WO2019155995A1 - 茹卵の製造方法 - Google Patents

茹卵の製造方法 Download PDF

Info

Publication number
WO2019155995A1
WO2019155995A1 PCT/JP2019/003647 JP2019003647W WO2019155995A1 WO 2019155995 A1 WO2019155995 A1 WO 2019155995A1 JP 2019003647 W JP2019003647 W JP 2019003647W WO 2019155995 A1 WO2019155995 A1 WO 2019155995A1
Authority
WO
WIPO (PCT)
Prior art keywords
egg
treatment liquid
eggs
incubation
shelled
Prior art date
Application number
PCT/JP2019/003647
Other languages
English (en)
French (fr)
Inventor
慶華 結城
大騎 池田
田村 崇
ミサ 松本
由記 簗瀬
未来 西岡
始 松田
大介 中本
紘明 長谷
Original Assignee
キユーピー株式会社
キユーピータマゴ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キユーピー株式会社, キユーピータマゴ株式会社 filed Critical キユーピー株式会社
Priority to JP2019517469A priority Critical patent/JP6553321B1/ja
Publication of WO2019155995A1 publication Critical patent/WO2019155995A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L15/00Egg products; Preparation or treatment thereof

Definitions

  • the present invention relates to an industrially advantageous method for producing an egg, which is characterized in that the eggshell of the egg can be peeled cleanly and efficiently.
  • Patent Document 1 if the eggshell is cracked, the eggs are peeled off while sticking to the shell, and the eggshell part is missing or the eggshell remains on the surface of the egg white. There are many things to do. Also, when cracking the eggshell before heating, the egg may be accidentally broken. Therefore, there are problems in manufacturing efficiency and manufacturing cost.
  • the present inventors have found that, in the production of eggs, the eggshell can be efficiently and cleanly peeled by cooling the high temperature shelled eggs with a low temperature treatment solution containing minute bubbles. .
  • the present invention provides A method for producing an incubation egg, Cooling the shelled eggs with a treatment liquid; Peeling off the shell of the shelled eggs; Including The egg white surface temperature of the shelled egg just before the cooling step is 70 ° C or higher, The temperature of the treatment liquid is 25 ° C. or less, The treatment liquid contains fine bubbles, It is the manufacturing method of an incubation egg characterized by the above-mentioned.
  • the present invention provides A method for producing an incubation egg, Cooling the shelled eggs with a treatment liquid; Peeling off the shell of the shelled eggs; Including The egg white surface temperature of the shelled egg just before the cooling step is 70 ° C or higher, The temperature of the treatment liquid is 25 ° C. or less, The treatment liquid contains particles having a particle size of 100 ⁇ m or less, It is the manufacturing method of an incubation egg characterized by the above-mentioned.
  • the treatment liquid is preferably water.
  • the ratio of the treatment liquid to 1 part of the shelled egg is preferably 3 parts or more.
  • the particle density of the treatment liquid is preferably 3 ⁇ 10 7 particles / mL or more.
  • the egg shell can be efficiently and cleanly peeled by cooling the high temperature shelled egg with a low temperature treatment liquid containing fine bubbles.
  • the present invention relates to a method for producing an incubation egg.
  • the manufacturing method of the egg of this invention is characterized by including a cooling process and a shelling process at least.
  • incubation means that the egg white solidifies by heat denaturation and maintains the shape of the egg even after the shell is peeled off. Therefore, the egg white should be solidified to such an extent that the shell can be peeled off, and the solidified state of the egg yolk is not questioned.
  • Egg yolk can take various states from a fluid liquid to a state where it is easily loosened by coagulation.
  • shelled eggs refers to eggs that are not shelled.
  • egg refers to edible bird eggs, including chicken eggs, quail eggs, etc., particularly preferably chicken eggs.
  • the size of the egg is defined by the weight in accordance with the chicken egg standard trade guidelines established by the Ministry of Agriculture, Forestry and Fisheries.
  • the LL dimension is 70 g or more and less than 76 g
  • the L dimension is 64 g or more and less than 70 g
  • the M dimension is 58 g or more and less than 64 g
  • the MS dimension is 52 g or more and 58 g.
  • S dimension is 46g or more and less than 52g
  • SS dimension is 40g or more and less than 46g.
  • the cooling step refers to a step of cooling the shelled eggs manufactured by an arbitrary method.
  • the shelled eggs can be cooled by bringing a low temperature treatment liquid of 25 ° C. or less into contact with a high temperature shelled eggs having an egg white surface temperature of 70 ° C. or more.
  • the method of bringing the shelled eggs into contact with the treatment liquid may be either a batch type or a continuous type treatment method, as desired.
  • the egg white surface temperature of the shelled eggs at the start of the cooling step is 70 ° C. or higher, preferably 75 to 100 ° C., and most preferably 80 to 98 ° C.
  • a gap is formed between the eggshell membrane and the egg white during cooling, so that the treatment liquid can easily enter, It can be peeled efficiently and cleanly.
  • egg white surface temperature refers to the temperature of the egg white part near the surface of the sharp end of the egg.
  • the said temperature can be calculated
  • the vicinity of the surface of the sharp end of the incubation refers to the inside of about 5 mm from the egg white surface at the tip of the incubation to the center of the yolk.
  • the time during which the egg white surface temperature of the shelled eggs is cooled from 70 ° C. to 40 ° C. is preferably 400 seconds or less, more preferably 300 seconds or less, and even more preferably 250 seconds or less, and most preferably 5 to 200 seconds. In this way, by cooling the high-temperature shelled eggs within a predetermined time, the eggshell can be peeled off more efficiently and cleanly.
  • the treatment liquid is not particularly limited as long as it can cool the incubation eggs, but when cooling normal foods such as tap water, distilled water, sterilized water, well water, seasoning liquid and the like. It can be used as a liquid.
  • the treatment liquid is preferably water among such liquids. By using water as the treatment liquid, the effects of the present invention can be easily achieved in that the contents of the eggs are not contracted as seen when the liquid is brought into contact with a salt-containing liquid and cooled.
  • the temperature of the treatment liquid at the start of the cooling step is 25 ° C. or less, preferably 20 ° C. or less, more preferably 15 ° C. or less, and most preferably 0 to 10 ° C.
  • the temperature of the treatment liquid can be measured, for example, by inserting a thermometer normally used in the technical field in a state where the treatment liquid is stirred and the temperature of the liquid is substantially uniform.
  • the eggshell can be peeled off more efficiently and cleanly by rapidly cooling the incubation eggs using the treatment liquid in the above temperature range.
  • the treatment liquid contains particles having a particle size of about 100 ⁇ m or less.
  • the particle size of the particles contained in the treatment liquid is preferably 1 nm to 80 ⁇ m, more preferably 10 nm to 60 ⁇ m, and most preferably 20 nm to 50 ⁇ m.
  • the particle diameter of particles such as bubbles contained in the treatment liquid refers to the diameter of the particles.
  • the diameter of a particle means a value corresponding to the diameter when each particle is assumed to be a perfect sphere.
  • the particle size of the ultrafine bubble can be measured from the scattered light and the Brownian motion pattern of the particles in the treatment liquid by a nanoparticle tracking analysis method (NTA method).
  • NTA method nanoparticle tracking analysis method
  • the particle size of the microbubble is measured by photographing the bubble immediately after the bubble is generated with a high-speed microscope camera and analyzing the photographed image using an image analyzer. Can do.
  • particle density refers to the density of particles contained in the treatment liquid, and is a value correlated with the density of bubbles contained in the treatment liquid.
  • the particle density of the ultrafine bubble can be calculated from the number of particles measured from the scattered light and Brownian motion pattern of the particles in the liquid and the volume of the treatment liquid by the nanoparticle tracking analysis method (NTA method).
  • NTA method nanoparticle tracking analysis method
  • the particle density of the microbubbles is the same as the particle size, the bubbles immediately after the bubble is taken with a high speed microscope camera, and the photograph taken in that way is analyzed using an image analyzer. It can measure by doing.
  • the particle density of the treatment liquid is preferably 3 ⁇ 10 7 particles / mL or more, more preferably 4 ⁇ 10 7 particles / mL or more, further preferably 6 ⁇ 10 7 particles / mL or more, and most preferably 8 ⁇ 10 7 to 8 ⁇ 10 8 pieces / mL. Since there is a correlation between the particle density of the treatment liquid and the bubble density, if the particle density is equal to or higher than a predetermined value, microbubble particles are included at a considerably higher density, and bubbles are sufficiently contained in the entire incubation. Since it can be contacted, the shell can be peeled off more efficiently and cleanly.
  • bubbles having a particle diameter of 100 ⁇ m or less are called “fine bubbles” according to ISO 20480-1.
  • a visually turbid bubble having a particle diameter of more than 1 ⁇ m and not more than 100 ⁇ m is referred to as “microbubble”, and a colorless transparent bubble having a particle diameter of not more than 1 ⁇ m is referred to as “ultra fine bubble”.
  • such bubbles can be generated by any known generation method such as a swirling liquid flow method, a pressure dissolution method, or a fine pore method.
  • Foamest column type_FP-20-300 manufactured by NAC Corporation, ultrafineGaLF FZ1N-05S manufactured by IDEC Corporation, Nano Fresher NF-WP0.4 manufactured by Nanocus Corporation, YJ nozzle YJ- manufactured by Enviro Vision Co., Ltd. 21, UFB DUAL manufactured by Technical Light Co., Ltd. can be used.
  • the desired particle size can be adjusted by adjusting the gas pressure (gas flow rate) and liquid pressure (liquid flow rate), the pore size of the filter to be used, etc. according to the bubble generation method of each device. Diameter and bubble particle density can be used.
  • the bubble is mainly adjusted by adjusting the gas pressure (gas flow rate) and the liquid pressure (liquid flow rate) to be supplied.
  • the particle size and the bubble particle density can be adjusted.
  • a pore type generator which is a generator that does not involve the flow of liquid that generates bubbles, it is used in addition to the gas pressure (gas flow rate) and the liquid pressure (liquid flow rate) to be supplied.
  • the pore size of the filter By adjusting the pore size of the filter, the particle size and bubble particle density can be adjusted.
  • bubbles may be generated by appropriately combining devices of different bubble generation methods.
  • the term “below” relating to a numerical range is used in the sense of a certain numerical value or a certain numerical value.
  • 100 ⁇ m or less means 100 ⁇ m or less than 100 ⁇ m.
  • the symbol “ ⁇ ” in a numerical range is used to mean a certain numerical value, a certain numerical value and less than a certain other numerical value, or another certain numerical value.
  • 1-100 ⁇ m means 1 ⁇ m, greater than 1 ⁇ m and less than 100 ⁇ m, or 100 ⁇ m.
  • the amount of the treatment liquid used in the cooling step is preferably 2 parts or more, more preferably 3 parts or more, and most preferably 4 parts or more and 100 parts or less with respect to 1 part of the shelled egg.
  • the treatment liquid can be brought into contact with the whole incubation, and the shell can be peeled off more efficiently and cleanly.
  • the ratio of the processing liquid used when cooling a shelled incubation egg and it is prescribed
  • the parts by weight are weight ratios, and these weights can be measured by methods commonly used in the art.
  • the “shell peeling process” refers to a process of peeling the shell of the cooled shelled eggs.
  • the method for peeling the eggshell can be any conventionally known method, and any method of peeling by human hand or mechanical peeling may be used.
  • a mechanical peeling method for example, a device for peeling a boiled egg shell while cracking in a rotating cylinder (Japanese Patent Laid-Open No. 55-9769) or a fixing hole for fixing a boiled egg in the center is provided. Place a bellows hat-shaped air compressor on the cradle, place an egg with a hole for air intrusion in it, and expand and contract the air compressor to peel off the egg shell and contents. Any device such as a shell peeling device (Japanese Utility Model Publication No. 58-49117) may be used.
  • the eggs obtained by the production method of the present invention including at least the cooling step and the shell peeling step described above improve the ease of peeling of the shell, so that the eggshell can be peeled efficiently and cleanly without damaging the solidified egg white. it can.
  • “easy to peel off the shell” refers to the ease with which the eggshell is removed from the eggs, the time required to peel the eggshell from the eggs, and / or the appearance of the eggs after peeling. It can be evaluated by degree.
  • the manufacturing method of the egg of this invention can include arbitrary processes other than a cooling process and a shell peeling process.
  • Such optional steps can include, for example, steps similar to known methods for producing incubated eggs, such as a cracking step, a heat coagulation step, a selection step, and a sterilization step.
  • the eggshell can be cracked at any stage prior to the cooling step.
  • it is not essential to crack the eggshell, but by adding cracks before contacting the eggs with the treatment liquid, compared to shelled eggs produced by cracking by a conventional method, The shell can be peeled off more efficiently and cleanly.
  • crack means a cleft or hole put in an eggshell by a known method.
  • the cracks may be any conventionally known process such as a process by a human hand such as hitting a flat part of a metal jig such as a spoon or making a hole with a needle, or a mechanical process by a cracking machine. It can be formed by a method.
  • a method of heat coagulation treatment a method similar to known incubation can be employed. Examples thereof include a method of heating raw eggs with shells from cold water, a method of heating in hot water at 90 to 100 ° C., a method of heating with pressurized steam, and the like.
  • the egg white is coagulated to such an extent that the shell is peeled as described above, and the egg yolk state is not limited.
  • ⁇ Selection process> As a method for selecting good and defective products, a method similar to known incubation, such as visual selection by a skilled worker or mechanical detection using a dedicated inspection device, should be adopted. Can do.
  • the selection criteria the selection processing of the eggs is performed using the presence / absence of the shell, the presence / absence of the shell stab, the presence / absence of the abnormal outer shape, and the like as the determination criteria.
  • a sterilization method a method similar to a known incubation can be employed.
  • any method conventionally used in the technical field such as heat sterilization at a predetermined temperature and time, immersion in a bactericide solution, or ozone sterilization treatment can be used.
  • the production method of the present invention can be easily implemented industrially using a conventional incubation line for eggs.
  • a trained evaluator evaluated the ease of peeling when the eggshells of eggs were peeled.
  • the ease of peeling off the eggshell was determined by visual observation of the time (seconds) required to peel off the eggshell of a predetermined number of eggs and the appearance of the peeled eggs. The appearance was evaluated according to the following three ranks. Rank A: No damage on the surface of the incubation egg Rank B: Slight scratching on the surface of the incubation egg but no problem C Rank: Cracking the surface of the incubation egg
  • Treatment liquid A Ultrafine bubbles are generated in tap water
  • Treatment liquid B Both microbubbles and ultrafine bubbles are generated in tap water
  • the particle size and particle density of particles contained in treatment liquid A are nanosites (manufactured by Quantum Design Japan, manufactured by Malvern, measurement range 1 to 2000 nm) Analyzed with The particle diameter of the particles in the treatment liquid A was about 50 to 150 nm. Moreover, by adjusting the bubbling pressure at the time of bubble generation, etc., in each test example, the particle density in the treatment liquid A was adjusted to 4 ⁇ 10 7 particles / mL or more.
  • Particle Density of Particles Included in Treatment Liquid B Among the particles contained in the treatment liquid B, ultrafine bubbles were analyzed in the same manner as the treatment liquid A. Microbubbles were photographed with a high-speed microscope camera immediately after the bubble was generated, and the particle size was measured by using the photograph thus taken to an analyzer. The particle diameter and particle density of the bubbles contained in the treatment liquid B were as follows. Ultra fine bubble ⁇ Particle size: About 50 to 250 nm Density: 1 ⁇ 10 8 pieces / mL or more Microbubbles ⁇ Particle size: About 10-100 ⁇ m ⁇ The density could not be measured. Therefore, the particle density contained in the treatment liquid B was at least 1 ⁇ 10 8 particles / mL or more.
  • the egg white surface temperature of the egg is measured from the egg white surface by inserting a thermometer (manufactured by Elab Japan) from the blunt end to the sharp end of the egg until it hits the egg shell of the sharp end. The inside of 5 mm was measured in the yolk direction.
  • Cooling conditions The eggs prepared as described above were cooled under the cooling conditions shown in Table 1 below.
  • the egg white surface temperature at the start of cooling was 80 ° C.
  • the temperature of the cooling water used for cooling was 5 ° C.
  • the cooling time from the time when the egg white surface temperature reached 70 ° C. to 40 ° C. was 283 seconds.
  • the cooling water used in Comparative Example 2 was prepared by putting tap water into a water tank and blowing air into the water tank using a commercially-available water tank air pump.
  • Example 3 Example 3 and Comparative Examples 3-5 The effect of the temperature at which the shelled eggs were brought into contact with the cooling liquid on the peelability of the shell was tested.
  • Example 3 Twenty shelled eggs having an egg white surface temperature of 90 ° C. were brought into contact with the treatment liquid A at 5 ° C. for 30 minutes.
  • Comparative Example 3 Twenty shelled eggs having an egg white surface temperature of 90 ° C. were brought into contact with tap water at 5 ° C. for 30 minutes.
  • Comparative Example 4 Twenty shelled eggs having an egg white surface temperature of 90 ° C. were brought into contact with tap water at 5 ° C. for 15 minutes. Thereafter, 20 shelled eggs having an egg white surface temperature of 10 ° C.
  • the peeling time was shortened.
  • Example 4 Shell-incubated eggs having an egg white surface temperature of 90 ° C. were contacted with the treatment liquid A at 5 ° C. until the temperature reached 25 ° C.
  • Example 5 Shelled eggs having an egg white surface temperature of 90 ° C. were contacted with the treatment liquid A at 15 ° C. until the temperature reached 25 ° C.
  • Comparative Example 6 Shelled eggs having an egg white surface temperature of 90 ° C. were contacted with 5 ° C. tap water until the temperature reached 25 ° C.
  • the cooling rate was calculated using the time required from the time when the egg white surface temperature reached 70 ° C to 40 ° C.
  • the shell peelability test was conducted by measuring the time required to peel the shells of 20 eggs after cooling the shelled eggs to 5 ° C.
  • Example 6 Shell-incubated eggs having an egg white surface temperature of 90 ° C. were brought into contact with the treatment liquid A at 5 ° C. for 30 minutes. The particle density of the treatment liquid A when it was brought into contact with the shelled eggs was about 8 ⁇ 10 7 particles / mL.
  • Example 7 Shell-incubated eggs having an egg white surface temperature of 90 ° C. were contacted for 30 minutes with a treatment solution A at 5 ° C. having a particle density of about 4 ⁇ 10 7 particles / mL while changing the bubbling pressure.
  • Comparative Example 7 Shelled eggs having an egg white surface temperature of 90 ° C. were contacted with tap water at 5 ° C. for 30 minutes.
  • Time becomes shorter peeling the particle density is at 4 ⁇ 10 7 cells / mL or more, it was shorter when he or 8 ⁇ 10 7 cells / mL. Since the particle density has a close correlation with the bubble density, it is considered that the eggshell was easier to peel off when the treatment liquid containing a lot of ultrafine bubbles was used.
  • Test method Cracked eggs prepared in the same manner as in Test Example 1 and eggs incubated at 95 ° C. for 10 minutes without cracking the same raw eggs are each cooled with the treatment solution A to ease the peeling of the shells. Compared. At this time, the egg white surface temperature at the start of cooling was 90 ° C., and the ratio of the treatment liquid to 1 part of the shelled eggs was adjusted to 10 parts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

[課題]加熱前に卵殻にひびを入れない場合でも、卵殻を効率良くきれいに剥けるように茹卵を製造する方法を提供する。 [解決手段]茹卵の製造において、高温の殻付き茹卵を、微小な気泡を含む低温の処理液で冷却することにより、卵の殻を効率良くきれいに剥くことができる。

Description

茹卵の製造方法
 本発明は、工業的に有利な茹卵の製造方法であって、茹卵の卵殻をきれいに効率よく剥くことができることを特徴とする、茹卵の製造方法に関する。
 従来、殻付き生卵を加熱して茹卵を製造した場合に、卵白が卵殻に付着し、殻をきれいに剥けないという問題があった。このような問題に対して、例えば、加熱前に卵殻にひびを入れることによって、冷却工程において、卵殻膜と卵白との間に冷却水を侵入させて、卵殻膜と卵白との剥離性を高めることが提案されている(例えば、特許文献1)。
特開2006-42682号公報
 しかしながら、特許文献1に記載のように卵殻にひびを入れるだけでは、卵が殻にくっついたまま剥かれてしまい、茹卵の身の部分が欠けたり、卵白表面に卵殻が残ったままになったりすることも多い。また、加熱前に卵殻にひびを入れる際に、誤って卵を割ってしまうこともある。したがって、製造効率および製造コスト上の問題がある。
 本発明者らは、鋭意研究した結果、茹卵の製造において、高温の殻付き茹卵を、微小な気泡を含む低温の処理液で冷却することにより、卵殻を効率良くきれいに剥くことができることを見出した。
 一態様において、本発明は、
茹卵の製造方法であって、
 殻付き茹卵を処理液で冷却する工程と、
 前記殻付き茹卵の殻を剥く工程と、
を含み、
 前記冷却工程直前の殻付き茹卵の卵白表面温度が70℃以上であり、
 前記処理液の温度が25℃以下であり、
 前記処理液がファインバブルを含有する、
ことを特徴とする、茹卵の製造方法である。
 一態様において、本発明は、
茹卵の製造方法であって、
 殻付き茹卵を処理液で冷却する工程と、
 前記殻付き茹卵の殻を剥く工程と、
を含み、
 前記冷却工程直前の殻付き茹卵の卵白表面温度が70℃以上であり、
 前記処理液の温度が25℃以下であり、
 前記処理液が粒径100μm以下の粒子を含有する、
ことを特徴とする、茹卵の製造方法である。
 上記態様において、前記処理液は水であることが好ましい。
 上記態様において、前記殻付き茹卵1部に対する前記処理液の割合が3部以上であることが好ましい。
 上記態様において、前記処理液の粒子密度は、3×10個/mL以上であることが好ましい。
 上記態様において、前記冷却工程の前に、卵殻にひびを入れる工程を更に含むことが好ましい。
 本発明の茹卵の製造方法は、茹卵の製造において、高温の殻付き茹卵を、微小な気泡を含む低温の処理液で冷却することにより、卵の殻を効率良くきれいに剥くことができる。
<茹卵の製造方法>
 本発明は、茹卵の製造方法に関する。本発明の茹卵の製造方法は、少なくとも冷却工程および殻剥き工程を含むことを特徴とする。
 本発明において、「茹卵」とは、卵白が熱変性によって凝固し、殻剥き後でも卵の形状を保つものをいう。したがって、殻を剥ける程度に卵白が凝固していれば良く、卵黄の凝固状態は問わない。卵黄は、流動性のある液状から凝固によりほぐれやすくなっている状態まで、種々の状態をとることができる。また、「殻付き茹卵」とは、殻を剥いていない状態の茹卵のことをいう。
 本発明において、「卵」とは、食用の鳥類の卵のことをいい、鶏卵、ウズラの卵などを含むが、特に好ましくは鶏卵のことをいう。鶏卵のサイズは農林水産省で定めた鶏卵規格取引要項に従って重量により規定され、LL寸は70g以上76g未満、L寸は64g以上70g未満、M寸は58g以上64g未満、MS寸は52g以上58g未満、S寸は46g以上52g未満、SS寸は40g以上46g未満である。
<冷却工程>
 本発明において、冷却工程とは、任意の方法により製造した殻付き茹卵を冷却する工程のことをいう。本発明の冷却工程において、卵白表面温度が70℃以上の高温の殻付き茹卵に25℃以下の低温の処理液を接触させることにより、殻付き茹卵を冷却することができる。殻付き茹卵と処理液とを接触させる方法は、所望に応じて、バッチ式、連続式のいずれの処理方法としてもよい。
 本発明において、冷却工程開始時の殻付き茹卵の卵白表面温度は、70℃以上であり、好ましくは75~100℃、最も好ましくは、80~98℃である。本発明においては、卵白表面温度が70℃以上の高温状態の殻付き茹卵を冷却することにより、冷却時に卵殻膜と卵白との間に隙間が生じて処理液が侵入しやすくなり、卵殻をより効率良くきれいに剥くことができる。
 本発明において、「卵白表面温度」とは、茹卵の鋭端部表面近傍の卵白部分の温度のことをいう。当該温度は、茹卵の鈍端部から鋭端部へ向けて当該技術分野において通常用いられる温度計を挿入し、鋭端部表面近傍の卵白部分の温度を測定することにより求めることができる。 茹卵の鋭端部表面近傍とは、茹卵のとがっている方の先端部の卵白表面から卵黄中心方向へ、5mm程度内側のことをいう。
 本発明の冷却工程において、殻付き茹卵の卵白表面温度が70℃から40℃まで冷却される時間は、好ましくは、400秒以下であり、より好ましくは、300秒以下であり、さらにより好ましくは、250秒以下であり、最も好ましくは、5~200秒である。このように、高温の殻付き茹卵を所定の時間以内に冷却することにより、卵殻をより効率良くきれいに剥くことができる。
 本発明において、処理液は、茹卵を冷却することができればよく、特にこれらに限定されるものではないが、水道水、蒸留水、滅菌水、井水、調味液などの通常食品を冷却する際に用いられる液体とすることができる。本発明において、処理液は、そのような液体のうち、水であることが好ましい。処理液を水とすることにより、例えば、塩分を含む液体に接触させて冷却した場合に見られるような茹卵の中身の収縮が生じない点において、本発明の効果を奏しやすい。
 本発明において、冷却工程開始時の処理液の温度は、25℃以下、好ましくは20℃以下、より好ましくは15℃以下、最も好ましくは0~10℃である。また、処理液の温度は、例えば、処理液が攪拌されて該液の温度が略均一である状態で、当該技術分野において通常用いられる温度計を挿入することなどにより測定することができる。本発明においては、処理液の温度を上記温度範囲の処理液を用いて茹卵を急速に冷却することにより、卵殻をより効率良くきれいに剥くことができる。
 本発明において、処理液は、粒径が約100μm以下の粒子を含有することを特徴とする。そのように微小な気泡などの粒子を含有する低温の処理液で、高温の茹卵を冷却することにより、殻を効率良くきれいに剥くことができる。本発明において、処理液に含まれる粒子の粒径は、好ましくは1nm~80μm、より好ましくは10nm~60μm、最も好ましくは20nm~50μmである。
 本発明において、処理液に含まれる気泡などの粒子の粒径とは、粒子の直径のことをいう。粒子の直径とは、各粒子を完全な球体と仮定した場合における、その直径に相当する値のことをいう。本発明において、ウルトラファインバブルの粒径は、ナノ粒子トラッキング解析法(NTA法)により、処理液中の粒子の散乱光とブラウン運動パターンから計測することができる。また、本発明において、マイクロバブルの粒径は、バブル発生直後の気泡をハイスピードマイクロスコープカメラで撮影し、そのようにして撮影した写真を、画像解析装置を用いて解析することにより計測することができる。
 本発明において、「粒子密度」は、処理液中に含まれる粒子の密度のことをいい、処理液中に含まれる気泡の密度と相関性がある値である。本発明において、ウルトラファインバブルの粒子密度はナノ粒子トラッキング解析法(NTA法)により、液中の粒子の散乱光およびブラウン運動パターンから計測した粒子数と、処理液の体積から算出することができる。また、本発明において、マイクロバブルの粒子密度は、粒径と同様に、バブル発生直後の気泡をハイスピードマイクロスコープカメラで撮影し、そのようにして撮影した写真を、画像解析装置を用いて解析することにより計測することができる。
 本発明において、処理液の粒子密度は、好ましくは3×10個/mL以上、より好ましくは4×10個/mL以上、さらに好ましくは6×10個/mL以上、最も好ましくは8×10~8×10個/mLである。処理液の粒子密度と気泡密度とは相関性があることから、粒子密度が所定の値以上であれば、微小気泡粒子が相当程度以上の密度で含まれることとなり、茹卵全体に十分に気泡を接触させることができることから、殻をより効率良くきれいに剥くことができる。
 上記のような、「粒径が100μm以下の気泡」は、ISO 20480-1によると、「ファインバブル」とよばれる。また、そのうち、粒径1μm超100μm以下の目視可能な白濁の気泡を「マイクロバブル」、粒径1μm以下の目視不可能な無色透明の気泡を「ウルトラファインバブル」という。本発明において、そのような気泡は、旋回液流式、加圧溶解式、微細孔式など、公知の任意の発生方法により発生させることができる。本発明において、例えば、株式会社ナック製 Foamestコラムタイプ_FP-20-300、IDEC株式会社製 ultrafineGaLF FZ1N-05S、株式会社ナノクス製 ナノフレッシャー NF―WP0.4、エンバイロ・ビジョン株式会社製 YJノズル YJ-21、株式会社テクニカルライト製 UFB DUAL等を用いることができる。これらの装置を使用する場合、各装置のバブル発生方式に応じて、供給するガス圧(ガス流量)や液圧(液流量)、使用するフィルターの孔径などを調整することなどにより、所望の粒径および気泡粒子密度とすることができる。例えば、旋回液流式装置などのバブルを発生させる液の流動を伴う発生装置の場合には、主に、供給するガス圧(ガス流量)および液圧(液流量)を調整することにより、バブルの粒径や気泡粒子密度を調整することができる。また、バブルを発生させる液の流動を伴わない発生装置である、例えば、細孔式発生装置の場合には、供給するガス圧(ガス流量)や液圧(液流量)に加えて、使用するフィルターの孔径を調整することにより粒径や気泡粒子密度を調整することができる。さらに、異なるバブル発生方式の装置を適宜組み合わせることによって、バブルを発生させてもよい。
 本発明において、数値範囲に係る「以下」の用語は、ある数値またはある数値未満の意味で使用する。例えば、100μm以下は、100μmまたは100μm未満を意味する。更に数値範囲に係る「~」の記号は、ある数値、ある数値超かつ他のある数値未満、または他のある数値の意味で使用する。例えば、1~100μmは、1μm、1μm超かつ100μm未満、または100μmを意味する。
 本発明において、冷却工程に用いる処理液の量は、殻付き茹卵1部に対して、好ましくは2部以上、より好ましくは3部以上、最も好ましくは4部以上100部以下である。殻付き茹卵に対して処理液の量を十分に確保することにより、茹卵全体に処理液を接触させることができ、殻をより効率良くきれいに剥くことができる。なお、殻付き茹卵とそれを冷却する際に用いる処理液の割合は、重量部により規定する。重量部とは、重量の比のことであり、これらの重量は当該技術分野において通常用いられる方法により測定することができる。
<殻剥き工程>
 本発明において、「殻剥き工程」とは、冷却した殻付き茹卵の殻を剥く工程のことをいう。茹卵の殻剥き方法は、従来公知の任意の方法とすることができ、人の手で剥く方法、機械的に剥く方法のいずれの処理方法としてもよい。機械的に剥く方法としては、例えば、回転円筒内でひび入れ処理しながらゆで卵の殻を剥く装置(特開昭55-9769号公報)や、中央にゆで卵を固定する固定孔をあけた受け台の上に蛇腹で帽子形状とした空気圧縮体を載せ、その中に空気侵入用の孔をあけておいた茹卵を置き、空気圧縮体を伸縮させて卵の殻と中身を剥離させて殻剥きする装置(実公昭58-49117号公報)など、任意の装置を用いてもよい。
 上記の冷却工程および殻剥き工程を少なくとも含む、本発明の製造方法により得られた茹卵は、殻の剥けやすさが向上することから、凝固卵白を傷つけることなく卵殻を効率良く、きれいに剥くことができる。
 本明細書において、「殻の剥けやすさ」とは、茹卵から卵殻を取り除く容易度のことをいい、茹卵から卵殻を剥くのに要する時間、および/または、剥いた後の茹卵の外観の良好度により評価することができる。
<任意工程>
 本発明の茹卵の製造方法は、冷却工程および殻剥き工程以外の任意の工程を含むことができる。そのような任意の工程としては、例えば、ひび入れ工程、加熱凝固工程、選別工程、および殺菌工程などの、公知の茹卵の製造方法と同様の工程を含むことができる。
<ひび入れ工程>
 本発明の茹卵の製造方法において、冷却工程の前の任意の段階において卵殻にひびを入れることができる。本発明においては、卵殻にひびを入れることは必須ではないが、処理液に茹卵を接触させる前にひびを入れることにより、従来の方法によりひびを入れて製造した殻付き茹卵と比較して、殻をより効率良くきれいに剥くことができる。
 本明細書において、「ひび」とは、公知の方法で卵殻に入れた裂開や穴のことをいう。ひびは、例えば、スプーンなどの金属製治具の平坦部でたたいたり、針で穴を開けたりするなどの人の手による処理や、ひび入れ機械による機械的処理など、従来公知の任意の方法により形成することができる。
<加熱凝固工程>
 本発明において、加熱凝固処理の方法としては、公知の茹卵と同様の方法を採用することができる。例えば、殻付生卵を冷水から加熱する方法、90~100℃の湯中に投入し加熱する方法、加圧蒸気で加熱する方法などをあげることができる。ここで、茹卵とは、上述の通り殻を剥ける程度に卵白が凝固していれば良く、卵黄の状態は問わないことから、加熱凝固処理とは、少なくとも殻剥きできる程度に卵白を凝固する処理をいう。
<選別工程>
 本発明において、良品、不良品の選別方法としては、熟練の作業員による目視での選別や、専用の検査装置を用いた機械的検知による選別など、公知の茹卵と同様の方法を採用することができる。選別基準としては、殻の有無、殻刺さりの有無、外形異常の有無などを判定基準として、茹卵の選別処理を行う。
<殺菌工程>
 本発明において、殺菌処理の方法としては、公知の茹卵と同様の方法を採用することができる。例えば、所定の温度および時間での加熱殺菌や、殺菌剤溶液への浸漬、オゾン殺菌処理など、当該技術分野において従来用いられている任意の方法とすることができる。
 さらに、本発明の製造方法は、従来の茹卵の製造ラインを用いて、工業的にも容易に実施することができる。
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
評価方法
 以下の実施例および比較例において、訓練された評価者によって、茹卵の卵殻を剥いた際の剥けやすさの評価を行った。卵殻の剥けやすさは、所定の個数の茹卵の卵殻を剥くのに要する時間(秒)と、剥いた卵の外観の目視観察により行った。なお、外観の評価は、以下の3つのランクに従った。
  Aランク:茹卵の表面に傷が全くないもの
  Bランク:茹卵の表面に傷が少しあるが問題のないもの
  Cランク:茹卵の表面に割れ、大きな欠けがあるもの
処理液の調製方法
 以下の実施例および比較例において、対照処理液として水道水を用い、液中に含まれる気泡の粒径により、以下の2種類の処理液を調製した。気泡の発生には、ファインバブル発生装置を用いて、気泡発生時のバブリング圧力範囲を適宜調整等することにより、発生する泡の粒径および粒子密度を以下の数値範囲となるようにした。
 処理液A:水道水にウルトラファインバブルを発生させたもの
 処理液B:水道水にマイクロバブルおよびウルトラファインバブルの両方を発生させたもの
処理液Aに含まれる粒子の粒径および粒子密度の測定方法
 処理液Aに含まれる粒子の粒径および粒子密度は、ナノサイト(日本カンタムデザイン社取扱い、Malvern社製、測定範囲1~2000nm)で分析した。処理液A中の粒子の粒径は、いずれも約50~150nmであった。また、気泡発生時のバブリング圧力等を調整することにより、各試験例において、処理液A中の粒子密度が、いずれも4×10個/mL以上となるように調整した。
処理液Bに含まれる粒子の粒子密度
 処理液Bに含まれる粒子のうち、ウルトラファインバブルについては、処理液Aと同様にして分析した。マイクロバブルについては、バブルの発生直後にハイスピードマイクロスコープカメラで撮影し、そのようにして撮影した写真を解析装置へ供することにより粒径を測定した。処理液Bに含まれる気泡の粒径および粒子密度は、以下の通りであった。
 ウルトラファインバブル
 ・粒径:約50~250nm
 ・密度:1×10個/mL以上であった。
 マイクロバブル
 ・粒径:約10~100μm
 ・密度は測定できなかった。
 したがって、処理液Bに含まれる粒子密度は、少なくとも1×10個/mL以上であった。
卵白表面温度の測定
 茹卵の卵白表面温度は、温度計(エラブジャパン社製)を茹卵の鈍端部から鋭端部に向けて刺し、鋭端部の卵殻にあたるまで挿入することにより、卵白表面から卵黄方向に5mm内側を測定した。
[試験例1]
実施例1~2および比較例1~2
 処理液に含まれる気泡の粒径が殻の剥けやすさに与える影響について試験を行った。
原料卵および茹卵の調製方法
 殻付き生卵(MSサイズ、pH=約8.9(無調整))20個を使用した。これらの生卵にひびを入れ、95℃で10分ボイルして、茹卵を調製した。
冷却条件
 上記の通り調製した茹卵を、下表1の冷却条件で冷却した。なお、冷却開始時の卵白表面温度は80℃であり、冷却に用いる冷却水の温度は5℃であった。また、この時の卵白表面温度が70℃に達した時から40℃になるまでの冷却時間は283秒であった。
 比較例2において使用した冷却水は、水槽に水道水を入れ、そこへ市販の水槽用エアポンプを用いてエアを吹き込むことにより調製した。
歩留まり率の算出方法
 全殻付き茹卵の個数に対する外観評価AおよびBの茹卵の合計個数から歩留まり率を算出した。また、冷却水として水道水を用いた場合の歩留まりを基準として、歩留まりの向上率を算出した。
結果
 実施例1~2および比較例1~2の結果は、下表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 溶存酸素濃度は同じであっても、ウルトラファインバブルを含む処理液A、およびウルトラファインバブルとマイクロバブルを含む処理液Bを用いて茹卵を冷却した場合に、歩留り率が向上していた。
[試験例2]
実施例3および比較例3~5
 殻付き茹卵を冷却液に接触させる温度が殻の剥けやすさに与える影響について試験を行った。
原料卵および茹卵の調製方法
 試験例1と同様の原料卵20個を、ひび入れ後に試験例1と同様の条件でボイルして茹卵を調製した。
冷却条件
 上記の通り調製した茹卵を、以下の冷却条件で冷却した。このとき、殻付き茹卵1部に対する処理液の割合が10部となるように調整した。
(1)実施例3
 90℃の卵白表面温度を有する殻付き茹卵20個を、5℃の処理液Aに30分間接触させた。
(2)比較例3
 90℃の卵白表面温度を有する殻付き茹卵20個を、5℃の水道水に30分間接触させた。
(3)比較例4
 90℃の卵白表面温度を有する殻付き茹卵20個を、5℃の水道水に15分間接触させた。その後、冷却終了後10℃の卵白表面温度を有する殻付き茹卵20個を、5℃の処理液Aに15分間接触させた。
(4)比較例5
 90℃の卵白表面温度を有する殻付き茹卵20個を、5℃の水道水に15分間接触させた。その後、冷却終了後10℃の卵白表面温度を有する殻付き茹卵20個を、5℃の処理液Aに30分間接触させた。
結果
 実施例3および比較例3~5の結果は、下表2の通りである。
Figure JPOXMLDOC01-appb-T000002
 卵白表面温度が70℃以上で、ウルトラファインバブルを含む処理液に接触させると、剥く時間が短縮された。
[試験例3]
実施例4~5および比較例6
 茹卵の冷却速度が殻の剥けやすさに与える影響について試験を行った。
原料卵および茹卵の調製方法
 試験例1と同様の原料卵20個を、ひび入れ後に試験例1と同様の条件でボイルして茹卵を調製した。
試験方法
 上記の通り調製した殻付き茹卵を以下の冷却条件で冷却し、冷却後の茹卵の殻を剥くのに要する時間を測定した。このとき、殻付き茹卵1部に対する処理液の割合が10部となるように調整した。
(1)実施例4
 90℃の卵白表面温度を有する殻付き茹卵を、該温度が25℃になるまで5℃の処理液Aに接触させた。
(3)実施例5
 90℃の卵白表面温度を有する殻付き茹卵を、該温度が25℃になるまで15℃の処理液Aに接触させた。
(2)比較例6
 90℃の卵白表面温度を有する殻付き茹卵を、該温度が25℃になるまで5℃の水道水に接触させた。
冷却速度の算出
 冷却速度は、卵白表面温度が70℃に達した時から40℃になるまでの所要時間を用いて算出した。
剥けやすさの評価
 いずれの例においても、殻付き茹卵を5℃まで冷却した後に20個の茹卵の殻を剥くのに要する時間を測定することにより、殻の剥けやすさの試験を行った。
結果
 実施例4~5および比較例6の結果は、下表3の通りである。
Figure JPOXMLDOC01-appb-T000003
 冷却開始時に15℃以下の処理液を用いた場合には、剥きやすさが向上した。また、冷却水の温度が低いほど、効果が高かった。
[試験例4]
実施例6~7および比較例7
 処理液Aに含まれる粒子密度が殻の剥けやすさに与える影響について試験を行った。
試験方法
 試験例1と同様にして調製した殻付き茹卵15個を、以下の冷却条件で冷却し、殻の剥けやすさを比較した。このとき、殻付き茹卵1部に対する処理液の割合が5部となるように調整した。
(1)実施例6
 90℃の卵白表面温度を有する殻付き茹卵を、5℃の処理液Aに30分間接触させた。殻付茹卵に接触させた時の処理液Aの粒子密度は、約8×10個/mLであった。
(2)実施例7
 90℃の卵白表面温度を有する殻付き茹卵を、バブリングする圧力を変え、粒子密度を約4×10個/mLにした5℃の処理液Aに30分間接触させた。
(2)比較例7
 90℃の卵白表面温度を有する殻付き茹卵を、5℃の水道水に30分間接触させた。
結果
 実施例6~7および比較例7の結果は、下表4の通りである。
Figure JPOXMLDOC01-appb-T000004
 粒子密度が4×10個/mL以上であると剥く時間が短くなり、8×10個/mL以上だとより短くなった。粒子密度は気泡密度と密接な相関関係があることから、ウルトラファインバブルを多く含む処理液を用いた場合の方が、卵殻の剥けやすさが高かったと考えられる。
[試験例5]
実施例8~9および比較例8
 ひびの有無が卵殻の剥けやすさに与える影響について試験を行った。
試験方法
 試験例1と同様に調製したひび入り茹卵と、同様の生卵をひびを入れずに95℃で10分ボイルした茹卵を、それぞれ20個ずつ処理液Aで冷却して殻の剥けやすさを比較した。このとき、冷却開始時の卵白表面温度は90℃であり、殻付き茹卵1部に対する処理液の割合が10部となるように調整した。
結果
 実施例8~9および比較例8の結果は、下表5の通りである。
Figure JPOXMLDOC01-appb-T000005
 ひびが無い場合でも、ウルトラファインバブルを含有する処理液で冷却した方が、水道水で冷却したものよりもきれいに剥けた。

Claims (6)

  1. 茹卵の製造方法であって、
     殻付き茹卵を処理液で冷却する工程と、
     前記殻付き茹卵の殻を剥く工程と、
    を含み、
     前記冷却工程直前の殻付き茹卵の卵白表面温度が70℃以上であり、
     前記処理液の温度が25℃以下であり、
     前記処理液がファインバブルを含有する、
    ことを特徴とする、茹卵の製造方法。
  2. 茹卵の製造方法であって、
     殻付き茹卵を処理液で冷却する工程と、
     前記殻付き茹卵の殻を剥く工程と、
    を含み、
     前記冷却工程直前の殻付き茹卵の卵白表面温度が70℃以上であり、
     前記処理液の温度が25℃以下であり、
     前記処理液が粒径100μm以下の粒子を含有する、
    ことを特徴とする、茹卵の製造方法。
  3. 請求項1または2に記載の茹卵の製造方法において、
     前記処理液は水である、茹卵の製造方法。
  4. 請求項1~3のいずれか一項に記載の茹卵の製造方法において、
     前記殻付き茹卵1部に対する前記処理液の割合が3部以上である、茹卵の製造方法。
  5. 請求項1~4のいずれか一項に記載の茹卵の製造方法において、
     前記処理液の粒子密度は、3×10個/mL以上である、茹卵の製造方法。
  6. 請求項1~5のいずれか一項に記載の茹卵の製造方法において、
     前記冷却工程の前に、卵殻にひびを入れる工程をさらに含む、茹卵の製造方法。
PCT/JP2019/003647 2018-02-06 2019-02-01 茹卵の製造方法 WO2019155995A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517469A JP6553321B1 (ja) 2018-02-06 2019-02-01 茹卵の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-019384 2018-02-06
JP2018019384 2018-02-06
JP2018198541 2018-10-22
JP2018-198541 2018-10-22

Publications (1)

Publication Number Publication Date
WO2019155995A1 true WO2019155995A1 (ja) 2019-08-15

Family

ID=67549370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003647 WO2019155995A1 (ja) 2018-02-06 2019-02-01 茹卵の製造方法

Country Status (1)

Country Link
WO (1) WO2019155995A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111067047A (zh) * 2020-01-03 2020-04-28 华中农业大学 一种利用脉动压辅助腌制卤蛋的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224466A (ja) * 1990-01-29 1991-10-03 Kanematsu Kogyo Kk ゆで卵自動殻取り装置
JP2006042682A (ja) * 2004-08-04 2006-02-16 Q P Corp 茹で卵の製造方法
JP2013063240A (ja) * 2011-08-26 2013-04-11 Kaoru Umeno ゆで卵調理具およびゆで卵の調理方法
JP2013233120A (ja) * 2012-05-10 2013-11-21 Domo Corporation:Kk 卵殻と卵殻膜との分離回収方法及び分離回収装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224466A (ja) * 1990-01-29 1991-10-03 Kanematsu Kogyo Kk ゆで卵自動殻取り装置
JP2006042682A (ja) * 2004-08-04 2006-02-16 Q P Corp 茹で卵の製造方法
JP2013063240A (ja) * 2011-08-26 2013-04-11 Kaoru Umeno ゆで卵調理具およびゆで卵の調理方法
JP2013233120A (ja) * 2012-05-10 2013-11-21 Domo Corporation:Kk 卵殻と卵殻膜との分離回収方法及び分離回収装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111067047A (zh) * 2020-01-03 2020-04-28 华中农业大学 一种利用脉动压辅助腌制卤蛋的方法
CN111067047B (zh) * 2020-01-03 2022-09-23 华中农业大学 一种利用脉动压辅助腌制卤蛋的方法

Similar Documents

Publication Publication Date Title
Marangoni et al. Advances in our understanding of the structure and functionality of edible fats and fat mimetics
EP1355544A2 (en) Food product comprising protein coated gas microbubbles
BR112019021082B1 (pt) Composição compreendendo complexos de partículas finas para alimentos e método para produzir a composição
WO2019155995A1 (ja) 茹卵の製造方法
CN104798983A (zh) 一种tg酶改性的高强度混合凝胶及其制备方法
Truong et al. Effects of dissolved carbon dioxide in fat phase of cream on manufacturing and physical properties of butter
JP6553321B1 (ja) 茹卵の製造方法
CN104140886A (zh) 一种棉籽油的提取方法
CN110037011A (zh) 一种大豆卵磷脂冷冻稀释液的制备方法及其应用
JP2006271279A (ja) 水中油型乳化油脂組成物
Emami et al. Optimization of the oleogel‐vanaspati formulation based on rice bran wax and sorbitan monostearate
CN115553451A (zh) 一种低胆固醇及高冻融稳定性植物蛋白基蛋黄酱与制备方法
US20200196642A1 (en) New Approach for Processing Marble-like Beef
CN106071935A (zh) 一种陆川猪扣肉的制作方法
US20030170353A1 (en) Protein coated gas microbubbles
Olutoye et al. Extraction and characterization of oil from lima beans using 23 full factorial designs
JP6034912B2 (ja) ブドウの剥皮易化方法
CN106894011A (zh) 高抗氧性镁合金表面处理工艺
CN111642661A (zh) 一种高浓度鲜榨椰浆的制备方法
JP6329501B2 (ja) 昆虫の混入時期判定方法
JP7272824B2 (ja) 油中水型乳化油脂組成物
Luddy et al. Determination of tri‐saturated glycerides in lard, hydrogenated lard, and tallow
CN113115828B (zh) 一种含椰浆的油脂组合物及其制备方法
JP2019033675A (ja) ゲル状ホイップドクリームの製造方法及びゲル状ホイップドクリーム
NO137391B (no) Fremgangsm}te til fremstilling av fibre fra naturlig protein av animalsk opprinnelse.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517469

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750967

Country of ref document: EP

Kind code of ref document: A1