdem lässt sich Chromnitrid mittels CVD abscheiden und erzeugt bei einer guten Haftung auf dem Substrat eine dünne Hartstoffschicht mit einer Schichtdicke von mindestens 1 bis 5 pm eine hohe Verschleißbeständigkeit. Das CVD-Verfahren bietet Vorteile gegenüber dem aus dem Stand der Technik bekannten PVD-Verfahren zur Erzeugung einer Hartstoffschicht. Das CVD-Verfahren ist gegenüber dem PVD-Verfahren schüttgut-tauglich und bietet wirtschaftliche Vorteile hinsichtlich Anlagentechnik, Bedienung und Prozesstechnik: Das zu beschichtende Substrat wird z.B. in einer Drehtrommel mit stickstoffhaltigen Pulver vermengt. Der Beschichtungsprozess erfolgt in mehreren Stunden bei einer bestimmten Prozesstemperatur und Normaldruck. Alle erreichbaren Flächen des Substrates werden gleichmäßig beschichtet, auch enge Bohrungen. Am Ende des Beschichtungsprozesses wird das beschichtete Substrat abgekühlt. Beim PVD-Verfahren sind Substrat und das abzuscheidende Material nachteilig räumlich getrennt, die Beschichtung erfolgt durch Verdampfen des abzuscheidenden Materials bei Arbeitsdrücken von 104 bis 10 Pa.
Die Hartstoffschicht ist so ausgeführt, dass sie im Wesentlichen aus CrN besteht. Sie weist an der Oberfläche des Bauteils eine außen liegende Seite (Außenseite) und eine innenliegende Seite die in Kontakt zum Substrat auf. Durch die Verwendung von kohlenstoffhaltigen Stählen als Substrat diffundiert bei den hohen Prozesstemperaturen der Kohlenstoff aus dem Stahl in die Hartstoffschicht und bildet dort CrNC oder/und CrC. Vorteilhafterweise ist die Hartstoffschicht derart ausgebildet, dass die C- Massenkonzentration an der Außenseite der Hartstoffschicht geringer ist als an der Innenseite. Dadurch wird die Verschleißbeständigkeit und damit die Lebensdauer der erfindungsgemäßen Kettenkomponente deutlich erhöht. Weiterhin weist die Hartstoffschicht an ihrer Außenseite einen deutlich höheren Metallnitrid-Gehalt auf, was zu einer Verbesserung der Verschleißbeständigkeit gegenüber einer Hartstoffschicht aus Metallkarbiden führt.
Weiterführende Ausbildungen der Erfindung zur Sensorvorrichtung sind in den Unteransprüchen 2 bis 15 dargelegt.
In einer Weiterbildung der Erfindung ist die Massenkonzentration des Stickstoffs an der außenliegenden Oberfläche der Hartstoffschicht größer als die Massenkonzentration des Kohlenstoffs. In einer bevorzugten Weiterbildung ist das Verhältnis der Massenkonzentrationen von Stickstoff zu Kohlenstoff größer als 3:1 , besonders bevorzugt größer als 5:1.
In einer weiteren Gestaltung der Erfindung steigt in der Hartstoffschicht die C- Massekonzentration in einem Bereich nahe zum Substrat in Richtung zur Außenseite der Hartstoffschicht an. Durch Diffusion des Kohlenstoffs an die Oberfläche des aus kohlenstoffhaltigem Stahl bestehenden Substrates reichert sich an der Oberfläche des Substrates Kohlenstoff an. Die C- Massekonzentration der Hartstoffschicht steigt daher nahe der Oberfläche des Substrates.
In einer weiteren Ausführung der Erfindung weist in der Hartstoffschicht die C- Massekonzentration ein Maximum auf. Durch Diffusion des Kohlenstoffs an die Oberfläche des aus kohlenstoffhaltigem Stahl bestehenden Substrates reichert sich an der Oberfläche des Substrates Kohlenstoff an. Die C- Massekonzentration der Hartstoffschicht weist daher einen Maximalwert nahe der Oberfläche des Substrates auf.
In einer weiteren Ausbildung der Erfindung ist der Abstand des Maximums der C- Massekonzentration in der Hartstoffschicht zur Außenseite der Hartstoffschicht kleiner als der Abstand des Maximums der C- Massekonzentration in der Hartstoffschicht zur Grenze zwischen Hartstoffschicht und Substrat. Durch Diffusion des Kohlenstoffs an die Oberfläche des aus kohlenstoffhaltigem Stahl bestehenden Substrates reichert sich an der Oberfläche des Substrates Kohlenstoff an. Der Maximalwert der C- Massekonzentration in der Hartstoffschicht befindet sich daher nahe dem Substrat.
In einer weiteren Ausgestaltung der Erfindung ist der Betrag der Steigung der C- Massekonzentration in der Hartstoffschicht in einem Bereich nahe zum Substrat höher als der Betrag der Steigung in einem Bereich der abnehmenden C-Massekonzentration. Die C- Massekonzentration steigt in einem Bereich nahe des Substrates steil an. Dadurch wird ein Großteil des in der Hartstoffschicht verfügbaren Kohlenstoffs in einer großen Tiefe der Hartstoffschicht gebunden.
In einem weiteren Aspekt der Erfindung steigt die Massekonzentration von Stickstoff (N) in der Hartstoffschicht in Richtung der Außenseite der Hartstoffschicht an. Die Außenseite der Hartstoffschicht weist also einen höheren Anteil an CrN auf als tiefere Bereiche.
In einer weiteren Gestaltung der Erfindung ist die Steigung der N- Massekonzentration in der Hartstoffschicht in einem Bereich nahe zum Substrat höher als die Steigung in einem Bereich nahe der Außenseite der Hartstoffschicht. Die N- Massekonzentration der Hartstoffschicht weist daher einen Maximalwert nahe der Oberfläche des Substrates auf.
In einer weiteren Ausbildung der Erfindung ist die mittlere N-Massekonzentration in der Hartstoffschicht größer als die mittlere C-Massekonzentration in der Hartstoffschicht. Zur Ausbildung einer möglichst homogenen CrN-Hartstoffschicht kann die N- Massekonzentration vorteilhafterweise durch geeignete Prozessparameter erhöht werden, z.B. durch Nitrierung des Substrates oder/und durch Verwendung eines stickstoffhaltigen Pulvers.
In einer weiteren Ausführung der Erfindung ist die mittlere N- Massekonzentration in der Hartstoffschicht um Faktor 2, bevorzugt um Faktor 3 und besonders bevorzugt um Faktor 4 größer als die mittlere C- Massekonzentration in der Hartstoffschicht. Diese Ausführung stellt sicher, dass die Hartstoffschicht zu einem großen Anteil aus CrN aufgebaut wird.
In einer weiteren Ausgestaltung der Erfindung ist die mittlere N- Massekonzentration im oberflächennahen Bereich der Hartstoffschicht in jeder Tiefe größer ist als die mittlere C- Massekonzentration in der Hartstoffschicht. In größeren Tiefen der Hartstoffschicht nahe dem Substrat reichert sich Kohlenstoff des aus kohlenstoffhaltigem Stahl bestehenden Substrates an. Diese Kohlenstoffanreicherung führt zur Bildung von Karbiden, vornehmlich Eisen- und Chromkarbiden. Der oberflächennahe Bereich umfasst eine Tiefe bis 50% der Schichtdicke, bevorzugt 65% der Schichtdicke und besonders bevorzugt bis 80% der Schichtdicke.
In einer weiteren Ausbildung der Erfindung ist die mittlere Massekonzentration von Chrom (Cr) in der Hartstoffschicht größer als die mittlere Massekonzentration von Eisen (Fe) in der Hartstoffschicht. Cr wird durch den Beschichtungsprozess in die Hartstoffschicht vorwiegend eingebaut, z.B. durch ein Cr, Fe- haltiges Pulver während des CVD- Prozesses. Das in der Hartstoffschicht enthaltene Fe verbessert die Hafteigenschaften der Hartstoffschicht auf dem Substrat und verhindert Abplatzungen.
In einer weiteren Gestaltung der Erfindung ist die mittlere Cr- Massekonzentration in der Hartstoffschicht um einen Faktor von 2, bevorzugt um einen Faktor von 4 und besonders bevorzugt um einen Faktor von 6 größer als die mittlere Fe- Massekonzentration in der Hartstoffschicht. Um die Hafteigenschaften der Hartstoffschicht auf dem Substrat zu verbessern, genügen geringe Mengen Fe in der Hartstoffschicht bzw. der Diffusionsschicht.
In einer weiteren Ausgestaltung der Erfindung ist die mittlere Cr- Massekonzentration im oberflächennahen Bereich der Hartstoffschicht in jeder Tiefe größer ist als die mittlere Fe- Massekonzentration in der Hartstoffschicht. In größeren Tiefen der Hartstoffschicht nahe dem Substrat reichert sich Fe des aus Stahl bestehenden Substrates an. Der oberflächennahe Bereich umfasst eine Tiefe bis 50% der Schichtdicke, bevorzugt 65% der Schichtdicke und besonders bevorzugt bis 80% der Schichtdicke.
Ausführungsbeispiele der erfindungsgemäßen Sensorvorrichtung und des erfindungsgemäßen Verfahrens sind in den Zeichnungen schematisch vereinfacht dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Fig. 1 Kette mit hartstoffbeschichteten Bestandteilen
Fig. 2 Tiefenprofilanalyse der Probe 1 für die Elemente Fe, Cr, N und C
Fig. 3 Tiefenprofilanalyse der Probe 2 für die Elemente Fe, Cr, N und C
Fig. 1 zeigt zwei Kettenglieder einer Kette 10, die z.B. in Kettenantrieben eingesetzt werden kann. Die Kette 10 ist als Hülsenkette ausgeführt, mit jeweils über ein Kettengelenk verbundenen Innenkettengliedern und Außenkettengliedern. Das Innenkettenglied besteht hierbei aus jeweils zwei parallel verlaufenden Innenlaschen 13 und zwei die Innenlaschen 13 miteinander verbindenden Hülsen 12, wobei die Hülsen 12 senkrecht zu den Innenlaschen 13 stehen.
Die Außenkettenglieder 14 bestehen aus zwei parallel verlaufenden Außenlaschen 14, die mit zwei Bolzen 11 miteinander verbunden sind, wobei die Bolzen 11 drehbar in den Hülsen 12 der Innenkettenglieder 13 gelagert sind. Das Außenkettenglied 14 ist durch den Bolzen 11 drehbar an einem angrenzenden Innenkettenglied 13 befestigt und verbindet durch die Außenlaschen 14 das Innenkettenglied 13 mit einem zweiten Innenkettenglied 13, wobei die Außenlaschen 14 parallel zu den Innenlaschen 13 verlaufen. Die Bolzen 1 1 des Außenkettenglieds 14 sind in den Hülsen 12 des Innenkettenglieds 13 drehbar gelagert, wodurch die Verbindung jeweils ein Kettengelenk der Kette 10 bilden. Die Bolzen 1 1 der Kette 10 bestehen vollständig aus einem kohlenstoffhaltigen Stahl, wobei die Gelenkfläche des Bolzens 1 1 mit einer in einem CVD-Verfahren aufgetragenen CrN- Hartstoffschicht versehen ist. Alternativ oder zusätzlich kann auch die Hülse 12 aus einem kohlenstoffhaltigen Material hergestellt sein und auf ihrer Gelenkfläche bzw. der Lagerfläche mit einer CVD-Hartstoffschicht versehen sein.
Im Folgenden werden zwei Konzentrationsprofile von zwei unterschiedlichen erfindungsgemäßen Kettenkomponenten vorgestellt, die jeweils mit einer Hartstoffschicht durch CVD-Verfahren beschichtet wurden. Bei den Proben handelt es sich um Bolzen 1 1 aus einem nitridierten Stahl 40CrMoV13-9. Die Schichten bestehen aus Chromnitriden und -carbiden, die Schichtdicken liegen um 10 pm. Die Konzentrationsprofile der beiden Proben wurden über die Methode der Glimmentladungsspektroskopie (Glow Discharge Optical Emission Spectroscopy, GD-OES) ermittelt. Dabei werden in einem Gleichspannungsplasma die metallischen Proben als Kathode benutzt. Von der Oberfläche ausgehend, wird nach und nach durch Kathodenzerstäubung mit Argonionen die Probe schichtweise abgetragen. Die abgetragenen Atome gelangen durch Diffusion ins Plasma. Durch Stoßprozesse angeregt, emittieren diese Photonen mit charakteristischen Wellenlängen, welche mittels nachgeschaltetem Spektrometer aufgezeichnet und anschließend quantifiziert werden.
Fig. 2 zeigt das Konzentrationsprofil der Probe 1. Während des Abscheidungsprozesses wurde zunächst ca. 1 h von 0 auf 960 °C aufgeheizt. Die Haltezeit betrug 6h und anschließend wurde langsam (ca. 10 h) auf 200°C abgekühlt. Während des Prozesses wurde der Reaktor mit Stickstoff gespült. Die horizontale Achse gibt die Tiefe an, zur besseren Anschauung in logarithmischer Skalierung. Die vertikale Achse zeigt die Massekonzentration ebenfalls aus Gründen der Übersichtlichkeit in relativer Skalierung. 100 % auf der vertikalen Achse entsprechen einer Massekonzentration der Elemente Fe und Cr von 100 %, von N 20 % sowie von C 5 %.
Die Fe- Massenkonzentration liegt im Bereich von 0 bis 7,5 pm konstant nahe 0 %. Ab 8 pm steigt die Fe- Massenkonzentration auf 5 %. Im Bereich tiefer 10 pm steigt die Fe- Massenkonzentration stark auf 90 % an bis 27 pm. Ab einer Tiefe größer 27 pm steigt die Fe- Massenkonzentration konstant mit geringer Steigung auf 92 % bei 50 pm.
Die Cr- Massekonzentration steigt im Bereich von 0 bis 7,5 pm konstant von 86 % bei 0 pm auf 88 % bei 7,5 pm. Ab einer Tiefe von 7,5 pm sinkt die Cr- Massekonzentration bis 25 pm stark auf einen Wert von 10 %. Ab einer Tiefe von 25 pm sinkt die Cr- Massekonzentration auf einen Wert von 5 % bei einer Tiefe von 50 pm.
Die N- Massekonzentration weist bei 0 pm einen Wert von 10,8 % auf und sinkt auf einen Wert von 6 % bei 7,5 pm. Die Abnahme der Massekonzentration ist nicht konstant, in einer Tiefe von 2,5 pm ist eine Erhöhung der N- Massekonzentration auf 9,4 % zu erkennen. Ab einer Tiefe von 7,5 pm steigt die N- Massekonzentration stark auf einen Maximalwert von 15,6 % bei 10 pm. Bei einer Tiefe von 13 pm sinkt die N- Massekonzentration stark auf einen Wert von 2 % bei 25 pm. Die Dicke der Schicht beträgt demnach ca. 13 pm.
Die C- Massekonzentration weist bei 0 pm einen Wert von 0,75 % auf und steigt auf einen Wert von 1 ,25 % bei 2,5 pm. Ab einer Tiefe von 2,5 pm steigt die C- Massekonzentration stark auf einen Maximalwert von 2,75 % bei 8 pm. Ab einer Tiefe von 8 pm sinkt die C- Massekonzentration stark auf einen Wert von 0,5 % bei 25 pm.
Eine Analyse der Verläufe der Massenkonzentrationen von Kohlenstoff und Stickstoff zeigt, dass die Massenkonzentration des Stickstoffs an der Oberfläche der Hartstoffschicht größer ist, als die Massenkonzentration des Kohlenstoff. Das Verhältnis beträgt ca. 14:1 und ist damit größer als 10:1.
Fig. 3 zeigt das Konzentrationsprofil der Probe 2, in der eine Zwischenschicht bestehend im Wesentlichen aus CrC in die Hartstoffschicht eingebaut wurde. Während des Abscheidungsprozesses wurde zunächst ca. 45 min von 0 auf 950 °C aufgeheizt. Die Haltezeit betrug 7h und anschließend wurde langsam (ca. 10 h) auf 200°C abgekühlt. Während des Prozesses wurde der Reaktor mit Stickstoff gespült. Wie in Fig. 2, gibt die horizontale Achse die Tiefe an, ebenfalls in logarithmischer Skalierung. Die vertikale Achse zeigt die Massekonzentration in relativer Skalierung. 100 % auf der vertikalen Achse entsprechen einer Massekonzentration der Elemente Fe und Cr von 100 %, von N 20 % sowie von C 5 %.
Die Fe- Massenkonzentration liegt im Bereich von 0 bis 3 pm konstant nahe 0 %. Ab 3 pm steigt die Fe- Massenkonzentration auf 5 %. Im Bereich tiefer 8 pm steigt die Fe-
Massenkonzentration stark auf 88 % an bis 27 pm. Ab einer Tiefe größer 27 pm steigt die Fe- Massenkonzentration konstant mit geringer Steigung auf 90 % bei 50 pm.
Die Cr- Massekonzentration liegt in einer Tiefe von 0 pm bei 81%, um in einer Tiefe von 2 pm auf einen Wert von 78 % zu sinken. Ab einer Tiefe von 2 pm steigt die Cr-
Massekonzentration auf den Maximalwert von 85 % in einer Tiefe von 3 pm. Die Cr-
Massekonzentration sinkt ab einer Tiefe von 3 pm auf einen Wert von 75 % in einer Tiefe von 9 pm. Ab einer Tiefe von 9 pm sinkt die Cr- Massekonzentration bis 25 pm stark auf einen Wert von 5 %.
Die N- Massekonzentration weist bei 0 pm einen Wert von 9,8 % auf und sinkt auf einen Wert von 6 % bei 7,5 pm. Die Abnahme der Massekonzentration ist nicht konstant, in einer Tiefe von 2,5 pm ist eine Erhöhung der N- Massekonzentration auf 9,4 % zu erkennen. Ab einer Tiefe von 7,5 pm steigt die N- Massekonzentration stark auf einen Maximalwert von 15,6 % bei 10 pm. Bei einer Tiefe von 12 pm sinkt die N- Massekonzentration stark auf einen Wert von 2 % bei 25 mhΊ. Die Dicke der Schicht beträgt demnach ca. 12 mhΊ.
Die C- Massekonzentration weist bei 0 mhh Tiefe einen Wert von 2,5 % auf und steigt auf einen Wert von 2,6 % bei 2 mhΊ. Ab einer Tiefe von 2 mhh steigt die C- Massekonzentration stark auf einen Maximalwert von 3,75 % bei 4 mhΊ. Ab einer Tiefe von 4 mhh sinkt die C- Massekonzentration stark auf einen Wert von 0,35 % bei 15 mhh Tiefe.
Eine Analyse der Verläufe der Massenkonzentrationen von Kohlenstoff und Stickstoff zeigt, dass die Massenkonzentration des Stickstoffs an der Oberfläche der Hartstoffschicht größer ist, als die Massenkonzentration des Kohlenstoff. Das Verhältnis beträgt ca. 4:1.
BEZUGSZEICHENLISTE
1 Trennmittel
2 Aktivator
3 Metall
4 Metallnitrid
5 Bulkmaterial
6 Hartstoffschicht
10 Kette
11 Bolzen
12 Hülse
13 Innenlasche
14 Außenlasche M Metall
N Stickstoff

Claims

P AT E N T A N S P R Ü C H E
1. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht, die aufweist:
• ein Substrat auf Stahlbasis
• eine Hartstoffschicht an einer Außenseite des Substrates auf Stahlbasis, wobei die Hartstoffschicht Metallnitride aufweist,
dadurch gekennzeichnet, dass
die C-Massekonzentration in der Hartstoffschicht in Richtung zur Außenseite der
Hartstoffschicht abnimmt.
2. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach Anspruch 1
dadurch gekennzeichnet, dass
die C- Massekonzentration in der Hartstoffschicht in einem Bereich nahe zum
Substrat in Richtung zur innen liegenden Seite der Hartstoffschicht ansteigt.
3. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach Anspruch 1 oder 2
dadurch gekennzeichnet, dass
die C- Massekonzentration in der Hartstoffschicht ein lokales Maximum in der
Hartstoffschicht aufweist.
4. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach Anspruch 3
dadurch gekennzeichnet, dass der Abstand des Maximums der C- Massekonzentration in der Hartstoffschicht zur Außenseite der Hartstoffschicht kleiner ist als der Abstand des Maximums der C- Massekonzentration in der Hartstoffschicht zur Grenze zwischen Hartstoffschicht und Substrat.
5. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer
Hartstoffschicht nach einem oder mehreren der Ansprüche 2 bis 4
dadurch gekennzeichnet, dass
der Betrag der Steigung der C- Massekonzentration in der Hartstoffschicht in einem Bereich nahe zum Substrat höher ist als der Betrag der Steigung in einem Bereich der abnehmenden C- Massekonzentration.
6. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach einem oder mehreren der Ansprüche 1 bis 5
dadurch gekennzeichnet, dass
die N- Massekonzentration in der Hartstoffschicht in Richtung der Außenseite der Hartstoffschicht ansteigt.
7. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach Anspruch 6
dadurch gekennzeichnet, dass
die Steigung der N- Massekonzentration in der Hartstoffschicht in einem Bereich nahe zum Substrat höher ist die Steigung in einem Bereich nahe der Außenseite der
Hartstoffschicht.
8. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach einem oder mehreren der Ansprüche 1 bis 7
dadurch gekennzeichnet, dass die mittlere N- Massekonzentration in der Hartstoffschicht größer ist als die mittlere C- Massekonzentration in der Hartstoffschicht.
9. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach Anspruch 8
dadurch gekennzeichnet, dass
die mittlere N- Massekonzentration in der Hartstoffschicht um Faktor 2, bevorzugt um Faktor 3 und besonders bevorzugt um Faktor 4 größer ist als die mittlere C- Massekonzentration in der Hartstoffschicht.
10. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach einem oder mehreren der Ansprüche 1 bis 9
dadurch gekennzeichnet, dass
die mittlere C- Massekonzentration in jeder Schichtlage im oberflächennahen Bereich der Hartstoffschicht kleiner als 20 Gew.-%, bevorzugt kleiner als 10Gew.-% und besonders bevorzugt kleiner als 5 Gew.-% ist, wobei der oberflächennahe Bereich eine Dicke von 80% der Gesamtdicke der Hartstoffschicht, bevorzugt von
90% der Gesamtdicke der Hartstoffschicht und besonders bevorzugt von 95% der Gesamtdicke der Hartstoffschicht aufweist.
1 1. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach einem oder mehreren der Ansprüche 1 bis 10
dadurch gekennzeichnet, dass
die mittlere Cr- Massekonzentration in der Hartstoffschicht größer ist als die mittlere Fe- Massekonzentration in der Hartstoffschicht.
12. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach Anspruch 11
dadurch gekennzeichnet, dass die mittlere Cr- Massekonzentration in der Hartstoffschicht um einen Faktor von 2, bevorzugt um einen Faktor von 4 und besonders bevorzugt um einen Faktor von 6 größer ist als die mittlere Fe- Massekonzentration in der Hartstoffschicht.
13. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach einem oder mehreren der Ansprüche 1 bis 12
dadurch gekennzeichnet, dass
die mittlere N- Massekonzentration im oberflächennahen Bereich der
Hartstoffschicht an jeder Stelle größer ist als die mittlere C- Massekonzentration in der Hartstoffschicht.
14. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer
Hartstoffschicht nach einem oder mehreren der Ansprüche 1 bis 13
dadurch gekennzeichnet, dass
die mittlere Cr- Massekonzentration im oberflächennahen Bereich der
Hartstoffschicht an jeder Stelle größer ist als die mittlere Fe- Massekonzentration in der Hartstoffschicht.
15. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach Anspruch 13 und/oder 14
dadurch gekennzeichnet, dass
der oberflächennahe Bereich der Hartstoffschicht eine Dicke von 50% der Gesamtdicke der Hartstoffschicht, bevorzugt eine Dicke von 65% der Gesamtsicke der Hartstoffschicht und besonders bevorzugt eine Dicke von 80% der Gesamtdicke der Hartstoffschicht aufweist.
16. Kettenkomponente einer Kette zur Übertragung einer Kraft beschichtet mit einer Hartstoffschicht nach einem oder mehreren der Ansprüche 1 bis 15
dadurch gekennzeichnet, dass die N- Massekonzentration an der Oberfläche der Hartstoffschicht größer ist als die C- Massekonzentration an der Außenseite der Hartstoffschicht.
PCT/EP2019/053748 2018-02-14 2019-02-14 Hartstoffschicht auf metallsubstrat WO2019158669A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/970,153 US11434976B2 (en) 2018-02-14 2019-02-14 Layer of hard material on a metal substrate
CN201980019734.5A CN112218976A (zh) 2018-02-14 2019-02-14 金属基底上的硬材料层
EP19706474.4A EP3752656A1 (de) 2018-02-14 2019-02-14 Hartstoffschicht auf metallsubstrat
JP2020543929A JP7303207B2 (ja) 2018-02-14 2019-02-14 金属基材上の硬質材料の層

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018103320.6 2018-02-14
DE102018103320.6A DE102018103320A1 (de) 2018-02-14 2018-02-14 Hartstoffschicht auf Metallsubstrat

Publications (1)

Publication Number Publication Date
WO2019158669A1 true WO2019158669A1 (de) 2019-08-22

Family

ID=65516524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/053748 WO2019158669A1 (de) 2018-02-14 2019-02-14 Hartstoffschicht auf metallsubstrat

Country Status (6)

Country Link
US (1) US11434976B2 (de)
EP (1) EP3752656A1 (de)
JP (1) JP7303207B2 (de)
CN (1) CN112218976A (de)
DE (1) DE102018103320A1 (de)
WO (1) WO2019158669A1 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3725321A1 (de) * 1986-07-30 1988-04-07 Toyoda Chuo Kenkyusho Kk Verfahren zur oberflaechenbehandlung eines gegenstandes aus eisen oder einer eisenlegierung
DE102005047449A1 (de) 2005-03-11 2006-09-14 Joh. Winklhofer & Söhne GmbH und Co. KG Verschleißverbesserte Gliederkette sowie Verfahren zu deren Herstellung
DE102006052869A1 (de) 2006-11-09 2008-05-15 JOH. WINKLHOFER & SÖHNE GMBH & Co. KG PVD-Hartstoffbeschichtung von Kettengelenkteilen
DE102011006294A1 (de) 2011-03-29 2012-10-04 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Herstellung eines gehärteten, beschichteten Metallbauteils
WO2014019699A1 (de) 2012-08-03 2014-02-06 Iwis Motorsysteme Gmbh & Co. Kg Reibungs- und verschleissreduzierendes gelenk für hülsen- oder rollenkette
WO2014044420A1 (de) * 2012-09-21 2014-03-27 Schaeffler Technologies AG & Co. KG Kettenelement, kettenbolzen und verfahren zur herstellung eines desgleichen
DE102013222244A1 (de) 2013-10-31 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Kettenlasche und Verfahren zur Herstellung von Kettenlaschen
EP2868947A2 (de) * 2013-10-21 2015-05-06 Daido Kogyo Co., Ltd. Kettenlager, Kettenbolzen und Kette
DE102016215709A1 (de) 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Kettenkomponente und Kette

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335764A (ja) * 1986-07-30 1988-02-16 Toyota Central Res & Dev Lab Inc 鉄または鉄合金材料の表面処理方法
JP2000177032A (ja) * 1998-12-16 2000-06-27 Mitsubishi Materials Corp 加工用ロール
JP2003301889A (ja) * 2002-04-10 2003-10-24 Tsubakimoto Chain Co 耐摩耗チェーン
JP2003301888A (ja) * 2002-04-12 2003-10-24 Tsubakimoto Chain Co サイレントチェーン
JP2004204762A (ja) * 2002-12-25 2004-07-22 Yanmar Co Ltd 摺動部品及びその摺動部品の製造方法
JP4771223B2 (ja) * 2006-09-27 2011-09-14 日立金属株式会社 耐久性に優れた硬質材料被覆塑性加工用金型
DE102007000512B3 (de) * 2007-10-16 2009-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung
DE102008013966A1 (de) * 2008-03-12 2009-09-17 Kennametal Inc. Hartstoffbeschichteter Körper
DE102009046667B4 (de) * 2009-11-12 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtete Körper aus Metall, Hartmetal, Cermet oder Keramik sowie Verfahren zur Beschichtung derartiger Körper
EP2568058B1 (de) * 2011-09-09 2014-12-17 iwis motorsysteme GmbH & Co. KG Gelenkkette mit hartstoffbeschichteten Kettengelenken
EP2628817B1 (de) * 2012-02-15 2016-11-02 IHI Hauzer Techno Coating B.V. Beschichteter Artikel aus Martensitstahl und Verfahren zur Herstellung eines beschichteten Artikels aus Stahl
KR101906650B1 (ko) * 2012-04-19 2018-10-10 스미또모 덴꼬오 하드메탈 가부시끼가이샤 표면 피복 절삭 공구
JP6010508B2 (ja) * 2013-07-03 2016-10-19 ボーグワーナー インコーポレーテッド 摺動部材の製造方法、ならびにチェーン用リンクの製造方法および当該リンクを備えたチェーンの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3725321A1 (de) * 1986-07-30 1988-04-07 Toyoda Chuo Kenkyusho Kk Verfahren zur oberflaechenbehandlung eines gegenstandes aus eisen oder einer eisenlegierung
DE102005047449A1 (de) 2005-03-11 2006-09-14 Joh. Winklhofer & Söhne GmbH und Co. KG Verschleißverbesserte Gliederkette sowie Verfahren zu deren Herstellung
DE102006052869A1 (de) 2006-11-09 2008-05-15 JOH. WINKLHOFER & SÖHNE GMBH & Co. KG PVD-Hartstoffbeschichtung von Kettengelenkteilen
DE102011006294A1 (de) 2011-03-29 2012-10-04 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Herstellung eines gehärteten, beschichteten Metallbauteils
WO2014019699A1 (de) 2012-08-03 2014-02-06 Iwis Motorsysteme Gmbh & Co. Kg Reibungs- und verschleissreduzierendes gelenk für hülsen- oder rollenkette
WO2014044420A1 (de) * 2012-09-21 2014-03-27 Schaeffler Technologies AG & Co. KG Kettenelement, kettenbolzen und verfahren zur herstellung eines desgleichen
EP2868947A2 (de) * 2013-10-21 2015-05-06 Daido Kogyo Co., Ltd. Kettenlager, Kettenbolzen und Kette
DE102013222244A1 (de) 2013-10-31 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Kettenlasche und Verfahren zur Herstellung von Kettenlaschen
DE102016215709A1 (de) 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Kettenkomponente und Kette

Also Published As

Publication number Publication date
US11434976B2 (en) 2022-09-06
CN112218976A (zh) 2021-01-12
US20210115567A1 (en) 2021-04-22
DE102018103320A1 (de) 2019-08-14
JP7303207B2 (ja) 2023-07-04
JP2021513611A (ja) 2021-05-27
EP3752656A1 (de) 2020-12-23

Similar Documents

Publication Publication Date Title
DE102014008844A1 (de) Bremsscheibe für ein Kraftfahrzeug
EP2912206B1 (de) Bauteil mit einer beschichtung und verfahren zu seiner herstellung
WO2008000573A2 (de) Verschleissfeste beschichtung sowie herstellverfahren hierfür
EP2209927B1 (de) Korrosionsfeste beschichtung
DE102006052869B4 (de) PVD-Hartstoffbeschichtung von Kettengelenkteilen
EP2118332A2 (de) Verfahren zur herstellung einer beschichtung
DE102006057484B4 (de) Wälzlager mit einer Oberflächenbeschichtung
DE112014006361T5 (de) Kolbenring und Verfahren zu seiner Herstellung
DE19630149C2 (de) Gleitbauteil und dessen Verwendung als Kolbenring
WO2019158669A1 (de) Hartstoffschicht auf metallsubstrat
EP3004415A1 (de) Beschichtetes bauteil
EP3752658A1 (de) Hartstoffschicht auf metallsubstrat
EP3538676B1 (de) Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks
DE202006020978U1 (de) PVD-Hartstoffbeschichtung von Kettengelenkteilen
DE202015002779U1 (de) Schließeinheit einer Kunststoffverarbeitungsmaschine, insbesondere einer Spritzgießmaschine
WO2014044420A1 (de) Kettenelement, kettenbolzen und verfahren zur herstellung eines desgleichen
DE102018103321A1 (de) Verfahren zur Herstellung von Hartstoffschichten
WO2016139007A1 (de) Verfahren zum herstellen einer lauffläche für eine dichtung
EP3963121B1 (de) Verfahren zum beschichten einer mechanisch hochbelasteten oberfläche eines bauteils sowie beschichtetes bauteil selbst
EP3752306B1 (de) Metallbauteil und herstellungsverfahren davon
DE102007018476A1 (de) Walze für Papiermaschine
EP4029615A1 (de) Siebgewebe mit erhöhter verschleissfestigkeit und verfahren zur erhöhung der verschleissfestigkeit eines siebgewebes
EP2251450A1 (de) Verfahren zum Aufbringen einer viellagigen Schichtstruktur auf ein Substrat sowie Substrat mit einer viellagigen Schichtstruktur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19706474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543929

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019706474

Country of ref document: EP

Effective date: 20200914