EP3538676B1 - Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks - Google Patents

Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks Download PDF

Info

Publication number
EP3538676B1
EP3538676B1 EP17800725.8A EP17800725A EP3538676B1 EP 3538676 B1 EP3538676 B1 EP 3538676B1 EP 17800725 A EP17800725 A EP 17800725A EP 3538676 B1 EP3538676 B1 EP 3538676B1
Authority
EP
European Patent Office
Prior art keywords
workpiece
temperature
process gas
treatment
holding phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17800725.8A
Other languages
English (en)
French (fr)
Other versions
EP3538676A1 (de
Inventor
Ralf Kuebler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3538676A1 publication Critical patent/EP3538676A1/de
Application granted granted Critical
Publication of EP3538676B1 publication Critical patent/EP3538676B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the present invention relates to a method for heat treatment of a workpiece made of a high-alloy steel.
  • Nitriding causes different nitrides to separate out within the metallic material in the surface area. This leads to the build-up of internal compressive stresses, which in some cases assume very high values in the edge area. Depending on the surface distance, the residual stresses decrease with increasing distance from the edge area. The presence of internal compressive stresses leads to improved fatigue strengths. Nitriding is also used for high-alloy steels, especially for components such as nozzle bodies, valve bodies or throttle plates.
  • high-alloy steels Due to the high oxygen affinity of their alloying elements, high-alloy steels form a natural oxide layer of a few nanometers.
  • This oxide layer is formed when it comes into contact with air and consists, for example, of chromium oxide, vanadium oxide, iron oxide and other oxides. Since the oxide layer is very compact and partially diffusion-tight, subsequent diffusion of nitrogen at elevated temperatures, in particular between 480 ° C. and 590 ° C., can be negatively influenced and even completely prevented. Inhomogeneous connecting layers as well as diffusion layers with different functional Properties are the result.
  • the naturally occurring oxide layer can be removed chemically, for example by pickling with an acid, before the actual nitriding process. Furthermore, the oxide layer can also be removed mechanically by brushing and / or grinding, or else electrically by applying a corresponding voltage.
  • a method for heat treatment of metallic workpieces in particular for nitriding or nitrocarburizing of alloyed iron materials, is known.
  • the workpieces are heated in a nitriding furnace to a temperature between 400 ° C and 500 ° C in an ammonia-containing gas atmosphere.
  • the workpieces are then heated to a temperature between 500 ° C. and 700 ° C. in a gas atmosphere containing ammonia and an added oxidizing agent.
  • the workpieces are exposed to this temperature and this gas atmosphere for a period of up to 5 hours.
  • the workpiece which consists of a high-alloy steel, is heated to a first temperature in a vacuum environment, the first temperature being kept constant during a first holding phase, the workpiece then being heated to a second temperature that is higher than the first temperature, the second temperature during is kept constant in a second holding phase, and wherein the workpiece is quenched after the second holding phase, preferably in gaseous or evaporating media.
  • a surface of the workpiece, in particular also the inner contours, are flowed around a surface of the workpiece during the first holding phase in a first treatment step with a process gas that emits hydrogen and / or a process gas mixture for cleaning and activation of the surface, the surface during the first holding phase in a second treatment step with a process gas that emits nitrogen and / or process gas mixture is flowed around to form a thin nitride-containing layer, and the nitride-containing layer is provided to optimize a downstream gas nitriding process.
  • the heat treatment according to the invention is subdivided into the manufacturing process of a workpiece consisting of a high-alloy steel behind the initial soft machining, in particular the production of the workpiece from a blank.
  • the tempering of the workpiece takes place, for example, in an evacuable, oxygen-free tempering furnace.
  • the tempering of the workpieces is a second heat treatment.
  • the third heat treatment step takes place by grinding, hard turning or similar processes, in which the properties required for the workpiece, in particular the workpiece surface, are set by means of gas nitriding at preferably 480-590 ° C by diffusing nitrogen into the workpiece.
  • the vacuum furnace is hermetically sealed and a pump connected to the interior of the vacuum furnace creates the vacuum ambient conditions in the vacuum furnace.
  • the naturally formed oxide layer or passive layer is broken up by the hardening process according to the invention and the surface of the high-alloy steel is cleaned. Carrying out the process in a vacuum or an oxygen-free atmosphere prevents or slows down the formation of a new passive layer and / or the repassivation of the high-alloy steel. A depletion of hardness-increasing alloying elements close to the edge is thus additionally avoided.
  • holding phase is to be understood as the constant holding of a temperature at which the workpiece assumes the internal temperature of the vacuum furnace for carrying out the first and second treatment step.
  • a process gas and / or process gas mixture that emits hydrogen flows around the high-alloy steel in a first treatment step.
  • the injection of the gas preferably takes place constantly.
  • a pulsed, variable or pressure-controlled course of the flow is also conceivable.
  • the flow around the workpiece in the first treatment step represents a cleaning and activation step in order to promote the diffusion of nitrogen into the surface of the steel in the second processing step due to the surface cleaned and activated as a result and the high temperature in the vacuum furnace.
  • the first temperature for the first treatment step is between 800 and 1090 ° C., preferably 900 ° C., in order to ensure optimum interaction of the process gas and / or process gas mixture which emits hydrogen with the surface of the To ensure workpiece.
  • the oxide layer is broken up and repassivation of the surface is prevented with the aid of the vacuum.
  • the surface of the workpiece is therefore highly reactive towards the diffusion of nitrogen in the second treatment step.
  • the second treatment step begins at the constant first temperature of the furnace.
  • a nitrogen-releasing process gas and / or process gas mixture flows around the high-alloy steel to form a nitride-containing layer.
  • Alloyed or high-alloy steels are particularly suitable for nitriding, since the alloying elements of these steels preferentially combine with the atomic nitrogen to form nitrides.
  • unalloyed steels can form brittle nitriding layers that tend to flake off during nitriding.
  • Steels with a carbon content between 0.3 and 0.6 mass% and alloying elements such as chromium or vanadium, which form surface layer nitrides at high temperatures, are particularly suitable for nitriding.
  • the advantage resulting from the so-called pre-nitriding in the hardening process according to the invention over conventional production methods of workpieces made of high-alloy steels is that due to the vacuum environment and the cleaning and activation by the process gas and / or process gas mixture emitting hydrogen during nitriding in the second treatment step of the hardening process, a homogeneous and forms a dense nitride layer on the surface.
  • This nitride layer can be regarded as a seed layer or passivation layer, since the actual nitriding step only takes place after the tempering and before the hard machining of the workpiece.
  • the pre-nitriding in the hardening process also optimizes the gas nitriding in the downstream manufacturing step. Due to the homogeneous seed layer from the hardening process, a more compact connecting layer with a correspondingly lower proportion of pores is formed during gas nitriding in the chamber furnace.
  • the nitriding effect which is described with the help of the so-called nitriding index, is accordingly higher due to the pre-nitriding in the hardening process.
  • the nitriding index results from the partial pressures of the nitrogen emitting Process gas and / or process gas mixture and the partial pressure of the hydrogen. The higher the nitriding index, the greater the potential for nitride formation.
  • nitrides are formed. These nitride precipitates form the connecting layer directly on the surface. Starting from the surface, a decreasing nitrogen gradient forms, this area is called the diffusion layer. In this area there are small nitride precipitates as well as nitrogen dissolved in the metal lattice.
  • iron forms iron nitrides and in high-alloy steels, for example, chromium and vanadium combine to form corresponding nitrides.
  • nitrided seed layer is present as a result of the pre-nitriding in the hardening process, a lower nitriding index is required in the nitriding process, which simplifies and simplifies the process management.
  • the gas nitriding process can also be shortened and / or carried out at lower temperatures, which also makes the process more cost-effective.
  • the nitrided layer makes the tempering process less sensitive after the hardening process, as a renewed temperature increase below the transformation temperature reduces stresses, depending on the composition of the steel, further special carbides can be precipitated and a lower hardness can be set without the alloying elements on the surface of the base material interacting to risk with the furnace atmosphere.
  • the hardening process changes from the first holding phase to the second holding phase.
  • the high-alloy steel is heated to the second temperature.
  • the second temperature is also to be understood as the austenitizing temperature.
  • the high-alloy steel is essentially in the form of ferrite and carbide, which converts to austenite at high temperatures and the carbides partially dissolve. The aim is to take advantage of the high solubility of carbon at high temperatures in austenite.
  • the second treatment step ends with the second holding phase.
  • the duration of the second treatment step, the second temperature of the high-alloy steel during the second treatment step and / or the nitrogen partial pressure on the surface of the high-alloy steel during the second treatment step are selected so that the nitride-containing layer with a thickness of less than 2 ⁇ m, preferably with a thickness of 0.001 ⁇ m to 1 ⁇ m.
  • the nitride-containing layer preferably has sheet-like or crystalline nitrides. Chromium can form sheet-like nitrides, iron preferentially forming crystalline nitrides.
  • the hydrogen-releasing process gas and / or process gas mixture flows around the surface with a first treatment pressure and the nitrogen-releasing process gas and / or process gas mixture flows around the surface with a second treatment pressure, the respective treatment pressure being in a pressure range between 10 mbar and 3000 mbar.
  • the selected pressure range is strongly dependent on the properties of the workpiece.
  • the first treatment pressure is lower than the second treatment pressure.
  • the higher the second treatment pressure the greater the potential for nitride formation in the area of the workpiece near the edge and the deeper the nitrogen diffuses into the workpiece.
  • Figure 1 shows an example of the process control for an embodiment of the method according to the invention.
  • the left ordinate 4 describes the temperature axis
  • the right ordinate 5 describes the partial pressure axis
  • the abscissa 6 describes the time axis.
  • the upper continuous curve denotes the course of the temperature T over time.
  • the lower continuous curve denotes the course of the partial pressure p over time.
  • Sections A1, H1, A2, H2, F as well as B1 and B2 are defined along the time axis, in which different activities take place.
  • a first heating phase A1 the workpiece S is initially heated from room temperature to a temperature T1 of 900 ° C.
  • the heating rate is essentially constant.
  • the vacuum furnace in which the process is carried out is under a technical vacuum, with a negative pressure of less than 50 mbar ( Figure 2 ). Furthermore, it is also conceivable that the vacuum is only generated after a certain temperature has been reached.
  • the first temperature T1 is kept constant at approximately 900 ° C.
  • no process gas or process gas mixture G1, G2 containing hydrogen or nitrogen is fed in.
  • the first treatment step B1 begins, in which a hydrogen-containing process gas or process gas mixture G1 with a first treatment pressure P1 flows around the workpiece S.
  • the first treatment pressure corresponds to P1 the hydrogen partial pressure acting on the surface 1 of the workpiece S.
  • the partial pressure corresponds to the pressure that the individual gas component, in this case hydrogen, would exert if it were alone in a given volume.
  • the flow of the hydrogen-containing process gas or process gas mixture G1 is constant ( Figure 3 ).
  • the naturally formed oxide layer 7 or passive layer of the high-alloy steel is broken up and the surface 1 of the workpiece S is cleaned and activated against the diffusion of nitrogen in the subsequent second treatment step B2.
  • the first treatment step B1 is followed by the second treatment step B2, in which a nitrogen-containing process gas or process gas mixture G2 with a second treatment pressure P2 flows around the workpiece S.
  • the second treatment pressure P2 corresponds to the nitrogen partial pressure acting on the surface 1 of the workpiece S.
  • the flow of the nitrogen-containing process gas or process gas mixture G2 is constant ( Figure 4 ).
  • the second treatment pressure P2 is higher than the first treatment pressure P1, the respective treatment pressure P1, P2 being between 10 mbar and 3000 mbar.
  • the first holding phase H1 is followed by a second heating phase A2 with a subsequent second holding phase H2.
  • the heating rate is constant.
  • the workpiece S is first heated from the first temperature T1 to the second temperature T2, which is then kept constant.
  • the second temperature T2 corresponds to the austenitizing temperature of the workpiece S. In the edge area, while maintaining the austenitizing temperature, a phase transformation to an austenitic structure takes place.
  • the nitrogen-containing process gas or process gas mixture G2 continues to flow around the workpiece S in the second holding phase H2 with a second treatment pressure P2 and constant flow.
  • the second holding phase H2 corresponds to a nitriding phase.
  • atomic nitrogen diffuses from the nitrogen-containing process gas or process gas mixture G2 into the surface 1 of the workpiece S and combines with nitride-forming alloying elements such as for example chromium, vanadium or iron.
  • the duration of the second treatment step B2, the second temperature T2 of the workpiece S during the second treatment step B2 and the second treatment pressure B2 on the surface 1 of the workpiece S during the second treatment step B2 influence the thickness of the nitride-containing layer 2, which is between 0.001 ⁇ m and 1 ⁇ m located ( Figure 5 ).
  • the second holding phase H2 and the second treatment step B2 are then followed by a quenching phase F for setting an essentially martensitic structure.
  • the vacuum furnace 3 and the workpiece S are quenched to room temperature.
  • the Figures 2 to 5 describe the method steps according to the invention for heat treatment of a workpiece S made of a high-alloy steel in sectional drawing according to the in Figure 1 shown and explained process management.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Wärmebehandlung eines aus einem hochlegierten Stahl bestehenden Werkstücks.
  • Stand der Technik
  • Zur Erhöhung der Schwingfestigkeit, der Korrosionsbeständigkeit sowie der Verschleißfestigkeit metallischer Bauteile ist es bekannt, diese in oberflächennahen Bereichen zu nitrieren. Durch das Nitrieren scheiden sich unterschiedliche Nitride innerhalb des metallischen Werkstoffs im Oberflächenbereich aus. Dies führt zum Aufbau von Druckeigenspannungen, welche im Randbereich teilweise sehr hohe Werte annehmen. In Abhängigkeit des Oberflächenabstandes nehmen die Eigenspannungen mit zunehmender Entfernung vom Randbereich ab. Das Vorliegen von Druckeigenspannungen führt zu verbesserten Schwingfestigkeiten. Das Nitrieren wird u.a. auch für hochlegierte Stähle insbesondere für Bauteile wie Düsenkörper, Ventilkörper oder Drosselplatten eingesetzt.
  • Hochlegierte Stähle bilden aufgrund der hohen Sauerstoffaffinität ihrer Legierungselemente eine natürliche Oxidschicht von wenigen Nanometern aus. Diese Oxidschicht entsteht bei Kontakt mit Luft und besteht beispielsweise aus Chromoxid, Vanadiumoxid, Eisenoxid und anderen Oxiden. Da die Oxidschicht sehr kompakt und teilweise diffusionsdicht ausgebildet ist, kann eine nachträgliche Eindiffusion von Stickstoff bei erhöhten Temperaturen, insbesondere zwischen 480 °C und 590 °C negativ beeinflusst und sogar vollständig unterbunden werden. Inhomogene Verbindungsschichten sowie Diffusionsschichten mit unterschiedlichen funktionalen Eigenschaften sind die Folge. Die natürlich entstandene Oxidschicht lässt sich vor dem eigentlichen Nitrierprozess beispielsweise chemisch über einen Beizvorgang mit einer Säure entfernen. Ferner lässt sich die Oxidschicht auch mechanisch durch Bürsten und/oder Schleifen, oder aber elektrisch durch das Anlegen einer entsprechenden Spannung entfernen.
  • Die Bildung einer Oxidschicht auf dem mit Luft in Kontakt tretenden hochlegierten Stahl birgt Nachteile in der Nachbearbeitung der Oberfläche beziehungsweise der Entfernung der Oxidschicht. Durch das Beizen mit Säure bilden sich oft lokale Narben infolge unterschiedlicher Oxidschichtdicken oder bei der mechanischen Nachbearbeitung müssen die Rückstände mittels aufwändiger Reinigungs- bzw. Entfernungsprozesses aufwendig entfernt werden. Es hat sich ferner herausgestellt, dass bei Bauteilen mit komplizierten Geometrien eine chemische, mechanische oder elektrische Nachbehandlung vielfach aufgrund der komplexen Realgeometrie nicht den gewünschten Effekt mit sich bringt. Insbesondere Sacklöcher sind schwer zugänglich, ein optimaler Abtrag der Oxidschicht ist hier nicht sicherzustellen. Dies führt zwangsläufig zu Fehlstellen nach der Nitrierung bzw. zu inhomogenen Verbindungs- und Diffusionsschichten und könnte zu einem frühzeitigen Bauteilversagen führen.
  • Aus der EP 1 122 331 B1 ist ein Verfahren zur Wärmebehandlung metallischer Werkstücke, insbesondere zum Nitrieren oder Nitrocarburieren von legierten Eisenwerkstoffen bekannt. Zunächst werden die Werkstücke in einem Nitrierofen auf eine Temperatur zwischen 400 °C und 500 °C in einer ammoniakhaltigen Gasatmosphäre erwärmt. Anschließend werden die Werkstücke auf eine Temperatur zwischen 500 °C und 700 °C in einer Ammoniak und ein zugesetztes Oxidationsmittel enthaltenden Gasatmosphäre erwärmt. Die Werkstücke werden dieser Temperatur und dieser Gasatmosphäre für eine Zeitdauer von bis zu 5 h ausgesetzt.
  • Aus der EP1612290A1 ist ebenfalls ein Verfahren zum Gasnitrieren eines Werkstücks bekannt.
  • Aus Menthe E. et al.: "Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding", Surf. & Coat. Tech., ISSN: 0257-8972, NL, Bd. 116-119,(1999-09-01 ), S. 199-204 sind Untersuchungen von Struktur und Eigenschaften von austenitischem Edelstahl nach Plasmanitrieren bekannt.
  • Aus Jordan D. et al. : "Low torr-range vacuum nitriding of 4140 steel",Heat Treat. Prog., ISSN: 1536-2558, US, Bd. 8, Nr. 2, (2008-02-29), S. 33/8 ist ein Verfahren zum Niederdruckgasnitrieren bekannt.
  • Aufgabe und Lösung
  • Es ist Aufgabe der Erfindung, eine Wärmebehandlung eines Werkstücks aus einem hochlegierten Stahl weiterzuentwickeln.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß dem Hauptanspruch gelöst. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den darauf rückbezogenen Unteransprüchen.
  • Offenbarung der Erfindung
  • Im Rahmen der Erfindung wurde ein Verfahren zur Wärmebehandlung eines hochlegierten Stahls entwickelt.
  • Das aus einem hochlegierten Stahl bestehende Werkstück wird in einer Vakuumumgebung auf eine erste Temperatur erwärmt, wobei die erste Temperatur während einer ersten Haltephase konstant gehalten wird, wobei das Werkstück anschließend auf eine gegenüber der ersten Temperatur höhere zweite Temperatur erwärmt wird, wobei die zweite Temperatur während einer zweiten Haltephase konstant gehalten wird, und wobei das Werkstück im Anschluss an die zweite Haltephase vorzugsweise in gasförmigen, oder verdampfenden Medien abgeschreckt wird. Eine Oberfläche des Werkstücks insbesondere auch die Innenkonturen werden während der ersten Haltephase in einem ersten Behandlungsschritt mit einem Wasserstoff abgebenden Prozessgas und/oder Prozessgasgemisch zur Reinigung und Aktivierung der Oberfläche umströmt, wobei die Oberfläche während der ersten Haltephase in einem zweiten Behandlungsschritt mit einem Stickstoff abgebenden Prozessgas und/oder Prozessgasgemisch zur Ausbildung einer dünnen nitridhaltigen Schicht umströmt wird, und wobei die nitridhaltige Schicht dazu vorgesehen ist, einen nachgelagerten Gasnitrierprozess zu optimieren.
  • Die erfindungsgemäße Wärmebehandlung gliedert sich in dem Fertigungsprozess eines aus einem hochlegierten Stahl bestehenden Werkstücks hinter die anfängliche Weichbearbeitung, insbesondere die Herstellung des Werkstücks aus einem Rohling. Im Anschluss an die erfindungsgemäße Wärmebehandlung, insbesondere Härtung findet das Anlassen des Werkstücks z.B. in einem evakuierbaren sauerstofffreien Anlassofen statt. Mit anderen Worten ist das Anlassen der Werkstücke eine zweite Wärmebehandlung. Vor der abschließenden Hartbearbeitung des Werkstücks zum Fertigbauteil und der damit einhergehenden Endmaßeinstellung durch Schleifen, Hartdrehen oder ähnliche Verfahren findet der dritte Wärmebehandlungsschritt statt, in dem mittels Gasnitrieren bei vorzugsweise 480 - 590°C die für das Werkstück, insbesondere der Werkstückoberfläche geforderten Eigenschaften durch Eindiffundieren von Stickstoff in das Werkstück eingestellt werden.
  • Unter der Vakuumumgebung ist ein technisches Vakuum mit einem Druck von höchstens 50 mbar (1mbar = 100Pa) zu verstehen. Der Vakuumofen wird dabei luftdicht verschlossen und eine mit dem Innenraum des Vakuumofens verbundene Pumpe stellt die Vakuum-Umgebungsbedingungen im Vakuumofen her. Durch den erfindungsgemäßen Härteprozess wird die natürlich gebildete Oxidschicht bzw. Passivschicht aufgebrochen und die Oberfläche des hochlegierten Stahls gereinigt. Die Prozessdurchführung im Vakuum bzw. sauerstofffreien Atmosphäre verhindert bzw. verlangsamt dabei die Bildung einer neuen Passivschicht und/oder die Repassivierung des hochlegierten Stahls. Eine randnahe Verarmung an härtesteigenden Legierungselementen wird somit zusätzlich vermieden.
  • Unter dem Begriff "Haltephase" ist das konstante Halten einer Temperatur zu verstehen, in der das Werkstück die Innentemperatur des Vakuumofens zur Durchführung des ersten und zweiten Behandlungsschritts annimmt. Während der ersten Haltephase wird der hochlegierte Stahl in einem ersten Behandlungsschritt von einem Wasserstoff abgebenden Prozessgas und/oder Prozessgasgemisch umströmt. Vorzugsweise findet das Eindüsen des Gases konstant statt. Ein gepulster, variabler oder druckgesteuerter Verlauf des Durchflusses ist aber auch denkbar.
  • Das Umströmen des Werkstücks im ersten Behandlungsschritt stellt einen Reinigungs- und Aktivierungsschritt dar, um das Eindiffundieren von Stickstoff in die Oberfläche des Stahls im zweiten Bearbeitungsschritt aufgrund der dadurch gereinigten und aktivierten Oberfläche und der hohen Temperatur im Vakuumofen zu begünstigen. Die erste Temperatur für den ersten Behandlungsschritt liegt zwischen 800 und 1090°C, bevorzugt bei 900 °C, um eine optimale Wechselwirkung des Wasserstoff abgebenden Prozessgases und/oder Prozessgasgemisches mit der Oberfläche des Werkstücks zu gewährleisten. Im ersten Behandlungsschritt wird die Oxidschicht aufgebrochen und eine Repassivierung der Oberfläche mit Hilfe des Vakuums verhindert. Die Oberfläche des Werkstücks ist damit hoch reaktiv gegenüber der Eindiffusion von Stickstoff im zweiten Behandlungsschritt.
  • Nach Abschluss des ersten Behandlungsschritts beginnt der zweite Behandlungsschritt bei der konstanten ersten Temperatur des Ofens. Dabei wird der hochlegierte Stahl mit einem Stickstoff abgebenden Prozessgas und/oder Prozessgasgemisch zur Ausbildung einer nitridhaltigen Schicht umströmt.
  • Vorteilhafterweise wird reiner Stickstoff (N2) oder aber Ammoniak (NH3) oder aber ein Gemisch aus Stickstoff/Ammoniak verwendet. Legierte oder hochlegierte Stähle eignen sich bevorzugt zum Nitrieren, da sich die Legierungselemente dieser Stähle bevorzugt mit dem atomaren Stickstoff zu Nitriden verbinden. Unlegierte Stähle können hingegen während der Nitrierung spröde, zum Abplatzen neigende Nitrierschichten bilden. Für das Nitrieren eignen sich insbesondere Stähle mit Kohlenstoffanteilen zwischen 0,3 und 0,6 Masse-% und Legierungselemente wie Chrom oder Vanadium, die bei hohen Temperaturen Randschichtnitride bilden.
  • Der sich durch das sogenannte Vornitrieren im erfindungsgemäßen Härteprozess ergebende Vorteil gegenüber herkömmlichen Herstellungsmethoden von Werkstücken aus hochlegierten Stählen ist, dass sich aufgrund der Vakuumumgebung und der Reinigung und Aktivierung durch das Wasserstoff abgebende Prozessgas und/oder Prozessgasgemisch während dem Nitrieren im zweiten Behandlungsschritt des Härteprozesses eine homogene und dichte Nitridschicht auf der Oberfläche bildet. Diese Nitridschicht kann als Keimschicht bzw. Passivierungsschicht betrachtet werden, da der eigentliche Nitrierschritt erst nach dem Anlassen und vor der Hartbearbeitung des Werkstücks stattfindet.
  • Ferner optimiert das Vornitrieren im Härteprozess auch das Gasnitrieren im nachgelagerten Herstellungsschritt. Aufgrund der homogenen Keimschicht aus dem Härteprozess bildet sich beim Gasnitrieren im Kammerofen eine kompaktere Verbindungsschicht mit dementsprechend geringerem Porenanteil. Die Nitrierwirkung, die mit Hilfe der sogenannten Nitrierkennzahl beschrieben wird, ist dementsprechend aufgrund des Vornitrierens im Härteprozess höher. Die Nitrierkennzahl ergibt sich aus den Partialdrücken des Stickstoff abgebenden Prozessgases und/oder Prozessgasgemisches und dem Partialdruck des Wasserstoffs. Je höher die Nitrierkennzahl ist, desto stärker ist das Potential zur Nitridbildung. Übersteigt der Stickstoffanteil im Werkstoff die maximale Löslichkeit des Stickstoffs im Grundwerkstoff bilden sich Nitride. Direkt auf der Oberfläche bilden diese Nitridausscheidungen die Verbindungsschicht aus. Ausgehend von der Oberfläche bildet sich ein abnehmender Stickstoffgradient aus, dieser Bereich wird als Diffusionsschicht bezeichnet. In diesem Bereich sind kleine Nitridausscheidungen sowie im Metallgitter gelöster Stickstoff vorhanden. In Stählen bildet sich dabei Eisen zu Eisennitriden und in hochlegierten Stählen verbinden sich dabei beispielsweise Chrom, Vanadium zu entsprechenden Nitriden aus. Da durch das Vornitrieren im Härteprozess eine nitrierte Keimschicht vorliegt, ist eine niedrigere Nitrierkennzahl beim Nitrierprozess erforderlich, wodurch die Prozessführung erleichtert und vereinfacht wird. Ebenso kann der Gasnitriervorgang dadurch verkürzt und/oder bei tieferen Temperaturen durchgeführt werden, was den Prozess zusätzlich kostengünstiger macht.
  • Des Weiteren macht die nitrierte Schicht nach dem Härteprozess den Anlassprozess unempfindlicher, da durch eine erneute Temperaturerhöhung unterhalb der Umwandlungstemperatur Spannungen abgebaut, je nach Zusammensetzung des Stahls weitere Sonderkarbide ausgeschieden sowie eine niedere Härte eingestellt werden kann, ohne eine Wechselwirkung der Legierungselemente an der Oberfläche des Grundwerkstoffs mit der OfenAtmosphäre zu riskieren.
  • Während des zweiten Behandlungsschritts wird im Härteprozess von der ersten Haltephase auf die zweite Haltephase gewechselt. In der zweiten Haltephase wird der hochlegierte Stahl auf die zweite Temperatur erwärmt. Die zweite Temperatur ist auch als Austenitisierungstemperatur zu verstehen. Bei Raumtemperatur liegt der hochlegierte Stahl im Wesentlichen als Ferrit und Carbid vor, der bei hohen Temperaturen zum Austenit umwandelt und die Carbide sich teilweise auflösen. Ziel ist es damit die hohe Löslichkeit von Kohlenstoff bei hohen Temperaturen im Austenit auszunutzen.
  • Bei der Austenitisierungstemperatur diffundiert Kohlenstoff in das Gitter des Austenits. Wird der hochlegierte Stahl im Anschluss abgeschreckt, kann der Kohlenstoff nicht mehr aus dem Gitter heraus diffundieren und verzerrt dieses aufgrund der Volumenzunahme tetragonal, wodurch sich im Wesentlichen Martensit bildet. Je größer die Abschreckgeschwindigkeit ist, desto höher ist der Martensitanteil. Zur Einleitung des Abschreckvorgangs endet der zweite Behandlungsschritt mit der zweiten Haltephase.
  • Ferner bevorzugt werden die Dauer des zweiten Behandlungsschritts, die zweite Temperatur des hochlegierten Stahls während des zweiten Behandlungsschritts und/oder der Stickstoffpartialdruck an der Oberfläche des hochlegierten Stahls während des zweiten Behandlungsschritts so gewählt, dass die nitridhaltige Schicht mit einer Dicke kleiner 2 µm, bevorzugt mit einer Dicke von 0,001 µm bis 1 µm, ausgebildet wird.
  • Bevorzugt weist die nitridhaltige Schicht flächenförmige oder kristallin ausgeschiedene Nitride auf. Chrom kann flächenförmige Nitride bilden, wobei Eisen bevorzugt kristalline Nitride bildet.
  • Das Wasserstoff abgebende Prozessgas und/oder Prozessgasgemisch umströmt die Oberfläche mit einem ersten Behandlungsdruck und das Stickstoff abgebende Prozessgas und/oder Prozessgasgemisch umströmt die Oberfläche mit einem zweiten Behandlungsdruck, wobei der jeweilige Behandlungsdruck in einem Druckbereich zwischen 10 mbar und 3000 mbar liegt. Der gewählte Druckbereich ist dabei stark abhängig von den Eigenschaften des Werkstücks.
  • Ferner ist der erste Behandlungsdruck kleiner als der zweite Behandlungsdruck. Je höher der zweite Behandlungsdruck, desto größer ist das Potential zur Nitridbildung im randnahen Bereich des Werkstücks und desto tiefer diffundiert der Stickstoff in das Werkstück ein.
  • Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand von Figuren näher dargestellt.
  • Ausführungsbeispiele
  • Es zeigt:
    • Figur 1 den Verlauf der Temperatur T und des Druck p über die Zeit bei einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens, und
    • Figuren 2 bis 5 die erfindungsgemäßen Verfahrensschritte zur Wärmebehandlung eines aus einem hochlegierten Stahl bestehenden Werkstücks.
  • Figur 1 zeigt beispielhaft die Prozessführung für ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Dabei beschreibt die linke Ordinate 4 die Temperaturachse, die rechte Ordinate 5 beschreibt die Partialdruckachse und die Abszisse 6 beschreibt die Zeitachse. Die obere durchgehende Kurve bezeichnet den Verlauf der Temperatur T über der Zeit. Die untere durchgehende Kurve bezeichnet den Verlauf des Partialdrucks p über der Zeit. Entlang der Zeitachse sind Abschnitte A1, H1, A2, H2, F sowie B1 und B2 definiert, in denen unterschiedliche Aktivitäten stattfinden.
  • In einer ersten Aufheizphase A1 wird das Werkstück S zunächst von Raumtemperatur auf eine Temperatur T1 von 900°C erwärmt. Die Aufheizrate ist dabei im Wesentlichen konstant. Der Vakuumofen, in dem das Verfahren durchgeführt wird, steht unter einem technischen Vakuum, mit einem Unterdruck von kleiner als 50 mbar (Figur 2). Ferner ist es auch denkbar, dass das Vakuum erst nach dem Erreichen einer bestimmten Temperatur zu erzeugen.
  • In der an die erste Aufheizphase A1 anschließenden ersten Haltephase H1 wird die erste Temperatur T1 konstant auf etwa 900 °C gehalten. Während der Aufheizphase A1 wird dabei kein wasserstoff- oder stickstoffhaltiges Prozessgas oder Prozessgasgemisch G1, G2 zugeführt. Während der ersten Haltephase H1 beginnt der erste Behandlungsschritt B1, in dem das Werkstück S mit einem wasserstoffhaltigen Prozessgas oder Prozessgasgemisch G1 mit einem ersten Behandlungsdruck P1 umströmt wird. Der erste Behandlungsdruck P1 entspricht dem auf die Oberfläche 1 des Werkstücks S wirkenden Wasserstoffpartialdruck. Der Partialdruck entspricht dem Druck, den die einzelne Gaskomponente, in diesem Fall Wasserstoff, bei alleinigem Vorhandensein in einem betreffenden Volumen ausüben würde. Der Durchfluss des wasserstoffhaltigen Prozessgases oder Prozessgasgemisches G1 erfolgt dabei konstant (Figur 3). Während dem ersten Behandlungsschritt wird die natürlich gebildete Oxidschicht 7 bzw. Passivschicht des hochlegierten Stahls aufgebrochen und die Oberfläche 1 des Werkstücks S gereinigt und gegenüber Eindiffusion von Stickstoff im nachgelagerten zweiten Behandlungsschritt B2 aktiviert.
  • An den ersten Behandlungsschritts B1 schließt sich der zweite Behandlungsschritt B2 an, in dem das Werkstück S mit einem stickstoffhaltigen Prozessgas oder Prozessgasgemisch G2 mit einem zweiten Behandlungsdruck P2 umströmt wird. Der zweite Behandlungsdruck P2 entspricht dem auf die Oberfläche 1 des Werkstücks S wirkenden Stickstoffpartialdruck. Der Durchfluss des stickstoffhaltigen Prozessgases oder Prozessgasgemisches G2 erfolgt dabei konstant (Figur 4). Der zweite Behandlungsdruck P2 ist höher als der erste Behandlungsdruck P1, wobei der jeweilige Behandlungsdruck P1, P2 zwischen 10 mbar und 3000 mbar beträgt.
  • Während des zweiten Behandlungsschritts B2 folgt auf die erste Haltephase H1 eine zweite Aufheizphase A2 mit anschließender zweiten Haltephase H2. Die Aufheizrate ist dabei konstant. Das Werkstück S wird zunächst von der ersten Temperatur T1 auf die zweite Temperatur T2 erwärmt, die dann konstant gehalten wird. Die zweite Temperatur T2 entspricht der Austenitisierungstemperatur des Werkstücks S. Im Randbereich findet während dem Halten auf Austenitisierungstemperatur eine Phasenumwandlung zu einem austenitischen Gefüge statt. In dem aus der ersten Haltephase H1 fortlaufenden zweiten Behandlungsschritt B2 umströmt das stickstoffhaltige Prozessgas oder Prozessgasgemisch G2 in der zweiten Haltephase H2 weiterhin mit einem zweiten Behandlungsdruck P2 und konstantem Durchfluss das Werkstück S. Die zweite Haltephase H2 entspricht dabei einer Nitrierphase. Aufgrund der zweiten Temperatur T2 diffundiert atomarer Stickstoff aus dem stickstoffhaltigen Prozessgas oder Prozessgasgemisch G2 in die Oberfläche 1 des Werkstücks S ein und verbindet sich mit nitridbildenden Legierungselementen wie beispielsweise Chrom, Vanadium oder Eisen. Die Dauer des zweiten Behandlungsschritts B2, die zweite Temperatur T2 des Werkstücks S während des zweiten Behandlungsschritts B2 und der zweite Behandlungsdruck B2 an der Oberfläche 1 des Werkstücks S während des zweiten Behandlungsschritts B2 beeinflussen die Dicke der nitridhaltigen Schicht 2, die zwischen 0.001µm und 1µm liegt (Figur 5).
  • An die zweite Haltephase H2 und den zweiten Behandlungsschritt B2 folgt abschließend eine Abschreckphase F zur Einstellung eines im Wesentlichen martensitischen Gefüges. Der Vakuumofen 3 und das Werkstück S werden dabei auf Raumtemperatur abgeschreckt.
  • Die Figuren 2 bis 5 beschreiben die erfindungsgemäßen Verfahrensschritte zur Wärmebehandlung eines aus einem hochlegierten Stahl bestehenden Werkstücks S in Schnittzeichnung gemäß der in Figur 1 gezeigten und erläuterten Prozessführung.

Claims (3)

  1. Verfahren zur Wärmebehandlung eines aus einem hochlegierten Stahl bestehenden Werkstücks (S), wobei das Werkstück (S) in einer Vakuumumgebung auf eine erste Temperatur (T1) erwärmt wird, wobei die erste Temperatur (T1) während einer ersten Haltephase (H1) konstant gehalten wird, wobei das Bauteil (S) anschließend auf eine gegenüber der ersten Temperatur (T1) höhere zweite Temperatur (T2) erwärmt wird, wobei die zweite Temperatur (T2) während einer zweiten Haltephase (H2) konstant gehalten wird, und wobei das Werkstück (S) im Anschluss an die zweite Haltephase (H2) abgeschreckt wird, wobei eine Oberfläche (1) des Werkstücks (S) während der ersten Haltephase (H1) in einem ersten Behandlungsschritt (B1) mit einem Wasserstoff abgebenden Prozessgas und/oder Prozessgasgemisch (G1) zur Reinigung und Aktivierung der Oberfläche (1) umströmt wird, wobei die Oberfläche (1) während der ersten Haltephase (H1) in einem zweiten Behandlungsschritt (B2) mit einem Stickstoff abgebenden Prozessgas und/oder Prozessgasgemisch (G2) zur Ausbildung einer nitridhaltigen Schicht (2) umströmt wird, und wobei die nitridhaltige Schicht (2) dazu vorgesehen ist, einen nachgelagerten Gasnitrierprozess zu optimieren,
    dadurch gekennzeichnet, dass während des zweiten Behandlungsschritts (B2) von der ersten Haltephase (H1) auf die zweite Haltephase (H2) gewechselt wird, dass das Wasserstoff abgebende Prozessgas und/oder Prozessgasgemisch (G1) die Oberfläche (1) mit einem ersten Behandlungsdruck (P1) und das Stickstoff abgebende Prozessgas und/oder Prozessgasgemisch (G2) die Oberfläche (1) mit einem zweiten Behandlungsdruck (P2) umströmt, wobei der jeweilige Behandlungsdruck (P1, P2) in einem Druckbereich zwischen 10 mbar und 3000 mbar liegt, dass der zweite Behandlungsschritt (B2) mit der zweiten Haltephase (H2) endet, dass die erste Temperatur (T1) während der ersten Haltephase (H1) zumindest 800 bis 1090°C, und bevorzugt 900°C beträgt und dass die zweite Temperatur (T2) als Austenitisierungstemperatur des Werkstücks (S) gewählt wird, wobei es sich bei dem ersten Behandlungsdruck (P1) um den Wasserstoffpartialdruck und bei dem zweiten Behandlungsdruck (P2) um den Stickstoffpartialdruck handelt und wobei der erste Behandlungsdruck (P1) kleiner ist als der zweite Behandlungsdruck (P2).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Dauer des zweiten Behandlungsschritts (B2), die zweite Temperatur (T2) des Werkstücks (S) während des zweiten Behandlungsschritts (B2) und/oder der zweite Behandlungsdruck (P2) an der Oberfläche (1) des Werkstücks (S) während des zweiten Behandlungsschritts (B2) so gewählt werden, dass die nitridhaltige Schicht (2) mit einer Dicke kleiner 2 µm, bevorzugt mit einer Dicke von 0,001 µm bis 1 µm, ausgebildet wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die nitridhaltige Schicht (2) flächenförmige oder kristallin ausgeschiedene Nitride aufweist.
EP17800725.8A 2016-11-08 2017-10-30 Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks Active EP3538676B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016221891.3A DE102016221891A1 (de) 2016-11-08 2016-11-08 Verfahren zur Wärmebehandlung eines aus einem hochlegierten Stahl bestehenden Werkstücks
PCT/EP2017/077741 WO2018086930A1 (de) 2016-11-08 2017-10-30 Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks

Publications (2)

Publication Number Publication Date
EP3538676A1 EP3538676A1 (de) 2019-09-18
EP3538676B1 true EP3538676B1 (de) 2022-01-05

Family

ID=60387985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17800725.8A Active EP3538676B1 (de) 2016-11-08 2017-10-30 Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks

Country Status (6)

Country Link
EP (1) EP3538676B1 (de)
CN (1) CN109923219B (de)
BR (1) BR112019008898B1 (de)
DE (1) DE102016221891A1 (de)
FR (1) FR3058423A1 (de)
WO (1) WO2018086930A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020228291A1 (en) * 2019-02-26 2021-10-07 Somnio Global Holdings, Llc High nitrogen steel powder and methods of making the same
CN111172371B (zh) * 2020-01-16 2021-11-23 成都航宇超合金技术有限公司 一种降低零件表面金属贫化层深度的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2082138T3 (es) * 1991-06-04 1996-03-16 Daido Hoxan Inc Metodo de nitruracion del acero.
ATE235581T1 (de) 2000-02-04 2003-04-15 Ipsen Int Gmbh Verfahren zum nitrieren und/oder nitrocarburieren von höher legierten stählen
CA2456520A1 (en) * 2004-01-30 2005-07-30 Hubert Patrovsky Nitriding method for improving surface characteristics of cobalt-chromium based alloys
EP1612290A1 (de) * 2004-07-02 2006-01-04 METAPLAS IONON Oberflächenveredelungstechnik GmbH Verfahren zum Gasnitrieren eines Werkstücks eine Gasnitriervorrichtung zur Durchfürung des Verfahrens sowie ein Werkstück
JP5365023B2 (ja) * 2007-03-07 2013-12-11 日産自動車株式会社 遷移金属窒化物、燃料電池用セパレータ、燃料電池スタック、燃料電池車両、遷移金属窒化物の製造方法及び燃料電池用セパレータの製造方法
CN101338358B (zh) * 2007-07-05 2010-06-02 刘正贤 提升马氏体不锈钢表面硬度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112019008898A2 (pt) 2019-08-13
FR3058423A1 (fr) 2018-05-11
CN109923219A (zh) 2019-06-21
CN109923219B (zh) 2021-10-12
BR112019008898B1 (pt) 2022-08-09
EP3538676A1 (de) 2019-09-18
WO2018086930A1 (de) 2018-05-17
DE102016221891A1 (de) 2018-05-09

Similar Documents

Publication Publication Date Title
EP2235230B1 (de) Verfahren zur erzeugung von korrosionsbeständigen oberflächen nitrierter oder nitrocarburierter bauteile aus stahl
EP2045339B1 (de) Für eine Wälzbeanspruchung ausgebildetes Werkstück aus durchhärtendem Stahl und Verfahren zur Wärmebehandlung
DE102006025008B4 (de) Verfahren zum Härten von Laufflächen von Wälzlagerkomponenten
EP2679701B1 (de) Verfahren zur Herstellung eines nitrierten Stahlelements
DE2417179B2 (de) Verfahren zum karburieren hochlegierter staehle
DE102012212426B3 (de) Wälzlagerelement, insbesondere Wälzlagerring
EP3538676B1 (de) Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks
DE4139975A1 (de) Verfahren zur behandlung von legierten staehlen und refraktaermetallen
EP1432841B1 (de) Verfahren zur wärmebehandlung von werkstücken aus temperaturbeständigen stählen
WO2019223925A1 (de) Verfahren zum herstellen eines metallischen bauteils
DE102007023820A1 (de) Verfahren zur Nitridierungs-Oxidations-Behandlung von Metall
EP1745158B1 (de) Verfahren zur oberflächenbehandlung
DE102015204656A1 (de) Schichtbildung für Wälzlagerkomponenten
EP0359002B1 (de) Verfahren zum Beschichten metallischer Gegenstände und nach diesem Verfahren beschichteter Gegenstand
WO2014044420A1 (de) Kettenelement, kettenbolzen und verfahren zur herstellung eines desgleichen
JP2010222649A (ja) 炭素鋼材料の製造方法および炭素鋼材料
Feldiorean et al. Studies on the Carburizing Process of AISI 8620 Steel Obtained by MIM Technology
EP0545069A1 (de) Verfahren zur Behandlung von Stählen und Refraktärmetallen
DE3221388C2 (de) Verfahren zum Beschichten eines Substrats mit Hartstoffen
DE10118029C1 (de) Verfahren zur thermochemischen Vorbehandlung von metallischen Werkstücken und Anwendung des Verfahrens
WO2024037954A1 (de) Verfahren zum wärmebehandeln von chromstählen
CN107858632A (zh) 一种高钴基合金材料零件渗氮方法
WO2007015514A1 (ja) 有層Fe基合金及びその製造方法
WO2023104385A1 (de) Verfahren und einrichtung zum örtlich begrenzten nitrieren oder nitrocarburieren der oberfläche eines bauteils
EP0703303A1 (de) Korrosions- und verschleissfester Körper sowie Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200514

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1460653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012413

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220505

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220405

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012413

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

26N No opposition filed

Effective date: 20221006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220201

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221030

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 7

Ref country code: AT

Payment date: 20231019

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171030