WO2019156161A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2019156161A1
WO2019156161A1 PCT/JP2019/004402 JP2019004402W WO2019156161A1 WO 2019156161 A1 WO2019156161 A1 WO 2019156161A1 JP 2019004402 W JP2019004402 W JP 2019004402W WO 2019156161 A1 WO2019156161 A1 WO 2019156161A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
negative electrode
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2019/004402
Other languages
English (en)
French (fr)
Inventor
昌泰 宮本
片山 真一
亜季 田邊
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019571142A priority Critical patent/JPWO2019156161A1/ja
Priority to CN201980012214.1A priority patent/CN111684644A/zh
Publication of WO2019156161A1 publication Critical patent/WO2019156161A1/ja
Priority to US16/987,944 priority patent/US20200373611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to a lithium ion secondary battery provided with an electrolyte together with a positive electrode and a negative electrode.
  • the lithium ion secondary battery includes an electrolyte for the lithium ion secondary battery along with a positive electrode and a negative electrode. Since the configuration of the electrolytic solution greatly affects the battery characteristics, various studies have been made on the configuration of the electrolytic solution.
  • 1,3-dioxane is used as an additive for an electrolytic solution in order to improve the charge storage performance of a lithium ion secondary battery under conditions where the positive electrode potential is high (see, for example, Patent Document 1). .
  • the present technology has been made in view of such problems, and an object thereof is to provide a lithium ion secondary battery capable of obtaining excellent battery characteristics.
  • the lithium ion secondary battery of the present technology includes a positive electrode active material, and the positive electrode active material includes a positive electrode including lithium (Li) and fluorine (F) as constituent elements, a negative electrode, and the following formula (1). And an electrolyte solution having a dioxane compound content of 0.1 wt% or more and 2.0 wt% or less.
  • Each of R1 to R8 is either a hydrogen group or a monovalent hydrocarbon group.
  • the positive electrode active material contains lithium and fluorine as constituent elements, and the electrolytic solution contains a predetermined amount of dioxane compound, so that excellent battery characteristics can be obtained. it can.
  • effect of the present technology is not necessarily limited to the effect described here, and may be any of a series of effects related to the present technology described later.
  • Lithium ion secondary battery (cylindrical type) 1-1. Configuration 1-2. Manufacturing method 1-3. Action and effect Lithium ion secondary battery (laminate film type) 2-1. Configuration 2-2. Manufacturing method 2-3. Action and effect
  • Lithium-ion secondary battery (cylindrical type)> First, a lithium ion secondary battery according to an embodiment of the present technology will be described.
  • the lithium ion secondary battery described here is, for example, a secondary battery in which battery capacity (capacitance of a negative electrode 22 described later) is obtained by utilizing a lithium storage phenomenon and a lithium release phenomenon.
  • Configuration> 1 represents a cross-sectional configuration of a lithium ion secondary battery
  • FIG. 2 is an enlarged cross-sectional configuration of a main part (winding electrode body 20) of the lithium ion secondary battery shown in FIG. ing. However, in FIG. 2, only a part of the wound electrode body 20 is shown.
  • This lithium ion secondary battery is, for example, a cylindrical lithium ion secondary battery in which a wound electrode body 20 that is a battery element is housed inside a cylindrical battery can 11 as shown in FIG. is there.
  • the lithium ion secondary battery includes, for example, a pair of insulating plates 12 and 13 and a wound electrode body 20 inside the battery can 11.
  • the wound electrode body 20 is, for example, a wound body formed by winding a positive electrode 21 and a negative electrode 22 that are stacked on each other with a separator 23 interposed therebetween.
  • An electrolyte solution which is an electrolyte of
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened.
  • any of iron (Fe), aluminum (Al), and alloys thereof One type or two or more types are included.
  • nickel (Ni) or the like may be plated on the surface of the battery can 11.
  • the insulating plates 12 and 13 are disposed so as to sandwich the wound electrode body 20 therebetween, and each of the insulating plates 12 and 13 intersects, for example, the winding peripheral surface of the wound electrode body 20. It extends in the direction you want.
  • a battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (PTC element) 16 are caulked to the open end of the battery can 11 via a gasket 17. Thereby, the open end part of the battery can 11 is sealed.
  • the battery lid 14 includes, for example, the same material as the material for forming the battery can 11.
  • Each of the safety valve mechanism 15 and the thermal resistance element 16 is provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the thermal resistance element 16.
  • the disk plate 15 ⁇ / b> A is reversed, so that the electrical connection between the battery lid 14 and the wound electrode body 20 is achieved.
  • the connection is broken.
  • the resistance of the heat-sensitive resistor element 16 increases as the temperature rises.
  • the gasket 17 includes, for example, an insulating material, and asphalt or the like may be applied to the surface of the gasket 17, for example.
  • a center pin 24 is inserted into the space 20 ⁇ / b> C provided at the winding center of the wound electrode body 20.
  • the center pin 24 may be omitted.
  • a positive electrode lead 25 is connected to the positive electrode 21, and the positive electrode lead 25 includes any one kind or two or more kinds of conductive materials such as aluminum.
  • the positive electrode lead 25 is electrically connected to the battery lid 14 via the safety valve mechanism 15.
  • a negative electrode lead 26 is connected to the negative electrode 22, and the negative electrode lead 26 includes any one kind or two or more kinds of conductive materials such as nickel.
  • the negative electrode lead 26 is electrically connected to the battery can 11, for example.
  • the positive electrode 21 includes a positive electrode current collector 21 ⁇ / b> A and two positive electrode active material layers 21 ⁇ / b> B provided on both surfaces of the positive electrode current collector 21 ⁇ / b> A.
  • the positive electrode 21 may include only one positive electrode active material layer 21B provided on one surface of the positive electrode current collector 21A, for example.
  • the positive electrode current collector 21A includes, for example, one or more of conductive materials such as aluminum, nickel, and stainless steel.
  • the positive electrode current collector 21A may be a single layer or a multilayer.
  • the positive electrode active material layer 21 ⁇ / b> B includes one or more of positive electrode materials that can occlude lithium and can release lithium as a positive electrode active material.
  • the positive electrode active material layer 21B may further include any one kind or two or more kinds of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode material contains a lithium-containing compound. This is because a high energy density can be obtained.
  • This “lithium-containing compound” is a general term for compounds containing lithium as a constituent element.
  • the positive electrode material contains a lithium fluorine-containing compound as the above-described lithium-containing compound.
  • This “lithium fluorine-containing compound” is a general term for compounds containing fluorine as a constituent element together with lithium.
  • the positive electrode material contains a lithium fluorine-containing compound, as will be described later, by being used together with a predetermined amount of dioxane compound contained in the electrolytic solution, a coating derived from the dioxane compound (protective film) This is because is formed on the surface of the positive electrode 21. This makes it difficult for the electrolytic solution to be decomposed on the surface of the positive electrode 21, thereby improving the chemical stability of the electrolytic solution.
  • a stable coating is formed on the surface of the positive electrode 21, so that the decomposition reaction of the electrolytic solution is sufficiently suppressed.
  • a stable coating is formed on the surface of the positive electrode 21, so that the decomposition reaction of the electrolyte is sufficiently suppressed.
  • the “charging end voltage” is an upper limit value of the charging voltage at the time of charging.
  • the “high charge end voltage” means, for example, that the positive electrode potential is 4.35 V or higher, preferably 4.40 V or higher with respect to the lithium reference potential, that is, when a carbon material (graphite) is used as the negative electrode active material.
  • the positive electrode potential is 4.30 V or higher, preferably 4.35 V or higher.
  • the above-mentioned advantage is a special technical tendency obtained only when a lithium fluorine-containing compound is used, in other words, when a lithium-containing compound containing fluorine as a constituent element is used. Therefore, when a lithium-containing compound that does not contain fluorine as a constituent element is used, the above-described advantages cannot be obtained, and even when a lithium-containing compound that contains a halogen other than fluorine as a constituent element is used, The advantage that I did is not obtained.
  • the “halogen other than fluorine” is, for example, chlorine (Cl).
  • the kind of the lithium fluorine-containing compound is not particularly limited as long as it contains lithium and fluorine as constituent elements as described above.
  • the lithium fluorine-containing compound is, for example, a lithium fluorine-containing composite oxide having an average composition represented by the following formula (2).
  • This lithium fluorine-containing composite oxide is an oxide containing one or more other elements (M) as constituent elements together with lithium, fluorine and cobalt (Co). This is because a stable coating derived from the dioxane compound is easily formed on the surface of the positive electrode 21.
  • Li w Co x M y O 2 -z F z ⁇ (2) is titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron, nickel, copper (Cu), sodium (Na), magnesium (Mg), aluminum, silicon (Si), Potassium (K), calcium (Ca), zinc (Zn), gallium (Ga), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), barium (Ba), It is at least one of lanthanum (La) and tungsten (W), w, x, y and z are 0.8 ⁇ w ⁇ 1.2, 0.9 ⁇ x + y ⁇ 1.1, 0 ⁇ y. ⁇ 0.1 and 0 ⁇ z ⁇ 0.05 are satisfied.)
  • the other element (M) is preferably one or more of titanium, magnesium, aluminum and zirconium. This is because a stable coating derived from the dioxane compound is easily formed on the surface of the positive electrode 21.
  • the type of the lithium fluorine-containing compound is not particularly limited as long as it is a compound having the structure shown in Formula (2).
  • the fluorine in the positive electrode active material (lithium fluorine-containing compound which is a positive electrode material) is naturally fluorine contained as a constituent element in the lithium fluorine-containing compound.
  • the fluorine described here is not a fluorine contained as a constituent element in constituent elements other than the positive electrode active material, and is also a side reaction product formed when the lithium ion secondary battery is used (during charge / discharge). It is not fluorine contained.
  • the former fluorine is, for example, fluorine in an electrolyte salt (for example, lithium hexafluorophosphate) to be described later, and the latter fluorine is, for example, a reaction product (for example, fluoride) formed during charge / discharge.
  • fluorine in lithium (LiF) lithium fluorine-containing compound which is a positive electrode material
  • the positive electrode active material may be analyzed using any analysis method according to the following procedure.
  • the positive electrode 21 is recovered by disassembling the lithium ion secondary battery, and then the positive electrode active material layer 21B is peeled from the positive electrode current collector 21A. Subsequently, after the positive electrode active material layer 21 ⁇ / b> B is introduced into the organic solvent, the organic solvent is stirred.
  • the type of the organic solvent is not particularly limited as long as it can dissolve soluble components such as the positive electrode binder. Thereby, since the positive electrode active material layer 21B is separated into an insoluble component such as a positive electrode active material and a soluble component such as a positive electrode binder, the positive electrode active material is recovered. Finally, the positive electrode active material is analyzed using X-ray photoelectron spectroscopy (XPS) to confirm whether the positive electrode active material contains fluorine as a constituent element.
  • XPS X-ray photoelectron spectroscopy
  • the positive electrode active material lithium fluorine-containing compound
  • M magnesium, which is another element (M)
  • an analysis peak is detected. For this reason, when the above analysis peak is detected, it can be confirmed that the positive electrode active material contains fluorine as a constituent element.
  • the positive electrode active material does not contain fluorine as a constituent element.
  • the positive electrode material may contain any one kind or two or more kinds of other lithium-containing compounds together with the above-described specific lithium-containing compound (lithium fluorine-containing compound).
  • lithium-containing compounds are, for example, lithium-containing composite oxides and lithium-containing phosphate compounds.
  • This “lithium-containing composite oxide” is a generic name for oxides containing lithium and one or more other elements as constituent elements, and is, for example, a crystal of any one of a layered rock salt type and a spinel type. It has a structure. However, the above-described lithium fluorine-containing compound is excluded from the lithium-containing composite oxide described here.
  • the “lithium-containing phosphate compound” is a general term for phosphate compounds containing lithium and one or more other elements as constituent elements, and has, for example, an olivine type crystal structure.
  • other elements are elements other than lithium.
  • the type of other elements is not particularly limited, but among them, elements belonging to Groups 2 to 15 in the long-period periodic table are preferable. This is because a high voltage can be obtained.
  • other elements are nickel, cobalt, manganese, iron, etc., for example.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
  • An example of the lithium-containing composite oxide having a spinel crystal structure is LiMn 2 O 4 .
  • Examples of the lithium-containing phosphate compound having an olivine type crystal structure include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compound.
  • synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • polymer compound include polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent includes, for example, any one or more of conductive materials such as carbon materials.
  • conductive materials such as carbon materials.
  • the carbon material include graphite, carbon black, acetylene black, and ketjen black.
  • the positive electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.
  • the negative electrode 22 includes a negative electrode current collector 22 ⁇ / b> A and two negative electrode active material layers 22 ⁇ / b> B provided on both surfaces of the negative electrode current collector 22 ⁇ / b> A.
  • the negative electrode 22 may include only one negative electrode active material layer 22B provided on one surface of the negative electrode current collector 22A, for example.
  • the anode current collector 22A includes, for example, any one type or two or more types of conductive materials such as copper, aluminum, nickel, and stainless steel.
  • the anode current collector 22A may be a single layer or a multilayer.
  • the surface of the anode current collector 22A is preferably roughened using an electrolytic method or the like. This is because the adhesion of the negative electrode active material layer 22B to the negative electrode current collector 22A is improved by utilizing a so-called anchor effect.
  • the negative electrode active material layer 22B includes any one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material. However, the negative electrode active material layer 22B may further include any one or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the capacity of the negative electrode material that can be charged is preferably larger than the discharge capacity of the positive electrode 21. That is, the electrochemical equivalent of the negative electrode material is preferably larger than the electrochemical equivalent of the positive electrode 21.
  • the type of the negative electrode material is not particularly limited, and examples thereof include carbon materials and metal-based materials.
  • carbon material is a general term for materials containing carbon as a constituent element. This is because the crystal structure of the carbon material hardly changes at the time of occlusion and release of lithium, so that a high energy density can be stably obtained. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22B is improved.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite.
  • the (002) plane spacing for non-graphitizable carbon is preferably 0.37 nm or more
  • the (002) plane spacing for graphite is preferably 0.34 nm or less.
  • examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks.
  • examples of the cokes include pitch coke, needle coke, and petroleum coke.
  • the organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature.
  • the carbon material may be, for example, low crystalline carbon that has been heat-treated at a temperature of about 1000 ° C. or less, or amorphous carbon.
  • the shape of the carbon material is, for example, fibrous, spherical, granular, and scale-like.
  • metal material is a general term for materials including any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more of them, or a material containing one or two or more phases thereof.
  • the alloy includes not only a material composed of two or more kinds of metal elements, but also a material containing one or more kinds of metal elements and one or more kinds of metalloid elements.
  • the alloy may contain one kind or two or more kinds of nonmetallic elements.
  • the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more kinds thereof.
  • Each metal element and metalloid element can form an alloy with lithium.
  • the metal element and the metalloid element include, for example, magnesium, boron (B), aluminum, gallium, indium (In), silicon, germanium (Ge), tin (Sn), lead (Pb), bismuth ( Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) and platinum (Pt).
  • silicon and tin are preferable, and silicon is more preferable. This is because the lithium storage ability is excellent and the lithium release ability is excellent, so that a significantly high energy density can be obtained.
  • the metal-based material may be a silicon simple substance, a silicon alloy, a silicon compound, a tin simple substance, a tin alloy, or a tin compound. Further, a mixture of two or more kinds thereof, or a material including one kind or two or more kinds of phases thereof may be used.
  • the “single substance” described here means a general simple substance, and the simple substance may contain a small amount of impurities. That is, the purity of a single substance is not necessarily limited to 100%.
  • the silicon alloy is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony (Sb), chromium, and the like as a constituent element other than silicon.
  • One type or two or more types are included.
  • the silicon compound contains, for example, any one or more of carbon (C) and oxygen (O) as constituent elements other than silicon.
  • the compound of silicon may contain any 1 type or 2 types or more of the series of structural elements demonstrated regarding the alloy of silicon as structural elements other than silicon, for example.
  • Silicon alloys and silicon compounds include, for example, SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), LiSiO, and the like.
  • the range of v may be 0.2 ⁇ v ⁇ 1.4, for example.
  • the alloy of tin for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more.
  • the tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
  • the compound of tin may contain any 1 type or 2 types or more of the series of structural elements demonstrated regarding the alloy of tin as structural elements other than tin, for example.
  • Examples of the tin alloy and the tin compound include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
  • the negative electrode material preferably contains both a carbon material and a metal-based material for the reason described below.
  • Metallic materials in particular, materials containing silicon as a constituent element and materials containing tin as a constituent element have an advantage of high theoretical capacity, but have a concern that they tend to violently expand and contract during charging and discharging.
  • the carbon material has a concern that the theoretical capacity is low, but has an advantage that it does not easily expand and contract during charging and discharging. Therefore, by using the carbon material and the metal-based material in combination, expansion and contraction of the negative electrode active material layer 22B are suppressed during charging / discharging while obtaining a high theoretical capacity (that is, battery capacity).
  • the formation method of the negative electrode active material layer 22B is not particularly limited. For example, any one or two or more of coating methods, vapor phase methods, liquid phase methods, thermal spraying methods, firing methods (sintering methods), and the like can be used. It is.
  • the application method is, for example, a method in which a solution in which a mixture of a particle (powder) negative electrode active material and a negative electrode binder is dissolved or dispersed in an organic solvent or the like is applied to the negative electrode current collector 22A.
  • the vapor phase method includes, for example, physical deposition method and chemical deposition method, and more specifically, vacuum deposition method, sputtering method, ion plating method, laser ablation method, thermal chemical vapor deposition, chemical vapor deposition.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 22A.
  • the firing method is, for example, a method in which a solution is applied to the negative electrode current collector 22A using a coating method, and then the solution (coating film) is heat-treated at a temperature higher than the melting point of the negative electrode binder or the like. Specifically, an atmospheric firing method, a reaction firing method, a hot press firing method, and the like.
  • the separator 23 is interposed between the positive electrode 21 and the negative electrode 22, and allows lithium ions to pass through while preventing a short circuit due to contact between the two electrodes.
  • the separator 23 includes, for example, any one kind or two or more kinds of porous films such as synthetic resin and ceramic, and may be a laminated film in which two or more kinds of porous films are laminated to each other.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • the separator 23 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesiveness of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so that the wound electrode body 20 is hardly distorted. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed, so that the resistance of the lithium ion secondary battery is unlikely to increase even after repeated charging and discharging. At the same time, the lithium ion secondary battery is less likely to swell.
  • the polymer compound layer contains any one kind or two or more kinds of polymer compounds such as polyvinylidene fluoride. It is because it is excellent in physical strength and is electrochemically stable.
  • the high molecular compound layer may contain any 1 type or 2 types or more of insulating particles, such as an inorganic particle, for example. This is because safety is improved.
  • the kind of inorganic particles is not particularly limited, and examples thereof include aluminum oxide and aluminum nitride.
  • the wound electrode body 20 is impregnated with the electrolytic solution.
  • the electrolytic solution is impregnated in the separator 23 and impregnated in each of the positive electrode 21 and the negative electrode 22.
  • This electrolytic solution contains any one kind or two or more kinds of dioxane compounds represented by the following formula (1), and the content of the dioxane compound in the electrolytic solution is 0.1% by weight. ⁇ 2.0% by weight.
  • This dioxane compound is a cyclic ether (1,3-dioxane, which is a six-membered ring) having an oxygen atom at each of the 1-position and the 3-position, and derivatives thereof.
  • Each of R1 to R8 is either a hydrogen group or a monovalent hydrocarbon group.
  • the positive electrode 21 contains a lithium fluorine-containing compound
  • the positive electrode 21 contains a lithium fluorine-containing compound
  • the electrolytic solution contains an appropriate amount of dioxane compound, a stable film is formed on the surface of the positive electrode 21, The decomposition reaction is sufficiently suppressed.
  • the reason why a stable film is formed on the surface of the positive electrode 21 in this way is considered as follows.
  • the positive electrode active material lithium fluorine-containing compound
  • the dioxane compound contains a hydrocarbon group (—CR7R8-) having a high electron-donating property at the 2-position. It is out.
  • the existence probability of the dioxane compound on the surface of the positive electrode 21 is higher than the existence probability of the dioxane compound on the surface other than the surface of the positive electrode 21. Also gets higher. Therefore, since the dioxane compound tends to exist on the surface of the positive electrode 21 and the vicinity thereof, a coating derived from the dioxane compound is easily formed on the surface of the positive electrode 21.
  • the content of the dioxane compound in the electrolytic solution is preferably 1.0% by weight to 1.5% by weight. This is because a stable film is more easily formed on the surface of the positive electrode 21.
  • the kind of dioxane compound will not be specifically limited. That is, the dioxane compound may be 1,3-dioxane or a derivative of the 1,3-dioxane compound.
  • the “monovalent hydrocarbon group” relating to each of R1 to R8 is a general term for monovalent groups formed of carbon and hydrogen (H).
  • the monovalent hydrocarbon group may be linear, branched having one or more side chains, or cyclic having one or two or more rings, A conjugate in which two or more of them are bound to each other may be used.
  • the monovalent hydrocarbon group may contain one or more carbon-carbon unsaturated bonds, or may not contain the carbon-carbon unsaturated bonds. This carbon-carbon unsaturated bond is, for example, a carbon-carbon double bond and a carbon-carbon triple bond.
  • the monovalent hydrocarbon group includes, for example, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and a bonding group.
  • the “bonding group” is a monovalent group in which two or more of an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, and an aryl group are bonded to each other.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is, for example, 1 to 3. Moreover, although carbon number of each of an alkenyl group and an alkynyl group is not specifically limited, For example, it is 2 or 3. This is because the solubility and compatibility of the dioxane compound are improved.
  • the alkyl group includes, for example, a methyl group, an ethyl group, and a propyl group.
  • the alkenyl group is, for example, a vinyl group.
  • the alkynyl group is, for example, an acetyl group.
  • the carbon number of each of the cycloalkyl group and the aryl group is not particularly limited, but is, for example, 3 to 8. This is because the solubility and compatibility of the dioxane compound are improved.
  • the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the aryl group include a phenyl group and a naphthyl group.
  • the kind of the dioxane compound is not particularly limited, but for example, 1,3-dioxane, 4-methyl-1,3-dioxane, 4,5-dimethyl-1,3-dioxane and 4,5,6-trimethyl-1 , 3-dioxane.
  • the dioxane compound is preferably 1,3-dioxane. This is because a stable film is more easily formed on the surface of the positive electrode 21.
  • the electrolyte solution may contain any 1 type or 2 or more types of other materials with the above-mentioned dioxane compound.
  • the kind of other material is not specifically limited, For example, they are a solvent, electrolyte salt, etc.
  • the solvent is, for example, any one type or two or more types of non-aqueous solvents (organic solvents).
  • the electrolytic solution containing the nonaqueous solvent is a so-called nonaqueous electrolytic solution.
  • the above dioxane compound is excluded from the non-aqueous solvent described here.
  • Nonaqueous solvents are, for example, carbonate esters, chain carboxylic acid esters, lactones, and nitrile (mononitrile) compounds. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • the carbonate ester contains, for example, one or both of a cyclic carbonate ester and a chain carbonate ester.
  • a cyclic carbonate ester include ethylene carbonate, propylene carbonate, and butylene carbonate
  • chain ester carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • chain carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate.
  • lactone include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Nitrile compounds include, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • Non-aqueous solvents are, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide may also be used. This is because similar advantages can be obtained.
  • the non-aqueous solvent preferably contains a carbonate ester, and specifically includes one or more of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. It is more preferable that it contains. This is because high battery capacity, excellent cycle characteristics, and excellent storage characteristics can be obtained.
  • the carbonate ester preferably contains both a cyclic carbonate ester and a chain carbonate ester.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, dielectric constant ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ⁇ 1 mPas).
  • -A combination with s is more preferred. This is because the dissociation property of the electrolyte salt and the mobility of ions are improved.
  • the non-aqueous solvent includes one or more of unsaturated cyclic carbonates, halogenated carbonates, sulfonates, acid anhydrides, polyvalent nitrile compounds, diisocyanate compounds, and phosphates. It is preferable that This is because the chemical stability of the electrolytic solution is improved.
  • each content of unsaturated cyclic carbonate ester, halogenated carbonate ester, sulfonate ester, acid anhydride, polyvalent nitrile compound, diisocyanate compound and phosphate ester in the electrolytic solution is not particularly limited.
  • the unsaturated cyclic carbonate is a cyclic carbonate having one or more carbon-carbon unsaturated bonds (carbon-carbon double bonds).
  • this unsaturated cyclic carbonate include vinylene carbonate (1,3-dioxol-2-one), vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one) and methylene ethylene carbonate (4-methylene). -1,3-dioxolan-2-one) and the like.
  • Halogenated carbonates are carbonates containing one or more halogens as constituent elements.
  • This halogenated carbonate may be, for example, cyclic or chain-shaped.
  • the kind of halogen is not specifically limited, For example, it is any 1 type or 2 types or more in fluorine (F), chlorine (Cl), bromine (Br), and iodine (I).
  • cyclic halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • Examples of the chain halogenated carbonates include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.
  • Sulfonic acid esters are, for example, monosulfonic acid esters and disulfonic acid esters.
  • the monosulfonic acid ester may be a cyclic monosulfonic acid ester or a chain monosulfonic acid ester.
  • the disulfonic acid ester may be a cyclic disulfonic acid ester or a chain disulfonic acid ester.
  • Examples of the cyclic monosulfonic acid ester include 1,3-propane sultone and 1,3-propene sultone.
  • Examples of the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride.
  • Examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride.
  • Examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • Examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
  • the polyvalent nitrile compound is a compound having two or more nitrile groups (—CN).
  • Examples of the polyvalent nitrile compound include succinonitrile (NC-C 2 H 4 -CN), glutaronitrile (NC-C 3 H 6 -CN), adiponitrile (NC-C 4 H 8 -CN), sebacononitrile.
  • NC-C 8 H 10 -CN and phthalonitrile (NC-C 6 H 4 -CN).
  • NC-C 8 H 10 -CN phthalonitrile
  • NC-C 6 H 4 -CN phthalonitrile
  • the diisocyanate compound is a compound having two isocyanate groups (—NCO).
  • This diisocyanate compound is, for example, OCN—C 6 H 12 —NCO.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, and triallyl phosphate.
  • the electrolyte salt is, for example, any one or more of lithium salts.
  • the electrolyte salt may contain, for example, a salt other than the lithium salt together with the lithium salt.
  • Examples of the salt other than the lithium salt include salts of light metals other than lithium.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), bis (fluorosulfonyl) imidolithium (LiN (SO 2 F) 2 ), and bis (trifluoromethanesulfonyl).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiN (SO 2 F) 2 bis (trifluoromethanesulfonyl).
  • Imidolithium LiN (CF 3 SO 2 ) 2
  • lithium difluorophosphate LiPF 2 O 2
  • lithium fluorophosphate Li 2 PFO 3
  • the content of the electrolyte salt is not particularly limited, but is, for example, 0.3 mol / kg to 3.0 mol / kg with respect to the solvent.
  • This lithium ion secondary battery operates as follows, for example. At the time of charging, lithium ions are released from the positive electrode 21, and the lithium ions are occluded in the negative electrode 22 through the electrolytic solution. On the other hand, at the time of discharging, lithium ions are released from the negative electrode 22, and the lithium ions are occluded in the positive electrode 21 through the electrolytic solution.
  • This lithium ion secondary battery is manufactured, for example, by the following procedure.
  • a positive electrode active material containing a lithium fluorine-containing compound and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture.
  • a positive electrode mixture slurry is obtained by dispersing the positive electrode mixture in an organic solvent or the like.
  • the positive electrode mixture slurry is dried. Thereby, since the positive electrode active material layer 21B is formed, the positive electrode 21 is produced.
  • the positive electrode active material layer 21B may be compression molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated a plurality of times.
  • the negative electrode active material layer 22B is formed on both surfaces of the negative electrode current collector 22A by the same procedure as that for manufacturing the positive electrode 21 described above. Specifically, by mixing a negative electrode active material and, if necessary, a negative positive electrode binder and a negative electrode conductive agent to form a negative electrode mixture, the negative electrode mixture is dispersed in an organic solvent or the like. A paste-like negative electrode mixture slurry is obtained. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 22A, the negative electrode mixture slurry is dried. Thereby, since the negative electrode active material layer 22B is formed, the negative electrode 22 is produced. Thereafter, the negative electrode active material layer 22B may be compression molded.
  • the dioxane compound is added to the solvent.
  • the addition amount of the dioxane compound is adjusted so that the content of the dioxane compound in the electrolytic solution becomes the appropriate amount described above.
  • the positive electrode lead 25 is connected to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead 26 is connected to the negative electrode current collector 22A using a welding method or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are stacked on each other via the separator 23, the positive electrode 21, the negative electrode 22, and the separator 23 are wound to form a wound body. Subsequently, the center pin 24 is inserted into the space 20C provided at the winding center of the wound body.
  • the wound body is accommodated in the battery can 11 while the wound body is sandwiched between the pair of insulating plates 12 and 13.
  • the positive electrode lead 25 is connected to the safety valve mechanism 15 using a welding method or the like
  • the negative electrode lead 26 is connected to the battery can 11 using a welding method or the like.
  • the electrolytic solution is injected into the battery can 11 to impregnate the wound body with the electrolytic solution.
  • the wound electrode body 20 is formed.
  • the open end of the battery can 11 is caulked through the gasket 17, and the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are attached to the open end.
  • the electrolytic solution is hardly decomposed on the surface of the positive electrode 21. Therefore, excellent battery characteristics can be obtained.
  • the content of the dioxane compound in the electrolytic solution is 1.0% by weight to 1.5% by weight, a stable coating is easily formed on the surface of the positive electrode 21, so that a higher effect can be obtained.
  • the dioxane compound contains 1,3-dioxane, a stable film is easily formed on the surface of the positive electrode 21, so that a higher effect can be obtained.
  • the positive electrode active material contains a lithium fluorine-containing composite oxide
  • a stable coating is more easily formed on the surface of the positive electrode 21, so that a higher effect can be obtained.
  • the other element (M) in the formula (2) is one or more of titanium, magnesium, aluminum and zirconium, a more stable coating is formed on the surface of the positive electrode 21. Since it becomes easy to be done, a higher effect can be acquired.
  • Lithium-ion secondary battery laminate film type
  • FIGS. 1 and 2 the components (see FIGS. 1 and 2) of the cylindrical lithium ion secondary battery already described are referred to as needed.
  • FIG. 3 shows a perspective configuration of another lithium ion secondary battery
  • FIG. 4 shows a main part (winding electrode) of the lithium ion secondary battery along the line IV-IV shown in FIG.
  • the cross-sectional structure of the body 30) is represented.
  • FIG. 3 shows a state where the wound electrode body 30 and the exterior member 40 are separated from each other.
  • a wound electrode body 30 that is a battery element is housed inside a film-like exterior member 40 having flexibility (or flexibility).
  • This is a laminated film type lithium ion secondary battery.
  • the wound electrode body 30 is, for example, a wound body formed by winding a positive electrode 33 and a negative electrode 34 that are stacked on each other via a separator 35 and an electrolyte layer 36, and is protected by a protective tape 37. Yes.
  • the electrolyte layer 36 is interposed between the positive electrode 33 and the separator 35, and is interposed between the negative electrode 34 and the separator 35.
  • a positive electrode lead 31 is connected to the positive electrode 33, and a negative electrode lead 32 is connected to the negative electrode 34.
  • the positive electrode lead 31 is led out from the inside of the exterior member 40 to the outside, for example.
  • the positive electrode lead 31 includes, for example, any one or more of conductive materials such as aluminum, and the shape of the positive electrode lead 31 is, for example, any of a thin plate shape and a mesh shape. It is.
  • the negative electrode lead 32 is led out in the same direction as the positive electrode lead 31 from the inside of the exterior member 40 to the outside, for example.
  • the negative electrode lead 32 includes any one or more of conductive materials such as copper, nickel, and stainless steel.
  • the shape of the negative electrode lead 32 is, for example, the shape of the positive electrode lead 31. It is the same.
  • the exterior member 40 is, for example, a single film that can be folded in the direction of arrow R shown in FIG.
  • a recess 40 ⁇ / b> U for accommodating the wound electrode body 30 is provided in a part of the exterior member 40.
  • the exterior member 40 is, for example, a laminate (laminate film) in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • the fusion layer is, for example, a film containing one or more of polymer compounds such as polypropylene.
  • the metal layer is, for example, a metal foil containing one or more of aluminum and the like.
  • the surface protective layer is, for example, a film containing any one kind or two or more kinds of polymer compounds such as nylon.
  • the exterior member 40 includes, for example, two laminate films, and the two laminate films may be bonded to each other via, for example, an adhesive.
  • an adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 in order to prevent intrusion of outside air.
  • an adhesive film 42 having the same function as the adhesive film 41 is inserted between the exterior member 40 and the negative electrode lead 32.
  • Each of the adhesion films 41 and 42 includes a material having adhesion to each of the positive electrode lead 31 and the negative electrode lead 32, and the material is, for example, any one type or two types of polyolefin resins and the like. Includes the above.
  • the polyolefin resin include polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
  • the positive electrode 33 includes, for example, a positive electrode current collector 33A and a positive electrode active material layer 33B
  • the negative electrode 34 includes, for example, a negative electrode current collector 34A and a negative electrode active material layer 34B.
  • the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode
  • the configuration is the same as that of each of the active material layers 22B.
  • the positive electrode 33 includes one or more of positive electrode materials (lithium fluorine-containing compounds) capable of occluding and releasing lithium as a positive electrode active material.
  • the configuration of the separator 35 is the same as the configuration of the separator 23, for example.
  • the electrolyte layer 36 includes a polymer compound together with the electrolytic solution, and the electrolytic solution has the same configuration as the electrolytic solution used in the cylindrical lithium ion secondary battery. That is, the electrolytic solution contains an appropriate amount of dioxane compound.
  • the electrolyte layer 36 described here is a so-called gel electrolyte. For this reason, in the electrolyte layer 36, the electrolytic solution is held by the polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolytic solution is prevented.
  • the electrolyte layer 36 may further include any one kind or two or more kinds of other materials such as various additives.
  • the polymer compound includes, for example, one or both of a homopolymer and a copolymer.
  • a homopolymer examples include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, and polyhexafluoropropylene.
  • the copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
  • the “solvent” included in the electrolyte solution is a wide concept including not only a liquid material but also a material having ion conductivity capable of dissociating the electrolyte salt. . Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the solvent.
  • the electrolytic solution may be used as it is instead of the electrolyte layer 36.
  • the wound electrode body 30 (the positive electrode 33, the negative electrode 34, and the separator 35) is impregnated with the electrolytic solution.
  • This lithium ion secondary battery operates as follows, for example. At the time of charging, lithium ions are released from the positive electrode 33, and the lithium ions are occluded in the negative electrode 34 through the electrolyte layer 36. On the other hand, during discharge, lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 through the electrolyte layer 36.
  • the lithium ion secondary battery provided with the electrolyte layer 36 is manufactured by, for example, the following three types of procedures.
  • the positive electrode 33 and the negative electrode 34 are manufactured by the same procedure as that of the positive electrode 21 and the negative electrode 22. That is, when the positive electrode 33 is produced, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A, and when the negative electrode 34 is produced, the negative electrode active material layer is formed on both surfaces of the negative electrode current collector 34A. 34B is formed.
  • a precursor solution is prepared by mixing an electrolytic solution, a polymer compound, and an organic solvent.
  • the precursor solution is dried to form the electrolyte layer 36, and after applying the precursor solution to the negative electrode 34, the precursor solution is dried to obtain the electrolyte.
  • Layer 36 is formed.
  • the positive electrode lead 31 is connected to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is connected to the negative electrode current collector 34A using a welding method or the like.
  • the positive electrode 33 and the negative electrode 34 are laminated with each other through the separator 35, the positive electrode 33, the negative electrode 34, and the separator 35 are wound to form the wound electrode body 30.
  • a protective tape 37 is attached to the surface of the wound electrode body 30.
  • the outer peripheral edges of the exterior member 40 are bonded to each other using a heat fusion method or the like.
  • the adhesion film 41 is inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 42 is inserted between the negative electrode lead 32 and the exterior member 40.
  • the positive electrode lead 31 is connected to the positive electrode 33 and the negative electrode lead 32 is connected to the negative electrode 34.
  • the positive electrode 33 and the negative electrode 34 are laminated with each other through the separator 35, the positive electrode 33, the negative electrode 34 and the separator 35 are wound to form a wound body and to be protected by the wound body.
  • a tape 37 is affixed.
  • the exterior member 40 is folded so as to sandwich the wound body, the remaining outer peripheral edge portions excluding the outer peripheral edge portion of one side of the exterior member 40 are bonded to each other using a heat fusion method or the like.
  • the wound body is accommodated in the bag-shaped exterior member 40.
  • an electrolyte composition is prepared by mixing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary.
  • the electrolyte composition is injected into the bag-shaped exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like.
  • the polymer is formed by thermally polymerizing the monomer.
  • a wound body is produced by the same procedure as the second procedure described above except that the separator 35 having the polymer compound layer formed on the base material layer is used.
  • the wound body is stored inside.
  • the opening of the exterior member 40 is sealed using a thermal fusion method or the like.
  • the exterior member 40 is heated while applying a load, thereby causing the separator 35 to adhere to each of the positive electrode 33 and the negative electrode 34 via the polymer compound layer.
  • the electrolyte layer 36 is formed. Therefore, since the wound electrode body 30 is enclosed in the exterior member 40, the lithium ion secondary battery is completed.
  • the lithium ion secondary battery is less likely to swell compared to the first procedure. Further, in the third procedure, the solvent and monomer (raw material of the polymer compound) are less likely to remain in the electrolyte layer 36 as compared with the second procedure, so that the formation process of the polymer compound is well controlled. . For this reason, each of the positive electrode 33, the negative electrode 34, and the separator 35 and the electrolyte layer 36 are sufficiently easily adhered.
  • the positive electrode 33 (positive electrode active material) contains a lithium fluorine-containing compound
  • the electrolyte layer 36 electrolytic solution
  • the electrolyte layer 36 electrolytic solution
  • a stable coating derived from a dioxane compound is formed on the surface of the positive electrode 33 for the same reason as described for the cylindrical lithium ion secondary battery. Becomes difficult to be decomposed. Therefore, excellent battery characteristics can be obtained.
  • the other actions and effects relating to the laminated film type lithium ion secondary battery are the same as the other actions and effects relating to the cylindrical type lithium ion secondary battery.
  • the laminate film type lithium ion secondary battery shown in FIGS. 3 and 4 was produced by the following procedure.
  • the types of the positive electrode active material are as shown in Table 1 and Table 2.
  • the positive electrode active material LiCo 0.99 Mg 0.01 O 1.99 F 0.01 (LCMOF) which is a lithium fluorine-containing compound (lithium fluorine-containing composite oxide), LiCo 0.99 Mg 0.01 O 2 (LCMO) which is not a lithium fluorine-containing compound, and LiCo 0.99 Mg 0.01 O 1.99 Cl 0.01 (LCMOCl) was used.
  • the column of “halogen” in Tables 1 and 2 indicates the type of halogen contained as a constituent element in the positive electrode active material.
  • the KLL Auger spectrum of magnesium (Mg) in the positive electrode active material was measured using XPS (Al—K ⁇ ray).
  • XPS Al—K ⁇ ray
  • the intensity of the analysis peak was maximized at the position.
  • the intensity of the analysis peak was maximized at.
  • binding energy (eV) in Tables 1 and 2
  • the positive electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to obtain a paste-like positive electrode mixture slurry.
  • the positive electrode 33 was produced by compression molding the positive electrode active material layer 33B using a roll press.
  • a negative electrode active material graphite
  • a negative electrode binder polyvinylidene fluoride
  • the kind of dioxane compound and the content (% by weight) of the dioxane compound in the electrolytic solution are as shown in Tables 1 and 2.
  • 1,3-dioxane (DOX) was used as the dioxane compound.
  • a sulfonic acid ester was also used in place of the dioxane compound.
  • Table 2 shows the type of sulfonate ester and the content (% by weight) of the sulfonate ester in the electrolytic solution.
  • 1,3-propane sultone (PS) was used as the sulfonate ester.
  • the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A.
  • the laminated body was obtained by laminating
  • stacking the positive electrode 33 and the negative electrode 34 mutually through the separator 35 (microporous polyethylene film, thickness 9 micrometer).
  • the wound body was formed by sticking the protective tape 37 on the laminated body.
  • the adhesion film 41 polypropylene film
  • the adhesion film 42 polypropylene film
  • the charge / discharge conditions were the same as in the case where the cycle characteristics were examined.
  • the capacity retention rate, thickness change rate, resistance change rate, capacity Each of the residual rate and the capacity recovery rate could be obtained.
  • the capacity retention rate, the capacity remaining rate, and the capacity recovery rate were remarkably decreased, and the thickness change rate and the resistance change rate were remarkably increased.
  • the positive electrode active material contains halogen as a constituent element
  • the halogen is chlorine (Experimental Examples 17 to 24)
  • the positive electrode active material does not contain halogen as a constituent element (Experimental Example). The same tendency as in 9 to 16) was obtained.
  • the dioxane compound content is appropriate.
  • the thickness change rate and the resistance change rate were sufficiently reduced while maintaining the high capacity maintenance rate, and the capacity remaining rate and the capacity recovery rate. Each increased sufficiently.
  • the thickness change rate is suppressed to less than 20% and the resistance change rate is suppressed to less than 300%, while the capacity retention rate of 80% or more and the capacity of 70% or more.
  • a residual rate and a capacity recovery rate of 80% or more were obtained.
  • the capacity retention rate, the capacity remaining rate, the capacity recovery rate, the thickness change rate, and the resistance change rate were improved together.
  • the remainder deteriorated when some of the capacity retention rate, capacity remaining rate, capacity recovery rate, thickness change rate, and resistance change rate were improved.
  • the capacity retention rate, the capacity remaining rate, the capacity recovery rate, the thickness change rate, and the resistance change rate were not improved together.
  • Such a tendency was similarly obtained when the positive electrode active material did not contain halogen as a constituent element and when the positive electrode active material contained chlorine as a constituent element.
  • Each of the type of positive electrode active material (with or without halogen) and the composition of the electrolyte solution (with or without dioxane compound) can affect battery characteristics. Specifically, when the positive electrode active material does not contain halogen as a constituent element and when the positive electrode active material contains chlorine as a constituent element, even if a dioxane compound is included in the electrolyte, The decline is hardly improved. On the other hand, when the positive electrode active material contains fluorine as a constituent element, the deterioration of battery characteristics is significantly suppressed by including a dioxane compound in the electrolytic solution.
  • the positive electrode active material contains fluorine as a constituent element
  • simply adding a dioxane compound to the electrolyte does not significantly suppress the deterioration of battery characteristics, and the content of the dioxane compound is optimized. By doing so, the deterioration of the battery characteristics is greatly suppressed for the first time.
  • the remainder will deteriorate if some of the capacity maintenance rate, capacity remaining rate, capacity recovery rate, thickness change rate, and resistance change rate are improved. A trade-off relationship occurs. Therefore, it is difficult to improve each of the capacity maintenance rate, the capacity remaining rate, the capacity recovery rate, the thickness change rate, and the resistance change rate together.
  • the dioxane compound content is 1.0 wt.
  • the content was from 1.5 to 1.5% by weight, the capacity retention rate, the capacity remaining rate, and the capacity recovery rate were more likely to increase, and the thickness change rate and the resistance change rate were more likely to be reduced.
  • the positive electrode active material does not contain halogen as a constituent element and the electrolytic solution contains a sulfonate ester (Experimental Example 26)
  • the positive electrode active material contains halogen as a constituent element. The same tendency as in the case (Experimental Example 25) was obtained.
  • the thickness change rate and the resistance change rate are sufficiently high regardless of whether the positive electrode active material contains fluorine as a constituent element. While not decreasing, each of the capacity maintenance rate, the capacity remaining rate, and the capacity recovery rate did not increase sufficiently.
  • the capacity maintenance rate, capacity remaining rate, capacity recovery rate, thickness change rate, and resistance change rate are set together according to the type of positive electrode active material (with or without fluorine) and the content in the electrolyte.
  • Advantages that can be improved are advantages that cannot be obtained when sulfonic acid esters are used, and are unique advantages that can be obtained only when dioxane compounds are used.
  • cycle characteristics, swelling characteristics, electrical resistance characteristics, capacity remaining characteristics and capacity recovery characteristics were improved together. Therefore, the battery characteristic which was excellent in the lithium ion secondary battery was acquired.
  • the present technology has been described with reference to one embodiment and an example.
  • the aspect of the present technology is not limited to the aspect described in the embodiment and the example, and various modifications can be made with respect to the aspect of the present technology. Is possible.
  • the cylindrical lithium ion secondary battery and the laminate film type lithium ion secondary battery have been described, but the present invention is not limited thereto.
  • a square lithium ion secondary battery and a coin type lithium ion secondary battery may be used.
  • the battery element may have another structure such as a laminated structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リチウムイオン二次電池は、正極活物質を含むと共にその正極活物質がリチウム(Li)およびフッ素(F)を構成元素として含む正極と、負極と、ジオキサン化合物を含むと共にそのジオキサン化合物の含有量が0.1重量%以上2.0重量%以下である電解液とを備える。

Description

リチウムイオン二次電池
 本技術は、正極および負極と共に電解液を備えたリチウムイオン二次電池に関する。
 携帯電話機などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。そこで、電源として、小型かつ軽量であると共に高エネルギー密度を得ることが可能であるリチウムイオン二次電池の開発が進められている。
 リチウムイオン二次電池は、正極および負極と共に、そのリチウムイオン二次電池用の電解液を備えている。電解液の構成は、電池特性に大きな影響を及ぼすため、その電解液の構成に関しては、さまざまな検討がなされている。
 具体的には、正極電位が高い条件下においてリチウムイオン二次電池の充電保存性能を改善するために、電解液の添加剤として1,3-ジオキサンが用いられている(例えば、特許文献1参照。)。
特許第5127706号明細書
 リチウムイオン二次電池が搭載される電子機器は、益々、高性能化および多機能化している。これに伴い、電子機器の使用頻度は増加していると共に、その電子機器などの使用環境は拡大している。そこで、リチウムイオン二次電池の電池特性に関しては、未だ改善の余地がある。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能なリチウムイオン二次電池を提供することにある。
 本技術のリチウムイオン二次電池は、正極活物質を含むと共にその正極活物質がリチウム(Li)およびフッ素(F)を構成元素として含む正極と、負極と、下記の式(1)で表されるジオキサン化合物を含むと共にそのジオキサン化合物の含有量が0.1重量%以上2.0重量%以下である電解液とを備えたものである。
Figure JPOXMLDOC01-appb-C000002
(R1~R8のそれぞれは、水素基および1価の炭化水素基のうちのいずれかである。)
 本技術のリチウムイオン二次電池によれば、正極活物質がリチウムおよびフッ素を構成元素として含んでいると共に、電解液が所定量のジオキサン化合物を含んでいるので、優れた電池特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態のリチウムイオン二次電池(円筒型)の構成を表す断面図である。 図1に示したリチウムイオン二次電池のうちの主要部の構成を拡大して表す断面図である。 本技術の一実施形態の他のリチウムイオン二次電池(ラミネートフィルム型)の構成を表す斜視図である。 図3に示したリチウムイオン二次電池のうちの主要部の構成を表す断面図である。
 以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.リチウムイオン二次電池(円筒型)
  1-1.構成
  1-2.製造方法
  1-3.作用および効果
 2.リチウムイオン二次電池(ラミネートフィルム型)
  2-1.構成
  2-2.製造方法
  2-3.作用および効果
<1.リチウムイオン二次電池(円筒型)>
 まず、本技術の一実施形態のリチウムイオン二次電池に関して説明する。
 ここで説明するリチウムイオン二次電池は、例えば、リチウムの吸蔵現象およびリチウムの放出現象を利用して電池容量(後述する負極22の容量)が得られる二次電池である。
<1-1.構成>
 図1は、リチウムイオン二次電池の断面構成を表していると共に、図2は、図1に示したリチウムイオン二次電池のうちの主要部(巻回電極体20)の断面構成を拡大している。ただし、図2では、巻回電極体20のうちの一部だけを示している。
 このリチウムイオン二次電池は、例えば、図1に示したように、円筒状の電池缶11の内部に、電池素子である巻回電極体20が収納された円筒型のリチウムイオン二次電池である。
 具体的には、リチウムイオン二次電池は、例えば、電池缶11の内部に、一対の絶縁板12,13と、巻回電極体20とを備えている。この巻回電極体20は、例えば、セパレータ23を介して互いに積層された正極21および負極22が巻回されることにより形成された巻回体であり、その巻回電極体20には、液状の電解質である電解液が含浸されている。
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、鉄(Fe)、アルミニウム(Al)およびそれらの合金などのうちのいずれか1種類または2種類以上を含んでいる。電池缶11の表面には、例えば、ニッケル(Ni)などが鍍金されていてもよい。絶縁板12,13は、例えば、互いに巻回電極体20を挟むように配置されていると共に、絶縁板12,13のそれぞれは、例えば、巻回電極体20の巻回周面に対して交差する方向に延在している。
 電池缶11の開放端部には、例えば、電池蓋14、安全弁機構15および熱感抵抗素子(PTC素子)16がガスケット17を介してかしめられている。これにより、電池缶11の開放端部は密閉されている。電池蓋14は、例えば、電池缶11の形成材料と同様の材料を含んでいる。安全弁機構15および熱感抵抗素子16のそれぞれは、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、例えば、内部短絡または外部加熱などに起因して電池缶11の内圧が一定以上になると、ディスク板15Aが反転するため、電池蓋14と巻回電極体20との電気的接続が切断される。大電流に起因する異常な発熱を防止するために、熱感抵抗素子16の抵抗は温度の上昇に応じて増加する。ガスケット17は、例えば、絶縁性材料を含んでおり、そのガスケット17の表面には、例えば、アスファルトなどが塗布されていてもよい。
 巻回電極体20の巻回中心に設けられた空間20Cには、例えば、センターピン24が挿入されている。ただし、センターピン24は省略されてもよい。正極21には、正極リード25が接続されており、その正極リード25は、例えば、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この正極リード25は、例えば、安全弁機構15を介して電池蓋14と電気的に接続されている。負極22には、負極リード26が接続されており、その負極リード26は、例えば、ニッケルなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この負極リード26は、例えば、電池缶11と電気的に接続されている。
[正極]
 正極21は、例えば、図2に示したように、正極集電体21Aと、その正極集電体21Aの両面に設けられた2つの正極活物質層21Bとを含んでいる。ただし、正極21は、例えば、正極集電体21Aの片面に設けられた1つの正極活物質層21Bだけを含んでいてもよい。
(正極集電体)
 正極集電体21Aは、例えば、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この正極集電体21Aは、単層でもよいし、多層でもよい。
(正極活物質層)
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵可能であると共にリチウムを放出可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 正極材料は、リチウム含有化合物を含んでいる。高いエネルギー密度が得られるからである。この「リチウム含有化合物」は、リチウムを構成元素として含む化合物の総称である。
 具体的には、正極材料は、上記したリチウム含有化合物としてリチウムフッ素含有化合物を含んでいる。この「リチウムフッ素含有化合物」は、リチウムと共にフッ素を構成元素として含む化合物の総称である。
 正極材料がリチウムフッ素含有化合物を含んでいるのは、後述するように、電解液に含まれている所定量のジオキサン化合物と一緒に用いられることにより、そのジオキサン化合物に由来する被膜(保護膜)が正極21の表面に形成されるからである。これにより、正極21の表面において電解液が分解されにくくなるため、その電解液の化学的安定性が向上する。
 この場合には、特に、低温環境中においてリチウムイオン二次電池が保存されても、正極21の表面に安定な被膜が形成されるため、電解液の分解反応が十分に抑制される。また、リチウムイオン二次電池の充電時において高い充電終止電圧が設定されても、正極21の表面に安定な被膜が形成されるため、電解液の分解反応が十分に抑制される。この「充電終止電圧」とは、充電時における充電電圧の上限値である。また、「高い充電終止電圧」とは、例えば、リチウム基準電位に対して正極電位が4.35V以上、好ましくは4.40V以上であり、すなわち負極活物質として炭素材料(黒鉛)を用いた場合には、正極電位が4.30V以上、好ましく4.35V以上である。
 なお、上記した利点は、リチウムフッ素含有化合物を用いた場合、言い替えれば、フッ素を構成元素として含むリチウム含有化合物を用いた場合においてだけ得られる特別な技術的傾向である。このため、フッ素を構成元素として含んでいないリチウム含有化合物を用いた場合には、上記した利点が得られないと共に、フッ素以外のハロゲンを構成元素として含むリチウム含有化合物を用いた場合においても、上記した利点が得られない。この「フッ素以外のハロゲン」は、例えば、塩素(Cl)などである。
 リチウムフッ素含有化合物の種類は、上記したように、リチウムおよびフッ素を構成元素として含んでいれば、特に限定されない。具体的には、リチウムフッ素含有化合物は、例えば、下記の式(2)で表される平均組成を有するリチウムフッ素含有複合酸化物である。このリチウムフッ素含有複合酸化物は、リチウム、フッ素およびコバルト(Co)と共に1種類または2種類以上の他元素(M)を構成元素として含む酸化物である。ジオキサン化合物に由来する安定な被膜が正極21の表面に形成されやすくなるからである。
 LiCo2-z  ・・・(2)
(Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄、ニッケル、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム、ケイ素(Si)、カリウム(K)、カルシウム(Ca)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、バリウム(Ba)、ランタン(La)およびタングステン(W)のうちの少なくとも1種である。w、x、yおよびzは、0.8<w<1.2、0.9<x+y<1.1、0≦y<0.1および0<z<0.05を満たす。)
 中でも、他元素(M)は、チタン、マグネシウム、アルミニウムおよびジルコニウムのうちのいずれか1種類または2種類以上であることが好ましい。ジオキサン化合物に由来する安定な被膜が正極21の表面により形成されやすくなるからである。
 リチウムフッ素含有化合物の種類は、式(2)に示した構造を有する化合物であれば、特に限定されない。
 ここで、正極活物質(正極材料であるリチウムフッ素含有化合物)中のフッ素は、当然ながら、そのリチウムフッ素含有化合物に構成元素として含まれているフッ素である。このため、ここで説明するフッ素は、正極活物質以外の構成要素に構成元素として含まれているフッ素でないと共に、リチウムイオン二次電池の使用時(充放電時)において形成される副反応物に含まれているフッ素でない。前者のフッ素は、例えば、後述する電解質塩(例えば、六フッ化リン酸リチウム)中のフッ素などであると共に、後者のフッ素は、例えば、充放電時において形成される反応物(例えば、フッ化リチウム(LiF))中のフッ素などである。
 正極活物質にフッ素が構成元素として含まれているか否かを確認するためには、例えば、以下の手順により、任意の分析方法を用いて正極活物質を分析すればよい。
 最初に、リチウムイオン二次電池を解体することにより、正極21を回収したのち、正極集電体21Aから正極活物質層21Bを剥離させる。続いて、有機溶剤中に正極活物質層21Bを投入したのち、その有機溶剤を撹拌する。有機溶剤の種類は、正極結着剤などの可溶成分を溶解可能であれば、特に限定されない。これにより、正極活物質層21Bが正極活物質などの不溶成分と正極結着剤などの可溶成分とに分離されるため、その正極活物質が回収される。最後に、X線光電子分光分析法(XPS)を用いて正極活物質を分析することにより、その正極活物質にフッ素が構成元素として含まれているか否かを確認する。
 一例を挙げると、正極活物質(リチウムフッ素含有化合物)がフッ素と共に他元素(M)であるマグネシウムを構成元素として含んでいる場合には、結合エネルギー=306eVの近傍にMg-F結合に起因する解析ピークが検出される。このため、上記した解析ピークが検出された場合には、正極活物質にフッ素が構成元素として含まれていることを確認することができる。一方、上記した解析ピークが検出されない場合には、正極活物質にフッ素が構成元素として含まれていないことを確認することができる。
 なお、正極材料は、上記した特定のリチウム含有化合物(リチウムフッ素含有化合物)と共に、他のリチウム含有化合物のうちのいずれか1種類または2種類以上を含んでいてもよい。
 他のリチウム含有化合物は、例えば、リチウム含有複合酸化物およびリチウム含有リン酸化合物などである。この「リチウム含有複合酸化物」は、リチウムと1種類または2種類以上の他元素とを構成元素として含む酸化物の総称であり、例えば、層状岩塩型およびスピネル型などのうちのいずれかの結晶構造を有している。ただし、上記したリチウムフッ素含有化合物は、ここで説明するリチウム含有複合酸化物から除かれる。また、「リチウム含有リン酸化合物」は、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物の総称であり、例えば、オリビン型などの結晶構造を有している。
 上記した「他元素」は、リチウム以外の元素である。他元素の種類は、特に限定されないが、中でも、長周期型周期表における2族~15族に属する元素であることが好ましい。高い電圧が得られるからである。具体的には、他元素は、例えば、ニッケル、コバルト、マンガンおよび鉄などである。
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、LiMnなどである。オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。
 正極導電剤は、例えば、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、正極導電剤は、導電性材料であれば、金属材料および導電性高分子などでもよい。
[負極]
 負極22は、例えば、図2に示したように、負極集電体22Aと、その負極集電体22Aの両面に設けられた2つの負極活物質層22Bとを含んでいる。ただし、負極22は、例えば、負極集電体22Aの片面に設けられた1つの負極活物質層22Bだけを含んでいてもよい。
(負極集電体)
 負極集電体22Aは、例えば、銅、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この負極集電体22Aは、単層でもよいし、多層でもよい。
 負極集電体22Aの表面は、電解法などを用いて粗面化されていることが好ましい。いわゆるアンカー効果を利用して、負極集電体22Aに対する負極活物質層22Bの密着性が向上するからである。
(負極活物質層)
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵可能であると共にリチウムを放出可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 充電途中において意図せずにリチウム金属が負極22の表面に析出することを防止するために、充電可能である負極材料の容量は、正極21の放電容量よりも大きいことが好ましい。すなわち、負極材料の電気化学当量は、正極21の電気化学当量よりも大きいことが好ましい。
 負極材料の種類は、特に限定されないが、例えば、炭素材料および金属系材料などである。
 上記した「炭素材料」は、炭素を構成元素として含む材料の総称である。リチウムの吸蔵時およびリチウムの放出時において炭素材料の結晶構造はほとんど変化しないため、高いエネルギー密度が安定に得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層22Bの導電性が向上するからである。
 この炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素に関する(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛に関する(002)面の面間隔は、0.34nm以下であることが好ましい。
 より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類は、例えば、ピッチコークス、ニードルコークスおよび石油コークスなどを含む。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)された焼成物である。この他、炭素材料は、例えば、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。炭素材料の形状は、例えば、繊維状、球状、粒状および鱗片状などである。
 上記した「金属系材料」は、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。高いエネルギー密度が得られるからである。
 この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料だけでなく、1種類または2種類以上の金属元素と1種類または2種類以上の半金属元素とを含む材料も含まれる。また、合金は、1種類または2種類以上の非金属元素を含んでいてもよい。金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
 金属元素および半金属元素のそれぞれは、リチウムと合金を形成可能である。具体的には、金属元素および半金属元素は、例えば、マグネシウム、ホウ素(B)、アルミニウム、ガリウム、インジウム(In)、ケイ素、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。
 中でも、ケイ素およびスズが好ましく、ケイ素がより好ましい。リチウムの吸蔵能力が優れていると共にリチウムの放出能力が優れているため、著しく高いエネルギー密度が得られるからである。
 具体的には、金属系材料は、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、スズの単体でもよいし、スズの合金でもよいし、スズの化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。ここで説明する「単体」は、あくまで一般的な単体を意味しているため、その単体は、微量の不純物を含んでいてもよい。すなわち、単体の純度は、必ずしも100%に限られない。
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン(Sb)およびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素(C)および酸素(O)などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の構成元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 ケイ素の合金およびケイ素の化合物は、例えば、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。ただし、vの範囲は、例えば、0.2<v<1.4でもよい。
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の構成元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 スズの合金およびスズの化合物は、例えば、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。
 中でも、負極材料は、以下で説明する理由により、炭素材料および金属系材料の双方を含んでいることが好ましい。
 金属系材料、特に、ケイ素を構成元素として含む材料およびスズを構成元素として含む材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張および収縮しやすいという懸念点を有する。一方、炭素材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張および収縮しにくいという利点を有する。よって、炭素材料と金属系材料とを併用することにより、高い理論容量(すなわち電池容量)が得られながら、充放電時において負極活物質層22Bの膨張および収縮が抑制される。
 負極結着剤に関する詳細は、例えば、上記した正極結着剤に関する詳細と同様である。負極導電剤に関する詳細は、例えば、上記した負極導電剤に関する詳細と同様である。
 負極活物質層22Bの形成方法は、特に限定されないが、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。塗布法は、例えば、粒子(粉末)状の負極活物質と負極結着剤などとの混合物が有機溶剤などにより溶解または分散された溶液を負極集電体22Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などであり、より具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長法(CVD)およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法は、溶融状態または半溶融状態の負極活物質を負極集電体22Aに噴き付ける方法である。焼成法は、例えば、塗布法を用いて負極集電体22Aに溶液を塗布したのち、その溶液(塗膜)を負極結着剤などの融点よりも高い温度で熱処理する方法であり、より具体的には、雰囲気焼成法、反応焼成法およびホットプレス焼成法などである。
[セパレータ]
 セパレータ23は、例えば、図2に示したように、正極21と負極22との間に介在しており、両極の接触に起因する短絡を防止しながらリチウムイオンを通過させる。
 このセパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜のうちのいずれか1種類または2種類以上を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどである。
 特に、セパレータ23は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極21および負極22のそれぞれに対するセパレータ23の密着性が向上するため、巻回電極体20が歪みにくくなるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返してもリチウムイオン二次電池の抵抗が上昇しにくくなると共に、そのリチウムイオン二次電池が膨れにくくなる。
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。物理的強度に優れていると共に、電気化学的に安定であるからである。なお、高分子化合物層は、例えば、無機粒子などの絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。安全性が向上するからである。無機粒子の種類は、特に限定されないが、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。
[電解液]
 電解液は、上記したように、巻回電極体20に含浸されている。このため、電解液は、例えば、セパレータ23に含浸されていると共に、正極21および負極22のそれぞれに含浸されている。
(ジオキサン化合物)
 この電解液は、下記の式(1)で表されるジオキサン化合物のうちのいずれか1種類または2種類以上を含んでおり、その電解液中におけるジオキサン化合物の含有量は、0.1重量%~2.0重量%である。このジオキサン化合物は、1位および3位のそれぞれに酸素原子を有する環状エーテル(六員環である1,3-ジオキサン)およびその誘導体である。
Figure JPOXMLDOC01-appb-C000003
(R1~R8のそれぞれは、水素基および1価の炭化水素基のうちのいずれかである。)
 電解液が所定量(=0.1重量%~2.0重量%)のジオキサン化合物を含んでいるのは、上記したように、正極21(正極活物質)がリチウムフッ素含有化合物を含んでいる場合において、そのジオキサン化合物に由来する安定な被膜が正極21の表面に形成されるため、その正極21の表面において電解液が分解されにくくなるからである。
 より具体的には、正極21がリチウムフッ素含有化合物を含んでいる場合において、電解液がジオキサン化合物を含んでいても、その電解液中におけるジオキサン化合物の含有量が適正量(=0.1重量%~2.0重量%)でないと、正極21の表面に安定な被膜が形成されにくいため、電解液の分解反応が十分に抑制されない。
 これに対して、正極21がリチウムフッ素含有化合物を含んでいる場合において、電解液が適正量のジオキサン化合物を含んでいると、正極21の表面に安定な被膜が形成されるため、電解液の分解反応が十分に抑制される。
 このように正極21の表面に安定な被膜が形成される理由は、以下の通りであると考えられる。正極活物質(リチウムフッ素含有化合物)は、高い電子吸引性を有するフッ素原子を含んでいると共に、ジオキサン化合物は、2位の位置に高い電子付与性を有する炭化水素基(-CR7R8-)を含んでいる。この場合には、電子吸引性のフッ素原子と電子付与性の炭化水素基との相乗作用により、正極21の表面におけるジオキサン化合物の存在確率は、その正極21の表面以外におけるジオキサン化合物の存在確率よりも高くなる。よって、正極21の表面およびその近傍にジオキサン化合物が存在しやすくなるため、そのジオキサン化合物に由来する被膜が正極21の表面に形成されやすくなる。
 中でも、電解液中におけるジオキサン化合物の含有量は、1.0重量%~1.5重量%であることが好ましい。正極21の表面に安定な被膜がより形成されやすくなるからである。
 式(1)に示した構造を有していれば、ジオキサン化合物の種類は、特に限定されない。すなわち、ジオキサン化合物は、1,3-ジオキサンでもよいし、その1,3-ジオキサン化合物の誘導体でもよい。
 R1~R8のそれぞれに関する「1価の炭化水素基」は、炭素および水素(H)により形成される1価の基の総称である。このため、1価の炭化水素基は、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよいし、1個または2個以上の環を有する環状でもよいし、それらの2種類以上が互いに結合された結合体でもよい。また、1価の炭化水素基は、1個または2個以上の炭素間不飽和結合を含んでいてもよいし、その炭素間不飽和結合を含んでいなくてもよい。この炭素間不飽和結合は、例えば、炭素間二重結合および炭素間三重結合である。
 具体的には、1価の炭化水素基は、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基および結合基などである。この「結合基」は、アルキル基、アルケニル基、アルキニル基、シクロアルキル基およびアリール基のうちの2種類以上が互いに結合された1価の基である。
 アルキル基の炭素数は、特に限定されないが、例えば、1~3である。また、アルケニル基およびアルキニル基のそれぞれの炭素数は、特に限定されないが、例えば、2または3である。ジオキサン化合物の溶解性および相溶性が向上するからである。具体的には、アルキル基は、例えば、メチル基、エチル基およびプロピル基などである。アルケニル基は、例えば、ビニル基などである。アルキニル基は、例えば、アセチル基などである。
 シクロアルキル基およびアリール基のそれぞれの炭素数は、特に限定されないが、例えば、3~8である。ジオキサン化合物の溶解性および相溶性が向上するからである。シクロアルキル基は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基およびシクロヘキシル基などである。アリール基は、例えば、フェニル基およびナフチル基などである。
 ジオキサン化合物の種類は、特に限定されないが、例えば、1,3-ジオキサン、4-メチル-1,3-ジオキサン、4,5-ジメチル-1,3-ジオキサンおよび4,5,6-トリメチル-1,3-ジオキサンなどである。
 中でも、ジオキサン化合物は、1,3-ジオキサンであることが好ましい。正極21の表面に安定な被膜がより形成されやすくなるからである。
(他の材料)
 なお、電解液は、上記したジオキサン化合物と共に、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。他の材料の種類は、特に限定されないが、例えば、溶媒および電解質塩などである。
(溶媒)
 溶媒は、例えば、非水溶媒(有機溶剤)などのうちのいずれか1種類または2種類以上である。非水溶媒を含む電解液は、いわゆる非水電解液である。ただし、上記したジオキサン化合物は、ここで説明する非水溶媒から除かれる。
 非水溶媒は、例えば、炭酸エステル、鎖状カルボン酸エステル、ラクトンおよびニトリル(モノニトリル)化合物である。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 炭酸エステルは、例えば、環状炭酸エステルおよび鎖状炭酸エステルのうちの一方または双方を含んでいる。環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどであると共に、鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。ニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。
 また、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドでもよい。同様の利点が得られるからである。
 中でも、非水溶媒は、炭酸エステルを含んでいることが好ましく、具体的には、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどのうちのいずれか1種類または2種類以上を含んでいることがより好ましい。高い電池容量、優れたサイクル特性および優れた保存特性などが得られるからである。
 より具体的には、炭酸エステルは、環状炭酸エステルおよび鎖状炭酸エステルの双方を含んでいることが好ましい。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度などが向上するからである。
 特に、非水溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、多価ニトリル化合物、ジイソシアネート化合物およびリン酸エステルのうちのいずれか1種類または2種類以上を含んでいることが好ましい。電解液の化学的安定性が向上するからである。なお、電解液中における不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、多価ニトリル化合物、ジイソシアネート化合物およびリン酸エステルのそれぞれの含有量は、特に限定されない。
 不飽和環状炭酸エステルは、1個または2個以上の炭素間不飽和結合(炭素間二重結合)を有する環状の炭酸エステルである。この不飽和環状炭酸エステルは、例えば、炭酸ビニレン(1,3-ジオキソール-2-オン)、炭酸ビニルエチレン(4-ビニル-1,3-ジオキソラン-2-オン)および炭酸メチレンエチレン(4-メチレン-1,3-ジオキソラン-2-オン)などである。
 ハロゲン化炭酸エステルは、1個または2個以上のハロゲンを構成元素として含む炭酸エステルである。このハロゲン化炭酸エステルは、例えば、環状でもよいし、鎖状でもよい。ハロゲンの種類は、特に限定されないが、例えば、フッ素(F)、塩素(Cl)、臭素(Br)およびヨウ素(I)のうちのいずれか1種類または2種類以上である。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである
 スルホン酸エステルは、例えば、モノスルホン酸エステルおよびジスルホン酸エステルである。ただし、モノスルホン酸エステルは、環状モノスルホン酸エステルでもよいし、鎖状モノスルホン酸エステルでもよい。また、ジスルホン酸エステルは、環状ジスルホン酸エステルでもよいし、鎖状ジスルホン酸エステルでもよい。環状モノスルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどである。
 酸無水物は、例えば、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸および無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。
 多価ニトリル化合物は、2個以上のニトリル基(-CN)を有する化合物である。この多価ニトリル化合物は、えば、スクシノニトリル(NC-C-CN)、グルタロニトリル(NC-C-CN)、アジポニトリル(NC-C-CN)、セバコニトリル(NC-C10-CN)およびフタロニトリル(NC-C-CN)などである。(NC-C10-CN)およびフタロニトリル(NC-C-CN)などである。
 ジイソシアネート化合物は、2個のイソシアネート基(-NCO)を有する化合物である。このジイソシアネート化合物は、例えば、OCN-C12-NCOなどである。
 リン酸エステルは、例えば、リン酸トリメチル、リン酸トリエチルおよびリン酸トリアリルなどである。
(電解質塩)
 電解質塩は、例えば、リチウム塩のうちのいずれか1種類または2種類以上である。ただし、電解質塩は、例えば、リチウム塩と共に、そのリチウム塩以外の塩を含んでいてもよい。リチウム塩以外の塩は、例えば、リチウム以外の軽金属の塩などである。
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、ビス(フルオロスルホニル)イミドリチウム(LiN(SOF))、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、ジフルオロリン酸リチウム(LiPF)およびフルオロリン酸リチウム(LiPFO)などである。
 電解質塩の含有量は、特に限定されないが、例えば、溶媒に対して0.3mol/kg~3.0mol/kgである。
[動作]
 このリチウムイオン二次電池は、例えば、以下のように動作する。充電時には、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。一方、放電時には、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。
<1-2.製造方法>
 このリチウムイオン二次電池は、例えば、以下の手順により製造される。
[正極の作製]
 最初に、リチウムフッ素含有化合物を含む正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーとする。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させる。これにより、正極活物質層21Bが形成されるため、正極21が作製される。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[負極の作製]
 上記した正極21の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。具体的には、負極活物質と、必要に応じて負正極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を分散させることにより、ペースト状の負極合剤スラリーとする。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させる。これにより、負極活物質層22Bが形成されるため、負極22が作製される。こののち、負極活物質層22Bを圧縮成型してもよい。
[電解液の調製]
 溶媒に電解質塩を加えたのち、その溶媒にジオキサン化合物を加える。この場合には、電解液中におけるジオキサン化合物の含有量が上記した適正量となるように、そのジオキサン化合物の添加量を調整する。
[リチウムイオン二次電池の組み立て]
 最初に、溶接法などを用いて正極集電体21Aに正極リード25を接続させると共に、溶接法などを用いて負極集電体22Aに負極リード26を接続させる。続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を形成する。続いて、巻回体の巻回中心に設けられた空間20Cにセンターピン24を挿入する。
 続いて、一対の絶縁板12,13により巻回体を挟みながら、その巻回体を電池缶11の内部に収納する。この場合には、溶接法などを用いて正極リード25を安全弁機構15に接続させると共に、溶接法などを用いて負極リード26を電池缶11に接続させる。続いて、電池缶11の内部に電解液を注入することにより、その電解液を巻回体に含浸させる。これにより、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されるため、巻回電極体20が形成される。
 最後に、ガスケット17を介して電池缶11の開放端部をかしめることにより、その開放端部に電池蓋14、安全弁機構15および熱感抵抗素子16を取り付ける。これにより、電池缶11の内部に巻回電極体20が封入されるため、リチウムイオン二次電池が完成する。
<1-3.作用および効果>
 この円筒型のリチウムイオン二次電池によれば、正極21(正極活物質)がリチウムフッ素含有化合物を含んでいると共に、電解液が適正量(=0.1重量%~2.0重量)のジオキサン化合物を含んでいる。この場合には、上記したように、ジオキサン化合物に由来する安定な被膜が正極21の表面に形成されるため、その正極21の表面において電解液が分解されにくくなる。よって、優れた電池特性を得ることができる。
 特に、電解液中におけるジオキサン化合物の含有量が1.0重量%~1.5重量%であれば、正極21の表面に安定な被膜が形成されやすくなるため、より高い効果を得ることができる。
 また、ジオキサン化合物が1,3-ジオキサンを含んでいれば、正極21の表面に安定な被膜が形成されやすくなるため、より高い効果を得ることができる。
 また、正極活物質(リチウムフッ素含有化合物)がリチウムフッ素含有複合酸化物を含んでいれば、正極21の表面に安定な被膜がより形成されやすくなるため、より高い効果を得ることができる。この場合には、式(2)中の他元素(M)がチタン、マグネシウム、アルミニウムおよびジルコニウムのうちのいずれか1種類または2種類以上であれば、正極21の表面に安定な被膜がより形成されやすくなるため、さらに高い効果を得ることができる。
<2.リチウムイオン二次電池(ラミネートフィルム型)>
 次に、本技術の一実施形態の他のリチウムイオン二次電池に関して説明する。以下の説明では、随時、既に説明した円筒型のリチウムイオン二次電池の構成要素(図1および図2参照)を引用する。
 図3は、他のリチウムイオン二次電池の斜視構成を表していると共に、図4は、図3に示したIV-IV線に沿ったリチウムイオン二次電池のうちの主要部(巻回電極体30)の断面構成を表している。ただし、図3では、巻回電極体30と外装部材40とが互いに離間された状態を示している。
<2-1.構成>
 このリチウムイオン二次電池は、例えば、図3に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材40の内部に、電池素子である巻回電極体30が収納されたラミネートフィルム型のリチウムイオン二次電池である。
 巻回電極体30は、例えば、セパレータ35および電解質層36を介して互いに積層された正極33および負極34が巻回されることにより形成された巻回体であり、保護テープ37により保護されている。電解質層36は、例えば、正極33とセパレータ35との間に介在していると共に、負極34とセパレータ35との間に介在している。正極33には、正極リード31が接続されていると共に、負極34には、負極リード32が接続されている。
 正極リード31は、例えば、外装部材40の内部から外部に向かって導出されている。この正極リード31は、例えば、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その正極リード31の形状は、例えば、薄板状および網目状などのうちのいずれかである。
 負極リード32は、例えば、外装部材40の内部から外部に向かって正極リード31と同様の方向に導出されている。この負極リード32は、例えば、銅、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その負極リード32の形状は、例えば、正極リード31の形状と同様である。
 外装部材40は、例えば、図3に示した矢印Rの方向に折り畳み可能である1枚のフィルムである。外装部材40のうちの一部には、例えば、巻回電極体30を収納するための窪み40Uが設けられている。
 この外装部材40は、例えば、融着層、金属層および表面保護層がこの順に積層された積層体(ラミネートフィルム)である。リチウムイオン二次電池の製造工程では、例えば、融着層同士が巻回電極体30を介して互いに対向するように外装部材40が折り畳まれたのち、その融着層のうちの外周縁部同士が融着される。融着層は、例えば、ポリプロピレンなどの高分子化合物のうちのいずれか1種類または2種類以上を含むフィルムである。金属層は、例えば、アルミニウムなどのうちのいずれか1種類または2種類以上含む金属箔などである。表面保護層は、例えば、ナイロンなどの高分子化合物のうちのいずれか1種類または2種類以上を含むフィルムである。ただし、外装部材40は、例えば、2枚のラミネートフィルムを含んでおり、その2枚のラミネートフィルムは、例えば、接着剤などを介して互いに貼り合わされていてもよい。
 外装部材40と正極リード31との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。また、外装部材40と負極リード32との間には、例えば、密着フィルム41と同様の機能を有する密着フィルム42が挿入されている。密着フィルム41,42のそれぞれは、正極リード31および負極リード32のそれぞれに対して密着性を有する材料を含んでおり、その材料は、例えば、ポリオレフィン樹脂などのうちのいずれか1種類または2種類以上を含んでいる。このポリオレフィン樹脂は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどである。
[正極、負極およびセパレータ]
 正極33は、例えば、正極集電体33Aおよび正極活物質層33Bを含んでいると共に、負極34は、例えば、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。すなわち、正極33は、正極活物質として、リチウムを吸蔵可能であると共にリチウムを放出可能である正極材料(リチウムフッ素含有化合物)のうちのいずれか1種類または2種類以上を含んでいる。また、セパレータ35の構成は、例えば、セパレータ23の構成と同様である。
[電解質層]
 電解質層36は、電解液と共に高分子化合物を含んでおり、その電解液は、円筒型のリチウムイオン二次電池に用いられた電解液と同様の構成を有している。すなわち、電解液は、適正量のジオキサン化合物を含んでいる。
 ここで説明する電解質層36は、いわゆるゲル状の電解質である。このため、電解質層36中では、電解液が高分子化合物により保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。なお、電解質層36は、さらに、各種の添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 高分子化合物は、例えば、単独重合体および共重合体のうちの一方または双方を含んでいる。単独重合体は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレンおよびポリヘキサフルオロプロピレンなどである。共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。
 ゲル状の電解質である電解質層36において、電解液に含まれる「溶媒」は、液状の材料だけでなく、電解質塩を解離させることが可能であるイオン伝導性を有する材料も含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
 なお、電解質層36の代わりに電解液をそのまま用いてもよい。この場合には、電解液が巻回電極体30(正極33、負極34およびセパレータ35)に含浸される。
[動作]
 このリチウムイオン二次電池は、例えば、以下のように動作する。充電時には、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。
<2-2.製造方法>
 電解質層36を備えたリチウムイオン二次電池は、例えば、以下の3種類の手順により製造される。
[第1手順]
 最初に、正極21および負極22のそれぞれの作製手順と同様の手順により、正極33および負極34を作製する。すなわち、正極33を作製する場合には、正極集電体33Aの両面に正極活物質層33Bを形成すると共に、負極34を作製する場合には、負極集電体34Aの両面に負極活物質層34Bを形成する。
 続いて、電解液と、高分子化合物と、有機溶剤などとを混合することにより、前駆溶液を調製する。続いて、正極33に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、電解質層36を形成すると共に、負極34に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、電解質層36を形成する。続いて、溶接法などを用いて正極集電体33Aに正極リード31を接続させると共に、溶接法などを用いて負極集電体34Aに負極リード32を接続させる。続いて、セパレータ35を介して正極33および負極34を互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回電極体30を形成する。続いて、巻回電極体30の表面に保護テープ37を貼り付ける。
 最後に、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40の外周縁部同士を接着させる。この場合には、正極リード31と外装部材40との間に密着フィルム41を挿入すると共に、負極リード32と外装部材40との間に密着フィルム42を挿入する。これにより、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。
[第2手順]
 最初に、正極33および負極34を作製したのち、正極33に正極リード31を接続させると共に、負極34に負極リード32を接続させる。続いて、セパレータ35を介して正極33および負極34を互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回体を形成すると共に、その巻回体に保護テープ37を貼り付ける。続いて、巻回体を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材40の内部に巻回体を収納する。
 続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合することにより、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。最後に、モノマーを熱重合させることにより、高分子化合物を形成する。これにより、高分子化合物により電解液が保持されるため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。
[第3手順]
 最初に、基材層に高分子化合物層が形成されたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製したのち、袋状の外装部材40の内部に巻回体を収納する。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。最後に、外装部材40に加重をかけながら、その外装部材40を加熱することにより、高分子化合物層を介してセパレータ35を正極33および負極34のそれぞれに密着させる。これにより、電解液が含浸されることにより高分子化合物層がゲル化するため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。
 この第3手順では、第1手順と比較して、リチウムイオン二次電池が膨れにくくなる。また、第3手順では、第2手順と比較して、溶媒およびモノマー(高分子化合物の原料)が電解質層36中に残存しにくくなるため、その高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35のそれぞれと電解質層36とが十分に密着しやすくなる。
<2-3.作用および効果>
 このラミネートフィルム型のリチウムイオン二次電池によれば、正極33(正極活物質)がリチウムフッ素含有化合物を含んでいると共に、電解質層36(電解液)が適正量(=0.1重量%~2.0重量)のジオキサン化合物を含んでいる。この場合には、円筒型のリチウムイオン二次電池に関して説明した場合と同様の理由により、ジオキサン化合物に由来する安定な被膜が正極33の表面に形成されるため、その正極33の表面において電解液が分解されにくくなる。よって、優れた電池特性を得ることができる。
 なお、ラミネートフィルム型のリチウムイオン二次電池に関する他の作用および効果は、円筒型のリチウムイオン二次電池に関する他の作用および効果と同様である。
 以下では、本技術の実施例に関して説明する。
(実験例1~26)
 以下で説明するように、リチウムイオン二次電池を作製したのち、そのリチウムイオン二次電池の電池特性を評価した。
[リチウムイオン二次電池の作製]
 以下の手順により、図3および図4に示したラミネートフィルム型のリチウムイオン二次電池を作製した。
(正極の作製)
 最初に、正極活物質91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。
 正極活物質の種類は、表1および表2に示した通りである。ここでは、正極活物質として、リチウムフッ素含有化合物(リチウムフッ素含有複合酸化物)であるLiCo0.99Mg0.011.990.01(LCMOF)と、リチウムフッ素含有化合物でないLiCo0.99Mg0.01(LCMO)およびLiCo0.99Mg0.011.99Cl0.01(LCMOCl)とを用いた。表1および表2中の「ハロゲン」の欄には、正極活物質に構成元素として含まれているハロゲンの種類を示している。
 なお、XPS(Al-Kα線)を用いて、正極活物質中におけるマグネシウム(Mg)のKLLオージェスペクトルを測定した。この結果、正極活物質がフッ素を構成元素として含んでいる場合には、結合エネルギー=300eV~310eVの範囲内においてMg-F結合に起因する解析ピークが検出されたと共に、結合エネルギー=306eVである位置において解析ピークの強度が最大になった。一方、正極活物質がフッ素を構成元素として含んでいない場合には、結合エネルギー=300eV~310eVの範囲内においてMg-O結合に起因する解析ピークが検出されたと共に、結合エネルギー=303eVである位置において解析ピークの強度が最大になった。表1および表2中の「結合エネルギー(eV)」の欄には、各解析ピークに関する最大強度のピーク位置に対応する結合エネルギーを示している。
 続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを得た。続いて、コーティング装置を用いて正極集電体33A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成した。最後に、ロールプレス機を用いて正極活物質層33Bを圧縮成型することにより、正極33を作製した。
(負極の作製)
 最初に、負極活物質(黒鉛)95質量部と、負極結着剤(ポリフッ化ビニリデン)5質量部とを混合することにより、負極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを得た。続いて、コーティング装置を用いて負極集電体34A(帯状の銅箔,厚さ=8μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層34Bを形成した。最後に、ロールプレス機を用いて負極活物質層34Bを圧縮成型することにより、負極34を作製した。
(電解液の調製)
 溶媒(炭酸エチレン、炭酸プロピレン、炭酸ジエチルおよびプロピオン酸プロピル)に電解質塩(六フッ化リン酸リチウム(LiPF))を加えることにより、その溶媒を撹拌したのち、必要に応じて溶媒にジオキサン化合物を加えることにより、その溶媒を撹拌した。これにより、電解液が調製された。
 この場合には、溶媒の混合比(体積比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル:プロピオン酸プロピル=20:10:30:40とすると共に、電解質塩の含有量を溶媒に対して1mol/kgとした。ジオキサン化合物の種類および電解液中におけるジオキサン化合物の含有量(重量%)は、表1および表2に示した通りである。ここでは、ジオキサン化合物として1,3-ジオキサン(DOX)を用いた。
 なお、比較のために、ジオキサン化合物の代わりにスルホン酸エステルも用いた。スルホン酸エステルの種類および電解液中におけるスルホン酸エステルの含有量(重量%)は、表2に示した通りである。ここでは、スルホン酸エステルとして1,3-プロパンスルトン(PS)を用いた。
(リチウムイオン二次電池の組み立て)
 最初に、正極集電体33Aにアルミニウム製の正極リード31を溶接すると共に、負極集電体34Aに銅製の負極リード32を溶接した。続いて、セパレータ35(微多孔性ポリエチレンフィルム,厚さ=9μm)を介して正極33および負極34を互いに積層させることにより、積層体を得た。続いて、積層体を長手方向に巻回させたのち、その積層体に保護テープ37を貼り付けることにより、巻回体を形成した。最後に、巻回体を挟むように外装部材40(表面保護層=ナイロンフィルム(厚さ=25μm),金属層=アルミニウム箔(厚さ=40μm),融着層=ポリプロピレンフィルム(厚さ=30μm))を折り畳んだのち、その外装部材40のうちの2辺の外周縁部同士を互いに熱融着した。この場合には、正極リード31と外装部材40との間に密着フィルム41(ポリプロピレンフィルム)を挿入すると共に、負極リード32と外装部材40との間に密着フィルム42(ポリプロピレンフィルム)を挿入した。
 最後に、外装部材40の内部に電解液を注入することにより、その電解液を巻回体に含浸させたのち、減圧環境中において外装部材40のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回電極体30が形成されると共に、その巻回電極体30が外装部材40の内部に封入されたため、ラミネートフィルム型のリチウムイオン二次電池が完成した。
[リチウムイオン二次電池の評価]
 以下の手順により、リチウムイオン二次電池の電池特性を評価したところ、表1および表2に示した結果が得られた。ここでは、電池特性として、サイクル特性、膨れ特性、電気抵抗特性、容量残存特性および容量回復特性を調べた。
(サイクル特性)
 最初に、リチウムイオン二次電池の状態を安定化させるために、常温環境中(温度=23℃)においてリチウムイオン二次電池を充放電(1サイクル)させた。続いて、低温環境中(温度=-10℃)においてリチウムイオン二次電池を充放電(1サイクル)させることにより、2サイクル目の放電容量を測定した。続いて、同環境中(温度=-10℃)においてリチウムイオン二次電池を繰り返して充放電(100サイクル)させることにより、101サイクル目の放電容量を測定した。最後に、容量維持率(%)=(101サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。
 充電時には、0.7Cの電流で電圧が4.45Vに到達するまで定電流充電したのち、4.45Vの電圧で電流が0.05Cに到達するまで定電圧充電した。すなわち、ここでは充電電圧を4.45Vとした。放電時には、1Cの電流で電圧が3.0Vに到達するまで定電流放電した。「0.7C」とは、電池容量(理論容量)を10/7時間で放電しきる電流値であると共に、「0.05C」とは、電池容量を20時間で放電しきる電流値である。
(膨れ特性)
 最初に、上記した手順により状態が安定化されたリチウムイオン二次電池を用いて、常温環境中(温度=23℃)において充電率(SOC)が25%になるまでリチウムイオン二次電池を充電させたのち、その充電状態のリチウムイオン二次電池の厚さ(保存前厚さ(mm))を測定した。続いて、同環境中において充電率が100%になるまで引き続きリチウムイオン二次電池を充電させることにより、高温環境中(温度=60)において充電状態のリチウムイオン二次電池を保存(保存時間=720時間)したのち、その充電状態のリチウムイオン二次電池の厚さ(保存後厚さ(mm))を測定した。最後に、厚さ変化率(%)=[(保存後厚さ-保存前厚さ)/保存前厚さ]×100を算出した。なお、充電条件は、サイクル特性を調べた場合と同様にした。
(電気抵抗特性)
 最初に、上記した手順により状態が安定化されたリチウムイオン二次電池を用いて、常温環境中(温度=23℃)においてリチウムイオン二次電池の電気抵抗(保存前抵抗(Ω))を測定した。続いて、高温環境中(温度=60℃)においてリチウムイオン二次電池を保存(保存時間=720時間)したのち、そのリチウムイオン二次電池の電気抵抗(保存後抵抗(Ω))を測定した。最後に、抵抗変化率(%)=(保存後抵抗/保存前抵抗)×100を算出した。
(容量残存特性)
 最初に、上記した手順により状態が安定化されたリチウムイオン二次電池を用いて、常温環境中(温度=23℃)においてリチウムイオン二次電池を充放電(1サイクル)させることにより、保存前の放電容量を測定した。続いて、同環境中において充電率が100%になるまでリチウムイオン二次電池を充電させると共に、高温環境中(温度=60℃)において充電状態のリチウムイオン二次電池を保存(保存時間=720時間)したのち、そのリチウムイオン二次電池を放電させることにより、保存後の放電容量を測定した。最後に、容量残存率(%)=(保存後の放電容量/保存前の放電容量)×100を算出した。なお、充放電条件は、サイクル特性を調べた場合と同様にした。
(容量回復特性)
 上記した容量残存特性を調べるために用いたリチウムイオンを再び充放電(1サイクル)させることにより、4サイクル目の放電容量を測定したのち、容量回復率(%)=(4サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。なお、充放電条件は、サイクル特性を調べた場合と同様にした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[考察]
 表1および表2に示したように、電池特性(サイクル特性、膨れ特性、電気抵抗特性、容量残存特性および容量回復特性)は、正極活物質の種類および電解液の組成に応じて大きく変動した。
 詳細には、正極活物質がハロゲンを構成元素として含んでいないと共に、電解液がジオキサン化合物を含んでいない場合(実験例9)には、リチウムイオン二次電池が激しく膨れた。このため、容量維持率、厚さ変化率、抵抗変化率、容量残存率および容量回復率のそれぞれを求めることができなかった。
 また、正極活物質がハロゲンを構成元素として含んでいないと共に、電解液がジオキサン化合物を含んでいる場合(実験例10~16)には、容量維持率、厚さ変化率、抵抗変化率、容量残存率および容量回復率のそれぞれを求めることができた。しかしながら、ジオキサン化合物の含有量によっては、容量維持率、容量残存率および容量回復率のそれぞれが著しく減少したと共に、厚さ変化率および抵抗変化率のそれぞれが著しく増加した。
 さらに、正極活物質がハロゲン構成元素として含んでいても、そのハロゲンが塩素である場合(実験例17~24)には、上記した正極活物質がハロゲンを構成元素として含んでいない場合(実験例9~16)と同様の傾向が得られた。
 これに対して、正極活物質がハロゲンを構成元素として含んでおり、そのハロゲンがフッ素である場合(実験例1~8)には、電解液中にジオキサン化合物を含有させると、そのジオキサン化合物の含有量によっては、容量維持率、容量残存率および容量回復率のそれぞれの減少が大幅に抑制されると共に、厚さ変化率および抵抗変化率のそれぞれの増加が大幅に抑制された。
 具体的には、ジオキサン化合物の含有量が適正な範囲内(=0.1重量%~2.0重量%)である場合(実験例3~7)には、そのジオキサン化合物の含有量が適正な範囲外である場合(実験例2,8)とは異なり、高い容量維持率を維持しながら、厚さ変化率および抵抗変化率のそれぞれが十分に減少したと共に、容量残存率および容量回復率のそれぞれが十分に増加した。
 すなわち、ジオキサン化合物の含有量が適正な範囲内であると、厚さ変化率が20%未満、抵抗変化率が300%未満に抑えられながら、80%以上の容量維持率、70%以上の容量残存率および80%以上の容量回復率が得られた。これにより、容量維持率、容量残存率、容量回復率、厚さ変化率および抵抗変化率のそれぞれが一緒に改善された。
 しかしながら、ジオキサン化合物の含有量が適正な範囲外であると、容量維持率、容量残存率、容量回復率、厚さ変化率および抵抗変化率のうちの一部が改善されると残りが悪化したため、容量維持率、容量残存率、容量回復率、厚さ変化率および抵抗変化率のそれぞれが一緒に改善されなかった。このような傾向は、正極活物質がハロゲンを構成元素として含んでいない場合および正極活物質が塩素を構成元素として含んでいる場合においても同様に得られた。
 これらのことから、正極活物質の種類と電解液の組成との関係に関して、以下で説明する傾向が導き出された。
 正極活物質の種類(ハロゲンの有無)および電解液の組成(ジオキサン化合物の有無)のそれぞれは、電池特性に影響を及ぼし得る。具体的には、正極活物質がハロゲンを構成元素として含んでいない場合および正極活物質が塩素を構成元素として含んでいる場合には、電解液中にジオキサン化合物を含有させても、電池特性の低下がほとんど改善されない。これに対して、正極活物質がフッ素を構成元素として含んでいる場合には、電解液中にジオキサン化合物を含有させることにより、電池特性の低下が大幅に抑制される。
 ただし、正極活物質がフッ素を構成元素として含んでいる場合には、単に電解液中にジオキサン化合物を含有させるだけでは電池特性の低下が大幅に抑制されず、そのジオキサン化合物の含有量を適正化することにより、初めて電池特性の低下が大幅に抑制される。
 すなわち、ジオキサン化合物の含有量が適正化されていないと、容量維持率、容量残存率、容量回復率、厚さ変化率および抵抗変化率のうちの一部が改善されると残りが悪化するというトレードオフの関係が発生する。よって、容量維持率、容量残存率、容量回復率、厚さ変化率および抵抗変化率のそれぞれを一緒に改善することが困難である。
 これに対して、ジオキサン化合物の含有量が適正化されると、上記したトレードオフの関係が打破されるため、容量維持率、容量残存率、容量回復率、厚さ変化率および抵抗変化率のそれぞれを一緒に改善することができる。
 特に、正極活物質がフッ素を構成元素として含んでいると共に、ジオキサン化合物の含有量が適正な範囲内である場合(実験例3~7)には、そのジオキサン化合物の含有量が1.0重量%~1.5重量%であると、容量維持率、容量残存率および容量回復率のそれぞれがより増加しやすくなると共に、厚さ変化率および抵抗変化率のそれぞれがより減少しやすくなった。
 なお、正極活物質がハロゲン(フッ素)を構成元素として含んでいても、電解液がスルホン酸エステルを含んでいる場合(実験例25)には、厚さ変化率がある程度減少したものの、抵抗変化率が十分に減少しなかったと共に、容量維持率、容量残存率および容量回復率のそれぞれも十分に増加しなかった。
 また、正極活物質がハロゲンを構成元素として含んでおらずに、電解液がスルホン酸エステルを含んでいる場合(実験例26)には、上記した正極活物質がハロゲンを構成元素として含んでいる場合(実験例25)と同様の傾向が得られた。
 すなわち、スルホン酸エステルを用いた場合(実験例25,26)には、正極活物質がフッ素を構成元素として含んでいるか否かに関わらず、厚さ変化率および抵抗変化率のそれぞれが十分に減少しなかったと共に、容量維持率、容量残存率および容量回復率のそれぞれも十分に増加しなかった。
 これに対して、ジオキサン化合物を用いた場合(実験例1~24)には、正極活物質がフッ素を構成元素として含んでいるか否かに加えて、そのジオキサン化合物の含有量に応じて、厚さ変化率および抵抗変化率のそれぞれが十分に減少したと共に、容量維持率、容量残存率および容量回復率のそれぞれも十分に増加した。
 これらのことから、正極活物質の種類(フッ素の有無)および電解液中の含有量に応じて容量維持率、容量残存率、容量回復率、厚さ変化率および抵抗変化率のそれぞれを一緒に改善することができる利点は、スルホン酸エステルを用いた場合には得られない利点であり、ジオキサン化合物を用いた場合において初めて得られる特有の利点である。
[まとめ]
 表1および表2に示した結果から、正極(正極活物質)がリチウムフッ素含有化合物を含んでいると共に、電解液が適正量(=0.1重量%~2.0重量)のジオキサン化合物を含んでいると、サイクル特性、膨れ特性、電気抵抗特性、容量残存特性および容量回復特性のそれぞれが一緒に改善された。よって、リチウムイオン二次電池において優れた電池特性が得られた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の態様は一実施形態および実施例において説明された態様に限定されず、その本技術の態様に関しては種々に変形可能である。
 具体的には、円筒型のリチウムイオン二次電池およびラミネートフィルム型のリチウムイオン二次電池に関して説明したが、これに限られない。例えば、角型のリチウムイオン二次電池およびコイン型のリチウムイオン二次電池などでもよい。
 また、電池素子が巻回構造を有する場合に関して説明したが、これに限られない。例えば、電池素子が積層構造などの他の構造を有していてもよい。
 なお、本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して他の効果が得られてもよい。

Claims (5)

  1.  正極活物質を含むと共に、前記正極活物質がリチウム(Li)およびフッ素(F)を構成元素として含む正極と、
     負極と、
     下記の式(1)で表されるジオキサン化合物を含むと共に、前記ジオキサン化合物の含有量が0.1重量%以上2.0重量%以下である電解液と
     を備えた、リチウムイオン二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (R1~R8のそれぞれは、水素基および1価の炭化水素基のうちのいずれかである。)
  2.  前記ジオキサン化合物の含有量は、1.0重量%以上1.5重量%以下である、
     請求項1記載のリチウムイオン二次電池。
  3.  前記ジオキサン化合物は、1,3-ジオキサンを含む、
     請求項1または請求項2に記載のリチウムイオン二次電池。
  4.  前記正極活物質は、下記の式(2)で表されるリチウムフッ素含有複合酸化物を含む、
     請求項1ないし請求項3のいずれか1項に記載のリチウムイオン二次電池。
     LiCo2-z  ・・・(2)
    (Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カリウム(K)、カルシウム(Ca)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、バリウム(Ba)、ランタン(La)およびタングステン(W)のうちの少なくとも1種である。w、x、yおよびzは、0.8<w<1.2、0.9<x+y<1.1、0≦y<0.1および0<z<0.05を満たす。)
  5.  前記Mは、チタン、マグネシウム、アルミニウムおよびジルコニウムのうちの少なくとも1種である、
     請求項4記載のリチウムイオン二次電池。
PCT/JP2019/004402 2018-02-09 2019-02-07 リチウムイオン二次電池 WO2019156161A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019571142A JPWO2019156161A1 (ja) 2018-02-09 2019-02-07 リチウムイオン二次電池
CN201980012214.1A CN111684644A (zh) 2018-02-09 2019-02-07 锂离子二次电池
US16/987,944 US20200373611A1 (en) 2018-02-09 2020-08-07 Lithium-ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021656 2018-02-09
JP2018-021656 2018-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/987,944 Continuation US20200373611A1 (en) 2018-02-09 2020-08-07 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
WO2019156161A1 true WO2019156161A1 (ja) 2019-08-15

Family

ID=67548284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004402 WO2019156161A1 (ja) 2018-02-09 2019-02-07 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20200373611A1 (ja)
JP (1) JPWO2019156161A1 (ja)
CN (1) CN111684644A (ja)
WO (1) WO2019156161A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225734A (ja) * 2004-02-16 2005-08-25 Nippon Chem Ind Co Ltd フッ素含有リチウムコバルト系複合酸化物及びその製造方法
WO2014049931A1 (ja) * 2012-09-26 2014-04-03 三洋電機株式会社 非水電解質二次電池
JP2015084273A (ja) * 2012-02-03 2015-04-30 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質
WO2015136892A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極
JP2016048624A (ja) * 2014-08-27 2016-04-07 日立マクセル株式会社 リチウム二次電池
JP2016122586A (ja) * 2014-12-25 2016-07-07 信越化学工業株式会社 リチウムコバルト系複合酸化物及びその製造方法、並びに電気化学デバイス及びリチウムイオン二次電池
WO2016129629A1 (ja) * 2015-02-12 2016-08-18 日立マクセル株式会社 非水二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101461088B (zh) * 2006-05-31 2011-12-21 三洋电机株式会社 高电压充电型非水电解质二次电池
JP5094084B2 (ja) * 2006-09-28 2012-12-12 三洋電機株式会社 非水電解質二次電池
JP2012142155A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
HUE054492T2 (hu) * 2014-12-05 2021-09-28 Celgard Llc Javított bevonatos szeparátorok lítium akkumulátorokhoz és vonatkozó eljárások
US10559825B2 (en) * 2014-12-25 2020-02-11 Sanyo Electric Co., Ltd. Positive electrode active material and nonaqueous electrolyte secondary battery
KR102264634B1 (ko) * 2017-09-08 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225734A (ja) * 2004-02-16 2005-08-25 Nippon Chem Ind Co Ltd フッ素含有リチウムコバルト系複合酸化物及びその製造方法
JP2015084273A (ja) * 2012-02-03 2015-04-30 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質
WO2014049931A1 (ja) * 2012-09-26 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2015136892A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極
JP2016048624A (ja) * 2014-08-27 2016-04-07 日立マクセル株式会社 リチウム二次電池
JP2016122586A (ja) * 2014-12-25 2016-07-07 信越化学工業株式会社 リチウムコバルト系複合酸化物及びその製造方法、並びに電気化学デバイス及びリチウムイオン二次電池
WO2016129629A1 (ja) * 2015-02-12 2016-08-18 日立マクセル株式会社 非水二次電池

Also Published As

Publication number Publication date
US20200373611A1 (en) 2020-11-26
JPWO2019156161A1 (ja) 2021-01-28
CN111684644A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
KR101985975B1 (ko) 이차 전지, 전자 기기, 전동 공구, 전기 차량 및 전력 저장 시스템
US20120164532A1 (en) Lithium ion secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
JP2011198508A (ja) リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
JP2011187232A (ja) リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
JP2011238373A (ja) 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
CN110832678A (zh) 二次电池、电池包、电动车辆、电力储存系统、电动工具及电子设备
JP2013131395A (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2012054156A (ja) 二次電池用電解液、二次電池、電動工具、電気自動車および電力貯蔵システム
CN106898818B (zh) 二次电池、电子装置、电动工具和电动车辆
CN109417197B (zh) 二次电池、电池组、电动车辆、电力存储系统、电动工具以及电子设备
KR20080102998A (ko) 전해액 및 전지
JP2012182071A (ja) リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
US20200373619A1 (en) Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery
US20200388855A1 (en) Lithium ion secondary battery
JP2012230809A (ja) 二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
KR102563788B1 (ko) 리튬 이온 이차 전지용 전해액 및 리튬 이온 이차 전지
US10290899B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN112771705B (zh) 锂离子二次电池用电解液及锂离子二次电池
JP7056734B2 (ja) リチウムイオン二次電池
JP2012234767A (ja) 二次電池用電解液、二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
WO2019156161A1 (ja) リチウムイオン二次電池
JP6135798B2 (ja) リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2018203534A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2019215959A (ja) 電解液およびその製造方法、ならびに二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750879

Country of ref document: EP

Kind code of ref document: A1